Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 1 | //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements an abstract sparse conditional propagation algorithm, |
| 11 | // modeled after SCCP, but with a customizable lattice function. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "sparseprop" |
| 16 | #include "llvm/Analysis/SparsePropagation.h" |
| 17 | #include "llvm/Constants.h" |
| 18 | #include "llvm/Function.h" |
| 19 | #include "llvm/Instructions.h" |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 20 | #include "llvm/LLVMContext.h" |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 21 | #include "llvm/Support/Debug.h" |
Daniel Dunbar | 460f656 | 2009-07-26 09:48:23 +0000 | [diff] [blame] | 22 | #include "llvm/Support/raw_ostream.h" |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 23 | using namespace llvm; |
| 24 | |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | // AbstractLatticeFunction Implementation |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | AbstractLatticeFunction::~AbstractLatticeFunction() {} |
| 30 | |
| 31 | /// PrintValue - Render the specified lattice value to the specified stream. |
Chris Lattner | bdff548 | 2009-08-23 04:37:46 +0000 | [diff] [blame] | 32 | void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 33 | if (V == UndefVal) |
| 34 | OS << "undefined"; |
| 35 | else if (V == OverdefinedVal) |
| 36 | OS << "overdefined"; |
| 37 | else if (V == UntrackedVal) |
| 38 | OS << "untracked"; |
| 39 | else |
| 40 | OS << "unknown lattice value"; |
| 41 | } |
| 42 | |
| 43 | //===----------------------------------------------------------------------===// |
| 44 | // SparseSolver Implementation |
| 45 | //===----------------------------------------------------------------------===// |
| 46 | |
| 47 | /// getOrInitValueState - Return the LatticeVal object that corresponds to the |
| 48 | /// value, initializing the value's state if it hasn't been entered into the |
| 49 | /// map yet. This function is necessary because not all values should start |
| 50 | /// out in the underdefined state... Arguments should be overdefined, and |
| 51 | /// constants should be marked as constants. |
| 52 | /// |
| 53 | SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { |
| 54 | DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); |
| 55 | if (I != ValueState.end()) return I->second; // Common case, in the map |
| 56 | |
| 57 | LatticeVal LV; |
| 58 | if (LatticeFunc->IsUntrackedValue(V)) |
| 59 | return LatticeFunc->getUntrackedVal(); |
| 60 | else if (Constant *C = dyn_cast<Constant>(V)) |
| 61 | LV = LatticeFunc->ComputeConstant(C); |
Chris Lattner | afcde47 | 2008-08-09 17:23:35 +0000 | [diff] [blame] | 62 | else if (Argument *A = dyn_cast<Argument>(V)) |
| 63 | LV = LatticeFunc->ComputeArgument(A); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 64 | else if (!isa<Instruction>(V)) |
Chris Lattner | afcde47 | 2008-08-09 17:23:35 +0000 | [diff] [blame] | 65 | // All other non-instructions are overdefined. |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 66 | LV = LatticeFunc->getOverdefinedVal(); |
| 67 | else |
| 68 | // All instructions are underdefined by default. |
| 69 | LV = LatticeFunc->getUndefVal(); |
| 70 | |
| 71 | // If this value is untracked, don't add it to the map. |
| 72 | if (LV == LatticeFunc->getUntrackedVal()) |
| 73 | return LV; |
| 74 | return ValueState[V] = LV; |
| 75 | } |
| 76 | |
| 77 | /// UpdateState - When the state for some instruction is potentially updated, |
| 78 | /// this function notices and adds I to the worklist if needed. |
| 79 | void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { |
| 80 | DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); |
| 81 | if (I != ValueState.end() && I->second == V) |
| 82 | return; // No change. |
| 83 | |
| 84 | // An update. Visit uses of I. |
| 85 | ValueState[&Inst] = V; |
| 86 | InstWorkList.push_back(&Inst); |
| 87 | } |
| 88 | |
| 89 | /// MarkBlockExecutable - This method can be used by clients to mark all of |
