blob: db6e5a490d2e904a3b35468083730a596f6e2d26 [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner41efbfa2010-10-05 06:37:31 +000015//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
20 return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23
24//===----------------------------------------------------------------------===//
25// Random Pseudo Instructions.
26
Chris Lattner8af88ef2010-10-05 06:10:16 +000027// PIC base construction. This expands to code that looks like this:
28// call $next_inst
29// popl %destreg"
30let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
31 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32 "", []>;
33
34
35// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
36// a stack adjustment and the codegen must know that they may modify the stack
37// pointer before prolog-epilog rewriting occurs.
38// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
39// sub / add which can clobber EFLAGS.
40let Defs = [ESP, EFLAGS], Uses = [ESP] in {
41def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
42 "#ADJCALLSTACKDOWN",
43 [(X86callseq_start timm:$amt)]>,
44 Requires<[In32BitMode]>;
45def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
46 "#ADJCALLSTACKUP",
47 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
48 Requires<[In32BitMode]>;
49}
50
51// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
52// a stack adjustment and the codegen must know that they may modify the stack
53// pointer before prolog-epilog rewriting occurs.
54// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
55// sub / add which can clobber EFLAGS.
56let Defs = [RSP, EFLAGS], Uses = [RSP] in {
57def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
58 "#ADJCALLSTACKDOWN",
59 [(X86callseq_start timm:$amt)]>,
60 Requires<[In64BitMode]>;
61def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62 "#ADJCALLSTACKUP",
63 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64 Requires<[In64BitMode]>;
65}
66
67
68
69// x86-64 va_start lowering magic.
70let usesCustomInserter = 1 in {
71def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
72 (outs),
73 (ins GR8:$al,
74 i64imm:$regsavefi, i64imm:$offset,
75 variable_ops),
76 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
77 [(X86vastart_save_xmm_regs GR8:$al,
78 imm:$regsavefi,
79 imm:$offset)]>;
80
81// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
82// to _alloca is needed to probe the stack when allocating more than 4k bytes in
83// one go. Touching the stack at 4K increments is necessary to ensure that the
84// guard pages used by the OS virtual memory manager are allocated in correct
85// sequence.
86// The main point of having separate instruction are extra unmodelled effects
87// (compared to ordinary calls) like stack pointer change.
88
89let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
90 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
91 "# dynamic stack allocation",
92 [(X86MingwAlloca)]>;
93}
94
95
Chris Lattner87be16a2010-10-05 06:04:14 +000096
97//===----------------------------------------------------------------------===//
98// EH Pseudo Instructions
99//
100let isTerminator = 1, isReturn = 1, isBarrier = 1,
101 hasCtrlDep = 1, isCodeGenOnly = 1 in {
102def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
103 "ret\t#eh_return, addr: $addr",
104 [(X86ehret GR32:$addr)]>;
105
106}
107
108let isTerminator = 1, isReturn = 1, isBarrier = 1,
109 hasCtrlDep = 1, isCodeGenOnly = 1 in {
110def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
111 "ret\t#eh_return, addr: $addr",
112 [(X86ehret GR64:$addr)]>;
113
114}
115
Chris Lattner8af88ef2010-10-05 06:10:16 +0000116//===----------------------------------------------------------------------===//
117// Alias Instructions
118//===----------------------------------------------------------------------===//
119
120// Alias instructions that map movr0 to xor.
121// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
122// FIXME: Set encoding to pseudo.
123let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
124 isCodeGenOnly = 1 in {
125def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
126 [(set GR8:$dst, 0)]>;
127
128// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
129// encoding and avoids a partial-register update sometimes, but doing so
130// at isel time interferes with rematerialization in the current register
131// allocator. For now, this is rewritten when the instruction is lowered
132// to an MCInst.
133def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
134 "",
135 [(set GR16:$dst, 0)]>, OpSize;
136
137// FIXME: Set encoding to pseudo.
138def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
139 [(set GR32:$dst, 0)]>;
140}
141
Chris Lattner010496c2010-10-05 06:22:35 +0000142// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
143// smaller encoding, but doing so at isel time interferes with rematerialization
144// in the current register allocator. For now, this is rewritten when the
145// instruction is lowered to an MCInst.
146// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
147// when we have a better way to specify isel priority.
148let Defs = [EFLAGS],
149 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
150def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
151 [(set GR64:$dst, 0)]>;
152
153// Materialize i64 constant where top 32-bits are zero. This could theoretically
154// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
155// that would make it more difficult to rematerialize.
156let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
157def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
158 "", [(set GR64:$dst, i64immZExt32:$src)]>;
159
Chris Lattner35649fc2010-10-05 06:33:16 +0000160
161// Use sbb to materialize carry flag into a GPR.
162// FIXME: This are pseudo ops that should be replaced with Pat<> patterns.
163// However, Pat<> can't replicate the destination reg into the inputs of the
164// result.
165// FIXME: Change this to have encoding Pseudo when X86MCCodeEmitter replaces
166// X86CodeEmitter.
167let Defs = [EFLAGS], Uses = [EFLAGS], isCodeGenOnly = 1 in
168def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
169 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
170
171def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
172 (SETB_C64r)>;
173
Chris Lattner010496c2010-10-05 06:22:35 +0000174
Chris Lattnerd3f033d2010-10-05 06:27:48 +0000175//===----------------------------------------------------------------------===//
176// String Pseudo Instructions
177//
178let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
179def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
180 [(X86rep_movs i8)]>, REP;
181def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
182 [(X86rep_movs i16)]>, REP, OpSize;
183def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
184 [(X86rep_movs i32)]>, REP;
185}
186
187let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
188def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
189 [(X86rep_movs i64)]>, REP;
190
191
192// FIXME: Should use "(X86rep_stos AL)" as the pattern.
