blob: b0577b3680da670dce1c5af2a0e61c38f17355f7 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <limits>
22#include <cstring>
23#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include <iomanip>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025
26using namespace llvm;
27
Reid Spencera15c5012007-12-11 06:53:58 +000028/// This enumeration just provides for internal constants used in this
29/// translation unit.
30enum {
31 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
32 ///< Note that this must remain synchronized with IntegerType::MIN_INT_BITS
33 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
34 ///< Note that this must remain synchronized with IntegerType::MAX_INT_BITS
35};
36
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037/// A utility function for allocating memory, checking for allocation failures,
38/// and ensuring the contents are zeroed.
39inline static uint64_t* getClearedMemory(uint32_t numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 memset(result, 0, numWords * sizeof(uint64_t));
43 return result;
44}
45
46/// A utility function for allocating memory and checking for allocation
47/// failure. The content is not zeroed.
48inline static uint64_t* getMemory(uint32_t numWords) {
49 uint64_t * result = new uint64_t[numWords];
50 assert(result && "APInt memory allocation fails!");
51 return result;
52}
53
54APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
55 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000056 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
57 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058 if (isSingleWord())
59 VAL = val;
60 else {
61 pVal = getClearedMemory(getNumWords());
62 pVal[0] = val;
63 if (isSigned && int64_t(val) < 0)
64 for (unsigned i = 1; i < getNumWords(); ++i)
65 pVal[i] = -1ULL;
66 }
67 clearUnusedBits();
68}
69
Dale Johannesena6f79742007-09-21 22:09:37 +000070APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000072 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
73 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 assert(bigVal && "Null pointer detected!");
75 if (isSingleWord())
76 VAL = bigVal[0];
77 else {
78 // Get memory, cleared to 0
79 pVal = getClearedMemory(getNumWords());
80 // Calculate the number of words to copy
81 uint32_t words = std::min<uint32_t>(numWords, getNumWords());
82 // Copy the words from bigVal to pVal
83 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
84 }
85 // Make sure unused high bits are cleared
86 clearUnusedBits();
87}
88
89APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
90 uint8_t radix)
91 : BitWidth(numbits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000092 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
93 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 fromString(numbits, StrStart, slen, radix);
95}
96
97APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
98 : BitWidth(numbits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000099 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
100 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101 assert(!Val.empty() && "String empty?");
Evan Cheng279e2c42008-05-02 21:15:08 +0000102 fromString(numbits, Val.c_str(), (uint32_t)Val.size(), radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103}
104
105APInt::APInt(const APInt& that)
106 : BitWidth(that.BitWidth), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +0000107 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
108 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109 if (isSingleWord())
110 VAL = that.VAL;
111 else {
112 pVal = getMemory(getNumWords());
113 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
114 }
115}
116
117APInt::~APInt() {
118 if (!isSingleWord() && pVal)
119 delete [] pVal;
120}
121
122APInt& APInt::operator=(const APInt& RHS) {
123 // Don't do anything for X = X
124 if (this == &RHS)
125 return *this;
126
127 // If the bitwidths are the same, we can avoid mucking with memory
128 if (BitWidth == RHS.getBitWidth()) {
129 if (isSingleWord())
130 VAL = RHS.VAL;
131 else
132 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
133 return *this;
134 }
135
136 if (isSingleWord())
137 if (RHS.isSingleWord())
138 VAL = RHS.VAL;
139 else {
140 VAL = 0;
141 pVal = getMemory(RHS.getNumWords());
142 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
143 }
144 else if (getNumWords() == RHS.getNumWords())
145 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
146 else if (RHS.isSingleWord()) {
147 delete [] pVal;
148 VAL = RHS.VAL;
149 } else {
150 delete [] pVal;
151 pVal = getMemory(RHS.getNumWords());
152 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
153 }
154 BitWidth = RHS.BitWidth;
155 return clearUnusedBits();
156}
157
158APInt& APInt::operator=(uint64_t RHS) {
159 if (isSingleWord())
160 VAL = RHS;
161 else {
162 pVal[0] = RHS;
163 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
164 }
165 return clearUnusedBits();
166}
167
Ted Kremenek109de0d2008-01-19 04:23:33 +0000168/// Profile - This method 'profiles' an APInt for use with FoldingSet.
169void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000170 ID.AddInteger(BitWidth);
171
Ted Kremenek109de0d2008-01-19 04:23:33 +0000172 if (isSingleWord()) {
173 ID.AddInteger(VAL);
174 return;
175 }
176
177 uint32_t NumWords = getNumWords();
178 for (unsigned i = 0; i < NumWords; ++i)
179 ID.AddInteger(pVal[i]);
180}
181
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182/// add_1 - This function adds a single "digit" integer, y, to the multiple
183/// "digit" integer array, x[]. x[] is modified to reflect the addition and
184/// 1 is returned if there is a carry out, otherwise 0 is returned.
185/// @returns the carry of the addition.
186static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
187 for (uint32_t i = 0; i < len; ++i) {
188 dest[i] = y + x[i];
189 if (dest[i] < y)
190 y = 1; // Carry one to next digit.
191 else {
192 y = 0; // No need to carry so exit early
193 break;
194 }
195 }
196 return y;
197}
198
199/// @brief Prefix increment operator. Increments the APInt by one.
200APInt& APInt::operator++() {
201 if (isSingleWord())
202 ++VAL;
203 else
204 add_1(pVal, pVal, getNumWords(), 1);
205 return clearUnusedBits();
206}
207
208/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
209/// the multi-digit integer array, x[], propagating the borrowed 1 value until
210/// no further borrowing is neeeded or it runs out of "digits" in x. The result
211/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
212/// In other words, if y > x then this function returns 1, otherwise 0.
213/// @returns the borrow out of the subtraction
214static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
215 for (uint32_t i = 0; i < len; ++i) {
216 uint64_t X = x[i];
217 x[i] -= y;
218 if (y > X)
219 y = 1; // We have to "borrow 1" from next "digit"
220 else {
221 y = 0; // No need to borrow
222 break; // Remaining digits are unchanged so exit early
223 }
224 }
225 return bool(y);
226}
227
228/// @brief Prefix decrement operator. Decrements the APInt by one.
229APInt& APInt::operator--() {
230 if (isSingleWord())
231 --VAL;
232 else
233 sub_1(pVal, getNumWords(), 1);
234 return clearUnusedBits();
235}
236
237/// add - This function adds the integer array x to the integer array Y and
238/// places the result in dest.
239/// @returns the carry out from the addition
240/// @brief General addition of 64-bit integer arrays
241static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
242 uint32_t len) {
243 bool carry = false;
244 for (uint32_t i = 0; i< len; ++i) {
245 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
246 dest[i] = x[i] + y[i] + carry;
247 carry = dest[i] < limit || (carry && dest[i] == limit);
248 }
249 return carry;
250}
251
252/// Adds the RHS APint to this APInt.
253/// @returns this, after addition of RHS.
254/// @brief Addition assignment operator.
255APInt& APInt::operator+=(const APInt& RHS) {
256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257 if (isSingleWord())
258 VAL += RHS.VAL;
259 else {
260 add(pVal, pVal, RHS.pVal, getNumWords());
261 }
262 return clearUnusedBits();
263}
264
265/// Subtracts the integer array y from the integer array x
266/// @returns returns the borrow out.
267/// @brief Generalized subtraction of 64-bit integer arrays.
268static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
269 uint32_t len) {
270 bool borrow = false;
271 for (uint32_t i = 0; i < len; ++i) {
272 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
273 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
274 dest[i] = x_tmp - y[i];
275 }
276 return borrow;
277}
278
279/// Subtracts the RHS APInt from this APInt
280/// @returns this, after subtraction
281/// @brief Subtraction assignment operator.
282APInt& APInt::operator-=(const APInt& RHS) {
283 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
284 if (isSingleWord())
285 VAL -= RHS.VAL;
286 else
287 sub(pVal, pVal, RHS.pVal, getNumWords());
288 return clearUnusedBits();
289}
290
291/// Multiplies an integer array, x by a a uint64_t integer and places the result
292/// into dest.
293/// @returns the carry out of the multiplication.
294/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
295static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
296 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
297 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
298 uint64_t carry = 0;
299
300 // For each digit of x.
301 for (uint32_t i = 0; i < len; ++i) {
302 // Split x into high and low words
303 uint64_t lx = x[i] & 0xffffffffULL;
304 uint64_t hx = x[i] >> 32;
305 // hasCarry - A flag to indicate if there is a carry to the next digit.
306 // hasCarry == 0, no carry
307 // hasCarry == 1, has carry
308 // hasCarry == 2, no carry and the calculation result == 0.
309 uint8_t hasCarry = 0;
310 dest[i] = carry + lx * ly;
311 // Determine if the add above introduces carry.
312 hasCarry = (dest[i] < carry) ? 1 : 0;
313 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
314 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
315 // (2^32 - 1) + 2^32 = 2^64.
316 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
317
318 carry += (lx * hy) & 0xffffffffULL;
319 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
320 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
321 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
322 }
323 return carry;
324}
325
326/// Multiplies integer array x by integer array y and stores the result into
327/// the integer array dest. Note that dest's size must be >= xlen + ylen.
328/// @brief Generalized multiplicate of integer arrays.
329static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
330 uint32_t ylen) {
331 dest[xlen] = mul_1(dest, x, xlen, y[0]);
332 for (uint32_t i = 1; i < ylen; ++i) {
333 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
334 uint64_t carry = 0, lx = 0, hx = 0;
335 for (uint32_t j = 0; j < xlen; ++j) {
336 lx = x[j] & 0xffffffffULL;
337 hx = x[j] >> 32;
338 // hasCarry - A flag to indicate if has carry.
339 // hasCarry == 0, no carry
340 // hasCarry == 1, has carry
341 // hasCarry == 2, no carry and the calculation result == 0.
