blob: d5d6f93912d7d3d4c12457517e8935fd02790486 [file] [log] [blame]
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001// $Id$ -*- C++ -*--
2//***************************************************************************
3// File:
4// SparcInternals.h
5//
6// Purpose:
7// This file defines stuff that is to be private to the Sparc
8// backend, but is shared among different portions of the backend.
9//**************************************************************************/
10
Chris Lattnerc6495ee2001-09-14 03:56:45 +000011
12#ifndef SPARC_INTERNALS_H
13#define SPARC_INTERNALS_H
14
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +000015
16#include "SparcRegClassInfo.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MachineInstrInfo.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000019#include "llvm/Target/MachineSchedInfo.h"
Vikram S. Adve5afff3b2001-11-09 02:15:52 +000020#include "llvm/Target/MachineFrameInfo.h"
21#include "llvm/Target/MachineCacheInfo.h"
Ruchira Sasankaab304c42001-09-30 23:19:57 +000022#include "llvm/CodeGen/RegClass.h"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000023#include "llvm/Type.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000024
Chris Lattner46cbff62001-09-14 16:56:32 +000025#include <sys/types.h>
Chris Lattnerc6495ee2001-09-14 03:56:45 +000026
Chris Lattnerf6e0e282001-09-14 04:32:55 +000027class UltraSparc;
28
Chris Lattnerc6495ee2001-09-14 03:56:45 +000029// OpCodeMask definitions for the Sparc V9
30//
31const OpCodeMask Immed = 0x00002000; // immed or reg operand?
32const OpCodeMask Annul = 0x20000000; // annul delay instr?
33const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
34
35
36enum SparcInstrSchedClass {
37 SPARC_NONE, /* Instructions with no scheduling restrictions */
38 SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
39 SPARC_IEU0, /* Integer class IEU0 */
40 SPARC_IEU1, /* Integer class IEU1 */
41 SPARC_FPM, /* FP Multiply or Divide instructions */
42 SPARC_FPA, /* All other FP instructions */
43 SPARC_CTI, /* Control-transfer instructions */
44 SPARC_LD, /* Load instructions */
45 SPARC_ST, /* Store instructions */
46 SPARC_SINGLE, /* Instructions that must issue by themselves */
47
48 SPARC_INV, /* This should stay at the end for the next value */
49 SPARC_NUM_SCHED_CLASSES = SPARC_INV
50};
51
Chris Lattnerc6495ee2001-09-14 03:56:45 +000052
53//---------------------------------------------------------------------------
54// enum SparcMachineOpCode.
55// const MachineInstrDescriptor SparcMachineInstrDesc[]
56//
57// Purpose:
58// Description of UltraSparc machine instructions.
59//
60//---------------------------------------------------------------------------
61
Chris Lattnerc6495ee2001-09-14 03:56:45 +000062enum SparcMachineOpCode {
Chris Lattner9a3d63b2001-09-19 15:56:23 +000063#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
64 NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
65 ENUM,
66#include "SparcInstr.def"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000067
Chris Lattnerc6495ee2001-09-14 03:56:45 +000068 // End-of-array marker
69 INVALID_OPCODE,
Vikram S. Advec1521632001-10-22 13:31:53 +000070 NUM_REAL_OPCODES = PHI, // number of valid opcodes
Chris Lattnerc6495ee2001-09-14 03:56:45 +000071 NUM_TOTAL_OPCODES = INVALID_OPCODE
72};
73
Chris Lattnerc6495ee2001-09-14 03:56:45 +000074
Chris Lattner9a3d63b2001-09-19 15:56:23 +000075// Array of machine instruction descriptions...
76extern const MachineInstrDescriptor SparcMachineInstrDesc[];
Chris Lattnerc6495ee2001-09-14 03:56:45 +000077
78
79//---------------------------------------------------------------------------
80// class UltraSparcInstrInfo
81//
82// Purpose:
83// Information about individual instructions.
84// Most information is stored in the SparcMachineInstrDesc array above.
85// Other information is computed on demand, and most such functions
86// default to member functions in base class MachineInstrInfo.
87//---------------------------------------------------------------------------
88
89class UltraSparcInstrInfo : public MachineInstrInfo {
90public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +000091 /*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt);
Vikram S. Adve4c5fe2d2001-11-14 18:48:36 +000092
93 //
94 // All immediate constants are in position 0 except the
95 // store instructions.
96 //
97 virtual int getImmmedConstantPos(MachineOpCode opCode) const {
98 bool ignore;
99 if (this->maxImmedConstant(opCode, ignore) != 0)
100 {
101 assert(! this->isStore((MachineOpCode) STB - 1)); // first store is STB
102 assert(! this->isStore((MachineOpCode) STD + 1)); // last store is STD
103 return (opCode >= STB || opCode <= STD)? 2 : 1;
104 }
105 else
106 return -1;
107 }
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000108
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000109 virtual bool hasResultInterlock (MachineOpCode opCode) const
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000110 {
111 // All UltraSPARC instructions have interlocks (note that delay slots
112 // are not considered here).
113 // However, instructions that use the result of an FCMP produce a
114 // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
115 // Force the compiler to insert a software interlock (i.e., gap of
116 // 2 other groups, including NOPs if necessary).
117 return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
118 }
119
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000120 //-------------------------------------------------------------------------
121 // Code generation support for creating individual machine instructions
122 //-------------------------------------------------------------------------
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000123
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000124 // Create an instruction sequence to put the constant `val' into
125 // the virtual register `dest'. The generated instructions are
126 // returned in `minstrVec'. Any temporary registers (TmpInstruction)
127 // created are returned in `tempVec'.
128 //
129 virtual void CreateCodeToLoadConst(Value* val,
130 Instruction* dest,
131 vector<MachineInstr*>& minstrVec,
132 vector<TmpInstruction*>& tempVec) const;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +0000133
134
Vikram S. Adve5afff3b2001-11-09 02:15:52 +0000135 // Create an instruction sequence to copy an integer value `val'
136 // to a floating point value `dest' by copying to memory and back.
137 // val must be an integral type. dest must be a Float or Double.
Vikram S. Adve7f37fe52001-11-08 04:55:13 +0000138 // The generated instructions are returned in `minstrVec'.
139 // Any temp. registers (TmpInstruction) created are returned in `tempVec'.
