Stephen Hines | 36b5688 | 2014-04-23 16:57:46 -0700 | [diff] [blame] | 1 | //===-- ARM6464FastISel.cpp - ARM64 FastISel implementation ---------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the ARM64-specific support for the FastISel class. Some |
| 11 | // of the target-specific code is generated by tablegen in the file |
| 12 | // ARM64GenFastISel.inc, which is #included here. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "ARM64.h" |
| 17 | #include "ARM64TargetMachine.h" |
| 18 | #include "ARM64Subtarget.h" |
| 19 | #include "ARM64CallingConv.h" |
| 20 | #include "MCTargetDesc/ARM64AddressingModes.h" |
| 21 | #include "llvm/CodeGen/CallingConvLower.h" |
| 22 | #include "llvm/CodeGen/FastISel.h" |
| 23 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 24 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 25 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 26 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 27 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 28 | #include "llvm/IR/CallingConv.h" |
| 29 | #include "llvm/IR/DataLayout.h" |
| 30 | #include "llvm/IR/DerivedTypes.h" |
| 31 | #include "llvm/IR/Function.h" |
| 32 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 33 | #include "llvm/IR/GlobalAlias.h" |
| 34 | #include "llvm/IR/GlobalVariable.h" |
| 35 | #include "llvm/IR/Instructions.h" |
| 36 | #include "llvm/IR/IntrinsicInst.h" |
| 37 | #include "llvm/IR/Operator.h" |
| 38 | #include "llvm/Support/CommandLine.h" |
| 39 | using namespace llvm; |
| 40 | |
| 41 | namespace { |
| 42 | |
| 43 | class ARM64FastISel : public FastISel { |
| 44 | |
| 45 | class Address { |
| 46 | public: |
| 47 | typedef enum { |
| 48 | RegBase, |
| 49 | FrameIndexBase |
| 50 | } BaseKind; |
| 51 | |
| 52 | private: |
| 53 | BaseKind Kind; |
| 54 | union { |
| 55 | unsigned Reg; |
| 56 | int FI; |
| 57 | } Base; |
| 58 | int64_t Offset; |
| 59 | |
| 60 | public: |
| 61 | Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; } |
| 62 | void setKind(BaseKind K) { Kind = K; } |
| 63 | BaseKind getKind() const { return Kind; } |
| 64 | bool isRegBase() const { return Kind == RegBase; } |
| 65 | bool isFIBase() const { return Kind == FrameIndexBase; } |
| 66 | void setReg(unsigned Reg) { |
| 67 | assert(isRegBase() && "Invalid base register access!"); |
| 68 | Base.Reg = Reg; |
| 69 | } |
| 70 | unsigned getReg() const { |
| 71 | assert(isRegBase() && "Invalid base register access!"); |
| 72 | return Base.Reg; |
| 73 | } |
| 74 | void setFI(unsigned FI) { |
| 75 | assert(isFIBase() && "Invalid base frame index access!"); |
| 76 | Base.FI = FI; |
| 77 | } |
| 78 | unsigned getFI() const { |
| 79 | assert(isFIBase() && "Invalid base frame index access!"); |
| 80 | return Base.FI; |
| 81 | } |
| 82 | void setOffset(int64_t O) { Offset = O; } |
| 83 | int64_t getOffset() { return Offset; } |
| 84 | |
| 85 | bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); } |
| 86 | }; |
| 87 | |
| 88 | /// Subtarget - Keep a pointer to the ARM64Subtarget around so that we can |
| 89 | /// make the right decision when generating code for different targets. |
| 90 | const ARM64Subtarget *Subtarget; |
| 91 | LLVMContext *Context; |
| 92 | |
| 93 | private: |
| 94 | // Selection routines. |
| 95 | bool SelectLoad(const Instruction *I); |
| 96 | bool SelectStore(const Instruction *I); |
| 97 | bool SelectBranch(const Instruction *I); |
| 98 | bool SelectIndirectBr(const Instruction *I); |
| 99 | bool SelectCmp(const Instruction *I); |
| 100 | bool SelectSelect(const Instruction *I); |
| 101 | bool SelectFPExt(const Instruction *I); |
| 102 | bool SelectFPTrunc(const Instruction *I); |
| 103 | bool SelectFPToInt(const Instruction *I, bool Signed); |
| 104 | bool SelectIntToFP(const Instruction *I, bool Signed); |
| 105 | bool SelectRem(const Instruction *I, unsigned ISDOpcode); |
| 106 | bool SelectCall(const Instruction *I, const char *IntrMemName); |
| 107 | bool SelectIntrinsicCall(const IntrinsicInst &I); |
| 108 | bool SelectRet(const Instruction *I); |
| 109 | bool SelectTrunc(const Instruction *I); |
| 110 | bool SelectIntExt(const Instruction *I); |
| 111 | bool SelectMul(const Instruction *I); |
| 112 | |
| 113 | // Utility helper routines. |
| 114 | bool isTypeLegal(Type *Ty, MVT &VT); |
| 115 | bool isLoadStoreTypeLegal(Type *Ty, MVT &VT); |
| 116 | bool ComputeAddress(const Value *Obj, Address &Addr); |
| 117 | bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor, |
| 118 | bool UseUnscaled); |
| 119 | void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB, |
| 120 | unsigned Flags, bool UseUnscaled); |
| 121 | bool IsMemCpySmall(uint64_t Len, unsigned Alignment); |
| 122 | bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, |
| 123 | unsigned Alignment); |
| 124 | // Emit functions. |
| 125 | bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt); |
| 126 | bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr, |
| 127 | bool UseUnscaled = false); |
| 128 | bool EmitStore(MVT VT, unsigned SrcReg, Address Addr, |
| 129 | bool UseUnscaled = false); |
| 130 | unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); |
| 131 | unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt); |
| 132 | |
| 133 | unsigned ARM64MaterializeFP(const ConstantFP *CFP, MVT VT); |
| 134 | unsigned ARM64MaterializeGV(const GlobalValue *GV); |
| 135 | |
| 136 | // Call handling routines. |
| 137 | private: |
| 138 | CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; |
| 139 | bool ProcessCallArgs(SmallVectorImpl<Value *> &Args, |
| 140 | SmallVectorImpl<unsigned> &ArgRegs, |
| 141 | SmallVectorImpl<MVT> &ArgVTs, |
| 142 | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| 143 | SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC, |
| 144 | unsigned &NumBytes); |
| 145 | bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, |
| 146 | const Instruction *I, CallingConv::ID CC, unsigned &NumBytes); |
| 147 | |
| 148 | public: |
| 149 | // Backend specific FastISel code. |
| 150 | virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); |
| 151 | virtual unsigned TargetMaterializeConstant(const Constant *C); |
| 152 | |
| 153 | explicit ARM64FastISel(FunctionLoweringInfo &funcInfo, |
| 154 | const TargetLibraryInfo *libInfo) |
| 155 | : FastISel(funcInfo, libInfo) { |
| 156 | Subtarget = &TM.getSubtarget<ARM64Subtarget>(); |
| 157 | Context = &funcInfo.Fn->getContext(); |
| 158 | } |
| 159 | |
| 160 | virtual bool TargetSelectInstruction(const Instruction *I); |
| 161 | |
| 162 | #include "ARM64GenFastISel.inc" |
| 163 | }; |
| 164 | |
| 165 | } // end anonymous namespace |
| 166 | |
| 167 | #include "ARM64GenCallingConv.inc" |
| 168 | |
| 169 | CCAssignFn *ARM64FastISel::CCAssignFnForCall(CallingConv::ID CC) const { |
| 170 | if (CC == CallingConv::WebKit_JS) |
| 171 | return CC_ARM64_WebKit_JS; |
| 172 | return Subtarget->isTargetDarwin() ? CC_ARM64_DarwinPCS : CC_ARM64_AAPCS; |
| 173 | } |
| 174 | |
| 175 | unsigned ARM64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) { |
| 176 | assert(TLI.getValueType(AI->getType(), true) == MVT::i64 && |
| 177 | "Alloca should always return a pointer."); |
| 178 | |
| 179 | // Don't handle dynamic allocas. |
| 180 | if (!FuncInfo.StaticAllocaMap.count(AI)) |
| 181 | return 0; |
| 182 | |
| 183 | DenseMap<const AllocaInst *, int>::iterator SI = |
| 184 | FuncInfo.StaticAllocaMap.find(AI); |
| 185 | |
| 186 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
| 187 | unsigned ResultReg = createResultReg(&ARM64::GPR64RegClass); |
| 188 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADDXri), |
| 189 | ResultReg) |
| 190 | .addFrameIndex(SI->second) |
| 191 | .addImm(0) |
| 192 | .addImm(0); |
| 193 | return ResultReg; |
| 194 | } |
| 195 | |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | unsigned ARM64FastISel::ARM64MaterializeFP(const ConstantFP *CFP, MVT VT) { |
| 200 | const APFloat Val = CFP->getValueAPF(); |
| 201 | bool is64bit = (VT == MVT::f64); |
| 202 | |
| 203 | // This checks to see if we can use FMOV instructions to materialize |
| 204 | // a constant, otherwise we have to materialize via the constant pool. |
| 205 | if (TLI.isFPImmLegal(Val, VT)) { |
| 206 | int Imm; |
| 207 | unsigned Opc; |
| 208 | if (is64bit) { |
| 209 | Imm = ARM64_AM::getFP64Imm(Val); |
| 210 | Opc = ARM64::FMOVDi; |
| 211 | } else { |
| 212 | Imm = ARM64_AM::getFP32Imm(Val); |
| 213 | Opc = ARM64::FMOVSi; |
| 214 | } |
| 215 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| 216 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| 217 | .addImm(Imm); |
| 218 | return ResultReg; |
| 219 | } |
| 220 | |
| 221 | // Materialize via constant pool. MachineConstantPool wants an explicit |
| 222 | // alignment. |
| 223 | unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); |
| 224 | if (Align == 0) |
| 225 | Align = DL.getTypeAllocSize(CFP->getType()); |
| 226 | |
| 227 | unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); |
