blob: 51b0f7613ff9ed941b3ff572a3e3738274746f89 [file] [log] [blame]
Stephen Hines36b56882014-04-23 16:57:46 -07001//===-- ARM6464FastISel.cpp - ARM64 FastISel implementation ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM64-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARM64GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM64.h"
17#include "ARM64TargetMachine.h"
18#include "ARM64Subtarget.h"
19#include "ARM64CallingConv.h"
20#include "MCTargetDesc/ARM64AddressingModes.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/FastISel.h"
23#include "llvm/CodeGen/FunctionLoweringInfo.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GetElementPtrTypeIterator.h"
33#include "llvm/IR/GlobalAlias.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/Support/CommandLine.h"
39using namespace llvm;
40
41namespace {
42
43class ARM64FastISel : public FastISel {
44
45 class Address {
46 public:
47 typedef enum {
48 RegBase,
49 FrameIndexBase
50 } BaseKind;
51
52 private:
53 BaseKind Kind;
54 union {
55 unsigned Reg;
56 int FI;
57 } Base;
58 int64_t Offset;
59
60 public:
61 Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
62 void setKind(BaseKind K) { Kind = K; }
63 BaseKind getKind() const { return Kind; }
64 bool isRegBase() const { return Kind == RegBase; }
65 bool isFIBase() const { return Kind == FrameIndexBase; }
66 void setReg(unsigned Reg) {
67 assert(isRegBase() && "Invalid base register access!");
68 Base.Reg = Reg;
69 }
70 unsigned getReg() const {
71 assert(isRegBase() && "Invalid base register access!");
72 return Base.Reg;
73 }
74 void setFI(unsigned FI) {
75 assert(isFIBase() && "Invalid base frame index access!");
76 Base.FI = FI;
77 }
78 unsigned getFI() const {
79 assert(isFIBase() && "Invalid base frame index access!");
80 return Base.FI;
81 }
82 void setOffset(int64_t O) { Offset = O; }
83 int64_t getOffset() { return Offset; }
84
85 bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
86 };
87
88 /// Subtarget - Keep a pointer to the ARM64Subtarget around so that we can
89 /// make the right decision when generating code for different targets.
90 const ARM64Subtarget *Subtarget;
91 LLVMContext *Context;
92
93private:
94 // Selection routines.
95 bool SelectLoad(const Instruction *I);
96 bool SelectStore(const Instruction *I);
97 bool SelectBranch(const Instruction *I);
98 bool SelectIndirectBr(const Instruction *I);
99 bool SelectCmp(const Instruction *I);
100 bool SelectSelect(const Instruction *I);
101 bool SelectFPExt(const Instruction *I);
102 bool SelectFPTrunc(const Instruction *I);
103 bool SelectFPToInt(const Instruction *I, bool Signed);
104 bool SelectIntToFP(const Instruction *I, bool Signed);
105 bool SelectRem(const Instruction *I, unsigned ISDOpcode);
106 bool SelectCall(const Instruction *I, const char *IntrMemName);
107 bool SelectIntrinsicCall(const IntrinsicInst &I);
108 bool SelectRet(const Instruction *I);
109 bool SelectTrunc(const Instruction *I);
110 bool SelectIntExt(const Instruction *I);
111 bool SelectMul(const Instruction *I);
112
113 // Utility helper routines.
114 bool isTypeLegal(Type *Ty, MVT &VT);
115 bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
116 bool ComputeAddress(const Value *Obj, Address &Addr);
117 bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
118 bool UseUnscaled);
119 void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
120 unsigned Flags, bool UseUnscaled);
121 bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
122 bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
123 unsigned Alignment);
124 // Emit functions.
125 bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
126 bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
127 bool UseUnscaled = false);
128 bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
129 bool UseUnscaled = false);
130 unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
131 unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
132
133 unsigned ARM64MaterializeFP(const ConstantFP *CFP, MVT VT);
134 unsigned ARM64MaterializeGV(const GlobalValue *GV);
135
136 // Call handling routines.
137private:
138 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
139 bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
140 SmallVectorImpl<unsigned> &ArgRegs,
141 SmallVectorImpl<MVT> &ArgVTs,
142 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
143 SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
144 unsigned &NumBytes);
145 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
146 const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);
147
148public:
149 // Backend specific FastISel code.
150 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151 virtual unsigned TargetMaterializeConstant(const Constant *C);
152
153 explicit ARM64FastISel(FunctionLoweringInfo &funcInfo,
154 const TargetLibraryInfo *libInfo)
155 : FastISel(funcInfo, libInfo) {
156 Subtarget = &TM.getSubtarget<ARM64Subtarget>();
157 Context = &funcInfo.Fn->getContext();
158 }
159
160 virtual bool TargetSelectInstruction(const Instruction *I);
161
162#include "ARM64GenFastISel.inc"
163};
164
165} // end anonymous namespace
166
167#include "ARM64GenCallingConv.inc"
168
169CCAssignFn *ARM64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
170 if (CC == CallingConv::WebKit_JS)
171 return CC_ARM64_WebKit_JS;
172 return Subtarget->isTargetDarwin() ? CC_ARM64_DarwinPCS : CC_ARM64_AAPCS;
173}
174
175unsigned ARM64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
176 assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
177 "Alloca should always return a pointer.");
178
179 // Don't handle dynamic allocas.
180 if (!FuncInfo.StaticAllocaMap.count(AI))
181 return 0;
182
183 DenseMap<const AllocaInst *, int>::iterator SI =
184 FuncInfo.StaticAllocaMap.find(AI);
185
186 if (SI != FuncInfo.StaticAllocaMap.end()) {
187 unsigned ResultReg = createResultReg(&ARM64::GPR64RegClass);
188 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADDXri),
189 ResultReg)
190 .addFrameIndex(SI->second)
191 .addImm(0)
192 .addImm(0);
193 return ResultReg;
194 }
195
196 return 0;
197}
198
199unsigned ARM64FastISel::ARM64MaterializeFP(const ConstantFP *CFP, MVT VT) {
200 const APFloat Val = CFP->getValueAPF();
201 bool is64bit = (VT == MVT::f64);
202
203 // This checks to see if we can use FMOV instructions to materialize
204 // a constant, otherwise we have to materialize via the constant pool.
205 if (TLI.isFPImmLegal(Val, VT)) {
206 int Imm;
207 unsigned Opc;
208 if (is64bit) {
209 Imm = ARM64_AM::getFP64Imm(Val);
210 Opc = ARM64::FMOVDi;
211 } else {
212 Imm = ARM64_AM::getFP32Imm(Val);
213 Opc = ARM64::FMOVSi;
214 }
215 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
217 .addImm(Imm);
218 return ResultReg;
219 }
220
221 // Materialize via constant pool. MachineConstantPool wants an explicit
222 // alignment.
223 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
224 if (Align == 0)
225 Align = DL.getTypeAllocSize(CFP->getType());
226
227 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
228 unsigned ADRPReg = createResultReg(&ARM64::GPR64RegClass);
229 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP),
230 ADRPReg).addConstantPoolIndex(Idx, 0, ARM64II::MO_PAGE);
231
232 unsigned Opc = is64bit ? ARM64::LDRDui : ARM64::LDRSui;
233 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
235 .addReg(ADRPReg)
236 .addConstantPoolIndex(Idx, 0, ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
237 return ResultReg;
238}
239
240unsigned ARM64FastISel::ARM64MaterializeGV(const GlobalValue *GV) {
241 // We can't handle thread-local variables quickly yet. Unfortunately we have
242 // to peer through any aliases to find out if that rule applies.