342 uint8_t hasCarry = 0;
343 uint64_t resul = carry + lx * ly;
344 hasCarry = (resul < carry) ? 1 : 0;
345 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
346 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
347
348 carry += (lx * hy) & 0xffffffffULL;
349 resul = (carry << 32) | (resul & 0xffffffffULL);
350 dest[i+j] += resul;
351 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
352 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
353 ((lx * hy) >> 32) + hx * hy;
354 }
355 dest[i+xlen] = carry;
356 }
357}
358
359APInt& APInt::operator*=(const APInt& RHS) {
360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
361 if (isSingleWord()) {
362 VAL *= RHS.VAL;
363 clearUnusedBits();
364 return *this;
365 }
366
367 // Get some bit facts about LHS and check for zero
368 uint32_t lhsBits = getActiveBits();
369 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
370 if (!lhsWords)
371 // 0 * X ===> 0
372 return *this;
373
374 // Get some bit facts about RHS and check for zero
375 uint32_t rhsBits = RHS.getActiveBits();
376 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
377 if (!rhsWords) {
378 // X * 0 ===> 0
379 clear();
380 return *this;
381 }
382
383 // Allocate space for the result
384 uint32_t destWords = rhsWords + lhsWords;
385 uint64_t *dest = getMemory(destWords);
386
387 // Perform the long multiply
388 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
389
390 // Copy result back into *this
391 clear();
392 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
393 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
394
395 // delete dest array and return
396 delete[] dest;
397 return *this;
398}
399
400APInt& APInt::operator&=(const APInt& RHS) {
401 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
402 if (isSingleWord()) {
403 VAL &= RHS.VAL;
404 return *this;
405 }
406 uint32_t numWords = getNumWords();
407 for (uint32_t i = 0; i < numWords; ++i)
408 pVal[i] &= RHS.pVal[i];
409 return *this;
410}
411
412APInt& APInt::operator|=(const APInt& RHS) {
413 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
414 if (isSingleWord()) {
415 VAL |= RHS.VAL;
416 return *this;
417 }
418 uint32_t numWords = getNumWords();
419 for (uint32_t i = 0; i < numWords; ++i)
420 pVal[i] |= RHS.pVal[i];
421 return *this;
422}
423
424APInt& APInt::operator^=(const APInt& RHS) {
425 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
426 if (isSingleWord()) {
427 VAL ^= RHS.VAL;
428 this->clearUnusedBits();
429 return *this;
430 }
431 uint32_t numWords = getNumWords();
432 for (uint32_t i = 0; i < numWords; ++i)
433 pVal[i] ^= RHS.pVal[i];
434 return clearUnusedBits();
435}
436
437APInt APInt::operator&(const APInt& RHS) const {
438 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
439 if (isSingleWord())
440 return APInt(getBitWidth(), VAL & RHS.VAL);
441
442 uint32_t numWords = getNumWords();
443 uint64_t* val = getMemory(numWords);
444 for (uint32_t i = 0; i < numWords; ++i)
445 val[i] = pVal[i] & RHS.pVal[i];
446 return APInt(val, getBitWidth());
447}
448
449APInt APInt::operator|(const APInt& RHS) const {
450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
451 if (isSingleWord())
452 return APInt(getBitWidth(), VAL | RHS.VAL);
453
454 uint32_t numWords = getNumWords();
455 uint64_t *val = getMemory(numWords);
456 for (uint32_t i = 0; i < numWords; ++i)
457 val[i] = pVal[i] | RHS.pVal[i];
458 return APInt(val, getBitWidth());
459}
460
461APInt APInt::operator^(const APInt& RHS) const {
462 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
463 if (isSingleWord())
464 return APInt(BitWidth, VAL ^ RHS.VAL);
465
466 uint32_t numWords = getNumWords();
467 uint64_t *val = getMemory(numWords);
468 for (uint32_t i = 0; i < numWords; ++i)
469 val[i] = pVal[i] ^ RHS.pVal[i];
470
471 // 0^0==1 so clear the high bits in case they got set.
472 return APInt(val, getBitWidth()).clearUnusedBits();
473}
474
475bool APInt::operator !() const {
476 if (isSingleWord())
477 return !VAL;
478
479 for (uint32_t i = 0; i < getNumWords(); ++i)
480 if (pVal[i])
481 return false;
482 return true;
483}
484
485APInt APInt::operator*(const APInt& RHS) const {
486 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
487 if (isSingleWord())
488 return APInt(BitWidth, VAL * RHS.VAL);
489 APInt Result(*this);
490 Result *= RHS;
491 return Result.clearUnusedBits();
492}
493
494APInt APInt::operator+(const APInt& RHS) const {
495 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
496 if (isSingleWord())
497 return APInt(BitWidth, VAL + RHS.VAL);
498 APInt Result(BitWidth, 0);
499 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
500 return Result.clearUnusedBits();
501}
502
503APInt APInt::operator-(const APInt& RHS) const {
504 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
505 if (isSingleWord())
506 return APInt(BitWidth, VAL - RHS.VAL);
507 APInt Result(BitWidth, 0);
508 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
509 return Result.clearUnusedBits();
510}
511
512bool APInt::operator[](uint32_t bitPosition) const {
513 return (maskBit(bitPosition) &
514 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
515}
516
517bool APInt::operator==(const APInt& RHS) const {
518 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
519 if (isSingleWord())
520 return VAL == RHS.VAL;
521
522 // Get some facts about the number of bits used in the two operands.
523 uint32_t n1 = getActiveBits();
524 uint32_t n2 = RHS.getActiveBits();
525
526 // If the number of bits isn't the same, they aren't equal
527 if (n1 != n2)
528 return false;
529
530 // If the number of bits fits in a word, we only need to compare the low word.
531 if (n1 <= APINT_BITS_PER_WORD)
532 return pVal[0] == RHS.pVal[0];
533
534 // Otherwise, compare everything
535 for (int i = whichWord(n1 - 1); i >= 0; --i)
536 if (pVal[i] != RHS.pVal[i])
537 return false;
538 return true;
539}
540
541bool APInt::operator==(uint64_t Val) const {
542 if (isSingleWord())
543 return VAL == Val;
544
545 uint32_t n = getActiveBits();
546 if (n <= APINT_BITS_PER_WORD)
547 return pVal[0] == Val;
548 else
549 return false;
550}
551
552bool APInt::ult(const APInt& RHS) const {
553 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
554 if (isSingleWord())
555 return VAL < RHS.VAL;
556
557 // Get active bit length of both operands
558 uint32_t n1 = getActiveBits();
559 uint32_t n2 = RHS.getActiveBits();
560
561 // If magnitude of LHS is less than RHS, return true.
562 if (n1 < n2)
563 return true;
564
565 // If magnitude of RHS is greather than LHS, return false.
566 if (n2 < n1)
567 return false;
568
569 // If they bot fit in a word, just compare the low order word
570 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
571 return pVal[0] < RHS.pVal[0];
572
573 // Otherwise, compare all words
574 uint32_t topWord = whichWord(std::max(n1,n2)-1);
575 for (int i = topWord; i >= 0; --i) {
576 if (pVal[i] > RHS.pVal[i])
577 return false;
578 if (pVal[i] < RHS.pVal[i])
579 return true;
580 }
581 return false;
582}
583
584bool APInt::slt(const APInt& RHS) const {
585 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
586 if (isSingleWord()) {
587 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
588 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
589 return lhsSext < rhsSext;
590 }
591
592 APInt lhs(*this);
593 APInt rhs(RHS);
594 bool lhsNeg = isNegative();
595 bool rhsNeg = rhs.isNegative();
596 if (lhsNeg) {
597 // Sign bit is set so perform two's complement to make it positive
598 lhs.flip();
599 lhs++;
600 }
601 if (rhsNeg) {
602 // Sign bit is set so perform two's complement to make it positive
603 rhs.flip();
604 rhs++;
605 }
606
607 // Now we have unsigned values to compare so do the comparison if necessary
608 // based on the negativeness of the values.
609 if (lhsNeg)
610 if (rhsNeg)
611 return lhs.ugt(rhs);
612 else
613 return true;
614 else if (rhsNeg)
615 return false;
616 else
617 return lhs.ult(rhs);
618}
619
620APInt& APInt::set(uint32_t bitPosition) {
621 if (isSingleWord())
622 VAL |= maskBit(bitPosition);
623 else
624 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
625 return *this;
626}
627
628APInt& APInt::set() {
629 if (isSingleWord()) {
630 VAL = -1ULL;
631 return clearUnusedBits();
632 }
633
634 // Set all the bits in all the words.
635 for (uint32_t i = 0; i < getNumWords(); ++i)
636 pVal[i] = -1ULL;
637 // Clear the unused ones
638 return clearUnusedBits();
639}
640
641/// Set the given bit to 0 whose position is given as "bitPosition".
642/// @brief Set a given bit to 0.
643APInt& APInt::clear(uint32_t bitPosition) {
644 if (isSingleWord())
645 VAL &= ~maskBit(bitPosition);
646 else
647 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
648 return *this;
649}
650
651/// @brief Set every bit to 0.
652APInt& APInt::clear() {
653 if (isSingleWord())
654 VAL = 0;
655 else
656 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
657 return *this;
658}
659
660/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
661/// this APInt.
662APInt APInt::operator~() const {
663 APInt Result(*this);
664 Result.flip();
665 return Result;
666}
667
668/// @brief Toggle every bit to its opposite value.
669APInt& APInt::flip() {
670 if (isSingleWord()) {
671 VAL ^= -1ULL;
672 return clearUnusedBits();
673 }
674 for (uint32_t i = 0; i < getNumWords(); ++i)
675 pVal[i] ^= -1ULL;
676 return clearUnusedBits();
677}
678
679/// Toggle a given bit to its opposite value whose position is given
680/// as "bitPosition".
681/// @brief Toggles a given bit to its opposite value.
682APInt& APInt::flip(uint32_t bitPosition) {
683 assert(bitPosition < BitWidth && "Out of the bit-width range!");
684 if ((*this)[bitPosition]) clear(bitPosition);
685 else set(bitPosition);
686 return *this;
687}
688
689uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
690 assert(str != 0 && "Invalid value string");
691 assert(slen > 0 && "Invalid string length");
692
693 // Each computation below needs to know if its negative
694 uint32_t isNegative = str[0] == '-';
695 if (isNegative) {
696 slen--;
697 str++;
698 }
699 // For radixes of power-of-two values, the bits required is accurately and
700 // easily computed
701 if (radix == 2)
702 return slen + isNegative;
703 if (radix == 8)
704 return slen * 3 + isNegative;
705 if (radix == 16)
706 return slen * 4 + isNegative;
707
708 // Otherwise it must be radix == 10, the hard case
709 assert(radix == 10 && "Invalid radix");
710
711 // This is grossly inefficient but accurate. We could probably do something
712 // with a computation of roughly slen*64/20 and then adjust by the value of
713 // the first few digits. But, I'm not sure how accurate that could be.
714
715 // Compute a sufficient number of bits that is always large enough but might
716 // be too large. This avoids the assertion in the constructor.
717 uint32_t sufficient = slen*64/18;
718
719 // Convert to the actual binary value.
720 APInt tmp(sufficient, str, slen, radix);
721
722 // Compute how many bits are required.
723 return isNegative + tmp.logBase2() + 1;
724}
725
726uint64_t APInt::getHashValue() const {
727 // Put the bit width into the low order bits.
728 uint64_t hash = BitWidth;
729
730 // Add the sum of the words to the hash.
731 if (isSingleWord())
732 hash += VAL << 6; // clear separation of up to 64 bits
733 else
734 for (uint32_t i = 0; i < getNumWords(); ++i)
735 hash += pVal[i] << 6; // clear sepration of up to 64 bits
736 return hash;
737}
738
739/// HiBits - This function returns the high "numBits" bits of this APInt.
