Zhou Sheng | fd43dcf | 2007-02-06 03:00:16 +0000 | [diff] [blame^] | 1 | //===-- APInt.cpp - Implement APInt class ---------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Sheng Zhou and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a class to represent arbitrary precision integral |
| 11 | // constant values. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/ADT/APInt.h" |
| 16 | #include "llvm/DerivedTypes.h" |
| 17 | #include "llvm/Support/MathExtras.h" |
| 18 | #include <strings.h> |
| 19 | #include <iostream> |
| 20 | #include <sstream> |
| 21 | #include <iomanip> |
| 22 | #include <cstdlib> |
| 23 | using namespace llvm; |
| 24 | |
| 25 | APInt::APInt(uint64_t val, unsigned numBits, bool sign) |
| 26 | : bitsnum(numBits), isSigned(sign) { |
| 27 | assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small"); |
| 28 | assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large"); |
| 29 | if (isSingleWord()) |
| 30 | VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum)); |
| 31 | else { |
| 32 | // Memory allocation and check if successful. |
| 33 | assert((pVal = new uint64_t[numWords()]) && |
| 34 | "APInt memory allocation fails!"); |
| 35 | bzero(pVal, numWords() * 8); |
| 36 | pVal[0] = val; |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | APInt::APInt(unsigned numBits, uint64_t bigVal[], bool sign) |
| 41 | : bitsnum(numBits), isSigned(sign) { |
| 42 | assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small"); |
| 43 | assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large"); |
| 44 | assert(bigVal && "Null pointer detected!"); |
| 45 | if (isSingleWord()) |
| 46 | VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum)); |
| 47 | else { |
| 48 | // Memory allocation and check if successful. |
| 49 | assert((pVal = new uint64_t[numWords()]) && |
| 50 | "APInt memory allocation fails!"); |
| 51 | // Calculate the actual length of bigVal[]. |
| 52 | unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]); |
| 53 | unsigned maxN = std::max<unsigned>(n, numWords()); |
| 54 | unsigned minN = std::min<unsigned>(n, numWords()); |
| 55 | memcpy(pVal, bigVal, (minN - 1) * 8); |
| 56 | pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - bitsnum % 64)); |
| 57 | if (maxN == numWords()) |
| 58 | bzero(pVal+n, (numWords() - n) * 8); |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | APInt::APInt(std::string& Val, uint8_t radix, bool sign) |
| 63 | : isSigned(sign) { |
| 64 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| 65 | "Radix should be 2, 8, 10, or 16!"); |
| 66 | assert(!Val.empty() && "String empty?"); |
| 67 | unsigned slen = Val.size(); |
| 68 | unsigned size = 0; |
| 69 | // If the radix is a power of 2, read the input |
| 70 | // from most significant to least significant. |
| 71 | if ((radix & (radix - 1)) == 0) { |
| 72 | unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2; |
| 73 | uint64_t resDigit = 0; |
| 74 | bitsnum = slen * bits_per_digit; |
| 75 | if (numWords() > 1) |
| 76 | assert((pVal = new uint64_t[numWords()]) && |
| 77 | "APInt memory allocation fails!"); |
| 78 | for (int i = slen - 1; i >= 0; --i) { |
| 79 | uint64_t digit = Val[i] - 48; // '0' == 48. |
| 80 | resDigit |= digit << nextBitPos; |
| 81 | nextBitPos += bits_per_digit; |
| 82 | if (nextBitPos >= 64) { |
| 83 | if (isSingleWord()) { |
| 84 | VAL = resDigit; |
| 85 | break; |
| 86 | } |
| 87 | pVal[size++] = resDigit; |
| 88 | nextBitPos -= 64; |
| 89 | resDigit = digit >> (bits_per_digit - nextBitPos); |
| 90 | } |
| 91 | } |
| 92 | if (!isSingleWord() && size <= numWords()) |
| 93 | pVal[size] = resDigit; |
| 94 | } else { // General case. The radix is not a power of 2. |
| 95 | // For 10-radix, the max value of 64-bit integer is 18446744073709551615, |
| 96 | // and its digits number is 14. |
| 97 | const unsigned chars_per_word = 20; |
| 98 | if (slen < chars_per_word || |
| 99 | (Val <= "18446744073709551615" && |
| 100 | slen == chars_per_word)) { // In case Val <= 2^64 - 1 |
| 101 | bitsnum = 64; |
| 102 | VAL = strtoull(Val.c_str(), 0, 10); |
| 103 | } else { // In case Val > 2^64 - 1 |
| 104 | bitsnum = (slen / chars_per_word + 1) * 64; |
| 105 | assert((pVal = new uint64_t[numWords()]) && |
| 106 | "APInt memory allocation fails!"); |
| 107 | bzero(pVal, numWords() * 8); |
| 108 | unsigned str_pos = 0; |
| 109 | while (str_pos < slen) { |
| 110 | unsigned chunk = slen - str_pos; |
| 111 | if (chunk > chars_per_word - 1) |
| 112 | chunk = chars_per_word - 1; |
| 113 | uint64_t resDigit = Val[str_pos++] - 48; // 48 == '0'. |
| 114 | uint64_t big_base = radix; |
| 115 | while (--chunk > 0) { |
| 116 | resDigit = resDigit * radix + Val[str_pos++] - 48; |
| 117 | big_base *= radix; |
| 118 | } |
| 119 | |
| 120 | uint64_t carry; |
| 121 | if (!size) |
| 122 | carry = resDigit; |
| 123 | else { |
| 124 | carry = mul_1(pVal, pVal, size, big_base); |
| 125 | carry += add_1(pVal, pVal, size, resDigit); |
| 126 | } |
| 127 | |
| 128 | if (carry) pVal[size++] = carry; |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | APInt::APInt(const APInt& APIVal) |
| 135 | : bitsnum(APIVal.bitsnum), isSigned(APIVal.isSigned) { |
| 136 | if (isSingleWord()) VAL = APIVal.VAL; |
| 137 | else { |
| 138 | // Memory allocation and check if successful. |
| 139 | assert((pVal = new uint64_t[numWords()]) && |
| 140 | "APInt memory allocation fails!"); |