193let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
194def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
195 [(X86rep_stos i8)]>, REP;
196let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
197def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
198 [(X86rep_stos i16)]>, REP, OpSize;
199let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
200def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
201 [(X86rep_stos i32)]>, REP;
202
203let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
204def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
205 [(X86rep_stos i64)]>, REP;
Chris Lattner010496c2010-10-05 06:22:35 +0000206
207
Chris Lattner8af88ef2010-10-05 06:10:16 +0000208//===----------------------------------------------------------------------===//
209// Thread Local Storage Instructions
210//
211
212// ELF TLS Support
213// All calls clobber the non-callee saved registers. ESP is marked as
214// a use to prevent stack-pointer assignments that appear immediately
215// before calls from potentially appearing dead.
216let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
217 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
218 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
219 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
220 Uses = [ESP] in
221def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
222 "leal\t$sym, %eax; "
223 "call\t___tls_get_addr@PLT",
224 [(X86tlsaddr tls32addr:$sym)]>,
225 Requires<[In32BitMode]>;
226
227// All calls clobber the non-callee saved registers. RSP is marked as
228// a use to prevent stack-pointer assignments that appear immediately
229// before calls from potentially appearing dead.
230let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
231 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
232 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
233 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
234 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
235 Uses = [RSP] in
236def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
237 ".byte\t0x66; "
238 "leaq\t$sym(%rip), %rdi; "
239 ".word\t0x6666; "
240 "rex64; "
241 "call\t__tls_get_addr@PLT",
242 [(X86tlsaddr tls64addr:$sym)]>,
243 Requires<[In64BitMode]>;
244
245// Darwin TLS Support
246// For i386, the address of the thunk is passed on the stack, on return the
247// address of the variable is in %eax. %ecx is trashed during the function
248// call. All other registers are preserved.
249let Defs = [EAX, ECX],
250 Uses = [ESP],
251 usesCustomInserter = 1 in
252def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
253 "# TLSCall_32",
254 [(X86TLSCall addr:$sym)]>,
255 Requires<[In32BitMode]>;
256
257// For x86_64, the address of the thunk is passed in %rdi, on return
258// the address of the variable is in %rax. All other registers are preserved.
259let Defs = [RAX],
260 Uses = [RDI],
261 usesCustomInserter = 1 in
262def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
263 "# TLSCall_64",
264 [(X86TLSCall addr:$sym)]>,
265 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000266
267//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000268// Atomic Instruction Pseudo Instructions
269//===----------------------------------------------------------------------===//
270
271// Atomic exchange, and, or, xor
272let Constraints = "$val = $dst", Defs = [EFLAGS],
273 usesCustomInserter = 1 in {
274
275def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
276 "#ATOMAND8 PSEUDO!",
277 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
278def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
279 "#ATOMOR8 PSEUDO!",
280 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
281def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
282 "#ATOMXOR8 PSEUDO!",
283 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
284def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
285 "#ATOMNAND8 PSEUDO!",
286 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
287
288def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
289 "#ATOMAND16 PSEUDO!",
290 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
291def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
292 "#ATOMOR16 PSEUDO!",
293 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
294def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
295 "#ATOMXOR16 PSEUDO!",
296 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
297def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
298 "#ATOMNAND16 PSEUDO!",
299 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
300def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
301 "#ATOMMIN16 PSEUDO!",
302 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
303def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
304 "#ATOMMAX16 PSEUDO!",
305 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
306def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
307 "#ATOMUMIN16 PSEUDO!",
308 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
309def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
310 "#ATOMUMAX16 PSEUDO!",
311 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
312
313
314def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
315 "#ATOMAND32 PSEUDO!",
316 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
317def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
318 "#ATOMOR32 PSEUDO!",
319 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
320def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
321 "#ATOMXOR32 PSEUDO!",
322 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
323def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
324 "#ATOMNAND32 PSEUDO!",
325 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
326def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
327 "#ATOMMIN32 PSEUDO!",
328 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
329def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
330 "#ATOMMAX32 PSEUDO!",
331 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
332def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
333 "#ATOMUMIN32 PSEUDO!",
334 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
335def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
336 "#ATOMUMAX32 PSEUDO!",
337 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
338
339
340
341def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
342 "#ATOMAND64 PSEUDO!",
343 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
344def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
345 "#ATOMOR64 PSEUDO!",
346 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
347def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
348 "#ATOMXOR64 PSEUDO!",
349 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
350def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
351 "#ATOMNAND64 PSEUDO!",
352 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
353def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
354 "#ATOMMIN64 PSEUDO!",
355 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
356def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
357 "#ATOMMAX64 PSEUDO!",
358 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
359def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
360 "#ATOMUMIN64 PSEUDO!",
361 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
362def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
363 "#ATOMUMAX64 PSEUDO!",
364 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
365}
366
367let Constraints = "$val1 = $dst1, $val2 = $dst2",
368 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
369 Uses = [EAX, EBX, ECX, EDX],
370 mayLoad = 1, mayStore = 1,
371 usesCustomInserter = 1 in {
372def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
373 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
374 "#ATOMAND6432 PSEUDO!", []>;
375def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
376 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
377 "#ATOMOR6432 PSEUDO!", []>;
378def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
379 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
380 "#ATOMXOR6432 PSEUDO!", []>;
381def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
382 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
383 "#ATOMNAND6432 PSEUDO!", []>;
384def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
385 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
386 "#ATOMADD6432 PSEUDO!", []>;
387def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
388 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
389 "#ATOMSUB6432 PSEUDO!", []>;
390def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
391 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
392 "#ATOMSWAP6432 PSEUDO!", []>;
393}
394
395//===----------------------------------------------------------------------===//
396// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
397//===----------------------------------------------------------------------===//
398
399// FIXME: Use normal instructions and add lock prefix dynamically.
400
401// Memory barriers
402
403// TODO: Get this to fold the constant into the instruction.
404def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
405 "lock\n\t"
406 "or{l}\t{$zero, $dst|$dst, $zero}",
407 []>, Requires<[In32BitMode]>, LOCK;
408
409let hasSideEffects = 1 in
410def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
411 "#MEMBARRIER",
412 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
413
414// TODO: Get this to fold the constant into the instruction.
