blob: 94aeecaf831acf4b76c36be291b703e2a629d379 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the bison parser for LLVM assembly languages files.
11//
12//===----------------------------------------------------------------------===//
13
14%{
15#include "ParserInternals.h"
16#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
20#include "llvm/ValueSymbolTable.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/Streams.h"
27#include <algorithm>
28#include <list>
29#include <map>
30#include <utility>
31#ifndef NDEBUG
32#define YYDEBUG 1
33#endif
34
35// The following is a gross hack. In order to rid the libAsmParser library of
36// exceptions, we have to have a way of getting the yyparse function to go into
37// an error situation. So, whenever we want an error to occur, the GenerateError
38// function (see bottom of file) sets TriggerError. Then, at the end of each
39// production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
40// (a goto) to put YACC in error state. Furthermore, several calls to
41// GenerateError are made from inside productions and they must simulate the
42// previous exception behavior by exiting the production immediately. We have
43// replaced these with the GEN_ERROR macro which calls GeneratError and then
44// immediately invokes YYERROR. This would be so much cleaner if it was a
45// recursive descent parser.
46static bool TriggerError = false;
47#define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
48#define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
49
50int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
51int yylex(); // declaration" of xxx warnings.
52int yyparse();
53
54namespace llvm {
55 std::string CurFilename;
56#if YYDEBUG
57static cl::opt<bool>
58Debug("debug-yacc", cl::desc("Print yacc debug state changes"),
59 cl::Hidden, cl::init(false));
60#endif
61}
62using namespace llvm;
63
64static Module *ParserResult;
65
66// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
67// relating to upreferences in the input stream.
68//
69//#define DEBUG_UPREFS 1
70#ifdef DEBUG_UPREFS
71#define UR_OUT(X) cerr << X
72#else
73#define UR_OUT(X)
74#endif
75
76#define YYERROR_VERBOSE 1
77
78static GlobalVariable *CurGV;
79
80
81// This contains info used when building the body of a function. It is
82// destroyed when the function is completed.
83//
84typedef std::vector<Value *> ValueList; // Numbered defs
85
86static void
87ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
88
89static struct PerModuleInfo {
90 Module *CurrentModule;
91 ValueList Values; // Module level numbered definitions
92 ValueList LateResolveValues;
93 std::vector<PATypeHolder> Types;
94 std::map<ValID, PATypeHolder> LateResolveTypes;
95
96 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
97 /// how they were referenced and on which line of the input they came from so
98 /// that we can resolve them later and print error messages as appropriate.
99 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
100
101 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
102 // references to global values. Global values may be referenced before they
103 // are defined, and if so, the temporary object that they represent is held
104 // here. This is used for forward references of GlobalValues.
105 //
106 typedef std::map<std::pair<const PointerType *,
107 ValID>, GlobalValue*> GlobalRefsType;
108 GlobalRefsType GlobalRefs;
109
110 void ModuleDone() {
111 // If we could not resolve some functions at function compilation time
112 // (calls to functions before they are defined), resolve them now... Types
113 // are resolved when the constant pool has been completely parsed.
114 //
115 ResolveDefinitions(LateResolveValues);
116 if (TriggerError)
117 return;
118
119 // Check to make sure that all global value forward references have been
120 // resolved!
121 //
122 if (!GlobalRefs.empty()) {
123 std::string UndefinedReferences = "Unresolved global references exist:\n";
124
125 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
126 I != E; ++I) {
127 UndefinedReferences += " " + I->first.first->getDescription() + " " +
128 I->first.second.getName() + "\n";
129 }
130 GenerateError(UndefinedReferences);
131 return;
132 }
133
134 Values.clear(); // Clear out function local definitions
135 Types.clear();
136 CurrentModule = 0;
137 }
138
139 // GetForwardRefForGlobal - Check to see if there is a forward reference
140 // for this global. If so, remove it from the GlobalRefs map and return it.
141 // If not, just return null.
142 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
143 // Check to see if there is a forward reference to this global variable...
144 // if there is, eliminate it and patch the reference to use the new def'n.
145 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
146 GlobalValue *Ret = 0;
147 if (I != GlobalRefs.end()) {
148 Ret = I->second;
149 GlobalRefs.erase(I);
150 }
151 return Ret;
152 }
153
154 bool TypeIsUnresolved(PATypeHolder* PATy) {
155 // If it isn't abstract, its resolved
156 const Type* Ty = PATy->get();
157 if (!Ty->isAbstract())
158 return false;
159 // Traverse the type looking for abstract types. If it isn't abstract then
160 // we don't need to traverse that leg of the type.
161 std::vector<const Type*> WorkList, SeenList;
162 WorkList.push_back(Ty);
163 while (!WorkList.empty()) {
164 const Type* Ty = WorkList.back();
165 SeenList.push_back(Ty);
166 WorkList.pop_back();
167 if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
168 // Check to see if this is an unresolved type
169 std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
170 std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
171 for ( ; I != E; ++I) {
172 if (I->second.get() == OpTy)
173 return true;
174 }
175 } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
176 const Type* TheTy = SeqTy->getElementType();
177 if (TheTy->isAbstract() && TheTy != Ty) {
178 std::vector<const Type*>::iterator I = SeenList.begin(),
179 E = SeenList.end();
180 for ( ; I != E; ++I)
181 if (*I == TheTy)
182 break;
183 if (I == E)
184 WorkList.push_back(TheTy);
185 }
186 } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
187 for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
188 const Type* TheTy = StrTy->getElementType(i);
189 if (TheTy->isAbstract() && TheTy != Ty) {
190 std::vector<const Type*>::iterator I = SeenList.begin(),
191 E = SeenList.end();
192 for ( ; I != E; ++I)
193 if (*I == TheTy)
194 break;
195 if (I == E)
196 WorkList.push_back(TheTy);
197 }
198 }
199 }
200 }
201 return false;
202 }
203} CurModule;
204
205static struct PerFunctionInfo {
206 Function *CurrentFunction; // Pointer to current function being created
207
208 ValueList Values; // Keep track of #'d definitions
209 unsigned NextValNum;
210 ValueList LateResolveValues;
211 bool isDeclare; // Is this function a forward declararation?
212 GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
213 GlobalValue::VisibilityTypes Visibility;
214
215 /// BBForwardRefs - When we see forward references to basic blocks, keep
216 /// track of them here.
217 std::map<ValID, BasicBlock*> BBForwardRefs;
218
219 inline PerFunctionInfo() {
220 CurrentFunction = 0;
221 isDeclare = false;
222 Linkage = GlobalValue::ExternalLinkage;
223 Visibility = GlobalValue::DefaultVisibility;
224 }
225
226 inline void FunctionStart(Function *M) {
227 CurrentFunction = M;
228 NextValNum = 0;
229 }
230
231 void FunctionDone() {
232 // Any forward referenced blocks left?
233 if (!BBForwardRefs.empty()) {
234 GenerateError("Undefined reference to label " +
235 BBForwardRefs.begin()->second->getName());
236 return;
237 }
238
239 // Resolve all forward references now.
240 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
241
242 Values.clear(); // Clear out function local definitions
243 BBForwardRefs.clear();
244 CurrentFunction = 0;
245 isDeclare = false;
246 Linkage = GlobalValue::ExternalLinkage;
247 Visibility = GlobalValue::DefaultVisibility;
248 }
249} CurFun; // Info for the current function...
250
251static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
252
253
254//===----------------------------------------------------------------------===//
255// Code to handle definitions of all the types
256//===----------------------------------------------------------------------===//
257
258static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
259 // Things that have names or are void typed don't get slot numbers
260 if (V->hasName() || (V->getType() == Type::VoidTy))
261 return;
262
263 // In the case of function values, we have to allow for the forward reference
264 // of basic blocks, which are included in the numbering. Consequently, we keep
265 // track of the next insertion location with NextValNum. When a BB gets
266 // inserted, it could change the size of the CurFun.Values vector.
267 if (&ValueTab == &CurFun.Values) {
268 if (ValueTab.size() <= CurFun.NextValNum)
269 ValueTab.resize(CurFun.NextValNum+1);
270 ValueTab[CurFun.NextValNum++] = V;
271 return;
272 }
273 // For all other lists, its okay to just tack it on the back of the vector.
274 ValueTab.push_back(V);
275}
276
277static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
278 switch (D.Type) {
279 case ValID::LocalID: // Is it a numbered definition?
280 // Module constants occupy the lowest numbered slots...
281 if (D.Num < CurModule.Types.size())
282 return CurModule.Types[D.Num];
283 break;
284 case ValID::LocalName: // Is it a named definition?
285 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
286 D.destroy(); // Free old strdup'd memory...
287 return N;
288 }
289 break;
290 default:
291 GenerateError("Internal parser error: Invalid symbol type reference");
292 return 0;
293 }
294
295 // If we reached here, we referenced either a symbol that we don't know about
296 // or an id number that hasn't been read yet. We may be referencing something
297 // forward, so just create an entry to be resolved later and get to it...
298 //
299 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
300
301
302 if (inFunctionScope()) {
303 if (D.Type == ValID::LocalName) {
304 GenerateError("Reference to an undefined type: '" + D.getName() + "'");
305 return 0;
306 } else {
307 GenerateError("Reference to an undefined type: #" + utostr(D.Num));
308 return 0;
309 }
310 }
311
312 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
313 if (I != CurModule.LateResolveTypes.end())
314 return I->second;
315
316 Type *Typ = OpaqueType::get();
317 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
318 return Typ;
319 }
320
321// getExistingVal - Look up the value specified by the provided type and
322// the provided ValID. If the value exists and has already been defined, return
323// it. Otherwise return null.
324//
325static Value *getExistingVal(const Type *Ty, const ValID &D) {
326 if (isa<FunctionType>(Ty)) {
327 GenerateError("Functions are not values and "
328 "must be referenced as pointers");
329 return 0;
330 }
331
332 switch (D.Type) {
333 case ValID::LocalID: { // Is it a numbered definition?
334 // Check that the number is within bounds.
335 if (D.Num >= CurFun.Values.size())
336 return 0;
337 Value *Result = CurFun.Values[D.Num];
338 if (Ty != Result->getType()) {
339 GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
340 Result->getType()->getDescription() + "' does not match "
341 "expected type, '" + Ty->getDescription() + "'");
342 return 0;
343 }
344 return Result;
345 }
346 case ValID::GlobalID: { // Is it a numbered definition?
347 if (D.Num >= CurModule.Values.size())
348 return 0;
349 Value *Result = CurModule.Values[D.Num];
350 if (Ty != Result->getType()) {
351 GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
352 Result->getType()->getDescription() + "' does not match "
353 "expected type, '" + Ty->getDescription() + "'");
354 return 0;
355 }
356 return Result;
357 }
358
359 case ValID::LocalName: { // Is it a named definition?
360 if (!inFunctionScope())
361 return 0;
362 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
363 Value *N = SymTab.lookup(D.getName());
364 if (N == 0)
365 return 0;
366 if (N->getType() != Ty)
367 return 0;
368
369 D.destroy(); // Free old strdup'd memory...
370 return N;
371 }
372 case ValID::GlobalName: { // Is it a named definition?
373 ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
374 Value *N = SymTab.lookup(D.getName());
375 if (N == 0)
376 return 0;
377 if (N->getType() != Ty)
378 return 0;
379
380 D.destroy(); // Free old strdup'd memory...
381 return N;
382 }
383
384 // Check to make sure that "Ty" is an integral type, and that our
385 // value will fit into the specified type...
386 case ValID::ConstSIntVal: // Is it a constant pool reference??
387 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
388 GenerateError("Signed integral constant '" +
389 itostr(D.ConstPool64) + "' is invalid for type '" +
390 Ty->getDescription() + "'");
391 return 0;
392 }
393 return ConstantInt::get(Ty, D.ConstPool64, true);
394
395 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
396 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
397 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
398 GenerateError("Integral constant '" + utostr(D.UConstPool64) +
399 "' is invalid or out of range");
400 return 0;
401 } else { // This is really a signed reference. Transmogrify.
402 return ConstantInt::get(Ty, D.ConstPool64, true);
403 }
404 } else {
405 return ConstantInt::get(Ty, D.UConstPool64);
406 }
407
408 case ValID::ConstFPVal: // Is it a floating point const pool reference?
409 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
410 GenerateError("FP constant invalid for type");
411 return 0;
412 }
413 return ConstantFP::get(Ty, D.ConstPoolFP);
414
415 case ValID::ConstNullVal: // Is it a null value?
416 if (!isa<PointerType>(Ty)) {
417 GenerateError("Cannot create a a non pointer null");
418 return 0;
419 }
420 return ConstantPointerNull::get(cast<PointerType>(Ty));
421
422 case ValID::ConstUndefVal: // Is it an undef value?
423 return UndefValue::get(Ty);
424
425 case ValID::ConstZeroVal: // Is it a zero value?
426 return Constant::getNullValue(Ty);
427
428 case ValID::ConstantVal: // Fully resolved constant?