243 const GlobalValue *TLSGV = GV;
244 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
245 TLSGV = GA->getAliasedGlobal();
246
247 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(TLSGV))
248 if (GVar->isThreadLocal())
249 return 0;
250
251 unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
252
253 EVT DestEVT = TLI.getValueType(GV->getType(), true);
254 if (!DestEVT.isSimple())
255 return 0;
256 MVT DestVT = DestEVT.getSimpleVT();
257
258 unsigned ADRPReg = createResultReg(&ARM64::GPR64RegClass);
259 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
260
261 if (OpFlags & ARM64II::MO_GOT) {
262 // ADRP + LDRX
263 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP),
264 ADRPReg)
265 .addGlobalAddress(GV, 0, ARM64II::MO_GOT | ARM64II::MO_PAGE);
266 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::LDRXui),
267 ResultReg)
268 .addReg(ADRPReg)
269 .addGlobalAddress(GV, 0, ARM64II::MO_GOT | ARM64II::MO_PAGEOFF |
270 ARM64II::MO_NC);
271 } else {
272 // ADRP + ADDX
273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP),
274 ADRPReg).addGlobalAddress(GV, 0, ARM64II::MO_PAGE);
275 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADDXri),
276 ResultReg)
277 .addReg(ADRPReg)
278 .addGlobalAddress(GV, 0, ARM64II::MO_PAGEOFF | ARM64II::MO_NC)
279 .addImm(0);
280 }
281 return ResultReg;
282}
283
284unsigned ARM64FastISel::TargetMaterializeConstant(const Constant *C) {
285 EVT CEVT = TLI.getValueType(C->getType(), true);
286
287 // Only handle simple types.
288 if (!CEVT.isSimple())
289 return 0;
290 MVT VT = CEVT.getSimpleVT();
291
292 // FIXME: Handle ConstantInt.
293 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
294 return ARM64MaterializeFP(CFP, VT);
295 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
296 return ARM64MaterializeGV(GV);
297
298 return 0;
299}
300
301// Computes the address to get to an object.
302bool ARM64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
303 const User *U = NULL;
304 unsigned Opcode = Instruction::UserOp1;
305 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
306 // Don't walk into other basic blocks unless the object is an alloca from
307 // another block, otherwise it may not have a virtual register assigned.
308 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
309 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
310 Opcode = I->getOpcode();
311 U = I;
312 }
313 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
314 Opcode = C->getOpcode();
315 U = C;
316 }
317
318 if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
319 if (Ty->getAddressSpace() > 255)
320 // Fast instruction selection doesn't support the special
321 // address spaces.
322 return false;
323
324 switch (Opcode) {
325 default:
326 break;
327 case Instruction::BitCast: {
328 // Look through bitcasts.
329 return ComputeAddress(U->getOperand(0), Addr);
330 }
331 case Instruction::IntToPtr: {
332 // Look past no-op inttoptrs.
333 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
334 return ComputeAddress(U->getOperand(0), Addr);
335 break;
336 }
337 case Instruction::PtrToInt: {
338 // Look past no-op ptrtoints.
339 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
340 return ComputeAddress(U->getOperand(0), Addr);
341 break;
342 }
343 case Instruction::GetElementPtr: {
344 Address SavedAddr = Addr;
345 uint64_t TmpOffset = Addr.getOffset();
346
347 // Iterate through the GEP folding the constants into offsets where
348 // we can.
349 gep_type_iterator GTI = gep_type_begin(U);
350 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
351 ++i, ++GTI) {
352 const Value *Op = *i;
353 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
354 const StructLayout *SL = DL.getStructLayout(STy);
355 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
356 TmpOffset += SL->getElementOffset(Idx);
357 } else {
358 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
359 for (;;) {
360 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
361 // Constant-offset addressing.
362 TmpOffset += CI->getSExtValue() * S;
363 break;
364 }
365 if (canFoldAddIntoGEP(U, Op)) {
366 // A compatible add with a constant operand. Fold the constant.
367 ConstantInt *CI =
368 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
369 TmpOffset += CI->getSExtValue() * S;
370 // Iterate on the other operand.
371 Op = cast<AddOperator>(Op)->getOperand(0);
372 continue;
373 }
374 // Unsupported
375 goto unsupported_gep;
376 }
377 }
378 }
379
380 // Try to grab the base operand now.
381 Addr.setOffset(TmpOffset);
382 if (ComputeAddress(U->getOperand(0), Addr))
383 return true;
384
385 // We failed, restore everything and try the other options.
386 Addr = SavedAddr;
387
388 unsupported_gep:
389 break;
390 }
391 case Instruction::Alloca: {
392 const AllocaInst *AI = cast<AllocaInst>(Obj);
393 DenseMap<const AllocaInst *, int>::iterator SI =
394 FuncInfo.StaticAllocaMap.find(AI);
395 if (SI != FuncInfo.StaticAllocaMap.end()) {
396 Addr.setKind(Address::FrameIndexBase);
397 Addr.setFI(SI->second);
398 return true;
399 }
400 break;
401 }
402 }
403
404 // Try to get this in a register if nothing else has worked.
405 if (!Addr.isValid())
406 Addr.setReg(getRegForValue(Obj));
407 return Addr.isValid();
408}
409
410bool ARM64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
411 EVT evt = TLI.getValueType(Ty, true);
412
413 // Only handle simple types.
414 if (evt == MVT::Other || !evt.isSimple())
415 return false;
416 VT = evt.getSimpleVT();
417
418 // Handle all legal types, i.e. a register that will directly hold this
419 // value.
420 return TLI.isTypeLegal(VT);
421}
422
423bool ARM64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
424 if (isTypeLegal(Ty, VT))
425 return true;
426
427 // If this is a type than can be sign or zero-extended to a basic operation
428 // go ahead and accept it now. For stores, this reflects truncation.
429 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
430 return true;
431
432 return false;
433}
434
435bool ARM64FastISel::SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
436 bool UseUnscaled) {
437 bool needsLowering = false;
438 int64_t Offset = Addr.getOffset();
439 switch (VT.SimpleTy) {
440 default:
441 return false;
442 case MVT::i1:
443 case MVT::i8:
444 case MVT::i16:
445 case MVT::i32:
446 case MVT::i64:
447 case MVT::f32:
448 case MVT::f64:
449 if (!UseUnscaled)
450 // Using scaled, 12-bit, unsigned immediate offsets.
451 needsLowering = ((Offset & 0xfff) != Offset);
452 else
453 // Using unscaled, 9-bit, signed immediate offsets.
454 needsLowering = (Offset > 256 || Offset < -256);
455 break;
456 }
457
458 // FIXME: If this is a stack pointer and the offset needs to be simplified
459 // then put the alloca address into a register, set the base type back to
460 // register and continue. This should almost never happen.
461 if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
462 return false;
463 }
464
465 // Since the offset is too large for the load/store instruction get the
466 // reg+offset into a register.
467 if (needsLowering) {
468 uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
469 unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
470 UnscaledOffset, MVT::i64);
471 if (ResultReg == 0)
472 return false;
473 Addr.setReg(ResultReg);
474 Addr.setOffset(0);
475 }
476 return true;
477}
478
479void ARM64FastISel::AddLoadStoreOperands(Address &Addr,
480 const MachineInstrBuilder &MIB,
481 unsigned Flags, bool UseUnscaled) {
482 int64_t Offset = Addr.getOffset();
483 // Frame base works a bit differently. Handle it separately.
484 if (Addr.getKind() == Address::FrameIndexBase) {
485 int FI = Addr.getFI();
486 // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
487 // and alignment should be based on the VT.
488 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
489 MachinePointerInfo::getFixedStack(FI, Offset), Flags,
490 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
491 // Now add the rest of the operands.