| 90 | /// the blocks that are known to be intrinsically live in the processed unit. |
| 91 | void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { |
Daniel Dunbar | 460f656 | 2009-07-26 09:48:23 +0000 | [diff] [blame] | 92 | DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n"); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 93 | BBExecutable.insert(BB); // Basic block is executable! |
| 94 | BBWorkList.push_back(BB); // Add the block to the work list! |
| 95 | } |
| 96 | |
| 97 | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| 98 | /// work list if it is not already executable... |
| 99 | void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { |
| 100 | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
| 101 | return; // This edge is already known to be executable! |
| 102 | |
Daniel Dunbar | 460f656 | 2009-07-26 09:48:23 +0000 | [diff] [blame] | 103 | DEBUG(errs() << "Marking Edge Executable: " << Source->getName() |
| 104 | << " -> " << Dest->getName() << "\n"); |
Dan Gohman | b22d6ac | 2008-05-27 20:47:30 +0000 | [diff] [blame] | 105 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 106 | if (BBExecutable.count(Dest)) { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 107 | // The destination is already executable, but we just made an edge |
| 108 | // feasible that wasn't before. Revisit the PHI nodes in the block |
| 109 | // because they have potentially new operands. |
| 110 | for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) |
| 111 | visitPHINode(*cast<PHINode>(I)); |
| 112 | |
| 113 | } else { |
| 114 | MarkBlockExecutable(Dest); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | |
| 119 | /// getFeasibleSuccessors - Return a vector of booleans to indicate which |
| 120 | /// successors are reachable from a given terminator instruction. |
| 121 | void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 122 | SmallVectorImpl<bool> &Succs, |
| 123 | bool AggressiveUndef) { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 124 | Succs.resize(TI.getNumSuccessors()); |
| 125 | if (TI.getNumSuccessors() == 0) return; |
| 126 | |
| 127 | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
| 128 | if (BI->isUnconditional()) { |
| 129 | Succs[0] = true; |
| 130 | return; |
| 131 | } |
| 132 | |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 133 | LatticeVal BCValue; |
| 134 | if (AggressiveUndef) |
| 135 | BCValue = getOrInitValueState(BI->getCondition()); |
| 136 | else |
| 137 | BCValue = getLatticeState(BI->getCondition()); |
| 138 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 139 | if (BCValue == LatticeFunc->getOverdefinedVal() || |
| 140 | BCValue == LatticeFunc->getUntrackedVal()) { |
| 141 | // Overdefined condition variables can branch either way. |
| 142 | Succs[0] = Succs[1] = true; |
| 143 | return; |
| 144 | } |
| 145 | |
| 146 | // If undefined, neither is feasible yet. |
| 147 | if (BCValue == LatticeFunc->getUndefVal()) |
| 148 | return; |
| 149 | |
| 150 | Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); |
| 151 | if (C == 0 || !isa<ConstantInt>(C)) { |
| 152 | // Non-constant values can go either way. |
| 153 | Succs[0] = Succs[1] = true; |
| 154 | return; |
| 155 | } |
| 156 | |
| 157 | // Constant condition variables mean the branch can only go a single way |
Owen Anderson | 5defacc | 2009-07-31 17:39:07 +0000 | [diff] [blame] | 158 | Succs[C == ConstantInt::getFalse(*Context)] = true; |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 159 | return; |
| 160 | } |
| 161 | |
| 162 | if (isa<InvokeInst>(TI)) { |
| 163 | // Invoke instructions successors are always executable. |
| 164 | // TODO: Could ask the lattice function if the value can throw. |
| 165 | Succs[0] = Succs[1] = true; |
| 166 | return; |
| 167 | } |
| 168 | |
Chris Lattner | 2688bcb | 2009-10-27 21:27:42 +0000 | [diff] [blame^] | 169 | if (IndBrInst *IBI = dyn_cast<IndBrInst>(TI)) { |
| 170 | Succs.assign(Succs.size(), true); |
| 171 | return; |
| 172 | } |