740APInt APInt::getHiBits(uint32_t numBits) const {
741 return APIntOps::lshr(*this, BitWidth - numBits);
742}
743
744/// LoBits - This function returns the low "numBits" bits of this APInt.
745APInt APInt::getLoBits(uint32_t numBits) const {
746 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
747 BitWidth - numBits);
748}
749
750bool APInt::isPowerOf2() const {
751 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
752}
753
754uint32_t APInt::countLeadingZeros() const {
755 uint32_t Count = 0;
756 if (isSingleWord())
757 Count = CountLeadingZeros_64(VAL);
758 else {
759 for (uint32_t i = getNumWords(); i > 0u; --i) {
760 if (pVal[i-1] == 0)
761 Count += APINT_BITS_PER_WORD;
762 else {
763 Count += CountLeadingZeros_64(pVal[i-1]);
764 break;
765 }
766 }
767 }
768 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
769 if (remainder)
770 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000771 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772}
773
774static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
775 uint32_t Count = 0;
776 if (skip)
777 V <<= skip;
778 while (V && (V & (1ULL << 63))) {
779 Count++;
780 V <<= 1;
781 }
782 return Count;
783}
784
785uint32_t APInt::countLeadingOnes() const {
786 if (isSingleWord())
787 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
788
789 uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
790 uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
791 int i = getNumWords() - 1;
792 uint32_t Count = countLeadingOnes_64(pVal[i], shift);
793 if (Count == highWordBits) {
794 for (i--; i >= 0; --i) {
795 if (pVal[i] == -1ULL)
796 Count += APINT_BITS_PER_WORD;
797 else {
798 Count += countLeadingOnes_64(pVal[i], 0);
799 break;
800 }
801 }
802 }
803 return Count;
804}
805
806uint32_t APInt::countTrailingZeros() const {
807 if (isSingleWord())
Anton Korobeynikova0bd36c2007-12-24 11:16:47 +0000808 return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000809 uint32_t Count = 0;
810 uint32_t i = 0;
811 for (; i < getNumWords() && pVal[i] == 0; ++i)
812 Count += APINT_BITS_PER_WORD;
813 if (i < getNumWords())
814 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000815 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816}
817
Dan Gohmanf550d412008-02-13 21:11:05 +0000818uint32_t APInt::countTrailingOnes() const {
819 if (isSingleWord())
820 return std::min(uint32_t(CountTrailingOnes_64(VAL)), BitWidth);
821 uint32_t Count = 0;
822 uint32_t i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000823 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000824 Count += APINT_BITS_PER_WORD;
825 if (i < getNumWords())
826 Count += CountTrailingOnes_64(pVal[i]);
827 return std::min(Count, BitWidth);
828}
829
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830uint32_t APInt::countPopulation() const {
831 if (isSingleWord())
832 return CountPopulation_64(VAL);
833 uint32_t Count = 0;
834 for (uint32_t i = 0; i < getNumWords(); ++i)
835 Count += CountPopulation_64(pVal[i]);
836 return Count;
837}
838
839APInt APInt::byteSwap() const {
840 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
841 if (BitWidth == 16)
842 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
843 else if (BitWidth == 32)
844 return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
845 else if (BitWidth == 48) {
846 uint32_t Tmp1 = uint32_t(VAL >> 16);
847 Tmp1 = ByteSwap_32(Tmp1);
848 uint16_t Tmp2 = uint16_t(VAL);
849 Tmp2 = ByteSwap_16(Tmp2);
850 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
851 } else if (BitWidth == 64)
852 return APInt(BitWidth, ByteSwap_64(VAL));
853 else {
854 APInt Result(BitWidth, 0);
855 char *pByte = (char*)Result.pVal;
856 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
857 char Tmp = pByte[i];
858 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
859 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
860 }
861 return Result;
862 }
863}
864
865APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
866 const APInt& API2) {
867 APInt A = API1, B = API2;
868 while (!!B) {
869 APInt T = B;
870 B = APIntOps::urem(A, B);
871 A = T;
872 }
873 return A;
874}
875
876APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
877 union {
878 double D;
879 uint64_t I;
880 } T;
881 T.D = Double;
882
883 // Get the sign bit from the highest order bit
884 bool isNeg = T.I >> 63;
885
886 // Get the 11-bit exponent and adjust for the 1023 bit bias
887 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
888
889 // If the exponent is negative, the value is < 0 so just return 0.
890 if (exp < 0)
891 return APInt(width, 0u);
892
893 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
894 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
895
896 // If the exponent doesn't shift all bits out of the mantissa
897 if (exp < 52)
898 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
899 APInt(width, mantissa >> (52 - exp));
900
901 // If the client didn't provide enough bits for us to shift the mantissa into
902 // then the result is undefined, just return 0
903 if (width <= exp - 52)
904 return APInt(width, 0);
905
906 // Otherwise, we have to shift the mantissa bits up to the right location
907 APInt Tmp(width, mantissa);
Evan Cheng279e2c42008-05-02 21:15:08 +0000908 Tmp = Tmp.shl((uint32_t)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 return isNeg ? -Tmp : Tmp;
910}
911
912/// RoundToDouble - This function convert this APInt to a double.
913/// The layout for double is as following (IEEE Standard 754):
914/// --------------------------------------
915/// | Sign Exponent Fraction Bias |
916/// |-------------------------------------- |
917/// | 1[63] 11[62-52] 52[51-00] 1023 |
918/// --------------------------------------
919double APInt::roundToDouble(bool isSigned) const {
920
921 // Handle the simple case where the value is contained in one uint64_t.
922 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
923 if (isSigned) {
924 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
925 return double(sext);
926 } else
927 return double(VAL);
928 }
929
930 // Determine if the value is negative.
931 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
932
933 // Construct the absolute value if we're negative.
934 APInt Tmp(isNeg ? -(*this) : (*this));
935
936 // Figure out how many bits we're using.
937 uint32_t n = Tmp.getActiveBits();
938
939 // The exponent (without bias normalization) is just the number of bits
940 // we are using. Note that the sign bit is gone since we constructed the
941 // absolute value.
942 uint64_t exp = n;
943
944 // Return infinity for exponent overflow
945 if (exp > 1023) {
946 if (!isSigned || !isNeg)
947 return std::numeric_limits<double>::infinity();
948 else
949 return -std::numeric_limits<double>::infinity();
950 }
951 exp += 1023; // Increment for 1023 bias
952
953 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
954 // extract the high 52 bits from the correct words in pVal.
955 uint64_t mantissa;
956 unsigned hiWord = whichWord(n-1);
957 if (hiWord == 0) {
958 mantissa = Tmp.pVal[0];
959 if (n > 52)
960 mantissa >>= n - 52; // shift down, we want the top 52 bits.
961 } else {
962 assert(hiWord > 0 && "huh?");
963 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
964 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
965 mantissa = hibits | lobits;
966 }
967
968 // The leading bit of mantissa is implicit, so get rid of it.
969 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
970 union {
971 double D;
972 uint64_t I;
973 } T;
974 T.I = sign | (exp << 52) | mantissa;
975 return T.D;
976}
977
978// Truncate to new width.
979APInt &APInt::trunc(uint32_t width) {
980 assert(width < BitWidth && "Invalid APInt Truncate request");
Reid Spencera15c5012007-12-11 06:53:58 +0000981 assert(width >= MIN_INT_BITS && "Can't truncate to 0 bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 uint32_t wordsBefore = getNumWords();
983 BitWidth = width;
984 uint32_t wordsAfter = getNumWords();
985 if (wordsBefore != wordsAfter) {
986 if (wordsAfter == 1) {
987 uint64_t *tmp = pVal;
988 VAL = pVal[0];
989 delete [] tmp;
990 } else {
991 uint64_t *newVal = getClearedMemory(wordsAfter);
992 for (uint32_t i = 0; i < wordsAfter; ++i)
993 newVal[i] = pVal[i];
994 delete [] pVal;
995 pVal = newVal;
996 }
997 }
998 return clearUnusedBits();
999}
1000
1001// Sign extend to a new width.
1002APInt &APInt::sext(uint32_t width) {
1003 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +00001004 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 // If the sign bit isn't set, this is the same as zext.
1006 if (!isNegative()) {
1007 zext(width);
1008 return *this;
1009 }
1010
1011 // The sign bit is set. First, get some facts
1012 uint32_t wordsBefore = getNumWords();
1013 uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
1014 BitWidth = width;
1015 uint32_t wordsAfter = getNumWords();
1016
1017 // Mask the high order word appropriately
1018 if (wordsBefore == wordsAfter) {
1019 uint32_t newWordBits = width % APINT_BITS_PER_WORD;
1020 // The extension is contained to the wordsBefore-1th word.
1021 uint64_t mask = ~0ULL;
1022 if (newWordBits)
1023 mask >>= APINT_BITS_PER_WORD - newWordBits;
1024 mask <<= wordBits;
1025 if (wordsBefore == 1)
1026 VAL |= mask;
1027 else
1028 pVal[wordsBefore-1] |= mask;
1029 return clearUnusedBits();
1030 }
1031
1032 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1033 uint64_t *newVal = getMemory(wordsAfter);
1034 if (wordsBefore == 1)
1035 newVal[0] = VAL | mask;
1036 else {
1037 for (uint32_t i = 0; i < wordsBefore; ++i)
1038 newVal[i] = pVal[i];
1039 newVal[wordsBefore-1] |= mask;
1040 }
1041 for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1042 newVal[i] = -1ULL;
1043 if (wordsBefore != 1)
1044 delete [] pVal;
1045 pVal = newVal;
1046 return clearUnusedBits();
1047}
1048
1049// Zero extend to a new width.
1050APInt &APInt::zext(uint32_t width) {
1051 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +00001052 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 uint32_t wordsBefore = getNumWords();
1054 BitWidth = width;
1055 uint32_t wordsAfter = getNumWords();
1056 if (wordsBefore != wordsAfter) {
1057 uint64_t *newVal = getClearedMemory(wordsAfter);
1058 if (wordsBefore == 1)
1059 newVal[0] = VAL;
1060 else
1061 for (uint32_t i = 0; i < wordsBefore; ++i)
1062 newVal[i] = pVal[i];
1063 if (wordsBefore != 1)
1064 delete [] pVal;
1065 pVal = newVal;
1066 }
1067 return *this;
1068}
1069
1070APInt &APInt::zextOrTrunc(uint32_t width) {
1071 if (BitWidth < width)
1072 return zext(width);
1073 if (BitWidth > width)
1074 return trunc(width);
1075 return *this;
1076}
1077
1078APInt &APInt::sextOrTrunc(uint32_t width) {
1079 if (BitWidth < width)
1080 return sext(width);
1081 if (BitWidth > width)
1082 return trunc(width);
1083 return *this;
1084}
1085
1086/// Arithmetic right-shift this APInt by shiftAmt.
1087/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001088APInt APInt::ashr(const APInt &shiftAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001089 return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001090}
1091
1092/// Arithmetic right-shift this APInt by shiftAmt.