492 MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
493 } else {
494 // Now add the rest of the operands.
495 MIB.addReg(Addr.getReg());
496 MIB.addImm(Offset);
497 }
498}
499
500bool ARM64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
501 bool UseUnscaled) {
502 // Negative offsets require unscaled, 9-bit, signed immediate offsets.
503 // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
504 if (!UseUnscaled && Addr.getOffset() < 0)
505 UseUnscaled = true;
506
507 unsigned Opc;
508 const TargetRegisterClass *RC;
509 bool VTIsi1 = false;
510 int64_t ScaleFactor = 0;
511 switch (VT.SimpleTy) {
512 default:
513 return false;
514 case MVT::i1:
515 VTIsi1 = true;
516 // Intentional fall-through.
517 case MVT::i8:
518 Opc = UseUnscaled ? ARM64::LDURBBi : ARM64::LDRBBui;
519 RC = &ARM64::GPR32RegClass;
520 ScaleFactor = 1;
521 break;
522 case MVT::i16:
523 Opc = UseUnscaled ? ARM64::LDURHHi : ARM64::LDRHHui;
524 RC = &ARM64::GPR32RegClass;
525 ScaleFactor = 2;
526 break;
527 case MVT::i32:
528 Opc = UseUnscaled ? ARM64::LDURWi : ARM64::LDRWui;
529 RC = &ARM64::GPR32RegClass;
530 ScaleFactor = 4;
531 break;
532 case MVT::i64:
533 Opc = UseUnscaled ? ARM64::LDURXi : ARM64::LDRXui;
534 RC = &ARM64::GPR64RegClass;
535 ScaleFactor = 8;
536 break;
537 case MVT::f32:
538 Opc = UseUnscaled ? ARM64::LDURSi : ARM64::LDRSui;
539 RC = TLI.getRegClassFor(VT);
540 ScaleFactor = 4;
541 break;
542 case MVT::f64:
543 Opc = UseUnscaled ? ARM64::LDURDi : ARM64::LDRDui;
544 RC = TLI.getRegClassFor(VT);
545 ScaleFactor = 8;
546 break;
547 }
548 // Scale the offset.
549 if (!UseUnscaled) {
550 int64_t Offset = Addr.getOffset();
551 if (Offset & (ScaleFactor - 1))
552 // Retry using an unscaled, 9-bit, signed immediate offset.
553 return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);
554
555 Addr.setOffset(Offset / ScaleFactor);
556 }
557
558 // Simplify this down to something we can handle.
559 if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
560 return false;
561
562 // Create the base instruction, then add the operands.
563 ResultReg = createResultReg(RC);
564 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
565 TII.get(Opc), ResultReg);
566 AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);
567
568 // Loading an i1 requires special handling.
569 if (VTIsi1) {
570 unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
571 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
572 ANDReg)
573 .addReg(ResultReg)
574 .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
575 ResultReg = ANDReg;
576 }
577 return true;
578}
579
580bool ARM64FastISel::SelectLoad(const Instruction *I) {
581 MVT VT;
582 // Verify we have a legal type before going any further. Currently, we handle
583 // simple types that will directly fit in a register (i32/f32/i64/f64) or
584 // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
585 if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
586 return false;
587
588 // See if we can handle this address.
589 Address Addr;
590 if (!ComputeAddress(I->getOperand(0), Addr))
591 return false;
592
593 unsigned ResultReg;
594 if (!EmitLoad(VT, ResultReg, Addr))
595 return false;
596
597 UpdateValueMap(I, ResultReg);
598 return true;
599}
600
601bool ARM64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
602 bool UseUnscaled) {
603 // Negative offsets require unscaled, 9-bit, signed immediate offsets.
604 // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
605 if (!UseUnscaled && Addr.getOffset() < 0)
606 UseUnscaled = true;
607
608 unsigned StrOpc;
609 bool VTIsi1 = false;
610 int64_t ScaleFactor = 0;
611 // Using scaled, 12-bit, unsigned immediate offsets.
612 switch (VT.SimpleTy) {
613 default:
614 return false;
615 case MVT::i1:
616 VTIsi1 = true;
617 case MVT::i8:
618 StrOpc = UseUnscaled ? ARM64::STURBBi : ARM64::STRBBui;
619 ScaleFactor = 1;
620 break;
621 case MVT::i16:
622 StrOpc = UseUnscaled ? ARM64::STURHHi : ARM64::STRHHui;
623 ScaleFactor = 2;
624 break;
625 case MVT::i32:
626 StrOpc = UseUnscaled ? ARM64::STURWi : ARM64::STRWui;
627 ScaleFactor = 4;
628 break;
629 case MVT::i64:
630 StrOpc = UseUnscaled ? ARM64::STURXi : ARM64::STRXui;
631 ScaleFactor = 8;
632 break;
633 case MVT::f32:
634 StrOpc = UseUnscaled ? ARM64::STURSi : ARM64::STRSui;
635 ScaleFactor = 4;
636 break;
637 case MVT::f64:
638 StrOpc = UseUnscaled ? ARM64::STURDi : ARM64::STRDui;
639 ScaleFactor = 8;
640 break;
641 }
642 // Scale the offset.
643 if (!UseUnscaled) {
644 int64_t Offset = Addr.getOffset();
645 if (Offset & (ScaleFactor - 1))
646 // Retry using an unscaled, 9-bit, signed immediate offset.
647 return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);
648
649 Addr.setOffset(Offset / ScaleFactor);
650 }
651
652 // Simplify this down to something we can handle.
653 if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
654 return false;
655
656 // Storing an i1 requires special handling.
657 if (VTIsi1) {
658 unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
660 ANDReg)
661 .addReg(SrcReg)
662 .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
663 SrcReg = ANDReg;
664 }
665 // Create the base instruction, then add the operands.
666 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
667 TII.get(StrOpc)).addReg(SrcReg);
668 AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
669 return true;
670}
671
672bool ARM64FastISel::SelectStore(const Instruction *I) {
673 MVT VT;
674 Value *Op0 = I->getOperand(0);
675 // Verify we have a legal type before going any further. Currently, we handle
676 // simple types that will directly fit in a register (i32/f32/i64/f64) or
677 // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
678 if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
679 cast<StoreInst>(I)->isAtomic())
680 return false;
681
682 // Get the value to be stored into a register.
683 unsigned SrcReg = getRegForValue(Op0);
684 if (SrcReg == 0)
685 return false;
686
687 // See if we can handle this address.
688 Address Addr;
689 if (!ComputeAddress(I->getOperand(1), Addr))
690 return false;
691
692 if (!EmitStore(VT, SrcReg, Addr))
693 return false;
694 return true;
695}
696
697static ARM64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
698 switch (Pred) {
699 case CmpInst::FCMP_ONE:
700 case CmpInst::FCMP_UEQ:
701 default:
702 // AL is our "false" for now. The other two need more compares.