140 //
141 virtual void CreateCodeToCopyIntToFloat(Method* method,
142 Value* val,
143 Instruction* dest,
144 vector<MachineInstr*>& minstrVec,
145 vector<TmpInstruction*>& tempVec,
146 TargetMachine& target) const;
Vikram S. Adve5afff3b2001-11-09 02:15:52 +0000147
148 // Similarly, create an instruction sequence to copy an FP value
149 // `val' to an integer value `dest' by copying to memory and back.
150 // See the previous function for information about return values.
151 //
152 virtual void CreateCodeToCopyFloatToInt(Method* method,
153 Value* val,
154 Instruction* dest,
155 vector<MachineInstr*>& minstrVec,
156 vector<TmpInstruction*>& tempVec,
157 TargetMachine& target) const;
Ruchira Sasanka67a463a2001-11-12 14:45:33 +0000158
159 // create copy instruction(s)
160 virtual void
161 CreateCopyInstructionsByType(const TargetMachine& target,
162 Value* src,
163 Instruction* dest,
164 vector<MachineInstr*>& minstrVec) const;
165
166
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000167};
168
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000169
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000170//----------------------------------------------------------------------------
171// class UltraSparcRegInfo
172//
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000173// This class implements the virtual class MachineRegInfo for Sparc.
174//
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000175//----------------------------------------------------------------------------
176
177
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000178class LiveRange;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000179class UltraSparc;
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000180class PhyRegAlloc;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000181
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000182
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000183class UltraSparcRegInfo : public MachineRegInfo
184{
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000185 private:
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000186
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000187 // The actual register classes in the Sparc
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000188 //
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000189 enum RegClassIDs {
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000190 IntRegClassID, // Integer
191 FloatRegClassID, // Float (both single/double)
192 IntCCRegClassID, // Int Condition Code
193 FloatCCRegClassID // Float Condition code
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000194 };
195
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000196
197 // Type of registers available in Sparc. There can be several reg types
198 // in the same class. For instace, the float reg class has Single/Double
199 // types
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000200 //
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000201 enum RegTypes {
202 IntRegType,
203 FPSingleRegType,
204 FPDoubleRegType,
205 IntCCRegType,
206 FloatCCRegType
207 };
208
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000209 // **** WARNING: If the above enum order is changed, also modify
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000210 // getRegisterClassOfValue method below since it assumes this particular
211 // order for efficiency.
212
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000213
214 // reverse pointer to get info about the ultra sparc machine
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000215 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000216 const UltraSparc *const UltraSparcInfo;
217
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000218 // Number of registers used for passing int args (usually 6: %o0 - %o5)
219 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000220 unsigned const NumOfIntArgRegs;
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000221
222 // Number of registers used for passing float args (usually 32: %f0 - %f31)
223 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000224 unsigned const NumOfFloatArgRegs;
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000225
226 // An out of bound register number that can be used to initialize register
227 // numbers. Useful for error detection.
228 //
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000229 int const InvalidRegNum;
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000230
231
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000232 // ======================== Private Methods =============================
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000233
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000234 // The following methods are used to color special live ranges (e.g.
235 // method args and return values etc.) with specific hardware registers
236 // as required. See SparcRegInfo.cpp for the implementation.
237 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000238 void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
239 const MachineInstr *MI,AddedInstrMapType &AIMap)const;
240
241 MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
242 unsigned RegClassID) const ;
243
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000244 void suggestReg4RetAddr(const MachineInstr * RetMI,
245 LiveRangeInfo& LRI) const;
246
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000247 void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI,
248 vector<RegClass *> RCList) const;
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000249
250
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000251
252 // The following methods are used to find the addresses etc. contained
253 // in specail machine instructions like CALL/RET
254 //
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000255 Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000256 const Value *getCallInstRetAddr(const MachineInstr *CallMI) const;
257 const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const;
258
259
260 // The following 3 methods are used to find the RegType (see enum above)
261 // of a LiveRange, Value and using the unified RegClassID
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000262
263 int getRegType(const LiveRange *const LR) const {
264
265 unsigned Typ;
266
267 switch( (LR->getRegClass())->getID() ) {
268
269 case IntRegClassID: return IntRegType;
270
271 case FloatRegClassID:
272 Typ = LR->getTypeID();
273 if( Typ == Type::FloatTyID )
274 return FPSingleRegType;
275 else if( Typ == Type::DoubleTyID )
276 return FPDoubleRegType;
277 else assert(0 && "Unknown type in FloatRegClass");
278
279 case IntCCRegClassID: return IntCCRegType;
280
281 case FloatCCRegClassID: return FloatCCRegType ;
282
283 default: assert( 0 && "Unknown reg class ID");
Chris Lattner6dad5062001-11-07 13:49:12 +0000284 return 0;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000285 }
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000286 }
287
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000288
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000289 int getRegType(const Value *const Val) const {
290
291 unsigned Typ;
292
293 switch( getRegClassIDOfValue(Val) ) {
294
295 case IntRegClassID: return IntRegType;
296
297 case FloatRegClassID:
298 Typ = (Val->getType())->getPrimitiveID();
299 if( Typ == Type::FloatTyID )
300 return FPSingleRegType;
301 else if( Typ == Type::DoubleTyID )
302 return FPDoubleRegType;
303 else assert(0 && "Unknown type in FloatRegClass");
304
305 case IntCCRegClassID: return IntCCRegType;
306
307 case FloatCCRegClassID: return FloatCCRegType ;
308
309 default: assert( 0 && "Unknown reg class ID");
Chris Lattner6dad5062001-11-07 13:49:12 +0000310 return 0;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000311 }
312
313 }
314
315
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000316 int getRegType(int reg) const {
317 if( reg < 32 )
318 return IntRegType;
319 else if ( reg < (32 + 32) )
320 return FPSingleRegType;
321 else if ( reg < (64 + 32) )
322 return FPDoubleRegType;
323 else if( reg < (64+32+4) )
324 return FloatCCRegType;
325 else if( reg < (64+32+4+2) )
326 return IntCCRegType;
327 else
328 assert(0 && "Invalid register number in getRegType");
329 }
330
331
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000332
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000333
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000334 // The following methods are used to generate copy instructions to move
335 // data between condition code registers
336 //
Ruchira Sasanka3839e6e2001-11-03 19:59:59 +0000337 MachineInstr * cpCCR2IntMI(const unsigned IntReg) const;
338 MachineInstr * cpInt2CCRMI(const unsigned IntReg) const;
339
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000340 // Used to generate a copy instruction based on the register class of
341 // value.
