blob: 107d277f4de703fa0460f65106b1af3d9fbefd3d [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation see the following papers:
20//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
29//
30// Author: Lang Hames
31// Email: lhames@gmail.com
32//
33//===----------------------------------------------------------------------===//
34
35// TODO:
36//
37// * Use of std::set in constructPBQPProblem destroys allocation order preference.
38// Switch to an order preserving container.
39//
40// * Coalescing support.
41
42#define DEBUG_TYPE "regalloc"
43
44#include "PBQP.h"
45#include "VirtRegMap.h"
46#include "llvm/CodeGen/MachineFunctionPass.h"
47#include "llvm/CodeGen/RegAllocRegistry.h"
48#include "llvm/CodeGen/LiveIntervalAnalysis.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/MachineLoopInfo.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetInstrInfo.h"
53#include "llvm/Support/Debug.h"
54#include <memory>
55#include <map>
56#include <set>
57#include <vector>
58#include <limits>
59
60using namespace llvm;
61
62static RegisterRegAlloc
63registerPBQPRepAlloc("pbqp", " PBQP register allocator",
64 createPBQPRegisterAllocator);
65
66
67namespace {
68
69 //!
70 //! PBQP based allocators solve the register allocation problem by mapping
71 //! register allocation problems to Partitioned Boolean Quadratic
72 //! Programming problems.
73 class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
74 public:
75
76 static char ID;
77
78 //! Construct a PBQP register allocator.
79 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
80
81 //! Return the pass name.
82 virtual const char* getPassName() const throw() {
83 return "PBQP Register Allocator";
84 }
85
86 //! PBQP analysis usage.
87 virtual void getAnalysisUsage(AnalysisUsage &au) const {
88 au.addRequired<LiveIntervals>();
89 au.addRequired<MachineLoopInfo>();
90 MachineFunctionPass::getAnalysisUsage(au);
91 }
92
93 //! Perform register allocation
94 virtual bool runOnMachineFunction(MachineFunction &MF);
95
96 private:
97 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
98 typedef std::vector<const LiveInterval*> Node2LIMap;
99 typedef std::vector<unsigned> AllowedSet;
100 typedef std::vector<AllowedSet> AllowedSetMap;
101 typedef std::set<unsigned> IgnoreSet;
102
103 MachineFunction *mf;
104 const TargetMachine *tm;
105 const TargetRegisterInfo *tri;
106 const TargetInstrInfo *tii;
107 const MachineLoopInfo *loopInfo;
108 MachineRegisterInfo *mri;
109
110 LiveIntervals *li;
111 VirtRegMap *vrm;
112
113 LI2NodeMap li2Node;
114 Node2LIMap node2LI;
115 AllowedSetMap allowedSets;
116 IgnoreSet ignoreSet;
117
118 //! Builds a PBQP cost vector.
119 template <typename Container>
120 PBQPVector* buildCostVector(const Container &allowed,
121 PBQPNum spillCost) const;
122
Evan Cheng17a82ea2008-10-03 17:11:58 +0000123 //! \brief Builds a PBQP interference matrix.
Evan Chengb1290a62008-10-02 18:29:27 +0000124 //!
125 //! @return Either a pointer to a non-zero PBQP matrix representing the
126 //! allocation option costs, or a null pointer for a zero matrix.
127 //!
128 //! Expects allowed sets for two interfering LiveIntervals. These allowed
129 //! sets should contain only allocable registers from the LiveInterval's
130 //! register class, with any interfering pre-colored registers removed.
131 template <typename Container>
132 PBQPMatrix* buildInterferenceMatrix(const Container &allowed1,
133 const Container &allowed2) const;
134
135 //!
136 //! Expects allowed sets for two potentially coalescable LiveIntervals,
137 //! and an estimated benefit due to coalescing. The allowed sets should
138 //! contain only allocable registers from the LiveInterval's register
139 //! classes, with any interfering pre-colored registers removed.
