Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 1 | //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements an abstract sparse conditional propagation algorithm, |
| 11 | // modeled after SCCP, but with a customizable lattice function. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "sparseprop" |
| 16 | #include "llvm/Analysis/SparsePropagation.h" |
| 17 | #include "llvm/Constants.h" |
| 18 | #include "llvm/Function.h" |
| 19 | #include "llvm/Instructions.h" |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 20 | #include "llvm/Support/Debug.h" |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 21 | using namespace llvm; |
| 22 | |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | // AbstractLatticeFunction Implementation |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | |
| 27 | AbstractLatticeFunction::~AbstractLatticeFunction() {} |
| 28 | |
| 29 | /// PrintValue - Render the specified lattice value to the specified stream. |
| 30 | void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) { |
| 31 | if (V == UndefVal) |
| 32 | OS << "undefined"; |
| 33 | else if (V == OverdefinedVal) |
| 34 | OS << "overdefined"; |
| 35 | else if (V == UntrackedVal) |
| 36 | OS << "untracked"; |
| 37 | else |
| 38 | OS << "unknown lattice value"; |
| 39 | } |
| 40 | |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | // SparseSolver Implementation |
| 43 | //===----------------------------------------------------------------------===// |
| 44 | |
| 45 | /// getOrInitValueState - Return the LatticeVal object that corresponds to the |
| 46 | /// value, initializing the value's state if it hasn't been entered into the |
| 47 | /// map yet. This function is necessary because not all values should start |
| 48 | /// out in the underdefined state... Arguments should be overdefined, and |
| 49 | /// constants should be marked as constants. |
| 50 | /// |
| 51 | SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { |
| 52 | DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); |
| 53 | if (I != ValueState.end()) return I->second; // Common case, in the map |
| 54 | |
| 55 | LatticeVal LV; |
| 56 | if (LatticeFunc->IsUntrackedValue(V)) |
| 57 | return LatticeFunc->getUntrackedVal(); |
| 58 | else if (Constant *C = dyn_cast<Constant>(V)) |
| 59 | LV = LatticeFunc->ComputeConstant(C); |
Chris Lattner | afcde47 | 2008-08-09 17:23:35 +0000 | [diff] [blame] | 60 | else if (Argument *A = dyn_cast<Argument>(V)) |
| 61 | LV = LatticeFunc->ComputeArgument(A); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 62 | else if (!isa<Instruction>(V)) |
Chris Lattner | afcde47 | 2008-08-09 17:23:35 +0000 | [diff] [blame] | 63 | // All other non-instructions are overdefined. |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 64 | LV = LatticeFunc->getOverdefinedVal(); |
| 65 | else |
| 66 | // All instructions are underdefined by default. |
| 67 | LV = LatticeFunc->getUndefVal(); |
| 68 | |
| 69 | // If this value is untracked, don't add it to the map. |
| 70 | if (LV == LatticeFunc->getUntrackedVal()) |
| 71 | return LV; |
| 72 | return ValueState[V] = LV; |
| 73 | } |
| 74 | |
| 75 | /// UpdateState - When the state for some instruction is potentially updated, |
| 76 | /// this function notices and adds I to the worklist if needed. |
| 77 | void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { |
| 78 | DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); |
| 79 | if (I != ValueState.end() && I->second == V) |
| 80 | return; // No change. |
| 81 | |
| 82 | // An update. Visit uses of I. |
| 83 | ValueState[&Inst] = V; |
| 84 | InstWorkList.push_back(&Inst); |
| 85 | } |
| 86 | |
| 87 | /// MarkBlockExecutable - This method can be used by clients to mark all of |
| 88 | /// the blocks that are known to be intrinsically live in the processed unit. |
| 89 | void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { |
| 90 | DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n"; |
| 91 | BBExecutable.insert(BB); // Basic block is executable! |
| 92 | BBWorkList.push_back(BB); // Add the block to the work list! |
| 93 | } |
| 94 | |
| 95 | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| 96 | /// work list if it is not already executable... |
| 97 | void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { |
| 98 | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
| 99 | return; // This edge is already known to be executable! |
| 100 | |
Dan Gohman | b22d6ac | 2008-05-27 20:47:30 +0000 | [diff] [blame] | 101 | DOUT << "Marking Edge Executable: " << Source->getNameStart() |
| 102 | << " -> " << Dest->getNameStart() << "\n"; |