703 return ARM64CC::AL;
704 case CmpInst::ICMP_EQ:
705 case CmpInst::FCMP_OEQ:
706 return ARM64CC::EQ;
707 case CmpInst::ICMP_SGT:
708 case CmpInst::FCMP_OGT:
709 return ARM64CC::GT;
710 case CmpInst::ICMP_SGE:
711 case CmpInst::FCMP_OGE:
712 return ARM64CC::GE;
713 case CmpInst::ICMP_UGT:
714 case CmpInst::FCMP_UGT:
715 return ARM64CC::HI;
716 case CmpInst::FCMP_OLT:
717 return ARM64CC::MI;
718 case CmpInst::ICMP_ULE:
719 case CmpInst::FCMP_OLE:
720 return ARM64CC::LS;
721 case CmpInst::FCMP_ORD:
722 return ARM64CC::VC;
723 case CmpInst::FCMP_UNO:
724 return ARM64CC::VS;
725 case CmpInst::FCMP_UGE:
726 return ARM64CC::PL;
727 case CmpInst::ICMP_SLT:
728 case CmpInst::FCMP_ULT:
729 return ARM64CC::LT;
730 case CmpInst::ICMP_SLE:
731 case CmpInst::FCMP_ULE:
732 return ARM64CC::LE;
733 case CmpInst::FCMP_UNE:
734 case CmpInst::ICMP_NE:
735 return ARM64CC::NE;
736 case CmpInst::ICMP_UGE:
737 return ARM64CC::CS;
738 case CmpInst::ICMP_ULT:
739 return ARM64CC::CC;
740 }
741}
742
743bool ARM64FastISel::SelectBranch(const Instruction *I) {
744 const BranchInst *BI = cast<BranchInst>(I);
745 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
746 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
747
748 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
749 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
750 // We may not handle every CC for now.
751 ARM64CC::CondCode CC = getCompareCC(CI->getPredicate());
752 if (CC == ARM64CC::AL)
753 return false;
754
755 // Emit the cmp.
756 if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
757 return false;
758
759 // Emit the branch.
760 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc))
761 .addImm(CC)
762 .addMBB(TBB);
763 FuncInfo.MBB->addSuccessor(TBB);
764
765 FastEmitBranch(FBB, DbgLoc);
766 return true;
767 }
768 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
769 MVT SrcVT;
770 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
771 (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
772 unsigned CondReg = getRegForValue(TI->getOperand(0));
773 if (CondReg == 0)
774 return false;
775
776 // Issue an extract_subreg to get the lower 32-bits.
777 if (SrcVT == MVT::i64)
778 CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
779 ARM64::sub_32);
780
781 unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
783 ANDReg)
784 .addReg(CondReg)
785 .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri))
787 .addReg(ANDReg)
788 .addReg(ANDReg)
789 .addImm(0)
790 .addImm(0);
791
792 unsigned CC = ARM64CC::NE;
793 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
794 std::swap(TBB, FBB);
795 CC = ARM64CC::EQ;
796 }
797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc))
798 .addImm(CC)
799 .addMBB(TBB);
800 FuncInfo.MBB->addSuccessor(TBB);
801 FastEmitBranch(FBB, DbgLoc);
802 return true;
803 }
804 } else if (const ConstantInt *CI =
805 dyn_cast<ConstantInt>(BI->getCondition())) {
806 uint64_t Imm = CI->getZExtValue();
807 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
808 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::B))
809 .addMBB(Target);
810 FuncInfo.MBB->addSuccessor(Target);
811 return true;
812 }
813
814 unsigned CondReg = getRegForValue(BI->getCondition());
815 if (CondReg == 0)
816 return false;
817
818 // We've been divorced from our compare! Our block was split, and
819 // now our compare lives in a predecessor block. We musn't
820 // re-compare here, as the children of the compare aren't guaranteed
821 // live across the block boundary (we *could* check for this).
822 // Regardless, the compare has been done in the predecessor block,
823 // and it left a value for us in a virtual register. Ergo, we test
824 // the one-bit value left in the virtual register.
825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri),
826 ARM64::WZR)
827 .addReg(CondReg)
828 .addImm(0)
829 .addImm(0);
830
831 unsigned CC = ARM64CC::NE;
832 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
833 std::swap(TBB, FBB);
834 CC = ARM64CC::EQ;
835 }
836
837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc))
838 .addImm(CC)
839 .addMBB(TBB);
840 FuncInfo.MBB->addSuccessor(TBB);
841 FastEmitBranch(FBB, DbgLoc);
842 return true;
843}
844
845bool ARM64FastISel::SelectIndirectBr(const Instruction *I) {
846 const IndirectBrInst *BI = cast<IndirectBrInst>(I);
847 unsigned AddrReg = getRegForValue(BI->getOperand(0));
848 if (AddrReg == 0)
849 return false;
850
851 // Emit the indirect branch.
852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BR))
853 .addReg(AddrReg);
854
855 // Make sure the CFG is up-to-date.
856 for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
857 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
858
859 return true;
860}
861
862bool ARM64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
863 Type *Ty = Src1Value->getType();
864 EVT SrcEVT = TLI.getValueType(Ty, true);
865 if (!SrcEVT.isSimple())
866 return false;
867 MVT SrcVT = SrcEVT.getSimpleVT();
868
869 // Check to see if the 2nd operand is a constant that we can encode directly
870 // in the compare.
871 uint64_t Imm;
872 bool UseImm = false;
873 bool isNegativeImm = false;
874 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
875 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
876 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
877 const APInt &CIVal = ConstInt->getValue();
878
879 Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
880 if (CIVal.isNegative()) {
881 isNegativeImm = true;
882 Imm = -Imm;
883 }
884 // FIXME: We can handle more immediates using shifts.
885 UseImm = ((Imm & 0xfff) == Imm);
886 }
887 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
888 if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
889 if (ConstFP->isZero() && !ConstFP->isNegative())
890 UseImm = true;
891 }
892
893 unsigned ZReg;
894 unsigned CmpOpc;
895 bool isICmp = true;
896 bool needsExt = false;
897 switch (SrcVT.SimpleTy) {
898 default:
899 return false;
900 case MVT::i1:
901 case MVT::i8:
902 case MVT::i16:
903 needsExt = true;
904 // Intentional fall-through.
905 case MVT::i32:
906 ZReg = ARM64::WZR;
907 if (UseImm)
908 CmpOpc = isNegativeImm ? ARM64::ADDSWri : ARM64::SUBSWri;
909 else
910 CmpOpc = ARM64::SUBSWrr;
911 break;
912 case MVT::i64:
913 ZReg = ARM64::XZR;
914 if (UseImm)
915 CmpOpc = isNegativeImm ? ARM64::ADDSXri : ARM64::SUBSXri;
916 else
917 CmpOpc = ARM64::SUBSXrr;
918 break;
919 case MVT::f32:
920 isICmp = false;
921 CmpOpc = UseImm ? ARM64::FCMPSri : ARM64::FCMPSrr;
922 break;
923 case MVT::f64:
924 isICmp = false;
925 CmpOpc = UseImm ? ARM64::FCMPDri : ARM64::FCMPDrr;
926 break;
927 }
928
929 unsigned SrcReg1 = getRegForValue(Src1Value);
930 if (SrcReg1 == 0)
931 return false;
932
933 unsigned SrcReg2;
934 if (!UseImm) {
935 SrcReg2 = getRegForValue(Src2Value);
936 if (SrcReg2 == 0)
937 return false;
938 }
939
940 // We have i1, i8, or i16, we need to either zero extend or sign extend.
941 if (needsExt) {
942 SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
943 if (SrcReg1 == 0)
944 return false;
945 if (!UseImm) {
946 SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
947 if (SrcReg2 == 0)
948 return false;
949 }
950 }
951
952 if (isICmp) {
953 if (UseImm)
954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
955 .addReg(ZReg)
956 .addReg(SrcReg1)
957 .addImm(Imm)
958 .addImm(0);
959 else
960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
961 .addReg(ZReg)
962 .addReg(SrcReg1)
963 .addReg(SrcReg2);
964 } else {
965 if (UseImm)
966 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
967 .addReg(SrcReg1);
968 else
969 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
970 .addReg(SrcReg1)
971 .addReg(SrcReg2);
972 }
973 return true;
974}
975
976bool ARM64FastISel::SelectCmp(const Instruction *I) {
977 const CmpInst *CI = cast<CmpInst>(I);
978
979 // We may not handle every CC for now.