140 template <typename Container>
141 PBQPMatrix* buildCoalescingMatrix(const Container &allowed1,
142 const Container &allowed2,
143 PBQPNum cBenefit) const;
144
Evan Cheng17a82ea2008-10-03 17:11:58 +0000145 //! \brief Helper function for constructInitialPBQPProblem().
Evan Chengb1290a62008-10-02 18:29:27 +0000146 //!
147 //! This function iterates over the Function we are about to allocate for
148 //! and computes spill costs.
149 void calcSpillCosts();
150
151 //! \brief Scans the MachineFunction being allocated to find coalescing
152 // opportunities.
153 void findCoalescingOpportunities();
154
155 //! \brief Constructs a PBQP problem representation of the register
156 //! allocation problem for this function.
157 //!
158 //! @return a PBQP solver object for the register allocation problem.
159 pbqp* constructPBQPProblem();
160
161 //! \brief Given a solved PBQP problem maps this solution back to a register
162 //! assignment.
163 bool mapPBQPToRegAlloc(pbqp *problem);
164
165 };
166
167 char PBQPRegAlloc::ID = 0;
168}
169
170
171template <typename Container>
172PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed,
173 PBQPNum spillCost) const {
174
175 // Allocate vector. Additional element (0th) used for spill option
176 PBQPVector *v = new PBQPVector(allowed.size() + 1);
177
178 (*v)[0] = spillCost;
179
180 return v;
181}
182
183template <typename Container>
184PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
185 const Container &allowed1, const Container &allowed2) const {
186
187 typedef typename Container::const_iterator ContainerIterator;
188
189 // Construct a PBQP matrix representing the cost of allocation options. The
190 // rows and columns correspond to the allocation options for the two live
191 // intervals. Elements will be infinite where corresponding registers alias,
192 // since we cannot allocate aliasing registers to interfering live intervals.
193 // All other elements (non-aliasing combinations) will have zero cost. Note
194 // that the spill option (element 0,0) has zero cost, since we can allocate
195 // both intervals to memory safely (the cost for each individual allocation
196 // to memory is accounted for by the cost vectors for each live interval).
197 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
198
199 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
200 // between interfering live ranges with non-overlapping register sets (e.g.
201 // non-overlapping reg classes, or disjoint sets of allowed regs within the
202 // same class). The term "overlapping" is used advisedly: sets which do not
203 // intersect, but contain registers which alias, will have non-zero matrices.
204 // We optimize zero matrices away to improve solver speed.
205 bool isZeroMatrix = true;
206
207
208 // Row index. Starts at 1, since the 0th row is for the spill option, which
209 // is always zero.
210 unsigned ri = 1;
211
212 // Iterate over allowed sets, insert infinities where required.
213 for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
214 a1Itr != a1End; ++a1Itr) {
215
216 // Column index, starts at 1 as for row index.
217 unsigned ci = 1;
218 unsigned reg1 = *a1Itr;
219
220 for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
221 a2Itr != a2End; ++a2Itr) {
222
223 unsigned reg2 = *a2Itr;
224
225 // If the row/column regs are identical or alias insert an infinity.
226 if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
227 (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
228 isZeroMatrix = false;
229 }
230
231 ++ci;
232 }
233
234 ++ri;
235 }
236
237 // If this turns out to be a zero matrix...
238 if (isZeroMatrix) {
239 // free it and return null.
240 delete m;
241 return 0;
242 }
243
244 // ...otherwise return the cost matrix.
245 return m;
246}
247
248void PBQPRegAlloc::calcSpillCosts() {
249
250 // Calculate the spill cost for each live interval by iterating over the
251 // function counting loads and stores, with loop depth taken into account.
252 for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end();
253 bbItr != bbEnd; ++bbItr) {
254
255 const MachineBasicBlock *mbb = &*bbItr;
256 float loopDepth = loopInfo->getLoopDepth(mbb);
257
258 for (MachineBasicBlock::const_iterator
259 iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) {
260
261 const MachineInstr *instr = &*iItr;
262
263 for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) {
264
265 const MachineOperand &mo = instr->getOperand(opNo);
266
267 // We're not interested in non-registers...