415let hasSideEffects = 1, Defs = [ESP] in
416def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
417 "lock\n\t"
418 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
419 [(X86MemBarrierNoSSE GR64:$zero)]>,
420 Requires<[In64BitMode]>, LOCK;
421
422
423// Optimized codegen when the non-memory output is not used.
424let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
425def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
426 "lock\n\t"
427 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
428def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
429 "lock\n\t"
430 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
431def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
432 "lock\n\t"
433 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
434def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
435 "lock\n\t"
436 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
437
438def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
439 "lock\n\t"
440 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
441def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
442 "lock\n\t"
443 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
444def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
445 "lock\n\t"
446 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
447def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
448 (ins i64mem:$dst, i64i32imm :$src2),
449 "lock\n\t"
450 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
451
452def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
453 "lock\n\t"
454 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
455def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
456 "lock\n\t"
457 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
458def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
459 (ins i64mem:$dst, i64i8imm :$src2),
460 "lock\n\t"
461 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
462
463def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
464 "lock\n\t"
465 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
466def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
467 "lock\n\t"
468 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
469def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
470 "lock\n\t"
471 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
472def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
473 "lock\n\t"
474 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
475
476
477def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
478 "lock\n\t"
479 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
480def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
481 "lock\n\t"
482 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
483def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
484 "lock\n\t"
485 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
486def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
487 (ins i64mem:$dst, i64i32imm:$src2),
488 "lock\n\t"
489 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
490
491
492def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
493 "lock\n\t"
494 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
495def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
496 "lock\n\t"
497 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
498def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
499 (ins i64mem:$dst, i64i8imm :$src2),
500 "lock\n\t"
501 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
502
503def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
504 "lock\n\t"
505 "inc{b}\t$dst", []>, LOCK;
506def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
507 "lock\n\t"
508 "inc{w}\t$dst", []>, OpSize, LOCK;
509def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
510 "lock\n\t"
511 "inc{l}\t$dst", []>, LOCK;
512def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
513 "lock\n\t"
514 "inc{q}\t$dst", []>, LOCK;
515
516def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
517 "lock\n\t"
518 "dec{b}\t$dst", []>, LOCK;
519def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
520 "lock\n\t"
521 "dec{w}\t$dst", []>, OpSize, LOCK;
522def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
523 "lock\n\t"
524 "dec{l}\t$dst", []>, LOCK;
525def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
526 "lock\n\t"
527 "dec{q}\t$dst", []>, LOCK;
528}
529
530// Atomic compare and swap.
531let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
532def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
533 "lock\n\t"
534 "cmpxchg8b\t$ptr",
535 [(X86cas8 addr:$ptr)]>, TB, LOCK;
536}
537let Defs = [AL, EFLAGS], Uses = [AL] in {
538def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
539 "lock\n\t"
540 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
541 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
542}
543
544let Defs = [AX, EFLAGS], Uses = [AX] in {
545def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
546 "lock\n\t"
547 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
548 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
549}
550
551let Defs = [EAX, EFLAGS], Uses = [EAX] in {
552def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
553 "lock\n\t"
554 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
555 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
556}
557
558let Defs = [RAX, EFLAGS], Uses = [RAX] in {
559def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
560 "lock\n\t"
561 "cmpxchgq\t$swap,$ptr",
562 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
563}
564
565// Atomic exchange and add
566let Constraints = "$val = $dst", Defs = [EFLAGS] in {
567def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
568 "lock\n\t"
569 "xadd{b}\t{$val, $ptr|$ptr, $val}",
570 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
571 TB, LOCK;
572def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
573 "lock\n\t"
574 "xadd{w}\t{$val, $ptr|$ptr, $val}",
575 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
576 TB, OpSize, LOCK;
577def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
578 "lock\n\t"
579 "xadd{l}\t{$val, $ptr|$ptr, $val}",
580 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
581 TB, LOCK;
582def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
583 "lock\n\t"
584 "xadd\t$val, $ptr",
585 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
586 TB, LOCK;
587}
588
Chris Lattner5673e1d2010-10-05 06:41:40 +0000589//===----------------------------------------------------------------------===//
590// Conditional Move Pseudo Instructions.
591//===----------------------------------------------------------------------===//
592
593
594// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
595// instruction selection into a branch sequence.
596let Uses = [EFLAGS], usesCustomInserter = 1 in {
597 def CMOV_FR32 : I<0, Pseudo,
598 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
599 "#CMOV_FR32 PSEUDO!",
600 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
601 EFLAGS))]>;
602 def CMOV_FR64 : I<0, Pseudo,
603 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
604 "#CMOV_FR64 PSEUDO!",
605 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
606 EFLAGS))]>;
607 def CMOV_V4F32 : I<0, Pseudo,
608 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
609 "#CMOV_V4F32 PSEUDO!",
610 [(set VR128:$dst,
611 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
612 EFLAGS)))]>;
613 def CMOV_V2F64 : I<0, Pseudo,
614 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
615 "#CMOV_V2F64 PSEUDO!",
616 [(set VR128:$dst,
617 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
618 EFLAGS)))]>;
619 def CMOV_V2I64 : I<0, Pseudo,
620 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
621 "#CMOV_V2I64 PSEUDO!",
622 [(set VR128:$dst,
623 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
624 EFLAGS)))]>;
625}
626
Chris Lattner010496c2010-10-05 06:22:35 +0000627
628//===----------------------------------------------------------------------===//
629// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000630//===----------------------------------------------------------------------===//
631
632// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
633def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
634def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
635def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
636def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
637def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
638def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
639
640def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
641 (ADD32ri GR32:$src1, tconstpool:$src2)>;
642def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
643 (ADD32ri GR32:$src1, tjumptable:$src2)>;
644def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
645 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
646def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
647 (ADD32ri GR32:$src1, texternalsym:$src2)>;
648def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
649 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
650
651def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
652 (MOV32mi addr:$dst, tglobaladdr:$src)>;
653def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
654 (MOV32mi addr:$dst, texternalsym:$src)>;
655def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
656 (MOV32mi addr:$dst, tblockaddress:$src)>;
657
658
659
660// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
661// code model mode, should use 'movabs'. FIXME: This is really a hack, the
662// 'movabs' predicate should handle this sort of thing.
