blob: c0b51385b1a68cc50ce5795d71989e428aea4d67 [file] [log] [blame]
Owen Andersond8c87882011-02-18 21:51:29 +00001//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "decoder-emitter"
16
17#include "FixedLenDecoderEmitter.h"
18#include "CodeGenTarget.h"
19#include "Record.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23
24#include <vector>
25#include <map>
26#include <string>
27
28using namespace llvm;
29
30// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
31// for a bit value.
32//
33// BIT_UNFILTERED is used as the init value for a filter position. It is used
34// only for filter processings.
35typedef enum {
36 BIT_TRUE, // '1'
37 BIT_FALSE, // '0'
38 BIT_UNSET, // '?'
39 BIT_UNFILTERED // unfiltered
40} bit_value_t;
41
42static bool ValueSet(bit_value_t V) {
43 return (V == BIT_TRUE || V == BIT_FALSE);
44}
45static bool ValueNotSet(bit_value_t V) {
46 return (V == BIT_UNSET);
47}
48static int Value(bit_value_t V) {
49 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
50}
David Greene05bce0b2011-07-29 22:43:06 +000051static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
52 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
Owen Andersond8c87882011-02-18 21:51:29 +000053 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
54
55 // The bit is uninitialized.
56 return BIT_UNSET;
57}
58// Prints the bit value for each position.
David Greene05bce0b2011-07-29 22:43:06 +000059static void dumpBits(raw_ostream &o, BitsInit &bits) {
Owen Andersond8c87882011-02-18 21:51:29 +000060 unsigned index;
61
62 for (index = bits.getNumBits(); index > 0; index--) {
63 switch (bitFromBits(bits, index - 1)) {
64 case BIT_TRUE:
65 o << "1";
66 break;
67 case BIT_FALSE:
68 o << "0";
69 break;
70 case BIT_UNSET:
71 o << "_";
72 break;
73 default:
74 assert(0 && "unexpected return value from bitFromBits");
75 }
76 }
77}
78
David Greene05bce0b2011-07-29 22:43:06 +000079static BitsInit &getBitsField(const Record &def, const char *str) {
80 BitsInit *bits = def.getValueAsBitsInit(str);
Owen Andersond8c87882011-02-18 21:51:29 +000081 return *bits;
82}
83
84// Forward declaration.
85class FilterChooser;
86
Owen Andersond8c87882011-02-18 21:51:29 +000087// Representation of the instruction to work on.
Owen Andersonf1a00902011-07-19 21:06:00 +000088typedef std::vector<bit_value_t> insn_t;
Owen Andersond8c87882011-02-18 21:51:29 +000089
90/// Filter - Filter works with FilterChooser to produce the decoding tree for
91/// the ISA.
92///
93/// It is useful to think of a Filter as governing the switch stmts of the
94/// decoding tree in a certain level. Each case stmt delegates to an inferior
95/// FilterChooser to decide what further decoding logic to employ, or in another
96/// words, what other remaining bits to look at. The FilterChooser eventually
97/// chooses a best Filter to do its job.
98///
99/// This recursive scheme ends when the number of Opcodes assigned to the
100/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
101/// the Filter/FilterChooser combo does not know how to distinguish among the
102/// Opcodes assigned.
103///
104/// An example of a conflict is
105///
106/// Conflict:
107/// 111101000.00........00010000....
108/// 111101000.00........0001........
109/// 1111010...00........0001........
110/// 1111010...00....................
111/// 1111010.........................
112/// 1111............................
113/// ................................
114/// VST4q8a 111101000_00________00010000____
115/// VST4q8b 111101000_00________00010000____
116///
117/// The Debug output shows the path that the decoding tree follows to reach the
118/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
119/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
120///
121/// The encoding info in the .td files does not specify this meta information,
122/// which could have been used by the decoder to resolve the conflict. The
123/// decoder could try to decode the even/odd register numbering and assign to
124/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
125/// version and return the Opcode since the two have the same Asm format string.
126class Filter {
127protected:
128 FilterChooser *Owner; // points to the FilterChooser who owns this filter
129 unsigned StartBit; // the starting bit position
130 unsigned NumBits; // number of bits to filter
131 bool Mixed; // a mixed region contains both set and unset bits
132
133 // Map of well-known segment value to the set of uid's with that value.
134 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
135
136 // Set of uid's with non-constant segment values.
137 std::vector<unsigned> VariableInstructions;
138
139 // Map of well-known segment value to its delegate.
140 std::map<unsigned, FilterChooser*> FilterChooserMap;
141
142 // Number of instructions which fall under FilteredInstructions category.
143 unsigned NumFiltered;
144
145 // Keeps track of the last opcode in the filtered bucket.
146 unsigned LastOpcFiltered;
147
148 // Number of instructions which fall under VariableInstructions category.
149 unsigned NumVariable;
150
151public:
152 unsigned getNumFiltered() { return NumFiltered; }
153 unsigned getNumVariable() { return NumVariable; }
154 unsigned getSingletonOpc() {
155 assert(NumFiltered == 1);
156 return LastOpcFiltered;
157 }
158 // Return the filter chooser for the group of instructions without constant
159 // segment values.
160 FilterChooser &getVariableFC() {
161 assert(NumFiltered == 1);
162 assert(FilterChooserMap.size() == 1);
163 return *(FilterChooserMap.find((unsigned)-1)->second);
164 }
165
166 Filter(const Filter &f);
167 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
168
169 ~Filter();
170
171 // Divides the decoding task into sub tasks and delegates them to the
172 // inferior FilterChooser's.
173 //
174 // A special case arises when there's only one entry in the filtered
175 // instructions. In order to unambiguously decode the singleton, we need to
176 // match the remaining undecoded encoding bits against the singleton.
177 void recurse();
178
179 // Emit code to decode instructions given a segment or segments of bits.
180 void emit(raw_ostream &o, unsigned &Indentation);
181
182 // Returns the number of fanout produced by the filter. More fanout implies
183 // the filter distinguishes more categories of instructions.
184 unsigned usefulness() const;
185}; // End of class Filter
186
187// These are states of our finite state machines used in FilterChooser's
188// filterProcessor() which produces the filter candidates to use.
189typedef enum {
190 ATTR_NONE,
191 ATTR_FILTERED,
192 ATTR_ALL_SET,
193 ATTR_ALL_UNSET,
194 ATTR_MIXED
195} bitAttr_t;
196
197/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
198/// in order to perform the decoding of instructions at the current level.
199///
200/// Decoding proceeds from the top down. Based on the well-known encoding bits
201/// of instructions available, FilterChooser builds up the possible Filters that
202/// can further the task of decoding by distinguishing among the remaining
203/// candidate instructions.
204///
205/// Once a filter has been chosen, it is called upon to divide the decoding task
206/// into sub-tasks and delegates them to its inferior FilterChoosers for further
207/// processings.