| 141 | memcpy(pVal, APIVal.pVal, numWords() * 8); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | APInt::~APInt() { |
| 146 | if (!isSingleWord() && pVal) delete[] pVal; |
| 147 | } |
| 148 | |
| 149 | /// whichByte - This function returns the word position |
| 150 | /// for the specified bit position. |
| 151 | inline unsigned APInt::whichByte(unsigned bitPosition) |
| 152 | { return (bitPosition % APINT_BITS_PER_WORD) / 8; } |
| 153 | |
| 154 | /// getWord - returns the corresponding word for the specified bit position. |
| 155 | inline uint64_t& APInt::getWord(unsigned bitPosition) |
| 156 | { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } |
| 157 | |
| 158 | /// getWord - returns the corresponding word for the specified bit position. |
| 159 | /// This is a constant version. |
| 160 | inline uint64_t APInt::getWord(unsigned bitPosition) const |
| 161 | { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } |
| 162 | |
| 163 | /// mul_1 - This function multiplies the integer array x[] by a integer y and |
| 164 | /// returns the carry. |
| 165 | uint64_t APInt::mul_1(uint64_t dest[], uint64_t x[], |
| 166 | unsigned len, uint64_t y) { |
| 167 | // Split y into high 32-bit part and low 32-bit part. |
| 168 | uint64_t ly = y & 0xffffffffULL, hy = y >> 32; |
| 169 | uint64_t carry = 0, lx, hx; |
| 170 | for (unsigned i = 0; i < len; ++i) { |
| 171 | lx = x[i] & 0xffffffffULL; |
| 172 | hx = x[i] >> 32; |
| 173 | // hasCarry - A flag to indicate if has carry. |
| 174 | // hasCarry == 0, no carry |
| 175 | // hasCarry == 1, has carry |
| 176 | // hasCarry == 2, no carry and the calculation result == 0. |
| 177 | uint8_t hasCarry = 0; |
| 178 | dest[i] = carry + lx * ly; |
| 179 | // Determine if the add above introduces carry. |
| 180 | hasCarry = (dest[i] < carry) ? 1 : 0; |
| 181 | carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); |
| 182 | // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + |
| 183 | // (2^32 - 1) + 2^32 = 2^64. |
| 184 | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| 185 | |
| 186 | carry += (lx * hy) & 0xffffffffULL; |
| 187 | dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); |
| 188 | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + |
| 189 | (carry >> 32) + ((lx * hy) >> 32) + hx * hy; |
| 190 | } |
| 191 | |
| 192 | return carry; |
| 193 | } |
| 194 | |
| 195 | /// mul - This function multiplies integer array x[] by integer array y[] and |
| 196 | /// stores the result into integer array dest[]. |
| 197 | /// Note the array dest[]'s size should no less than xlen + ylen. |
| 198 | void APInt::mul(uint64_t dest[], uint64_t x[], unsigned xlen, |
| 199 | uint64_t y[], unsigned ylen) { |
| 200 | dest[xlen] = mul_1(dest, x, xlen, y[0]); |
| 201 | |
| 202 | for (unsigned i = 1; i < ylen; ++i) { |
| 203 | uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; |
| 204 | uint64_t carry = 0, lx, hx; |
| 205 | for (unsigned j = 0; j < xlen; ++j) { |
| 206 | lx = x[j] & 0xffffffffULL; |
| 207 | hx = x[j] >> 32; |
| 208 | // hasCarry - A flag to indicate if has carry. |
| 209 | // hasCarry == 0, no carry |
| 210 | // hasCarry == 1, has carry |
| 211 | // hasCarry == 2, no carry and the calculation result == 0. |
| 212 | uint8_t hasCarry = 0; |
| 213 | uint64_t resul = carry + lx * ly; |
| 214 | hasCarry = (resul < carry) ? 1 : 0; |
| 215 | carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); |
| 216 | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| 217 | |
| 218 | carry += (lx * hy) & 0xffffffffULL; |
| 219 | resul = (carry << 32) | (resul & 0xffffffffULL); |
| 220 | dest[i+j] += resul; |
| 221 | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ |
| 222 | (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + |
| 223 | ((lx * hy) >> 32) + hx * hy; |
| 224 | } |
| 225 | dest[i+xlen] = carry; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | /// add_1 - This function adds the integer array x[] by integer y and |
| 230 | /// returns the carry. |
| 231 | uint64_t APInt::add_1(uint64_t dest[], uint64_t x[], |
| 232 | unsigned len, uint64_t y) { |
| 233 | uint64_t carry = y; |
| 234 | |
| 235 | for (unsigned i = 0; i < len; ++i) { |
| 236 | dest[i] = carry + x[i]; |
| 237 | carry = (dest[i] < carry) ? 1 : 0; |
| 238 | } |
| 239 | return carry; |
| 240 | } |
| 241 | |
| 242 | /// add - This function adds the integer array x[] by integer array |
| 243 | /// y[] and returns the carry. |
| 244 | uint64_t APInt::add(uint64_t dest[], uint64_t x[], |
| 245 | uint64_t y[], unsigned len) { |
| 246 | unsigned carry = 0; |
| 247 | |
| 248 | for (unsigned i = 0; i< len; ++i) { |
| 249 | carry += x[i]; |
| 250 | dest[i] = carry + y[i]; |
| 251 | carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0); |
| 252 | } |
| 253 | return carry; |
| 254 | } |
| 255 | |
| 256 | /// sub_1 - This function subtracts the integer array x[] by |
| 257 | /// integer y and returns the borrow-out carry. |
| 258 | uint64_t APInt::sub_1(uint64_t x[], unsigned len, uint64_t y) { |
| 259 | uint64_t cy = y; |
| 260 | |
| 261 | for (unsigned i = 0; i < len; ++i) { |
| 262 | uint64_t X = x[i]; |
| 263 | x[i] -= cy; |
| 264 | if (cy > X) |
| 265 | cy = 1; |
| 266 | else { |
| 267 | cy = 0; |
| 268 | break; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | return cy; |
| 273 | } |
| 274 | |
| 275 | /// sub - This function subtracts the integer array x[] by |
| 276 | /// integer array y[], and returns the borrow-out carry. |
| 277 | uint64_t APInt::sub(uint64_t dest[], uint64_t x[], |