663def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
664 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
665def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
666 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
667def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
668 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
669def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
670 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
671def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
672 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
673
674// In static codegen with small code model, we can get the address of a label
675// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
676// the MOV64ri64i32 should accept these.
677def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
678 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
679def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
680 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
681def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
682 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
683def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
684 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
685def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
686 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
687
688// In kernel code model, we can get the address of a label
689// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
690// the MOV64ri32 should accept these.
691def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
692 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
693def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
694 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
695def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
696 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
697def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
698 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
699def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
700 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
701
702// If we have small model and -static mode, it is safe to store global addresses
703// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
704// for MOV64mi32 should handle this sort of thing.
705def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
706 (MOV64mi32 addr:$dst, tconstpool:$src)>,
707 Requires<[NearData, IsStatic]>;
708def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
709 (MOV64mi32 addr:$dst, tjumptable:$src)>,
710 Requires<[NearData, IsStatic]>;
711def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
712 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
713 Requires<[NearData, IsStatic]>;
714def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
715 (MOV64mi32 addr:$dst, texternalsym:$src)>,
716 Requires<[NearData, IsStatic]>;
717def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
718 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
719 Requires<[NearData, IsStatic]>;
720
721
722
723// Calls
724
725// tls has some funny stuff here...
726// This corresponds to movabs $foo@tpoff, %rax
727def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
728 (MOV64ri tglobaltlsaddr :$dst)>;
729// This corresponds to add $foo@tpoff, %rax
730def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
731 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
732// This corresponds to mov foo@tpoff(%rbx), %eax
733def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
734 (MOV64rm tglobaltlsaddr :$dst)>;
735
736
737// Direct PC relative function call for small code model. 32-bit displacement
738// sign extended to 64-bit.
739def : Pat<(X86call (i64 tglobaladdr:$dst)),
740 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
741def : Pat<(X86call (i64 texternalsym:$dst)),
742 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
743
744def : Pat<(X86call (i64 tglobaladdr:$dst)),
745 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
746def : Pat<(X86call (i64 texternalsym:$dst)),
747 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
748
749// tailcall stuff
750def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
751 (TCRETURNri GR32_TC:$dst, imm:$off)>,
752 Requires<[In32BitMode]>;
753
754// FIXME: This is disabled for 32-bit PIC mode because the global base
755// register which is part of the address mode may be assigned a
756// callee-saved register.
757def : Pat<(X86tcret (load addr:$dst), imm:$off),
758 (TCRETURNmi addr:$dst, imm:$off)>,
759 Requires<[In32BitMode, IsNotPIC]>;
760
761def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
762 (TCRETURNdi texternalsym:$dst, imm:$off)>,
763 Requires<[In32BitMode]>;
764
765def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
766 (TCRETURNdi texternalsym:$dst, imm:$off)>,
767 Requires<[In32BitMode]>;
768
769def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
770 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
771 Requires<[In64BitMode]>;
772
773def : Pat<(X86tcret (load addr:$dst), imm:$off),
774 (TCRETURNmi64 addr:$dst, imm:$off)>,
775 Requires<[In64BitMode]>;
776
777def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
778 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
779 Requires<[In64BitMode]>;
780
781def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
782 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
783 Requires<[In64BitMode]>;
784
785// Normal calls, with various flavors of addresses.
786def : Pat<(X86call (i32 tglobaladdr:$dst)),
787 (CALLpcrel32 tglobaladdr:$dst)>;
788def : Pat<(X86call (i32 texternalsym:$dst)),
789 (CALLpcrel32 texternalsym:$dst)>;
790def : Pat<(X86call (i32 imm:$dst)),
791 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
792
793// X86 specific add which produces a flag.
794def : Pat<(addc GR32:$src1, GR32:$src2),
795 (ADD32rr GR32:$src1, GR32:$src2)>;
796def : Pat<(addc GR32:$src1, (load addr:$src2)),
797 (ADD32rm GR32:$src1, addr:$src2)>;
798def : Pat<(addc GR32:$src1, imm:$src2),
799 (ADD32ri GR32:$src1, imm:$src2)>;
800def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
801 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
802
803def : Pat<(addc GR64:$src1, GR64:$src2),
804 (ADD64rr GR64:$src1, GR64:$src2)>;
805def : Pat<(addc GR64:$src1, (load addr:$src2)),
806 (ADD64rm GR64:$src1, addr:$src2)>;
807def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
808 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
809def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
810 (ADD64ri32 GR64:$src1, imm:$src2)>;
811
812def : Pat<(subc GR32:$src1, GR32:$src2),
813 (SUB32rr GR32:$src1, GR32:$src2)>;
814def : Pat<(subc GR32:$src1, (load addr:$src2)),
815 (SUB32rm GR32:$src1, addr:$src2)>;
816def : Pat<(subc GR32:$src1, imm:$src2),
817 (SUB32ri GR32:$src1, imm:$src2)>;
818def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
819 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
820
821def : Pat<(subc GR64:$src1, GR64:$src2),
822 (SUB64rr GR64:$src1, GR64:$src2)>;
823def : Pat<(subc GR64:$src1, (load addr:$src2)),
824 (SUB64rm GR64:$src1, addr:$src2)>;
825def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
826 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
827def : Pat<(subc GR64:$src1, imm:$src2),
828 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
829
830// Comparisons.
831
832// TEST R,R is smaller than CMP R,0
833def : Pat<(X86cmp GR8:$src1, 0),
834 (TEST8rr GR8:$src1, GR8:$src1)>;
835def : Pat<(X86cmp GR16:$src1, 0),
836 (TEST16rr GR16:$src1, GR16:$src1)>;
837def : Pat<(X86cmp GR32:$src1, 0),
838 (TEST32rr GR32:$src1, GR32:$src1)>;
839def : Pat<(X86cmp GR64:$src1, 0),
840 (TEST64rr GR64:$src1, GR64:$src1)>;
841
842// Conditional moves with folded loads with operands swapped and conditions
843// inverted.