Dan Gohmand735b802008-10-03 15:45:36 +0000268 if (!mo.isReg())
Evan Chengb1290a62008-10-02 18:29:27 +0000269 continue;
270
271 unsigned moReg = mo.getReg();
272
273 // ...Or invalid registers...
274 if (moReg == 0)
275 continue;
276
277 // ...Or physical registers...
278 if (TargetRegisterInfo::isPhysicalRegister(moReg))
279 continue;
280
281 assert ((mo.isUse() || mo.isDef()) &&
282 "Not a use, not a def, what is it?");
283
Evan Cheng17a82ea2008-10-03 17:11:58 +0000284 //... Just the virtual registers. We treat loads and stores as equal.
285 li->getInterval(moReg).weight += powf(10.0f, loopDepth);
Evan Chengb1290a62008-10-02 18:29:27 +0000286 }
287
288 }
289
290 }
291
292}
293
294pbqp* PBQPRegAlloc::constructPBQPProblem() {
295
296 typedef std::vector<const LiveInterval*> LIVector;
297 typedef std::set<unsigned> RegSet;
298
299 // These will store the physical & virtual intervals, respectively.
300 LIVector physIntervals, virtIntervals;
301
302 // Start by clearing the old node <-> live interval mappings & allowed sets
303 li2Node.clear();
304 node2LI.clear();
305 allowedSets.clear();
306
307 // Iterate over intervals classifying them as physical or virtual, and
308 // constructing live interval <-> node number mappings.
309 for (LiveIntervals::iterator itr = li->begin(), end = li->end();
310 itr != end; ++itr) {
311
312 if (itr->second->getNumValNums() != 0) {
313 DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n";
314 }
315
316 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
317 physIntervals.push_back(itr->second);
318 mri->setPhysRegUsed(itr->second->reg);
319 }
320 else {
321
322 // If we've allocated this virtual register interval a stack slot on a
323 // previous round then it's not an allocation candidate
324 if (ignoreSet.find(itr->first) != ignoreSet.end())
325 continue;
326
327 li2Node[itr->second] = node2LI.size();
328 node2LI.push_back(itr->second);
329 virtIntervals.push_back(itr->second);
330 }
331 }
332
333 // Early out if there's no regs to allocate for.
334 if (virtIntervals.empty())
335 return 0;
336
337 // Construct a PBQP solver for this problem
338 pbqp *solver = alloc_pbqp(virtIntervals.size());
339
340 // Resize allowedSets container appropriately.
341 allowedSets.resize(virtIntervals.size());
342
343 // Iterate over virtual register intervals to compute allowed sets...
344 for (unsigned node = 0; node < node2LI.size(); ++node) {
345
346 // Grab pointers to the interval and its register class.
347 const LiveInterval *li = node2LI[node];
348 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
349
350 // Start by assuming all allocable registers in the class are allowed...
351 RegSet liAllowed(liRC->allocation_order_begin(*mf),
352 liRC->allocation_order_end(*mf));
353
354 // If this range is non-empty then eliminate the physical registers which
355 // overlap with this range, along with all their aliases.
356 if (!li->empty()) {
357 for (LIVector::iterator pItr = physIntervals.begin(),
358 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
359
360 if (li->overlaps(**pItr)) {
361
362 unsigned pReg = (*pItr)->reg;
363
364 // Remove the overlapping reg...
365 liAllowed.erase(pReg);
366
367 const unsigned *aliasItr = tri->getAliasSet(pReg);
368
369 if (aliasItr != 0) {
370 // ...and its aliases.
371 for (; *aliasItr != 0; ++aliasItr) {
372 liAllowed.erase(*aliasItr);
373 }
374
375 }
376
377 }
378
379 }
380
381 }
382
383 // Copy the allowed set into a member vector for use when constructing cost
384 // vectors & matrices, and mapping PBQP solutions back to assignments.