| 103 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 104 | if (BBExecutable.count(Dest)) { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 105 | // The destination is already executable, but we just made an edge |
| 106 | // feasible that wasn't before. Revisit the PHI nodes in the block |
| 107 | // because they have potentially new operands. |
| 108 | for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) |
| 109 | visitPHINode(*cast<PHINode>(I)); |
| 110 | |
| 111 | } else { |
| 112 | MarkBlockExecutable(Dest); |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | |
| 117 | /// getFeasibleSuccessors - Return a vector of booleans to indicate which |
| 118 | /// successors are reachable from a given terminator instruction. |
| 119 | void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 120 | SmallVectorImpl<bool> &Succs, |
| 121 | bool AggressiveUndef) { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 122 | Succs.resize(TI.getNumSuccessors()); |
| 123 | if (TI.getNumSuccessors() == 0) return; |
| 124 | |
| 125 | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
| 126 | if (BI->isUnconditional()) { |
| 127 | Succs[0] = true; |
| 128 | return; |
| 129 | } |
| 130 | |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 131 | LatticeVal BCValue; |
| 132 | if (AggressiveUndef) |
| 133 | BCValue = getOrInitValueState(BI->getCondition()); |
| 134 | else |
| 135 | BCValue = getLatticeState(BI->getCondition()); |
| 136 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 137 | if (BCValue == LatticeFunc->getOverdefinedVal() || |
| 138 | BCValue == LatticeFunc->getUntrackedVal()) { |
| 139 | // Overdefined condition variables can branch either way. |
| 140 | Succs[0] = Succs[1] = true; |
| 141 | return; |
| 142 | } |
| 143 | |
| 144 | // If undefined, neither is feasible yet. |
| 145 | if (BCValue == LatticeFunc->getUndefVal()) |
| 146 | return; |
| 147 | |
| 148 | Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); |
| 149 | if (C == 0 || !isa<ConstantInt>(C)) { |
| 150 | // Non-constant values can go either way. |
| 151 | Succs[0] = Succs[1] = true; |
| 152 | return; |
| 153 | } |
| 154 | |
| 155 | // Constant condition variables mean the branch can only go a single way |
| 156 | Succs[C == ConstantInt::getFalse()] = true; |
| 157 | return; |
| 158 | } |
| 159 | |
| 160 | if (isa<InvokeInst>(TI)) { |
| 161 | // Invoke instructions successors are always executable. |
| 162 | // TODO: Could ask the lattice function if the value can throw. |
| 163 | Succs[0] = Succs[1] = true; |
| 164 | return; |
| 165 | } |
| 166 | |
| 167 | SwitchInst &SI = cast<SwitchInst>(TI); |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 168 | LatticeVal SCValue; |
| 169 | if (AggressiveUndef) |
| 170 | SCValue = getOrInitValueState(SI.getCondition()); |
| 171 | else |
| 172 | SCValue = getLatticeState(SI.getCondition()); |
| 173 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 174 | if (SCValue == LatticeFunc->getOverdefinedVal() || |
| 175 | SCValue == LatticeFunc->getUntrackedVal()) { |
| 176 | // All destinations are executable! |
| 177 | Succs.assign(TI.getNumSuccessors(), true); |
| 178 | return; |
| 179 | } |
| 180 | |
| 181 | // If undefined, neither is feasible yet. |
| 182 | if (SCValue == LatticeFunc->getUndefVal()) |
| 183 | return; |
| 184 | |
| 185 | Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); |
| 186 | if (C == 0 || !isa<ConstantInt>(C)) { |
| 187 | // All destinations are executable! |
| 188 | Succs.assign(TI.getNumSuccessors(), true); |
| 189 | return; |
| 190 | } |
| 191 | |
| 192 | Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true; |
| 193 | } |
| 194 | |
| 195 | |
| 196 | /// isEdgeFeasible - Return true if the control flow edge from the 'From' |
| 197 | /// basic block to the 'To' basic block is currently feasible... |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 198 | bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To, |
| 199 | bool AggressiveUndef) { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 200 | SmallVector<bool, 16> SuccFeasible; |
| 201 | TerminatorInst *TI = From->getTerminator(); |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 202 | getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 203 | |
| 204 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| 205 | if (TI->getSuccessor(i) == To && SuccFeasible[i]) |
| 206 | return true; |
| 207 | |
| 208 | return false; |
| 209 | } |
| 210 | |
| 211 | void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { |
| 212 | SmallVector<bool, 16> SuccFeasible; |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 213 | getFeasibleSuccessors(TI, SuccFeasible, true); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 214 | |
| 215 | BasicBlock *BB = TI.getParent(); |
| 216 | |