342 //
343 MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
344 const int RegType) const;
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000345
346
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000347 // The following 2 methods are used to order the instructions addeed by
348 // the register allocator in association with method calling. See
349 // SparcRegInfo.cpp for more details
350 //
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000351 void moveInst2OrdVec(vector<MachineInstr *> &OrdVec, MachineInstr *UnordInst,
352 PhyRegAlloc &PRA ) const;
353
Ruchira Sasanka868cf822001-11-09 23:49:14 +0000354 void OrderAddedInstrns( vector<MachineInstr *> &UnordVec,
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000355 vector<MachineInstr *> &OrdVec,
356 PhyRegAlloc &PRA) const;
357
358
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000359 // To find whether a particular call is to a var arg method
360 //
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000361 bool isVarArgCall(const MachineInstr *CallMI) const;
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000362
Ruchira Sasanka868cf822001-11-09 23:49:14 +0000363
364
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000365 public:
366
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000367 // constructor
368 //
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000369 UltraSparcRegInfo(const TargetMachine& tgt ) :
370 MachineRegInfo(tgt),
371 UltraSparcInfo(& (const UltraSparc&) tgt),
372 NumOfIntArgRegs(6),
373 NumOfFloatArgRegs(32),
374 InvalidRegNum(1000),
375 SizeOfOperandOnStack(8) {
376
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000377 MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
378 MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000379 MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
380 MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000381
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000382 assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
383 "32 Float regs are used for float arg passing");
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000384
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000385 }
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000386
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000387
388 ~UltraSparcRegInfo(void) { } // empty destructor
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000389
390
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000391 // To get complete machine information structure using the machine register
392 // information
393 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000394 inline const UltraSparc & getUltraSparcInfo() const {
395 return *UltraSparcInfo;
396 }
397
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000398
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000399 // To find the register class of a Value
400 //
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000401 inline unsigned getRegClassIDOfValue (const Value *const Val,
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000402 bool isCCReg = false) const {
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000403
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000404 Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000405
406 unsigned res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000407
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000408 if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
409 (ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000410 res = IntRegClassID; // sparc int reg (ty=0: void)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000411 else if( ty <= Type::DoubleTyID)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000412 res = FloatRegClassID; // sparc float reg class
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000413 else {
Chris Lattner1e23ed72001-10-15 18:15:27 +0000414 cerr << "TypeID: " << ty << endl;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000415 assert(0 && "Cannot resolve register class for type");
Chris Lattner8e5c0b42001-11-07 14:01:59 +0000416 return 0;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000417 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000418
419 if(isCCReg)
420 return res + 2; // corresponidng condition code regiser
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000421 else
422 return res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000423 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000424
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000425
426
427 // returns the register that contains always zero
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000428 // this is the unified register number
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000429 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000430 inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
431
432 // returns the reg used for pushing the address when a method is called.
433 // This can be used for other purposes between calls
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000434 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000435 unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
436
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000437 // Returns the register containing the return address.
438 // It should be made sure that this register contains the return
439 // value when a return instruction is reached.
440 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000441 unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
442
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000443
444
445 // The following methods are used to color special live ranges (e.g.
446 // method args and return values etc.) with specific hardware registers
447 // as required. See SparcRegInfo.cpp for the implementation for Sparc.
448 //
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000449 void suggestRegs4MethodArgs(const Method *const Meth,
450 LiveRangeInfo& LRI) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000451
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000452 void suggestRegs4CallArgs(const MachineInstr *const CallMI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000453 LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000454
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000455 void suggestReg4RetValue(const MachineInstr *const RetMI,
456 LiveRangeInfo& LRI ) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000457
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000458
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000459 void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
460 AddedInstrns *const FirstAI) const;
461
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000462 void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000463 AddedInstrns *const CallAI, PhyRegAlloc &PRA,
464 const BasicBlock *BB) const;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000465
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000466 void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000467 AddedInstrns *const RetAI) const;
468
469
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000470
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000471 // method used for printing a register for debugging purposes
472 //
473 static void printReg(const LiveRange *const LR) ;
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000474
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000475 // this method provides a unique number for each register
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000476 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000477 inline int getUnifiedRegNum(int RegClassID, int reg) const {
478
479 if( RegClassID == IntRegClassID && reg < 32 )
480 return reg;
481 else if ( RegClassID == FloatRegClassID && reg < 64)
482 return reg + 32; // we have 32 int regs
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000483 else if( RegClassID == FloatCCRegClassID && reg < 4)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000484 return reg + 32 + 64; // 32 int, 64 float
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000485 else if( RegClassID == IntCCRegClassID )
486 return 4+ 32 + 64; // only int cc reg
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000487 else if (reg==InvalidRegNum)
488 return InvalidRegNum;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000489 else
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000490 assert(0 && "Invalid register class or reg number");
Chris Lattner6dad5062001-11-07 13:49:12 +0000491 return 0;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000492 }
493
494 // given the unified register number, this gives the name
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000495 // for generating assembly code or debugging.
496 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000497 inline const string getUnifiedRegName(int reg) const {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000498 if( reg < 32 )
499 return SparcIntRegOrder::getRegName(reg);
500 else if ( reg < (64 + 32) )
501 return SparcFloatRegOrder::getRegName( reg - 32);
502 else if( reg < (64+32+4) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000503 return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
Ruchira Sasanka3839e6e2001-11-03 19:59:59 +0000504 else if( reg < (64+32+4+2) ) // two names: %xcc and %ccr
505 return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4);
Vikram S. Advec1521632001-10-22 13:31:53 +0000506 else if (reg== InvalidRegNum) //****** TODO: Remove */
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000507 return "<*NoReg*>";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000508 else
509 assert(0 && "Invalid register number");
Chris Lattner6dad5062001-11-07 13:49:12 +0000510 return "";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000511 }
512
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000513
514
515 // The fllowing methods are used by instruction selection
516 //
Vikram S. Advec1521632001-10-22 13:31:53 +0000517 inline unsigned int getRegNumInCallersWindow(int reg) {
518 if (reg == InvalidRegNum || reg >= 32)
519 return reg;
520 return SparcIntRegOrder::getRegNumInCallersWindow(reg);
521 }
522
523 inline bool mustBeRemappedInCallersWindow(int reg) {
524 return (reg != InvalidRegNum && reg < 32);
525 }
526
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000527
528
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000529 // returns the # of bytes of stack space allocated for each register
530 // type. For Sparc, currently we allocate 8 bytes on stack for all
531 // register types. We can optimize this later if necessary to save stack
532 // space (However, should make sure that stack alignment is correct)
533 //
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000534 inline int getSpilledRegSize(const int RegType) const {
535 return 8;
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000536 }
537
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000538
539 // To obtain the return value contained in a CALL machine instruction
540 //
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000541 const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
542
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000543
544 // The following methods are used to generate "copy" machine instructions
545 // for an architecture.