| 228 | unsigned ADRPReg = createResultReg(&ARM64::GPR64RegClass); |
| 229 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP), |
| 230 | ADRPReg).addConstantPoolIndex(Idx, 0, ARM64II::MO_PAGE); |
| 231 | |
| 232 | unsigned Opc = is64bit ? ARM64::LDRDui : ARM64::LDRSui; |
| 233 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| 234 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| 235 | .addReg(ADRPReg) |
| 236 | .addConstantPoolIndex(Idx, 0, ARM64II::MO_PAGEOFF | ARM64II::MO_NC); |
| 237 | return ResultReg; |
| 238 | } |
| 239 | |
| 240 | unsigned ARM64FastISel::ARM64MaterializeGV(const GlobalValue *GV) { |
| 241 | // We can't handle thread-local variables quickly yet. Unfortunately we have |
| 242 | // to peer through any aliases to find out if that rule applies. |
| 243 | const GlobalValue *TLSGV = GV; |
| 244 | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) |
| 245 | TLSGV = GA->getAliasedGlobal(); |
| 246 | |
| 247 | if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(TLSGV)) |
| 248 | if (GVar->isThreadLocal()) |
| 249 | return 0; |
| 250 | |
| 251 | unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM); |
| 252 | |
| 253 | EVT DestEVT = TLI.getValueType(GV->getType(), true); |
| 254 | if (!DestEVT.isSimple()) |
| 255 | return 0; |
| 256 | MVT DestVT = DestEVT.getSimpleVT(); |
| 257 | |
| 258 | unsigned ADRPReg = createResultReg(&ARM64::GPR64RegClass); |
| 259 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| 260 | |
| 261 | if (OpFlags & ARM64II::MO_GOT) { |
| 262 | // ADRP + LDRX |
| 263 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP), |
| 264 | ADRPReg) |
| 265 | .addGlobalAddress(GV, 0, ARM64II::MO_GOT | ARM64II::MO_PAGE); |
| 266 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::LDRXui), |
| 267 | ResultReg) |
| 268 | .addReg(ADRPReg) |
| 269 | .addGlobalAddress(GV, 0, ARM64II::MO_GOT | ARM64II::MO_PAGEOFF | |
| 270 | ARM64II::MO_NC); |
| 271 | } else { |
| 272 | // ADRP + ADDX |
| 273 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP), |
| 274 | ADRPReg).addGlobalAddress(GV, 0, ARM64II::MO_PAGE); |
| 275 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADDXri), |
| 276 | ResultReg) |
| 277 | .addReg(ADRPReg) |
| 278 | .addGlobalAddress(GV, 0, ARM64II::MO_PAGEOFF | ARM64II::MO_NC) |
| 279 | .addImm(0); |
| 280 | } |
| 281 | return ResultReg; |
| 282 | } |
| 283 | |
| 284 | unsigned ARM64FastISel::TargetMaterializeConstant(const Constant *C) { |
| 285 | EVT CEVT = TLI.getValueType(C->getType(), true); |
| 286 | |
| 287 | // Only handle simple types. |
| 288 | if (!CEVT.isSimple()) |
| 289 | return 0; |
| 290 | MVT VT = CEVT.getSimpleVT(); |
| 291 | |
| 292 | // FIXME: Handle ConstantInt. |
| 293 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
| 294 | return ARM64MaterializeFP(CFP, VT); |
| 295 | else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| 296 | return ARM64MaterializeGV(GV); |
| 297 | |
| 298 | return 0; |
| 299 | } |
| 300 | |
| 301 | // Computes the address to get to an object. |
| 302 | bool ARM64FastISel::ComputeAddress(const Value *Obj, Address &Addr) { |
| 303 | const User *U = NULL; |
| 304 | unsigned Opcode = Instruction::UserOp1; |
| 305 | if (const Instruction *I = dyn_cast<Instruction>(Obj)) { |
| 306 | // Don't walk into other basic blocks unless the object is an alloca from |
| 307 | // another block, otherwise it may not have a virtual register assigned. |
| 308 | if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || |
| 309 | FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { |
| 310 | Opcode = I->getOpcode(); |
| 311 | U = I; |
| 312 | } |
| 313 | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { |
| 314 | Opcode = C->getOpcode(); |
| 315 | U = C; |
| 316 | } |
| 317 | |
| 318 | if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) |
| 319 | if (Ty->getAddressSpace() > 255) |
| 320 | // Fast instruction selection doesn't support the special |
| 321 | // address spaces. |
| 322 | return false; |
| 323 | |
| 324 | switch (Opcode) { |
| 325 | default: |
| 326 | break; |
| 327 | case Instruction::BitCast: { |
| 328 | // Look through bitcasts. |
| 329 | return ComputeAddress(U->getOperand(0), Addr); |
| 330 | } |
| 331 | case Instruction::IntToPtr: { |
| 332 | // Look past no-op inttoptrs. |
| 333 | if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) |
| 334 | return ComputeAddress(U->getOperand(0), Addr); |
| 335 | break; |
| 336 | } |
| 337 | case Instruction::PtrToInt: { |
| 338 | // Look past no-op ptrtoints. |
| 339 | if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) |
| 340 | return ComputeAddress(U->getOperand(0), Addr); |
| 341 | break; |
| 342 | } |
| 343 | case Instruction::GetElementPtr: { |
| 344 | Address SavedAddr = Addr; |
| 345 | uint64_t TmpOffset = Addr.getOffset(); |
| 346 | |
| 347 | // Iterate through the GEP folding the constants into offsets where |
| 348 | // we can. |
| 349 | gep_type_iterator GTI = gep_type_begin(U); |
| 350 | for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; |
| 351 | ++i, ++GTI) { |
| 352 | const Value *Op = *i; |
| 353 | if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 354 | const StructLayout *SL = DL.getStructLayout(STy); |
| 355 | unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); |
| 356 | TmpOffset += SL->getElementOffset(Idx); |
| 357 | } else { |
| 358 | uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); |
| 359 | for (;;) { |
| 360 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| 361 | // Constant-offset addressing. |
| 362 | TmpOffset += CI->getSExtValue() * S; |
| 363 | break; |
| 364 | } |
| 365 | if (canFoldAddIntoGEP(U, Op)) { |
| 366 | // A compatible add with a constant operand. Fold the constant. |
| 367 | ConstantInt *CI = |
| 368 | cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); |
| 369 | TmpOffset += CI->getSExtValue() * S; |
| 370 | // Iterate on the other operand. |
| 371 | Op = cast<AddOperator>(Op)->getOperand(0); |
| 372 | continue; |
| 373 | } |
| 374 | // Unsupported |
| 375 | goto unsupported_gep; |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // Try to grab the base operand now. |
| 381 | Addr.setOffset(TmpOffset); |
| 382 | if (ComputeAddress(U->getOperand(0), Addr)) |
| 383 | return true; |
| 384 | |
| 385 | // We failed, restore everything and try the other options. |
| 386 | Addr = SavedAddr; |
| 387 | |
| 388 | unsupported_gep: |
| 389 | break; |
| 390 | } |
| 391 | case Instruction::Alloca: { |
| 392 | const AllocaInst *AI = cast<AllocaInst>(Obj); |
| 393 | DenseMap<const AllocaInst *, int>::iterator SI = |
| 394 | FuncInfo.StaticAllocaMap.find(AI); |
| 395 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
| 396 | Addr.setKind(Address::FrameIndexBase); |
| 397 | Addr.setFI(SI->second); |
| 398 | return true; |
| 399 | } |
| 400 | break; |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | // Try to get this in a register if nothing else has worked. |
| 405 | if (!Addr.isValid()) |
| 406 | Addr.setReg(getRegForValue(Obj)); |
| 407 | return Addr.isValid(); |
| 408 | } |
| 409 | |
| 410 | bool ARM64FastISel::isTypeLegal(Type *Ty, MVT &VT) { |
| 411 | EVT evt = TLI.getValueType(Ty, true); |
| 412 | |
| 413 | // Only handle simple types. |
| 414 | if (evt == MVT::Other || !evt.isSimple()) |
| 415 | return false; |
| 416 | VT = evt.getSimpleVT(); |
| 417 | |
| 418 | // Handle all legal types, i.e. a register that will directly hold this |
| 419 | // value. |
| 420 | return TLI.isTypeLegal(VT); |
| 421 | } |
| 422 | |
| 423 | bool ARM64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) { |
| 424 | if (isTypeLegal(Ty, VT)) |
| 425 | return true; |
| 426 | |
| 427 | // If this is a type than can be sign or zero-extended to a basic operation |
| 428 | // go ahead and accept it now. For stores, this reflects truncation. |
| 429 | if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) |
| 430 | return true; |
| 431 | |
| 432 | return false; |
| 433 | } |
| 434 | |
| 435 | bool ARM64FastISel::SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor, |
| 436 | bool UseUnscaled) { |
| 437 | bool needsLowering = false; |
| 438 | int64_t Offset = Addr.getOffset(); |
| 439 | switch (VT.SimpleTy) { |
| 440 | default: |
| 441 | return false; |
| 442 | case MVT::i1: |
| 443 | case MVT::i8: |
| 444 | case MVT::i16: |
| 445 | case MVT::i32: |
| 446 | case MVT::i64: |
| 447 | case MVT::f32: |
| 448 | case MVT::f64: |
| 449 | if (!UseUnscaled) |
| 450 | // Using scaled, 12-bit, unsigned immediate offsets. |
| 451 | needsLowering = ((Offset & 0xfff) != Offset); |
| 452 | else |
| 453 | // Using unscaled, 9-bit, signed immediate offsets. |
| 454 | needsLowering = (Offset > 256 || Offset < -256); |
| 455 | break; |
| 456 | } |
| 457 | |
| 458 | // FIXME: If this is a stack pointer and the offset needs to be simplified |
| 459 | // then put the alloca address into a register, set the base type back to |