1093/// @brief Arithmetic right-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094APInt APInt::ashr(uint32_t shiftAmt) const {
1095 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1096 // Handle a degenerate case
1097 if (shiftAmt == 0)
1098 return *this;
1099
1100 // Handle single word shifts with built-in ashr
1101 if (isSingleWord()) {
1102 if (shiftAmt == BitWidth)
1103 return APInt(BitWidth, 0); // undefined
1104 else {
1105 uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1106 return APInt(BitWidth,
1107 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1108 }
1109 }
1110
1111 // If all the bits were shifted out, the result is, technically, undefined.
1112 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1113 // issues in the algorithm below.
1114 if (shiftAmt == BitWidth) {
1115 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001116 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001117 else
1118 return APInt(BitWidth, 0);
1119 }
1120
1121 // Create some space for the result.
1122 uint64_t * val = new uint64_t[getNumWords()];
1123
1124 // Compute some values needed by the following shift algorithms
1125 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1126 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1127 uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1128 uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1129 if (bitsInWord == 0)
1130 bitsInWord = APINT_BITS_PER_WORD;
1131
1132 // If we are shifting whole words, just move whole words
1133 if (wordShift == 0) {
1134 // Move the words containing significant bits
1135 for (uint32_t i = 0; i <= breakWord; ++i)
1136 val[i] = pVal[i+offset]; // move whole word
1137
1138 // Adjust the top significant word for sign bit fill, if negative
1139 if (isNegative())
1140 if (bitsInWord < APINT_BITS_PER_WORD)
1141 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1142 } else {
1143 // Shift the low order words
1144 for (uint32_t i = 0; i < breakWord; ++i) {
1145 // This combines the shifted corresponding word with the low bits from
1146 // the next word (shifted into this word's high bits).
1147 val[i] = (pVal[i+offset] >> wordShift) |
1148 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1149 }
1150
1151 // Shift the break word. In this case there are no bits from the next word
1152 // to include in this word.
1153 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1154
1155 // Deal with sign extenstion in the break word, and possibly the word before
1156 // it.
1157 if (isNegative()) {
1158 if (wordShift > bitsInWord) {
1159 if (breakWord > 0)
1160 val[breakWord-1] |=
1161 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1162 val[breakWord] |= ~0ULL;
1163 } else
1164 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1165 }
1166 }
1167
1168 // Remaining words are 0 or -1, just assign them.
1169 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1170 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1171 val[i] = fillValue;
1172 return APInt(val, BitWidth).clearUnusedBits();
1173}
1174
1175/// Logical right-shift this APInt by shiftAmt.
1176/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001177APInt APInt::lshr(const APInt &shiftAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001178 return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001179}
1180
1181/// Logical right-shift this APInt by shiftAmt.
1182/// @brief Logical right-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001183APInt APInt::lshr(uint32_t shiftAmt) const {
1184 if (isSingleWord()) {
1185 if (shiftAmt == BitWidth)
1186 return APInt(BitWidth, 0);
1187 else
1188 return APInt(BitWidth, this->VAL >> shiftAmt);
1189 }
1190
1191 // If all the bits were shifted out, the result is 0. This avoids issues
1192 // with shifting by the size of the integer type, which produces undefined
1193 // results. We define these "undefined results" to always be 0.
1194 if (shiftAmt == BitWidth)
1195 return APInt(BitWidth, 0);
1196
1197 // If none of the bits are shifted out, the result is *this. This avoids
1198 // issues with shifting byt he size of the integer type, which produces
1199 // undefined results in the code below. This is also an optimization.
1200 if (shiftAmt == 0)
1201 return *this;
1202
1203 // Create some space for the result.
1204 uint64_t * val = new uint64_t[getNumWords()];
1205
1206 // If we are shifting less than a word, compute the shift with a simple carry
1207 if (shiftAmt < APINT_BITS_PER_WORD) {
1208 uint64_t carry = 0;
1209 for (int i = getNumWords()-1; i >= 0; --i) {
1210 val[i] = (pVal[i] >> shiftAmt) | carry;
1211 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1212 }
1213 return APInt(val, BitWidth).clearUnusedBits();
1214 }
1215
1216 // Compute some values needed by the remaining shift algorithms
1217 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1218 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1219
1220 // If we are shifting whole words, just move whole words
1221 if (wordShift == 0) {
1222 for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1223 val[i] = pVal[i+offset];
1224 for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1225 val[i] = 0;
1226 return APInt(val,BitWidth).clearUnusedBits();
1227 }
1228
1229 // Shift the low order words
1230 uint32_t breakWord = getNumWords() - offset -1;
1231 for (uint32_t i = 0; i < breakWord; ++i)
1232 val[i] = (pVal[i+offset] >> wordShift) |
1233 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1234 // Shift the break word.
1235 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1236
1237 // Remaining words are 0
1238 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1239 val[i] = 0;
1240 return APInt(val, BitWidth).clearUnusedBits();
1241}
1242
1243/// Left-shift this APInt by shiftAmt.
1244/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001245APInt APInt::shl(const APInt &shiftAmt) const {
1246 // It's undefined behavior in C to shift by BitWidth or greater, but
Evan Cheng279e2c42008-05-02 21:15:08 +00001247 return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001248}
1249
1250/// Left-shift this APInt by shiftAmt.
1251/// @brief Left-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252APInt APInt::shl(uint32_t shiftAmt) const {
1253 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1254 if (isSingleWord()) {
1255 if (shiftAmt == BitWidth)
1256 return APInt(BitWidth, 0); // avoid undefined shift results
1257 return APInt(BitWidth, VAL << shiftAmt);
1258 }
1259
1260 // If all the bits were shifted out, the result is 0. This avoids issues
1261 // with shifting by the size of the integer type, which produces undefined
1262 // results. We define these "undefined results" to always be 0.
1263 if (shiftAmt == BitWidth)
1264 return APInt(BitWidth, 0);
1265
1266 // If none of the bits are shifted out, the result is *this. This avoids a
1267 // lshr by the words size in the loop below which can produce incorrect
1268 // results. It also avoids the expensive computation below for a common case.
1269 if (shiftAmt == 0)
1270 return *this;
1271
1272 // Create some space for the result.
1273 uint64_t * val = new uint64_t[getNumWords()];
1274
1275 // If we are shifting less than a word, do it the easy way
1276 if (shiftAmt < APINT_BITS_PER_WORD) {
1277 uint64_t carry = 0;
1278 for (uint32_t i = 0; i < getNumWords(); i++) {
1279 val[i] = pVal[i] << shiftAmt | carry;
1280 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1281 }
1282 return APInt(val, BitWidth).clearUnusedBits();
1283 }
1284
1285 // Compute some values needed by the remaining shift algorithms
1286 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1287 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1288
1289 // If we are shifting whole words, just move whole words
1290 if (wordShift == 0) {
1291 for (uint32_t i = 0; i < offset; i++)
1292 val[i] = 0;
1293 for (uint32_t i = offset; i < getNumWords(); i++)
1294 val[i] = pVal[i-offset];
1295 return APInt(val,BitWidth).clearUnusedBits();
1296 }
1297
1298 // Copy whole words from this to Result.
1299 uint32_t i = getNumWords() - 1;
1300 for (; i > offset; --i)
1301 val[i] = pVal[i-offset] << wordShift |
1302 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1303 val[offset] = pVal[0] << wordShift;
1304 for (i = 0; i < offset; ++i)
1305 val[i] = 0;
1306 return APInt(val, BitWidth).clearUnusedBits();
1307}
1308
Dan Gohman625ff8d2008-02-29 01:40:47 +00001309APInt APInt::rotl(const APInt &rotateAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001310 return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001311}
1312
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313APInt APInt::rotl(uint32_t rotateAmt) const {
1314 if (rotateAmt == 0)
1315 return *this;
1316 // Don't get too fancy, just use existing shift/or facilities
1317 APInt hi(*this);
1318 APInt lo(*this);
1319 hi.shl(rotateAmt);
1320 lo.lshr(BitWidth - rotateAmt);
1321 return hi | lo;
1322}
1323
Dan Gohman625ff8d2008-02-29 01:40:47 +00001324APInt APInt::rotr(const APInt &rotateAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001325 return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001326}
1327
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328APInt APInt::rotr(uint32_t rotateAmt) const {
1329 if (rotateAmt == 0)
1330 return *this;
1331 // Don't get too fancy, just use existing shift/or facilities
1332 APInt hi(*this);
1333 APInt lo(*this);
1334 lo.lshr(rotateAmt);
1335 hi.shl(BitWidth - rotateAmt);
1336 return hi | lo;
1337}
1338
1339// Square Root - this method computes and returns the square root of "this".
1340// Three mechanisms are used for computation. For small values (<= 5 bits),
1341// a table lookup is done. This gets some performance for common cases. For
1342// values using less than 52 bits, the value is converted to double and then
1343// the libc sqrt function is called. The result is rounded and then converted
1344// back to a uint64_t which is then used to construct the result. Finally,
1345// the Babylonian method for computing square roots is used.
1346APInt APInt::sqrt() const {
1347
1348 // Determine the magnitude of the value.
1349 uint32_t magnitude = getActiveBits();
1350
1351 // Use a fast table for some small values. This also gets rid of some
1352 // rounding errors in libc sqrt for small values.
1353 if (magnitude <= 5) {
1354 static const uint8_t results[32] = {
1355 /* 0 */ 0,
1356 /* 1- 2 */ 1, 1,
1357 /* 3- 6 */ 2, 2, 2, 2,
1358 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1359 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1360 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1361 /* 31 */ 6
1362 };
1363 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1364 }
1365
1366 // If the magnitude of the value fits in less than 52 bits (the precision of
1367 // an IEEE double precision floating point value), then we can use the
1368 // libc sqrt function which will probably use a hardware sqrt computation.
1369 // This should be faster than the algorithm below.
1370 if (magnitude < 52) {
1371#ifdef _MSC_VER
1372 // Amazingly, VC++ doesn't have round().
1373 return APInt(BitWidth,
1374 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1375#else
1376 return APInt(BitWidth,
1377 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1378#endif
1379 }
1380
1381 // Okay, all the short cuts are exhausted. We must compute it. The following
1382 // is a classical Babylonian method for computing the square root. This code
1383 // was adapted to APINt from a wikipedia article on such computations.
1384 // See http://www.wikipedia.org/ and go to the page named
1385 // Calculate_an_integer_square_root.
1386 uint32_t nbits = BitWidth, i = 4;
1387 APInt testy(BitWidth, 16);
1388 APInt x_old(BitWidth, 1);
1389 APInt x_new(BitWidth, 0);
1390 APInt two(BitWidth, 2);
1391
1392 // Select a good starting value using binary logarithms.