385 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
386
387 // Set the spill cost to the interval weight, or epsilon if the
388 // interval weight is zero
389 PBQPNum spillCost = (li->weight != 0.0) ?
390 li->weight : std::numeric_limits<PBQPNum>::min();
391
392 // Build a cost vector for this interval.
393 add_pbqp_nodecosts(solver, node,
394 buildCostVector(allowedSets[node], spillCost));
395
396 }
397
398 // Now add the cost matrices...
399 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
400
401 const LiveInterval *li = node2LI[node1];
402
403 if (li->empty())
404 continue;
405
406 // Test for live range overlaps and insert interference matrices.
407 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
408 const LiveInterval *li2 = node2LI[node2];
409
410 if (li2->empty())
411 continue;
412
413 if (li->overlaps(*li2)) {
414 PBQPMatrix *m =
415 buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
416
417 if (m != 0) {
418 add_pbqp_edgecosts(solver, node1, node2, m);
419 delete m;
420 }
421 }
422 }
423 }
424
425 // We're done, PBQP problem constructed - return it.
426 return solver;
427}
428
429bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
430
431 // Set to true if we have any spills
432 bool anotherRoundNeeded = false;
433
434 // Clear the existing allocation.
435 vrm->clearAllVirt();
436
437 // Iterate over the nodes mapping the PBQP solution to a register assignment.
438 for (unsigned node = 0; node < node2LI.size(); ++node) {
439 unsigned symReg = node2LI[node]->reg,
440 allocSelection = get_pbqp_solution(problem, node);
441
442 // If the PBQP solution is non-zero it's a physical register...
443 if (allocSelection != 0) {
444 // Get the physical reg, subtracting 1 to account for the spill option.
445 unsigned physReg = allowedSets[node][allocSelection - 1];
446
447 // Add to the virt reg map and update the used phys regs.
448 vrm->assignVirt2Phys(symReg, physReg);
449 mri->setPhysRegUsed(physReg);
450 }
451 // ...Otherwise it's a spill.
452 else {
453
454 // Make sure we ignore this virtual reg on the next round
455 // of allocation
456 ignoreSet.insert(node2LI[node]->reg);
457
458 float SSWeight;
459
460 // Insert spill ranges for this live range
461 SmallVector<LiveInterval*, 8> spillIs;
462 std::vector<LiveInterval*> newSpills =
463 li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm,
464 SSWeight);
465
466 // We need another round if spill intervals were added.
467 anotherRoundNeeded |= !newSpills.empty();
468 }
469 }
470
471 return !anotherRoundNeeded;
472}
473
474bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
475
476 mf = &MF;
477 tm = &mf->getTarget();
478 tri = tm->getRegisterInfo();
479 mri = &mf->getRegInfo();
480
481 li = &getAnalysis<LiveIntervals>();
482 loopInfo = &getAnalysis<MachineLoopInfo>();
483
484 std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
485 vrm = vrmAutoPtr.get();
486
487 // Allocator main loop:
488 //
489 // * Map current regalloc problem to a PBQP problem
490 // * Solve the PBQP problem
491 // * Map the solution back to a register allocation
492 // * Spill if necessary
493 //
494 // This process is continued till no more spills are generated.
495
496 bool regallocComplete = false;
497
498 // Calculate spill costs for intervals
499 calcSpillCosts();
500
501 while (!regallocComplete) {
502 pbqp *problem = constructPBQPProblem();
503
504 // Fast out if there's no problem to solve.
505 if (problem == 0)
506 return true;
507
508 solve_pbqp(problem);
509
510 regallocComplete = mapPBQPToRegAlloc(problem);
511
512 free_pbqp(problem);
513 }
514
515 ignoreSet.clear();
516
517 std::auto_ptr<Spiller> spiller(createSpiller());
518
519 spiller->runOnMachineFunction(*mf, *vrm);
520
521 return true;
522}
523
524FunctionPass* llvm::createPBQPRegisterAllocator() {
525 return new PBQPRegAlloc();
526}
527
528
529#undef DEBUG_TYPE