blob: 197d1c6f86d7031816cc00368a83b847388f9155 [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner8af88ef2010-10-05 06:10:16 +000015// PIC base construction. This expands to code that looks like this:
16// call $next_inst
17// popl %destreg"
18let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
19 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
20 "", []>;
21
22
23// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
24// a stack adjustment and the codegen must know that they may modify the stack
25// pointer before prolog-epilog rewriting occurs.
26// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
27// sub / add which can clobber EFLAGS.
28let Defs = [ESP, EFLAGS], Uses = [ESP] in {
29def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
30 "#ADJCALLSTACKDOWN",
31 [(X86callseq_start timm:$amt)]>,
32 Requires<[In32BitMode]>;
33def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
34 "#ADJCALLSTACKUP",
35 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
36 Requires<[In32BitMode]>;
37}
38
39// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
40// a stack adjustment and the codegen must know that they may modify the stack
41// pointer before prolog-epilog rewriting occurs.
42// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
43// sub / add which can clobber EFLAGS.
44let Defs = [RSP, EFLAGS], Uses = [RSP] in {
45def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
46 "#ADJCALLSTACKDOWN",
47 [(X86callseq_start timm:$amt)]>,
48 Requires<[In64BitMode]>;
49def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
50 "#ADJCALLSTACKUP",
51 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
52 Requires<[In64BitMode]>;
53}
54
55
56
57// x86-64 va_start lowering magic.
58let usesCustomInserter = 1 in {
59def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
60 (outs),
61 (ins GR8:$al,
62 i64imm:$regsavefi, i64imm:$offset,
63 variable_ops),
64 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
65 [(X86vastart_save_xmm_regs GR8:$al,
66 imm:$regsavefi,
67 imm:$offset)]>;
68
69// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
70// to _alloca is needed to probe the stack when allocating more than 4k bytes in
71// one go. Touching the stack at 4K increments is necessary to ensure that the
72// guard pages used by the OS virtual memory manager are allocated in correct
73// sequence.
74// The main point of having separate instruction are extra unmodelled effects
75// (compared to ordinary calls) like stack pointer change.
76
77let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
78 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
79 "# dynamic stack allocation",
80 [(X86MingwAlloca)]>;
81}
82
83
Chris Lattner87be16a2010-10-05 06:04:14 +000084
85//===----------------------------------------------------------------------===//
86// EH Pseudo Instructions
87//
88let isTerminator = 1, isReturn = 1, isBarrier = 1,
89 hasCtrlDep = 1, isCodeGenOnly = 1 in {
90def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
91 "ret\t#eh_return, addr: $addr",
92 [(X86ehret GR32:$addr)]>;
93
94}
95
96let isTerminator = 1, isReturn = 1, isBarrier = 1,
97 hasCtrlDep = 1, isCodeGenOnly = 1 in {
98def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
99 "ret\t#eh_return, addr: $addr",
100 [(X86ehret GR64:$addr)]>;
101
102}
103
Chris Lattner8af88ef2010-10-05 06:10:16 +0000104//===----------------------------------------------------------------------===//
105// Alias Instructions
106//===----------------------------------------------------------------------===//
107
108// Alias instructions that map movr0 to xor.
109// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
110// FIXME: Set encoding to pseudo.
111let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
112 isCodeGenOnly = 1 in {
113def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
114 [(set GR8:$dst, 0)]>;
115
116// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
117// encoding and avoids a partial-register update sometimes, but doing so
118// at isel time interferes with rematerialization in the current register
119// allocator. For now, this is rewritten when the instruction is lowered
120// to an MCInst.
121def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
122 "",
123 [(set GR16:$dst, 0)]>, OpSize;
124
125// FIXME: Set encoding to pseudo.
126def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
127 [(set GR32:$dst, 0)]>;
128}
129
Chris Lattner010496c2010-10-05 06:22:35 +0000130// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
131// smaller encoding, but doing so at isel time interferes with rematerialization
132// in the current register allocator. For now, this is rewritten when the
133// instruction is lowered to an MCInst.
134// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
135// when we have a better way to specify isel priority.
136let Defs = [EFLAGS],
137 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
138def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
139 [(set GR64:$dst, 0)]>;
140
141// Materialize i64 constant where top 32-bits are zero. This could theoretically
142// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
143// that would make it more difficult to rematerialize.
144let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
145def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
146 "", [(set GR64:$dst, i64immZExt32:$src)]>;
147
Chris Lattner35649fc2010-10-05 06:33:16 +0000148
149// Use sbb to materialize carry flag into a GPR.
150// FIXME: This are pseudo ops that should be replaced with Pat<> patterns.
151// However, Pat<> can't replicate the destination reg into the inputs of the
152// result.
153// FIXME: Change this to have encoding Pseudo when X86MCCodeEmitter replaces
154// X86CodeEmitter.