208///
209/// It is useful to think of a Filter as governing the switch stmts of the
210/// decoding tree. And each case is delegated to an inferior FilterChooser to
211/// decide what further remaining bits to look at.
212class FilterChooser {
213protected:
214 friend class Filter;
215
216 // Vector of codegen instructions to choose our filter.
217 const std::vector<const CodeGenInstruction*> &AllInstructions;
218
219 // Vector of uid's for this filter chooser to work on.
220 const std::vector<unsigned> Opcodes;
221
222 // Lookup table for the operand decoding of instructions.
223 std::map<unsigned, std::vector<OperandInfo> > &Operands;
224
225 // Vector of candidate filters.
226 std::vector<Filter> Filters;
227
228 // Array of bit values passed down from our parent.
229 // Set to all BIT_UNFILTERED's for Parent == NULL.
Owen Andersonf1a00902011-07-19 21:06:00 +0000230 std::vector<bit_value_t> FilterBitValues;
Owen Andersond8c87882011-02-18 21:51:29 +0000231
232 // Links to the FilterChooser above us in the decoding tree.
233 FilterChooser *Parent;
234
235 // Index of the best filter from Filters.
236 int BestIndex;
237
Owen Andersonf1a00902011-07-19 21:06:00 +0000238 // Width of instructions
239 unsigned BitWidth;
240
Owen Anderson83e3f672011-08-17 17:44:15 +0000241 // Parent emitter
242 const FixedLenDecoderEmitter *Emitter;
243
Owen Andersond8c87882011-02-18 21:51:29 +0000244public:
245 FilterChooser(const FilterChooser &FC) :
246 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
Owen Andersonf1a00902011-07-19 21:06:00 +0000247 Operands(FC.Operands), Filters(FC.Filters),
248 FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
Owen Anderson83e3f672011-08-17 17:44:15 +0000249 BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
250 Emitter(FC.Emitter) { }
Owen Andersond8c87882011-02-18 21:51:29 +0000251
252 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
253 const std::vector<unsigned> &IDs,
Owen Andersonf1a00902011-07-19 21:06:00 +0000254 std::map<unsigned, std::vector<OperandInfo> > &Ops,
Owen Anderson83e3f672011-08-17 17:44:15 +0000255 unsigned BW,
256 const FixedLenDecoderEmitter *E) :
Owen Andersond8c87882011-02-18 21:51:29 +0000257 AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
Owen Anderson83e3f672011-08-17 17:44:15 +0000258 Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000259 for (unsigned i = 0; i < BitWidth; ++i)
260 FilterBitValues.push_back(BIT_UNFILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +0000261
262 doFilter();
263 }
264
265 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
266 const std::vector<unsigned> &IDs,
267 std::map<unsigned, std::vector<OperandInfo> > &Ops,
Owen Andersonf1a00902011-07-19 21:06:00 +0000268 std::vector<bit_value_t> &ParentFilterBitValues,
Owen Andersond8c87882011-02-18 21:51:29 +0000269 FilterChooser &parent) :
270 AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
Owen Andersonf1a00902011-07-19 21:06:00 +0000271 Filters(), FilterBitValues(ParentFilterBitValues),
Owen Anderson83e3f672011-08-17 17:44:15 +0000272 Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
273 Emitter(parent.Emitter) {
Owen Andersond8c87882011-02-18 21:51:29 +0000274 doFilter();
275 }
276
277 // The top level filter chooser has NULL as its parent.
278 bool isTopLevel() { return Parent == NULL; }
279
280 // Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000281 void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace);
Owen Andersond8c87882011-02-18 21:51:29 +0000282
283protected:
284 // Populates the insn given the uid.
285 void insnWithID(insn_t &Insn, unsigned Opcode) const {
David Greene05bce0b2011-07-29 22:43:06 +0000286 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
Owen Andersond8c87882011-02-18 21:51:29 +0000287
Owen Andersonf1a00902011-07-19 21:06:00 +0000288 for (unsigned i = 0; i < BitWidth; ++i)
289 Insn.push_back(bitFromBits(Bits, i));
Owen Andersond8c87882011-02-18 21:51:29 +0000290 }
291
292 // Returns the record name.
293 const std::string &nameWithID(unsigned Opcode) const {
294 return AllInstructions[Opcode]->TheDef->getName();
295 }
296
297 // Populates the field of the insn given the start position and the number of
298 // consecutive bits to scan for.
299 //
300 // Returns false if there exists any uninitialized bit value in the range.
301 // Returns true, otherwise.
302 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
303 unsigned NumBits) const;
304
305 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
306 /// filter array as a series of chars.
Owen Andersonf1a00902011-07-19 21:06:00 +0000307 void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter);
Owen Andersond8c87882011-02-18 21:51:29 +0000308
309 /// dumpStack - dumpStack traverses the filter chooser chain and calls
310 /// dumpFilterArray on each filter chooser up to the top level one.
311 void dumpStack(raw_ostream &o, const char *prefix);
312
313 Filter &bestFilter() {
314 assert(BestIndex != -1 && "BestIndex not set");
315 return Filters[BestIndex];
316 }
317
318 // Called from Filter::recurse() when singleton exists. For debug purpose.
319 void SingletonExists(unsigned Opc);
320
321 bool PositionFiltered(unsigned i) {
322 return ValueSet(FilterBitValues[i]);
323 }
324
325 // Calculates the island(s) needed to decode the instruction.
326 // This returns a lit of undecoded bits of an instructions, for example,
327 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
328 // decoded bits in order to verify that the instruction matches the Opcode.
329 unsigned getIslands(std::vector<unsigned> &StartBits,
330 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
331 insn_t &Insn);
332
James Molloya5d58562011-09-07 19:42:28 +0000333 // Emits code to check the Predicates member of an instruction are true.
334 // Returns true if predicate matches were emitted, false otherwise.
335 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc);
336
Owen Andersond8c87882011-02-18 21:51:29 +0000337 // Emits code to decode the singleton. Return true if we have matched all the
338 // well-known bits.
339 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
340
341 // Emits code to decode the singleton, and then to decode the rest.
342 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
343
Owen Andersond1e38df2011-07-28 21:54:31 +0000344 void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
345 OperandInfo &OpInfo);
346
Owen Andersond8c87882011-02-18 21:51:29 +0000347 // Assign a single filter and run with it.
348 void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
349 bool mixed);
350
351 // reportRegion is a helper function for filterProcessor to mark a region as
352 // eligible for use as a filter region.
353 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
354 bool AllowMixed);
355
356 // FilterProcessor scans the well-known encoding bits of the instructions and
357 // builds up a list of candidate filters. It chooses the best filter and
358 // recursively descends down the decoding tree.
359 bool filterProcessor(bool AllowMixed, bool Greedy = true);
360
361 // Decides on the best configuration of filter(s) to use in order to decode
362 // the instructions. A conflict of instructions may occur, in which case we
363 // dump the conflict set to the standard error.