| 173 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 174 | SwitchInst &SI = cast<SwitchInst>(TI); |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 175 | LatticeVal SCValue; |
| 176 | if (AggressiveUndef) |
| 177 | SCValue = getOrInitValueState(SI.getCondition()); |
| 178 | else |
| 179 | SCValue = getLatticeState(SI.getCondition()); |
| 180 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 181 | if (SCValue == LatticeFunc->getOverdefinedVal() || |
| 182 | SCValue == LatticeFunc->getUntrackedVal()) { |
| 183 | // All destinations are executable! |
| 184 | Succs.assign(TI.getNumSuccessors(), true); |
| 185 | return; |
| 186 | } |
| 187 | |
| 188 | // If undefined, neither is feasible yet. |
| 189 | if (SCValue == LatticeFunc->getUndefVal()) |
| 190 | return; |
| 191 | |
| 192 | Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); |
| 193 | if (C == 0 || !isa<ConstantInt>(C)) { |
| 194 | // All destinations are executable! |
| 195 | Succs.assign(TI.getNumSuccessors(), true); |
| 196 | return; |
| 197 | } |
| 198 | |
| 199 | Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true; |
| 200 | } |
| 201 | |
| 202 | |
| 203 | /// isEdgeFeasible - Return true if the control flow edge from the 'From' |
| 204 | /// basic block to the 'To' basic block is currently feasible... |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 205 | bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To, |
| 206 | bool AggressiveUndef) { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 207 | SmallVector<bool, 16> SuccFeasible; |
| 208 | TerminatorInst *TI = From->getTerminator(); |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 209 | getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 210 | |
| 211 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| 212 | if (TI->getSuccessor(i) == To && SuccFeasible[i]) |
| 213 | return true; |
| 214 | |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { |
| 219 | SmallVector<bool, 16> SuccFeasible; |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 220 | getFeasibleSuccessors(TI, SuccFeasible, true); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 221 | |
| 222 | BasicBlock *BB = TI.getParent(); |
| 223 | |
| 224 | // Mark all feasible successors executable... |
| 225 | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| 226 | if (SuccFeasible[i]) |
| 227 | markEdgeExecutable(BB, TI.getSuccessor(i)); |
| 228 | } |
| 229 | |
| 230 | void SparseSolver::visitPHINode(PHINode &PN) { |
Nick Lewycky | c2fc1fe | 2009-09-19 19:00:06 +0000 | [diff] [blame] | 231 | // The lattice function may store more information on a PHINode than could be |
| 232 | // computed from its incoming values. For example, SSI form stores its sigma |
| 233 | // functions as PHINodes with a single incoming value. |
Nick Lewycky | 875646f | 2009-09-19 18:33:36 +0000 | [diff] [blame] | 234 | if (LatticeFunc->IsSpecialCasedPHI(&PN)) { |
| 235 | LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this); |
| 236 | if (IV != LatticeFunc->getUntrackedVal()) |
| 237 | UpdateState(PN, IV); |
| 238 | return; |
| 239 | } |
| 240 | |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 241 | LatticeVal PNIV = getOrInitValueState(&PN); |
| 242 | LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); |
| 243 | |
| 244 | // If this value is already overdefined (common) just return. |
| 245 | if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) |
| 246 | return; // Quick exit |
| 247 | |
| 248 | // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, |
| 249 | // and slow us down a lot. Just mark them overdefined. |
| 250 | if (PN.getNumIncomingValues() > 64) { |
| 251 | UpdateState(PN, Overdefined); |
| 252 | return; |
| 253 | } |
| 254 | |
| 255 | // Look at all of the executable operands of the PHI node. If any of them |
| 256 | // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the |
| 257 | // transfer function to give us the merge of the incoming values. |