1393 for (;; i += 2, testy = testy.shl(2))
1394 if (i >= nbits || this->ule(testy)) {
1395 x_old = x_old.shl(i / 2);
1396 break;
1397 }
1398
1399 // Use the Babylonian method to arrive at the integer square root:
1400 for (;;) {
1401 x_new = (this->udiv(x_old) + x_old).udiv(two);
1402 if (x_old.ule(x_new))
1403 break;
1404 x_old = x_new;
1405 }
1406
1407 // Make sure we return the closest approximation
1408 // NOTE: The rounding calculation below is correct. It will produce an
1409 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1410 // determined to be a rounding issue with pari/gp as it begins to use a
1411 // floating point representation after 192 bits. There are no discrepancies
1412 // between this algorithm and pari/gp for bit widths < 192 bits.
1413 APInt square(x_old * x_old);
1414 APInt nextSquare((x_old + 1) * (x_old +1));
1415 if (this->ult(square))
1416 return x_old;
1417 else if (this->ule(nextSquare)) {
1418 APInt midpoint((nextSquare - square).udiv(two));
1419 APInt offset(*this - square);
1420 if (offset.ult(midpoint))
1421 return x_old;
1422 else
1423 return x_old + 1;
1424 } else
1425 assert(0 && "Error in APInt::sqrt computation");
1426 return x_old + 1;
1427}
1428
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001429/// Computes the multiplicative inverse of this APInt for a given modulo. The
1430/// iterative extended Euclidean algorithm is used to solve for this value,
1431/// however we simplify it to speed up calculating only the inverse, and take
1432/// advantage of div+rem calculations. We also use some tricks to avoid copying
1433/// (potentially large) APInts around.
1434APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1435 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1436
1437 // Using the properties listed at the following web page (accessed 06/21/08):
1438 // http://www.numbertheory.org/php/euclid.html
1439 // (especially the properties numbered 3, 4 and 9) it can be proved that
1440 // BitWidth bits suffice for all the computations in the algorithm implemented
1441 // below. More precisely, this number of bits suffice if the multiplicative
1442 // inverse exists, but may not suffice for the general extended Euclidean
1443 // algorithm.
1444
1445 APInt r[2] = { modulo, *this };
1446 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1447 APInt q(BitWidth, 0);
1448
1449 unsigned i;
1450 for (i = 0; r[i^1] != 0; i ^= 1) {
1451 // An overview of the math without the confusing bit-flipping:
1452 // q = r[i-2] / r[i-1]
1453 // r[i] = r[i-2] % r[i-1]
1454 // t[i] = t[i-2] - t[i-1] * q
1455 udivrem(r[i], r[i^1], q, r[i]);
1456 t[i] -= t[i^1] * q;
1457 }
1458
1459 // If this APInt and the modulo are not coprime, there is no multiplicative
1460 // inverse, so return 0. We check this by looking at the next-to-last
1461 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1462 // algorithm.
1463 if (r[i] != 1)
1464 return APInt(BitWidth, 0);
1465
1466 // The next-to-last t is the multiplicative inverse. However, we are
1467 // interested in a positive inverse. Calcuate a positive one from a negative
1468 // one if necessary. A simple addition of the modulo suffices because
1469 // abs(t[i]) is known to less than *this/2 (see the link above).
1470 return t[i].isNegative() ? t[i] + modulo : t[i];
1471}
1472
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1474/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1475/// variables here have the same names as in the algorithm. Comments explain
1476/// the algorithm and any deviation from it.
1477static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1478 uint32_t m, uint32_t n) {
1479 assert(u && "Must provide dividend");
1480 assert(v && "Must provide divisor");
1481 assert(q && "Must provide quotient");
1482 assert(u != v && u != q && v != q && "Must us different memory");
1483 assert(n>1 && "n must be > 1");
1484
1485 // Knuth uses the value b as the base of the number system. In our case b
1486 // is 2^31 so we just set it to -1u.
1487 uint64_t b = uint64_t(1) << 32;
1488
1489 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1490 DEBUG(cerr << "KnuthDiv: original:");
1491 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1492 DEBUG(cerr << " by");
1493 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1494 DEBUG(cerr << '\n');
1495 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1496 // u and v by d. Note that we have taken Knuth's advice here to use a power
1497 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1498 // 2 allows us to shift instead of multiply and it is easy to determine the
1499 // shift amount from the leading zeros. We are basically normalizing the u
1500 // and v so that its high bits are shifted to the top of v's range without
1501 // overflow. Note that this can require an extra word in u so that u must
1502 // be of length m+n+1.
1503 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1504 uint32_t v_carry = 0;
1505 uint32_t u_carry = 0;
1506 if (shift) {
1507 for (uint32_t i = 0; i < m+n; ++i) {
1508 uint32_t u_tmp = u[i] >> (32 - shift);
1509 u[i] = (u[i] << shift) | u_carry;
1510 u_carry = u_tmp;
1511 }
1512 for (uint32_t i = 0; i < n; ++i) {
1513 uint32_t v_tmp = v[i] >> (32 - shift);
1514 v[i] = (v[i] << shift) | v_carry;
1515 v_carry = v_tmp;
1516 }
1517 }
1518 u[m+n] = u_carry;
1519 DEBUG(cerr << "KnuthDiv: normal:");
1520 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1521 DEBUG(cerr << " by");
1522 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1523 DEBUG(cerr << '\n');
1524
1525 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1526 int j = m;
1527 do {
1528 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1529 // D3. [Calculate q'.].
1530 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1531 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1532 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1533 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1534 // on v[n-2] determines at high speed most of the cases in which the trial
1535 // value qp is one too large, and it eliminates all cases where qp is two
1536 // too large.
1537 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1538 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1539 uint64_t qp = dividend / v[n-1];
1540 uint64_t rp = dividend % v[n-1];
1541 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1542 qp--;
1543 rp += v[n-1];
1544 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1545 qp--;
1546 }
1547 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1548
1549 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1550 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1551 // consists of a simple multiplication by a one-place number, combined with
1552 // a subtraction.
1553 bool isNeg = false;
1554 for (uint32_t i = 0; i < n; ++i) {
1555 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1556 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1557 bool borrow = subtrahend > u_tmp;
1558 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1559 << ", subtrahend == " << subtrahend
1560 << ", borrow = " << borrow << '\n');
1561
1562 uint64_t result = u_tmp - subtrahend;
1563 uint32_t k = j + i;
Evan Cheng279e2c42008-05-02 21:15:08 +00001564 u[k++] = (uint32_t)(result & (b-1)); // subtract low word
1565 u[k++] = (uint32_t)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001566 while (borrow && k <= m+n) { // deal with borrow to the left
1567 borrow = u[k] == 0;
1568 u[k]--;
1569 k++;
1570 }
1571 isNeg |= borrow;
1572 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1573 u[j+i+1] << '\n');
1574 }
1575 DEBUG(cerr << "KnuthDiv: after subtraction:");
1576 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1577 DEBUG(cerr << '\n');
1578 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1579 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1580 // true value plus b**(n+1), namely as the b's complement of
1581 // the true value, and a "borrow" to the left should be remembered.
1582 //
1583 if (isNeg) {
1584 bool carry = true; // true because b's complement is "complement + 1"
1585 for (uint32_t i = 0; i <= m+n; ++i) {
1586 u[i] = ~u[i] + carry; // b's complement
1587 carry = carry && u[i] == 0;
1588 }
1589 }
1590 DEBUG(cerr << "KnuthDiv: after complement:");
1591 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1592 DEBUG(cerr << '\n');
1593
1594 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1595 // negative, go to step D6; otherwise go on to step D7.
Evan Cheng279e2c42008-05-02 21:15:08 +00001596 q[j] = (uint32_t)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001597 if (isNeg) {
1598 // D6. [Add back]. The probability that this step is necessary is very
1599 // small, on the order of only 2/b. Make sure that test data accounts for
1600 // this possibility. Decrease q[j] by 1
1601 q[j]--;
1602 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1603 // A carry will occur to the left of u[j+n], and it should be ignored
1604 // since it cancels with the borrow that occurred in D4.
1605 bool carry = false;
1606 for (uint32_t i = 0; i < n; i++) {
1607 uint32_t limit = std::min(u[j+i],v[i]);
1608 u[j+i] += v[i] + carry;
1609 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1610 }
1611 u[j+n] += carry;
1612 }
1613 DEBUG(cerr << "KnuthDiv: after correction:");
1614 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1615 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1616
1617 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1618 } while (--j >= 0);
1619
1620 DEBUG(cerr << "KnuthDiv: quotient:");
1621 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1622 DEBUG(cerr << '\n');
1623
1624 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1625 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1626 // compute the remainder (urem uses this).
1627 if (r) {
1628 // The value d is expressed by the "shift" value above since we avoided
1629 // multiplication by d by using a shift left. So, all we have to do is
1630 // shift right here. In order to mak
1631 if (shift) {
1632 uint32_t carry = 0;
1633 DEBUG(cerr << "KnuthDiv: remainder:");
1634 for (int i = n-1; i >= 0; i--) {
1635 r[i] = (u[i] >> shift) | carry;
1636 carry = u[i] << (32 - shift);
1637 DEBUG(cerr << " " << r[i]);
1638 }
1639 } else {
1640 for (int i = n-1; i >= 0; i--) {
1641 r[i] = u[i];
1642 DEBUG(cerr << " " << r[i]);
1643 }
1644 }
1645 DEBUG(cerr << '\n');
1646 }
1647 DEBUG(cerr << std::setbase(10) << '\n');
1648}
1649
1650void APInt::divide(const APInt LHS, uint32_t lhsWords,
1651 const APInt &RHS, uint32_t rhsWords,
1652 APInt *Quotient, APInt *Remainder)
1653{
1654 assert(lhsWords >= rhsWords && "Fractional result");
1655
1656 // First, compose the values into an array of 32-bit words instead of
1657 // 64-bit words. This is a necessity of both the "short division" algorithm
1658 // and the the Knuth "classical algorithm" which requires there to be native
1659 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1660 // can't use 64-bit operands here because we don't have native results of
1661 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1662 // work on large-endian machines.
1663 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1664 uint32_t n = rhsWords * 2;
1665 uint32_t m = (lhsWords * 2) - n;
1666
1667 // Allocate space for the temporary values we need either on the stack, if
1668 // it will fit, or on the heap if it won't.