364 void doFilter();
365
366 // Emits code to decode our share of instructions. Returns true if the
367 // emitted code causes a return, which occurs if we know how to decode
368 // the instruction at this level or the instruction is not decodeable.
369 bool emit(raw_ostream &o, unsigned &Indentation);
370};
371
372///////////////////////////
373// //
374// Filter Implmenetation //
375// //
376///////////////////////////
377
378Filter::Filter(const Filter &f) :
379 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
380 FilteredInstructions(f.FilteredInstructions),
381 VariableInstructions(f.VariableInstructions),
382 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
383 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
384}
385
386Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
387 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
388 Mixed(mixed) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000389 assert(StartBit + NumBits - 1 < Owner->BitWidth);
Owen Andersond8c87882011-02-18 21:51:29 +0000390
391 NumFiltered = 0;
392 LastOpcFiltered = 0;
393 NumVariable = 0;
394
395 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
396 insn_t Insn;
397
398 // Populates the insn given the uid.
399 Owner->insnWithID(Insn, Owner->Opcodes[i]);
400
401 uint64_t Field;
402 // Scans the segment for possibly well-specified encoding bits.
403 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
404
405 if (ok) {
406 // The encoding bits are well-known. Lets add the uid of the
407 // instruction into the bucket keyed off the constant field value.
408 LastOpcFiltered = Owner->Opcodes[i];
409 FilteredInstructions[Field].push_back(LastOpcFiltered);
410 ++NumFiltered;
411 } else {
412 // Some of the encoding bit(s) are unspecfied. This contributes to
413 // one additional member of "Variable" instructions.
414 VariableInstructions.push_back(Owner->Opcodes[i]);
415 ++NumVariable;
416 }
417 }
418
419 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
420 && "Filter returns no instruction categories");
421}
422
423Filter::~Filter() {
424 std::map<unsigned, FilterChooser*>::iterator filterIterator;
425 for (filterIterator = FilterChooserMap.begin();
426 filterIterator != FilterChooserMap.end();
427 filterIterator++) {
428 delete filterIterator->second;
429 }
430}
431
432// Divides the decoding task into sub tasks and delegates them to the
433// inferior FilterChooser's.
434//
435// A special case arises when there's only one entry in the filtered
436// instructions. In order to unambiguously decode the singleton, we need to
437// match the remaining undecoded encoding bits against the singleton.
438void Filter::recurse() {
439 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
440
Owen Andersond8c87882011-02-18 21:51:29 +0000441 // Starts by inheriting our parent filter chooser's filter bit values.
Owen Andersonf1a00902011-07-19 21:06:00 +0000442 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
Owen Andersond8c87882011-02-18 21:51:29 +0000443
444 unsigned bitIndex;
445
446 if (VariableInstructions.size()) {
447 // Conservatively marks each segment position as BIT_UNSET.
448 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
449 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
450
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000451 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000452 // group of instructions whose segment values are variable.
453 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
454 (unsigned)-1,
455 new FilterChooser(Owner->AllInstructions,
456 VariableInstructions,
457 Owner->Operands,
458 BitValueArray,
459 *Owner)
460 ));
461 }
462
463 // No need to recurse for a singleton filtered instruction.
464 // See also Filter::emit().
465 if (getNumFiltered() == 1) {
466 //Owner->SingletonExists(LastOpcFiltered);
467 assert(FilterChooserMap.size() == 1);
468 return;
469 }
470
471 // Otherwise, create sub choosers.
472 for (mapIterator = FilteredInstructions.begin();
473 mapIterator != FilteredInstructions.end();
474 mapIterator++) {
475
476 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
477 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
478 if (mapIterator->first & (1ULL << bitIndex))
479 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
480 else
481 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
482 }
483
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000484 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000485 // category of instructions.
486 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
487 mapIterator->first,
488 new FilterChooser(Owner->AllInstructions,
489 mapIterator->second,
490 Owner->Operands,
491 BitValueArray,
492 *Owner)
493 ));
494 }
495}
496
497// Emit code to decode instructions given a segment or segments of bits.
498void Filter::emit(raw_ostream &o, unsigned &Indentation) {
499 o.indent(Indentation) << "// Check Inst{";
500
501 if (NumBits > 1)
502 o << (StartBit + NumBits - 1) << '-';
503
504 o << StartBit << "} ...\n";
505
Owen Andersonf1a00902011-07-19 21:06:00 +0000506 o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
507 << "(insn, " << StartBit << ", "
508 << NumBits << ")) {\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000509
510 std::map<unsigned, FilterChooser*>::iterator filterIterator;
511
512 bool DefaultCase = false;
513 for (filterIterator = FilterChooserMap.begin();
514 filterIterator != FilterChooserMap.end();
515 filterIterator++) {
516
517 // Field value -1 implies a non-empty set of variable instructions.
518 // See also recurse().
519 if (filterIterator->first == (unsigned)-1) {
520 DefaultCase = true;
521
522 o.indent(Indentation) << "default:\n";
523 o.indent(Indentation) << " break; // fallthrough\n";
524
525 // Closing curly brace for the switch statement.
526 // This is unconventional because we want the default processing to be
527 // performed for the fallthrough cases as well, i.e., when the "cases"
528 // did not prove a decoded instruction.
529 o.indent(Indentation) << "}\n";
530
531 } else
532 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
533
534 // We arrive at a category of instructions with the same segment value.
535 // Now delegate to the sub filter chooser for further decodings.
536 // The case may fallthrough, which happens if the remaining well-known
537 // encoding bits do not match exactly.
538 if (!DefaultCase) { ++Indentation; ++Indentation; }
539
540 bool finished = filterIterator->second->emit(o, Indentation);
541 // For top level default case, there's no need for a break statement.
542 if (Owner->isTopLevel() && DefaultCase)
543 break;
544 if (!finished)
545 o.indent(Indentation) << "break;\n";
546
547 if (!DefaultCase) { --Indentation; --Indentation; }
548 }
549
550 // If there is no default case, we still need to supply a closing brace.
551 if (!DefaultCase) {
552 // Closing curly brace for the switch statement.
553 o.indent(Indentation) << "}\n";
554 }
555}
556
557// Returns the number of fanout produced by the filter. More fanout implies
558// the filter distinguishes more categories of instructions.
559unsigned Filter::usefulness() const {
560 if (VariableInstructions.size())
561 return FilteredInstructions.size();
562 else
563 return FilteredInstructions.size() + 1;
564}
565
566//////////////////////////////////
567// //
568// Filterchooser Implementation //
569// //
570//////////////////////////////////
571
572// Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000573void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
574 std::string Namespace) {
Owen Andersond8c87882011-02-18 21:51:29 +0000575 o.indent(Indentation) <<
Owen Anderson83e3f672011-08-17 17:44:15 +0000576 "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction" << BitWidth
Owen Andersonf1a00902011-07-19 21:06:00 +0000577 << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, "
James Molloya5d58562011-09-07 19:42:28 +0000578 << "const void *Decoder, const MCSubtargetInfo &STI) {\n";
Owen Anderson83e3f672011-08-17 17:44:15 +0000579 o.indent(Indentation) << " unsigned tmp = 0;\n (void)tmp;\n" << Emitter->Locals << "\n";
James Molloya5d58562011-09-07 19:42:28 +0000580 o.indent(Indentation) << " unsigned Bits = STI.getFeatureBits();\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000581
582 ++Indentation; ++Indentation;
583 // Emits code to decode the instructions.