429 if (D.ConstantValue->getType() != Ty) {
430 GenerateError("Constant expression type different from required type");
431 return 0;
432 }
433 return D.ConstantValue;
434
435 case ValID::InlineAsmVal: { // Inline asm expression
436 const PointerType *PTy = dyn_cast<PointerType>(Ty);
437 const FunctionType *FTy =
438 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
439 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
440 GenerateError("Invalid type for asm constraint string");
441 return 0;
442 }
443 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
444 D.IAD->HasSideEffects);
445 D.destroy(); // Free InlineAsmDescriptor.
446 return IA;
447 }
448 default:
449 assert(0 && "Unhandled case!");
450 return 0;
451 } // End of switch
452
453 assert(0 && "Unhandled case!");
454 return 0;
455}
456
457// getVal - This function is identical to getExistingVal, except that if a
458// value is not already defined, it "improvises" by creating a placeholder var
459// that looks and acts just like the requested variable. When the value is
460// defined later, all uses of the placeholder variable are replaced with the
461// real thing.
462//
463static Value *getVal(const Type *Ty, const ValID &ID) {
464 if (Ty == Type::LabelTy) {
465 GenerateError("Cannot use a basic block here");
466 return 0;
467 }
468
469 // See if the value has already been defined.
470 Value *V = getExistingVal(Ty, ID);
471 if (V) return V;
472 if (TriggerError) return 0;
473
474 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
475 GenerateError("Invalid use of a composite type");
476 return 0;
477 }
478
479 // If we reached here, we referenced either a symbol that we don't know about
480 // or an id number that hasn't been read yet. We may be referencing something
481 // forward, so just create an entry to be resolved later and get to it...
482 //
483 switch (ID.Type) {
484 case ValID::GlobalName:
485 case ValID::GlobalID: {
486 const PointerType *PTy = dyn_cast<PointerType>(Ty);
487 if (!PTy) {
488 GenerateError("Invalid type for reference to global" );
489 return 0;
490 }
491 const Type* ElTy = PTy->getElementType();
492 if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
493 V = new Function(FTy, GlobalValue::ExternalLinkage);
494 else
495 V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage);
496 break;
497 }
498 default:
499 V = new Argument(Ty);
500 }
501
502 // Remember where this forward reference came from. FIXME, shouldn't we try
503 // to recycle these things??
504 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
505 llvmAsmlineno)));
506
507 if (inFunctionScope())
508 InsertValue(V, CurFun.LateResolveValues);
509 else
510 InsertValue(V, CurModule.LateResolveValues);
511 return V;
512}
513
514/// defineBBVal - This is a definition of a new basic block with the specified
515/// identifier which must be the same as CurFun.NextValNum, if its numeric.
516static BasicBlock *defineBBVal(const ValID &ID) {
517 assert(inFunctionScope() && "Can't get basic block at global scope!");
518
519 BasicBlock *BB = 0;
520
521 // First, see if this was forward referenced
522
523 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
524 if (BBI != CurFun.BBForwardRefs.end()) {
525 BB = BBI->second;
526 // The forward declaration could have been inserted anywhere in the
527 // function: insert it into the correct place now.
528 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
529 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
530
531 // We're about to erase the entry, save the key so we can clean it up.
532 ValID Tmp = BBI->first;
533
534 // Erase the forward ref from the map as its no longer "forward"
535 CurFun.BBForwardRefs.erase(ID);
536
537 // The key has been removed from the map but so we don't want to leave
538 // strdup'd memory around so destroy it too.
539 Tmp.destroy();
540
541 // If its a numbered definition, bump the number and set the BB value.
542 if (ID.Type == ValID::LocalID) {
543 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
544 InsertValue(BB);
545 }
546
547 ID.destroy();
548 return BB;
549 }
550
551 // We haven't seen this BB before and its first mention is a definition.
552 // Just create it and return it.
553 std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
554 BB = new BasicBlock(Name, CurFun.CurrentFunction);
555 if (ID.Type == ValID::LocalID) {
556 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
557 InsertValue(BB);
558 }
559
560 ID.destroy(); // Free strdup'd memory
561 return BB;
562}
563
564/// getBBVal - get an existing BB value or create a forward reference for it.
565///
566static BasicBlock *getBBVal(const ValID &ID) {
567 assert(inFunctionScope() && "Can't get basic block at global scope!");
568
569 BasicBlock *BB = 0;
570
571 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
572 if (BBI != CurFun.BBForwardRefs.end()) {
573 BB = BBI->second;
574 } if (ID.Type == ValID::LocalName) {
575 std::string Name = ID.getName();
576 Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
577 if (N)
578 if (N->getType()->getTypeID() == Type::LabelTyID)
579 BB = cast<BasicBlock>(N);
580 else
581 GenerateError("Reference to label '" + Name + "' is actually of type '"+
582 N->getType()->getDescription() + "'");
583 } else if (ID.Type == ValID::LocalID) {
584 if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
585 if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
586 BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
587 else
588 GenerateError("Reference to label '%" + utostr(ID.Num) +
589 "' is actually of type '"+
590 CurFun.Values[ID.Num]->getType()->getDescription() + "'");
591 }
592 } else {
593 GenerateError("Illegal label reference " + ID.getName());
594 return 0;
595 }
596
597 // If its already been defined, return it now.
598 if (BB) {
599 ID.destroy(); // Free strdup'd memory.
600 return BB;
601 }
602
603 // Otherwise, this block has not been seen before, create it.
604 std::string Name;
605 if (ID.Type == ValID::LocalName)
606 Name = ID.getName();
607 BB = new BasicBlock(Name, CurFun.CurrentFunction);
608
609 // Insert it in the forward refs map.
610 CurFun.BBForwardRefs[ID] = BB;
611
612 return BB;
613}
614
615
616//===----------------------------------------------------------------------===//
617// Code to handle forward references in instructions
618//===----------------------------------------------------------------------===//
619//
620// This code handles the late binding needed with statements that reference
621// values not defined yet... for example, a forward branch, or the PHI node for
622// a loop body.
623//
624// This keeps a table (CurFun.LateResolveValues) of all such forward references
625// and back patchs after we are done.
626//
627
628// ResolveDefinitions - If we could not resolve some defs at parsing
629// time (forward branches, phi functions for loops, etc...) resolve the
630// defs now...
631//
632static void
633ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
634 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
635 while (!LateResolvers.empty()) {
636 Value *V = LateResolvers.back();
637 LateResolvers.pop_back();
638
639 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
640 CurModule.PlaceHolderInfo.find(V);
641 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
642
643 ValID &DID = PHI->second.first;
644
645 Value *TheRealValue = getExistingVal(V->getType(), DID);
646 if (TriggerError)
647 return;
648 if (TheRealValue) {
649 V->replaceAllUsesWith(TheRealValue);
650 delete V;
651 CurModule.PlaceHolderInfo.erase(PHI);
652 } else if (FutureLateResolvers) {
653 // Functions have their unresolved items forwarded to the module late
654 // resolver table
655 InsertValue(V, *FutureLateResolvers);
656 } else {
657 if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
658 GenerateError("Reference to an invalid definition: '" +DID.getName()+
659 "' of type '" + V->getType()->getDescription() + "'",
660 PHI->second.second);
661 return;
662 } else {
663 GenerateError("Reference to an invalid definition: #" +
664 itostr(DID.Num) + " of type '" +
665 V->getType()->getDescription() + "'",
666 PHI->second.second);
667 return;
668 }
669 }
670 }
671 LateResolvers.clear();
672}
673
674// ResolveTypeTo - A brand new type was just declared. This means that (if
675// name is not null) things referencing Name can be resolved. Otherwise, things
676// refering to the number can be resolved. Do this now.
677//
678static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
679 ValID D;
680 if (Name)
681 D = ValID::createLocalName(*Name);
682 else
683 D = ValID::createLocalID(CurModule.Types.size());
684
685 std::map<ValID, PATypeHolder>::iterator I =
686 CurModule.LateResolveTypes.find(D);
687 if (I != CurModule.LateResolveTypes.end()) {
688 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
689 CurModule.LateResolveTypes.erase(I);
690 }
691}
692
693// setValueName - Set the specified value to the name given. The name may be
694// null potentially, in which case this is a noop. The string passed in is
695// assumed to be a malloc'd string buffer, and is free'd by this function.
696//
697static void setValueName(Value *V, std::string *NameStr) {
698 if (!NameStr) return;
699 std::string Name(*NameStr); // Copy string
700 delete NameStr; // Free old string
701
702 if (V->getType() == Type::VoidTy) {
703 GenerateError("Can't assign name '" + Name+"' to value with void type");
704 return;
705 }
706
707 assert(inFunctionScope() && "Must be in function scope!");
708 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
709 if (ST.lookup(Name)) {
710 GenerateError("Redefinition of value '" + Name + "' of type '" +
711 V->getType()->getDescription() + "'");
712 return;
713 }
714
715 // Set the name.
716 V->setName(Name);
717}
718
719/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
720/// this is a declaration, otherwise it is a definition.
721static GlobalVariable *
722ParseGlobalVariable(std::string *NameStr,
723 GlobalValue::LinkageTypes Linkage,
724 GlobalValue::VisibilityTypes Visibility,
725 bool isConstantGlobal, const Type *Ty,
726 Constant *Initializer, bool IsThreadLocal) {
727 if (isa<FunctionType>(Ty)) {
728 GenerateError("Cannot declare global vars of function type");
729 return 0;
730 }
731
732 const PointerType *PTy = PointerType::get(Ty);
733
734 std::string Name;
735 if (NameStr) {
736 Name = *NameStr; // Copy string
737 delete NameStr; // Free old string
738 }
739
740 // See if this global value was forward referenced. If so, recycle the
741 // object.
742 ValID ID;
743 if (!Name.empty()) {
744 ID = ValID::createGlobalName(Name);
745 } else {
746 ID = ValID::createGlobalID(CurModule.Values.size());
747 }
748
749 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
750 // Move the global to the end of the list, from whereever it was
751 // previously inserted.
752 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
753 CurModule.CurrentModule->getGlobalList().remove(GV);
754 CurModule.CurrentModule->getGlobalList().push_back(GV);
755 GV->setInitializer(Initializer);
756 GV->setLinkage(Linkage);
757 GV->setVisibility(Visibility);
758 GV->setConstant(isConstantGlobal);
759 GV->setThreadLocal(IsThreadLocal);
760 InsertValue(GV, CurModule.Values);
761 return GV;
762 }
763
764 // If this global has a name
765 if (!Name.empty()) {
766 // if the global we're parsing has an initializer (is a definition) and
767 // has external linkage.
768 if (Initializer && Linkage != GlobalValue::InternalLinkage)
769 // If there is already a global with external linkage with this name
770 if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
771 // If we allow this GVar to get created, it will be renamed in the
772 // symbol table because it conflicts with an existing GVar. We can't
773 // allow redefinition of GVars whose linking indicates that their name
774 // must stay the same. Issue the error.
775 GenerateError("Redefinition of global variable named '" + Name +
776 "' of type '" + Ty->getDescription() + "'");
777 return 0;
778 }
779 }
780
781 // Otherwise there is no existing GV to use, create one now.
782 GlobalVariable *GV =
783 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
784 CurModule.CurrentModule, IsThreadLocal);
785 GV->setVisibility(Visibility);
786 InsertValue(GV, CurModule.Values);
787 return GV;
788}
789
790// setTypeName - Set the specified type to the name given. The name may be
791// null potentially, in which case this is a noop. The string passed in is
792// assumed to be a malloc'd string buffer, and is freed by this function.
793//
794// This function returns true if the type has already been defined, but is
795// allowed to be redefined in the specified context. If the name is a new name
796// for the type plane, it is inserted and false is returned.
797static bool setTypeName(const Type *T, std::string *NameStr) {
798 assert(!inFunctionScope() && "Can't give types function-local names!");
799 if (NameStr == 0) return false;
800
801 std::string Name(*NameStr); // Copy string
802 delete NameStr; // Free old string
803
804 // We don't allow assigning names to void type
805 if (T == Type::VoidTy) {
806 GenerateError("Can't assign name '" + Name + "' to the void type");
807 return false;
808 }
809
810 // Set the type name, checking for conflicts as we do so.
811 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
812
813 if (AlreadyExists) { // Inserting a name that is already defined???
814 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
815 assert(Existing && "Conflict but no matching type?!");
816
817 // There is only one case where this is allowed: when we are refining an
818 // opaque type. In this case, Existing will be an opaque type.
819 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
820 // We ARE replacing an opaque type!
821 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
822 return true;
823 }
824
825 // Otherwise, this is an attempt to redefine a type. That's okay if
826 // the redefinition is identical to the original. This will be so if
827 // Existing and T point to the same Type object. In this one case we
828 // allow the equivalent redefinition.
829 if (Existing == T) return true; // Yes, it's equal.
830
831 // Any other kind of (non-equivalent) redefinition is an error.
832 GenerateError("Redefinition of type named '" + Name + "' of type '" +
833 T->getDescription() + "'");
834 }
835
836 return false;
837}
838
839//===----------------------------------------------------------------------===//
840// Code for handling upreferences in type names...
841//
842
843// TypeContains - Returns true if Ty directly contains E in it.
844//
845static bool TypeContains(const Type *Ty, const Type *E) {
846 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
847 E) != Ty->subtype_end();
848}
849
850namespace {
851 struct UpRefRecord {
852 // NestingLevel - The number of nesting levels that need to be popped before
853 // this type is resolved.
854 unsigned NestingLevel;
855
856 // LastContainedTy - This is the type at the current binding level for the
857 // type. Every time we reduce the nesting level, this gets updated.