1669 uint32_t SPACE[128];
1670 uint32_t *U = 0;
1671 uint32_t *V = 0;
1672 uint32_t *Q = 0;
1673 uint32_t *R = 0;
1674 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1675 U = &SPACE[0];
1676 V = &SPACE[m+n+1];
1677 Q = &SPACE[(m+n+1) + n];
1678 if (Remainder)
1679 R = &SPACE[(m+n+1) + n + (m+n)];
1680 } else {
1681 U = new uint32_t[m + n + 1];
1682 V = new uint32_t[n];
1683 Q = new uint32_t[m+n];
1684 if (Remainder)
1685 R = new uint32_t[n];
1686 }
1687
1688 // Initialize the dividend
1689 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1690 for (unsigned i = 0; i < lhsWords; ++i) {
1691 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Evan Cheng279e2c42008-05-02 21:15:08 +00001692 U[i * 2] = (uint32_t)(tmp & mask);
1693 U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001694 }
1695 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1696
1697 // Initialize the divisor
1698 memset(V, 0, (n)*sizeof(uint32_t));
1699 for (unsigned i = 0; i < rhsWords; ++i) {
1700 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Evan Cheng279e2c42008-05-02 21:15:08 +00001701 V[i * 2] = (uint32_t)(tmp & mask);
1702 V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001703 }
1704
1705 // initialize the quotient and remainder
1706 memset(Q, 0, (m+n) * sizeof(uint32_t));
1707 if (Remainder)
1708 memset(R, 0, n * sizeof(uint32_t));
1709
1710 // Now, adjust m and n for the Knuth division. n is the number of words in
1711 // the divisor. m is the number of words by which the dividend exceeds the
1712 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1713 // contain any zero words or the Knuth algorithm fails.
1714 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1715 n--;
1716 m++;
1717 }
1718 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1719 m--;
1720
1721 // If we're left with only a single word for the divisor, Knuth doesn't work
1722 // so we implement the short division algorithm here. This is much simpler
1723 // and faster because we are certain that we can divide a 64-bit quantity
1724 // by a 32-bit quantity at hardware speed and short division is simply a
1725 // series of such operations. This is just like doing short division but we
1726 // are using base 2^32 instead of base 10.
1727 assert(n != 0 && "Divide by zero?");
1728 if (n == 1) {
1729 uint32_t divisor = V[0];
1730 uint32_t remainder = 0;
1731 for (int i = m+n-1; i >= 0; i--) {
1732 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1733 if (partial_dividend == 0) {
1734 Q[i] = 0;
1735 remainder = 0;
1736 } else if (partial_dividend < divisor) {
1737 Q[i] = 0;
Evan Cheng279e2c42008-05-02 21:15:08 +00001738 remainder = (uint32_t)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001739 } else if (partial_dividend == divisor) {
1740 Q[i] = 1;
1741 remainder = 0;
1742 } else {
Evan Cheng279e2c42008-05-02 21:15:08 +00001743 Q[i] = (uint32_t)(partial_dividend / divisor);
1744 remainder = (uint32_t)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001745 }
1746 }
1747 if (R)
1748 R[0] = remainder;
1749 } else {
1750 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1751 // case n > 1.
1752 KnuthDiv(U, V, Q, R, m, n);
1753 }
1754
1755 // If the caller wants the quotient
1756 if (Quotient) {
1757 // Set up the Quotient value's memory.
1758 if (Quotient->BitWidth != LHS.BitWidth) {
1759 if (Quotient->isSingleWord())
1760 Quotient->VAL = 0;
1761 else
1762 delete [] Quotient->pVal;
1763 Quotient->BitWidth = LHS.BitWidth;
1764 if (!Quotient->isSingleWord())
1765 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1766 } else
1767 Quotient->clear();
1768
1769 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1770 // order words.
1771 if (lhsWords == 1) {
1772 uint64_t tmp =
1773 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1774 if (Quotient->isSingleWord())
1775 Quotient->VAL = tmp;
1776 else
1777 Quotient->pVal[0] = tmp;
1778 } else {
1779 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1780 for (unsigned i = 0; i < lhsWords; ++i)
1781 Quotient->pVal[i] =
1782 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1783 }
1784 }
1785
1786 // If the caller wants the remainder
1787 if (Remainder) {
1788 // Set up the Remainder value's memory.
1789 if (Remainder->BitWidth != RHS.BitWidth) {
1790 if (Remainder->isSingleWord())
1791 Remainder->VAL = 0;
1792 else
1793 delete [] Remainder->pVal;
1794 Remainder->BitWidth = RHS.BitWidth;
1795 if (!Remainder->isSingleWord())
1796 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1797 } else
1798 Remainder->clear();
1799
1800 // The remainder is in R. Reconstitute the remainder into Remainder's low
1801 // order words.
1802 if (rhsWords == 1) {
1803 uint64_t tmp =
1804 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1805 if (Remainder->isSingleWord())
1806 Remainder->VAL = tmp;
1807 else
1808 Remainder->pVal[0] = tmp;
1809 } else {
1810 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1811 for (unsigned i = 0; i < rhsWords; ++i)
1812 Remainder->pVal[i] =
1813 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1814 }
1815 }
1816
1817 // Clean up the memory we allocated.
1818 if (U != &SPACE[0]) {
1819 delete [] U;
1820 delete [] V;
1821 delete [] Q;
1822 delete [] R;
1823 }
1824}
1825
1826APInt APInt::udiv(const APInt& RHS) const {
1827 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1828
1829 // First, deal with the easy case
1830 if (isSingleWord()) {
1831 assert(RHS.VAL != 0 && "Divide by zero?");
1832 return APInt(BitWidth, VAL / RHS.VAL);
1833 }
1834
1835 // Get some facts about the LHS and RHS number of bits and words
1836 uint32_t rhsBits = RHS.getActiveBits();
1837 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1838 assert(rhsWords && "Divided by zero???");
1839 uint32_t lhsBits = this->getActiveBits();
1840 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1841
1842 // Deal with some degenerate cases
1843 if (!lhsWords)
1844 // 0 / X ===> 0
1845 return APInt(BitWidth, 0);
1846 else if (lhsWords < rhsWords || this->ult(RHS)) {
1847 // X / Y ===> 0, iff X < Y
1848 return APInt(BitWidth, 0);
1849 } else if (*this == RHS) {
1850 // X / X ===> 1
1851 return APInt(BitWidth, 1);
1852 } else if (lhsWords == 1 && rhsWords == 1) {
1853 // All high words are zero, just use native divide
1854 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1855 }
1856
1857 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1858 APInt Quotient(1,0); // to hold result.
1859 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1860 return Quotient;
1861}
1862
1863APInt APInt::urem(const APInt& RHS) const {
1864 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1865 if (isSingleWord()) {
1866 assert(RHS.VAL != 0 && "Remainder by zero?");
1867 return APInt(BitWidth, VAL % RHS.VAL);
1868 }
1869
1870 // Get some facts about the LHS
1871 uint32_t lhsBits = getActiveBits();
1872 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1873
1874 // Get some facts about the RHS
1875 uint32_t rhsBits = RHS.getActiveBits();
1876 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1877 assert(rhsWords && "Performing remainder operation by zero ???");
1878
1879 // Check the degenerate cases
1880 if (lhsWords == 0) {
1881 // 0 % Y ===> 0
1882 return APInt(BitWidth, 0);
1883 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1884 // X % Y ===> X, iff X < Y
1885 return *this;
1886 } else if (*this == RHS) {
1887 // X % X == 0;
1888 return APInt(BitWidth, 0);
1889 } else if (lhsWords == 1) {
1890 // All high words are zero, just use native remainder
1891 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1892 }
1893
1894 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1895 APInt Remainder(1,0);
1896 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1897 return Remainder;
1898}
1899
1900void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1901 APInt &Quotient, APInt &Remainder) {
1902 // Get some size facts about the dividend and divisor
1903 uint32_t lhsBits = LHS.getActiveBits();
1904 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1905 uint32_t rhsBits = RHS.getActiveBits();
1906 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1907
1908 // Check the degenerate cases
1909 if (lhsWords == 0) {
1910 Quotient = 0; // 0 / Y ===> 0
1911 Remainder = 0; // 0 % Y ===> 0
1912 return;
1913 }
1914
1915 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1916 Quotient = 0; // X / Y ===> 0, iff X < Y
1917 Remainder = LHS; // X % Y ===> X, iff X < Y
1918 return;
1919 }
1920
1921 if (LHS == RHS) {
1922 Quotient = 1; // X / X ===> 1
1923 Remainder = 0; // X % X ===> 0;
1924 return;
1925 }
1926
1927 if (lhsWords == 1 && rhsWords == 1) {
1928 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001929 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1930 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1931 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1932 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001933 return;
1934 }
1935
1936 // Okay, lets do it the long way
1937 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1938}
1939
1940void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1941 uint8_t radix) {
1942 // Check our assumptions here
1943 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1944 "Radix should be 2, 8, 10, or 16!");
1945 assert(str && "String is null?");
1946 bool isNeg = str[0] == '-';
1947 if (isNeg)
1948 str++, slen--;
1949 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1950 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1951 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1952 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1953
1954 // Allocate memory
1955 if (!isSingleWord())
1956 pVal = getClearedMemory(getNumWords());
1957
1958 // Figure out if we can shift instead of multiply
1959 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1960
1961 // Set up an APInt for the digit to add outside the loop so we don't
1962 // constantly construct/destruct it.
1963 APInt apdigit(getBitWidth(), 0);
1964 APInt apradix(getBitWidth(), radix);
1965
1966 // Enter digit traversal loop
1967 for (unsigned i = 0; i < slen; i++) {
1968 // Get a digit
1969 uint32_t digit = 0;
1970 char cdigit = str[i];
1971 if (radix == 16) {
1972 if (!isxdigit(cdigit))
1973 assert(0 && "Invalid hex digit in string");
1974 if (isdigit(cdigit))
1975 digit = cdigit - '0';
1976 else if (cdigit >= 'a')
1977 digit = cdigit - 'a' + 10;
1978 else if (cdigit >= 'A')
1979 digit = cdigit - 'A' + 10;
1980 else
1981 assert(0 && "huh? we shouldn't get here");
1982 } else if (isdigit(cdigit)) {
1983 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00001984 assert((radix == 10 ||
1985 (radix == 8 && digit != 8 && digit != 9) ||
1986 (radix == 2 && (digit == 0 || digit == 1))) &&
1987 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988 } else {
1989 assert(0 && "Invalid character in digit string");
1990 }
1991
1992 // Shift or multiply the value by the radix
1993 if (shift)
1994 *this <<= shift;
1995 else
1996 *this *= apradix;
1997
1998 // Add in the digit we just interpreted
1999 if (apdigit.isSingleWord())
2000 apdigit.VAL = digit;
2001 else
2002 apdigit.pVal[0] = digit;
2003 *this += apdigit;
2004 }
2005 // If its negative, put it in two's complement form
2006 if (isNeg) {
2007 (*this)--;
2008 this->flip();
2009 }
2010}
2011
2012std::string APInt::toString(uint8_t radix, bool wantSigned) const {
2013 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2014 "Radix should be 2, 8, 10, or 16!");
Dan Gohman12300e12008-03-25 21:45:14 +00002015 static const char *const digits[] = {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002016 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
2017 };
2018 std::string result;
2019 uint32_t bits_used = getActiveBits();
2020 if (isSingleWord()) {
2021 char buf[65];
2022 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
2023 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
2024 if (format) {
2025 if (wantSigned) {
2026 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
2027 (APINT_BITS_PER_WORD-BitWidth);
2028 sprintf(buf, format, sextVal);
2029 } else
2030 sprintf(buf, format, VAL);
2031 } else {
2032 memset(buf, 0, 65);
2033 uint64_t v = VAL;
2034 while (bits_used) {
Evan Cheng279e2c42008-05-02 21:15:08 +00002035 uint32_t bit = (uint32_t)v & 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002036 bits_used--;
2037 buf[bits_used] = digits[bit][0];
2038 v >>=1;
2039 }
2040 }
2041 result = buf;
2042 return result;
2043 }
2044
2045 if (radix != 10) {
2046 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2047 // because the number of bits per digit (1,3 and 4 respectively) divides
2048 // equaly. We just shift until there value is zero.