| 460 | // register and continue. This should almost never happen. |
| 461 | if (needsLowering && Addr.getKind() == Address::FrameIndexBase) { |
| 462 | return false; |
| 463 | } |
| 464 | |
| 465 | // Since the offset is too large for the load/store instruction get the |
| 466 | // reg+offset into a register. |
| 467 | if (needsLowering) { |
| 468 | uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor; |
| 469 | unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false, |
| 470 | UnscaledOffset, MVT::i64); |
| 471 | if (ResultReg == 0) |
| 472 | return false; |
| 473 | Addr.setReg(ResultReg); |
| 474 | Addr.setOffset(0); |
| 475 | } |
| 476 | return true; |
| 477 | } |
| 478 | |
| 479 | void ARM64FastISel::AddLoadStoreOperands(Address &Addr, |
| 480 | const MachineInstrBuilder &MIB, |
| 481 | unsigned Flags, bool UseUnscaled) { |
| 482 | int64_t Offset = Addr.getOffset(); |
| 483 | // Frame base works a bit differently. Handle it separately. |
| 484 | if (Addr.getKind() == Address::FrameIndexBase) { |
| 485 | int FI = Addr.getFI(); |
| 486 | // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size |
| 487 | // and alignment should be based on the VT. |
| 488 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| 489 | MachinePointerInfo::getFixedStack(FI, Offset), Flags, |
| 490 | MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); |
| 491 | // Now add the rest of the operands. |
| 492 | MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO); |
| 493 | } else { |
| 494 | // Now add the rest of the operands. |
| 495 | MIB.addReg(Addr.getReg()); |
| 496 | MIB.addImm(Offset); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | bool ARM64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr, |
| 501 | bool UseUnscaled) { |
| 502 | // Negative offsets require unscaled, 9-bit, signed immediate offsets. |
| 503 | // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. |
| 504 | if (!UseUnscaled && Addr.getOffset() < 0) |
| 505 | UseUnscaled = true; |
| 506 | |
| 507 | unsigned Opc; |
| 508 | const TargetRegisterClass *RC; |
| 509 | bool VTIsi1 = false; |
| 510 | int64_t ScaleFactor = 0; |
| 511 | switch (VT.SimpleTy) { |
| 512 | default: |
| 513 | return false; |
| 514 | case MVT::i1: |
| 515 | VTIsi1 = true; |
| 516 | // Intentional fall-through. |
| 517 | case MVT::i8: |
| 518 | Opc = UseUnscaled ? ARM64::LDURBBi : ARM64::LDRBBui; |
| 519 | RC = &ARM64::GPR32RegClass; |
| 520 | ScaleFactor = 1; |
| 521 | break; |
| 522 | case MVT::i16: |
| 523 | Opc = UseUnscaled ? ARM64::LDURHHi : ARM64::LDRHHui; |
| 524 | RC = &ARM64::GPR32RegClass; |
| 525 | ScaleFactor = 2; |
| 526 | break; |
| 527 | case MVT::i32: |
| 528 | Opc = UseUnscaled ? ARM64::LDURWi : ARM64::LDRWui; |
| 529 | RC = &ARM64::GPR32RegClass; |
| 530 | ScaleFactor = 4; |
| 531 | break; |
| 532 | case MVT::i64: |
| 533 | Opc = UseUnscaled ? ARM64::LDURXi : ARM64::LDRXui; |
| 534 | RC = &ARM64::GPR64RegClass; |
| 535 | ScaleFactor = 8; |
| 536 | break; |
| 537 | case MVT::f32: |
| 538 | Opc = UseUnscaled ? ARM64::LDURSi : ARM64::LDRSui; |
| 539 | RC = TLI.getRegClassFor(VT); |
| 540 | ScaleFactor = 4; |
| 541 | break; |
| 542 | case MVT::f64: |
| 543 | Opc = UseUnscaled ? ARM64::LDURDi : ARM64::LDRDui; |
| 544 | RC = TLI.getRegClassFor(VT); |
| 545 | ScaleFactor = 8; |
| 546 | break; |
| 547 | } |
| 548 | // Scale the offset. |
| 549 | if (!UseUnscaled) { |
| 550 | int64_t Offset = Addr.getOffset(); |
| 551 | if (Offset & (ScaleFactor - 1)) |
| 552 | // Retry using an unscaled, 9-bit, signed immediate offset. |
| 553 | return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true); |
| 554 | |
| 555 | Addr.setOffset(Offset / ScaleFactor); |
| 556 | } |
| 557 | |
| 558 | // Simplify this down to something we can handle. |
| 559 | if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled)) |
| 560 | return false; |
| 561 | |
| 562 | // Create the base instruction, then add the operands. |
| 563 | ResultReg = createResultReg(RC); |
| 564 | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| 565 | TII.get(Opc), ResultReg); |
| 566 | AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled); |
| 567 | |
| 568 | // Loading an i1 requires special handling. |
| 569 | if (VTIsi1) { |
| 570 | unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass); |
| 571 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri), |
| 572 | ANDReg) |
| 573 | .addReg(ResultReg) |
| 574 | .addImm(ARM64_AM::encodeLogicalImmediate(1, 32)); |
| 575 | ResultReg = ANDReg; |
| 576 | } |
| 577 | return true; |
| 578 | } |
| 579 | |
| 580 | bool ARM64FastISel::SelectLoad(const Instruction *I) { |
| 581 | MVT VT; |
| 582 | // Verify we have a legal type before going any further. Currently, we handle |
| 583 | // simple types that will directly fit in a register (i32/f32/i64/f64) or |
| 584 | // those that can be sign or zero-extended to a basic operation (i1/i8/i16). |
| 585 | if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic()) |
| 586 | return false; |
| 587 | |
| 588 | // See if we can handle this address. |
| 589 | Address Addr; |
| 590 | if (!ComputeAddress(I->getOperand(0), Addr)) |
| 591 | return false; |
| 592 | |
| 593 | unsigned ResultReg; |
| 594 | if (!EmitLoad(VT, ResultReg, Addr)) |
| 595 | return false; |
| 596 | |
| 597 | UpdateValueMap(I, ResultReg); |
| 598 | return true; |
| 599 | } |
| 600 | |
| 601 | bool ARM64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr, |
| 602 | bool UseUnscaled) { |
| 603 | // Negative offsets require unscaled, 9-bit, signed immediate offsets. |
| 604 | // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. |
| 605 | if (!UseUnscaled && Addr.getOffset() < 0) |
| 606 | UseUnscaled = true; |
| 607 | |
| 608 | unsigned StrOpc; |
| 609 | bool VTIsi1 = false; |
| 610 | int64_t ScaleFactor = 0; |
| 611 | // Using scaled, 12-bit, unsigned immediate offsets. |
| 612 | switch (VT.SimpleTy) { |
| 613 | default: |
| 614 | return false; |
| 615 | case MVT::i1: |
| 616 | VTIsi1 = true; |
| 617 | case MVT::i8: |
| 618 | StrOpc = UseUnscaled ? ARM64::STURBBi : ARM64::STRBBui; |
| 619 | ScaleFactor = 1; |
| 620 | break; |
| 621 | case MVT::i16: |
| 622 | StrOpc = UseUnscaled ? ARM64::STURHHi : ARM64::STRHHui; |
| 623 | ScaleFactor = 2; |
| 624 | break; |
| 625 | case MVT::i32: |
| 626 | StrOpc = UseUnscaled ? ARM64::STURWi : ARM64::STRWui; |
| 627 | ScaleFactor = 4; |
| 628 | break; |
| 629 | case MVT::i64: |
| 630 | StrOpc = UseUnscaled ? ARM64::STURXi : ARM64::STRXui; |
| 631 | ScaleFactor = 8; |
| 632 | break; |
| 633 | case MVT::f32: |
| 634 | StrOpc = UseUnscaled ? ARM64::STURSi : ARM64::STRSui; |
| 635 | ScaleFactor = 4; |
| 636 | break; |
| 637 | case MVT::f64: |
| 638 | StrOpc = UseUnscaled ? ARM64::STURDi : ARM64::STRDui; |
| 639 | ScaleFactor = 8; |
| 640 | break; |
| 641 | } |
| 642 | // Scale the offset. |
| 643 | if (!UseUnscaled) { |
| 644 | int64_t Offset = Addr.getOffset(); |
| 645 | if (Offset & (ScaleFactor - 1)) |
| 646 | // Retry using an unscaled, 9-bit, signed immediate offset. |
| 647 | return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true); |
| 648 | |
| 649 | Addr.setOffset(Offset / ScaleFactor); |
| 650 | } |
| 651 | |
| 652 | // Simplify this down to something we can handle. |
| 653 | if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled)) |
| 654 | return false; |
| 655 | |
| 656 | // Storing an i1 requires special handling. |
| 657 | if (VTIsi1) { |
| 658 | unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass); |
| 659 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri), |
| 660 | ANDReg) |
| 661 | .addReg(SrcReg) |
| 662 | .addImm(ARM64_AM::encodeLogicalImmediate(1, 32)); |
| 663 | SrcReg = ANDReg; |
| 664 | } |
| 665 | // Create the base instruction, then add the operands. |
| 666 | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| 667 | TII.get(StrOpc)).addReg(SrcReg); |
| 668 | AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled); |
| 669 | return true; |
| 670 | } |
| 671 | |
| 672 | bool ARM64FastISel::SelectStore(const Instruction *I) { |
| 673 | MVT VT; |
| 674 | Value *Op0 = I->getOperand(0); |
| 675 | // Verify we have a legal type before going any further. Currently, we handle |
| 676 | // simple types that will directly fit in a register (i32/f32/i64/f64) or |
| 677 | // those that can be sign or zero-extended to a basic operation (i1/i8/i16). |
| 678 | if (!isLoadStoreTypeLegal(Op0->getType(), VT) || |
| 679 | cast<StoreInst>(I)->isAtomic()) |
| 680 | return false; |
| 681 | |
| 682 | // Get the value to be stored into a register. |
| 683 | unsigned SrcReg = getRegForValue(Op0); |
| 684 | if (SrcReg == 0) |
| 685 | return false; |
| 686 | |
| 687 | // See if we can handle this address. |
| 688 | Address Addr; |
| 689 | if (!ComputeAddress(I->getOperand(1), Addr)) |
| 690 | return false; |
| 691 | |
| 692 | if (!EmitStore(VT, SrcReg, Addr)) |
| 693 | return false; |
| 694 | return true; |
| 695 | } |
| 696 | |