584 emit(o, Indentation);
585
586 o << '\n';
Owen Anderson83e3f672011-08-17 17:44:15 +0000587 o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000588 --Indentation; --Indentation;
589
590 o.indent(Indentation) << "}\n";
591
592 o << '\n';
593}
594
595// Populates the field of the insn given the start position and the number of
596// consecutive bits to scan for.
597//
598// Returns false if and on the first uninitialized bit value encountered.
599// Returns true, otherwise.
600bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
601 unsigned StartBit, unsigned NumBits) const {
602 Field = 0;
603
604 for (unsigned i = 0; i < NumBits; ++i) {
605 if (Insn[StartBit + i] == BIT_UNSET)
606 return false;
607
608 if (Insn[StartBit + i] == BIT_TRUE)
609 Field = Field | (1ULL << i);
610 }
611
612 return true;
613}
614
615/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
616/// filter array as a series of chars.
617void FilterChooser::dumpFilterArray(raw_ostream &o,
Owen Andersonf1a00902011-07-19 21:06:00 +0000618 std::vector<bit_value_t> &filter) {
Owen Andersond8c87882011-02-18 21:51:29 +0000619 unsigned bitIndex;
620
Owen Andersonf1a00902011-07-19 21:06:00 +0000621 for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
Owen Andersond8c87882011-02-18 21:51:29 +0000622 switch (filter[bitIndex - 1]) {
623 case BIT_UNFILTERED:
624 o << ".";
625 break;
626 case BIT_UNSET:
627 o << "_";
628 break;
629 case BIT_TRUE:
630 o << "1";
631 break;
632 case BIT_FALSE:
633 o << "0";
634 break;
635 }
636 }
637}
638
639/// dumpStack - dumpStack traverses the filter chooser chain and calls
640/// dumpFilterArray on each filter chooser up to the top level one.
641void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
642 FilterChooser *current = this;
643
644 while (current) {
645 o << prefix;
646 dumpFilterArray(o, current->FilterBitValues);
647 o << '\n';
648 current = current->Parent;
649 }
650}
651
652// Called from Filter::recurse() when singleton exists. For debug purpose.
653void FilterChooser::SingletonExists(unsigned Opc) {
654 insn_t Insn0;
655 insnWithID(Insn0, Opc);
656
657 errs() << "Singleton exists: " << nameWithID(Opc)
658 << " with its decoding dominating ";
659 for (unsigned i = 0; i < Opcodes.size(); ++i) {
660 if (Opcodes[i] == Opc) continue;
661 errs() << nameWithID(Opcodes[i]) << ' ';
662 }
663 errs() << '\n';
664
665 dumpStack(errs(), "\t\t");
666 for (unsigned i = 0; i < Opcodes.size(); i++) {
667 const std::string &Name = nameWithID(Opcodes[i]);
668
669 errs() << '\t' << Name << " ";
670 dumpBits(errs(),
671 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
672 errs() << '\n';
673 }
674}
675
676// Calculates the island(s) needed to decode the instruction.
677// This returns a list of undecoded bits of an instructions, for example,
678// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
679// decoded bits in order to verify that the instruction matches the Opcode.
680unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
681 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
682 insn_t &Insn) {
683 unsigned Num, BitNo;
684 Num = BitNo = 0;
685
686 uint64_t FieldVal = 0;
687
688 // 0: Init
689 // 1: Water (the bit value does not affect decoding)
690 // 2: Island (well-known bit value needed for decoding)
691 int State = 0;
692 int Val = -1;
693
Owen Andersonf1a00902011-07-19 21:06:00 +0000694 for (unsigned i = 0; i < BitWidth; ++i) {
Owen Andersond8c87882011-02-18 21:51:29 +0000695 Val = Value(Insn[i]);
696 bool Filtered = PositionFiltered(i);
697 switch (State) {
698 default:
699 assert(0 && "Unreachable code!");
700 break;
701 case 0:
702 case 1:
703 if (Filtered || Val == -1)
704 State = 1; // Still in Water
705 else {
706 State = 2; // Into the Island
707 BitNo = 0;
708 StartBits.push_back(i);
709 FieldVal = Val;
710 }
711 break;
712 case 2:
713 if (Filtered || Val == -1) {
714 State = 1; // Into the Water
715 EndBits.push_back(i - 1);
716 FieldVals.push_back(FieldVal);
717 ++Num;
718 } else {
719 State = 2; // Still in Island
720 ++BitNo;
721 FieldVal = FieldVal | Val << BitNo;
722 }
723 break;
724 }
725 }
726 // If we are still in Island after the loop, do some housekeeping.
727 if (State == 2) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000728 EndBits.push_back(BitWidth - 1);
Owen Andersond8c87882011-02-18 21:51:29 +0000729 FieldVals.push_back(FieldVal);
730 ++Num;
731 }
732
733 assert(StartBits.size() == Num && EndBits.size() == Num &&
734 FieldVals.size() == Num);
735 return Num;
736}
737
Owen Andersond1e38df2011-07-28 21:54:31 +0000738void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
739 OperandInfo &OpInfo) {
740 std::string &Decoder = OpInfo.Decoder;
741
742 if (OpInfo.numFields() == 1) {
743 OperandInfo::iterator OI = OpInfo.begin();
744 o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth
745 << "(insn, " << OI->Base << ", " << OI->Width
746 << ");\n";
747 } else {
748 o.indent(Indentation) << " tmp = 0;\n";
749 for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end();
750 OI != OE; ++OI) {
751 o.indent(Indentation) << " tmp |= (fieldFromInstruction" << BitWidth
Andrew Tricked968a92011-09-08 05:23:14 +0000752 << "(insn, " << OI->Base << ", " << OI->Width
Owen Andersond1e38df2011-07-28 21:54:31 +0000753 << ") << " << OI->Offset << ");\n";
754 }
755 }
756
757 if (Decoder != "")
Owen Anderson83e3f672011-08-17 17:44:15 +0000758 o.indent(Indentation) << " " << Emitter->GuardPrefix << Decoder
759 << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n";
Owen Andersond1e38df2011-07-28 21:54:31 +0000760 else
761 o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
762
763}
764
James Molloya5d58562011-09-07 19:42:28 +0000765static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
766 std::string PredicateNamespace) {
767 const char *X = str.str().c_str();
768 if (X[0] == '!')