858 const Type *LastContainedTy;
859
860 // UpRefTy - This is the actual opaque type that the upreference is
861 // represented with.
862 OpaqueType *UpRefTy;
863
864 UpRefRecord(unsigned NL, OpaqueType *URTy)
865 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
866 };
867}
868
869// UpRefs - A list of the outstanding upreferences that need to be resolved.
870static std::vector<UpRefRecord> UpRefs;
871
872/// HandleUpRefs - Every time we finish a new layer of types, this function is
873/// called. It loops through the UpRefs vector, which is a list of the
874/// currently active types. For each type, if the up reference is contained in
875/// the newly completed type, we decrement the level count. When the level
876/// count reaches zero, the upreferenced type is the type that is passed in:
877/// thus we can complete the cycle.
878///
879static PATypeHolder HandleUpRefs(const Type *ty) {
880 // If Ty isn't abstract, or if there are no up-references in it, then there is
881 // nothing to resolve here.
882 if (!ty->isAbstract() || UpRefs.empty()) return ty;
883
884 PATypeHolder Ty(ty);
885 UR_OUT("Type '" << Ty->getDescription() <<
886 "' newly formed. Resolving upreferences.\n" <<
887 UpRefs.size() << " upreferences active!\n");
888
889 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
890 // to zero), we resolve them all together before we resolve them to Ty. At
891 // the end of the loop, if there is anything to resolve to Ty, it will be in
892 // this variable.
893 OpaqueType *TypeToResolve = 0;
894
895 for (unsigned i = 0; i != UpRefs.size(); ++i) {
896 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
897 << UpRefs[i].second->getDescription() << ") = "
898 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
899 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
900 // Decrement level of upreference
901 unsigned Level = --UpRefs[i].NestingLevel;
902 UpRefs[i].LastContainedTy = Ty;
903 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
904 if (Level == 0) { // Upreference should be resolved!
905 if (!TypeToResolve) {
906 TypeToResolve = UpRefs[i].UpRefTy;
907 } else {
908 UR_OUT(" * Resolving upreference for "
909 << UpRefs[i].second->getDescription() << "\n";
910 std::string OldName = UpRefs[i].UpRefTy->getDescription());
911 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
912 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
913 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
914 }
915 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
916 --i; // Do not skip the next element...
917 }
918 }
919 }
920
921 if (TypeToResolve) {
922 UR_OUT(" * Resolving upreference for "
923 << UpRefs[i].second->getDescription() << "\n";
924 std::string OldName = TypeToResolve->getDescription());
925 TypeToResolve->refineAbstractTypeTo(Ty);
926 }
927
928 return Ty;
929}
930
931//===----------------------------------------------------------------------===//
932// RunVMAsmParser - Define an interface to this parser
933//===----------------------------------------------------------------------===//
934//
935static Module* RunParser(Module * M);
936
937Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
938 set_scan_file(F);
939
940 CurFilename = Filename;
941 return RunParser(new Module(CurFilename));
942}
943
944Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
945 set_scan_string(AsmString);
946
947 CurFilename = "from_memory";
948 if (M == NULL) {
949 return RunParser(new Module (CurFilename));
950 } else {
951 return RunParser(M);
952 }
953}
954
955%}
956
957%union {
958 llvm::Module *ModuleVal;
959 llvm::Function *FunctionVal;
960 llvm::BasicBlock *BasicBlockVal;
961 llvm::TerminatorInst *TermInstVal;
962 llvm::Instruction *InstVal;
963 llvm::Constant *ConstVal;
964
965 const llvm::Type *PrimType;
966 std::list<llvm::PATypeHolder> *TypeList;
967 llvm::PATypeHolder *TypeVal;
968 llvm::Value *ValueVal;
969 std::vector<llvm::Value*> *ValueList;
970 llvm::ArgListType *ArgList;
971 llvm::TypeWithAttrs TypeWithAttrs;
972 llvm::TypeWithAttrsList *TypeWithAttrsList;
973 llvm::ValueRefList *ValueRefList;
974
975 // Represent the RHS of PHI node
976 std::list<std::pair<llvm::Value*,
977 llvm::BasicBlock*> > *PHIList;
978 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
979 std::vector<llvm::Constant*> *ConstVector;
980
981 llvm::GlobalValue::LinkageTypes Linkage;
982 llvm::GlobalValue::VisibilityTypes Visibility;
983 uint16_t ParamAttrs;
984 llvm::APInt *APIntVal;
985 int64_t SInt64Val;
986 uint64_t UInt64Val;
987 int SIntVal;
988 unsigned UIntVal;
989 double FPVal;
990 bool BoolVal;
991
992 std::string *StrVal; // This memory must be deleted
993 llvm::ValID ValIDVal;
994
995 llvm::Instruction::BinaryOps BinaryOpVal;
996 llvm::Instruction::TermOps TermOpVal;
997 llvm::Instruction::MemoryOps MemOpVal;
998 llvm::Instruction::CastOps CastOpVal;
999 llvm::Instruction::OtherOps OtherOpVal;
1000 llvm::ICmpInst::Predicate IPredicate;
1001 llvm::FCmpInst::Predicate FPredicate;
1002}
1003
1004%type <ModuleVal> Module
1005%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1006%type <BasicBlockVal> BasicBlock InstructionList
1007%type <TermInstVal> BBTerminatorInst
1008%type <InstVal> Inst InstVal MemoryInst
1009%type <ConstVal> ConstVal ConstExpr AliaseeRef
1010%type <ConstVector> ConstVector
1011%type <ArgList> ArgList ArgListH
1012%type <PHIList> PHIList
1013%type <ValueRefList> ValueRefList // For call param lists & GEP indices
1014%type <ValueList> IndexList // For GEP indices
1015%type <TypeList> TypeListI
1016%type <TypeWithAttrsList> ArgTypeList ArgTypeListI
1017%type <TypeWithAttrs> ArgType
1018%type <JumpTable> JumpTable
1019%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1020%type <BoolVal> ThreadLocal // 'thread_local' or not
1021%type <BoolVal> OptVolatile // 'volatile' or not
1022%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1023%type <BoolVal> OptSideEffect // 'sideeffect' or not.
1024%type <Linkage> GVInternalLinkage GVExternalLinkage
1025%type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
1026%type <Linkage> AliasLinkage
1027%type <Visibility> GVVisibilityStyle
1028
1029// ValueRef - Unresolved reference to a definition or BB
1030%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1031%type <ValueVal> ResolvedVal // <type> <valref> pair
1032// Tokens and types for handling constant integer values
1033//
1034// ESINT64VAL - A negative number within long long range
1035%token <SInt64Val> ESINT64VAL
1036
1037// EUINT64VAL - A positive number within uns. long long range
1038%token <UInt64Val> EUINT64VAL
1039
1040// ESAPINTVAL - A negative number with arbitrary precision
1041%token <APIntVal> ESAPINTVAL
1042
1043// EUAPINTVAL - A positive number with arbitrary precision
1044%token <APIntVal> EUAPINTVAL
1045
1046%token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
1047%token <FPVal> FPVAL // Float or Double constant
1048
1049// Built in types...
1050%type <TypeVal> Types ResultTypes
1051%type <PrimType> IntType FPType PrimType // Classifications
1052%token <PrimType> VOID INTTYPE
1053%token <PrimType> FLOAT DOUBLE LABEL
1054%token TYPE
1055
1056
1057%token<StrVal> LOCALVAR GLOBALVAR LABELSTR
1058%token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
1059%type <StrVal> LocalName OptLocalName OptLocalAssign
1060%type <StrVal> GlobalName OptGlobalAssign GlobalAssign
1061%type <StrVal> OptSection SectionString
1062
1063%type <UIntVal> OptAlign OptCAlign
1064
1065%token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1066%token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
1067%token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
1068%token DLLIMPORT DLLEXPORT EXTERN_WEAK
1069%token OPAQUE EXTERNAL TARGET TRIPLE ALIGN
1070%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1071%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1072%token DATALAYOUT
1073%type <UIntVal> OptCallingConv
1074%type <ParamAttrs> OptParamAttrs ParamAttr
1075%type <ParamAttrs> OptFuncAttrs FuncAttr
1076
1077// Basic Block Terminating Operators
1078%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
1079
1080// Binary Operators
1081%type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
1082%token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
1083%token <BinaryOpVal> SHL LSHR ASHR
1084
1085%token <OtherOpVal> ICMP FCMP
1086%type <IPredicate> IPredicates
1087%type <FPredicate> FPredicates
1088%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1089%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1090
1091// Memory Instructions
1092%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1093
1094// Cast Operators
1095%type <CastOpVal> CastOps
1096%token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
1097%token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
1098
1099// Other Operators
1100%token <OtherOpVal> PHI_TOK SELECT VAARG
1101%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1102
1103// Function Attributes
1104%token NORETURN INREG SRET NOUNWIND NOALIAS
1105
1106// Visibility Styles
1107%token DEFAULT HIDDEN PROTECTED
1108
1109%start Module
1110%%
1111
1112
1113// Operations that are notably excluded from this list include:
1114// RET, BR, & SWITCH because they end basic blocks and are treated specially.
1115//
1116ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
1117LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
1118CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
1119 UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
1120
1121IPredicates
1122 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1123 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1124 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1125 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1126 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1127 ;
1128
1129FPredicates
1130 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1131 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1132 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1133 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1134 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1135 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1136 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1137 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1138 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1139 ;
1140
1141// These are some types that allow classification if we only want a particular
1142// thing... for example, only a signed, unsigned, or integral type.
1143IntType : INTTYPE;
1144FPType : FLOAT | DOUBLE;
1145
1146LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
1147OptLocalName : LocalName | /*empty*/ { $$ = 0; };
1148
1149/// OptLocalAssign - Value producing statements have an optional assignment
1150/// component.
1151OptLocalAssign : LocalName '=' {
1152 $$ = $1;
1153 CHECK_FOR_ERROR
1154 }
1155 | /*empty*/ {
1156 $$ = 0;
1157 CHECK_FOR_ERROR
1158 };
1159
1160GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
1161
1162OptGlobalAssign : GlobalAssign
1163 | /*empty*/ {
1164 $$ = 0;
1165 CHECK_FOR_ERROR
1166 };
1167
1168GlobalAssign : GlobalName '=' {
1169 $$ = $1;
1170 CHECK_FOR_ERROR
1171 };
1172
1173GVInternalLinkage
1174 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1175 | WEAK { $$ = GlobalValue::WeakLinkage; }
1176 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1177 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1178 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1179 ;
1180
1181GVExternalLinkage
1182 : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1183 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1184 | EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
1185 ;
1186
1187GVVisibilityStyle
1188 : /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
1189 | DEFAULT { $$ = GlobalValue::DefaultVisibility; }
1190 | HIDDEN { $$ = GlobalValue::HiddenVisibility; }
1191 | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
1192 ;
1193
1194FunctionDeclareLinkage
1195 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1196 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1197 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1198 ;
1199
1200FunctionDefineLinkage
1201 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1202 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1203 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1204 | WEAK { $$ = GlobalValue::WeakLinkage; }
1205 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1206 ;
1207
1208AliasLinkage
1209 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1210 | WEAK { $$ = GlobalValue::WeakLinkage; }
1211 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1212 ;
1213
1214OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1215 CCC_TOK { $$ = CallingConv::C; } |
1216 FASTCC_TOK { $$ = CallingConv::Fast; } |
1217 COLDCC_TOK { $$ = CallingConv::Cold; } |
1218 X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
1219 X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
1220 CC_TOK EUINT64VAL {
1221 if ((unsigned)$2 != $2)
1222 GEN_ERROR("Calling conv too large");
1223 $$ = $2;
1224 CHECK_FOR_ERROR
1225 };
1226
1227ParamAttr : ZEXT { $$ = ParamAttr::ZExt; }
1228 | SEXT { $$ = ParamAttr::SExt; }
1229 | INREG { $$ = ParamAttr::InReg; }
1230 | SRET { $$ = ParamAttr::StructRet; }
1231 | NOALIAS { $$ = ParamAttr::NoAlias; }
1232 ;
1233
1234OptParamAttrs : /* empty */ { $$ = ParamAttr::None; }
1235 | OptParamAttrs ParamAttr {
1236 $$ = $1 | $2;
1237 }
1238 ;
1239
1240FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; }
1241 | NOUNWIND { $$ = ParamAttr::NoUnwind; }
1242 | ParamAttr
1243 ;
1244
1245OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; }
1246 | OptFuncAttrs FuncAttr {
1247 $$ = $1 | $2;
1248 }
1249 ;
1250
1251// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1252// a comma before it.
1253OptAlign : /*empty*/ { $$ = 0; } |
1254 ALIGN EUINT64VAL {
1255 $$ = $2;
1256 if ($$ != 0 && !isPowerOf2_32($$))
1257 GEN_ERROR("Alignment must be a power of two");
1258 CHECK_FOR_ERROR
1259};
1260OptCAlign : /*empty*/ { $$ = 0; } |
1261 ',' ALIGN EUINT64VAL {
1262 $$ = $3;
1263 if ($$ != 0 && !isPowerOf2_32($$))
1264 GEN_ERROR("Alignment must be a power of two");
1265 CHECK_FOR_ERROR
1266};
1267
1268
1269SectionString : SECTION STRINGCONSTANT {
1270 for (unsigned i = 0, e = $2->length(); i != e; ++i)
1271 if ((*$2)[i] == '"' || (*$2)[i] == '\\')
1272 GEN_ERROR("Invalid character in section name");
1273 $$ = $2;
1274 CHECK_FOR_ERROR
1275};
1276
1277OptSection : /*empty*/ { $$ = 0; } |
1278 SectionString { $$ = $1; };
1279
1280// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1281// is set to be the global we are processing.