546 //
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000547 MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
548 const int RegType) const;
549
550 MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
551 const int Offset, const int RegType) const;
552
553 MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
554 const unsigned DestReg, const int RegType) const;
555
Ruchira Sasankaef1b0cb2001-11-03 17:13:27 +0000556 MachineInstr* cpValue2Value(Value *Src, Value *Dest) const;
557
558
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000559 // To see whether a register is a volatile (i.e., whehter it must be
560 // preserved acorss calls)
561 //
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000562 inline bool isRegVolatile(const int RegClassID, const int Reg) const {
563 return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
564 }
565
566
567 inline unsigned getFramePointer() const {
568 return SparcIntRegOrder::i6;
569 }
570
571 inline unsigned getStackPointer() const {
572 return SparcIntRegOrder::o6;
573 }
574
575 inline int getInvalidRegNum() const {
576 return InvalidRegNum;
577 }
578
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000579
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000580
581 // This method inserts the caller saving code for call instructions
582 //
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000583 void insertCallerSavingCode(const MachineInstr *MInst,
584 const BasicBlock *BB, PhyRegAlloc &PRA ) const;
585
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000586};
587
588
589
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000590/*---------------------------------------------------------------------------
591Scheduling guidelines for SPARC IIi:
592
593I-Cache alignment rules (pg 326)
594-- Align a branch target instruction so that it's entire group is within
595 the same cache line (may be 1-4 instructions).
596** Don't let a branch that is predicted taken be the last instruction
597 on an I-cache line: delay slot will need an entire line to be fetched
598-- Make a FP instruction or a branch be the 4th instruction in a group.
599 For branches, there are tradeoffs in reordering to make this happen
600 (see pg. 327).
601** Don't put a branch in a group that crosses a 32-byte boundary!
602 An artificial branch is inserted after every 32 bytes, and having
603 another branch will force the group to be broken into 2 groups.
604
605iTLB rules:
606-- Don't let a loop span two memory pages, if possible
607
608Branch prediction performance:
609-- Don't make the branch in a delay slot the target of a branch
610-- Try not to have 2 predicted branches within a group of 4 instructions
611 (because each such group has a single branch target field).
612-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
613 the wrong prediction bits being used in some cases).
614
615D-Cache timing constraints:
616-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
617-- All other loads that hit in D-Cache have 2 cycle latency
618-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
619-- Mis-aligned loads or stores cause a trap. In particular, replace
620 mis-aligned FP double precision l/s with 2 single-precision l/s.
621-- Simulations of integer codes show increase in avg. group size of
622 33% when code (including esp. non-faulting loads) is moved across
623 one branch, and 50% across 2 branches.
624
625E-Cache timing constraints:
626-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
627
628Store buffer timing constraints:
629-- Stores can be executed in same cycle as instruction producing the value
630-- Stores are buffered and have lower priority for E-cache until
631 highwater mark is reached in the store buffer (5 stores)
632
633Pipeline constraints:
634-- Shifts can only use IEU0.
635-- CC setting instructions can only use IEU1.
636-- Several other instructions must only use IEU1:
637 EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
638-- Two instructions cannot store to the same register file in a single cycle
639 (single write port per file).
640
641Issue and grouping constraints:
642-- FP and branch instructions must use slot 4.
643-- Shift instructions cannot be grouped with other IEU0-specific instructions.
644-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
645-- Several instructions must be issued in a single-instruction group:
646 MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
647-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
648--
649--
650
651Branch delay slot scheduling rules:
652-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
653 has a 9-instruction penalty: the entire pipeline is flushed when the
654 second instruction reaches stage 9 (W-Writeback).
655-- Avoid putting multicycle instructions, and instructions that may cause
656 load misses, in the delay slot of an annulling branch.
657-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
658 delay slot of an annulling branch.
659
660 *--------------------------------------------------------------------------- */
661
662//---------------------------------------------------------------------------
663// List of CPUResources for UltraSPARC IIi.
664//---------------------------------------------------------------------------
665
666const CPUResource AllIssueSlots( "All Instr Slots", 4);
667const CPUResource IntIssueSlots( "Int Instr Slots", 3);
668const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
669const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
670const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
671const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
672const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
673
674// IEUN instructions can use either Alu and should use IAluN.
675// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
676// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
677const CPUResource IAluN("Int ALU 1or2", 2);
678const CPUResource IAlu0("Int ALU 1", 1);
679const CPUResource IAlu1("Int ALU 2", 1);
680
681const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
682const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
683const CPUResource LdReturn("Load Return Unit", 1);
684
685const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
686const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
687const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
688
689const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
690const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
691const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
692
693const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
694const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
695const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
696const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
697
698const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
699const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
700
701
702//---------------------------------------------------------------------------
703// const InstrClassRUsage SparcRUsageDesc[]
704//
705// Purpose:
706// Resource usage information for instruction in each scheduling class.
707// The InstrRUsage Objects for individual classes are specified first.
708// Note that fetch and decode are decoupled from the execution pipelines
709// via an instr buffer, so they are not included in the cycles below.