844def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS),
845 (CMOVAE16rm GR16:$src2, addr:$src1)>;
846def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS),
847 (CMOVAE32rm GR32:$src2, addr:$src1)>;
848def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS),
849 (CMOVB16rm GR16:$src2, addr:$src1)>;
850def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS),
851 (CMOVB32rm GR32:$src2, addr:$src1)>;
852def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS),
853 (CMOVNE16rm GR16:$src2, addr:$src1)>;
854def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS),
855 (CMOVNE32rm GR32:$src2, addr:$src1)>;
856def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS),
857 (CMOVE16rm GR16:$src2, addr:$src1)>;
858def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS),
859 (CMOVE32rm GR32:$src2, addr:$src1)>;
860def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS),
861 (CMOVA16rm GR16:$src2, addr:$src1)>;
862def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS),
863 (CMOVA32rm GR32:$src2, addr:$src1)>;
864def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS),
865 (CMOVBE16rm GR16:$src2, addr:$src1)>;
866def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS),
867 (CMOVBE32rm GR32:$src2, addr:$src1)>;
868def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS),
869 (CMOVGE16rm GR16:$src2, addr:$src1)>;
870def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS),
871 (CMOVGE32rm GR32:$src2, addr:$src1)>;
872def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS),
873 (CMOVL16rm GR16:$src2, addr:$src1)>;
874def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS),
875 (CMOVL32rm GR32:$src2, addr:$src1)>;
876def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS),
877 (CMOVG16rm GR16:$src2, addr:$src1)>;
878def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS),
879 (CMOVG32rm GR32:$src2, addr:$src1)>;
880def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS),
881 (CMOVLE16rm GR16:$src2, addr:$src1)>;
882def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS),
883 (CMOVLE32rm GR32:$src2, addr:$src1)>;
884def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS),
885 (CMOVNP16rm GR16:$src2, addr:$src1)>;
886def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS),
887 (CMOVNP32rm GR32:$src2, addr:$src1)>;
888def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS),
889 (CMOVP16rm GR16:$src2, addr:$src1)>;
890def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS),
891 (CMOVP32rm GR32:$src2, addr:$src1)>;
892def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS),
893 (CMOVNS16rm GR16:$src2, addr:$src1)>;
894def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS),
895 (CMOVNS32rm GR32:$src2, addr:$src1)>;
896def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS),
897 (CMOVS16rm GR16:$src2, addr:$src1)>;
898def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS),
899 (CMOVS32rm GR32:$src2, addr:$src1)>;
900def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS),
901 (CMOVNO16rm GR16:$src2, addr:$src1)>;
902def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS),
903 (CMOVNO32rm GR32:$src2, addr:$src1)>;
904def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS),
905 (CMOVO16rm GR16:$src2, addr:$src1)>;
906def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS),
907 (CMOVO32rm GR32:$src2, addr:$src1)>;
908
909def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
910 (CMOVAE64rm GR64:$src2, addr:$src1)>;
911def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
912 (CMOVB64rm GR64:$src2, addr:$src1)>;
913def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
914 (CMOVNE64rm GR64:$src2, addr:$src1)>;
915def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
916 (CMOVE64rm GR64:$src2, addr:$src1)>;
917def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
918 (CMOVA64rm GR64:$src2, addr:$src1)>;
919def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
920 (CMOVBE64rm GR64:$src2, addr:$src1)>;
921def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
922 (CMOVGE64rm GR64:$src2, addr:$src1)>;
923def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
924 (CMOVL64rm GR64:$src2, addr:$src1)>;
925def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
926 (CMOVG64rm GR64:$src2, addr:$src1)>;
927def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
928 (CMOVLE64rm GR64:$src2, addr:$src1)>;
929def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
930 (CMOVNP64rm GR64:$src2, addr:$src1)>;
931def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
932 (CMOVP64rm GR64:$src2, addr:$src1)>;
933def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
934 (CMOVNS64rm GR64:$src2, addr:$src1)>;
935def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
936 (CMOVS64rm GR64:$src2, addr:$src1)>;
937def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
938 (CMOVNO64rm GR64:$src2, addr:$src1)>;
939def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
940 (CMOVO64rm GR64:$src2, addr:$src1)>;
941
942
943// zextload bool -> zextload byte
944def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
945def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
946def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
947def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
948
949// extload bool -> extload byte
950// When extloading from 16-bit and smaller memory locations into 64-bit
951// registers, use zero-extending loads so that the entire 64-bit register is
952// defined, avoiding partial-register updates.
953
954def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
955def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
956def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
957def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
958def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
959def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
960
961def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
962def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
963def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
964// For other extloads, use subregs, since the high contents of the register are
965// defined after an extload.
966def : Pat<(extloadi64i32 addr:$src),
967 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
968 sub_32bit)>;
969
970// anyext. Define these to do an explicit zero-extend to
971// avoid partial-register updates.
972def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
973def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
974
975// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
976def : Pat<(i32 (anyext GR16:$src)),
977 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
978
979def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
980def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
981def : Pat<(i64 (anyext GR32:$src)),
982 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
983
Chris Lattnerd8cc2722010-10-05 06:47:35 +0000984
985// Any instruction that defines a 32-bit result leaves the high half of the
986// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
987// be copying from a truncate. And x86's cmov doesn't do anything if the
988// condition is false. But any other 32-bit operation will zero-extend
989// up to 64 bits.
990def def32 : PatLeaf<(i32 GR32:$src), [{
991 return N->getOpcode() != ISD::TRUNCATE &&
992 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
993 N->getOpcode() != ISD::CopyFromReg &&
994 N->getOpcode() != X86ISD::CMOV;
995}]>;
996
997// In the case of a 32-bit def that is known to implicitly zero-extend,
998// we can use a SUBREG_TO_REG.