1282//
1283GlobalVarAttributes : /* empty */ {} |
1284 ',' GlobalVarAttribute GlobalVarAttributes {};
1285GlobalVarAttribute : SectionString {
1286 CurGV->setSection(*$1);
1287 delete $1;
1288 CHECK_FOR_ERROR
1289 }
1290 | ALIGN EUINT64VAL {
1291 if ($2 != 0 && !isPowerOf2_32($2))
1292 GEN_ERROR("Alignment must be a power of two");
1293 CurGV->setAlignment($2);
1294 CHECK_FOR_ERROR
1295 };
1296
1297//===----------------------------------------------------------------------===//
1298// Types includes all predefined types... except void, because it can only be
1299// used in specific contexts (function returning void for example).
1300
1301// Derived types are added later...
1302//
1303PrimType : INTTYPE | FLOAT | DOUBLE | LABEL ;
1304
1305Types
1306 : OPAQUE {
1307 $$ = new PATypeHolder(OpaqueType::get());
1308 CHECK_FOR_ERROR
1309 }
1310 | PrimType {
1311 $$ = new PATypeHolder($1);
1312 CHECK_FOR_ERROR
1313 }
1314 | Types '*' { // Pointer type?
1315 if (*$1 == Type::LabelTy)
1316 GEN_ERROR("Cannot form a pointer to a basic block");
1317 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
1318 delete $1;
1319 CHECK_FOR_ERROR
1320 }
1321 | SymbolicValueRef { // Named types are also simple types...
1322 const Type* tmp = getTypeVal($1);
1323 CHECK_FOR_ERROR
1324 $$ = new PATypeHolder(tmp);
1325 }
1326 | '\\' EUINT64VAL { // Type UpReference
1327 if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
1328 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1329 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1330 $$ = new PATypeHolder(OT);
1331 UR_OUT("New Upreference!\n");
1332 CHECK_FOR_ERROR
1333 }
1334 | Types '(' ArgTypeListI ')' OptFuncAttrs {
1335 std::vector<const Type*> Params;
1336 ParamAttrsVector Attrs;
1337 if ($5 != ParamAttr::None) {
1338 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1339 Attrs.push_back(X);
1340 }
1341 unsigned index = 1;
1342 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1343 for (; I != E; ++I, ++index) {
1344 const Type *Ty = I->Ty->get();
1345 Params.push_back(Ty);
1346 if (Ty != Type::VoidTy)
1347 if (I->Attrs != ParamAttr::None) {
1348 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1349 Attrs.push_back(X);
1350 }
1351 }
1352 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1353 if (isVarArg) Params.pop_back();
1354
1355 ParamAttrsList *ActualAttrs = 0;
1356 if (!Attrs.empty())
1357 ActualAttrs = ParamAttrsList::get(Attrs);
1358 FunctionType *FT = FunctionType::get(*$1, Params, isVarArg, ActualAttrs);
1359 delete $3; // Delete the argument list
1360 delete $1; // Delete the return type handle
1361 $$ = new PATypeHolder(HandleUpRefs(FT));
1362 CHECK_FOR_ERROR
1363 }
1364 | VOID '(' ArgTypeListI ')' OptFuncAttrs {
1365 std::vector<const Type*> Params;
1366 ParamAttrsVector Attrs;
1367 if ($5 != ParamAttr::None) {
1368 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1369 Attrs.push_back(X);
1370 }
1371 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1372 unsigned index = 1;
1373 for ( ; I != E; ++I, ++index) {
1374 const Type* Ty = I->Ty->get();
1375 Params.push_back(Ty);
1376 if (Ty != Type::VoidTy)
1377 if (I->Attrs != ParamAttr::None) {
1378 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1379 Attrs.push_back(X);
1380 }
1381 }
1382 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1383 if (isVarArg) Params.pop_back();
1384
1385 ParamAttrsList *ActualAttrs = 0;
1386 if (!Attrs.empty())
1387 ActualAttrs = ParamAttrsList::get(Attrs);
1388
1389 FunctionType *FT = FunctionType::get($1, Params, isVarArg, ActualAttrs);
1390 delete $3; // Delete the argument list
1391 $$ = new PATypeHolder(HandleUpRefs(FT));
1392 CHECK_FOR_ERROR
1393 }
1394
1395 | '[' EUINT64VAL 'x' Types ']' { // Sized array type?
1396 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
1397 delete $4;
1398 CHECK_FOR_ERROR
1399 }
1400 | '<' EUINT64VAL 'x' Types '>' { // Vector type?
1401 const llvm::Type* ElemTy = $4->get();
1402 if ((unsigned)$2 != $2)
1403 GEN_ERROR("Unsigned result not equal to signed result");
1404 if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
1405 GEN_ERROR("Element type of a VectorType must be primitive");
1406 if (!isPowerOf2_32($2))
1407 GEN_ERROR("Vector length should be a power of 2");
1408 $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
1409 delete $4;
1410 CHECK_FOR_ERROR
1411 }
1412 | '{' TypeListI '}' { // Structure type?
1413 std::vector<const Type*> Elements;
1414 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1415 E = $2->end(); I != E; ++I)
1416 Elements.push_back(*I);
1417
1418 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1419 delete $2;
1420 CHECK_FOR_ERROR
1421 }
1422 | '{' '}' { // Empty structure type?
1423 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1424 CHECK_FOR_ERROR
1425 }
1426 | '<' '{' TypeListI '}' '>' {
1427 std::vector<const Type*> Elements;
1428 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1429 E = $3->end(); I != E; ++I)
1430 Elements.push_back(*I);
1431
1432 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1433 delete $3;
1434 CHECK_FOR_ERROR
1435 }
1436 | '<' '{' '}' '>' { // Empty structure type?
1437 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
1438 CHECK_FOR_ERROR
1439 }
1440 ;
1441
1442ArgType
1443 : Types OptParamAttrs {
1444 $$.Ty = $1;
1445 $$.Attrs = $2;
1446 }
1447 ;
1448
1449ResultTypes
1450 : Types {
1451 if (!UpRefs.empty())
1452 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1453 if (!(*$1)->isFirstClassType())
1454 GEN_ERROR("LLVM functions cannot return aggregate types");
1455 $$ = $1;
1456 }
1457 | VOID {
1458 $$ = new PATypeHolder(Type::VoidTy);
1459 }
1460 ;
1461
1462ArgTypeList : ArgType {
1463 $$ = new TypeWithAttrsList();
1464 $$->push_back($1);
1465 CHECK_FOR_ERROR
1466 }
1467 | ArgTypeList ',' ArgType {
1468 ($$=$1)->push_back($3);
1469 CHECK_FOR_ERROR
1470 }
1471 ;
1472
1473ArgTypeListI
1474 : ArgTypeList
1475 | ArgTypeList ',' DOTDOTDOT {
1476 $$=$1;
1477 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1478 TWA.Ty = new PATypeHolder(Type::VoidTy);
1479 $$->push_back(TWA);
1480 CHECK_FOR_ERROR
1481 }
1482 | DOTDOTDOT {
1483 $$ = new TypeWithAttrsList;
1484 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1485 TWA.Ty = new PATypeHolder(Type::VoidTy);
1486 $$->push_back(TWA);
1487 CHECK_FOR_ERROR
1488 }
1489 | /*empty*/ {
1490 $$ = new TypeWithAttrsList();
1491 CHECK_FOR_ERROR
1492 };
1493
1494// TypeList - Used for struct declarations and as a basis for function type
1495// declaration type lists
1496//
1497TypeListI : Types {
1498 $$ = new std::list<PATypeHolder>();
1499 $$->push_back(*$1);
1500 delete $1;
1501 CHECK_FOR_ERROR
1502 }
1503 | TypeListI ',' Types {
1504 ($$=$1)->push_back(*$3);
1505 delete $3;
1506 CHECK_FOR_ERROR
1507 };
1508
1509// ConstVal - The various declarations that go into the constant pool. This
1510// production is used ONLY to represent constants that show up AFTER a 'const',
1511// 'constant' or 'global' token at global scope. Constants that can be inlined
1512// into other expressions (such as integers and constexprs) are handled by the
1513// ResolvedVal, ValueRef and ConstValueRef productions.
1514//
1515ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1516 if (!UpRefs.empty())
1517 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1518 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1519 if (ATy == 0)
1520 GEN_ERROR("Cannot make array constant with type: '" +
1521 (*$1)->getDescription() + "'");
1522 const Type *ETy = ATy->getElementType();
1523 int NumElements = ATy->getNumElements();
1524
1525 // Verify that we have the correct size...
1526 if (NumElements != -1 && NumElements != (int)$3->size())
1527 GEN_ERROR("Type mismatch: constant sized array initialized with " +
1528 utostr($3->size()) + " arguments, but has size of " +
1529 itostr(NumElements) + "");
1530
1531 // Verify all elements are correct type!
1532 for (unsigned i = 0; i < $3->size(); i++) {
1533 if (ETy != (*$3)[i]->getType())
1534 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1535 ETy->getDescription() +"' as required!\nIt is of type '"+
1536 (*$3)[i]->getType()->getDescription() + "'.");
1537 }
1538
1539 $$ = ConstantArray::get(ATy, *$3);
1540 delete $1; delete $3;
1541 CHECK_FOR_ERROR
1542 }
1543 | Types '[' ']' {
1544 if (!UpRefs.empty())
1545 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1546 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1547 if (ATy == 0)
1548 GEN_ERROR("Cannot make array constant with type: '" +
1549 (*$1)->getDescription() + "'");
1550
1551 int NumElements = ATy->getNumElements();
1552 if (NumElements != -1 && NumElements != 0)
1553 GEN_ERROR("Type mismatch: constant sized array initialized with 0"
1554 " arguments, but has size of " + itostr(NumElements) +"");
1555 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1556 delete $1;
1557 CHECK_FOR_ERROR
1558 }
1559 | Types 'c' STRINGCONSTANT {
1560 if (!UpRefs.empty())
1561 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1562 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1563 if (ATy == 0)
1564 GEN_ERROR("Cannot make array constant with type: '" +
1565 (*$1)->getDescription() + "'");
1566
1567 int NumElements = ATy->getNumElements();
1568 const Type *ETy = ATy->getElementType();
1569 if (NumElements != -1 && NumElements != int($3->length()))
1570 GEN_ERROR("Can't build string constant of size " +
1571 itostr((int)($3->length())) +
1572 " when array has size " + itostr(NumElements) + "");
1573 std::vector<Constant*> Vals;
1574 if (ETy == Type::Int8Ty) {
1575 for (unsigned i = 0; i < $3->length(); ++i)
1576 Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
1577 } else {
1578 delete $3;
1579 GEN_ERROR("Cannot build string arrays of non byte sized elements");
1580 }
1581 delete $3;
1582 $$ = ConstantArray::get(ATy, Vals);
1583 delete $1;
1584 CHECK_FOR_ERROR
1585 }
1586 | Types '<' ConstVector '>' { // Nonempty unsized arr
1587 if (!UpRefs.empty())
1588 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1589 const VectorType *PTy = dyn_cast<VectorType>($1->get());
1590 if (PTy == 0)
1591 GEN_ERROR("Cannot make packed constant with type: '" +
1592 (*$1)->getDescription() + "'");
1593 const Type *ETy = PTy->getElementType();
1594 int NumElements = PTy->getNumElements();
1595
1596 // Verify that we have the correct size...
1597 if (NumElements != -1 && NumElements != (int)$3->size())
1598 GEN_ERROR("Type mismatch: constant sized packed initialized with " +
1599 utostr($3->size()) + " arguments, but has size of " +
1600 itostr(NumElements) + "");
1601
1602 // Verify all elements are correct type!
1603 for (unsigned i = 0; i < $3->size(); i++) {
1604 if (ETy != (*$3)[i]->getType())
1605 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1606 ETy->getDescription() +"' as required!\nIt is of type '"+
1607 (*$3)[i]->getType()->getDescription() + "'.");
1608 }
1609
1610 $$ = ConstantVector::get(PTy, *$3);
1611 delete $1; delete $3;
1612 CHECK_FOR_ERROR
1613 }
1614 | Types '{' ConstVector '}' {
1615 const StructType *STy = dyn_cast<StructType>($1->get());
1616 if (STy == 0)
1617 GEN_ERROR("Cannot make struct constant with type: '" +
1618 (*$1)->getDescription() + "'");
1619
1620 if ($3->size() != STy->getNumContainedTypes())
1621 GEN_ERROR("Illegal number of initializers for structure type");
1622
1623 // Check to ensure that constants are compatible with the type initializer!