155let Defs = [EFLAGS], Uses = [EFLAGS], isCodeGenOnly = 1 in
156def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
157 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
158
159def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
160 (SETB_C64r)>;
161
Chris Lattner010496c2010-10-05 06:22:35 +0000162
Chris Lattnerd3f033d2010-10-05 06:27:48 +0000163//===----------------------------------------------------------------------===//
164// String Pseudo Instructions
165//
166let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
167def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
168 [(X86rep_movs i8)]>, REP;
169def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
170 [(X86rep_movs i16)]>, REP, OpSize;
171def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
172 [(X86rep_movs i32)]>, REP;
173}
174
175let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
176def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
177 [(X86rep_movs i64)]>, REP;
178
179
180// FIXME: Should use "(X86rep_stos AL)" as the pattern.
181let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
182def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
183 [(X86rep_stos i8)]>, REP;
184let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
185def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
186 [(X86rep_stos i16)]>, REP, OpSize;
187let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
188def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
189 [(X86rep_stos i32)]>, REP;
190
191let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
192def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
193 [(X86rep_stos i64)]>, REP;
Chris Lattner010496c2010-10-05 06:22:35 +0000194
195
Chris Lattner8af88ef2010-10-05 06:10:16 +0000196//===----------------------------------------------------------------------===//
197// Thread Local Storage Instructions
198//
199
200// ELF TLS Support
201// All calls clobber the non-callee saved registers. ESP is marked as
202// a use to prevent stack-pointer assignments that appear immediately
203// before calls from potentially appearing dead.
204let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
205 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
206 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
207 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
208 Uses = [ESP] in
209def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
210 "leal\t$sym, %eax; "
211 "call\t___tls_get_addr@PLT",
212 [(X86tlsaddr tls32addr:$sym)]>,
213 Requires<[In32BitMode]>;
214
215// All calls clobber the non-callee saved registers. RSP is marked as
216// a use to prevent stack-pointer assignments that appear immediately
217// before calls from potentially appearing dead.
218let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
219 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
220 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
221 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
222 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
223 Uses = [RSP] in
224def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
225 ".byte\t0x66; "
226 "leaq\t$sym(%rip), %rdi; "
227 ".word\t0x6666; "
228 "rex64; "
229 "call\t__tls_get_addr@PLT",
230 [(X86tlsaddr tls64addr:$sym)]>,
231 Requires<[In64BitMode]>;
232
233// Darwin TLS Support
234// For i386, the address of the thunk is passed on the stack, on return the
235// address of the variable is in %eax. %ecx is trashed during the function
236// call. All other registers are preserved.
237let Defs = [EAX, ECX],
238 Uses = [ESP],
239 usesCustomInserter = 1 in
240def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
241 "# TLSCall_32",
242 [(X86TLSCall addr:$sym)]>,
243 Requires<[In32BitMode]>;
244
245// For x86_64, the address of the thunk is passed in %rdi, on return
246// the address of the variable is in %rax. All other registers are preserved.
247let Defs = [RAX],
248 Uses = [RDI],
249 usesCustomInserter = 1 in
250def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
251 "# TLSCall_64",
252 [(X86TLSCall addr:$sym)]>,
253 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000254
255//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000256// Atomic Instruction Pseudo Instructions
257//===----------------------------------------------------------------------===//
258
259// Atomic exchange, and, or, xor
260let Constraints = "$val = $dst", Defs = [EFLAGS],
261 usesCustomInserter = 1 in {
262
263def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
264 "#ATOMAND8 PSEUDO!",
265 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
266def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
267 "#ATOMOR8 PSEUDO!",
268 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
269def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
270 "#ATOMXOR8 PSEUDO!",
271 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
272def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
273 "#ATOMNAND8 PSEUDO!",
274 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
275
276def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
277 "#ATOMAND16 PSEUDO!",
278 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
279def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
280 "#ATOMOR16 PSEUDO!",
281 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
282def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
283 "#ATOMXOR16 PSEUDO!",
284 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
285def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
286 "#ATOMNAND16 PSEUDO!",
287 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
288def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
289 "#ATOMMIN16 PSEUDO!",
290 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
291def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
292 "#ATOMMAX16 PSEUDO!",
293 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
294def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
295 "#ATOMUMIN16 PSEUDO!",
296 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
297def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
298 "#ATOMUMAX16 PSEUDO!",
299 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
300
301
302def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
303 "#ATOMAND32 PSEUDO!",
304 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
305def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
306 "#ATOMOR32 PSEUDO!",
307 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
308def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
309 "#ATOMXOR32 PSEUDO!",
310 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
311def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
312 "#ATOMNAND32 PSEUDO!",
313 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
314def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
315 "#ATOMMIN32 PSEUDO!",
316 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
317def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
318 "#ATOMMAX32 PSEUDO!",
319 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
320def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
321 "#ATOMUMIN32 PSEUDO!",
322 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
323def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
324 "#ATOMUMAX32 PSEUDO!",
325 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
326
327
328
329def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
330 "#ATOMAND64 PSEUDO!",
331 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