| 278 | uint64_t y[], unsigned len) { |
| 279 | // Carry indicator. |
| 280 | uint64_t cy = 0; |
| 281 | |
| 282 | for (unsigned i = 0; i < len; ++i) { |
| 283 | uint64_t Y = y[i], X = x[i]; |
| 284 | Y += cy; |
| 285 | |
| 286 | cy = Y < cy ? 1 : 0; |
| 287 | Y = X - Y; |
| 288 | cy += Y > X ? 1 : 0; |
| 289 | dest[i] = Y; |
| 290 | } |
| 291 | return cy; |
| 292 | } |
| 293 | |
| 294 | /// UnitDiv - This function divides N by D, |
| 295 | /// and returns (remainder << 32) | quotient. |
| 296 | /// Assumes (N >> 32) < D. |
| 297 | uint64_t APInt::unitDiv(uint64_t N, unsigned D) { |
| 298 | uint64_t q, r; // q: quotient, r: remainder. |
| 299 | uint64_t a1 = N >> 32; // a1: high 32-bit part of N. |
| 300 | uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N |
| 301 | if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { |
| 302 | q = N / D; |
| 303 | r = N % D; |
| 304 | } |
| 305 | else { |
| 306 | // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d |
| 307 | uint64_t c = N - ((uint64_t) D << 31); |
| 308 | // Divide (c1*2^32 + c0) by d |
| 309 | q = c / D; |
| 310 | r = c % D; |
| 311 | // Add 2^31 to quotient |
| 312 | q += 1 << 31; |
| 313 | } |
| 314 | |
| 315 | return (r << 32) | (q & 0xFFFFFFFFl); |
| 316 | } |
| 317 | |
| 318 | /// subMul - This function substracts x[len-1:0] * y from |
| 319 | /// dest[offset+len-1:offset], and returns the most significant |
| 320 | /// word of the product, minus the borrow-out from the subtraction. |
| 321 | unsigned APInt::subMul(unsigned dest[], unsigned offset, |
| 322 | unsigned x[], unsigned len, unsigned y) { |
| 323 | uint64_t yl = (uint64_t) y & 0xffffffffL; |
| 324 | unsigned carry = 0; |
| 325 | unsigned j = 0; |
| 326 | do { |
| 327 | uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl; |
| 328 | unsigned prod_low = (unsigned) prod; |
| 329 | unsigned prod_high = (unsigned) (prod >> 32); |
| 330 | prod_low += carry; |
| 331 | carry = (prod_low < carry ? 1 : 0) + prod_high; |
| 332 | unsigned x_j = dest[offset+j]; |
| 333 | prod_low = x_j - prod_low; |
| 334 | if (prod_low > x_j) ++carry; |
| 335 | dest[offset+j] = prod_low; |
| 336 | } while (++j < len); |
| 337 | return carry; |
| 338 | } |
| 339 | |
| 340 | /// div - This is basically Knuth's formulation of the classical algorithm. |
| 341 | /// Correspondance with Knuth's notation: |
| 342 | /// Knuth's u[0:m+n] == zds[nx:0]. |
| 343 | /// Knuth's v[1:n] == y[ny-1:0] |
| 344 | /// Knuth's n == ny. |
| 345 | /// Knuth's m == nx-ny. |
| 346 | /// Our nx == Knuth's m+n. |
| 347 | /// Could be re-implemented using gmp's mpn_divrem: |
| 348 | /// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). |
| 349 | void APInt::div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) { |
| 350 | unsigned j = nx; |
| 351 | do { // loop over digits of quotient |
| 352 | // Knuth's j == our nx-j. |
| 353 | // Knuth's u[j:j+n] == our zds[j:j-ny]. |
| 354 | unsigned qhat; // treated as unsigned |
| 355 | if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff |
| 356 | else { |
| 357 | uint64_t w = (((uint64_t)(zds[j])) << 32) + |
| 358 | ((uint64_t)zds[j-1] & 0xffffffffL); |
| 359 | qhat = (unsigned) unitDiv(w, y[ny-1]); |
| 360 | } |
| 361 | if (qhat) { |
| 362 | unsigned borrow = subMul(zds, j - ny, y, ny, qhat); |
| 363 | unsigned save = zds[j]; |
| 364 | uint64_t num = ((uint64_t)save&0xffffffffL) - |
| 365 | ((uint64_t)borrow&0xffffffffL); |
| 366 | while (num) { |
| 367 | qhat--; |
| 368 | uint64_t carry = 0; |
| 369 | for (unsigned i = 0; i < ny; i++) { |
| 370 | carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) |
| 371 | + ((uint64_t) y[i] & 0xffffffffL); |
| 372 | zds[j-ny+i] = (unsigned) carry; |
| 373 | carry >>= 32; |
| 374 | } |
| 375 | zds[j] += carry; |
| 376 | num = carry - 1; |
| 377 | } |
| 378 | } |
| 379 | zds[j] = qhat; |
| 380 | } while (--j >= ny); |
| 381 | } |
| 382 | |
| 383 | /// lshift - This function shift x[0:len-1] left by shiftAmt bits, and |
| 384 | /// store the len least significant words of the result in |
| 385 | /// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from |
| 386 | /// the most significant digit. |
| 387 | uint64_t APInt::lshift(uint64_t dest[], unsigned d_offset, |
| 388 | uint64_t x[], unsigned len, unsigned shiftAmt) { |
| 389 | unsigned count = 64 - shiftAmt; |
| 390 | int i = len - 1; |
| 391 | uint64_t high_word = x[i], retVal = high_word >> count; |
| 392 | ++d_offset; |
| 393 | while (--i >= 0) { |
| 394 | uint64_t low_word = x[i]; |
| 395 | dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count); |
| 396 | high_word = low_word; |
| 397 | } |
| 398 | dest[d_offset+i] = high_word << shiftAmt; |
| 399 | return retVal; |
| 400 | } |
| 401 | |
| 402 | /// @brief Copy assignment operator. Create a new object from the given |
| 403 | /// APInt one by initialization. |
| 404 | APInt& APInt::operator=(const APInt& RHS) { |
| 405 | if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| 406 | else { |
| 407 | unsigned minN = std::min(numWords(), RHS.numWords()); |
| 408 | memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8); |
| 409 | if (numWords() != minN) |
| 410 | bzero(pVal + minN, (numWords() - minN) * 8); |
| 411 | } |
| 412 | return *this; |
| 413 | } |
| 414 | |
| 415 | /// @brief Assignment operator. Assigns a common case integer value to |
| 416 | /// the APInt. |
| 417 | APInt& APInt::operator=(uint64_t RHS) { |
| 418 | if (isSingleWord()) VAL = RHS; |