1624 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1625 if ((*$3)[i]->getType() != STy->getElementType(i))
1626 GEN_ERROR("Expected type '" +
1627 STy->getElementType(i)->getDescription() +
1628 "' for element #" + utostr(i) +
1629 " of structure initializer");
1630
1631 // Check to ensure that Type is not packed
1632 if (STy->isPacked())
1633 GEN_ERROR("Unpacked Initializer to vector type '" +
1634 STy->getDescription() + "'");
1635
1636 $$ = ConstantStruct::get(STy, *$3);
1637 delete $1; delete $3;
1638 CHECK_FOR_ERROR
1639 }
1640 | Types '{' '}' {
1641 if (!UpRefs.empty())
1642 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1643 const StructType *STy = dyn_cast<StructType>($1->get());
1644 if (STy == 0)
1645 GEN_ERROR("Cannot make struct constant with type: '" +
1646 (*$1)->getDescription() + "'");
1647
1648 if (STy->getNumContainedTypes() != 0)
1649 GEN_ERROR("Illegal number of initializers for structure type");
1650
1651 // Check to ensure that Type is not packed
1652 if (STy->isPacked())
1653 GEN_ERROR("Unpacked Initializer to vector type '" +
1654 STy->getDescription() + "'");
1655
1656 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1657 delete $1;
1658 CHECK_FOR_ERROR
1659 }
1660 | Types '<' '{' ConstVector '}' '>' {
1661 const StructType *STy = dyn_cast<StructType>($1->get());
1662 if (STy == 0)
1663 GEN_ERROR("Cannot make struct constant with type: '" +
1664 (*$1)->getDescription() + "'");
1665
1666 if ($4->size() != STy->getNumContainedTypes())
1667 GEN_ERROR("Illegal number of initializers for structure type");
1668
1669 // Check to ensure that constants are compatible with the type initializer!
1670 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1671 if ((*$4)[i]->getType() != STy->getElementType(i))
1672 GEN_ERROR("Expected type '" +
1673 STy->getElementType(i)->getDescription() +
1674 "' for element #" + utostr(i) +
1675 " of structure initializer");
1676
1677 // Check to ensure that Type is packed
1678 if (!STy->isPacked())
1679 GEN_ERROR("Vector initializer to non-vector type '" +
1680 STy->getDescription() + "'");
1681
1682 $$ = ConstantStruct::get(STy, *$4);
1683 delete $1; delete $4;
1684 CHECK_FOR_ERROR
1685 }
1686 | Types '<' '{' '}' '>' {
1687 if (!UpRefs.empty())
1688 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1689 const StructType *STy = dyn_cast<StructType>($1->get());
1690 if (STy == 0)
1691 GEN_ERROR("Cannot make struct constant with type: '" +
1692 (*$1)->getDescription() + "'");
1693
1694 if (STy->getNumContainedTypes() != 0)
1695 GEN_ERROR("Illegal number of initializers for structure type");
1696
1697 // Check to ensure that Type is packed
1698 if (!STy->isPacked())
1699 GEN_ERROR("Vector initializer to non-vector type '" +
1700 STy->getDescription() + "'");
1701
1702 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1703 delete $1;
1704 CHECK_FOR_ERROR
1705 }
1706 | Types NULL_TOK {
1707 if (!UpRefs.empty())
1708 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1709 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1710 if (PTy == 0)
1711 GEN_ERROR("Cannot make null pointer constant with type: '" +
1712 (*$1)->getDescription() + "'");
1713
1714 $$ = ConstantPointerNull::get(PTy);
1715 delete $1;
1716 CHECK_FOR_ERROR
1717 }
1718 | Types UNDEF {
1719 if (!UpRefs.empty())
1720 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1721 $$ = UndefValue::get($1->get());
1722 delete $1;
1723 CHECK_FOR_ERROR
1724 }
1725 | Types SymbolicValueRef {
1726 if (!UpRefs.empty())
1727 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1728 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1729 if (Ty == 0)
1730 GEN_ERROR("Global const reference must be a pointer type");
1731
1732 // ConstExprs can exist in the body of a function, thus creating
1733 // GlobalValues whenever they refer to a variable. Because we are in
1734 // the context of a function, getExistingVal will search the functions
1735 // symbol table instead of the module symbol table for the global symbol,
1736 // which throws things all off. To get around this, we just tell
1737 // getExistingVal that we are at global scope here.
1738 //
1739 Function *SavedCurFn = CurFun.CurrentFunction;
1740 CurFun.CurrentFunction = 0;
1741
1742 Value *V = getExistingVal(Ty, $2);
1743 CHECK_FOR_ERROR
1744
1745 CurFun.CurrentFunction = SavedCurFn;
1746
1747 // If this is an initializer for a constant pointer, which is referencing a
1748 // (currently) undefined variable, create a stub now that shall be replaced
1749 // in the future with the right type of variable.
1750 //
1751 if (V == 0) {
1752 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1753 const PointerType *PT = cast<PointerType>(Ty);
1754
1755 // First check to see if the forward references value is already created!
1756 PerModuleInfo::GlobalRefsType::iterator I =
1757 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1758
1759 if (I != CurModule.GlobalRefs.end()) {
1760 V = I->second; // Placeholder already exists, use it...
1761 $2.destroy();
1762 } else {
1763 std::string Name;
1764 if ($2.Type == ValID::GlobalName)
1765 Name = $2.getName();
1766 else if ($2.Type != ValID::GlobalID)
1767 GEN_ERROR("Invalid reference to global");
1768
1769 // Create the forward referenced global.
1770 GlobalValue *GV;
1771 if (const FunctionType *FTy =
1772 dyn_cast<FunctionType>(PT->getElementType())) {
1773 GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name,
1774 CurModule.CurrentModule);
1775 } else {
1776 GV = new GlobalVariable(PT->getElementType(), false,
1777 GlobalValue::ExternalWeakLinkage, 0,
1778 Name, CurModule.CurrentModule);
1779 }
1780
1781 // Keep track of the fact that we have a forward ref to recycle it
1782 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1783 V = GV;
1784 }
1785 }
1786
1787 $$ = cast<GlobalValue>(V);
1788 delete $1; // Free the type handle
1789 CHECK_FOR_ERROR
1790 }
1791 | Types ConstExpr {
1792 if (!UpRefs.empty())
1793 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1794 if ($1->get() != $2->getType())
1795 GEN_ERROR("Mismatched types for constant expression: " +
1796 (*$1)->getDescription() + " and " + $2->getType()->getDescription());
1797 $$ = $2;
1798 delete $1;
1799 CHECK_FOR_ERROR
1800 }
1801 | Types ZEROINITIALIZER {
1802 if (!UpRefs.empty())
1803 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1804 const Type *Ty = $1->get();
1805 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1806 GEN_ERROR("Cannot create a null initialized value of this type");
1807 $$ = Constant::getNullValue(Ty);
1808 delete $1;
1809 CHECK_FOR_ERROR
1810 }
1811 | IntType ESINT64VAL { // integral constants
1812 if (!ConstantInt::isValueValidForType($1, $2))
1813 GEN_ERROR("Constant value doesn't fit in type");
1814 $$ = ConstantInt::get($1, $2, true);
1815 CHECK_FOR_ERROR
1816 }
1817 | IntType ESAPINTVAL { // arbitrary precision integer constants
1818 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1819 if ($2->getBitWidth() > BitWidth) {
1820 GEN_ERROR("Constant value does not fit in type");
1821 }
1822 $2->sextOrTrunc(BitWidth);
1823 $$ = ConstantInt::get(*$2);
1824 delete $2;
1825 CHECK_FOR_ERROR
1826 }
1827 | IntType EUINT64VAL { // integral constants
1828 if (!ConstantInt::isValueValidForType($1, $2))
1829 GEN_ERROR("Constant value doesn't fit in type");
1830 $$ = ConstantInt::get($1, $2, false);
1831 CHECK_FOR_ERROR
1832 }
1833 | IntType EUAPINTVAL { // arbitrary precision integer constants
1834 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1835 if ($2->getBitWidth() > BitWidth) {
1836 GEN_ERROR("Constant value does not fit in type");
1837 }
1838 $2->zextOrTrunc(BitWidth);
1839 $$ = ConstantInt::get(*$2);
1840 delete $2;
1841 CHECK_FOR_ERROR
1842 }
1843 | INTTYPE TRUETOK { // Boolean constants
1844 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1845 $$ = ConstantInt::getTrue();
1846 CHECK_FOR_ERROR
1847 }
1848 | INTTYPE FALSETOK { // Boolean constants
1849 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1850 $$ = ConstantInt::getFalse();
1851 CHECK_FOR_ERROR
1852 }
1853 | FPType FPVAL { // Float & Double constants
1854 if (!ConstantFP::isValueValidForType($1, $2))
1855 GEN_ERROR("Floating point constant invalid for type");
1856 $$ = ConstantFP::get($1, $2);
1857 CHECK_FOR_ERROR
1858 };
1859
1860
1861ConstExpr: CastOps '(' ConstVal TO Types ')' {
1862 if (!UpRefs.empty())
1863 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
1864 Constant *Val = $3;
1865 const Type *DestTy = $5->get();
1866 if (!CastInst::castIsValid($1, $3, DestTy))
1867 GEN_ERROR("invalid cast opcode for cast from '" +
1868 Val->getType()->getDescription() + "' to '" +
1869 DestTy->getDescription() + "'");
1870 $$ = ConstantExpr::getCast($1, $3, DestTy);
1871 delete $5;
1872 }
1873 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1874 if (!isa<PointerType>($3->getType()))
1875 GEN_ERROR("GetElementPtr requires a pointer operand");
1876
1877 const Type *IdxTy =
1878 GetElementPtrInst::getIndexedType($3->getType(), &(*$4)[0], $4->size(),
1879 true);
1880 if (!IdxTy)
1881 GEN_ERROR("Index list invalid for constant getelementptr");
1882
1883 SmallVector<Constant*, 8> IdxVec;
1884 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1885 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1886 IdxVec.push_back(C);
1887 else
1888 GEN_ERROR("Indices to constant getelementptr must be constants");
1889
1890 delete $4;
1891
1892 $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
1893 CHECK_FOR_ERROR
1894 }
1895 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1896 if ($3->getType() != Type::Int1Ty)
1897 GEN_ERROR("Select condition must be of boolean type");
1898 if ($5->getType() != $7->getType())
1899 GEN_ERROR("Select operand types must match");
1900 $$ = ConstantExpr::getSelect($3, $5, $7);
1901 CHECK_FOR_ERROR
1902 }
1903 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1904 if ($3->getType() != $5->getType())
1905 GEN_ERROR("Binary operator types must match");
1906 CHECK_FOR_ERROR;
1907 $$ = ConstantExpr::get($1, $3, $5);
1908 }
1909 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1910 if ($3->getType() != $5->getType())
1911 GEN_ERROR("Logical operator types must match");
1912 if (!$3->getType()->isInteger()) {
1913 if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) ||
1914 !cast<VectorType>($3->getType())->getElementType()->isInteger())
1915 GEN_ERROR("Logical operator requires integral operands");
1916 }
1917 $$ = ConstantExpr::get($1, $3, $5);
1918 CHECK_FOR_ERROR
1919 }
1920 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
1921 if ($4->getType() != $6->getType())
1922 GEN_ERROR("icmp operand types must match");
1923 $$ = ConstantExpr::getICmp($2, $4, $6);
1924 }
1925 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
1926 if ($4->getType() != $6->getType())
1927 GEN_ERROR("fcmp operand types must match");
1928 $$ = ConstantExpr::getFCmp($2, $4, $6);
1929 }
1930 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
1931 if (!ExtractElementInst::isValidOperands($3, $5))
1932 GEN_ERROR("Invalid extractelement operands");
1933 $$ = ConstantExpr::getExtractElement($3, $5);
1934 CHECK_FOR_ERROR
1935 }
1936 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1937 if (!InsertElementInst::isValidOperands($3, $5, $7))
1938 GEN_ERROR("Invalid insertelement operands");
1939 $$ = ConstantExpr::getInsertElement($3, $5, $7);
1940 CHECK_FOR_ERROR
1941 }
1942 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1943 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
1944 GEN_ERROR("Invalid shufflevector operands");
1945 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
1946 CHECK_FOR_ERROR
1947 };
1948
1949
1950// ConstVector - A list of comma separated constants.
1951ConstVector : ConstVector ',' ConstVal {
1952 ($$ = $1)->push_back($3);
1953 CHECK_FOR_ERROR
1954 }
1955 | ConstVal {
1956 $$ = new std::vector<Constant*>();
1957 $$->push_back($1);
1958 CHECK_FOR_ERROR
1959 };
1960
1961
1962// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
1963GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
1964
1965// ThreadLocal
1966ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
1967
1968// AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
1969AliaseeRef : ResultTypes SymbolicValueRef {
1970 const Type* VTy = $1->get();
1971 Value *V = getVal(VTy, $2);
1972 GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
1973 if (!Aliasee)
1974 GEN_ERROR("Aliases can be created only to global values");
1975
1976 $$ = Aliasee;
1977 CHECK_FOR_ERROR
1978 delete $1;
1979 }
1980 | BITCAST '(' AliaseeRef TO Types ')' {
1981 Constant *Val = $3;
1982 const Type *DestTy = $5->get();
1983 if (!CastInst::castIsValid($1, $3, DestTy))
1984 GEN_ERROR("invalid cast opcode for cast from '" +
1985 Val->getType()->getDescription() + "' to '" +
1986 DestTy->getDescription() + "'");
1987
1988 $$ = ConstantExpr::getCast($1, $3, DestTy);
1989 CHECK_FOR_ERROR
1990 delete $5;
1991 };
1992
1993//===----------------------------------------------------------------------===//
1994// Rules to match Modules
1995//===----------------------------------------------------------------------===//
1996
1997// Module rule: Capture the result of parsing the whole file into a result
1998// variable...