2049
2050 // First, check for a zero value and just short circuit the logic below.
2051 if (*this == 0)
2052 result = "0";
2053 else {
2054 APInt tmp(*this);
2055 size_t insert_at = 0;
2056 if (wantSigned && this->isNegative()) {
2057 // They want to print the signed version and it is a negative value
2058 // Flip the bits and add one to turn it into the equivalent positive
2059 // value and put a '-' in the result.
2060 tmp.flip();
2061 tmp++;
2062 result = "-";
2063 insert_at = 1;
2064 }
2065 // Just shift tmp right for each digit width until it becomes zero
2066 uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
2067 uint64_t mask = radix - 1;
2068 APInt zero(tmp.getBitWidth(), 0);
2069 while (tmp.ne(zero)) {
Evan Cheng279e2c42008-05-02 21:15:08 +00002070 unsigned digit =
2071 (unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002072 result.insert(insert_at, digits[digit]);
2073 tmp = tmp.lshr(shift);
2074 }
2075 }
2076 return result;
2077 }
2078
2079 APInt tmp(*this);
2080 APInt divisor(4, radix);
2081 APInt zero(tmp.getBitWidth(), 0);
2082 size_t insert_at = 0;
2083 if (wantSigned && tmp[BitWidth-1]) {
2084 // They want to print the signed version and it is a negative value
2085 // Flip the bits and add one to turn it into the equivalent positive
2086 // value and put a '-' in the result.
2087 tmp.flip();
2088 tmp++;
2089 result = "-";
2090 insert_at = 1;
2091 }
Dan Gohmanb24eb902008-06-21 22:03:12 +00002092 if (tmp == zero)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002093 result = "0";
2094 else while (tmp.ne(zero)) {
2095 APInt APdigit(1,0);
2096 APInt tmp2(tmp.getBitWidth(), 0);
2097 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2098 &APdigit);
Evan Cheng279e2c42008-05-02 21:15:08 +00002099 uint32_t digit = (uint32_t)APdigit.getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002100 assert(digit < radix && "divide failed");
2101 result.insert(insert_at,digits[digit]);
2102 tmp = tmp2;
2103 }
2104
2105 return result;
2106}
2107
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108void APInt::dump() const
2109{
2110 cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
2111 if (isSingleWord())
2112 cerr << VAL;
2113 else for (unsigned i = getNumWords(); i > 0; i--) {
2114 cerr << pVal[i-1] << " ";
2115 }
Chris Lattner9b502d42007-08-23 05:15:32 +00002116 cerr << " U(" << this->toStringUnsigned(10) << ") S("
Dale Johannesen2fc20782007-09-14 22:26:36 +00002117 << this->toStringSigned(10) << ")" << std::setbase(10);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002118}
Chris Lattner73cde982007-08-16 15:56:55 +00002119
2120// This implements a variety of operations on a representation of
2121// arbitrary precision, two's-complement, bignum integer values.
2122
2123/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2124 and unrestricting assumption. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002125COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002126
2127/* Some handy functions local to this file. */
2128namespace {
2129
Chris Lattnerdb80e212007-08-20 22:49:32 +00002130 /* Returns the integer part with the least significant BITS set.
2131 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002132 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002133 lowBitMask(unsigned int bits)
2134 {
2135 assert (bits != 0 && bits <= integerPartWidth);
2136
2137 return ~(integerPart) 0 >> (integerPartWidth - bits);
2138 }
2139
Neil Booth58ffb232007-10-06 00:43:45 +00002140 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002141 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002142 lowHalf(integerPart part)
2143 {
2144 return part & lowBitMask(integerPartWidth / 2);
2145 }
2146
Neil Booth58ffb232007-10-06 00:43:45 +00002147 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002148 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002149 highHalf(integerPart part)
2150 {
2151 return part >> (integerPartWidth / 2);
2152 }
2153
Neil Booth58ffb232007-10-06 00:43:45 +00002154 /* Returns the bit number of the most significant set bit of a part.
2155 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002156 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002157 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002158 {
2159 unsigned int n, msb;
2160
2161 if (value == 0)
2162 return -1U;
2163
2164 n = integerPartWidth / 2;
2165
2166 msb = 0;
2167 do {
2168 if (value >> n) {
2169 value >>= n;
2170 msb += n;
2171 }
2172
2173 n >>= 1;
2174 } while (n);
2175
2176 return msb;
2177 }
2178
Neil Booth58ffb232007-10-06 00:43:45 +00002179 /* Returns the bit number of the least significant set bit of a
2180 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002181 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002182 partLSB(integerPart value)
2183 {
2184 unsigned int n, lsb;
2185
2186 if (value == 0)
2187 return -1U;
2188
2189 lsb = integerPartWidth - 1;
2190 n = integerPartWidth / 2;
2191
2192 do {
2193 if (value << n) {
2194 value <<= n;
2195 lsb -= n;
2196 }
2197
2198 n >>= 1;
2199 } while (n);
2200
2201 return lsb;
2202 }
2203}
2204
2205/* Sets the least significant part of a bignum to the input value, and
2206 zeroes out higher parts. */
2207void
2208APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2209{
2210 unsigned int i;
2211
Neil Bootha0f524a2007-10-08 13:47:12 +00002212 assert (parts > 0);
2213
Chris Lattner73cde982007-08-16 15:56:55 +00002214 dst[0] = part;
2215 for(i = 1; i < parts; i++)
2216 dst[i] = 0;
2217}
2218
2219/* Assign one bignum to another. */
2220void
2221APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2222{
2223 unsigned int i;
2224
2225 for(i = 0; i < parts; i++)
2226 dst[i] = src[i];
2227}
2228
2229/* Returns true if a bignum is zero, false otherwise. */
2230bool
2231APInt::tcIsZero(const integerPart *src, unsigned int parts)
2232{
2233 unsigned int i;
2234
2235 for(i = 0; i < parts; i++)
2236 if (src[i])
2237 return false;
2238
2239 return true;
2240}
2241
2242/* Extract the given bit of a bignum; returns 0 or 1. */
2243int
2244APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2245{
2246 return(parts[bit / integerPartWidth]
2247 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2248}
2249
2250/* Set the given bit of a bignum. */
2251void
2252APInt::tcSetBit(integerPart *parts, unsigned int bit)
2253{
2254 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2255}
2256
Neil Booth58ffb232007-10-06 00:43:45 +00002257/* Returns the bit number of the least significant set bit of a
2258 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002259unsigned int
2260APInt::tcLSB(const integerPart *parts, unsigned int n)
2261{
2262 unsigned int i, lsb;
2263
2264 for(i = 0; i < n; i++) {
2265 if (parts[i] != 0) {
2266 lsb = partLSB(parts[i]);
2267
2268 return lsb + i * integerPartWidth;
2269 }
2270 }
2271
2272 return -1U;
2273}
2274
Neil Booth58ffb232007-10-06 00:43:45 +00002275/* Returns the bit number of the most significant set bit of a number.
2276 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002277unsigned int
2278APInt::tcMSB(const integerPart *parts, unsigned int n)
2279{
2280 unsigned int msb;
2281
2282 do {
2283 --n;
2284
2285 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002286 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002287
2288 return msb + n * integerPartWidth;
2289 }
2290 } while (n);
2291
2292 return -1U;
2293}
2294
Neil Bootha0f524a2007-10-08 13:47:12 +00002295/* Copy the bit vector of width srcBITS from SRC, starting at bit
2296 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2297 the least significant bit of DST. All high bits above srcBITS in
2298 DST are zero-filled. */
2299void
2300APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2301 unsigned int srcBits, unsigned int srcLSB)
2302{
2303 unsigned int firstSrcPart, dstParts, shift, n;
2304
2305 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2306 assert (dstParts <= dstCount);
2307
2308 firstSrcPart = srcLSB / integerPartWidth;
2309 tcAssign (dst, src + firstSrcPart, dstParts);
2310
2311 shift = srcLSB % integerPartWidth;
2312 tcShiftRight (dst, dstParts, shift);
2313
2314 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2315 in DST. If this is less that srcBits, append the rest, else
2316 clear the high bits. */
2317 n = dstParts * integerPartWidth - shift;
2318 if (n < srcBits) {
2319 integerPart mask = lowBitMask (srcBits - n);
2320 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2321 << n % integerPartWidth);
2322 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002323 if (srcBits % integerPartWidth)
2324 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002325 }
2326
2327 /* Clear high parts. */
2328 while (dstParts < dstCount)
2329 dst[dstParts++] = 0;
2330}
2331
Chris Lattner73cde982007-08-16 15:56:55 +00002332/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2333integerPart
2334APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2335 integerPart c, unsigned int parts)
2336{
2337 unsigned int i;
2338
2339 assert(c <= 1);
2340
2341 for(i = 0; i < parts; i++) {
2342 integerPart l;
2343
2344 l = dst[i];
2345 if (c) {
2346 dst[i] += rhs[i] + 1;
2347 c = (dst[i] <= l);
2348 } else {
2349 dst[i] += rhs[i];
2350 c = (dst[i] < l);
2351 }
2352 }
2353
2354 return c;
2355}
2356
2357/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2358integerPart
2359APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2360 integerPart c, unsigned int parts)
2361{
2362 unsigned int i;
2363
2364 assert(c <= 1);
2365
2366 for(i = 0; i < parts; i++) {
2367 integerPart l;
2368
2369 l = dst[i];
2370 if (c) {
2371 dst[i] -= rhs[i] + 1;
2372 c = (dst[i] >= l);
2373 } else {
2374 dst[i] -= rhs[i];
2375 c = (dst[i] > l);
2376 }
2377 }
2378
2379 return c;
2380}
2381
2382/* Negate a bignum in-place. */
2383void
2384APInt::tcNegate(integerPart *dst, unsigned int parts)
2385{
2386 tcComplement(dst, parts);
2387 tcIncrement(dst, parts);
2388}
2389
Neil Booth58ffb232007-10-06 00:43:45 +00002390/* DST += SRC * MULTIPLIER + CARRY if add is true
2391 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002392
2393 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2394 they must start at the same point, i.e. DST == SRC.