710//---------------------------------------------------------------------------
711
712const InstrClassRUsage NoneClassRUsage = {
713 SPARC_NONE,
714 /*totCycles*/ 7,
715
716 /* maxIssueNum */ 4,
717 /* isSingleIssue */ false,
718 /* breaksGroup */ false,
719 /* numBubbles */ 0,
720
721 /*numSlots*/ 4,
722 /* feasibleSlots[] */ { 0, 1, 2, 3 },
723
724 /*numEntries*/ 0,
725 /* V[] */ {
726 /*Cycle G */
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000727 /*Ccle E */
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000728 /*Cycle C */
729 /*Cycle N1*/
730 /*Cycle N1*/
731 /*Cycle N1*/
732 /*Cycle W */
733 }
734};
735
736const InstrClassRUsage IEUNClassRUsage = {
737 SPARC_IEUN,
738 /*totCycles*/ 7,
739
740 /* maxIssueNum */ 3,
741 /* isSingleIssue */ false,
742 /* breaksGroup */ false,
743 /* numBubbles */ 0,
744
745 /*numSlots*/ 3,
746 /* feasibleSlots[] */ { 0, 1, 2 },
747
748 /*numEntries*/ 4,
749 /* V[] */ {
750 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
751 { IntIssueSlots.rid, 0, 1 },
752 /*Cycle E */ { IAluN.rid, 1, 1 },
753 /*Cycle C */
754 /*Cycle N1*/
755 /*Cycle N1*/
756 /*Cycle N1*/
757 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
758 }
759};
760
761const InstrClassRUsage IEU0ClassRUsage = {
762 SPARC_IEU0,
763 /*totCycles*/ 7,
764
765 /* maxIssueNum */ 1,
766 /* isSingleIssue */ false,
767 /* breaksGroup */ false,
768 /* numBubbles */ 0,
769
770 /*numSlots*/ 3,
771 /* feasibleSlots[] */ { 0, 1, 2 },
772
773 /*numEntries*/ 5,
774 /* V[] */ {
775 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
776 { IntIssueSlots.rid, 0, 1 },
777 /*Cycle E */ { IAluN.rid, 1, 1 },
778 { IAlu0.rid, 1, 1 },
779 /*Cycle C */
780 /*Cycle N1*/
781 /*Cycle N1*/
782 /*Cycle N1*/
783 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
784 }
785};
786
787const InstrClassRUsage IEU1ClassRUsage = {
788 SPARC_IEU1,
789 /*totCycles*/ 7,
790
791 /* maxIssueNum */ 1,
792 /* isSingleIssue */ false,
793 /* breaksGroup */ false,
794 /* numBubbles */ 0,
795
796 /*numSlots*/ 3,
797 /* feasibleSlots[] */ { 0, 1, 2 },
798
799 /*numEntries*/ 5,
800 /* V[] */ {
801 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
802 { IntIssueSlots.rid, 0, 1 },
803 /*Cycle E */ { IAluN.rid, 1, 1 },
804 { IAlu1.rid, 1, 1 },
805 /*Cycle C */
806 /*Cycle N1*/
807 /*Cycle N1*/
808 /*Cycle N1*/
809 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
810 }
811};
812
813const InstrClassRUsage FPMClassRUsage = {
814 SPARC_FPM,
815 /*totCycles*/ 7,
816
817 /* maxIssueNum */ 1,
818 /* isSingleIssue */ false,
819 /* breaksGroup */ false,
820 /* numBubbles */ 0,
821
822 /*numSlots*/ 4,
823 /* feasibleSlots[] */ { 0, 1, 2, 3 },
824
825 /*numEntries*/ 7,
826 /* V[] */ {
827 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
828 { FPMIssueSlots.rid, 0, 1 },
829 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
830 /*Cycle C */ { FPMAluC1.rid, 2, 1 },
831 /*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
832 /*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
833 /*Cycle N1*/
834 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
835 }
836};
837
838const InstrClassRUsage FPAClassRUsage = {
839 SPARC_FPA,
840 /*totCycles*/ 7,
841
842 /* maxIssueNum */ 1,
843 /* isSingleIssue */ false,
844 /* breaksGroup */ false,
845 /* numBubbles */ 0,
846
847 /*numSlots*/ 4,
848 /* feasibleSlots[] */ { 0, 1, 2, 3 },
849
850 /*numEntries*/ 7,
851 /* V[] */ {
852 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
853 { FPAIssueSlots.rid, 0, 1 },
854 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
855 /*Cycle C */ { FPAAluC1.rid, 2, 1 },
856 /*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
857 /*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
858 /*Cycle N1*/
859 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
860 }
861};
862
863const InstrClassRUsage LDClassRUsage = {
864 SPARC_LD,
865 /*totCycles*/ 7,
866
867 /* maxIssueNum */ 1,
868 /* isSingleIssue */ false,
869 /* breaksGroup */ false,
870 /* numBubbles */ 0,
871
872 /*numSlots*/ 3,
873 /* feasibleSlots[] */ { 0, 1, 2, },
874
875 /*numEntries*/ 6,
876 /* V[] */ {
877 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
878 { First3IssueSlots.rid, 0, 1 },
879 { LSIssueSlots.rid, 0, 1 },
880 /*Cycle E */ { LSAluC1.rid, 1, 1 },
881 /*Cycle C */ { LSAluC2.rid, 2, 1 },
882 { LdReturn.rid, 2, 1 },
883 /*Cycle N1*/
884 /*Cycle N1*/
885 /*Cycle N1*/
886 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
887 }
888};
889
890const InstrClassRUsage STClassRUsage = {
891 SPARC_ST,
892 /*totCycles*/ 7,
893
894 /* maxIssueNum */ 1,
895 /* isSingleIssue */ false,
896 /* breaksGroup */ false,
897 /* numBubbles */ 0,
898
899 /*numSlots*/ 3,
900 /* feasibleSlots[] */ { 0, 1, 2 },
901
902 /*numEntries*/ 4,
903 /* V[] */ {
904 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
905 { First3IssueSlots.rid, 0, 1 },
906 { LSIssueSlots.rid, 0, 1 },
907 /*Cycle E */ { LSAluC1.rid, 1, 1 },
908 /*Cycle C */ { LSAluC2.rid, 2, 1 }
909 /*Cycle N1*/
910 /*Cycle N1*/
911 /*Cycle N1*/
912 /*Cycle W */
913 }
914};
915
916const InstrClassRUsage CTIClassRUsage = {
917 SPARC_CTI,
918 /*totCycles*/ 7,
919
920 /* maxIssueNum */ 1,
921 /* isSingleIssue */ false,
922 /* breaksGroup */ false,
923 /* numBubbles */ 0,
924
925 /*numSlots*/ 4,
926 /* feasibleSlots[] */ { 0, 1, 2, 3 },
927
928 /*numEntries*/ 4,
929 /* V[] */ {
930 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
931 { CTIIssueSlots.rid, 0, 1 },
932 /*Cycle E */ { IAlu0.rid, 1, 1 },
933 /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
934 /*Cycle C */
935 /*Cycle N1*/
936 /*Cycle N1*/
937 /*Cycle N1*/
938 /*Cycle W */
939 }
940};
941
942const InstrClassRUsage SingleClassRUsage = {
943 SPARC_SINGLE,
944 /*totCycles*/ 7,
945
946 /* maxIssueNum */ 1,
947 /* isSingleIssue */ true,
948 /* breaksGroup */ false,
949 /* numBubbles */ 0,
950
951 /*numSlots*/ 1,
952 /* feasibleSlots[] */ { 0 },
953
954 /*numEntries*/ 5,
955 /* V[] */ {
956 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
957 { AllIssueSlots.rid, 0, 1 },
958 { AllIssueSlots.rid, 0, 1 },
959 { AllIssueSlots.rid, 0, 1 },
960 /*Cycle E */ { IAlu0.rid, 1, 1 }
961 /*Cycle C */
962 /*Cycle N1*/
963 /*Cycle N1*/
964 /*Cycle N1*/
965 /*Cycle W */
966 }
967};
968
969
970const InstrClassRUsage SparcRUsageDesc[] = {
971 NoneClassRUsage,
972 IEUNClassRUsage,
973 IEU0ClassRUsage,
974 IEU1ClassRUsage,
975 FPMClassRUsage,
976 FPAClassRUsage,
977 CTIClassRUsage,
978 LDClassRUsage,
979 STClassRUsage,
980 SingleClassRUsage
981};
982
983
984//---------------------------------------------------------------------------
985// const InstrIssueDelta SparcInstrIssueDeltas[]
986//
987// Purpose:
988// Changes to issue restrictions information in InstrClassRUsage for
989// instructions that differ from other instructions in their class.