| 697 | static ARM64CC::CondCode getCompareCC(CmpInst::Predicate Pred) { |
| 698 | switch (Pred) { |
| 699 | case CmpInst::FCMP_ONE: |
| 700 | case CmpInst::FCMP_UEQ: |
| 701 | default: |
| 702 | // AL is our "false" for now. The other two need more compares. |
| 703 | return ARM64CC::AL; |
| 704 | case CmpInst::ICMP_EQ: |
| 705 | case CmpInst::FCMP_OEQ: |
| 706 | return ARM64CC::EQ; |
| 707 | case CmpInst::ICMP_SGT: |
| 708 | case CmpInst::FCMP_OGT: |
| 709 | return ARM64CC::GT; |
| 710 | case CmpInst::ICMP_SGE: |
| 711 | case CmpInst::FCMP_OGE: |
| 712 | return ARM64CC::GE; |
| 713 | case CmpInst::ICMP_UGT: |
| 714 | case CmpInst::FCMP_UGT: |
| 715 | return ARM64CC::HI; |
| 716 | case CmpInst::FCMP_OLT: |
| 717 | return ARM64CC::MI; |
| 718 | case CmpInst::ICMP_ULE: |
| 719 | case CmpInst::FCMP_OLE: |
| 720 | return ARM64CC::LS; |
| 721 | case CmpInst::FCMP_ORD: |
| 722 | return ARM64CC::VC; |
| 723 | case CmpInst::FCMP_UNO: |
| 724 | return ARM64CC::VS; |
| 725 | case CmpInst::FCMP_UGE: |
| 726 | return ARM64CC::PL; |
| 727 | case CmpInst::ICMP_SLT: |
| 728 | case CmpInst::FCMP_ULT: |
| 729 | return ARM64CC::LT; |
| 730 | case CmpInst::ICMP_SLE: |
| 731 | case CmpInst::FCMP_ULE: |
| 732 | return ARM64CC::LE; |
| 733 | case CmpInst::FCMP_UNE: |
| 734 | case CmpInst::ICMP_NE: |
| 735 | return ARM64CC::NE; |
| 736 | case CmpInst::ICMP_UGE: |
| 737 | return ARM64CC::CS; |
| 738 | case CmpInst::ICMP_ULT: |
| 739 | return ARM64CC::CC; |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | bool ARM64FastISel::SelectBranch(const Instruction *I) { |
| 744 | const BranchInst *BI = cast<BranchInst>(I); |
| 745 | MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; |
| 746 | MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; |
| 747 | |
| 748 | if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { |
| 749 | if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { |
| 750 | // We may not handle every CC for now. |
| 751 | ARM64CC::CondCode CC = getCompareCC(CI->getPredicate()); |
| 752 | if (CC == ARM64CC::AL) |
| 753 | return false; |
| 754 | |
| 755 | // Emit the cmp. |
| 756 | if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) |
| 757 | return false; |
| 758 | |
| 759 | // Emit the branch. |
| 760 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc)) |
| 761 | .addImm(CC) |
| 762 | .addMBB(TBB); |
| 763 | FuncInfo.MBB->addSuccessor(TBB); |
| 764 | |
| 765 | FastEmitBranch(FBB, DbgLoc); |
| 766 | return true; |
| 767 | } |
| 768 | } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { |
| 769 | MVT SrcVT; |
| 770 | if (TI->hasOneUse() && TI->getParent() == I->getParent() && |
| 771 | (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) { |
| 772 | unsigned CondReg = getRegForValue(TI->getOperand(0)); |
| 773 | if (CondReg == 0) |
| 774 | return false; |
| 775 | |
| 776 | // Issue an extract_subreg to get the lower 32-bits. |
| 777 | if (SrcVT == MVT::i64) |
| 778 | CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true, |
| 779 | ARM64::sub_32); |
| 780 | |
| 781 | unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass); |
| 782 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri), |
| 783 | ANDReg) |
| 784 | .addReg(CondReg) |
| 785 | .addImm(ARM64_AM::encodeLogicalImmediate(1, 32)); |
| 786 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri)) |
| 787 | .addReg(ANDReg) |
| 788 | .addReg(ANDReg) |
| 789 | .addImm(0) |
| 790 | .addImm(0); |
| 791 | |
| 792 | unsigned CC = ARM64CC::NE; |
| 793 | if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { |
| 794 | std::swap(TBB, FBB); |
| 795 | CC = ARM64CC::EQ; |
| 796 | } |
| 797 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc)) |
| 798 | .addImm(CC) |
| 799 | .addMBB(TBB); |
| 800 | FuncInfo.MBB->addSuccessor(TBB); |
| 801 | FastEmitBranch(FBB, DbgLoc); |
| 802 | return true; |
| 803 | } |
| 804 | } else if (const ConstantInt *CI = |
| 805 | dyn_cast<ConstantInt>(BI->getCondition())) { |
| 806 | uint64_t Imm = CI->getZExtValue(); |
| 807 | MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; |
| 808 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::B)) |
| 809 | .addMBB(Target); |
| 810 | FuncInfo.MBB->addSuccessor(Target); |
| 811 | return true; |
| 812 | } |
| 813 | |
| 814 | unsigned CondReg = getRegForValue(BI->getCondition()); |
| 815 | if (CondReg == 0) |
| 816 | return false; |
| 817 | |
| 818 | // We've been divorced from our compare! Our block was split, and |
| 819 | // now our compare lives in a predecessor block. We musn't |
| 820 | // re-compare here, as the children of the compare aren't guaranteed |
| 821 | // live across the block boundary (we *could* check for this). |
| 822 | // Regardless, the compare has been done in the predecessor block, |
| 823 | // and it left a value for us in a virtual register. Ergo, we test |
| 824 | // the one-bit value left in the virtual register. |
| 825 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri), |
| 826 | ARM64::WZR) |
| 827 | .addReg(CondReg) |
| 828 | .addImm(0) |
| 829 | .addImm(0); |
| 830 | |
| 831 | unsigned CC = ARM64CC::NE; |
| 832 | if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { |
| 833 | std::swap(TBB, FBB); |
| 834 | CC = ARM64CC::EQ; |
| 835 | } |
| 836 | |
| 837 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc)) |
| 838 | .addImm(CC) |
| 839 | .addMBB(TBB); |
| 840 | FuncInfo.MBB->addSuccessor(TBB); |
| 841 | FastEmitBranch(FBB, DbgLoc); |
| 842 | return true; |
| 843 | } |
| 844 | |
| 845 | bool ARM64FastISel::SelectIndirectBr(const Instruction *I) { |
| 846 | const IndirectBrInst *BI = cast<IndirectBrInst>(I); |
| 847 | unsigned AddrReg = getRegForValue(BI->getOperand(0)); |
| 848 | if (AddrReg == 0) |
| 849 | return false; |
| 850 | |
| 851 | // Emit the indirect branch. |
| 852 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BR)) |
| 853 | .addReg(AddrReg); |
| 854 | |
| 855 | // Make sure the CFG is up-to-date. |
| 856 | for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i) |
| 857 | FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]); |
| 858 | |
| 859 | return true; |
| 860 | } |
| 861 | |
| 862 | bool ARM64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) { |
| 863 | Type *Ty = Src1Value->getType(); |
| 864 | EVT SrcEVT = TLI.getValueType(Ty, true); |
| 865 | if (!SrcEVT.isSimple()) |
| 866 | return false; |
| 867 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 868 | |
| 869 | // Check to see if the 2nd operand is a constant that we can encode directly |
| 870 | // in the compare. |
| 871 | uint64_t Imm; |
| 872 | bool UseImm = false; |
| 873 | bool isNegativeImm = false; |
| 874 | if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { |
| 875 | if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || |
| 876 | SrcVT == MVT::i8 || SrcVT == MVT::i1) { |
| 877 | const APInt &CIVal = ConstInt->getValue(); |
| 878 | |
| 879 | Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue(); |
| 880 | if (CIVal.isNegative()) { |
| 881 | isNegativeImm = true; |
| 882 | Imm = -Imm; |
| 883 | } |
| 884 | // FIXME: We can handle more immediates using shifts. |
| 885 | UseImm = ((Imm & 0xfff) == Imm); |
| 886 | } |
| 887 | } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { |
| 888 | if (SrcVT == MVT::f32 || SrcVT == MVT::f64) |
| 889 | if (ConstFP->isZero() && !ConstFP->isNegative()) |
| 890 | UseImm = true; |
| 891 | } |
| 892 | |
| 893 | unsigned ZReg; |
| 894 | unsigned CmpOpc; |
| 895 | bool isICmp = true; |
| 896 | bool needsExt = false; |
| 897 | switch (SrcVT.SimpleTy) { |
| 898 | default: |
| 899 | return false; |
| 900 | case MVT::i1: |
| 901 | case MVT::i8: |
| 902 | case MVT::i16: |
| 903 | needsExt = true; |
| 904 | // Intentional fall-through. |
| 905 | case MVT::i32: |
| 906 | ZReg = ARM64::WZR; |
| 907 | if (UseImm) |
| 908 | CmpOpc = isNegativeImm ? ARM64::ADDSWri : ARM64::SUBSWri; |
| 909 | else |
| 910 | CmpOpc = ARM64::SUBSWrr; |
| 911 | break; |
| 912 | case MVT::i64: |
| 913 | ZReg = ARM64::XZR; |
| 914 | if (UseImm) |
| 915 | CmpOpc = isNegativeImm ? ARM64::ADDSXri : ARM64::SUBSXri; |
| 916 | else |
| 917 | CmpOpc = ARM64::SUBSXrr; |
| 918 | break; |
| 919 | case MVT::f32: |
| 920 | isICmp = false; |
| 921 | CmpOpc = UseImm ? ARM64::FCMPSri : ARM64::FCMPSrr; |
| 922 | break; |
| 923 | case MVT::f64: |
| 924 | isICmp = false; |
| 925 | CmpOpc = UseImm ? ARM64::FCMPDri : ARM64::FCMPDrr; |
| 926 | break; |
| 927 | } |
| 928 | |
| 929 | unsigned SrcReg1 = getRegForValue(Src1Value); |
| 930 | if (SrcReg1 == 0) |
| 931 | return false; |
| 932 | |
| 933 | unsigned SrcReg2; |
| 934 | if (!UseImm) { |
| 935 | SrcReg2 = getRegForValue(Src2Value); |
| 936 | if (SrcReg2 == 0) |
| 937 | return false; |
| 938 | } |
| 939 | |
| 940 | // We have i1, i8, or i16, we need to either zero extend or sign extend. |
| 941 | if (needsExt) { |
| 942 | SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); |
| 943 | if (SrcReg1 == 0) |
| 944 | return false; |
| 945 | if (!UseImm) { |