999def : Pat<(i64 (zext def32:$src)),
1000 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1001
Chris Lattner87be16a2010-10-05 06:04:14 +00001002//===----------------------------------------------------------------------===//
1003// Some peepholes
1004//===----------------------------------------------------------------------===//
1005
1006// Odd encoding trick: -128 fits into an 8-bit immediate field while
1007// +128 doesn't, so in this special case use a sub instead of an add.
1008def : Pat<(add GR16:$src1, 128),
1009 (SUB16ri8 GR16:$src1, -128)>;
1010def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1011 (SUB16mi8 addr:$dst, -128)>;
1012
1013def : Pat<(add GR32:$src1, 128),
1014 (SUB32ri8 GR32:$src1, -128)>;
1015def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1016 (SUB32mi8 addr:$dst, -128)>;
1017
1018def : Pat<(add GR64:$src1, 128),
1019 (SUB64ri8 GR64:$src1, -128)>;
1020def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1021 (SUB64mi8 addr:$dst, -128)>;
1022
1023// The same trick applies for 32-bit immediate fields in 64-bit
1024// instructions.
1025def : Pat<(add GR64:$src1, 0x0000000080000000),
1026 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1027def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1028 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1029
1030// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
1031// has an immediate with at least 32 bits of leading zeros, to avoid needing to
1032// materialize that immediate in a register first.
1033def : Pat<(and GR64:$src, i64immZExt32:$imm),
1034 (SUBREG_TO_REG
1035 (i64 0),
1036 (AND32ri
1037 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1038 (i32 (GetLo32XForm imm:$imm))),
1039 sub_32bit)>;
1040
1041
1042// r & (2^16-1) ==> movz
1043def : Pat<(and GR32:$src1, 0xffff),
1044 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1045// r & (2^8-1) ==> movz
1046def : Pat<(and GR32:$src1, 0xff),
1047 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1048 GR32_ABCD)),
1049 sub_8bit))>,
1050 Requires<[In32BitMode]>;
1051// r & (2^8-1) ==> movz
1052def : Pat<(and GR16:$src1, 0xff),
1053 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
1054 GR16_ABCD)),
1055 sub_8bit))>,
1056 Requires<[In32BitMode]>;
1057
1058// r & (2^32-1) ==> movz
1059def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1060 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1061// r & (2^16-1) ==> movz
1062def : Pat<(and GR64:$src, 0xffff),
1063 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1064// r & (2^8-1) ==> movz
1065def : Pat<(and GR64:$src, 0xff),
1066 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1067// r & (2^8-1) ==> movz
1068def : Pat<(and GR32:$src1, 0xff),
1069 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1070 Requires<[In64BitMode]>;
1071// r & (2^8-1) ==> movz
1072def : Pat<(and GR16:$src1, 0xff),
1073 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
1074 Requires<[In64BitMode]>;
1075
1076
1077// sext_inreg patterns
1078def : Pat<(sext_inreg GR32:$src, i16),
1079 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1080def : Pat<(sext_inreg GR32:$src, i8),
1081 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1082 GR32_ABCD)),
1083 sub_8bit))>,
1084 Requires<[In32BitMode]>;
1085def : Pat<(sext_inreg GR16:$src, i8),
1086 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1087 GR16_ABCD)),
1088 sub_8bit))>,
1089 Requires<[In32BitMode]>;
1090
1091def : Pat<(sext_inreg GR64:$src, i32),
1092 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1093def : Pat<(sext_inreg GR64:$src, i16),
1094 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1095def : Pat<(sext_inreg GR64:$src, i8),
1096 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1097def : Pat<(sext_inreg GR32:$src, i8),
1098 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1099 Requires<[In64BitMode]>;
1100def : Pat<(sext_inreg GR16:$src, i8),
1101 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1102 Requires<[In64BitMode]>;
1103
1104
1105// trunc patterns
1106def : Pat<(i16 (trunc GR32:$src)),
1107 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1108def : Pat<(i8 (trunc GR32:$src)),
1109 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1110 sub_8bit)>,
1111 Requires<[In32BitMode]>;
1112def : Pat<(i8 (trunc GR16:$src)),
1113 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1114 sub_8bit)>,
1115 Requires<[In32BitMode]>;
1116def : Pat<(i32 (trunc GR64:$src)),
1117 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1118def : Pat<(i16 (trunc GR64:$src)),
1119 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1120def : Pat<(i8 (trunc GR64:$src)),
1121 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1122def : Pat<(i8 (trunc GR32:$src)),
1123 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1124 Requires<[In64BitMode]>;
1125def : Pat<(i8 (trunc GR16:$src)),
1126 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1127 Requires<[In64BitMode]>;
1128
1129// h-register tricks
1130def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1131 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1132 sub_8bit_hi)>,
1133 Requires<[In32BitMode]>;
1134def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1135 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1136 sub_8bit_hi)>,
1137 Requires<[In32BitMode]>;
1138def : Pat<(srl GR16:$src, (i8 8)),
1139 (EXTRACT_SUBREG
1140 (MOVZX32rr8
1141 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1142 sub_8bit_hi)),
1143 sub_16bit)>,
1144 Requires<[In32BitMode]>;
1145def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1146 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1147 GR16_ABCD)),
1148 sub_8bit_hi))>,
1149 Requires<[In32BitMode]>;
1150def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1151 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1152 GR16_ABCD)),
1153 sub_8bit_hi))>,
1154 Requires<[In32BitMode]>;
1155def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1156 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1157 GR32_ABCD)),
1158 sub_8bit_hi))>,
1159 Requires<[In32BitMode]>;
1160def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1161 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1162 GR32_ABCD)),
1163 sub_8bit_hi))>,
1164 Requires<[In32BitMode]>;
1165
1166// h-register tricks.
1167// For now, be conservative on x86-64 and use an h-register extract only if the
1168// value is immediately zero-extended or stored, which are somewhat common
1169// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1170// from being allocated in the same instruction as the h register, as there's
1171// currently no way to describe this requirement to the register allocator.
1172
1173// h-register extract and zero-extend.