769 o << "!(Bits & " << PredicateNamespace << "::" << &X[1] << ")";
770 else
771 o << "(Bits & " << PredicateNamespace << "::" << X << ")";
772}
773
774bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
775 unsigned Opc) {
776 ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
777 for (unsigned i = 0; i < Predicates->getSize(); ++i) {
778 Record *Pred = Predicates->getElementAsRecord(i);
779 if (!Pred->getValue("AssemblerMatcherPredicate"))
780 continue;
781
782 std::string P = Pred->getValueAsString("AssemblerCondString");
783
784 if (!P.length())
785 continue;
786
787 if (i != 0)
788 o << " && ";
789
790 StringRef SR(P);
791 std::pair<StringRef, StringRef> pairs = SR.split(',');
792 while (pairs.second.size()) {
793 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
794 o << " && ";
795 pairs = pairs.second.split(',');
796 }
797 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
798 }
799 return Predicates->getSize() > 0;
Andrew Tricked968a92011-09-08 05:23:14 +0000800}
James Molloya5d58562011-09-07 19:42:28 +0000801
Owen Andersond8c87882011-02-18 21:51:29 +0000802// Emits code to decode the singleton. Return true if we have matched all the
803// well-known bits.
804bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
805 unsigned Opc) {
806 std::vector<unsigned> StartBits;
807 std::vector<unsigned> EndBits;
808 std::vector<uint64_t> FieldVals;
809 insn_t Insn;
810 insnWithID(Insn, Opc);
811
812 // Look for islands of undecoded bits of the singleton.
813 getIslands(StartBits, EndBits, FieldVals, Insn);
814
815 unsigned Size = StartBits.size();
816 unsigned I, NumBits;
817
818 // If we have matched all the well-known bits, just issue a return.
819 if (Size == 0) {
James Molloya5d58562011-09-07 19:42:28 +0000820 o.indent(Indentation) << "if (";
821 emitPredicateMatch(o, Indentation, Opc);
822 o << ") {\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000823 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
824 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
825 for (std::vector<OperandInfo>::iterator
826 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
827 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000828 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson83e3f672011-08-17 17:44:15 +0000829 o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
830 << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000831 break;
832 }
833
Owen Andersond1e38df2011-07-28 21:54:31 +0000834 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000835 }
836
Owen Anderson83e3f672011-08-17 17:44:15 +0000837 o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
Owen Andersond8c87882011-02-18 21:51:29 +0000838 << '\n';
James Molloya5d58562011-09-07 19:42:28 +0000839 o.indent(Indentation) << "}\n"; // Closing predicate block.
Owen Andersond8c87882011-02-18 21:51:29 +0000840 return true;
841 }
842
843 // Otherwise, there are more decodings to be done!
844
845 // Emit code to match the island(s) for the singleton.
846 o.indent(Indentation) << "// Check ";
847
848 for (I = Size; I != 0; --I) {
849 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
850 if (I > 1)
James Molloya5d58562011-09-07 19:42:28 +0000851 o << " && ";
Owen Andersond8c87882011-02-18 21:51:29 +0000852 else
853 o << "for singleton decoding...\n";
854 }
855
856 o.indent(Indentation) << "if (";
James Molloya5d58562011-09-07 19:42:28 +0000857 if (emitPredicateMatch(o, Indentation, Opc) > 0) {
858 o << " &&\n";
859 o.indent(Indentation+4);
860 }
Owen Andersond8c87882011-02-18 21:51:29 +0000861
862 for (I = Size; I != 0; --I) {
863 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
Owen Andersonf1a00902011-07-19 21:06:00 +0000864 o << "fieldFromInstruction" << BitWidth << "(insn, "
865 << StartBits[I-1] << ", " << NumBits
Owen Andersond8c87882011-02-18 21:51:29 +0000866 << ") == " << FieldVals[I-1];
867 if (I > 1)
868 o << " && ";
869 else
870 o << ") {\n";
871 }
872 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
873 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
874 for (std::vector<OperandInfo>::iterator
875 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
876 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000877 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson83e3f672011-08-17 17:44:15 +0000878 o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
879 << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000880 break;
881 }
882
Owen Andersond1e38df2011-07-28 21:54:31 +0000883 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000884 }
Owen Anderson83e3f672011-08-17 17:44:15 +0000885 o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
Owen Andersond8c87882011-02-18 21:51:29 +0000886 << '\n';
887 o.indent(Indentation) << "}\n";
888
889 return false;
890}
891
892// Emits code to decode the singleton, and then to decode the rest.
893void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
894 Filter &Best) {
895
896 unsigned Opc = Best.getSingletonOpc();
897
898 emitSingletonDecoder(o, Indentation, Opc);
899
900 // Emit code for the rest.
901 o.indent(Indentation) << "else\n";
902
903 Indentation += 2;
904 Best.getVariableFC().emit(o, Indentation);
905 Indentation -= 2;
906}
907
908// Assign a single filter and run with it. Top level API client can initialize
909// with a single filter to start the filtering process.
910void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
911 unsigned numBit, bool mixed) {
912 Filters.clear();
913 Filter F(*this, startBit, numBit, true);
914 Filters.push_back(F);
915 BestIndex = 0; // Sole Filter instance to choose from.
916 bestFilter().recurse();
917}
918
919// reportRegion is a helper function for filterProcessor to mark a region as
920// eligible for use as a filter region.
921void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
922 unsigned BitIndex, bool AllowMixed) {
923 if (RA == ATTR_MIXED && AllowMixed)
924 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
925 else if (RA == ATTR_ALL_SET && !AllowMixed)
926 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
927}
928
929// FilterProcessor scans the well-known encoding bits of the instructions and
930// builds up a list of candidate filters. It chooses the best filter and
931// recursively descends down the decoding tree.
932bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
933 Filters.clear();
934 BestIndex = -1;
935 unsigned numInstructions = Opcodes.size();
936
937 assert(numInstructions && "Filter created with no instructions");
938
939 // No further filtering is necessary.
940 if (numInstructions == 1)
941 return true;
942
943 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
944 // instructions is 3.
945 if (AllowMixed && !Greedy) {
946 assert(numInstructions == 3);
947
948 for (unsigned i = 0; i < Opcodes.size(); ++i) {
949 std::vector<unsigned> StartBits;
950 std::vector<unsigned> EndBits;
951 std::vector<uint64_t> FieldVals;
952 insn_t Insn;
953
954 insnWithID(Insn, Opcodes[i]);
955
956 // Look for islands of undecoded bits of any instruction.
957 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
958 // Found an instruction with island(s). Now just assign a filter.
959 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
960 true);
961 return true;
962 }
963 }
964 }
965
966 unsigned BitIndex, InsnIndex;
967
968 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
969 // The automaton consumes the corresponding bit from each
970 // instruction.
971 //
972 // Input symbols: 0, 1, and _ (unset).
973 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
974 // Initial state: NONE.