1999//
2000Module
2001 : DefinitionList {
2002 $$ = ParserResult = CurModule.CurrentModule;
2003 CurModule.ModuleDone();
2004 CHECK_FOR_ERROR;
2005 }
2006 | /*empty*/ {
2007 $$ = ParserResult = CurModule.CurrentModule;
2008 CurModule.ModuleDone();
2009 CHECK_FOR_ERROR;
2010 }
2011 ;
2012
2013DefinitionList
2014 : Definition
2015 | DefinitionList Definition
2016 ;
2017
2018Definition
2019 : DEFINE { CurFun.isDeclare = false; } Function {
2020 CurFun.FunctionDone();
2021 CHECK_FOR_ERROR
2022 }
2023 | DECLARE { CurFun.isDeclare = true; } FunctionProto {
2024 CHECK_FOR_ERROR
2025 }
2026 | MODULE ASM_TOK AsmBlock {
2027 CHECK_FOR_ERROR
2028 }
2029 | OptLocalAssign TYPE Types {
2030 if (!UpRefs.empty())
2031 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2032 // Eagerly resolve types. This is not an optimization, this is a
2033 // requirement that is due to the fact that we could have this:
2034 //
2035 // %list = type { %list * }
2036 // %list = type { %list * } ; repeated type decl
2037 //
2038 // If types are not resolved eagerly, then the two types will not be
2039 // determined to be the same type!
2040 //
2041 ResolveTypeTo($1, *$3);
2042
2043 if (!setTypeName(*$3, $1) && !$1) {
2044 CHECK_FOR_ERROR
2045 // If this is a named type that is not a redefinition, add it to the slot
2046 // table.
2047 CurModule.Types.push_back(*$3);
2048 }
2049
2050 delete $3;
2051 CHECK_FOR_ERROR
2052 }
2053 | OptLocalAssign TYPE VOID {
2054 ResolveTypeTo($1, $3);
2055
2056 if (!setTypeName($3, $1) && !$1) {
2057 CHECK_FOR_ERROR
2058 // If this is a named type that is not a redefinition, add it to the slot
2059 // table.
2060 CurModule.Types.push_back($3);
2061 }
2062 CHECK_FOR_ERROR
2063 }
2064 | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal {
2065 /* "Externally Visible" Linkage */
2066 if ($5 == 0)
2067 GEN_ERROR("Global value initializer is not a constant");
2068 CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
2069 $2, $4, $5->getType(), $5, $3);
2070 CHECK_FOR_ERROR
2071 } GlobalVarAttributes {
2072 CurGV = 0;
2073 }
2074 | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2075 ConstVal {
2076 if ($6 == 0)
2077 GEN_ERROR("Global value initializer is not a constant");
2078 CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4);
2079 CHECK_FOR_ERROR
2080 } GlobalVarAttributes {
2081 CurGV = 0;
2082 }
2083 | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2084 Types {
2085 if (!UpRefs.empty())
2086 GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
2087 CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4);
2088 CHECK_FOR_ERROR
2089 delete $6;
2090 } GlobalVarAttributes {
2091 CurGV = 0;
2092 CHECK_FOR_ERROR
2093 }
2094 | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
2095 std::string Name;
2096 if ($1) {
2097 Name = *$1;
2098 delete $1;
2099 }
2100 if (Name.empty())
2101 GEN_ERROR("Alias name cannot be empty");
2102
2103 Constant* Aliasee = $5;
2104 if (Aliasee == 0)
2105 GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
2106
2107 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
2108 CurModule.CurrentModule);
2109 GA->setVisibility($2);
2110 InsertValue(GA, CurModule.Values);
2111 CHECK_FOR_ERROR
2112 }
2113 | TARGET TargetDefinition {
2114 CHECK_FOR_ERROR
2115 }
2116 | DEPLIBS '=' LibrariesDefinition {
2117 CHECK_FOR_ERROR
2118 }
2119 ;
2120
2121
2122AsmBlock : STRINGCONSTANT {
2123 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2124 if (AsmSoFar.empty())
2125 CurModule.CurrentModule->setModuleInlineAsm(*$1);
2126 else
2127 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
2128 delete $1;
2129 CHECK_FOR_ERROR
2130};
2131
2132TargetDefinition : TRIPLE '=' STRINGCONSTANT {
2133 CurModule.CurrentModule->setTargetTriple(*$3);
2134 delete $3;
2135 }
2136 | DATALAYOUT '=' STRINGCONSTANT {
2137 CurModule.CurrentModule->setDataLayout(*$3);
2138 delete $3;
2139 };
2140
2141LibrariesDefinition : '[' LibList ']';
2142
2143LibList : LibList ',' STRINGCONSTANT {
2144 CurModule.CurrentModule->addLibrary(*$3);
2145 delete $3;
2146 CHECK_FOR_ERROR
2147 }
2148 | STRINGCONSTANT {
2149 CurModule.CurrentModule->addLibrary(*$1);
2150 delete $1;
2151 CHECK_FOR_ERROR
2152 }
2153 | /* empty: end of list */ {
2154 CHECK_FOR_ERROR
2155 }
2156 ;
2157
2158//===----------------------------------------------------------------------===//
2159// Rules to match Function Headers
2160//===----------------------------------------------------------------------===//
2161
2162ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
2163 if (!UpRefs.empty())
2164 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2165 if (*$3 == Type::VoidTy)
2166 GEN_ERROR("void typed arguments are invalid");
2167 ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
2168 $$ = $1;
2169 $1->push_back(E);
2170 CHECK_FOR_ERROR
2171 }
2172 | Types OptParamAttrs OptLocalName {
2173 if (!UpRefs.empty())
2174 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2175 if (*$1 == Type::VoidTy)
2176 GEN_ERROR("void typed arguments are invalid");
2177 ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
2178 $$ = new ArgListType;
2179 $$->push_back(E);
2180 CHECK_FOR_ERROR
2181 };
2182
2183ArgList : ArgListH {
2184 $$ = $1;
2185 CHECK_FOR_ERROR
2186 }
2187 | ArgListH ',' DOTDOTDOT {
2188 $$ = $1;
2189 struct ArgListEntry E;
2190 E.Ty = new PATypeHolder(Type::VoidTy);
2191 E.Name = 0;
2192 E.Attrs = ParamAttr::None;
2193 $$->push_back(E);
2194 CHECK_FOR_ERROR
2195 }
2196 | DOTDOTDOT {
2197 $$ = new ArgListType;
2198 struct ArgListEntry E;
2199 E.Ty = new PATypeHolder(Type::VoidTy);
2200 E.Name = 0;
2201 E.Attrs = ParamAttr::None;
2202 $$->push_back(E);
2203 CHECK_FOR_ERROR
2204 }
2205 | /* empty */ {
2206 $$ = 0;
2207 CHECK_FOR_ERROR
2208 };
2209
2210FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')'
2211 OptFuncAttrs OptSection OptAlign {
2212 std::string FunctionName(*$3);
2213 delete $3; // Free strdup'd memory!
2214
2215 // Check the function result for abstractness if this is a define. We should
2216 // have no abstract types at this point
2217 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
2218 GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
2219
2220 std::vector<const Type*> ParamTypeList;
2221 ParamAttrsVector Attrs;
2222 if ($7 != ParamAttr::None) {
2223 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7;
2224 Attrs.push_back(PAWI);
2225 }
2226 if ($5) { // If there are arguments...
2227 unsigned index = 1;
2228 for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
2229 const Type* Ty = I->Ty->get();
2230 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
2231 GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
2232 ParamTypeList.push_back(Ty);
2233 if (Ty != Type::VoidTy)
2234 if (I->Attrs != ParamAttr::None) {
2235 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2236 Attrs.push_back(PAWI);
2237 }
2238 }
2239 }
2240
2241 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
2242 if (isVarArg) ParamTypeList.pop_back();
2243
2244 ParamAttrsList *PAL = 0;
2245 if (!Attrs.empty())
2246 PAL = ParamAttrsList::get(Attrs);
2247
2248 FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg, PAL);
2249 const PointerType *PFT = PointerType::get(FT);
2250 delete $2;
2251
2252 ValID ID;
2253 if (!FunctionName.empty()) {
2254 ID = ValID::createGlobalName((char*)FunctionName.c_str());
2255 } else {
2256 ID = ValID::createGlobalID(CurModule.Values.size());
2257 }
2258
2259 Function *Fn = 0;
2260 // See if this function was forward referenced. If so, recycle the object.
2261 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2262 // Move the function to the end of the list, from whereever it was
2263 // previously inserted.
2264 Fn = cast<Function>(FWRef);
2265 CurModule.CurrentModule->getFunctionList().remove(Fn);
2266 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2267 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
2268 (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
2269 if (Fn->getFunctionType() != FT) {
2270 // The existing function doesn't have the same type. This is an overload
2271 // error.
2272 GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
2273 } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
2274 // Neither the existing or the current function is a declaration and they
2275 // have the same name and same type. Clearly this is a redefinition.
2276 GEN_ERROR("Redefinition of function '" + FunctionName + "'");
2277 } if (Fn->isDeclaration()) {
2278 // Make sure to strip off any argument names so we can't get conflicts.
2279 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2280 AI != AE; ++AI)
2281 AI->setName("");
2282 }
2283 } else { // Not already defined?
2284 Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
2285 CurModule.CurrentModule);
2286
2287 InsertValue(Fn, CurModule.Values);
2288 }
2289
2290 CurFun.FunctionStart(Fn);
2291
2292 if (CurFun.isDeclare) {
2293 // If we have declaration, always overwrite linkage. This will allow us to
2294 // correctly handle cases, when pointer to function is passed as argument to
2295 // another function.
2296 Fn->setLinkage(CurFun.Linkage);
2297 Fn->setVisibility(CurFun.Visibility);
2298 }
2299 Fn->setCallingConv($1);
2300 Fn->setAlignment($9);
2301 if ($8) {
2302 Fn->setSection(*$8);
2303 delete $8;
2304 }
2305
2306 // Add all of the arguments we parsed to the function...
2307 if ($5) { // Is null if empty...
2308 if (isVarArg) { // Nuke the last entry
2309 assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
2310 "Not a varargs marker!");
2311 delete $5->back().Ty;
2312 $5->pop_back(); // Delete the last entry
2313 }
2314 Function::arg_iterator ArgIt = Fn->arg_begin();
2315 Function::arg_iterator ArgEnd = Fn->arg_end();
2316 unsigned Idx = 1;
2317 for (ArgListType::iterator I = $5->begin();
2318 I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
2319 delete I->Ty; // Delete the typeholder...
2320 setValueName(ArgIt, I->Name); // Insert arg into symtab...
2321 CHECK_FOR_ERROR
2322 InsertValue(ArgIt);
2323 Idx++;
2324 }
2325
2326 delete $5; // We're now done with the argument list
2327 }
2328 CHECK_FOR_ERROR
2329};
2330
2331BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
2332
2333FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
2334 $$ = CurFun.CurrentFunction;
2335
2336 // Make sure that we keep track of the linkage type even if there was a
2337 // previous "declare".
2338 $$->setLinkage($1);
2339 $$->setVisibility($2);
2340};
2341
2342END : ENDTOK | '}'; // Allow end of '}' to end a function
2343
2344Function : BasicBlockList END {
2345 $$ = $1;
2346 CHECK_FOR_ERROR
2347};
2348
2349FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
2350 CurFun.CurrentFunction->setLinkage($1);
2351 CurFun.CurrentFunction->setVisibility($2);
2352 $$ = CurFun.CurrentFunction;
2353 CurFun.FunctionDone();
2354 CHECK_FOR_ERROR
2355 };
2356
2357//===----------------------------------------------------------------------===//
2358// Rules to match Basic Blocks
2359//===----------------------------------------------------------------------===//
2360
2361OptSideEffect : /* empty */ {
2362 $$ = false;
2363 CHECK_FOR_ERROR
2364 }
2365 | SIDEEFFECT {
2366 $$ = true;
2367 CHECK_FOR_ERROR
2368 };
2369
2370ConstValueRef : ESINT64VAL { // A reference to a direct constant
2371 $$ = ValID::create($1);
2372 CHECK_FOR_ERROR
2373 }
2374 | EUINT64VAL {
2375 $$ = ValID::create($1);
2376 CHECK_FOR_ERROR
2377 }
2378 | FPVAL { // Perhaps it's an FP constant?
2379 $$ = ValID::create($1);
2380 CHECK_FOR_ERROR
2381 }
2382 | TRUETOK {
2383 $$ = ValID::create(ConstantInt::getTrue());
2384 CHECK_FOR_ERROR
2385 }
2386 | FALSETOK {
2387 $$ = ValID::create(ConstantInt::getFalse());
2388 CHECK_FOR_ERROR
2389 }
2390 | NULL_TOK {
2391 $$ = ValID::createNull();
2392 CHECK_FOR_ERROR
2393 }
2394 | UNDEF {
2395 $$ = ValID::createUndef();
2396 CHECK_FOR_ERROR
2397 }
2398 | ZEROINITIALIZER { // A vector zero constant.