| 419 | else { |
| 420 | pVal[0] = RHS; |
| 421 | bzero(pVal, (numWords() - 1) * 8); |
| 422 | } |
| 423 | return *this; |
| 424 | } |
| 425 | |
| 426 | /// @brief Postfix increment operator. Increments the APInt by one. |
| 427 | const APInt APInt::operator++(int) { |
| 428 | APInt API(*this); |
| 429 | if (isSingleWord()) ++VAL; |
| 430 | else |
| 431 | add_1(pVal, pVal, numWords(), 1); |
| 432 | API.TruncToBits(); |
| 433 | return API; |
| 434 | } |
| 435 | |
| 436 | /// @brief Prefix increment operator. Increments the APInt by one. |
| 437 | APInt& APInt::operator++() { |
| 438 | if (isSingleWord()) ++VAL; |
| 439 | else |
| 440 | add_1(pVal, pVal, numWords(), 1); |
| 441 | TruncToBits(); |
| 442 | return *this; |
| 443 | } |
| 444 | |
| 445 | /// @brief Postfix decrement operator. Decrements the APInt by one. |
| 446 | const APInt APInt::operator--(int) { |
| 447 | APInt API(*this); |
| 448 | if (isSingleWord()) --VAL; |
| 449 | else |
| 450 | sub_1(API.pVal, API.numWords(), 1); |
| 451 | API.TruncToBits(); |
| 452 | return API; |
| 453 | } |
| 454 | |
| 455 | /// @brief Prefix decrement operator. Decrements the APInt by one. |
| 456 | APInt& APInt::operator--() { |
| 457 | if (isSingleWord()) --VAL; |
| 458 | else |
| 459 | sub_1(pVal, numWords(), 1); |
| 460 | TruncToBits(); |
| 461 | return *this; |
| 462 | } |
| 463 | |
| 464 | /// @brief Addition assignment operator. Adds this APInt by the given APInt& |
| 465 | /// RHS and assigns the result to this APInt. |
| 466 | APInt& APInt::operator+=(const APInt& RHS) { |
| 467 | if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| 468 | else { |
| 469 | if (RHS.isSingleWord()) add_1(pVal, pVal, numWords(), RHS.VAL); |
| 470 | else { |
| 471 | if (numWords() <= RHS.numWords()) |
| 472 | add(pVal, pVal, RHS.pVal, numWords()); |
| 473 | else { |
| 474 | uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.numWords()); |
| 475 | add_1(pVal + RHS.numWords(), pVal + RHS.numWords(), |
| 476 | numWords() - RHS.numWords(), carry); |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | TruncToBits(); |
| 481 | return *this; |
| 482 | } |
| 483 | |
| 484 | /// @brief Subtraction assignment operator. Subtracts this APInt by the given |
| 485 | /// APInt &RHS and assigns the result to this APInt. |
| 486 | APInt& APInt::operator-=(const APInt& RHS) { |
| 487 | if (isSingleWord()) |
| 488 | VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| 489 | else { |
| 490 | if (RHS.isSingleWord()) |
| 491 | sub_1(pVal, numWords(), RHS.VAL); |
| 492 | else { |
| 493 | if (RHS.numWords() < numWords()) { |
| 494 | uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.numWords()); |
| 495 | sub_1(pVal + RHS.numWords(), numWords() - RHS.numWords(), carry); |
| 496 | } |
| 497 | else |
| 498 | sub(pVal, pVal, RHS.pVal, numWords()); |
| 499 | } |
| 500 | } |
| 501 | TruncToBits(); |
| 502 | return *this; |
| 503 | } |
| 504 | |
| 505 | /// @brief Multiplication assignment operator. Multiplies this APInt by the |
| 506 | /// given APInt& RHS and assigns the result to this APInt. |
| 507 | APInt& APInt::operator*=(const APInt& RHS) { |
| 508 | if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| 509 | else { |
| 510 | // one-based first non-zero bit position. |
| 511 | unsigned first = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); |
| 512 | unsigned xlen = !first ? 0 : whichWord(first - 1) + 1; |
| 513 | if (!xlen) |
| 514 | return *this; |
| 515 | else if (RHS.isSingleWord()) |
| 516 | mul_1(pVal, pVal, xlen, RHS.VAL); |
| 517 | else { |
| 518 | first = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); |
| 519 | unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; |
| 520 | if (!ylen) { |
| 521 | bzero(pVal, numWords() * 8); |
| 522 | return *this; |
| 523 | } |
| 524 | uint64_t *dest = new uint64_t[xlen+ylen]; |
| 525 | assert(dest && "Memory Allocation Failed!"); |
| 526 | mul(dest, pVal, xlen, RHS.pVal, ylen); |
| 527 | memcpy(pVal, dest, ((xlen + ylen >= numWords()) ? numWords() : xlen + ylen) * 8); |
| 528 | delete[] dest; |
| 529 | } |
| 530 | } |
| 531 | TruncToBits(); |
| 532 | return *this; |
| 533 | } |
| 534 | |
| 535 | /// @brief Division assignment operator. Divides this APInt by the given APInt |
| 536 | /// &RHS and assigns the result to this APInt. |
| 537 | APInt& APInt::operator/=(const APInt& RHS) { |
| 538 | unsigned first = RHS.numWords() * APINT_BITS_PER_WORD - |
| 539 | RHS.CountLeadingZeros(); |
| 540 | unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; |
| 541 | assert(ylen && "Divided by zero???"); |
| 542 | if (isSingleWord()) { |
| 543 | if (isSigned && RHS.isSigned) |
| 544 | VAL = RHS.isSingleWord() ? (int64_t(VAL) / int64_t(RHS.VAL)) : |
| 545 | (ylen > 1 ? 0 : int64_t(VAL) / int64_t(RHS.pVal[0])); |
| 546 | else |
| 547 | VAL = RHS.isSingleWord() ? (VAL / RHS.VAL) : |
| 548 | (ylen > 1 ? 0 : VAL / RHS.pVal[0]); |
| 549 | } else { |
| 550 | unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); |
| 551 | unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1; |
| 552 | if (!xlen) |
| 553 | return *this; |
| 554 | else if ((*this) < RHS) |
| 555 | bzero(pVal, numWords() * 8); |
| 556 | else if ((*this) == RHS) { |
| 557 | bzero(pVal, numWords() * 8); |
| 558 | pVal[0] = 1; |
| 559 | } else if (xlen == 1) |
| 560 | pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| 561 | else { |
| 562 | uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen]; |