| 946 | SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); |
| 947 | if (SrcReg2 == 0) |
| 948 | return false; |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | if (isICmp) { |
| 953 | if (UseImm) |
| 954 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| 955 | .addReg(ZReg) |
| 956 | .addReg(SrcReg1) |
| 957 | .addImm(Imm) |
| 958 | .addImm(0); |
| 959 | else |
| 960 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| 961 | .addReg(ZReg) |
| 962 | .addReg(SrcReg1) |
| 963 | .addReg(SrcReg2); |
| 964 | } else { |
| 965 | if (UseImm) |
| 966 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| 967 | .addReg(SrcReg1); |
| 968 | else |
| 969 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| 970 | .addReg(SrcReg1) |
| 971 | .addReg(SrcReg2); |
| 972 | } |
| 973 | return true; |
| 974 | } |
| 975 | |
| 976 | bool ARM64FastISel::SelectCmp(const Instruction *I) { |
| 977 | const CmpInst *CI = cast<CmpInst>(I); |
| 978 | |
| 979 | // We may not handle every CC for now. |
| 980 | ARM64CC::CondCode CC = getCompareCC(CI->getPredicate()); |
| 981 | if (CC == ARM64CC::AL) |
| 982 | return false; |
| 983 | |
| 984 | // Emit the cmp. |
| 985 | if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) |
| 986 | return false; |
| 987 | |
| 988 | // Now set a register based on the comparison. |
| 989 | ARM64CC::CondCode invertedCC = getInvertedCondCode(CC); |
| 990 | unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass); |
| 991 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::CSINCWr), |
| 992 | ResultReg) |
| 993 | .addReg(ARM64::WZR) |
| 994 | .addReg(ARM64::WZR) |
| 995 | .addImm(invertedCC); |
| 996 | |
| 997 | UpdateValueMap(I, ResultReg); |
| 998 | return true; |
| 999 | } |
| 1000 | |
| 1001 | bool ARM64FastISel::SelectSelect(const Instruction *I) { |
| 1002 | const SelectInst *SI = cast<SelectInst>(I); |
| 1003 | |
| 1004 | EVT DestEVT = TLI.getValueType(SI->getType(), true); |
| 1005 | if (!DestEVT.isSimple()) |
| 1006 | return false; |
| 1007 | |
| 1008 | MVT DestVT = DestEVT.getSimpleVT(); |
| 1009 | if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 && |
| 1010 | DestVT != MVT::f64) |
| 1011 | return false; |
| 1012 | |
| 1013 | unsigned CondReg = getRegForValue(SI->getCondition()); |
| 1014 | if (CondReg == 0) |
| 1015 | return false; |
| 1016 | unsigned TrueReg = getRegForValue(SI->getTrueValue()); |
| 1017 | if (TrueReg == 0) |
| 1018 | return false; |
| 1019 | unsigned FalseReg = getRegForValue(SI->getFalseValue()); |
| 1020 | if (FalseReg == 0) |
| 1021 | return false; |
| 1022 | |
| 1023 | unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass); |
| 1024 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri), |
| 1025 | ANDReg) |
| 1026 | .addReg(CondReg) |
| 1027 | .addImm(ARM64_AM::encodeLogicalImmediate(1, 32)); |
| 1028 | |
| 1029 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri)) |
| 1030 | .addReg(ANDReg) |
| 1031 | .addReg(ANDReg) |
| 1032 | .addImm(0) |
| 1033 | .addImm(0); |
| 1034 | |
| 1035 | unsigned SelectOpc; |
| 1036 | switch (DestVT.SimpleTy) { |
| 1037 | default: |
| 1038 | return false; |
| 1039 | case MVT::i32: |
| 1040 | SelectOpc = ARM64::CSELWr; |
| 1041 | break; |
| 1042 | case MVT::i64: |
| 1043 | SelectOpc = ARM64::CSELXr; |
| 1044 | break; |
| 1045 | case MVT::f32: |
| 1046 | SelectOpc = ARM64::FCSELSrrr; |
| 1047 | break; |
| 1048 | case MVT::f64: |
| 1049 | SelectOpc = ARM64::FCSELDrrr; |
| 1050 | break; |
| 1051 | } |
| 1052 | |
| 1053 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| 1054 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc), |
| 1055 | ResultReg) |
| 1056 | .addReg(TrueReg) |
| 1057 | .addReg(FalseReg) |
| 1058 | .addImm(ARM64CC::NE); |
| 1059 | |
| 1060 | UpdateValueMap(I, ResultReg); |
| 1061 | return true; |
| 1062 | } |
| 1063 | |
| 1064 | bool ARM64FastISel::SelectFPExt(const Instruction *I) { |
| 1065 | Value *V = I->getOperand(0); |
| 1066 | if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy()) |
| 1067 | return false; |
| 1068 | |
| 1069 | unsigned Op = getRegForValue(V); |
| 1070 | if (Op == 0) |
| 1071 | return false; |
| 1072 | |
| 1073 | unsigned ResultReg = createResultReg(&ARM64::FPR64RegClass); |
| 1074 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::FCVTDSr), |
| 1075 | ResultReg).addReg(Op); |
| 1076 | UpdateValueMap(I, ResultReg); |
| 1077 | return true; |
| 1078 | } |
| 1079 | |
| 1080 | bool ARM64FastISel::SelectFPTrunc(const Instruction *I) { |
| 1081 | Value *V = I->getOperand(0); |
| 1082 | if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy()) |
| 1083 | return false; |
| 1084 | |
| 1085 | unsigned Op = getRegForValue(V); |
| 1086 | if (Op == 0) |
| 1087 | return false; |
| 1088 | |
| 1089 | unsigned ResultReg = createResultReg(&ARM64::FPR32RegClass); |
| 1090 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::FCVTSDr), |
| 1091 | ResultReg).addReg(Op); |
| 1092 | UpdateValueMap(I, ResultReg); |
| 1093 | return true; |
| 1094 | } |
| 1095 | |
| 1096 | // FPToUI and FPToSI |
| 1097 | bool ARM64FastISel::SelectFPToInt(const Instruction *I, bool Signed) { |
| 1098 | MVT DestVT; |
| 1099 | if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) |
| 1100 | return false; |
| 1101 | |
| 1102 | unsigned SrcReg = getRegForValue(I->getOperand(0)); |
| 1103 | if (SrcReg == 0) |
| 1104 | return false; |
| 1105 | |
| 1106 | EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true); |
| 1107 | |
| 1108 | unsigned Opc; |
| 1109 | if (SrcVT == MVT::f64) { |
| 1110 | if (Signed) |
| 1111 | Opc = (DestVT == MVT::i32) ? ARM64::FCVTZSUWDr : ARM64::FCVTZSUXDr; |
| 1112 | else |
| 1113 | Opc = (DestVT == MVT::i32) ? ARM64::FCVTZUUWDr : ARM64::FCVTZUUXDr; |
| 1114 | } else { |
| 1115 | if (Signed) |
| 1116 | Opc = (DestVT == MVT::i32) ? ARM64::FCVTZSUWSr : ARM64::FCVTZSUXSr; |
| 1117 | else |
| 1118 | Opc = (DestVT == MVT::i32) ? ARM64::FCVTZUUWSr : ARM64::FCVTZUUXSr; |
| 1119 | } |
| 1120 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| 1121 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| 1122 | .addReg(SrcReg); |
| 1123 | UpdateValueMap(I, ResultReg); |
| 1124 | return true; |
| 1125 | } |
| 1126 | |
| 1127 | bool ARM64FastISel::SelectIntToFP(const Instruction *I, bool Signed) { |
| 1128 | MVT DestVT; |
| 1129 | if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) |
| 1130 | return false; |
| 1131 | |
| 1132 | unsigned SrcReg = getRegForValue(I->getOperand(0)); |
| 1133 | if (SrcReg == 0) |
| 1134 | return false; |
| 1135 | |
| 1136 | EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true); |
| 1137 | |
| 1138 | // Handle sign-extension. |
| 1139 | if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) { |
| 1140 | SrcReg = |
| 1141 | EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed); |
| 1142 | if (SrcReg == 0) |
| 1143 | return false; |
| 1144 | } |
| 1145 | |
| 1146 | unsigned Opc; |
| 1147 | if (SrcVT == MVT::i64) { |
| 1148 | if (Signed) |
| 1149 | Opc = (DestVT == MVT::f32) ? ARM64::SCVTFUXSri : ARM64::SCVTFUXDri; |
| 1150 | else |
| 1151 | Opc = (DestVT == MVT::f32) ? ARM64::UCVTFUXSri : ARM64::UCVTFUXDri; |
| 1152 | } else { |
| 1153 | if (Signed) |
| 1154 | Opc = (DestVT == MVT::f32) ? ARM64::SCVTFUWSri : ARM64::SCVTFUWDri; |
| 1155 | else |
| 1156 | Opc = (DestVT == MVT::f32) ? ARM64::UCVTFUWSri : ARM64::UCVTFUWDri; |
| 1157 | } |
| 1158 | |
| 1159 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| 1160 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| 1161 | .addReg(SrcReg); |
| 1162 | UpdateValueMap(I, ResultReg); |
| 1163 | return true; |
| 1164 | } |
| 1165 | |
| 1166 | bool ARM64FastISel::ProcessCallArgs(SmallVectorImpl<Value *> &Args, |
| 1167 | SmallVectorImpl<unsigned> &ArgRegs, |
| 1168 | SmallVectorImpl<MVT> &ArgVTs, |
| 1169 | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| 1170 | SmallVectorImpl<unsigned> &RegArgs, |
| 1171 | CallingConv::ID CC, unsigned &NumBytes) { |
| 1172 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1173 | CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context); |
| 1174 | CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC)); |
| 1175 | |
| 1176 | // Get a count of how many bytes are to be pushed on the stack. |
| 1177 | NumBytes = CCInfo.getNextStackOffset(); |
| 1178 | |
| 1179 | // Issue CALLSEQ_START |
| 1180 | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
| 1181 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) |
| 1182 | .addImm(NumBytes); |
| 1183 | |
| 1184 | // Process the args. |
| 1185 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 1186 | CCValAssign &VA = ArgLocs[i]; |
| 1187 | unsigned Arg = ArgRegs[VA.getValNo()]; |
| 1188 | MVT ArgVT = ArgVTs[VA.getValNo()]; |
| 1189 | |
| 1190 | // Handle arg promotion: SExt, ZExt, AExt. |
| 1191 | switch (VA.getLocInfo()) { |
| 1192 | case CCValAssign::Full: |
| 1193 | break; |
| 1194 | case CCValAssign::SExt: { |
| 1195 | MVT DestVT = VA.getLocVT(); |
| 1196 | MVT SrcVT = ArgVT; |