990//---------------------------------------------------------------------------
991
992const InstrIssueDelta SparcInstrIssueDeltas[] = {
993
994 // opCode, isSingleIssue, breaksGroup, numBubbles
995
996 // Special cases for single-issue only
997 // Other single issue cases are below.
998//{ LDDA, true, true, 0 },
999//{ STDA, true, true, 0 },
1000//{ LDDF, true, true, 0 },
1001//{ LDDFA, true, true, 0 },
1002 { ADDC, true, true, 0 },
1003 { ADDCcc, true, true, 0 },
1004 { SUBC, true, true, 0 },
1005 { SUBCcc, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001006//{ LDSTUB, true, true, 0 },
1007//{ SWAP, true, true, 0 },
1008//{ SWAPA, true, true, 0 },
1009//{ CAS, true, true, 0 },
1010//{ CASA, true, true, 0 },
1011//{ CASX, true, true, 0 },
1012//{ CASXA, true, true, 0 },
1013//{ LDFSR, true, true, 0 },
1014//{ LDFSRA, true, true, 0 },
1015//{ LDXFSR, true, true, 0 },
1016//{ LDXFSRA, true, true, 0 },
1017//{ STFSR, true, true, 0 },
1018//{ STFSRA, true, true, 0 },
1019//{ STXFSR, true, true, 0 },
1020//{ STXFSRA, true, true, 0 },
1021//{ SAVED, true, true, 0 },
1022//{ RESTORED, true, true, 0 },
1023//{ FLUSH, true, true, 9 },
1024//{ FLUSHW, true, true, 9 },
1025//{ ALIGNADDR, true, true, 0 },
1026 { RETURN, true, true, 0 },
1027//{ DONE, true, true, 0 },
1028//{ RETRY, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001029//{ TCC, true, true, 0 },
1030//{ SHUTDOWN, true, true, 0 },
1031
1032 // Special cases for breaking group *before*
1033 // CURRENTLY NOT SUPPORTED!
1034 { CALL, false, false, 0 },
Vikram S. Advec1521632001-10-22 13:31:53 +00001035 { JMPLCALL, false, false, 0 },
1036 { JMPLRET, false, false, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001037
1038 // Special cases for breaking the group *after*
1039 { MULX, true, true, (4+34)/2 },
1040 { FDIVS, false, true, 0 },
1041 { FDIVD, false, true, 0 },
1042 { FDIVQ, false, true, 0 },
1043 { FSQRTS, false, true, 0 },
1044 { FSQRTD, false, true, 0 },
1045 { FSQRTQ, false, true, 0 },
1046//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
1047
1048 // Instructions that introduce bubbles
1049//{ MULScc, true, true, 2 },
1050//{ SMULcc, true, true, (4+18)/2 },
1051//{ UMULcc, true, true, (4+19)/2 },
1052 { SDIVX, true, true, 68 },
1053 { UDIVX, true, true, 68 },
1054//{ SDIVcc, true, true, 36 },
1055//{ UDIVcc, true, true, 37 },
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001056 { WRCCR, true, true, 4 },
1057//{ WRPR, true, true, 4 },
1058//{ RDCCR, true, true, 0 }, // no bubbles after, but see below
1059//{ RDPR, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001060};
1061
1062
1063//---------------------------------------------------------------------------
1064// const InstrRUsageDelta SparcInstrUsageDeltas[]
1065//
1066// Purpose:
1067// Changes to resource usage information in InstrClassRUsage for
1068// instructions that differ from other instructions in their class.
1069//---------------------------------------------------------------------------
1070
1071const InstrRUsageDelta SparcInstrUsageDeltas[] = {
1072
1073 // MachineOpCode, Resource, Start cycle, Num cycles
1074
1075 //
1076 // JMPL counts as a load/store instruction for issue!
1077 //
Vikram S. Advec1521632001-10-22 13:31:53 +00001078 { JMPLCALL, LSIssueSlots.rid, 0, 1 },
1079 { JMPLRET, LSIssueSlots.rid, 0, 1 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001080
1081 //
1082 // Many instructions cannot issue for the next 2 cycles after an FCMP
1083 // We model that with a fake resource FCMPDelayCycle.