2399 $$ = ValID::createZeroInit();
2400 CHECK_FOR_ERROR
2401 }
2402 | '<' ConstVector '>' { // Nonempty unsized packed vector
2403 const Type *ETy = (*$2)[0]->getType();
2404 int NumElements = $2->size();
2405
2406 VectorType* pt = VectorType::get(ETy, NumElements);
2407 PATypeHolder* PTy = new PATypeHolder(
2408 HandleUpRefs(
2409 VectorType::get(
2410 ETy,
2411 NumElements)
2412 )
2413 );
2414
2415 // Verify all elements are correct type!
2416 for (unsigned i = 0; i < $2->size(); i++) {
2417 if (ETy != (*$2)[i]->getType())
2418 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
2419 ETy->getDescription() +"' as required!\nIt is of type '" +
2420 (*$2)[i]->getType()->getDescription() + "'.");
2421 }
2422
2423 $$ = ValID::create(ConstantVector::get(pt, *$2));
2424 delete PTy; delete $2;
2425 CHECK_FOR_ERROR
2426 }
2427 | ConstExpr {
2428 $$ = ValID::create($1);
2429 CHECK_FOR_ERROR
2430 }
2431 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2432 $$ = ValID::createInlineAsm(*$3, *$5, $2);
2433 delete $3;
2434 delete $5;
2435 CHECK_FOR_ERROR
2436 };
2437
2438// SymbolicValueRef - Reference to one of two ways of symbolically refering to
2439// another value.
2440//
2441SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
2442 $$ = ValID::createLocalID($1);
2443 CHECK_FOR_ERROR
2444 }
2445 | GLOBALVAL_ID {
2446 $$ = ValID::createGlobalID($1);
2447 CHECK_FOR_ERROR
2448 }
2449 | LocalName { // Is it a named reference...?
2450 $$ = ValID::createLocalName(*$1);
2451 delete $1;
2452 CHECK_FOR_ERROR
2453 }
2454 | GlobalName { // Is it a named reference...?
2455 $$ = ValID::createGlobalName(*$1);
2456 delete $1;
2457 CHECK_FOR_ERROR
2458 };
2459
2460// ValueRef - A reference to a definition... either constant or symbolic
2461ValueRef : SymbolicValueRef | ConstValueRef;
2462
2463
2464// ResolvedVal - a <type> <value> pair. This is used only in cases where the
2465// type immediately preceeds the value reference, and allows complex constant
2466// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
2467ResolvedVal : Types ValueRef {
2468 if (!UpRefs.empty())
2469 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2470 $$ = getVal(*$1, $2);
2471 delete $1;
2472 CHECK_FOR_ERROR
2473 }
2474 ;
2475
2476BasicBlockList : BasicBlockList BasicBlock {
2477 $$ = $1;
2478 CHECK_FOR_ERROR
2479 }
2480 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2481 $$ = $1;
2482 CHECK_FOR_ERROR
2483 };
2484
2485
2486// Basic blocks are terminated by branching instructions:
2487// br, br/cc, switch, ret
2488//
2489BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
2490 setValueName($3, $2);
2491 CHECK_FOR_ERROR
2492 InsertValue($3);
2493 $1->getInstList().push_back($3);
2494 $$ = $1;
2495 CHECK_FOR_ERROR
2496 };
2497
2498InstructionList : InstructionList Inst {
2499 if (CastInst *CI1 = dyn_cast<CastInst>($2))
2500 if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
2501 if (CI2->getParent() == 0)
2502 $1->getInstList().push_back(CI2);
2503 $1->getInstList().push_back($2);
2504 $$ = $1;
2505 CHECK_FOR_ERROR
2506 }
2507 | /* empty */ { // Empty space between instruction lists
2508 $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
2509 CHECK_FOR_ERROR
2510 }
2511 | LABELSTR { // Labelled (named) basic block
2512 $$ = defineBBVal(ValID::createLocalName(*$1));
2513 delete $1;
2514 CHECK_FOR_ERROR
2515
2516 };
2517
2518BBTerminatorInst : RET ResolvedVal { // Return with a result...
2519 $$ = new ReturnInst($2);
2520 CHECK_FOR_ERROR
2521 }
2522 | RET VOID { // Return with no result...
2523 $$ = new ReturnInst();
2524 CHECK_FOR_ERROR
2525 }
2526 | BR LABEL ValueRef { // Unconditional Branch...
2527 BasicBlock* tmpBB = getBBVal($3);
2528 CHECK_FOR_ERROR
2529 $$ = new BranchInst(tmpBB);
2530 } // Conditional Branch...
2531 | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2532 assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
2533 BasicBlock* tmpBBA = getBBVal($6);
2534 CHECK_FOR_ERROR
2535 BasicBlock* tmpBBB = getBBVal($9);
2536 CHECK_FOR_ERROR
2537 Value* tmpVal = getVal(Type::Int1Ty, $3);
2538 CHECK_FOR_ERROR
2539 $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
2540 }
2541 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2542 Value* tmpVal = getVal($2, $3);
2543 CHECK_FOR_ERROR
2544 BasicBlock* tmpBB = getBBVal($6);
2545 CHECK_FOR_ERROR
2546 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
2547 $$ = S;
2548
2549 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2550 E = $8->end();
2551 for (; I != E; ++I) {
2552 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2553 S->addCase(CI, I->second);
2554 else
2555 GEN_ERROR("Switch case is constant, but not a simple integer");
2556 }
2557 delete $8;
2558 CHECK_FOR_ERROR
2559 }
2560 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2561 Value* tmpVal = getVal($2, $3);
2562 CHECK_FOR_ERROR
2563 BasicBlock* tmpBB = getBBVal($6);
2564 CHECK_FOR_ERROR
2565 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
2566 $$ = S;
2567 CHECK_FOR_ERROR
2568 }
2569 | INVOKE OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' OptFuncAttrs
2570 TO LABEL ValueRef UNWIND LABEL ValueRef {
2571
2572 // Handle the short syntax
2573 const PointerType *PFTy = 0;
2574 const FunctionType *Ty = 0;
2575 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2576 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2577 // Pull out the types of all of the arguments...
2578 std::vector<const Type*> ParamTypes;
2579 ParamAttrsVector Attrs;
2580 if ($8 != ParamAttr::None) {
2581 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2582 Attrs.push_back(PAWI);
2583 }
2584 ValueRefList::iterator I = $6->begin(), E = $6->end();
2585 unsigned index = 1;
2586 for (; I != E; ++I, ++index) {
2587 const Type *Ty = I->Val->getType();
2588 if (Ty == Type::VoidTy)
2589 GEN_ERROR("Short call syntax cannot be used with varargs");
2590 ParamTypes.push_back(Ty);
2591 if (I->Attrs != ParamAttr::None) {
2592 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2593 Attrs.push_back(PAWI);
2594 }
2595 }
2596
2597 ParamAttrsList *PAL = 0;
2598 if (!Attrs.empty())
2599 PAL = ParamAttrsList::get(Attrs);
2600 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2601 PFTy = PointerType::get(Ty);
2602 }
2603
2604 delete $3;
2605
2606 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2607 CHECK_FOR_ERROR
2608 BasicBlock *Normal = getBBVal($11);
2609 CHECK_FOR_ERROR
2610 BasicBlock *Except = getBBVal($14);
2611 CHECK_FOR_ERROR
2612
2613 // Check the arguments
2614 ValueList Args;
2615 if ($6->empty()) { // Has no arguments?
2616 // Make sure no arguments is a good thing!
2617 if (Ty->getNumParams() != 0)
2618 GEN_ERROR("No arguments passed to a function that "
2619 "expects arguments");
2620 } else { // Has arguments?
2621 // Loop through FunctionType's arguments and ensure they are specified
2622 // correctly!
2623 FunctionType::param_iterator I = Ty->param_begin();
2624 FunctionType::param_iterator E = Ty->param_end();
2625 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2626
2627 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2628 if (ArgI->Val->getType() != *I)
2629 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2630 (*I)->getDescription() + "'");
2631 Args.push_back(ArgI->Val);
2632 }
2633
2634 if (Ty->isVarArg()) {
2635 if (I == E)
2636 for (; ArgI != ArgE; ++ArgI)
2637 Args.push_back(ArgI->Val); // push the remaining varargs
2638 } else if (I != E || ArgI != ArgE)
2639 GEN_ERROR("Invalid number of parameters detected");
2640 }
2641
2642 // Create the InvokeInst
2643 InvokeInst *II = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
2644 II->setCallingConv($2);
2645 $$ = II;
2646 delete $6;
2647 CHECK_FOR_ERROR
2648 }
2649 | UNWIND {
2650 $$ = new UnwindInst();
2651 CHECK_FOR_ERROR
2652 }
2653 | UNREACHABLE {
2654 $$ = new UnreachableInst();
2655 CHECK_FOR_ERROR
2656 };
2657
2658
2659
2660JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2661 $$ = $1;
2662 Constant *V = cast<Constant>(getExistingVal($2, $3));
2663 CHECK_FOR_ERROR
2664 if (V == 0)
2665 GEN_ERROR("May only switch on a constant pool value");
2666
2667 BasicBlock* tmpBB = getBBVal($6);
2668 CHECK_FOR_ERROR
2669 $$->push_back(std::make_pair(V, tmpBB));
2670 }
2671 | IntType ConstValueRef ',' LABEL ValueRef {
2672 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2673 Constant *V = cast<Constant>(getExistingVal($1, $2));
2674 CHECK_FOR_ERROR
2675
2676 if (V == 0)
2677 GEN_ERROR("May only switch on a constant pool value");
2678
2679 BasicBlock* tmpBB = getBBVal($5);
2680 CHECK_FOR_ERROR
2681 $$->push_back(std::make_pair(V, tmpBB));
2682 };
2683
2684Inst : OptLocalAssign InstVal {
2685 // Is this definition named?? if so, assign the name...