980 ARM64CC::CondCode CC = getCompareCC(CI->getPredicate());
981 if (CC == ARM64CC::AL)
982 return false;
983
984 // Emit the cmp.
985 if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
986 return false;
987
988 // Now set a register based on the comparison.
989 ARM64CC::CondCode invertedCC = getInvertedCondCode(CC);
990 unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass);
991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::CSINCWr),
992 ResultReg)
993 .addReg(ARM64::WZR)
994 .addReg(ARM64::WZR)
995 .addImm(invertedCC);
996
997 UpdateValueMap(I, ResultReg);
998 return true;
999}
1000
1001bool ARM64FastISel::SelectSelect(const Instruction *I) {
1002 const SelectInst *SI = cast<SelectInst>(I);
1003
1004 EVT DestEVT = TLI.getValueType(SI->getType(), true);
1005 if (!DestEVT.isSimple())
1006 return false;
1007
1008 MVT DestVT = DestEVT.getSimpleVT();
1009 if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
1010 DestVT != MVT::f64)
1011 return false;
1012
1013 unsigned CondReg = getRegForValue(SI->getCondition());
1014 if (CondReg == 0)
1015 return false;
1016 unsigned TrueReg = getRegForValue(SI->getTrueValue());
1017 if (TrueReg == 0)
1018 return false;
1019 unsigned FalseReg = getRegForValue(SI->getFalseValue());
1020 if (FalseReg == 0)
1021 return false;
1022
1023 unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
1024 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
1025 ANDReg)
1026 .addReg(CondReg)
1027 .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
1028
1029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri))
1030 .addReg(ANDReg)
1031 .addReg(ANDReg)
1032 .addImm(0)
1033 .addImm(0);
1034
1035 unsigned SelectOpc;
1036 switch (DestVT.SimpleTy) {
1037 default:
1038 return false;
1039 case MVT::i32:
1040 SelectOpc = ARM64::CSELWr;
1041 break;
1042 case MVT::i64:
1043 SelectOpc = ARM64::CSELXr;
1044 break;
1045 case MVT::f32:
1046 SelectOpc = ARM64::FCSELSrrr;
1047 break;
1048 case MVT::f64:
1049 SelectOpc = ARM64::FCSELDrrr;
1050 break;
1051 }
1052
1053 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
1055 ResultReg)
1056 .addReg(TrueReg)
1057 .addReg(FalseReg)
1058 .addImm(ARM64CC::NE);
1059
1060 UpdateValueMap(I, ResultReg);
1061 return true;
1062}
1063
1064bool ARM64FastISel::SelectFPExt(const Instruction *I) {
1065 Value *V = I->getOperand(0);
1066 if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
1067 return false;
1068
1069 unsigned Op = getRegForValue(V);
1070 if (Op == 0)
1071 return false;
1072
1073 unsigned ResultReg = createResultReg(&ARM64::FPR64RegClass);
1074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::FCVTDSr),
1075 ResultReg).addReg(Op);
1076 UpdateValueMap(I, ResultReg);
1077 return true;
1078}
1079
1080bool ARM64FastISel::SelectFPTrunc(const Instruction *I) {
1081 Value *V = I->getOperand(0);
1082 if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
1083 return false;
1084
1085 unsigned Op = getRegForValue(V);
1086 if (Op == 0)
1087 return false;
1088
1089 unsigned ResultReg = createResultReg(&ARM64::FPR32RegClass);
1090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::FCVTSDr),
1091 ResultReg).addReg(Op);
1092 UpdateValueMap(I, ResultReg);
1093 return true;
1094}
1095
1096// FPToUI and FPToSI
1097bool ARM64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
1098 MVT DestVT;
1099 if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
1100 return false;
1101
1102 unsigned SrcReg = getRegForValue(I->getOperand(0));
1103 if (SrcReg == 0)
1104 return false;
1105
1106 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
1107
1108 unsigned Opc;
1109 if (SrcVT == MVT::f64) {
1110 if (Signed)
1111 Opc = (DestVT == MVT::i32) ? ARM64::FCVTZSUWDr : ARM64::FCVTZSUXDr;
1112 else
1113 Opc = (DestVT == MVT::i32) ? ARM64::FCVTZUUWDr : ARM64::FCVTZUUXDr;
1114 } else {
1115 if (Signed)
1116 Opc = (DestVT == MVT::i32) ? ARM64::FCVTZSUWSr : ARM64::FCVTZSUXSr;
1117 else
1118 Opc = (DestVT == MVT::i32) ? ARM64::FCVTZUUWSr : ARM64::FCVTZUUXSr;
1119 }
1120 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1121 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1122 .addReg(SrcReg);
1123 UpdateValueMap(I, ResultReg);
1124 return true;
1125}
1126
1127bool ARM64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
1128 MVT DestVT;
1129 if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
1130 return false;
1131
1132 unsigned SrcReg = getRegForValue(I->getOperand(0));
1133 if (SrcReg == 0)
1134 return false;
1135
1136 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
1137
1138 // Handle sign-extension.
1139 if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
1140 SrcReg =
1141 EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
1142 if (SrcReg == 0)
1143 return false;
1144 }
1145
1146 unsigned Opc;
1147 if (SrcVT == MVT::i64) {
1148 if (Signed)
1149 Opc = (DestVT == MVT::f32) ? ARM64::SCVTFUXSri : ARM64::SCVTFUXDri;
1150 else
1151 Opc = (DestVT == MVT::f32) ? ARM64::UCVTFUXSri : ARM64::UCVTFUXDri;
1152 } else {
1153 if (Signed)
1154 Opc = (DestVT == MVT::f32) ? ARM64::SCVTFUWSri : ARM64::SCVTFUWDri;
1155 else
1156 Opc = (DestVT == MVT::f32) ? ARM64::UCVTFUWSri : ARM64::UCVTFUWDri;
1157 }
1158
1159 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1161 .addReg(SrcReg);
1162 UpdateValueMap(I, ResultReg);
1163 return true;
1164}
1165
1166bool ARM64FastISel::ProcessCallArgs(SmallVectorImpl<Value *> &Args,
1167 SmallVectorImpl<unsigned> &ArgRegs,
1168 SmallVectorImpl<MVT> &ArgVTs,
1169 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1170 SmallVectorImpl<unsigned> &RegArgs,
1171 CallingConv::ID CC, unsigned &NumBytes) {
1172 SmallVector<CCValAssign, 16> ArgLocs;
1173 CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1174 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1175
1176 // Get a count of how many bytes are to be pushed on the stack.
1177 NumBytes = CCInfo.getNextStackOffset();
1178
1179 // Issue CALLSEQ_START
1180 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
1182 .addImm(NumBytes);
1183
1184 // Process the args.
1185 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1186 CCValAssign &VA = ArgLocs[i];
1187 unsigned Arg = ArgRegs[VA.getValNo()];
1188 MVT ArgVT = ArgVTs[VA.getValNo()];
1189
1190 // Handle arg promotion: SExt, ZExt, AExt.
1191 switch (VA.getLocInfo()) {
1192 case CCValAssign::Full:
1193 break;
1194 case CCValAssign::SExt: {
1195 MVT DestVT = VA.getLocVT();
1196 MVT SrcVT = ArgVT;
1197 Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
1198 if (Arg == 0)
1199 return false;
1200 ArgVT = DestVT;
1201 break;
1202 }
1203 case CCValAssign::AExt:
1204 // Intentional fall-through.