975 //
976 // (NONE) ------- [01] -> (ALL_SET)
977 // (NONE) ------- _ ----> (ALL_UNSET)
978 // (ALL_SET) ---- [01] -> (ALL_SET)
979 // (ALL_SET) ---- _ ----> (MIXED)
980 // (ALL_UNSET) -- [01] -> (MIXED)
981 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
982 // (MIXED) ------ . ----> (MIXED)
983 // (FILTERED)---- . ----> (FILTERED)
984
Owen Andersonf1a00902011-07-19 21:06:00 +0000985 std::vector<bitAttr_t> bitAttrs;
Owen Andersond8c87882011-02-18 21:51:29 +0000986
987 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
988 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
Owen Andersonf1a00902011-07-19 21:06:00 +0000989 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
Owen Andersond8c87882011-02-18 21:51:29 +0000990 if (FilterBitValues[BitIndex] == BIT_TRUE ||
991 FilterBitValues[BitIndex] == BIT_FALSE)
Owen Andersonf1a00902011-07-19 21:06:00 +0000992 bitAttrs.push_back(ATTR_FILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +0000993 else
Owen Andersonf1a00902011-07-19 21:06:00 +0000994 bitAttrs.push_back(ATTR_NONE);
Owen Andersond8c87882011-02-18 21:51:29 +0000995
996 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
997 insn_t insn;
998
999 insnWithID(insn, Opcodes[InsnIndex]);
1000
Owen Andersonf1a00902011-07-19 21:06:00 +00001001 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
Owen Andersond8c87882011-02-18 21:51:29 +00001002 switch (bitAttrs[BitIndex]) {
1003 case ATTR_NONE:
1004 if (insn[BitIndex] == BIT_UNSET)
1005 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1006 else
1007 bitAttrs[BitIndex] = ATTR_ALL_SET;
1008 break;
1009 case ATTR_ALL_SET:
1010 if (insn[BitIndex] == BIT_UNSET)
1011 bitAttrs[BitIndex] = ATTR_MIXED;
1012 break;
1013 case ATTR_ALL_UNSET:
1014 if (insn[BitIndex] != BIT_UNSET)
1015 bitAttrs[BitIndex] = ATTR_MIXED;
1016 break;
1017 case ATTR_MIXED:
1018 case ATTR_FILTERED:
1019 break;
1020 }
1021 }
1022 }
1023
1024 // The regionAttr automaton consumes the bitAttrs automatons' state,
1025 // lowest-to-highest.
1026 //
1027 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1028 // States: NONE, ALL_SET, MIXED
1029 // Initial state: NONE
1030 //
1031 // (NONE) ----- F --> (NONE)
1032 // (NONE) ----- S --> (ALL_SET) ; and set region start
1033 // (NONE) ----- U --> (NONE)
1034 // (NONE) ----- M --> (MIXED) ; and set region start
1035 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1036 // (ALL_SET) -- S --> (ALL_SET)
1037 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1038 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1039 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1040 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1041 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1042 // (MIXED) ---- M --> (MIXED)
1043
1044 bitAttr_t RA = ATTR_NONE;
1045 unsigned StartBit = 0;
1046
Owen Andersonf1a00902011-07-19 21:06:00 +00001047 for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
Owen Andersond8c87882011-02-18 21:51:29 +00001048 bitAttr_t bitAttr = bitAttrs[BitIndex];
1049
1050 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1051
1052 switch (RA) {
1053 case ATTR_NONE:
1054 switch (bitAttr) {
1055 case ATTR_FILTERED:
1056 break;
1057 case ATTR_ALL_SET:
1058 StartBit = BitIndex;
1059 RA = ATTR_ALL_SET;
1060 break;
1061 case ATTR_ALL_UNSET:
1062 break;
1063 case ATTR_MIXED:
1064 StartBit = BitIndex;
1065 RA = ATTR_MIXED;
1066 break;
1067 default:
1068 assert(0 && "Unexpected bitAttr!");
1069 }
1070 break;
1071 case ATTR_ALL_SET:
1072 switch (bitAttr) {
1073 case ATTR_FILTERED:
1074 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1075 RA = ATTR_NONE;
1076 break;
1077 case ATTR_ALL_SET:
1078 break;
1079 case ATTR_ALL_UNSET:
1080 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1081 RA = ATTR_NONE;
1082 break;
1083 case ATTR_MIXED:
1084 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1085 StartBit = BitIndex;
1086 RA = ATTR_MIXED;
1087 break;
1088 default:
1089 assert(0 && "Unexpected bitAttr!");
1090 }
1091 break;
1092 case ATTR_MIXED:
1093 switch (bitAttr) {
1094 case ATTR_FILTERED:
1095 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1096 StartBit = BitIndex;
1097 RA = ATTR_NONE;
1098 break;
1099 case ATTR_ALL_SET:
1100 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1101 StartBit = BitIndex;
1102 RA = ATTR_ALL_SET;
1103 break;
1104 case ATTR_ALL_UNSET:
1105 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1106 RA = ATTR_NONE;
1107 break;
1108 case ATTR_MIXED:
1109 break;
1110 default:
1111 assert(0 && "Unexpected bitAttr!");
1112 }
1113 break;
1114 case ATTR_ALL_UNSET:
1115 assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1116 case ATTR_FILTERED:
1117 assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1118 }
1119 }
1120
1121 // At the end, if we're still in ALL_SET or MIXED states, report a region
1122 switch (RA) {
1123 case ATTR_NONE:
1124 break;
1125 case ATTR_FILTERED:
1126 break;
1127 case ATTR_ALL_SET:
1128 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1129 break;
1130 case ATTR_ALL_UNSET:
1131 break;
1132 case ATTR_MIXED:
1133 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1134 break;
1135 }
1136
1137 // We have finished with the filter processings. Now it's time to choose
1138 // the best performing filter.
1139 BestIndex = 0;
1140 bool AllUseless = true;
1141 unsigned BestScore = 0;
1142
1143 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1144 unsigned Usefulness = Filters[i].usefulness();
1145
1146 if (Usefulness)
1147 AllUseless = false;
1148
1149 if (Usefulness > BestScore) {
1150 BestIndex = i;
1151 BestScore = Usefulness;
1152 }
1153 }
1154
1155 if (!AllUseless)
1156 bestFilter().recurse();
1157
1158 return !AllUseless;
1159} // end of FilterChooser::filterProcessor(bool)
1160
1161// Decides on the best configuration of filter(s) to use in order to decode
1162// the instructions. A conflict of instructions may occur, in which case we
1163// dump the conflict set to the standard error.
1164void FilterChooser::doFilter() {
1165 unsigned Num = Opcodes.size();
1166 assert(Num && "FilterChooser created with no instructions");
1167
1168 // Try regions of consecutive known bit values first.
1169 if (filterProcessor(false))
1170 return;
1171
1172 // Then regions of mixed bits (both known and unitialized bit values allowed).