332def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
333 "#ATOMOR64 PSEUDO!",
334 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
335def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
336 "#ATOMXOR64 PSEUDO!",
337 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
338def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
339 "#ATOMNAND64 PSEUDO!",
340 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
341def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
342 "#ATOMMIN64 PSEUDO!",
343 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
344def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
345 "#ATOMMAX64 PSEUDO!",
346 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
347def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
348 "#ATOMUMIN64 PSEUDO!",
349 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
350def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
351 "#ATOMUMAX64 PSEUDO!",
352 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
353}
354
355let Constraints = "$val1 = $dst1, $val2 = $dst2",
356 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
357 Uses = [EAX, EBX, ECX, EDX],
358 mayLoad = 1, mayStore = 1,
359 usesCustomInserter = 1 in {
360def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
361 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
362 "#ATOMAND6432 PSEUDO!", []>;
363def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
364 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
365 "#ATOMOR6432 PSEUDO!", []>;
366def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
367 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
368 "#ATOMXOR6432 PSEUDO!", []>;
369def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
370 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
371 "#ATOMNAND6432 PSEUDO!", []>;
372def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
373 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
374 "#ATOMADD6432 PSEUDO!", []>;
375def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
376 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
377 "#ATOMSUB6432 PSEUDO!", []>;
378def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
379 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
380 "#ATOMSWAP6432 PSEUDO!", []>;
381}
382
383//===----------------------------------------------------------------------===//
384// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
385//===----------------------------------------------------------------------===//
386
387// FIXME: Use normal instructions and add lock prefix dynamically.
388
389// Memory barriers
390
391// TODO: Get this to fold the constant into the instruction.
392def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
393 "lock\n\t"
394 "or{l}\t{$zero, $dst|$dst, $zero}",
395 []>, Requires<[In32BitMode]>, LOCK;
396
397let hasSideEffects = 1 in
398def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
399 "#MEMBARRIER",
400 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
401
402// TODO: Get this to fold the constant into the instruction.
403let hasSideEffects = 1, Defs = [ESP] in
404def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
405 "lock\n\t"
406 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
407 [(X86MemBarrierNoSSE GR64:$zero)]>,
408 Requires<[In64BitMode]>, LOCK;
409
410
411// Optimized codegen when the non-memory output is not used.
412let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
413def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
414 "lock\n\t"
415 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
416def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
417 "lock\n\t"
418 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
419def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
420 "lock\n\t"
421 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
422def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
423 "lock\n\t"
424 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
425
426def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
427 "lock\n\t"
428 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
429def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
430 "lock\n\t"
431 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
432def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
433 "lock\n\t"
434 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
435def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
436 (ins i64mem:$dst, i64i32imm :$src2),
437 "lock\n\t"
438 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
439
440def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
441 "lock\n\t"
442 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
443def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
444 "lock\n\t"
445 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
446def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
447 (ins i64mem:$dst, i64i8imm :$src2),
448 "lock\n\t"
449 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
450
451def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
452 "lock\n\t"
453 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
454def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
455 "lock\n\t"
456 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
457def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
458 "lock\n\t"
459 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
460def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
461 "lock\n\t"
462 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
463
464
465def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
466 "lock\n\t"
467 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
468def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
469 "lock\n\t"
470 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
471def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
472 "lock\n\t"
473 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
474def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
475 (ins i64mem:$dst, i64i32imm:$src2),
476 "lock\n\t"
477 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
478
479
480def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
481 "lock\n\t"
482 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
483def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
484 "lock\n\t"
485 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
486def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
487 (ins i64mem:$dst, i64i8imm :$src2),
488 "lock\n\t"
489 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
490
491def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
492 "lock\n\t"
493 "inc{b}\t$dst", []>, LOCK;
494def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
495 "lock\n\t"
496 "inc{w}\t$dst", []>, OpSize, LOCK;
497def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
498 "lock\n\t"
499 "inc{l}\t$dst", []>, LOCK;
500def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
501 "lock\n\t"
502 "inc{q}\t$dst", []>, LOCK;
503
504def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
505 "lock\n\t"
506 "dec{b}\t$dst", []>, LOCK;
507def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
508 "lock\n\t"
509 "dec{w}\t$dst", []>, OpSize, LOCK;
510def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
511 "lock\n\t"
512 "dec{l}\t$dst", []>, LOCK;
513def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
514 "lock\n\t"
515 "dec{q}\t$dst", []>, LOCK;
516}
517
518// Atomic compare and swap.