| 1197 | Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false); |
| 1198 | if (Arg == 0) |
| 1199 | return false; |
| 1200 | ArgVT = DestVT; |
| 1201 | break; |
| 1202 | } |
| 1203 | case CCValAssign::AExt: |
| 1204 | // Intentional fall-through. |
| 1205 | case CCValAssign::ZExt: { |
| 1206 | MVT DestVT = VA.getLocVT(); |
| 1207 | MVT SrcVT = ArgVT; |
| 1208 | Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true); |
| 1209 | if (Arg == 0) |
| 1210 | return false; |
| 1211 | ArgVT = DestVT; |
| 1212 | break; |
| 1213 | } |
| 1214 | default: |
| 1215 | llvm_unreachable("Unknown arg promotion!"); |
| 1216 | } |
| 1217 | |
| 1218 | // Now copy/store arg to correct locations. |
| 1219 | if (VA.isRegLoc() && !VA.needsCustom()) { |
| 1220 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| 1221 | TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); |
| 1222 | RegArgs.push_back(VA.getLocReg()); |
| 1223 | } else if (VA.needsCustom()) { |
| 1224 | // FIXME: Handle custom args. |
| 1225 | return false; |
| 1226 | } else { |
| 1227 | assert(VA.isMemLoc() && "Assuming store on stack."); |
| 1228 | |
| 1229 | // Need to store on the stack. |
| 1230 | Address Addr; |
| 1231 | Addr.setKind(Address::RegBase); |
| 1232 | Addr.setReg(ARM64::SP); |
| 1233 | Addr.setOffset(VA.getLocMemOffset()); |
| 1234 | |
| 1235 | if (!EmitStore(ArgVT, Arg, Addr)) |
| 1236 | return false; |
| 1237 | } |
| 1238 | } |
| 1239 | return true; |
| 1240 | } |
| 1241 | |
| 1242 | bool ARM64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, |
| 1243 | const Instruction *I, CallingConv::ID CC, |
| 1244 | unsigned &NumBytes) { |
| 1245 | // Issue CALLSEQ_END |
| 1246 | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
| 1247 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) |
| 1248 | .addImm(NumBytes) |
| 1249 | .addImm(0); |
| 1250 | |
| 1251 | // Now the return value. |
| 1252 | if (RetVT != MVT::isVoid) { |
| 1253 | SmallVector<CCValAssign, 16> RVLocs; |
| 1254 | CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); |
| 1255 | CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC)); |
| 1256 | |
| 1257 | // Only handle a single return value. |
| 1258 | if (RVLocs.size() != 1) |
| 1259 | return false; |
| 1260 | |
| 1261 | // Copy all of the result registers out of their specified physreg. |
| 1262 | MVT CopyVT = RVLocs[0].getValVT(); |
| 1263 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); |
| 1264 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| 1265 | TII.get(TargetOpcode::COPY), |
| 1266 | ResultReg).addReg(RVLocs[0].getLocReg()); |
| 1267 | UsedRegs.push_back(RVLocs[0].getLocReg()); |
| 1268 | |
| 1269 | // Finally update the result. |
| 1270 | UpdateValueMap(I, ResultReg); |
| 1271 | } |
| 1272 | |
| 1273 | return true; |
| 1274 | } |
| 1275 | |
| 1276 | bool ARM64FastISel::SelectCall(const Instruction *I, |
| 1277 | const char *IntrMemName = 0) { |
| 1278 | const CallInst *CI = cast<CallInst>(I); |
| 1279 | const Value *Callee = CI->getCalledValue(); |
| 1280 | |
| 1281 | // Don't handle inline asm or intrinsics. |
| 1282 | if (isa<InlineAsm>(Callee)) |
| 1283 | return false; |
| 1284 | |
| 1285 | // Only handle global variable Callees. |
| 1286 | const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); |
| 1287 | if (!GV) |
| 1288 | return false; |
| 1289 | |
| 1290 | // Check the calling convention. |
| 1291 | ImmutableCallSite CS(CI); |
| 1292 | CallingConv::ID CC = CS.getCallingConv(); |
| 1293 | |
| 1294 | // Let SDISel handle vararg functions. |
| 1295 | PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); |
| 1296 | FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| 1297 | if (FTy->isVarArg()) |
| 1298 | return false; |
| 1299 | |
| 1300 | // Handle *simple* calls for now. |
| 1301 | MVT RetVT; |
| 1302 | Type *RetTy = I->getType(); |
| 1303 | if (RetTy->isVoidTy()) |
| 1304 | RetVT = MVT::isVoid; |
| 1305 | else if (!isTypeLegal(RetTy, RetVT)) |
| 1306 | return false; |
| 1307 | |
| 1308 | // Set up the argument vectors. |
| 1309 | SmallVector<Value *, 8> Args; |
| 1310 | SmallVector<unsigned, 8> ArgRegs; |
| 1311 | SmallVector<MVT, 8> ArgVTs; |
| 1312 | SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
| 1313 | Args.reserve(CS.arg_size()); |
| 1314 | ArgRegs.reserve(CS.arg_size()); |
| 1315 | ArgVTs.reserve(CS.arg_size()); |
| 1316 | ArgFlags.reserve(CS.arg_size()); |
| 1317 | |
| 1318 | for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); |
| 1319 | i != e; ++i) { |
| 1320 | // If we're lowering a memory intrinsic instead of a regular call, skip the |
| 1321 | // last two arguments, which shouldn't be passed to the underlying function. |
| 1322 | if (IntrMemName && e - i <= 2) |
| 1323 | break; |
| 1324 | |
| 1325 | unsigned Arg = getRegForValue(*i); |
| 1326 | if (Arg == 0) |
| 1327 | return false; |
| 1328 | |
| 1329 | ISD::ArgFlagsTy Flags; |
| 1330 | unsigned AttrInd = i - CS.arg_begin() + 1; |
| 1331 | if (CS.paramHasAttr(AttrInd, Attribute::SExt)) |
| 1332 | Flags.setSExt(); |
| 1333 | if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) |
| 1334 | Flags.setZExt(); |
| 1335 | |
| 1336 | // FIXME: Only handle *easy* calls for now. |
| 1337 | if (CS.paramHasAttr(AttrInd, Attribute::InReg) || |
| 1338 | CS.paramHasAttr(AttrInd, Attribute::StructRet) || |
| 1339 | CS.paramHasAttr(AttrInd, Attribute::Nest) || |
| 1340 | CS.paramHasAttr(AttrInd, Attribute::ByVal)) |
| 1341 | return false; |
| 1342 | |
| 1343 | MVT ArgVT; |
| 1344 | Type *ArgTy = (*i)->getType(); |
| 1345 | if (!isTypeLegal(ArgTy, ArgVT) && |
| 1346 | !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16)) |
| 1347 | return false; |
| 1348 | |
| 1349 | // We don't handle vector parameters yet. |
| 1350 | if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) |
| 1351 | return false; |
| 1352 | |
| 1353 | unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); |
| 1354 | Flags.setOrigAlign(OriginalAlignment); |
| 1355 | |
| 1356 | Args.push_back(*i); |
| 1357 | ArgRegs.push_back(Arg); |
| 1358 | ArgVTs.push_back(ArgVT); |
| 1359 | ArgFlags.push_back(Flags); |
| 1360 | } |
| 1361 | |
| 1362 | // Handle the arguments now that we've gotten them. |
| 1363 | SmallVector<unsigned, 4> RegArgs; |
| 1364 | unsigned NumBytes; |
| 1365 | if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) |
| 1366 | return false; |
| 1367 | |
| 1368 | // Issue the call. |
| 1369 | MachineInstrBuilder MIB; |
| 1370 | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BL)); |
| 1371 | if (!IntrMemName) |
| 1372 | MIB.addGlobalAddress(GV, 0, 0); |
| 1373 | else |
| 1374 | MIB.addExternalSymbol(IntrMemName, 0); |
| 1375 | |
| 1376 | // Add implicit physical register uses to the call. |
| 1377 | for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) |
| 1378 | MIB.addReg(RegArgs[i], RegState::Implicit); |
| 1379 | |
| 1380 | // Add a register mask with the call-preserved registers. |
| 1381 | // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
| 1382 | MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv())); |
| 1383 | |
| 1384 | // Finish off the call including any return values. |
| 1385 | SmallVector<unsigned, 4> UsedRegs; |
| 1386 | if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) |
| 1387 | return false; |
| 1388 | |
| 1389 | // Set all unused physreg defs as dead. |
| 1390 | static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); |
| 1391 | |
| 1392 | return true; |
| 1393 | } |
| 1394 | |
| 1395 | bool ARM64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) { |
| 1396 | if (Alignment) |
| 1397 | return Len / Alignment <= 4; |
| 1398 | else |
| 1399 | return Len < 32; |
| 1400 | } |
| 1401 | |
| 1402 | bool ARM64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, |
| 1403 | unsigned Alignment) { |
| 1404 | // Make sure we don't bloat code by inlining very large memcpy's. |
| 1405 | if (!IsMemCpySmall(Len, Alignment)) |
| 1406 | return false; |
| 1407 | |
| 1408 | int64_t UnscaledOffset = 0; |
| 1409 | Address OrigDest = Dest; |
| 1410 | Address OrigSrc = Src; |
| 1411 | |
| 1412 | while (Len) { |
| 1413 | MVT VT; |
| 1414 | if (!Alignment || Alignment >= 8) { |
| 1415 | if (Len >= 8) |
| 1416 | VT = MVT::i64; |
| 1417 | else if (Len >= 4) |
| 1418 | VT = MVT::i32; |
| 1419 | else if (Len >= 2) |
| 1420 | VT = MVT::i16; |
| 1421 | else { |
| 1422 | VT = MVT::i8; |
| 1423 | } |
| 1424 | } else { |
| 1425 | // Bound based on alignment. |
| 1426 | if (Len >= 4 && Alignment == 4) |
| 1427 | VT = MVT::i32; |
| 1428 | else if (Len >= 2 && Alignment == 2) |
| 1429 | VT = MVT::i16; |
| 1430 | else { |
| 1431 | VT = MVT::i8; |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | bool RV; |
| 1436 | unsigned ResultReg; |
| 1437 | RV = EmitLoad(VT, ResultReg, Src); |
| 1438 | assert(RV == true && "Should be able to handle this load."); |
| 1439 | RV = EmitStore(VT, ResultReg, Dest); |
| 1440 | assert(RV == true && "Should be able to handle this store."); |
| 1441 | (void)RV; |