1174def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1175 (SUBREG_TO_REG
1176 (i64 0),
1177 (MOVZX32_NOREXrr8
1178 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1179 sub_8bit_hi)),
1180 sub_32bit)>;
1181def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1182 (MOVZX32_NOREXrr8
1183 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1184 sub_8bit_hi))>,
1185 Requires<[In64BitMode]>;
1186def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1187 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1188 GR32_ABCD)),
1189 sub_8bit_hi))>,
1190 Requires<[In64BitMode]>;
1191def : Pat<(srl GR16:$src, (i8 8)),
1192 (EXTRACT_SUBREG
1193 (MOVZX32_NOREXrr8
1194 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1195 sub_8bit_hi)),
1196 sub_16bit)>,
1197 Requires<[In64BitMode]>;
1198def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1199 (MOVZX32_NOREXrr8
1200 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1201 sub_8bit_hi))>,
1202 Requires<[In64BitMode]>;
1203def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1204 (MOVZX32_NOREXrr8
1205 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1206 sub_8bit_hi))>,
1207 Requires<[In64BitMode]>;
1208def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1209 (SUBREG_TO_REG
1210 (i64 0),
1211 (MOVZX32_NOREXrr8
1212 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1213 sub_8bit_hi)),
1214 sub_32bit)>;
1215def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1216 (SUBREG_TO_REG
1217 (i64 0),
1218 (MOVZX32_NOREXrr8
1219 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1220 sub_8bit_hi)),
1221 sub_32bit)>;
1222
1223// h-register extract and store.
1224def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1225 (MOV8mr_NOREX
1226 addr:$dst,
1227 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1228 sub_8bit_hi))>;
1229def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1230 (MOV8mr_NOREX
1231 addr:$dst,
1232 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1233 sub_8bit_hi))>,
1234 Requires<[In64BitMode]>;
1235def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1236 (MOV8mr_NOREX
1237 addr:$dst,
1238 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1239 sub_8bit_hi))>,
1240 Requires<[In64BitMode]>;
1241
1242
1243// (shl x, 1) ==> (add x, x)
1244def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1245def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1246def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1247def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1248
1249// (shl x (and y, 31)) ==> (shl x, y)
1250def : Pat<(shl GR8:$src1, (and CL, 31)),
1251 (SHL8rCL GR8:$src1)>;
1252def : Pat<(shl GR16:$src1, (and CL, 31)),
1253 (SHL16rCL GR16:$src1)>;
1254def : Pat<(shl GR32:$src1, (and CL, 31)),
1255 (SHL32rCL GR32:$src1)>;
1256def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1257 (SHL8mCL addr:$dst)>;
1258def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1259 (SHL16mCL addr:$dst)>;
1260def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1261 (SHL32mCL addr:$dst)>;
1262
1263def : Pat<(srl GR8:$src1, (and CL, 31)),
1264 (SHR8rCL GR8:$src1)>;
1265def : Pat<(srl GR16:$src1, (and CL, 31)),
1266 (SHR16rCL GR16:$src1)>;
1267def : Pat<(srl GR32:$src1, (and CL, 31)),
1268 (SHR32rCL GR32:$src1)>;
1269def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1270 (SHR8mCL addr:$dst)>;
1271def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1272 (SHR16mCL addr:$dst)>;
1273def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1274 (SHR32mCL addr:$dst)>;
1275
1276def : Pat<(sra GR8:$src1, (and CL, 31)),
1277 (SAR8rCL GR8:$src1)>;
1278def : Pat<(sra GR16:$src1, (and CL, 31)),
1279 (SAR16rCL GR16:$src1)>;
1280def : Pat<(sra GR32:$src1, (and CL, 31)),
1281 (SAR32rCL GR32:$src1)>;
1282def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1283 (SAR8mCL addr:$dst)>;
1284def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1285 (SAR16mCL addr:$dst)>;
1286def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1287 (SAR32mCL addr:$dst)>;
1288
1289// (shl x (and y, 63)) ==> (shl x, y)
1290def : Pat<(shl GR64:$src1, (and CL, 63)),
1291 (SHL64rCL GR64:$src1)>;
1292def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1293 (SHL64mCL addr:$dst)>;
1294
1295def : Pat<(srl GR64:$src1, (and CL, 63)),
1296 (SHR64rCL GR64:$src1)>;
1297def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1298 (SHR64mCL addr:$dst)>;
1299
1300def : Pat<(sra GR64:$src1, (and CL, 63)),
1301 (SAR64rCL GR64:$src1)>;
1302def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1303 (SAR64mCL addr:$dst)>;
1304
1305
1306// (anyext (setcc_carry)) -> (setcc_carry)
1307def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1308 (SETB_C16r)>;
1309def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1310 (SETB_C32r)>;
1311def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1312 (SETB_C32r)>;
1313
1314// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1315let AddedComplexity = 5 in { // Try this before the selecting to OR
1316def : Pat<(or_is_add GR16:$src1, imm:$src2),
1317 (ADD16ri GR16:$src1, imm:$src2)>;
1318def : Pat<(or_is_add GR32:$src1, imm:$src2),
1319 (ADD32ri GR32:$src1, imm:$src2)>;
1320def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2),
1321 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1322def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2),
1323 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1324def : Pat<(or_is_add GR16:$src1, GR16:$src2),
1325 (ADD16rr GR16:$src1, GR16:$src2)>;
1326def : Pat<(or_is_add GR32:$src1, GR32:$src2),
1327 (ADD32rr GR32:$src1, GR32:$src2)>;
1328def : Pat<(or_is_add GR64:$src1, i64immSExt8:$src2),
1329 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1330def : Pat<(or_is_add GR64:$src1, i64immSExt32:$src2),
1331 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1332def : Pat<(or_is_add GR64:$src1, GR64:$src2),
1333 (ADD64rr GR64:$src1, GR64:$src2)>;
1334} // AddedComplexity
1335
1336//===----------------------------------------------------------------------===//
1337// EFLAGS-defining Patterns
1338//===----------------------------------------------------------------------===//
1339
1340// add reg, reg
1341def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1342def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1343def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1344
1345// add reg, mem
1346def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1347 (ADD8rm GR8:$src1, addr:$src2)>;
1348def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1349 (ADD16rm GR16:$src1, addr:$src2)>;
1350def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1351 (ADD32rm GR32:$src1, addr:$src2)>;
1352
1353// add reg, imm
1354def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1355def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1356def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1357def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1358 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1359def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1360 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1361
1362// sub reg, reg
1363def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1364def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1365def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1366
1367// sub reg, mem
1368def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1369 (SUB8rm GR8:$src1, addr:$src2)>;
1370def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1371 (SUB16rm GR16:$src1, addr:$src2)>;
1372def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1373 (SUB32rm GR32:$src1, addr:$src2)>;
1374
1375// sub reg, imm
1376def : Pat<(sub GR8:$src1, imm:$src2),
1377 (SUB8ri GR8:$src1, imm:$src2)>;
1378def : Pat<(sub GR16:$src1, imm:$src2),
1379 (SUB16ri GR16:$src1, imm:$src2)>;
1380def : Pat<(sub GR32:$src1, imm:$src2),
1381 (SUB32ri GR32:$src1, imm:$src2)>;
1382def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1383 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1384def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1385 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1386