| 563 | assert(xwords && ywords && "Memory Allocation Failed!"); |
| 564 | memcpy(xwords, pVal, xlen * 8); |
| 565 | xwords[xlen] = 0; |
| 566 | memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8); |
| 567 | if (unsigned nshift = 63 - (first - 1) % 64) { |
| 568 | lshift(ywords, 0, ywords, ylen, nshift); |
| 569 | unsigned xlentmp = xlen; |
| 570 | xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift); |
| 571 | } |
| 572 | div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2); |
| 573 | bzero(pVal, numWords() * 8); |
| 574 | memcpy(pVal, xwords + ylen, (xlen - ylen) * 8); |
| 575 | delete[] xwords; |
| 576 | delete[] ywords; |
| 577 | } |
| 578 | } |
| 579 | return *this; |
| 580 | } |
| 581 | |
| 582 | /// @brief Remainder assignment operator. Yields the remainder from the |
| 583 | /// division of this APInt by the given APInt& RHS and assigns the remainder |
| 584 | /// to this APInt. |
| 585 | APInt& APInt::operator%=(const APInt& RHS) { |
| 586 | unsigned first = RHS.numWords() * APINT_BITS_PER_WORD - |
| 587 | RHS.CountLeadingZeros(); |
| 588 | unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; |
| 589 | assert(ylen && "Performing remainder operation by zero ???"); |
| 590 | if (isSingleWord()) { |
| 591 | if (isSigned && RHS.isSigned) |
| 592 | VAL = RHS.isSingleWord() ? (int64_t(VAL) % int64_t(RHS.VAL)) : |
| 593 | (ylen > 1 ? VAL : int64_t(VAL) % int64_t(RHS.pVal[0])); |
| 594 | else |
| 595 | VAL = RHS.isSingleWord() ? (VAL % RHS.VAL) : |
| 596 | (ylen > 1 ? VAL : VAL % RHS.pVal[0]); |
| 597 | } else { |
| 598 | unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); |
| 599 | unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1; |
| 600 | if (!xlen || (*this) < RHS) |
| 601 | return *this; |
| 602 | else if ((*this) == RHS) |
| 603 | bzero(pVal, numWords() * 8); |
| 604 | else if (xlen == 1) |
| 605 | pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| 606 | else { |
| 607 | uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen]; |
| 608 | assert(xwords && ywords && "Memory Allocation Failed!"); |
| 609 | memcpy(xwords, pVal, xlen * 8); |
| 610 | xwords[xlen] = 0; |
| 611 | memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8); |
| 612 | unsigned nshift = 63 - (first - 1) % 64; |
| 613 | if (nshift) { |
| 614 | lshift(ywords, 0, ywords, ylen, nshift); |
| 615 | unsigned xlentmp = xlen; |
| 616 | xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift); |
| 617 | } |
| 618 | div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2); |
| 619 | bzero(pVal, numWords() * 8); |
| 620 | for (unsigned i = 0; i < ylen-1; ++i) |
| 621 | pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift)); |
| 622 | pVal[ylen-1] = xwords[ylen-1] >> nshift; |
| 623 | delete[] xwords; |
| 624 | delete[] ywords; |
| 625 | } |
| 626 | } |
| 627 | return *this; |
| 628 | } |
| 629 | |
| 630 | /// @brief Bitwise AND assignment operator. Performs bitwise AND operation on |
| 631 | /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| 632 | APInt& APInt::operator&=(const APInt& RHS) { |
| 633 | if (isSingleWord()) { |
| 634 | if (RHS.isSingleWord()) VAL &= RHS.VAL; |
| 635 | else VAL &= RHS.pVal[0]; |
| 636 | } else { |
| 637 | if (RHS.isSingleWord()) { |
| 638 | bzero(pVal, (numWords() - 1) * 8); |
| 639 | pVal[0] &= RHS.VAL; |
| 640 | } else { |
| 641 | unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); |
| 642 | for (unsigned i = 0; i < minwords; ++i) |
| 643 | pVal[i] &= RHS.pVal[i]; |
| 644 | if (numWords() > minwords) bzero(pVal+minwords, (numWords() - minwords) * 8); |
| 645 | } |
| 646 | } |
| 647 | return *this; |
| 648 | } |
| 649 | |
| 650 | /// @brief Bitwise OR assignment operator. Performs bitwise OR operation on |
| 651 | /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| 652 | APInt& APInt::operator|=(const APInt& RHS) { |
| 653 | if (isSingleWord()) { |
| 654 | if (RHS.isSingleWord()) VAL |= RHS.VAL; |
| 655 | else VAL |= RHS.pVal[0]; |
| 656 | } else { |
| 657 | if (RHS.isSingleWord()) { |
| 658 | pVal[0] |= RHS.VAL; |
| 659 | } else { |
| 660 | unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); |
| 661 | for (unsigned i = 0; i < minwords; ++i) |
| 662 | pVal[i] |= RHS.pVal[i]; |
| 663 | } |
| 664 | } |
| 665 | TruncToBits(); |
| 666 | return *this; |
| 667 | } |
| 668 | |
| 669 | /// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on |
| 670 | /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| 671 | APInt& APInt::operator^=(const APInt& RHS) { |
| 672 | if (isSingleWord()) { |
| 673 | if (RHS.isSingleWord()) VAL ^= RHS.VAL; |
| 674 | else VAL ^= RHS.pVal[0]; |
| 675 | } else { |
| 676 | if (RHS.isSingleWord()) { |
| 677 | for (unsigned i = 0; i < numWords(); ++i) |
| 678 | pVal[i] ^= RHS.VAL; |
| 679 | } else { |
| 680 | unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); |
| 681 | for (unsigned i = 0; i < minwords; ++i) |
| 682 | pVal[i] ^= RHS.pVal[i]; |
| 683 | if (numWords() > minwords) |
| 684 | for (unsigned i = minwords; i < numWords(); ++i) |
| 685 | pVal[i] ^= 0; |
| 686 | } |
| 687 | } |
| 688 | TruncToBits(); |
| 689 | return *this; |
| 690 | } |
| 691 | |
| 692 | /// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt |
| 693 | /// and the given APInt& RHS. |
| 694 | APInt APInt::operator&(const APInt& RHS) const { |
| 695 | APInt API(RHS); |
| 696 | return API &= *this; |
| 697 | } |
| 698 | |
| 699 | /// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt |
| 700 | /// and the given APInt& RHS. |
| 701 | APInt APInt::operator|(const APInt& RHS) const { |
| 702 | APInt API(RHS); |
| 703 | API |= *this; |
| 704 | API.TruncToBits(); |
| 705 | return API; |
| 706 | } |
| 707 | |
| 708 | /// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt |
| 709 | /// and the given APInt& RHS. |
| 710 | APInt APInt::operator^(const APInt& RHS) const { |
| 711 | APInt API(RHS); |
| 712 | API ^= *this; |
| 713 | API.TruncToBits(); |
| 714 | return API; |
| 715 | } |
| 716 | |
| 717 | /// @brief Logical AND operator. Performs logical AND operation on this APInt |
| 718 | /// and the given APInt& RHS. |
| 719 | bool APInt::operator&&(const APInt& RHS) const { |
| 720 | if (isSingleWord()) |
| 721 | return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0]; |
| 722 | else if (RHS.isSingleWord()) |
| 723 | return RHS.VAL && pVal[0]; |
| 724 | else { |
| 725 | unsigned minN = std::min(numWords(), RHS.numWords()); |
| 726 | for (unsigned i = 0; i < minN; ++i) |
| 727 | if (pVal[i] && RHS.pVal[i]) |
| 728 | return true; |
| 729 | } |
| 730 | return false; |
| 731 | } |
| 732 | |
| 733 | /// @brief Logical OR operator. Performs logical OR operation on this APInt |
| 734 | /// and the given APInt& RHS. |
| 735 | bool APInt::operator||(const APInt& RHS) const { |
| 736 | if (isSingleWord()) |
| 737 | return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0]; |
| 738 | else if (RHS.isSingleWord()) |
| 739 | return RHS.VAL || pVal[0]; |
| 740 | else { |
| 741 | unsigned minN = std::min(numWords(), RHS.numWords()); |
| 742 | for (unsigned i = 0; i < minN; ++i) |
| 743 | if (pVal[i] || RHS.pVal[i]) |
| 744 | return true; |
| 745 | } |
| 746 | return false; |
| 747 | } |
| 748 | |
| 749 | /// @brief Logical negation operator. Performs logical negation operation on |
| 750 | /// this APInt. |
| 751 | bool APInt::operator !() const { |
| 752 | if (isSingleWord()) |
| 753 | return !VAL; |
| 754 | else |
| 755 | for (unsigned i = 0; i < numWords(); ++i) |
| 756 | if (pVal[i]) |
| 757 | return false; |
| 758 | return true; |
| 759 | } |
| 760 | |
| 761 | /// @brief Multiplication operator. Multiplies this APInt by the given APInt& |
| 762 | /// RHS. |
| 763 | APInt APInt::operator*(const APInt& RHS) const { |
| 764 | APInt API(RHS); |
| 765 | API *= *this; |
| 766 | API.TruncToBits(); |
| 767 | return API; |
| 768 | } |
| 769 | |
| 770 | /// @brief Division operator. Divides this APInt by the given APInt& RHS. |
| 771 | APInt APInt::operator/(const APInt& RHS) const { |
| 772 | APInt API(*this); |
| 773 | return API /= RHS; |
| 774 | } |
| 775 | |
| 776 | /// @brief Remainder operator. Yields the remainder from the division of this |
| 777 | /// APInt and the given APInt& RHS. |
| 778 | APInt APInt::operator%(const APInt& RHS) const { |
| 779 | APInt API(*this); |
| 780 | return API %= RHS; |
| 781 | } |
| 782 | |
| 783 | /// @brief Addition operator. Adds this APInt by the given APInt& RHS. |
| 784 | APInt APInt::operator+(const APInt& RHS) const { |
| 785 | APInt API(*this); |
| 786 | API += RHS; |
| 787 | API.TruncToBits(); |
| 788 | return API; |
| 789 | } |
| 790 | |
| 791 | /// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS |
| 792 | APInt APInt::operator-(const APInt& RHS) const { |
| 793 | APInt API(*this); |
| 794 | API -= RHS; |
| 795 | API.TruncToBits(); |
| 796 | return API; |
| 797 | } |
| 798 | |
| 799 | /// @brief Array-indexing support. |
| 800 | bool APInt::operator[](unsigned bitPosition) const { |
| 801 | return maskBit(bitPosition) & (isSingleWord() ? |
| 802 | VAL : pVal[whichWord(bitPosition)]) != 0; |
| 803 | } |
| 804 | |
| 805 | /// @brief Equality operator. Compare this APInt with the given APInt& RHS |
| 806 | /// for the validity of the equality relationship. |
| 807 | bool APInt::operator==(const APInt& RHS) const { |
| 808 | unsigned n1 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(), |
| 809 | n2 = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); |
| 810 | if (n1 != n2) return false; |
| 811 | else if (isSingleWord()) |
| 812 | return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); |
| 813 | else { |
| 814 | if (n1 <= 64) |
| 815 | return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); |
| 816 | for (int i = whichWord(n1 - 1); i >= 0; --i) |
| 817 | if (pVal[i] != RHS.pVal[i]) return false; |
| 818 | } |
| 819 | return true; |
| 820 | } |
| 821 | |
| 822 | /// @brief Inequality operator. Compare this APInt with the given APInt& RHS |
| 823 | /// for the validity of the inequality relationship. |
| 824 | bool APInt::operator!=(const APInt& RHS) const { |
| 825 | return !((*this) == RHS); |
| 826 | } |
| 827 | |
| 828 | /// @brief Less-than operator. Compare this APInt with the given APInt& RHS |
| 829 | /// for the validity of the less-than relationship. |
| 830 | bool APInt::operator <(const APInt& RHS) const { |
| 831 | if (isSigned && RHS.isSigned) { |
| 832 | if ((*this)[bitsnum-1] > RHS[RHS.bitsnum-1]) |
| 833 | return false; |
| 834 | else if ((*this)[bitsnum-1] < RHS[RHS.bitsnum-1]) |
| 835 | return true; |
| 836 | } |
| 837 | unsigned n1 = numWords() * 64 - CountLeadingZeros(), |
| 838 | n2 = RHS.numWords() * 64 - RHS.CountLeadingZeros(); |
| 839 | if (n1 < n2) return true; |
| 840 | else if (n1 > n2) return false; |
| 841 | else if (isSingleWord()) |
| 842 | return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); |
| 843 | else { |