| 217 | // Mark all feasible successors executable... |
| 218 | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| 219 | if (SuccFeasible[i]) |
| 220 | markEdgeExecutable(BB, TI.getSuccessor(i)); |
| 221 | } |
| 222 | |
| 223 | void SparseSolver::visitPHINode(PHINode &PN) { |
| 224 | LatticeVal PNIV = getOrInitValueState(&PN); |
| 225 | LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); |
| 226 | |
| 227 | // If this value is already overdefined (common) just return. |
| 228 | if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) |
| 229 | return; // Quick exit |
| 230 | |
| 231 | // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, |
| 232 | // and slow us down a lot. Just mark them overdefined. |
| 233 | if (PN.getNumIncomingValues() > 64) { |
| 234 | UpdateState(PN, Overdefined); |
| 235 | return; |
| 236 | } |
| 237 | |
| 238 | // Look at all of the executable operands of the PHI node. If any of them |
| 239 | // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the |
| 240 | // transfer function to give us the merge of the incoming values. |
| 241 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| 242 | // If the edge is not yet known to be feasible, it doesn't impact the PHI. |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 243 | if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 244 | continue; |
| 245 | |
| 246 | // Merge in this value. |
| 247 | LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); |
| 248 | if (OpVal != PNIV) |
| 249 | PNIV = LatticeFunc->MergeValues(PNIV, OpVal); |
| 250 | |
| 251 | if (PNIV == Overdefined) |
| 252 | break; // Rest of input values don't matter. |
| 253 | } |
| 254 | |
| 255 | // Update the PHI with the compute value, which is the merge of the inputs. |
| 256 | UpdateState(PN, PNIV); |
| 257 | } |
| 258 | |
| 259 | |
| 260 | void SparseSolver::visitInst(Instruction &I) { |
| 261 | // PHIs are handled by the propagation logic, they are never passed into the |
| 262 | // transfer functions. |
| 263 | if (PHINode *PN = dyn_cast<PHINode>(&I)) |
| 264 | return visitPHINode(*PN); |
| 265 | |
| 266 | // Otherwise, ask the transfer function what the result is. If this is |
| 267 | // something that we care about, remember it. |
| 268 | LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); |
| 269 | if (IV != LatticeFunc->getUntrackedVal()) |
| 270 | UpdateState(I, IV); |
| 271 | |
| 272 | if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) |
| 273 | visitTerminatorInst(*TI); |
| 274 | } |
| 275 | |
| 276 | void SparseSolver::Solve(Function &F) { |
Dan Gohman | ef61af0 | 2008-05-27 20:55:29 +0000 | [diff] [blame] | 277 | MarkBlockExecutable(&F.getEntryBlock()); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 278 | |
| 279 | // Process the work lists until they are empty! |
| 280 | while (!BBWorkList.empty() || !InstWorkList.empty()) { |
| 281 | // Process the instruction work list. |
| 282 | while (!InstWorkList.empty()) { |
| 283 | Instruction *I = InstWorkList.back(); |
| 284 | InstWorkList.pop_back(); |
| 285 | |
| 286 | DOUT << "\nPopped off I-WL: " << *I; |
| 287 | |
| 288 | // "I" got into the work list because it made a transition. See if any |
| 289 | // users are both live and in need of updating. |
| 290 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| 291 | UI != E; ++UI) { |
| 292 | Instruction *U = cast<Instruction>(*UI); |
| 293 | if (BBExecutable.count(U->getParent())) // Inst is executable? |
| 294 | visitInst(*U); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | // Process the basic block work list. |
| 299 | while (!BBWorkList.empty()) { |
| 300 | BasicBlock *BB = BBWorkList.back(); |
| 301 | BBWorkList.pop_back(); |
| 302 | |
| 303 | DOUT << "\nPopped off BBWL: " << *BB; |
| 304 | |
| 305 | // Notify all instructions in this basic block that they are newly |
| 306 | // executable. |
| 307 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| 308 | visitInst(*I); |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | |
Torok Edwin | 1d98870 | 2009-03-11 20:50:17 +0000 | [diff] [blame^] | 313 | void SparseSolver::Print(Function &F, std::ostream &OS) const { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 314 | OS << "\nFUNCTION: " << F.getNameStr() << "\n"; |
| 315 | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| 316 | if (!BBExecutable.count(BB)) |
| 317 | OS << "INFEASIBLE: "; |
| 318 | OS << "\t"; |
| 319 | if (BB->hasName()) |
| 320 | OS << BB->getNameStr() << ":\n"; |
| 321 | else |
| 322 | OS << "; anon bb\n"; |
| 323 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| 324 | LatticeFunc->PrintValue(getLatticeState(I), OS); |
| 325 | OS << *I; |
| 326 | } |
| 327 | |
| 328 | OS << "\n"; |
| 329 | } |
| 330 | } |
| 331 | |