1173 if (filterProcessor(true))
1174 return;
1175
1176 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1177 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1178 // well-known encoding pattern. In such case, we backtrack and scan for the
1179 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1180 if (Num == 3 && filterProcessor(true, false))
1181 return;
1182
1183 // If we come to here, the instruction decoding has failed.
1184 // Set the BestIndex to -1 to indicate so.
1185 BestIndex = -1;
1186}
1187
1188// Emits code to decode our share of instructions. Returns true if the
1189// emitted code causes a return, which occurs if we know how to decode
1190// the instruction at this level or the instruction is not decodeable.
1191bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1192 if (Opcodes.size() == 1)
1193 // There is only one instruction in the set, which is great!
1194 // Call emitSingletonDecoder() to see whether there are any remaining
1195 // encodings bits.
1196 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1197
1198 // Choose the best filter to do the decodings!
1199 if (BestIndex != -1) {
1200 Filter &Best = bestFilter();
1201 if (Best.getNumFiltered() == 1)
1202 emitSingletonDecoder(o, Indentation, Best);
1203 else
1204 bestFilter().emit(o, Indentation);
1205 return false;
1206 }
1207
1208 // We don't know how to decode these instructions! Return 0 and dump the
1209 // conflict set!
1210 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1211 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1212 o << nameWithID(Opcodes[i]);
1213 if (i < (N - 1))
1214 o << ", ";
1215 else
1216 o << '\n';
1217 }
1218
1219 // Print out useful conflict information for postmortem analysis.
1220 errs() << "Decoding Conflict:\n";
1221
1222 dumpStack(errs(), "\t\t");
1223
1224 for (unsigned i = 0; i < Opcodes.size(); i++) {
1225 const std::string &Name = nameWithID(Opcodes[i]);
1226
1227 errs() << '\t' << Name << " ";
1228 dumpBits(errs(),
1229 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1230 errs() << '\n';
1231 }
1232
1233 return true;
1234}
1235
Owen Andersonf1a00902011-07-19 21:06:00 +00001236static bool populateInstruction(const CodeGenInstruction &CGI,
1237 unsigned Opc,
1238 std::map<unsigned, std::vector<OperandInfo> >& Operands){
Owen Andersond8c87882011-02-18 21:51:29 +00001239 const Record &Def = *CGI.TheDef;
1240 // If all the bit positions are not specified; do not decode this instruction.
1241 // We are bound to fail! For proper disassembly, the well-known encoding bits
1242 // of the instruction must be fully specified.
1243 //
1244 // This also removes pseudo instructions from considerations of disassembly,
1245 // which is a better design and less fragile than the name matchings.
Owen Andersond8c87882011-02-18 21:51:29 +00001246 // Ignore "asm parser only" instructions.
Owen Anderson4dd27eb2011-03-14 20:58:49 +00001247 if (Def.getValueAsBit("isAsmParserOnly") ||
1248 Def.getValueAsBit("isCodeGenOnly"))
Owen Andersond8c87882011-02-18 21:51:29 +00001249 return false;
1250
David Greene05bce0b2011-07-29 22:43:06 +00001251 BitsInit &Bits = getBitsField(Def, "Inst");
Jim Grosbach806fcc02011-07-06 21:33:38 +00001252 if (Bits.allInComplete()) return false;
1253
Owen Andersond8c87882011-02-18 21:51:29 +00001254 std::vector<OperandInfo> InsnOperands;
1255
1256 // If the instruction has specified a custom decoding hook, use that instead
1257 // of trying to auto-generate the decoder.
1258 std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1259 if (InstDecoder != "") {
Owen Andersond1e38df2011-07-28 21:54:31 +00001260 InsnOperands.push_back(OperandInfo(InstDecoder));
Owen Andersond8c87882011-02-18 21:51:29 +00001261 Operands[Opc] = InsnOperands;
1262 return true;
1263 }
1264
1265 // Generate a description of the operand of the instruction that we know
1266 // how to decode automatically.
1267 // FIXME: We'll need to have a way to manually override this as needed.
1268
1269 // Gather the outputs/inputs of the instruction, so we can find their
1270 // positions in the encoding. This assumes for now that they appear in the
1271 // MCInst in the order that they're listed.
David Greene05bce0b2011-07-29 22:43:06 +00001272 std::vector<std::pair<Init*, std::string> > InOutOperands;
1273 DagInit *Out = Def.getValueAsDag("OutOperandList");
1274 DagInit *In = Def.getValueAsDag("InOperandList");
Owen Andersond8c87882011-02-18 21:51:29 +00001275 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1276 InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1277 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1278 InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1279
Owen Anderson00ef6e32011-07-28 23:56:20 +00001280 // Search for tied operands, so that we can correctly instantiate
1281 // operands that are not explicitly represented in the encoding.
Owen Andersonea242982011-07-29 18:28:52 +00001282 std::map<std::string, std::string> TiedNames;
Owen Anderson00ef6e32011-07-28 23:56:20 +00001283 for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1284 int tiedTo = CGI.Operands[i].getTiedRegister();
Owen Andersonea242982011-07-29 18:28:52 +00001285 if (tiedTo != -1) {
1286 TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
1287 TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
1288 }
Owen Anderson00ef6e32011-07-28 23:56:20 +00001289 }
1290
Owen Andersond8c87882011-02-18 21:51:29 +00001291 // For each operand, see if we can figure out where it is encoded.
David Greene05bce0b2011-07-29 22:43:06 +00001292 for (std::vector<std::pair<Init*, std::string> >::iterator
Owen Andersond8c87882011-02-18 21:51:29 +00001293 NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
Owen Andersond8c87882011-02-18 21:51:29 +00001294 std::string Decoder = "";
1295
Owen Andersond1e38df2011-07-28 21:54:31 +00001296 // At this point, we can locate the field, but we need to know how to
1297 // interpret it. As a first step, require the target to provide callbacks
1298 // for decoding register classes.
1299 // FIXME: This need to be extended to handle instructions with custom
1300 // decoder methods, and operands with (simple) MIOperandInfo's.
David Greene05bce0b2011-07-29 22:43:06 +00001301 TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
Owen Andersond1e38df2011-07-28 21:54:31 +00001302 RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1303 Record *TypeRecord = Type->getRecord();
1304 bool isReg = false;
1305 if (TypeRecord->isSubClassOf("RegisterOperand"))
1306 TypeRecord = TypeRecord->getValueAsDef("RegClass");
1307 if (TypeRecord->isSubClassOf("RegisterClass")) {
1308 Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1309 isReg = true;
1310 }
1311
1312 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
David Greene05bce0b2011-07-29 22:43:06 +00001313 StringInit *String = DecoderString ?