1084 //
1085 { FCMPS, FCMPDelayCycle.rid, 1, 3 },
1086 { FCMPD, FCMPDelayCycle.rid, 1, 3 },
1087 { FCMPQ, FCMPDelayCycle.rid, 1, 3 },
1088
1089 { MULX, FCMPDelayCycle.rid, 1, 1 },
1090 { SDIVX, FCMPDelayCycle.rid, 1, 1 },
1091 { UDIVX, FCMPDelayCycle.rid, 1, 1 },
1092//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
1093//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
1094//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
1095//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
1096 { STD, FCMPDelayCycle.rid, 1, 1 },
1097 { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
1098 { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
1099 { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
1100 { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
1101 { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
1102 { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
1103
1104 //
1105 // Some instructions are stalled in the GROUP stage if a CTI is in
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001106 // the E or C stage. We model that with a fake resource CTIDelayCycle.
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001107 //
1108 { LDD, CTIDelayCycle.rid, 1, 1 },
1109//{ LDDA, CTIDelayCycle.rid, 1, 1 },
1110//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
1111//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
1112//{ SWAP, CTIDelayCycle.rid, 1, 1 },
1113//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
1114//{ CAS, CTIDelayCycle.rid, 1, 1 },
1115//{ CASA, CTIDelayCycle.rid, 1, 1 },
1116//{ CASX, CTIDelayCycle.rid, 1, 1 },
1117//{ CASXA, CTIDelayCycle.rid, 1, 1 },
1118
1119 //
1120 // Signed int loads of less than dword size return data in cycle N1 (not C)
1121 // and put all loads in consecutive cycles into delayed load return mode.
1122 //
1123 { LDSB, LdReturn.rid, 2, -1 },
1124 { LDSB, LdReturn.rid, 3, 1 },
1125
1126 { LDSH, LdReturn.rid, 2, -1 },
1127 { LDSH, LdReturn.rid, 3, 1 },
1128
1129 { LDSW, LdReturn.rid, 2, -1 },
1130 { LDSW, LdReturn.rid, 3, 1 },
1131
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001132 //
1133 // RDPR from certain registers and RD from any register are not dispatchable
1134 // until four clocks after they reach the head of the instr. buffer.
1135 // Together with their single-issue requirement, this means all four issue
1136 // slots are effectively blocked for those cycles, plus the issue cycle.
1137 // This does not increase the latency of the instruction itself.
1138 //
1139 { RDCCR, AllIssueSlots.rid, 0, 5 },
1140 { RDCCR, AllIssueSlots.rid, 0, 5 },
1141 { RDCCR, AllIssueSlots.rid, 0, 5 },
1142 { RDCCR, AllIssueSlots.rid, 0, 5 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001143
1144#undef EXPLICIT_BUBBLES_NEEDED
1145#ifdef EXPLICIT_BUBBLES_NEEDED
1146 //
1147 // MULScc inserts one bubble.
1148 // This means it breaks the current group (captured in UltraSparcSchedInfo)
1149 // *and occupies all issue slots for the next cycle
1150 //
1151//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1152//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1153//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1154//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1155
1156 //
1157 // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
1158 // We just model this with a simple average.
1159 //
1160//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1161//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1162//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1163//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1164
1165 // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
1166//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1167//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1168//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1169//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1170
1171 //
1172 // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
1173 //
1174 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1175 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1176 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1177 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1178
1179 //
1180 // SDIVcc inserts 36 bubbles.
1181 //
1182//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1183//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1184//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1185//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1186
1187 // UDIVcc inserts 37 bubbles.
1188//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1189//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1190//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1191//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1192
1193 //
1194 // SDIVX inserts 68 bubbles.
1195 //
1196 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1197 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1198 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1199 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1200
1201 //
1202 // UDIVX inserts 68 bubbles.
1203 //
1204 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1205 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1206 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1207 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1208
1209 //
1210 // WR inserts 4 bubbles.
1211 //
1212//{ WR, AllIssueSlots.rid, 2, 68-1 },
1213//{ WR, AllIssueSlots.rid, 2, 68-1 },
1214//{ WR, AllIssueSlots.rid, 2, 68-1 },
1215//{ WR, AllIssueSlots.rid, 2, 68-1 },
1216
1217 //
1218 // WRPR inserts 4 bubbles.
1219 //
1220//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1221//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1222//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1223//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1224
1225 //
1226 // DONE inserts 9 bubbles.
1227 //
1228//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1229//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1230//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1231//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1232
1233 //
1234 // RETRY inserts 9 bubbles.
1235 //
1236//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1237//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1238//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1239//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1240
Chris Lattnere369fcb2001-10-13 06:54:54 +00001241#endif /*EXPLICIT_BUBBLES_NEEDED */
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001242};
1243
1244
1245
1246// Additional delays to be captured in code:
1247// 1. RDPR from several state registers (page 349)
1248// 2. RD from *any* register (page 349)
1249// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
1250// 4. Integer store can be in same group as instr producing value to store.
1251// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
1252// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
1253// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
1254// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
1255// follow an annulling branch cannot be issued in the same group or in
1256// the 3 groups following the branch.
1257// 9. A predicted annulled load does not stall dependent instructions.
1258// Other annulled delay slot instructions *do* stall dependents, so
1259// nothing special needs to be done for them during scheduling.
1260//10. Do not put a load use that may be annulled in the same group as the
1261// branch. The group will stall until the load returns.
1262//11. Single-prec. FP loads lock 2 registers, for dependency checking.
1263//
1264//
1265// Additional delays we cannot or will not capture:
1266// 1. If DCTI is last word of cache line, it is delayed until next line can be
1267// fetched. Also, other DCTI alignment-related delays (pg 352)
1268// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
1269// Also, several other store-load and load-store conflicts (pg 358)
1270// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
1271// 4. There can be at most 8 outstanding buffered store instructions
1272// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
1273
1274
1275
1276//---------------------------------------------------------------------------
1277// class UltraSparcSchedInfo
1278//
1279// Purpose:
1280// Interface to instruction scheduling information for UltraSPARC.
1281// The parameter values above are based on UltraSPARC IIi.
1282//---------------------------------------------------------------------------
1283
1284
1285class UltraSparcSchedInfo: public MachineSchedInfo {
1286public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001287 /*ctor*/ UltraSparcSchedInfo (const TargetMachine& tgt);
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001288 /*dtor*/ virtual ~UltraSparcSchedInfo () {}
1289protected:
1290 virtual void initializeResources ();
1291};
1292
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001293
1294//---------------------------------------------------------------------------
Vikram S. Advec1521632001-10-22 13:31:53 +00001295// class UltraSparcFrameInfo
1296//
1297// Purpose:
1298// Interface to stack frame layout info for the UltraSPARC.