2395
2396 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2397 returned. Otherwise DST is filled with the least significant
2398 DSTPARTS parts of the result, and if all of the omitted higher
2399 parts were zero return zero, otherwise overflow occurred and
2400 return one. */
2401int
2402APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2403 integerPart multiplier, integerPart carry,
2404 unsigned int srcParts, unsigned int dstParts,
2405 bool add)
2406{
2407 unsigned int i, n;
2408
2409 /* Otherwise our writes of DST kill our later reads of SRC. */
2410 assert(dst <= src || dst >= src + srcParts);
2411 assert(dstParts <= srcParts + 1);
2412
2413 /* N loops; minimum of dstParts and srcParts. */
2414 n = dstParts < srcParts ? dstParts: srcParts;
2415
2416 for(i = 0; i < n; i++) {
2417 integerPart low, mid, high, srcPart;
2418
2419 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2420
2421 This cannot overflow, because
2422
2423 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2424
2425 which is less than n^2. */
2426
2427 srcPart = src[i];
2428
2429 if (multiplier == 0 || srcPart == 0) {
2430 low = carry;
2431 high = 0;
2432 } else {
2433 low = lowHalf(srcPart) * lowHalf(multiplier);
2434 high = highHalf(srcPart) * highHalf(multiplier);
2435
2436 mid = lowHalf(srcPart) * highHalf(multiplier);
2437 high += highHalf(mid);
2438 mid <<= integerPartWidth / 2;
2439 if (low + mid < low)
2440 high++;
2441 low += mid;
2442
2443 mid = highHalf(srcPart) * lowHalf(multiplier);
2444 high += highHalf(mid);
2445 mid <<= integerPartWidth / 2;
2446 if (low + mid < low)
2447 high++;
2448 low += mid;
2449
2450 /* Now add carry. */
2451 if (low + carry < low)
2452 high++;
2453 low += carry;
2454 }
2455
2456 if (add) {
2457 /* And now DST[i], and store the new low part there. */
2458 if (low + dst[i] < low)
2459 high++;
2460 dst[i] += low;
2461 } else
2462 dst[i] = low;
2463
2464 carry = high;
2465 }
2466
2467 if (i < dstParts) {
2468 /* Full multiplication, there is no overflow. */
2469 assert(i + 1 == dstParts);
2470 dst[i] = carry;
2471 return 0;
2472 } else {
2473 /* We overflowed if there is carry. */
2474 if (carry)
2475 return 1;
2476
2477 /* We would overflow if any significant unwritten parts would be
2478 non-zero. This is true if any remaining src parts are non-zero
2479 and the multiplier is non-zero. */
2480 if (multiplier)
2481 for(; i < srcParts; i++)
2482 if (src[i])
2483 return 1;
2484
2485 /* We fitted in the narrow destination. */
2486 return 0;
2487 }
2488}
2489
2490/* DST = LHS * RHS, where DST has the same width as the operands and
2491 is filled with the least significant parts of the result. Returns
2492 one if overflow occurred, otherwise zero. DST must be disjoint
2493 from both operands. */
2494int
2495APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2496 const integerPart *rhs, unsigned int parts)
2497{
2498 unsigned int i;
2499 int overflow;
2500
2501 assert(dst != lhs && dst != rhs);
2502
2503 overflow = 0;
2504 tcSet(dst, 0, parts);
2505
2506 for(i = 0; i < parts; i++)
2507 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2508 parts - i, true);
2509
2510 return overflow;
2511}
2512
Neil Booth004e9f42007-10-06 00:24:48 +00002513/* DST = LHS * RHS, where DST has width the sum of the widths of the
2514 operands. No overflow occurs. DST must be disjoint from both
2515 operands. Returns the number of parts required to hold the
2516 result. */
2517unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002518APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002519 const integerPart *rhs, unsigned int lhsParts,
2520 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002521{
Neil Booth004e9f42007-10-06 00:24:48 +00002522 /* Put the narrower number on the LHS for less loops below. */
2523 if (lhsParts > rhsParts) {
2524 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2525 } else {
2526 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002527
Neil Booth004e9f42007-10-06 00:24:48 +00002528 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002529
Neil Booth004e9f42007-10-06 00:24:48 +00002530 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002531
Neil Booth004e9f42007-10-06 00:24:48 +00002532 for(n = 0; n < lhsParts; n++)
2533 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002534
Neil Booth004e9f42007-10-06 00:24:48 +00002535 n = lhsParts + rhsParts;
2536
2537 return n - (dst[n - 1] == 0);
2538 }
Chris Lattner73cde982007-08-16 15:56:55 +00002539}
2540
2541/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2542 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2543 set REMAINDER to the remainder, return zero. i.e.
2544
2545 OLD_LHS = RHS * LHS + REMAINDER
2546
2547 SCRATCH is a bignum of the same size as the operands and result for
2548 use by the routine; its contents need not be initialized and are
2549 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2550*/
2551int
2552APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2553 integerPart *remainder, integerPart *srhs,
2554 unsigned int parts)
2555{
2556 unsigned int n, shiftCount;
2557 integerPart mask;
2558
2559 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2560
Chris Lattnerdb80e212007-08-20 22:49:32 +00002561 shiftCount = tcMSB(rhs, parts) + 1;
2562 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002563 return true;
2564
Chris Lattnerdb80e212007-08-20 22:49:32 +00002565 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002566 n = shiftCount / integerPartWidth;
2567 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2568
2569 tcAssign(srhs, rhs, parts);
2570 tcShiftLeft(srhs, parts, shiftCount);
2571 tcAssign(remainder, lhs, parts);
2572 tcSet(lhs, 0, parts);
2573
2574 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2575 the total. */
2576 for(;;) {
2577 int compare;
2578
2579 compare = tcCompare(remainder, srhs, parts);
2580 if (compare >= 0) {
2581 tcSubtract(remainder, srhs, 0, parts);
2582 lhs[n] |= mask;
2583 }
2584
2585 if (shiftCount == 0)
2586 break;
2587 shiftCount--;
2588 tcShiftRight(srhs, parts, 1);
2589 if ((mask >>= 1) == 0)
2590 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2591 }
2592
2593 return false;
2594}
2595
2596/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2597 There are no restrictions on COUNT. */
2598void
2599APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2600{
Neil Bootha0f524a2007-10-08 13:47:12 +00002601 if (count) {
2602 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002603
Neil Bootha0f524a2007-10-08 13:47:12 +00002604 /* Jump is the inter-part jump; shift is is intra-part shift. */
2605 jump = count / integerPartWidth;
2606 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002607
Neil Bootha0f524a2007-10-08 13:47:12 +00002608 while (parts > jump) {
2609 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002610
Neil Bootha0f524a2007-10-08 13:47:12 +00002611 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002612
Neil Bootha0f524a2007-10-08 13:47:12 +00002613 /* dst[i] comes from the two parts src[i - jump] and, if we have
2614 an intra-part shift, src[i - jump - 1]. */
2615 part = dst[parts - jump];
2616 if (shift) {
2617 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002618 if (parts >= jump + 1)
2619 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2620 }
2621
Neil Bootha0f524a2007-10-08 13:47:12 +00002622 dst[parts] = part;
2623 }
Chris Lattner73cde982007-08-16 15:56:55 +00002624
Neil Bootha0f524a2007-10-08 13:47:12 +00002625 while (parts > 0)
2626 dst[--parts] = 0;
2627 }
Chris Lattner73cde982007-08-16 15:56:55 +00002628}
2629
2630/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2631 zero. There are no restrictions on COUNT. */
2632void
2633APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2634{
Neil Bootha0f524a2007-10-08 13:47:12 +00002635 if (count) {
2636 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002637
Neil Bootha0f524a2007-10-08 13:47:12 +00002638 /* Jump is the inter-part jump; shift is is intra-part shift. */
2639 jump = count / integerPartWidth;
2640 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002641
Neil Bootha0f524a2007-10-08 13:47:12 +00002642 /* Perform the shift. This leaves the most significant COUNT bits
2643 of the result at zero. */
2644 for(i = 0; i < parts; i++) {
2645 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002646
Neil Bootha0f524a2007-10-08 13:47:12 +00002647 if (i + jump >= parts) {
2648 part = 0;
2649 } else {
2650 part = dst[i + jump];
2651 if (shift) {
2652 part >>= shift;
2653 if (i + jump + 1 < parts)
2654 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2655 }
Chris Lattner73cde982007-08-16 15:56:55 +00002656 }
Chris Lattner73cde982007-08-16 15:56:55 +00002657
Neil Bootha0f524a2007-10-08 13:47:12 +00002658 dst[i] = part;
2659 }
Chris Lattner73cde982007-08-16 15:56:55 +00002660 }
2661}
2662
2663/* Bitwise and of two bignums. */
2664void
2665APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2666{
2667 unsigned int i;
2668
2669 for(i = 0; i < parts; i++)
2670 dst[i] &= rhs[i];
2671}
2672
2673/* Bitwise inclusive or of two bignums. */
2674void
2675APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2676{
2677 unsigned int i;
2678
2679 for(i = 0; i < parts; i++)
2680 dst[i] |= rhs[i];
2681}
2682
2683/* Bitwise exclusive or of two bignums. */
2684void
2685APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2686{
2687 unsigned int i;
2688
2689 for(i = 0; i < parts; i++)
2690 dst[i] ^= rhs[i];
2691}
2692
2693/* Complement a bignum in-place. */
2694void
2695APInt::tcComplement(integerPart *dst, unsigned int parts)
2696{
2697 unsigned int i;
2698
2699 for(i = 0; i < parts; i++)
2700 dst[i] = ~dst[i];
2701}
2702
2703/* Comparison (unsigned) of two bignums. */
2704int
2705APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2706 unsigned int parts)
2707{
2708 while (parts) {
2709 parts--;
2710 if (lhs[parts] == rhs[parts])
2711 continue;
2712
2713 if (lhs[parts] > rhs[parts])
2714 return 1;
2715 else
2716 return -1;
2717 }
2718
2719 return 0;
2720}
2721
2722/* Increment a bignum in-place, return the carry flag. */
2723integerPart
2724APInt::tcIncrement(integerPart *dst, unsigned int parts)
2725{
2726 unsigned int i;
2727
2728 for(i = 0; i < parts; i++)
2729 if (++dst[i] != 0)
2730 break;
2731
2732 return i == parts;
2733}
2734
2735/* Set the least significant BITS bits of a bignum, clear the
2736 rest. */
2737void
2738APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2739 unsigned int bits)
2740{
2741 unsigned int i;
2742
2743 i = 0;
2744 while (bits > integerPartWidth) {
2745 dst[i++] = ~(integerPart) 0;
2746 bits -= integerPartWidth;
2747 }
2748
2749 if (bits)
2750 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2751
2752 while (i < parts)
2753 dst[i++] = 0;
2754}