1314 dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
Owen Andersond1e38df2011-07-28 21:54:31 +00001315 if (!isReg && String && String->getValue() != "")
1316 Decoder = String->getValue();
1317
1318 OperandInfo OpInfo(Decoder);
1319 unsigned Base = ~0U;
1320 unsigned Width = 0;
1321 unsigned Offset = 0;
1322
Owen Andersond8c87882011-02-18 21:51:29 +00001323 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
Owen Andersoncf603952011-08-01 22:45:43 +00001324 VarInit *Var = 0;
David Greene05bce0b2011-07-29 22:43:06 +00001325 VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
Owen Andersoncf603952011-08-01 22:45:43 +00001326 if (BI)
1327 Var = dynamic_cast<VarInit*>(BI->getVariable());
1328 else
1329 Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
1330
1331 if (!Var) {
Owen Andersond1e38df2011-07-28 21:54:31 +00001332 if (Base != ~0U) {
1333 OpInfo.addField(Base, Width, Offset);
1334 Base = ~0U;
1335 Width = 0;
1336 Offset = 0;
1337 }
1338 continue;
1339 }
Owen Andersond8c87882011-02-18 21:51:29 +00001340
Owen Anderson00ef6e32011-07-28 23:56:20 +00001341 if (Var->getName() != NI->second &&
Owen Andersonea242982011-07-29 18:28:52 +00001342 Var->getName() != TiedNames[NI->second]) {
Owen Andersond1e38df2011-07-28 21:54:31 +00001343 if (Base != ~0U) {
1344 OpInfo.addField(Base, Width, Offset);
1345 Base = ~0U;
1346 Width = 0;
1347 Offset = 0;
1348 }
1349 continue;
Owen Andersond8c87882011-02-18 21:51:29 +00001350 }
1351
Owen Andersond1e38df2011-07-28 21:54:31 +00001352 if (Base == ~0U) {
1353 Base = bi;
1354 Width = 1;
Owen Andersoncf603952011-08-01 22:45:43 +00001355 Offset = BI ? BI->getBitNum() : 0;
1356 } else if (BI && BI->getBitNum() != Offset + Width) {
Owen Andersoneb809f52011-07-29 23:01:18 +00001357 OpInfo.addField(Base, Width, Offset);
1358 Base = bi;
1359 Width = 1;
1360 Offset = BI->getBitNum();
Owen Andersond1e38df2011-07-28 21:54:31 +00001361 } else {
1362 ++Width;
Owen Andersond8c87882011-02-18 21:51:29 +00001363 }
Owen Andersond8c87882011-02-18 21:51:29 +00001364 }
1365
Owen Andersond1e38df2011-07-28 21:54:31 +00001366 if (Base != ~0U)
1367 OpInfo.addField(Base, Width, Offset);
1368
1369 if (OpInfo.numFields() > 0)
1370 InsnOperands.push_back(OpInfo);
Owen Andersond8c87882011-02-18 21:51:29 +00001371 }
1372
1373 Operands[Opc] = InsnOperands;
1374
1375
1376#if 0
1377 DEBUG({
1378 // Dumps the instruction encoding bits.
1379 dumpBits(errs(), Bits);
1380
1381 errs() << '\n';
1382
1383 // Dumps the list of operand info.
1384 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1385 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1386 const std::string &OperandName = Info.Name;
1387 const Record &OperandDef = *Info.Rec;
1388
1389 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1390 }
1391 });
1392#endif
1393
1394 return true;
1395}
1396
Owen Andersonf1a00902011-07-19 21:06:00 +00001397static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
1398 unsigned Indentation = 0;
1399 std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
Owen Andersond8c87882011-02-18 21:51:29 +00001400
Owen Andersonf1a00902011-07-19 21:06:00 +00001401 o << '\n';
1402
1403 o.indent(Indentation) << "static " << WidthStr <<
1404 " fieldFromInstruction" << BitWidth <<
1405 "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
1406
1407 o.indent(Indentation) << "{\n";
1408
1409 ++Indentation; ++Indentation;
1410 o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
1411 << " && \"Instruction field out of bounds!\");\n";
1412 o << '\n';
1413 o.indent(Indentation) << WidthStr << " fieldMask;\n";
1414 o << '\n';
1415 o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
1416
1417 ++Indentation; ++Indentation;
1418 o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
1419 --Indentation; --Indentation;
1420
1421 o.indent(Indentation) << "else\n";
1422
1423 ++Indentation; ++Indentation;
1424 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
1425 --Indentation; --Indentation;
1426
1427 o << '\n';
1428 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
1429 --Indentation; --Indentation;
1430
1431 o.indent(Indentation) << "}\n";
1432
1433 o << '\n';
Owen Andersond8c87882011-02-18 21:51:29 +00001434}
1435
1436// Emits disassembler code for instruction decoding.
1437void FixedLenDecoderEmitter::run(raw_ostream &o)
1438{
1439 o << "#include \"llvm/MC/MCInst.h\"\n";
1440 o << "#include \"llvm/Support/DataTypes.h\"\n";
1441 o << "#include <assert.h>\n";
1442 o << '\n';
1443 o << "namespace llvm {\n\n";
1444
Owen Andersonf1a00902011-07-19 21:06:00 +00001445 // Parameterize the decoders based on namespace and instruction width.
Owen Andersond8c87882011-02-18 21:51:29 +00001446 NumberedInstructions = Target.getInstructionsByEnumValue();
Owen Andersonf1a00902011-07-19 21:06:00 +00001447 std::map<std::pair<std::string, unsigned>,
1448 std::vector<unsigned> > OpcMap;
1449 std::map<unsigned, std::vector<OperandInfo> > Operands;
1450
1451 for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
1452 const CodeGenInstruction *Inst = NumberedInstructions[i];
1453 Record *Def = Inst->TheDef;
1454 unsigned Size = Def->getValueAsInt("Size");
1455 if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
1456 Def->getValueAsBit("isPseudo") ||
1457 Def->getValueAsBit("isAsmParserOnly") ||
1458 Def->getValueAsBit("isCodeGenOnly"))
1459 continue;
1460
1461 std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
1462
1463 if (Size) {
1464 if (populateInstruction(*Inst, i, Operands)) {
1465 OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
1466 }
1467 }
1468 }
1469
1470 std::set<unsigned> Sizes;
1471 for (std::map<std::pair<std::string, unsigned>,
1472 std::vector<unsigned> >::iterator
1473 I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
1474 // If we haven't visited this instruction width before, emit the
1475 // helper method to extract fields.
1476 if (!Sizes.count(I->first.second)) {
1477 emitHelper(o, 8*I->first.second);
1478 Sizes.insert(I->first.second);
1479 }
1480
1481 // Emit the decoder for this namespace+width combination.
1482 FilterChooser FC(NumberedInstructions, I->second, Operands,
Owen Anderson83e3f672011-08-17 17:44:15 +00001483 8*I->first.second, this);
Owen Andersonf1a00902011-07-19 21:06:00 +00001484 FC.emitTop(o, 0, I->first.first);
1485 }
Owen Andersond8c87882011-02-18 21:51:29 +00001486
1487 o << "\n} // End llvm namespace \n";
1488}