| 1442 | |
| 1443 | int64_t Size = VT.getSizeInBits() / 8; |
| 1444 | Len -= Size; |
| 1445 | UnscaledOffset += Size; |
| 1446 | |
| 1447 | // We need to recompute the unscaled offset for each iteration. |
| 1448 | Dest.setOffset(OrigDest.getOffset() + UnscaledOffset); |
| 1449 | Src.setOffset(OrigSrc.getOffset() + UnscaledOffset); |
| 1450 | } |
| 1451 | |
| 1452 | return true; |
| 1453 | } |
| 1454 | |
| 1455 | bool ARM64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) { |
| 1456 | // FIXME: Handle more intrinsics. |
| 1457 | switch (I.getIntrinsicID()) { |
| 1458 | default: |
| 1459 | return false; |
| 1460 | case Intrinsic::memcpy: |
| 1461 | case Intrinsic::memmove: { |
| 1462 | const MemTransferInst &MTI = cast<MemTransferInst>(I); |
| 1463 | // Don't handle volatile. |
| 1464 | if (MTI.isVolatile()) |
| 1465 | return false; |
| 1466 | |
| 1467 | // Disable inlining for memmove before calls to ComputeAddress. Otherwise, |
| 1468 | // we would emit dead code because we don't currently handle memmoves. |
| 1469 | bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); |
| 1470 | if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { |
| 1471 | // Small memcpy's are common enough that we want to do them without a call |
| 1472 | // if possible. |
| 1473 | uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); |
| 1474 | unsigned Alignment = MTI.getAlignment(); |
| 1475 | if (IsMemCpySmall(Len, Alignment)) { |
| 1476 | Address Dest, Src; |
| 1477 | if (!ComputeAddress(MTI.getRawDest(), Dest) || |
| 1478 | !ComputeAddress(MTI.getRawSource(), Src)) |
| 1479 | return false; |
| 1480 | if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment)) |
| 1481 | return true; |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | if (!MTI.getLength()->getType()->isIntegerTy(64)) |
| 1486 | return false; |
| 1487 | |
| 1488 | if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) |
| 1489 | // Fast instruction selection doesn't support the special |
| 1490 | // address spaces. |
| 1491 | return false; |
| 1492 | |
| 1493 | const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; |
| 1494 | return SelectCall(&I, IntrMemName); |
| 1495 | } |
| 1496 | case Intrinsic::memset: { |
| 1497 | const MemSetInst &MSI = cast<MemSetInst>(I); |
| 1498 | // Don't handle volatile. |
| 1499 | if (MSI.isVolatile()) |
| 1500 | return false; |
| 1501 | |
| 1502 | if (!MSI.getLength()->getType()->isIntegerTy(64)) |
| 1503 | return false; |
| 1504 | |
| 1505 | if (MSI.getDestAddressSpace() > 255) |
| 1506 | // Fast instruction selection doesn't support the special |
| 1507 | // address spaces. |
| 1508 | return false; |
| 1509 | |
| 1510 | return SelectCall(&I, "memset"); |
| 1511 | } |
| 1512 | case Intrinsic::trap: { |
| 1513 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BRK)) |
| 1514 | .addImm(1); |
| 1515 | return true; |
| 1516 | } |
| 1517 | } |
| 1518 | return false; |
| 1519 | } |
| 1520 | |
| 1521 | bool ARM64FastISel::SelectRet(const Instruction *I) { |
| 1522 | const ReturnInst *Ret = cast<ReturnInst>(I); |
| 1523 | const Function &F = *I->getParent()->getParent(); |
| 1524 | |
| 1525 | if (!FuncInfo.CanLowerReturn) |
| 1526 | return false; |
| 1527 | |
| 1528 | if (F.isVarArg()) |
| 1529 | return false; |
| 1530 | |
| 1531 | // Build a list of return value registers. |
| 1532 | SmallVector<unsigned, 4> RetRegs; |
| 1533 | |
| 1534 | if (Ret->getNumOperands() > 0) { |
| 1535 | CallingConv::ID CC = F.getCallingConv(); |
| 1536 | SmallVector<ISD::OutputArg, 4> Outs; |
| 1537 | GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); |
| 1538 | |
| 1539 | // Analyze operands of the call, assigning locations to each operand. |
| 1540 | SmallVector<CCValAssign, 16> ValLocs; |
| 1541 | CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, |
| 1542 | I->getContext()); |
| 1543 | CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS |
| 1544 | : RetCC_ARM64_AAPCS; |
| 1545 | CCInfo.AnalyzeReturn(Outs, RetCC); |
| 1546 | |
| 1547 | // Only handle a single return value for now. |
| 1548 | if (ValLocs.size() != 1) |
| 1549 | return false; |
| 1550 | |
| 1551 | CCValAssign &VA = ValLocs[0]; |
| 1552 | const Value *RV = Ret->getOperand(0); |
| 1553 | |
| 1554 | // Don't bother handling odd stuff for now. |
| 1555 | if (VA.getLocInfo() != CCValAssign::Full) |
| 1556 | return false; |
| 1557 | // Only handle register returns for now. |
| 1558 | if (!VA.isRegLoc()) |
| 1559 | return false; |
| 1560 | unsigned Reg = getRegForValue(RV); |
| 1561 | if (Reg == 0) |
| 1562 | return false; |
| 1563 | |
| 1564 | unsigned SrcReg = Reg + VA.getValNo(); |
| 1565 | unsigned DestReg = VA.getLocReg(); |
| 1566 | // Avoid a cross-class copy. This is very unlikely. |
| 1567 | if (!MRI.getRegClass(SrcReg)->contains(DestReg)) |
| 1568 | return false; |
| 1569 | |
| 1570 | EVT RVEVT = TLI.getValueType(RV->getType()); |
| 1571 | if (!RVEVT.isSimple()) |
| 1572 | return false; |
| 1573 | MVT RVVT = RVEVT.getSimpleVT(); |
| 1574 | MVT DestVT = VA.getValVT(); |
| 1575 | // Special handling for extended integers. |
| 1576 | if (RVVT != DestVT) { |
| 1577 | if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) |
| 1578 | return false; |
| 1579 | |
| 1580 | if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) |
| 1581 | return false; |
| 1582 | |
| 1583 | bool isZExt = Outs[0].Flags.isZExt(); |
| 1584 | SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt); |
| 1585 | if (SrcReg == 0) |
| 1586 | return false; |
| 1587 | } |
| 1588 | |
| 1589 | // Make the copy. |
| 1590 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| 1591 | TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); |
| 1592 | |
| 1593 | // Add register to return instruction. |
| 1594 | RetRegs.push_back(VA.getLocReg()); |
| 1595 | } |
| 1596 | |
| 1597 | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| 1598 | TII.get(ARM64::RET_ReallyLR)); |
| 1599 | for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) |
| 1600 | MIB.addReg(RetRegs[i], RegState::Implicit); |
| 1601 | return true; |
| 1602 | } |
| 1603 | |
| 1604 | bool ARM64FastISel::SelectTrunc(const Instruction *I) { |
| 1605 | Type *DestTy = I->getType(); |
| 1606 | Value *Op = I->getOperand(0); |
| 1607 | Type *SrcTy = Op->getType(); |
| 1608 | |
| 1609 | EVT SrcEVT = TLI.getValueType(SrcTy, true); |
| 1610 | EVT DestEVT = TLI.getValueType(DestTy, true); |
| 1611 | if (!SrcEVT.isSimple()) |
| 1612 | return false; |
| 1613 | if (!DestEVT.isSimple()) |
| 1614 | return false; |
| 1615 | |
| 1616 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 1617 | MVT DestVT = DestEVT.getSimpleVT(); |
| 1618 | |
| 1619 | if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && |
| 1620 | SrcVT != MVT::i8) |
| 1621 | return false; |
| 1622 | if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 && |
| 1623 | DestVT != MVT::i1) |
| 1624 | return false; |
| 1625 | |
| 1626 | unsigned SrcReg = getRegForValue(Op); |
| 1627 | if (!SrcReg) |
| 1628 | return false; |
| 1629 | |
| 1630 | // If we're truncating from i64 to a smaller non-legal type then generate an |
| 1631 | // AND. Otherwise, we know the high bits are undefined and a truncate doesn't |
| 1632 | // generate any code. |
| 1633 | if (SrcVT == MVT::i64) { |
| 1634 | uint64_t Mask = 0; |
| 1635 | switch (DestVT.SimpleTy) { |
| 1636 | default: |
| 1637 | // Trunc i64 to i32 is handled by the target-independent fast-isel. |
| 1638 | return false; |
| 1639 | case MVT::i1: |
| 1640 | Mask = 0x1; |
| 1641 | break; |
| 1642 | case MVT::i8: |
| 1643 | Mask = 0xff; |
| 1644 | break; |
| 1645 | case MVT::i16: |
| 1646 | Mask = 0xffff; |
| 1647 | break; |
| 1648 | } |
| 1649 | // Issue an extract_subreg to get the lower 32-bits. |
| 1650 | unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true, |
| 1651 | ARM64::sub_32); |
| 1652 | // Create the AND instruction which performs the actual truncation. |
| 1653 | unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass); |
| 1654 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri), |
| 1655 | ANDReg) |
| 1656 | .addReg(Reg32) |
| 1657 | .addImm(ARM64_AM::encodeLogicalImmediate(Mask, 32)); |
| 1658 | SrcReg = ANDReg; |
| 1659 | } |
| 1660 | |
| 1661 | UpdateValueMap(I, SrcReg); |
| 1662 | return true; |
| 1663 | } |
| 1664 | |
| 1665 | unsigned ARM64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) { |
| 1666 | assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 || |
| 1667 | DestVT == MVT::i64) && |
| 1668 | "Unexpected value type."); |
| 1669 | // Handle i8 and i16 as i32. |
| 1670 | if (DestVT == MVT::i8 || DestVT == MVT::i16) |
| 1671 | DestVT = MVT::i32; |
| 1672 | |
| 1673 | if (isZExt) { |
| 1674 | unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass); |
| 1675 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri), |
| 1676 | ResultReg) |
| 1677 | .addReg(SrcReg) |
| 1678 | .addImm(ARM64_AM::encodeLogicalImmediate(1, 32)); |
| 1679 | |