| 844 | if (n1 <= 64) |
| 845 | return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); |
| 846 | for (int i = whichWord(n1 - 1); i >= 0; --i) { |
| 847 | if (pVal[i] > RHS.pVal[i]) return false; |
| 848 | else if (pVal[i] < RHS.pVal[i]) return true; |
| 849 | } |
| 850 | } |
| 851 | return false; |
| 852 | } |
| 853 | |
| 854 | /// @brief Less-than-or-equal operator. Compare this APInt with the given |
| 855 | /// APInt& RHS for the validity of the less-than-or-equal relationship. |
| 856 | bool APInt::operator<=(const APInt& RHS) const { |
| 857 | return (*this) == RHS || (*this) < RHS; |
| 858 | } |
| 859 | |
| 860 | /// @brief Greater-than operator. Compare this APInt with the given APInt& RHS |
| 861 | /// for the validity of the greater-than relationship. |
| 862 | bool APInt::operator >(const APInt& RHS) const { |
| 863 | return !((*this) <= RHS); |
| 864 | } |
| 865 | |
| 866 | /// @brief Greater-than-or-equal operator. Compare this APInt with the given |
| 867 | /// APInt& RHS for the validity of the greater-than-or-equal relationship. |
| 868 | bool APInt::operator>=(const APInt& RHS) const { |
| 869 | return !((*this) < RHS); |
| 870 | } |
| 871 | |
| 872 | /// Set the given bit to 1 whose poition is given as "bitPosition". |
| 873 | /// @brief Set a given bit to 1. |
| 874 | APInt& APInt::set(unsigned bitPosition) { |
| 875 | if (isSingleWord()) VAL |= maskBit(bitPosition); |
| 876 | else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); |
| 877 | return *this; |
| 878 | } |
| 879 | |
| 880 | /// @brief Set every bit to 1. |
| 881 | APInt& APInt::set() { |
| 882 | if (isSingleWord()) VAL = -1ULL; |
| 883 | else |
| 884 | for (unsigned i = 0; i < numWords(); ++i) |
| 885 | pVal[i] = -1ULL; |
| 886 | return *this; |
| 887 | } |
| 888 | |
| 889 | /// Set the given bit to 0 whose position is given as "bitPosition". |
| 890 | /// @brief Set a given bit to 0. |
| 891 | APInt& APInt::clear(unsigned bitPosition) { |
| 892 | if (isSingleWord()) VAL &= ~maskBit(bitPosition); |
| 893 | else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); |
| 894 | return *this; |
| 895 | } |
| 896 | |
| 897 | /// @brief Set every bit to 0. |
| 898 | APInt& APInt::clear() { |
| 899 | if (isSingleWord()) VAL = 0; |
| 900 | else bzero(pVal, numWords() * 8); |
| 901 | return *this; |
| 902 | } |
| 903 | |
| 904 | /// @brief Left-shift assignment operator. Left-shift the APInt by shiftAmt |
| 905 | /// and assigns the result to this APInt. |
| 906 | APInt& APInt::operator<<=(unsigned shiftAmt) { |
| 907 | if (shiftAmt >= bitsnum) { |
| 908 | if (isSingleWord()) VAL = 0; |
| 909 | else bzero(pVal, numWords() * 8); |
| 910 | } else { |
| 911 | for (unsigned i = 0; i < shiftAmt; ++i) clear(i); |
| 912 | for (unsigned i = shiftAmt; i < bitsnum; ++i) { |
| 913 | if ((*this)[i-shiftAmt]) set(i); |
| 914 | else clear(i); |
| 915 | } |
| 916 | } |
| 917 | return *this; |
| 918 | } |
| 919 | |
| 920 | /// @brief Left-shift operator. Left-shift the APInt by shiftAmt. |
| 921 | APInt APInt::operator<<(unsigned shiftAmt) const { |
| 922 | APInt API(*this); |
| 923 | API <<= shiftAmt; |
| 924 | return API; |
| 925 | } |
| 926 | |
| 927 | /// @brief Right-shift assignment operator. Right-shift the APInt by shiftAmt |
| 928 | /// and assigns the result to this APInt. |
| 929 | APInt& APInt::operator>>=(unsigned shiftAmt) { |
| 930 | bool isAShr = isSigned && (*this)[bitsnum-1]; |
| 931 | if (isSingleWord()) |
| 932 | VAL = isAShr ? (int64_t(VAL) >> shiftAmt) : (VAL >> shiftAmt); |
| 933 | else { |
| 934 | unsigned i = 0; |
| 935 | for (i = 0; i < bitsnum - shiftAmt; ++i) |
| 936 | if ((*this)[i+shiftAmt]) set(i); |
| 937 | else clear(i); |
| 938 | for (; i < bitsnum; ++i) |
| 939 | isAShr ? set(i) : clear(i); |
| 940 | } |
| 941 | return *this; |
| 942 | } |
| 943 | |
| 944 | /// @brief Right-shift operator. Right-shift the APInt by shiftAmt. |
| 945 | APInt APInt::operator>>(unsigned shiftAmt) const { |
| 946 | APInt API(*this); |
| 947 | API >>= shiftAmt; |
| 948 | return API; |
| 949 | } |
| 950 | |
| 951 | /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on |
| 952 | /// this APInt. |
| 953 | APInt APInt::operator~() const { |
| 954 | APInt API(*this); |
| 955 | API.flip(); |
| 956 | return API; |
| 957 | } |
| 958 | |
| 959 | /// @brief Toggle every bit to its opposite value. |
| 960 | APInt& APInt::flip() { |
| 961 | if (isSingleWord()) VAL = (~(VAL << (64 - bitsnum))) >> (64 - bitsnum); |
| 962 | else { |
| 963 | unsigned i = 0; |
| 964 | for (; i < numWords() - 1; ++i) |
| 965 | pVal[i] = ~pVal[i]; |
| 966 | unsigned offset = 64 - (bitsnum - 64 * (i - 1)); |
| 967 | pVal[i] = (~(pVal[i] << offset)) >> offset; |
| 968 | } |
| 969 | return *this; |
| 970 | } |
| 971 | |
| 972 | /// Toggle a given bit to its opposite value whose position is given |
| 973 | /// as "bitPosition". |
| 974 | /// @brief Toggles a given bit to its opposite value. |
| 975 | APInt& APInt::flip(unsigned bitPosition) { |
| 976 | assert(bitPosition < bitsnum && "Out of the bit-width range!"); |
| 977 | if ((*this)[bitPosition]) clear(bitPosition); |
| 978 | else set(bitPosition); |
| 979 | return *this; |
| 980 | } |
| 981 | |
| 982 | /// to_string - This function translates the APInt into a string. |
| 983 | std::string APInt::to_string(uint8_t radix) const { |
| 984 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| 985 | "Radix should be 2, 8, 10, or 16!"); |
| 986 | std::ostringstream buf; |