1205 case CCValAssign::ZExt: {
1206 MVT DestVT = VA.getLocVT();
1207 MVT SrcVT = ArgVT;
1208 Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
1209 if (Arg == 0)
1210 return false;
1211 ArgVT = DestVT;
1212 break;
1213 }
1214 default:
1215 llvm_unreachable("Unknown arg promotion!");
1216 }
1217
1218 // Now copy/store arg to correct locations.
1219 if (VA.isRegLoc() && !VA.needsCustom()) {
1220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1221 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1222 RegArgs.push_back(VA.getLocReg());
1223 } else if (VA.needsCustom()) {
1224 // FIXME: Handle custom args.
1225 return false;
1226 } else {
1227 assert(VA.isMemLoc() && "Assuming store on stack.");
1228
1229 // Need to store on the stack.
1230 Address Addr;
1231 Addr.setKind(Address::RegBase);
1232 Addr.setReg(ARM64::SP);
1233 Addr.setOffset(VA.getLocMemOffset());
1234
1235 if (!EmitStore(ArgVT, Arg, Addr))
1236 return false;
1237 }
1238 }
1239 return true;
1240}
1241
1242bool ARM64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1243 const Instruction *I, CallingConv::ID CC,
1244 unsigned &NumBytes) {
1245 // Issue CALLSEQ_END
1246 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1247 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
1248 .addImm(NumBytes)
1249 .addImm(0);
1250
1251 // Now the return value.
1252 if (RetVT != MVT::isVoid) {
1253 SmallVector<CCValAssign, 16> RVLocs;
1254 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1255 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
1256
1257 // Only handle a single return value.
1258 if (RVLocs.size() != 1)
1259 return false;
1260
1261 // Copy all of the result registers out of their specified physreg.
1262 MVT CopyVT = RVLocs[0].getValVT();
1263 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1265 TII.get(TargetOpcode::COPY),
1266 ResultReg).addReg(RVLocs[0].getLocReg());
1267 UsedRegs.push_back(RVLocs[0].getLocReg());
1268
1269 // Finally update the result.
1270 UpdateValueMap(I, ResultReg);
1271 }
1272
1273 return true;
1274}
1275
1276bool ARM64FastISel::SelectCall(const Instruction *I,
1277 const char *IntrMemName = 0) {
1278 const CallInst *CI = cast<CallInst>(I);
1279 const Value *Callee = CI->getCalledValue();
1280
1281 // Don't handle inline asm or intrinsics.
1282 if (isa<InlineAsm>(Callee))
1283 return false;
1284
1285 // Only handle global variable Callees.
1286 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1287 if (!GV)
1288 return false;
1289
1290 // Check the calling convention.
1291 ImmutableCallSite CS(CI);
1292 CallingConv::ID CC = CS.getCallingConv();
1293
1294 // Let SDISel handle vararg functions.
1295 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1296 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1297 if (FTy->isVarArg())
1298 return false;
1299
1300 // Handle *simple* calls for now.
1301 MVT RetVT;
1302 Type *RetTy = I->getType();
1303 if (RetTy->isVoidTy())
1304 RetVT = MVT::isVoid;
1305 else if (!isTypeLegal(RetTy, RetVT))
1306 return false;
1307
1308 // Set up the argument vectors.
1309 SmallVector<Value *, 8> Args;
1310 SmallVector<unsigned, 8> ArgRegs;
1311 SmallVector<MVT, 8> ArgVTs;
1312 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1313 Args.reserve(CS.arg_size());
1314 ArgRegs.reserve(CS.arg_size());
1315 ArgVTs.reserve(CS.arg_size());
1316 ArgFlags.reserve(CS.arg_size());
1317
1318 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1319 i != e; ++i) {
1320 // If we're lowering a memory intrinsic instead of a regular call, skip the
1321 // last two arguments, which shouldn't be passed to the underlying function.
1322 if (IntrMemName && e - i <= 2)
1323 break;
1324
1325 unsigned Arg = getRegForValue(*i);
1326 if (Arg == 0)
1327 return false;
1328
1329 ISD::ArgFlagsTy Flags;
1330 unsigned AttrInd = i - CS.arg_begin() + 1;
1331 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1332 Flags.setSExt();
1333 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1334 Flags.setZExt();
1335
1336 // FIXME: Only handle *easy* calls for now.
1337 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1338 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1339 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1340 CS.paramHasAttr(AttrInd, Attribute::ByVal))
1341 return false;
1342
1343 MVT ArgVT;
1344 Type *ArgTy = (*i)->getType();
1345 if (!isTypeLegal(ArgTy, ArgVT) &&
1346 !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
1347 return false;
1348
1349 // We don't handle vector parameters yet.
1350 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1351 return false;
1352
1353 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
1354 Flags.setOrigAlign(OriginalAlignment);
1355
1356 Args.push_back(*i);
1357 ArgRegs.push_back(Arg);
1358 ArgVTs.push_back(ArgVT);
1359 ArgFlags.push_back(Flags);
1360 }
1361
1362 // Handle the arguments now that we've gotten them.
1363 SmallVector<unsigned, 4> RegArgs;
1364 unsigned NumBytes;
1365 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1366 return false;
1367
1368 // Issue the call.
1369 MachineInstrBuilder MIB;
1370 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BL));
1371 if (!IntrMemName)
1372 MIB.addGlobalAddress(GV, 0, 0);
1373 else
1374 MIB.addExternalSymbol(IntrMemName, 0);
1375
1376 // Add implicit physical register uses to the call.
1377 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1378 MIB.addReg(RegArgs[i], RegState::Implicit);
1379
1380 // Add a register mask with the call-preserved registers.
1381 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1382 MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
1383
1384 // Finish off the call including any return values.
1385 SmallVector<unsigned, 4> UsedRegs;
1386 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
1387 return false;
1388
1389 // Set all unused physreg defs as dead.
1390 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1391
1392 return true;
1393}
1394
1395bool ARM64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
1396 if (Alignment)
1397 return Len / Alignment <= 4;
1398 else
1399 return Len < 32;
1400}
1401
1402bool ARM64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
1403 unsigned Alignment) {
1404 // Make sure we don't bloat code by inlining very large memcpy's.
1405 if (!IsMemCpySmall(Len, Alignment))
1406 return false;
1407
1408 int64_t UnscaledOffset = 0;
1409 Address OrigDest = Dest;
1410 Address OrigSrc = Src;
1411
1412 while (Len) {
1413 MVT VT;
1414 if (!Alignment || Alignment >= 8) {
1415 if (Len >= 8)
1416 VT = MVT::i64;
1417 else if (Len >= 4)
1418 VT = MVT::i32;
1419 else if (Len >= 2)
1420 VT = MVT::i16;
1421 else {
1422 VT = MVT::i8;
1423 }
1424 } else {
1425 // Bound based on alignment.
1426 if (Len >= 4 && Alignment == 4)
1427 VT = MVT::i32;
1428 else if (Len >= 2 && Alignment == 2)
1429 VT = MVT::i16;
1430 else {
1431 VT = MVT::i8;
1432 }
1433 }
1434
1435 bool RV;
1436 unsigned ResultReg;
1437 RV = EmitLoad(VT, ResultReg, Src);
1438 assert(RV == true && "Should be able to handle this load.");
1439 RV = EmitStore(VT, ResultReg, Dest);
1440 assert(RV == true && "Should be able to handle this store.");
1441 (void)RV;
1442
1443 int64_t Size = VT.getSizeInBits() / 8;
1444 Len -= Size;
1445 UnscaledOffset += Size;
1446
1447 // We need to recompute the unscaled offset for each iteration.
1448 Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
1449 Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
1450 }
1451
1452 return true;
1453}
1454
1455bool ARM64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
1456 // FIXME: Handle more intrinsics.