Vikram S. Adve00521d72001-11-12 23:26:35 +00001299// Starting offsets for each area of the stack frame are aligned at
1300// a multiple of getStackFrameSizeAlignment().
Vikram S. Advec1521632001-10-22 13:31:53 +00001301//---------------------------------------------------------------------------
1302
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001303class UltraSparcFrameInfo: public MachineFrameInfo {
Vikram S. Advec1521632001-10-22 13:31:53 +00001304public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001305 /*ctor*/ UltraSparcFrameInfo(const TargetMachine& tgt) : MachineFrameInfo(tgt) {}
1306
1307public:
1308 int getStackFrameSizeAlignment () const { return StackFrameSizeAlignment;}
1309 int getMinStackFrameSize () const { return MinStackFrameSize; }
1310 int getNumFixedOutgoingArgs () const { return NumFixedOutgoingArgs; }
1311 int getSizeOfEachArgOnStack () const { return SizeOfEachArgOnStack; }
1312 bool argsOnStackHaveFixedSize () const { return true; }
1313
1314 //
1315 // These methods compute offsets using the frame contents for a
1316 // particular method. The frame contents are obtained from the
1317 // MachineCodeInfoForMethod object for the given method.
1318 //
1319 int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo,
1320 bool& pos) const
1321 {
1322 pos = true; // arguments area grows upwards
1323 return FirstIncomingArgOffsetFromFP;
1324 }
1325 int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo,
1326 bool& pos) const
1327 {
1328 pos = true; // arguments area grows upwards
1329 return FirstOutgoingArgOffsetFromSP;
1330 }
1331 int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo,
1332 bool& pos)const
1333 {
1334 pos = true; // arguments area grows upwards
1335 return FirstOptionalOutgoingArgOffsetFromSP;
1336 }
1337
1338 int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo,
1339 bool& pos) const;
1340 int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo,
1341 bool& pos) const;
1342 int getTmpAreaOffset (MachineCodeForMethod& mcInfo,
1343 bool& pos) const;
1344 int getDynamicAreaOffset (MachineCodeForMethod& mcInfo,
1345 bool& pos) const;
1346
1347 //
1348 // These methods specify the base register used for each stack area
1349 // (generally FP or SP)
1350 //
1351 virtual int getIncomingArgBaseRegNum() const {
1352 return (int) target.getRegInfo().getFramePointer();
1353 }
1354 virtual int getOutgoingArgBaseRegNum() const {
1355 return (int) target.getRegInfo().getStackPointer();
1356 }
1357 virtual int getOptionalOutgoingArgBaseRegNum() const {
1358 return (int) target.getRegInfo().getStackPointer();
1359 }
1360 virtual int getAutomaticVarBaseRegNum() const {
1361 return (int) target.getRegInfo().getFramePointer();
1362 }
1363 virtual int getRegSpillAreaBaseRegNum() const {
1364 return (int) target.getRegInfo().getFramePointer();
1365 }
1366 virtual int getDynamicAreaBaseRegNum() const {
1367 return (int) target.getRegInfo().getStackPointer();
1368 }
1369
1370private:
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001371 // All stack addresses must be offset by 0x7ff (2047) on Sparc V9.
1372 static const int OFFSET = (int) 0x7ff;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001373 static const int StackFrameSizeAlignment = 16;
Vikram S. Advec1521632001-10-22 13:31:53 +00001374 static const int MinStackFrameSize = 176;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001375 static const int NumFixedOutgoingArgs = 6;
1376 static const int SizeOfEachArgOnStack = 8;
Ruchira Sasanka67a463a2001-11-12 14:45:33 +00001377 static const int StaticAreaOffsetFromFP = 0 + OFFSET;
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001378 static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET;
1379 static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET;
1380 static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET;
1381 static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET;
Vikram S. Advec1521632001-10-22 13:31:53 +00001382};
1383
1384
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001385//---------------------------------------------------------------------------
1386// class UltraSparcCacheInfo
1387//
1388// Purpose:
1389// Interface to cache parameters for the UltraSPARC.
1390// Just use defaults for now.
1391//---------------------------------------------------------------------------
1392
1393class UltraSparcCacheInfo: public MachineCacheInfo {
1394public:
1395 /*ctor*/ UltraSparcCacheInfo (const TargetMachine& target) :
1396 MachineCacheInfo(target) {}
1397};
1398
Vikram S. Advec1521632001-10-22 13:31:53 +00001399
1400//---------------------------------------------------------------------------
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001401// class UltraSparcMachine
1402//
1403// Purpose:
1404// Primary interface to machine description for the UltraSPARC.
1405// Primarily just initializes machine-dependent parameters in
1406// class TargetMachine, and creates machine-dependent subclasses
Vikram S. Adve339084b2001-09-18 13:04:24 +00001407// for classes such as InstrInfo, SchedInfo and RegInfo.
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001408//---------------------------------------------------------------------------
1409
1410class UltraSparc : public TargetMachine {
Vikram S. Adve339084b2001-09-18 13:04:24 +00001411private:
1412 UltraSparcInstrInfo instrInfo;
1413 UltraSparcSchedInfo schedInfo;
1414 UltraSparcRegInfo regInfo;
Vikram S. Advec1521632001-10-22 13:31:53 +00001415 UltraSparcFrameInfo frameInfo;
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001416 UltraSparcCacheInfo cacheInfo;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001417public:
1418 UltraSparc();
1419 virtual ~UltraSparc() {}
Vikram S. Adve339084b2001-09-18 13:04:24 +00001420
Chris Lattner32f600a2001-09-19 13:47:12 +00001421 virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
1422 virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
1423 virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001424 virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; }
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001425 virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; }
Vikram S. Adve339084b2001-09-18 13:04:24 +00001426
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001427 // compileMethod - For the sparc, we do instruction selection, followed by
1428 // delay slot scheduling, then register allocation.
1429 //
1430 virtual bool compileMethod(Method *M);
Chris Lattner32f600a2001-09-19 13:47:12 +00001431
1432 //
1433 // emitAssembly - Output assembly language code (a .s file) for the specified
1434 // module. The specified module must have been compiled before this may be
1435 // used.
1436 //
Chris Lattnerec0a95f2001-10-15 15:54:43 +00001437 virtual void emitAssembly(const Module *M, ostream &OutStr) const;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001438};
1439
1440
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001441#endif