| 1680 | if (DestVT == MVT::i64) { |
| 1681 | // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the |
| 1682 | // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd. |
| 1683 | unsigned Reg64 = MRI.createVirtualRegister(&ARM64::GPR64RegClass); |
| 1684 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| 1685 | TII.get(ARM64::SUBREG_TO_REG), Reg64) |
| 1686 | .addImm(0) |
| 1687 | .addReg(ResultReg) |
| 1688 | .addImm(ARM64::sub_32); |
| 1689 | ResultReg = Reg64; |
| 1690 | } |
| 1691 | return ResultReg; |
| 1692 | } else { |
| 1693 | if (DestVT == MVT::i64) { |
| 1694 | // FIXME: We're SExt i1 to i64. |
| 1695 | return 0; |
| 1696 | } |
| 1697 | unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass); |
| 1698 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SBFMWri), |
| 1699 | ResultReg) |
| 1700 | .addReg(SrcReg) |
| 1701 | .addImm(0) |
| 1702 | .addImm(0); |
| 1703 | return ResultReg; |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | unsigned ARM64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, |
| 1708 | bool isZExt) { |
| 1709 | assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?"); |
| 1710 | unsigned Opc; |
| 1711 | unsigned Imm = 0; |
| 1712 | |
| 1713 | switch (SrcVT.SimpleTy) { |
| 1714 | default: |
| 1715 | return 0; |
| 1716 | case MVT::i1: |
| 1717 | return Emiti1Ext(SrcReg, DestVT, isZExt); |
| 1718 | case MVT::i8: |
| 1719 | if (DestVT == MVT::i64) |
| 1720 | Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri; |
| 1721 | else |
| 1722 | Opc = isZExt ? ARM64::UBFMWri : ARM64::SBFMWri; |
| 1723 | Imm = 7; |
| 1724 | break; |
| 1725 | case MVT::i16: |
| 1726 | if (DestVT == MVT::i64) |
| 1727 | Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri; |
| 1728 | else |
| 1729 | Opc = isZExt ? ARM64::UBFMWri : ARM64::SBFMWri; |
| 1730 | Imm = 15; |
| 1731 | break; |
| 1732 | case MVT::i32: |
| 1733 | assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?"); |
| 1734 | Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri; |
| 1735 | Imm = 31; |
| 1736 | break; |
| 1737 | } |
| 1738 | |
| 1739 | // Handle i8 and i16 as i32. |
| 1740 | if (DestVT == MVT::i8 || DestVT == MVT::i16) |
| 1741 | DestVT = MVT::i32; |
| 1742 | |
| 1743 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| 1744 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| 1745 | .addReg(SrcReg) |
| 1746 | .addImm(0) |
| 1747 | .addImm(Imm); |
| 1748 | |
| 1749 | return ResultReg; |
| 1750 | } |
| 1751 | |
| 1752 | bool ARM64FastISel::SelectIntExt(const Instruction *I) { |
| 1753 | // On ARM, in general, integer casts don't involve legal types; this code |
| 1754 | // handles promotable integers. The high bits for a type smaller than |
| 1755 | // the register size are assumed to be undefined. |
| 1756 | Type *DestTy = I->getType(); |
| 1757 | Value *Src = I->getOperand(0); |
| 1758 | Type *SrcTy = Src->getType(); |
| 1759 | |
| 1760 | bool isZExt = isa<ZExtInst>(I); |
| 1761 | unsigned SrcReg = getRegForValue(Src); |
| 1762 | if (!SrcReg) |
| 1763 | return false; |
| 1764 | |
| 1765 | EVT SrcEVT = TLI.getValueType(SrcTy, true); |
| 1766 | EVT DestEVT = TLI.getValueType(DestTy, true); |
| 1767 | if (!SrcEVT.isSimple()) |
| 1768 | return false; |
| 1769 | if (!DestEVT.isSimple()) |
| 1770 | return false; |
| 1771 | |
| 1772 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 1773 | MVT DestVT = DestEVT.getSimpleVT(); |
| 1774 | unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt); |
| 1775 | if (ResultReg == 0) |
| 1776 | return false; |
| 1777 | UpdateValueMap(I, ResultReg); |
| 1778 | return true; |
| 1779 | } |
| 1780 | |
| 1781 | bool ARM64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) { |
| 1782 | EVT DestEVT = TLI.getValueType(I->getType(), true); |
| 1783 | if (!DestEVT.isSimple()) |
| 1784 | return false; |
| 1785 | |
| 1786 | MVT DestVT = DestEVT.getSimpleVT(); |
| 1787 | if (DestVT != MVT::i64 && DestVT != MVT::i32) |
| 1788 | return false; |
| 1789 | |
| 1790 | unsigned DivOpc; |
| 1791 | bool is64bit = (DestVT == MVT::i64); |
| 1792 | switch (ISDOpcode) { |
| 1793 | default: |
| 1794 | return false; |
| 1795 | case ISD::SREM: |
| 1796 | DivOpc = is64bit ? ARM64::SDIVXr : ARM64::SDIVWr; |
| 1797 | break; |
| 1798 | case ISD::UREM: |
| 1799 | DivOpc = is64bit ? ARM64::UDIVXr : ARM64::UDIVWr; |
| 1800 | break; |
| 1801 | } |
| 1802 | unsigned MSubOpc = is64bit ? ARM64::MSUBXrrr : ARM64::MSUBWrrr; |
| 1803 | unsigned Src0Reg = getRegForValue(I->getOperand(0)); |
| 1804 | if (!Src0Reg) |
| 1805 | return false; |
| 1806 | |
| 1807 | unsigned Src1Reg = getRegForValue(I->getOperand(1)); |
| 1808 | if (!Src1Reg) |
| 1809 | return false; |
| 1810 | |
| 1811 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| 1812 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), ResultReg) |
| 1813 | .addReg(Src0Reg) |
| 1814 | .addReg(Src1Reg); |
| 1815 | // The remainder is computed as numerator – (quotient * denominator) using the |
| 1816 | // MSUB instruction. |
| 1817 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg) |
| 1818 | .addReg(ResultReg) |
| 1819 | .addReg(Src1Reg) |
| 1820 | .addReg(Src0Reg); |
| 1821 | UpdateValueMap(I, ResultReg); |
| 1822 | return true; |
| 1823 | } |
| 1824 | |
| 1825 | bool ARM64FastISel::SelectMul(const Instruction *I) { |
| 1826 | EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true); |
| 1827 | if (!SrcEVT.isSimple()) |
| 1828 | return false; |
| 1829 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 1830 | |
| 1831 | // Must be simple value type. Don't handle vectors. |
| 1832 | if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && |
| 1833 | SrcVT != MVT::i8) |
| 1834 | return false; |
| 1835 | |
| 1836 | unsigned Opc; |
| 1837 | unsigned ZReg; |
| 1838 | switch (SrcVT.SimpleTy) { |
| 1839 | default: |
| 1840 | return false; |
| 1841 | case MVT::i8: |
| 1842 | case MVT::i16: |
| 1843 | case MVT::i32: |
| 1844 | ZReg = ARM64::WZR; |
| 1845 | Opc = ARM64::MADDWrrr; |
| 1846 | break; |
| 1847 | case MVT::i64: |
| 1848 | ZReg = ARM64::XZR; |
| 1849 | Opc = ARM64::MADDXrrr; |
| 1850 | break; |
| 1851 | } |
| 1852 | |
| 1853 | unsigned Src0Reg = getRegForValue(I->getOperand(0)); |
| 1854 | if (!Src0Reg) |
| 1855 | return false; |
| 1856 | |
| 1857 | unsigned Src1Reg = getRegForValue(I->getOperand(1)); |
| 1858 | if (!Src1Reg) |
| 1859 | return false; |
| 1860 | |
| 1861 | // Create the base instruction, then add the operands. |
| 1862 | unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT)); |
| 1863 | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| 1864 | .addReg(Src0Reg) |
| 1865 | .addReg(Src1Reg) |
| 1866 | .addReg(ZReg); |
| 1867 | UpdateValueMap(I, ResultReg); |
| 1868 | return true; |
| 1869 | } |
| 1870 | |
| 1871 | bool ARM64FastISel::TargetSelectInstruction(const Instruction *I) { |
| 1872 | switch (I->getOpcode()) { |
| 1873 | default: |
| 1874 | break; |
| 1875 | case Instruction::Load: |
| 1876 | return SelectLoad(I); |
| 1877 | case Instruction::Store: |
| 1878 | return SelectStore(I); |
| 1879 | case Instruction::Br: |
| 1880 | return SelectBranch(I); |
| 1881 | case Instruction::IndirectBr: |
| 1882 | return SelectIndirectBr(I); |
| 1883 | case Instruction::FCmp: |
| 1884 | case Instruction::ICmp: |
| 1885 | return SelectCmp(I); |
| 1886 | case Instruction::Select: |
| 1887 | return SelectSelect(I); |
| 1888 | case Instruction::FPExt: |
| 1889 | return SelectFPExt(I); |
| 1890 | case Instruction::FPTrunc: |
| 1891 | return SelectFPTrunc(I); |
| 1892 | case Instruction::FPToSI: |
| 1893 | return SelectFPToInt(I, /*Signed=*/true); |
| 1894 | case Instruction::FPToUI: |
| 1895 | return SelectFPToInt(I, /*Signed=*/false); |
| 1896 | case Instruction::SIToFP: |
| 1897 | return SelectIntToFP(I, /*Signed=*/true); |
| 1898 | case Instruction::UIToFP: |
| 1899 | return SelectIntToFP(I, /*Signed=*/false); |
| 1900 | case Instruction::SRem: |
| 1901 | return SelectRem(I, ISD::SREM); |
| 1902 | case Instruction::URem: |
| 1903 | return SelectRem(I, ISD::UREM); |
| 1904 | case Instruction::Call: |
| 1905 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| 1906 | return SelectIntrinsicCall(*II); |
| 1907 | return SelectCall(I); |
| 1908 | case Instruction::Ret: |
| 1909 | return SelectRet(I); |
| 1910 | case Instruction::Trunc: |
| 1911 | return SelectTrunc(I); |
| 1912 | case Instruction::ZExt: |
| 1913 | case Instruction::SExt: |
| 1914 | return SelectIntExt(I); |
| 1915 | case Instruction::Mul: |
| 1916 | // FIXME: This really should be handled by the target-independent selector. |
| 1917 | return SelectMul(I); |
| 1918 | } |
| 1919 | return false; |
| 1920 | // Silence warnings. |
| 1921 | (void)&CC_ARM64_DarwinPCS_VarArg; |
| 1922 | } |
| 1923 | |
| 1924 | namespace llvm { |
| 1925 | llvm::FastISel *ARM64::createFastISel(FunctionLoweringInfo &funcInfo, |
| 1926 | const TargetLibraryInfo *libInfo) { |
| 1927 | return new ARM64FastISel(funcInfo, libInfo); |
| 1928 | } |
| 1929 | } |