1457 switch (I.getIntrinsicID()) {
1458 default:
1459 return false;
1460 case Intrinsic::memcpy:
1461 case Intrinsic::memmove: {
1462 const MemTransferInst &MTI = cast<MemTransferInst>(I);
1463 // Don't handle volatile.
1464 if (MTI.isVolatile())
1465 return false;
1466
1467 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
1468 // we would emit dead code because we don't currently handle memmoves.
1469 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
1470 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
1471 // Small memcpy's are common enough that we want to do them without a call
1472 // if possible.
1473 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
1474 unsigned Alignment = MTI.getAlignment();
1475 if (IsMemCpySmall(Len, Alignment)) {
1476 Address Dest, Src;
1477 if (!ComputeAddress(MTI.getRawDest(), Dest) ||
1478 !ComputeAddress(MTI.getRawSource(), Src))
1479 return false;
1480 if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
1481 return true;
1482 }
1483 }
1484
1485 if (!MTI.getLength()->getType()->isIntegerTy(64))
1486 return false;
1487
1488 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
1489 // Fast instruction selection doesn't support the special
1490 // address spaces.
1491 return false;
1492
1493 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
1494 return SelectCall(&I, IntrMemName);
1495 }
1496 case Intrinsic::memset: {
1497 const MemSetInst &MSI = cast<MemSetInst>(I);
1498 // Don't handle volatile.
1499 if (MSI.isVolatile())
1500 return false;
1501
1502 if (!MSI.getLength()->getType()->isIntegerTy(64))
1503 return false;
1504
1505 if (MSI.getDestAddressSpace() > 255)
1506 // Fast instruction selection doesn't support the special
1507 // address spaces.
1508 return false;
1509
1510 return SelectCall(&I, "memset");
1511 }
1512 case Intrinsic::trap: {
1513 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BRK))
1514 .addImm(1);
1515 return true;
1516 }
1517 }
1518 return false;
1519}
1520
1521bool ARM64FastISel::SelectRet(const Instruction *I) {
1522 const ReturnInst *Ret = cast<ReturnInst>(I);
1523 const Function &F = *I->getParent()->getParent();
1524
1525 if (!FuncInfo.CanLowerReturn)
1526 return false;
1527
1528 if (F.isVarArg())
1529 return false;
1530
1531 // Build a list of return value registers.
1532 SmallVector<unsigned, 4> RetRegs;
1533
1534 if (Ret->getNumOperands() > 0) {
1535 CallingConv::ID CC = F.getCallingConv();
1536 SmallVector<ISD::OutputArg, 4> Outs;
1537 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1538
1539 // Analyze operands of the call, assigning locations to each operand.
1540 SmallVector<CCValAssign, 16> ValLocs;
1541 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
1542 I->getContext());
1543 CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS
1544 : RetCC_ARM64_AAPCS;
1545 CCInfo.AnalyzeReturn(Outs, RetCC);
1546
1547 // Only handle a single return value for now.
1548 if (ValLocs.size() != 1)
1549 return false;
1550
1551 CCValAssign &VA = ValLocs[0];
1552 const Value *RV = Ret->getOperand(0);
1553
1554 // Don't bother handling odd stuff for now.
1555 if (VA.getLocInfo() != CCValAssign::Full)
1556 return false;
1557 // Only handle register returns for now.
1558 if (!VA.isRegLoc())
1559 return false;
1560 unsigned Reg = getRegForValue(RV);
1561 if (Reg == 0)
1562 return false;
1563
1564 unsigned SrcReg = Reg + VA.getValNo();
1565 unsigned DestReg = VA.getLocReg();
1566 // Avoid a cross-class copy. This is very unlikely.
1567 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1568 return false;
1569
1570 EVT RVEVT = TLI.getValueType(RV->getType());
1571 if (!RVEVT.isSimple())
1572 return false;
1573 MVT RVVT = RVEVT.getSimpleVT();
1574 MVT DestVT = VA.getValVT();
1575 // Special handling for extended integers.
1576 if (RVVT != DestVT) {
1577 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1578 return false;
1579
1580 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1581 return false;
1582
1583 bool isZExt = Outs[0].Flags.isZExt();
1584 SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
1585 if (SrcReg == 0)
1586 return false;
1587 }
1588
1589 // Make the copy.
1590 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1591 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1592
1593 // Add register to return instruction.
1594 RetRegs.push_back(VA.getLocReg());
1595 }
1596
1597 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1598 TII.get(ARM64::RET_ReallyLR));
1599 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1600 MIB.addReg(RetRegs[i], RegState::Implicit);
1601 return true;
1602}
1603
1604bool ARM64FastISel::SelectTrunc(const Instruction *I) {
1605 Type *DestTy = I->getType();
1606 Value *Op = I->getOperand(0);
1607 Type *SrcTy = Op->getType();
1608
1609 EVT SrcEVT = TLI.getValueType(SrcTy, true);
1610 EVT DestEVT = TLI.getValueType(DestTy, true);
1611 if (!SrcEVT.isSimple())
1612 return false;
1613 if (!DestEVT.isSimple())
1614 return false;
1615
1616 MVT SrcVT = SrcEVT.getSimpleVT();
1617 MVT DestVT = DestEVT.getSimpleVT();
1618
1619 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
1620 SrcVT != MVT::i8)
1621 return false;
1622 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
1623 DestVT != MVT::i1)
1624 return false;
1625
1626 unsigned SrcReg = getRegForValue(Op);
1627 if (!SrcReg)
1628 return false;
1629
1630 // If we're truncating from i64 to a smaller non-legal type then generate an
1631 // AND. Otherwise, we know the high bits are undefined and a truncate doesn't
1632 // generate any code.
1633 if (SrcVT == MVT::i64) {
1634 uint64_t Mask = 0;
1635 switch (DestVT.SimpleTy) {
1636 default:
1637 // Trunc i64 to i32 is handled by the target-independent fast-isel.
1638 return false;
1639 case MVT::i1:
1640 Mask = 0x1;
1641 break;
1642 case MVT::i8:
1643 Mask = 0xff;
1644 break;
1645 case MVT::i16:
1646 Mask = 0xffff;
1647 break;
1648 }
1649 // Issue an extract_subreg to get the lower 32-bits.
1650 unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
1651 ARM64::sub_32);
1652 // Create the AND instruction which performs the actual truncation.
1653 unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
1654 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
1655 ANDReg)
1656 .addReg(Reg32)
1657 .addImm(ARM64_AM::encodeLogicalImmediate(Mask, 32));
1658 SrcReg = ANDReg;
1659 }
1660
1661 UpdateValueMap(I, SrcReg);
1662 return true;
1663}
1664
1665unsigned ARM64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
1666 assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
1667 DestVT == MVT::i64) &&
1668 "Unexpected value type.");
1669 // Handle i8 and i16 as i32.
1670 if (DestVT == MVT::i8 || DestVT == MVT::i16)
1671 DestVT = MVT::i32;
1672
1673 if (isZExt) {
1674 unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass);
1675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
1676 ResultReg)
1677 .addReg(SrcReg)
1678 .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
1679
1680 if (DestVT == MVT::i64) {
1681 // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
1682 // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
1683 unsigned Reg64 = MRI.createVirtualRegister(&ARM64::GPR64RegClass);
1684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1685 TII.get(ARM64::SUBREG_TO_REG), Reg64)
1686 .addImm(0)
1687 .addReg(ResultReg)
1688 .addImm(ARM64::sub_32);
1689 ResultReg = Reg64;
1690 }
1691 return ResultReg;
1692 } else {
1693 if (DestVT == MVT::i64) {
1694 // FIXME: We're SExt i1 to i64.