| 258 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| 259 | // If the edge is not yet known to be feasible, it doesn't impact the PHI. |
Chris Lattner | 28a8dbc | 2008-05-20 03:39:39 +0000 | [diff] [blame] | 260 | if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 261 | continue; |
| 262 | |
| 263 | // Merge in this value. |
| 264 | LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); |
| 265 | if (OpVal != PNIV) |
| 266 | PNIV = LatticeFunc->MergeValues(PNIV, OpVal); |
| 267 | |
| 268 | if (PNIV == Overdefined) |
| 269 | break; // Rest of input values don't matter. |
| 270 | } |
| 271 | |
| 272 | // Update the PHI with the compute value, which is the merge of the inputs. |
| 273 | UpdateState(PN, PNIV); |
| 274 | } |
| 275 | |
| 276 | |
| 277 | void SparseSolver::visitInst(Instruction &I) { |
| 278 | // PHIs are handled by the propagation logic, they are never passed into the |
| 279 | // transfer functions. |
| 280 | if (PHINode *PN = dyn_cast<PHINode>(&I)) |
| 281 | return visitPHINode(*PN); |
| 282 | |
| 283 | // Otherwise, ask the transfer function what the result is. If this is |
| 284 | // something that we care about, remember it. |
| 285 | LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); |
| 286 | if (IV != LatticeFunc->getUntrackedVal()) |
| 287 | UpdateState(I, IV); |
| 288 | |
| 289 | if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) |
| 290 | visitTerminatorInst(*TI); |
| 291 | } |
| 292 | |
| 293 | void SparseSolver::Solve(Function &F) { |
Dan Gohman | ef61af0 | 2008-05-27 20:55:29 +0000 | [diff] [blame] | 294 | MarkBlockExecutable(&F.getEntryBlock()); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 295 | |
| 296 | // Process the work lists until they are empty! |
| 297 | while (!BBWorkList.empty() || !InstWorkList.empty()) { |
| 298 | // Process the instruction work list. |
| 299 | while (!InstWorkList.empty()) { |
| 300 | Instruction *I = InstWorkList.back(); |
| 301 | InstWorkList.pop_back(); |
| 302 | |
Nick Lewycky | 1134dc5 | 2009-09-18 07:36:47 +0000 | [diff] [blame] | 303 | DEBUG(errs() << "\nPopped off I-WL: " << *I << "\n"); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 304 | |
| 305 | // "I" got into the work list because it made a transition. See if any |
| 306 | // users are both live and in need of updating. |
| 307 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| 308 | UI != E; ++UI) { |
| 309 | Instruction *U = cast<Instruction>(*UI); |
| 310 | if (BBExecutable.count(U->getParent())) // Inst is executable? |
| 311 | visitInst(*U); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | // Process the basic block work list. |
| 316 | while (!BBWorkList.empty()) { |
| 317 | BasicBlock *BB = BBWorkList.back(); |
| 318 | BBWorkList.pop_back(); |
| 319 | |
Daniel Dunbar | 460f656 | 2009-07-26 09:48:23 +0000 | [diff] [blame] | 320 | DEBUG(errs() << "\nPopped off BBWL: " << *BB); |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 321 | |
| 322 | // Notify all instructions in this basic block that they are newly |
| 323 | // executable. |
| 324 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| 325 | visitInst(*I); |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | |
Chris Lattner | bdff548 | 2009-08-23 04:37:46 +0000 | [diff] [blame] | 330 | void SparseSolver::Print(Function &F, raw_ostream &OS) const { |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 331 | OS << "\nFUNCTION: " << F.getNameStr() << "\n"; |
| 332 | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| 333 | if (!BBExecutable.count(BB)) |
| 334 | OS << "INFEASIBLE: "; |
| 335 | OS << "\t"; |
| 336 | if (BB->hasName()) |
| 337 | OS << BB->getNameStr() << ":\n"; |
| 338 | else |
| 339 | OS << "; anon bb\n"; |
| 340 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| 341 | LatticeFunc->PrintValue(getLatticeState(I), OS); |
Nick Lewycky | 1134dc5 | 2009-09-18 07:36:47 +0000 | [diff] [blame] | 342 | OS << *I << "\n"; |
Chris Lattner | ab7d9cc | 2008-05-12 01:12:24 +0000 | [diff] [blame] | 343 | } |
| 344 | |
| 345 | OS << "\n"; |
| 346 | } |
| 347 | } |
| 348 | |