1387// mul reg, reg
1388def : Pat<(mul GR16:$src1, GR16:$src2),
1389 (IMUL16rr GR16:$src1, GR16:$src2)>;
1390def : Pat<(mul GR32:$src1, GR32:$src2),
1391 (IMUL32rr GR32:$src1, GR32:$src2)>;
1392
1393// mul reg, mem
1394def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1395 (IMUL16rm GR16:$src1, addr:$src2)>;
1396def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1397 (IMUL32rm GR32:$src1, addr:$src2)>;
1398
1399// mul reg, imm
1400def : Pat<(mul GR16:$src1, imm:$src2),
1401 (IMUL16rri GR16:$src1, imm:$src2)>;
1402def : Pat<(mul GR32:$src1, imm:$src2),
1403 (IMUL32rri GR32:$src1, imm:$src2)>;
1404def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1405 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1406def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1407 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1408
1409// reg = mul mem, imm
1410def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1411 (IMUL16rmi addr:$src1, imm:$src2)>;
1412def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1413 (IMUL32rmi addr:$src1, imm:$src2)>;
1414def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1415 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1416def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1417 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1418
1419// Optimize multiply by 2 with EFLAGS result.
1420let AddedComplexity = 2 in {
1421def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1422def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1423}
1424
1425// Patterns for nodes that do not produce flags, for instructions that do.
1426
1427// addition
1428def : Pat<(add GR64:$src1, GR64:$src2),
1429 (ADD64rr GR64:$src1, GR64:$src2)>;
1430def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1431 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1432def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1433 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1434def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1435 (ADD64rm GR64:$src1, addr:$src2)>;
1436
1437// subtraction
1438def : Pat<(sub GR64:$src1, GR64:$src2),
1439 (SUB64rr GR64:$src1, GR64:$src2)>;
1440def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1441 (SUB64rm GR64:$src1, addr:$src2)>;
1442def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1443 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1444def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1445 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1446
1447// Multiply
1448def : Pat<(mul GR64:$src1, GR64:$src2),
1449 (IMUL64rr GR64:$src1, GR64:$src2)>;
1450def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1451 (IMUL64rm GR64:$src1, addr:$src2)>;
1452def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1453 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1454def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1455 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1456def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1457 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1458def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1459 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1460
1461// Increment reg.
1462def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1463def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1464def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1465def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1466def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1467def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1468
1469// Decrement reg.
1470def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1471def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1472def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1473def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1474def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1475def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1476
1477// or reg/reg.
1478def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1479def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1480def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1481def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1482
1483// or reg/mem
1484def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1485 (OR8rm GR8:$src1, addr:$src2)>;
1486def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1487 (OR16rm GR16:$src1, addr:$src2)>;
1488def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1489 (OR32rm GR32:$src1, addr:$src2)>;
1490def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1491 (OR64rm GR64:$src1, addr:$src2)>;
1492
1493// or reg/imm
1494def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1495def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1496def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1497def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1498 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1499def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1500 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1501def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1502 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1503def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1504 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1505
1506// xor reg/reg
1507def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1508def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1509def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1510def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1511
1512// xor reg/mem
1513def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1514 (XOR8rm GR8:$src1, addr:$src2)>;
1515def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1516 (XOR16rm GR16:$src1, addr:$src2)>;
1517def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1518 (XOR32rm GR32:$src1, addr:$src2)>;
1519def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1520 (XOR64rm GR64:$src1, addr:$src2)>;
1521
1522// xor reg/imm
1523def : Pat<(xor GR8:$src1, imm:$src2),
1524 (XOR8ri GR8:$src1, imm:$src2)>;
1525def : Pat<(xor GR16:$src1, imm:$src2),
1526 (XOR16ri GR16:$src1, imm:$src2)>;
1527def : Pat<(xor GR32:$src1, imm:$src2),
1528 (XOR32ri GR32:$src1, imm:$src2)>;
1529def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1530 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1531def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1532 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1533def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1534 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1535def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1536 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1537
1538// and reg/reg
1539def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1540def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1541def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1542def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1543
1544// and reg/mem
1545def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1546 (AND8rm GR8:$src1, addr:$src2)>;
1547def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1548 (AND16rm GR16:$src1, addr:$src2)>;
1549def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1550 (AND32rm GR32:$src1, addr:$src2)>;
1551def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1552 (AND64rm GR64:$src1, addr:$src2)>;
1553
1554// and reg/imm
1555def : Pat<(and GR8:$src1, imm:$src2),
1556 (AND8ri GR8:$src1, imm:$src2)>;
1557def : Pat<(and GR16:$src1, imm:$src2),
1558 (AND16ri GR16:$src1, imm:$src2)>;
1559def : Pat<(and GR32:$src1, imm:$src2),
1560 (AND32ri GR32:$src1, imm:$src2)>;
1561def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1562 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1563def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1564 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1565def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1566 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1567def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1568 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001569