1695 return 0;
1696 }
1697 unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass);
1698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SBFMWri),
1699 ResultReg)
1700 .addReg(SrcReg)
1701 .addImm(0)
1702 .addImm(0);
1703 return ResultReg;
1704 }
1705}
1706
1707unsigned ARM64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1708 bool isZExt) {
1709 assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
1710 unsigned Opc;
1711 unsigned Imm = 0;
1712
1713 switch (SrcVT.SimpleTy) {
1714 default:
1715 return 0;
1716 case MVT::i1:
1717 return Emiti1Ext(SrcReg, DestVT, isZExt);
1718 case MVT::i8:
1719 if (DestVT == MVT::i64)
1720 Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri;
1721 else
1722 Opc = isZExt ? ARM64::UBFMWri : ARM64::SBFMWri;
1723 Imm = 7;
1724 break;
1725 case MVT::i16:
1726 if (DestVT == MVT::i64)
1727 Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri;
1728 else
1729 Opc = isZExt ? ARM64::UBFMWri : ARM64::SBFMWri;
1730 Imm = 15;
1731 break;
1732 case MVT::i32:
1733 assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
1734 Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri;
1735 Imm = 31;
1736 break;
1737 }
1738
1739 // Handle i8 and i16 as i32.
1740 if (DestVT == MVT::i8 || DestVT == MVT::i16)
1741 DestVT = MVT::i32;
1742
1743 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1745 .addReg(SrcReg)
1746 .addImm(0)
1747 .addImm(Imm);
1748
1749 return ResultReg;
1750}
1751
1752bool ARM64FastISel::SelectIntExt(const Instruction *I) {
1753 // On ARM, in general, integer casts don't involve legal types; this code
1754 // handles promotable integers. The high bits for a type smaller than
1755 // the register size are assumed to be undefined.
1756 Type *DestTy = I->getType();
1757 Value *Src = I->getOperand(0);
1758 Type *SrcTy = Src->getType();
1759
1760 bool isZExt = isa<ZExtInst>(I);
1761 unsigned SrcReg = getRegForValue(Src);
1762 if (!SrcReg)
1763 return false;
1764
1765 EVT SrcEVT = TLI.getValueType(SrcTy, true);
1766 EVT DestEVT = TLI.getValueType(DestTy, true);
1767 if (!SrcEVT.isSimple())
1768 return false;
1769 if (!DestEVT.isSimple())
1770 return false;
1771
1772 MVT SrcVT = SrcEVT.getSimpleVT();
1773 MVT DestVT = DestEVT.getSimpleVT();
1774 unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
1775 if (ResultReg == 0)
1776 return false;
1777 UpdateValueMap(I, ResultReg);
1778 return true;
1779}
1780
1781bool ARM64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
1782 EVT DestEVT = TLI.getValueType(I->getType(), true);
1783 if (!DestEVT.isSimple())
1784 return false;
1785
1786 MVT DestVT = DestEVT.getSimpleVT();
1787 if (DestVT != MVT::i64 && DestVT != MVT::i32)
1788 return false;
1789
1790 unsigned DivOpc;
1791 bool is64bit = (DestVT == MVT::i64);
1792 switch (ISDOpcode) {
1793 default:
1794 return false;
1795 case ISD::SREM:
1796 DivOpc = is64bit ? ARM64::SDIVXr : ARM64::SDIVWr;
1797 break;
1798 case ISD::UREM:
1799 DivOpc = is64bit ? ARM64::UDIVXr : ARM64::UDIVWr;
1800 break;
1801 }
1802 unsigned MSubOpc = is64bit ? ARM64::MSUBXrrr : ARM64::MSUBWrrr;
1803 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1804 if (!Src0Reg)
1805 return false;
1806
1807 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1808 if (!Src1Reg)
1809 return false;
1810
1811 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
1812 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), ResultReg)
1813 .addReg(Src0Reg)
1814 .addReg(Src1Reg);
1815 // The remainder is computed as numerator – (quotient * denominator) using the
1816 // MSUB instruction.
1817 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
1818 .addReg(ResultReg)
1819 .addReg(Src1Reg)
1820 .addReg(Src0Reg);
1821 UpdateValueMap(I, ResultReg);
1822 return true;
1823}
1824
1825bool ARM64FastISel::SelectMul(const Instruction *I) {
1826 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
1827 if (!SrcEVT.isSimple())
1828 return false;
1829 MVT SrcVT = SrcEVT.getSimpleVT();
1830
1831 // Must be simple value type. Don't handle vectors.
1832 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
1833 SrcVT != MVT::i8)
1834 return false;
1835
1836 unsigned Opc;
1837 unsigned ZReg;
1838 switch (SrcVT.SimpleTy) {
1839 default:
1840 return false;
1841 case MVT::i8:
1842 case MVT::i16:
1843 case MVT::i32:
1844 ZReg = ARM64::WZR;
1845 Opc = ARM64::MADDWrrr;
1846 break;
1847 case MVT::i64:
1848 ZReg = ARM64::XZR;
1849 Opc = ARM64::MADDXrrr;
1850 break;
1851 }
1852
1853 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1854 if (!Src0Reg)
1855 return false;
1856
1857 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1858 if (!Src1Reg)
1859 return false;
1860
1861 // Create the base instruction, then add the operands.
1862 unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
1863 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1864 .addReg(Src0Reg)
1865 .addReg(Src1Reg)
1866 .addReg(ZReg);
1867 UpdateValueMap(I, ResultReg);
1868 return true;
1869}
1870
1871bool ARM64FastISel::TargetSelectInstruction(const Instruction *I) {
1872 switch (I->getOpcode()) {
1873 default:
1874 break;
1875 case Instruction::Load:
1876 return SelectLoad(I);
1877 case Instruction::Store:
1878 return SelectStore(I);
1879 case Instruction::Br:
1880 return SelectBranch(I);
1881 case Instruction::IndirectBr:
1882 return SelectIndirectBr(I);
1883 case Instruction::FCmp:
1884 case Instruction::ICmp:
1885 return SelectCmp(I);
1886 case Instruction::Select:
1887 return SelectSelect(I);
1888 case Instruction::FPExt:
1889 return SelectFPExt(I);
1890 case Instruction::FPTrunc:
1891 return SelectFPTrunc(I);
1892 case Instruction::FPToSI:
1893 return SelectFPToInt(I, /*Signed=*/true);
1894 case Instruction::FPToUI:
1895 return SelectFPToInt(I, /*Signed=*/false);
1896 case Instruction::SIToFP:
1897 return SelectIntToFP(I, /*Signed=*/true);
1898 case Instruction::UIToFP:
1899 return SelectIntToFP(I, /*Signed=*/false);
1900 case Instruction::SRem:
1901 return SelectRem(I, ISD::SREM);
1902 case Instruction::URem:
1903 return SelectRem(I, ISD::UREM);
1904 case Instruction::Call:
1905 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1906 return SelectIntrinsicCall(*II);
1907 return SelectCall(I);
1908 case Instruction::Ret:
1909 return SelectRet(I);
1910 case Instruction::Trunc:
1911 return SelectTrunc(I);
1912 case Instruction::ZExt:
1913 case Instruction::SExt:
1914 return SelectIntExt(I);
1915 case Instruction::Mul:
1916 // FIXME: This really should be handled by the target-independent selector.
1917 return SelectMul(I);
1918 }
1919 return false;
1920 // Silence warnings.
1921 (void)&CC_ARM64_DarwinPCS_VarArg;
1922}
1923
1924namespace llvm {
1925llvm::FastISel *ARM64::createFastISel(FunctionLoweringInfo &funcInfo,
1926 const TargetLibraryInfo *libInfo) {
1927 return new ARM64FastISel(funcInfo, libInfo);
1928}
1929}