| 987 | buf << std::setbase(radix); |
| 988 | // If the radix is a power of 2, set the format of ostringstream, |
| 989 | // and output the value into buf. |
| 990 | if ((radix & (radix - 1)) == 0) { |
| 991 | if (isSingleWord()) buf << VAL; |
| 992 | else { |
| 993 | buf << pVal[numWords()-1]; |
| 994 | buf << std::setw(64 / (radix / 8 + 2)) << std::setfill('0'); |
| 995 | for (int i = numWords() - 2; i >= 0; --i) |
| 996 | buf << pVal[i]; |
| 997 | } |
| 998 | } |
| 999 | else { // If the radix = 10, need to translate the value into a |
| 1000 | // string. |
| 1001 | if (isSingleWord()) buf << VAL; |
| 1002 | else { |
| 1003 | // FIXME: To be supported. |
| 1004 | } |
| 1005 | } |
| 1006 | return buf.str(); |
| 1007 | } |
| 1008 | |
| 1009 | /// getMaxValue - This function returns the largest value |
| 1010 | /// for an APInt of the specified bit-width and if isSign == true, |
| 1011 | /// it should be largest signed value, otherwise unsigned value. |
| 1012 | APInt APInt::getMaxValue(unsigned numBits, bool isSign) { |
| 1013 | APInt APIVal(numBits, 1); |
| 1014 | APIVal.set(); |
| 1015 | return isSign ? APIVal.clear(numBits) : APIVal; |
| 1016 | } |
| 1017 | |
| 1018 | /// getMinValue - This function returns the smallest value for |
| 1019 | /// an APInt of the given bit-width and if isSign == true, |
| 1020 | /// it should be smallest signed value, otherwise zero. |
| 1021 | APInt APInt::getMinValue(unsigned numBits, bool isSign) { |
| 1022 | APInt APIVal(0, numBits); |
| 1023 | return isSign ? APIVal : APIVal.set(numBits); |
| 1024 | } |
| 1025 | |
| 1026 | /// getAllOnesValue - This function returns an all-ones value for |
| 1027 | /// an APInt of the specified bit-width. |
| 1028 | APInt APInt::getAllOnesValue(unsigned numBits) { |
| 1029 | return getMaxValue(numBits, false); |
| 1030 | } |
| 1031 | |
| 1032 | /// getNullValue - This function creates an '0' value for an |
| 1033 | /// APInt of the specified bit-width. |
| 1034 | APInt APInt::getNullValue(unsigned numBits) { |
| 1035 | return getMinValue(numBits, true); |
| 1036 | } |
| 1037 | |
| 1038 | /// HiBits - This function returns the high "numBits" bits of this APInt. |
| 1039 | APInt APInt::HiBits(unsigned numBits) const { |
| 1040 | return (*this) >> (bitsnum - numBits); |
| 1041 | } |
| 1042 | |
| 1043 | /// LoBits - This function returns the low "numBits" bits of this APInt. |
| 1044 | APInt APInt::LoBits(unsigned numBits) const { |
| 1045 | return ((*this) << (bitsnum - numBits)) >> (bitsnum - numBits); |
| 1046 | } |
| 1047 | |
| 1048 | /// CountLeadingZeros - This function is a APInt version corresponding to |
| 1049 | /// llvm/include/llvm/Support/MathExtras.h's function |
| 1050 | /// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting |
| 1051 | /// the number of zeros from the most significant bit to the first one bit. |
| 1052 | /// @returns numWord() * 64 if the value is zero. |
| 1053 | unsigned APInt::CountLeadingZeros() const { |
| 1054 | if (isSingleWord()) |
| 1055 | return CountLeadingZeros_64(VAL); |
| 1056 | unsigned Count = 0; |
| 1057 | for (int i = numWords() - 1; i >= 0; --i) { |
| 1058 | unsigned tmp = CountLeadingZeros_64(pVal[i]); |
| 1059 | Count += tmp; |
| 1060 | if (tmp != 64) |
| 1061 | break; |
| 1062 | } |
| 1063 | return Count; |
| 1064 | } |
| 1065 | |
| 1066 | /// CountTrailingZero - This function is a APInt version corresponding to |
| 1067 | /// llvm/include/llvm/Support/MathExtras.h's function |
| 1068 | /// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting |
| 1069 | /// the number of zeros from the least significant bit to the first one bit. |
| 1070 | /// @returns numWord() * 64 if the value is zero. |
| 1071 | unsigned APInt::CountTrailingZeros() const { |
| 1072 | if (isSingleWord()) |
| 1073 | return CountTrailingZeros_64(~VAL & (VAL - 1)); |
| 1074 | APInt Tmp = ~(*this) & ((*this) - 1); |
| 1075 | return numWords() * 64 - Tmp.CountLeadingZeros(); |
| 1076 | } |
| 1077 | |
| 1078 | /// CountPopulation - This function is a APInt version corresponding to |
| 1079 | /// llvm/include/llvm/Support/MathExtras.h's function |
| 1080 | /// CountPopulation_{32, 64}. It counts the number of set bits in a value. |
| 1081 | /// @returns 0 if the value is zero. |
| 1082 | unsigned APInt::CountPopulation() const { |
| 1083 | if (isSingleWord()) |
| 1084 | return CountPopulation_64(VAL); |
| 1085 | unsigned Count = 0; |
| 1086 | for (unsigned i = 0; i < numWords(); ++i) |
| 1087 | Count += CountPopulation_64(pVal[i]); |
| 1088 | return Count; |
| 1089 | } |
| 1090 | |
| 1091 | |
| 1092 | /// ByteSwap - This function returns a byte-swapped representation of the |
| 1093 | /// APInt argument, APIVal. |
| 1094 | APInt llvm::ByteSwap(const APInt& APIVal) { |
| 1095 | if (APIVal.bitsnum <= 32) |
| 1096 | return APInt(APIVal.bitsnum, ByteSwap_32(unsigned(APIVal.VAL))); |
| 1097 | else if (APIVal.bitsnum <= 64) |
| 1098 | return APInt(APIVal.bitsnum, ByteSwap_64(APIVal.VAL)); |
| 1099 | else |
| 1100 | return APIVal; |
| 1101 | } |
| 1102 | |
| 1103 | /// GreatestCommonDivisor - This function returns the greatest common |
| 1104 | /// divisor of the two APInt values using Enclid's algorithm. |
| 1105 | APInt llvm::GreatestCommonDivisor(const APInt& API1, const APInt& API2) { |
| 1106 | APInt A = API1, B = API2; |
| 1107 | while (!!B) { |
| 1108 | APInt T = B; |
| 1109 | B = A % B; |
| 1110 | A = T; |
| 1111 | } |
| 1112 | return A; |
| 1113 | } |