2686 setValueName($2, $1);
2687 CHECK_FOR_ERROR
2688 InsertValue($2);
2689 $$ = $2;
2690 CHECK_FOR_ERROR
2691 };
2692
2693
2694PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2695 if (!UpRefs.empty())
2696 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2697 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
2698 Value* tmpVal = getVal(*$1, $3);
2699 CHECK_FOR_ERROR
2700 BasicBlock* tmpBB = getBBVal($5);
2701 CHECK_FOR_ERROR
2702 $$->push_back(std::make_pair(tmpVal, tmpBB));
2703 delete $1;
2704 }
2705 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
2706 $$ = $1;
2707 Value* tmpVal = getVal($1->front().first->getType(), $4);
2708 CHECK_FOR_ERROR
2709 BasicBlock* tmpBB = getBBVal($6);
2710 CHECK_FOR_ERROR
2711 $1->push_back(std::make_pair(tmpVal, tmpBB));
2712 };
2713
2714
2715ValueRefList : Types ValueRef OptParamAttrs {
2716 if (!UpRefs.empty())
2717 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2718 // Used for call and invoke instructions
2719 $$ = new ValueRefList();
2720 ValueRefListEntry E; E.Attrs = $3; E.Val = getVal($1->get(), $2);
2721 $$->push_back(E);
2722 delete $1;
2723 }
2724 | ValueRefList ',' Types ValueRef OptParamAttrs {
2725 if (!UpRefs.empty())
2726 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2727 $$ = $1;
2728 ValueRefListEntry E; E.Attrs = $5; E.Val = getVal($3->get(), $4);
2729 $$->push_back(E);
2730 delete $3;
2731 CHECK_FOR_ERROR
2732 }
2733 | /*empty*/ { $$ = new ValueRefList(); };
2734
2735IndexList // Used for gep instructions and constant expressions
2736 : /*empty*/ { $$ = new std::vector<Value*>(); }
2737 | IndexList ',' ResolvedVal {
2738 $$ = $1;
2739 $$->push_back($3);
2740 CHECK_FOR_ERROR
2741 }
2742 ;
2743
2744OptTailCall : TAIL CALL {
2745 $$ = true;
2746 CHECK_FOR_ERROR
2747 }
2748 | CALL {
2749 $$ = false;
2750 CHECK_FOR_ERROR
2751 };
2752
2753InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
2754 if (!UpRefs.empty())
2755 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2756 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
2757 !isa<VectorType>((*$2).get()))
2758 GEN_ERROR(
2759 "Arithmetic operator requires integer, FP, or packed operands");
2760 if (isa<VectorType>((*$2).get()) &&
2761 ($1 == Instruction::URem ||
2762 $1 == Instruction::SRem ||
2763 $1 == Instruction::FRem))
2764 GEN_ERROR("Remainder not supported on vector types");
2765 Value* val1 = getVal(*$2, $3);
2766 CHECK_FOR_ERROR
2767 Value* val2 = getVal(*$2, $5);
2768 CHECK_FOR_ERROR
2769 $$ = BinaryOperator::create($1, val1, val2);
2770 if ($$ == 0)
2771 GEN_ERROR("binary operator returned null");
2772 delete $2;
2773 }
2774 | LogicalOps Types ValueRef ',' ValueRef {
2775 if (!UpRefs.empty())
2776 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2777 if (!(*$2)->isInteger()) {
2778 if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
2779 !cast<VectorType>($2->get())->getElementType()->isInteger())
2780 GEN_ERROR("Logical operator requires integral operands");
2781 }
2782 Value* tmpVal1 = getVal(*$2, $3);
2783 CHECK_FOR_ERROR
2784 Value* tmpVal2 = getVal(*$2, $5);
2785 CHECK_FOR_ERROR
2786 $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
2787 if ($$ == 0)
2788 GEN_ERROR("binary operator returned null");
2789 delete $2;
2790 }
2791 | ICMP IPredicates Types ValueRef ',' ValueRef {
2792 if (!UpRefs.empty())
2793 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2794 if (isa<VectorType>((*$3).get()))
2795 GEN_ERROR("Vector types not supported by icmp instruction");
2796 Value* tmpVal1 = getVal(*$3, $4);
2797 CHECK_FOR_ERROR
2798 Value* tmpVal2 = getVal(*$3, $6);
2799 CHECK_FOR_ERROR
2800 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2801 if ($$ == 0)
2802 GEN_ERROR("icmp operator returned null");
2803 delete $3;
2804 }
2805 | FCMP FPredicates Types ValueRef ',' ValueRef {
2806 if (!UpRefs.empty())
2807 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2808 if (isa<VectorType>((*$3).get()))
2809 GEN_ERROR("Vector types not supported by fcmp instruction");
2810 Value* tmpVal1 = getVal(*$3, $4);
2811 CHECK_FOR_ERROR
2812 Value* tmpVal2 = getVal(*$3, $6);
2813 CHECK_FOR_ERROR
2814 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2815 if ($$ == 0)
2816 GEN_ERROR("fcmp operator returned null");
2817 delete $3;
2818 }
2819 | CastOps ResolvedVal TO Types {
2820 if (!UpRefs.empty())
2821 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2822 Value* Val = $2;
2823 const Type* DestTy = $4->get();
2824 if (!CastInst::castIsValid($1, Val, DestTy))
2825 GEN_ERROR("invalid cast opcode for cast from '" +
2826 Val->getType()->getDescription() + "' to '" +
2827 DestTy->getDescription() + "'");
2828 $$ = CastInst::create($1, Val, DestTy);
2829 delete $4;
2830 }
2831 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2832 if ($2->getType() != Type::Int1Ty)
2833 GEN_ERROR("select condition must be boolean");
2834 if ($4->getType() != $6->getType())
2835 GEN_ERROR("select value types should match");
2836 $$ = new SelectInst($2, $4, $6);
2837 CHECK_FOR_ERROR
2838 }
2839 | VAARG ResolvedVal ',' Types {
2840 if (!UpRefs.empty())
2841 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2842 $$ = new VAArgInst($2, *$4);
2843 delete $4;
2844 CHECK_FOR_ERROR
2845 }
2846 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
2847 if (!ExtractElementInst::isValidOperands($2, $4))
2848 GEN_ERROR("Invalid extractelement operands");
2849 $$ = new ExtractElementInst($2, $4);
2850 CHECK_FOR_ERROR
2851 }
2852 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2853 if (!InsertElementInst::isValidOperands($2, $4, $6))
2854 GEN_ERROR("Invalid insertelement operands");
2855 $$ = new InsertElementInst($2, $4, $6);
2856 CHECK_FOR_ERROR
2857 }
2858 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2859 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
2860 GEN_ERROR("Invalid shufflevector operands");
2861 $$ = new ShuffleVectorInst($2, $4, $6);
2862 CHECK_FOR_ERROR
2863 }
2864 | PHI_TOK PHIList {
2865 const Type *Ty = $2->front().first->getType();
2866 if (!Ty->isFirstClassType())
2867 GEN_ERROR("PHI node operands must be of first class type");
2868 $$ = new PHINode(Ty);
2869 ((PHINode*)$$)->reserveOperandSpace($2->size());
2870 while ($2->begin() != $2->end()) {
2871 if ($2->front().first->getType() != Ty)
2872 GEN_ERROR("All elements of a PHI node must be of the same type");
2873 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
2874 $2->pop_front();
2875 }
2876 delete $2; // Free the list...
2877 CHECK_FOR_ERROR
2878 }
2879 | OptTailCall OptCallingConv ResultTypes ValueRef '(' ValueRefList ')'
2880 OptFuncAttrs {
2881
2882 // Handle the short syntax
2883 const PointerType *PFTy = 0;
2884 const FunctionType *Ty = 0;
2885 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2886 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2887 // Pull out the types of all of the arguments...
2888 std::vector<const Type*> ParamTypes;
2889 ParamAttrsVector Attrs;
2890 if ($8 != ParamAttr::None) {
2891 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2892 Attrs.push_back(PAWI);
2893 }
2894 unsigned index = 1;
2895 ValueRefList::iterator I = $6->begin(), E = $6->end();
2896 for (; I != E; ++I, ++index) {
2897 const Type *Ty = I->Val->getType();
2898 if (Ty == Type::VoidTy)
2899 GEN_ERROR("Short call syntax cannot be used with varargs");
2900 ParamTypes.push_back(Ty);
2901 if (I->Attrs != ParamAttr::None) {
2902 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2903 Attrs.push_back(PAWI);
2904 }
2905 }
2906
2907 ParamAttrsList *PAL = 0;
2908 if (!Attrs.empty())
2909 PAL = ParamAttrsList::get(Attrs);
2910
2911 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2912 PFTy = PointerType::get(Ty);
2913 }
2914
2915 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2916 CHECK_FOR_ERROR
2917
2918 // Check for call to invalid intrinsic to avoid crashing later.
2919 if (Function *theF = dyn_cast<Function>(V)) {
2920 if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
2921 (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
2922 !theF->getIntrinsicID(true))
2923 GEN_ERROR("Call to invalid LLVM intrinsic function '" +
2924 theF->getName() + "'");
2925 }
2926
2927 // Check the arguments
2928 ValueList Args;
2929 if ($6->empty()) { // Has no arguments?
2930 // Make sure no arguments is a good thing!
2931 if (Ty->getNumParams() != 0)
2932 GEN_ERROR("No arguments passed to a function that "
2933 "expects arguments");
2934 } else { // Has arguments?
2935 // Loop through FunctionType's arguments and ensure they are specified
2936 // correctly!
2937 //
2938 FunctionType::param_iterator I = Ty->param_begin();
2939 FunctionType::param_iterator E = Ty->param_end();
2940 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2941
2942 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2943 if (ArgI->Val->getType() != *I)
2944 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2945 (*I)->getDescription() + "'");
2946 Args.push_back(ArgI->Val);
2947 }
2948 if (Ty->isVarArg()) {
2949 if (I == E)
2950 for (; ArgI != ArgE; ++ArgI)
2951 Args.push_back(ArgI->Val); // push the remaining varargs
2952 } else if (I != E || ArgI != ArgE)
2953 GEN_ERROR("Invalid number of parameters detected");
2954 }
2955 // Create the call node
2956 CallInst *CI = new CallInst(V, &Args[0], Args.size());
2957 CI->setTailCall($1);
2958 CI->setCallingConv($2);
2959 $$ = CI;
2960 delete $6;
2961 delete $3;
2962 CHECK_FOR_ERROR
2963 }
2964 | MemoryInst {
2965 $$ = $1;
2966 CHECK_FOR_ERROR
2967 };
2968
2969OptVolatile : VOLATILE {
2970 $$ = true;
2971 CHECK_FOR_ERROR
2972 }
2973 | /* empty */ {
2974 $$ = false;
2975 CHECK_FOR_ERROR
2976 };
2977
2978
2979
2980MemoryInst : MALLOC Types OptCAlign {
2981 if (!UpRefs.empty())
2982 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2983 $$ = new MallocInst(*$2, 0, $3);
2984 delete $2;
2985 CHECK_FOR_ERROR
2986 }
2987 | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
2988 if (!UpRefs.empty())
2989 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2990 Value* tmpVal = getVal($4, $5);
2991 CHECK_FOR_ERROR
2992 $$ = new MallocInst(*$2, tmpVal, $6);
2993 delete $2;
2994 }
2995 | ALLOCA Types OptCAlign {
2996 if (!UpRefs.empty())
2997 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2998 $$ = new AllocaInst(*$2, 0, $3);
2999 delete $2;
3000 CHECK_FOR_ERROR
3001 }
3002 | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
3003 if (!UpRefs.empty())
3004 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3005 Value* tmpVal = getVal($4, $5);
3006 CHECK_FOR_ERROR
3007 $$ = new AllocaInst(*$2, tmpVal, $6);
3008 delete $2;
3009 }
3010 | FREE ResolvedVal {
3011 if (!isa<PointerType>($2->getType()))
3012 GEN_ERROR("Trying to free nonpointer type " +
3013 $2->getType()->getDescription() + "");
3014 $$ = new FreeInst($2);
3015 CHECK_FOR_ERROR
3016 }
3017
3018 | OptVolatile LOAD Types ValueRef OptCAlign {
3019 if (!UpRefs.empty())
3020 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3021 if (!isa<PointerType>($3->get()))
3022 GEN_ERROR("Can't load from nonpointer type: " +
3023 (*$3)->getDescription());
3024 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
3025 GEN_ERROR("Can't load from pointer of non-first-class type: " +
3026 (*$3)->getDescription());
3027 Value* tmpVal = getVal(*$3, $4);
3028 CHECK_FOR_ERROR
3029 $$ = new LoadInst(tmpVal, "", $1, $5);
3030 delete $3;
3031 }
3032 | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
3033 if (!UpRefs.empty())
3034 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
3035 const PointerType *PT = dyn_cast<PointerType>($5->get());
3036 if (!PT)
3037 GEN_ERROR("Can't store to a nonpointer type: " +
3038 (*$5)->getDescription());
3039 const Type *ElTy = PT->getElementType();
3040 if (ElTy != $3->getType())
3041 GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
3042 "' into space of type '" + ElTy->getDescription() + "'");
3043
3044 Value* tmpVal = getVal(*$5, $6);
3045 CHECK_FOR_ERROR
3046 $$ = new StoreInst($3, tmpVal, $1, $7);
3047 delete $5;
3048 }
3049 | GETELEMENTPTR Types ValueRef IndexList {
3050 if (!UpRefs.empty())
3051 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3052 if (!isa<PointerType>($2->get()))
3053 GEN_ERROR("getelementptr insn requires pointer operand");
3054
3055 if (!GetElementPtrInst::getIndexedType(*$2, &(*$4)[0], $4->size(), true))
3056 GEN_ERROR("Invalid getelementptr indices for type '" +
3057 (*$2)->getDescription()+ "'");
3058 Value* tmpVal = getVal(*$2, $3);
3059 CHECK_FOR_ERROR
3060 $$ = new GetElementPtrInst(tmpVal, &(*$4)[0], $4->size());
3061 delete $2;
3062 delete $4;
3063 };
3064
3065
3066%%
3067
3068// common code from the two 'RunVMAsmParser' functions
3069static Module* RunParser(Module * M) {
3070
3071 llvmAsmlineno = 1; // Reset the current line number...
3072 CurModule.CurrentModule = M;
3073#if YYDEBUG
3074 yydebug = Debug;
3075#endif
3076
3077 // Check to make sure the parser succeeded
3078 if (yyparse()) {
3079 if (ParserResult)
3080 delete ParserResult;
3081 return 0;
3082 }
3083
3084 // Emit an error if there are any unresolved types left.
3085 if (!CurModule.LateResolveTypes.empty()) {
3086 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
3087 if (DID.Type == ValID::LocalName) {
3088 GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
3089 } else {
3090 GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
3091 }
3092 if (ParserResult)
3093 delete ParserResult;
3094 return 0;
3095 }
3096
3097 // Emit an error if there are any unresolved values left.
3098 if (!CurModule.LateResolveValues.empty()) {
3099 Value *V = CurModule.LateResolveValues.back();
3100 std::map<Value*, std::pair<ValID, int> >::iterator I =
3101 CurModule.PlaceHolderInfo.find(V);
3102
3103 if (I != CurModule.PlaceHolderInfo.end()) {
3104 ValID &DID = I->second.first;
3105 if (DID.Type == ValID::LocalName) {
3106 GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
3107 } else {
3108 GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
3109 }
3110 if (ParserResult)
3111 delete ParserResult;
3112 return 0;
3113 }
3114 }
3115
3116 // Check to make sure that parsing produced a result
3117 if (!ParserResult)
3118 return 0;
3119
3120 // Reset ParserResult variable while saving its value for the result.
3121 Module *Result = ParserResult;
3122 ParserResult = 0;
3123
3124 return Result;
3125}
3126
3127void llvm::GenerateError(const std::string &message, int LineNo) {
3128 if (LineNo == -1) LineNo = llvmAsmlineno;
3129 // TODO: column number in exception
3130 if (TheParseError)
3131 TheParseError->setError(CurFilename, message, LineNo);
3132 TriggerError = 1;
3133}
3134
3135int yyerror(const char *ErrorMsg) {
3136 std::string where
3137 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
3138 + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
3139 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3140 if (yychar != YYEMPTY && yychar != 0)
3141 errMsg += " while reading token: '" + std::string(llvmAsmtext, llvmAsmleng)+
3142 "'";
3143 GenerateError(errMsg);
3144 return 0;
3145}