519let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
520def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
521 "lock\n\t"
522 "cmpxchg8b\t$ptr",
523 [(X86cas8 addr:$ptr)]>, TB, LOCK;
524}
525let Defs = [AL, EFLAGS], Uses = [AL] in {
526def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
527 "lock\n\t"
528 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
529 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
530}
531
532let Defs = [AX, EFLAGS], Uses = [AX] in {
533def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
534 "lock\n\t"
535 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
536 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
537}
538
539let Defs = [EAX, EFLAGS], Uses = [EAX] in {
540def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
541 "lock\n\t"
542 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
543 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
544}
545
546let Defs = [RAX, EFLAGS], Uses = [RAX] in {
547def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
548 "lock\n\t"
549 "cmpxchgq\t$swap,$ptr",
550 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
551}
552
553// Atomic exchange and add
554let Constraints = "$val = $dst", Defs = [EFLAGS] in {
555def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
556 "lock\n\t"
557 "xadd{b}\t{$val, $ptr|$ptr, $val}",
558 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
559 TB, LOCK;
560def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
561 "lock\n\t"
562 "xadd{w}\t{$val, $ptr|$ptr, $val}",
563 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
564 TB, OpSize, LOCK;
565def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
566 "lock\n\t"
567 "xadd{l}\t{$val, $ptr|$ptr, $val}",
568 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
569 TB, LOCK;
570def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
571 "lock\n\t"
572 "xadd\t$val, $ptr",
573 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
574 TB, LOCK;
575}
576
577
578//===----------------------------------------------------------------------===//
579// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000580//===----------------------------------------------------------------------===//
581
582// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
583def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
584def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
585def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
586def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
587def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
588def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
589
590def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
591 (ADD32ri GR32:$src1, tconstpool:$src2)>;
592def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
593 (ADD32ri GR32:$src1, tjumptable:$src2)>;
594def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
595 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
596def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
597 (ADD32ri GR32:$src1, texternalsym:$src2)>;
598def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
599 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
600
601def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
602 (MOV32mi addr:$dst, tglobaladdr:$src)>;
603def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
604 (MOV32mi addr:$dst, texternalsym:$src)>;
605def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
606 (MOV32mi addr:$dst, tblockaddress:$src)>;
607
608
609
610// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
611// code model mode, should use 'movabs'. FIXME: This is really a hack, the
612// 'movabs' predicate should handle this sort of thing.
613def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
614 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
615def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
616 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
617def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
618 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
619def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
620 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
621def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
622 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
623
624// In static codegen with small code model, we can get the address of a label
625// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
626// the MOV64ri64i32 should accept these.
627def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
628 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
629def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
630 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
631def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
632 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
633def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
634 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
635def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
636 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
637
638// In kernel code model, we can get the address of a label
639// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
640// the MOV64ri32 should accept these.
641def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
642 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
643def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
644 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
645def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
646 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
647def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
648 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
649def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
650 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
651
652// If we have small model and -static mode, it is safe to store global addresses
653// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
654// for MOV64mi32 should handle this sort of thing.
655def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
656 (MOV64mi32 addr:$dst, tconstpool:$src)>,
657 Requires<[NearData, IsStatic]>;
658def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
659 (MOV64mi32 addr:$dst, tjumptable:$src)>,
660 Requires<[NearData, IsStatic]>;
661def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
662 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
663 Requires<[NearData, IsStatic]>;
664def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
665 (MOV64mi32 addr:$dst, texternalsym:$src)>,
666 Requires<[NearData, IsStatic]>;
667def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
668 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
669 Requires<[NearData, IsStatic]>;
670
671
672
673// Calls
674
675// tls has some funny stuff here...
676// This corresponds to movabs $foo@tpoff, %rax
677def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
678 (MOV64ri tglobaltlsaddr :$dst)>;
679// This corresponds to add $foo@tpoff, %rax
680def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
681 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
682// This corresponds to mov foo@tpoff(%rbx), %eax
683def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
684 (MOV64rm tglobaltlsaddr :$dst)>;
685
686
687// Direct PC relative function call for small code model. 32-bit displacement
688// sign extended to 64-bit.
689def : Pat<(X86call (i64 tglobaladdr:$dst)),
690 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
691def : Pat<(X86call (i64 texternalsym:$dst)),
692 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
693
694def : Pat<(X86call (i64 tglobaladdr:$dst)),
695 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
696def : Pat<(X86call (i64 texternalsym:$dst)),
697 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
698
699// tailcall stuff
700def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
701 (TCRETURNri GR32_TC:$dst, imm:$off)>,
702 Requires<[In32BitMode]>;
703
704// FIXME: This is disabled for 32-bit PIC mode because the global base
705// register which is part of the address mode may be assigned a
706// callee-saved register.
707def : Pat<(X86tcret (load addr:$dst), imm:$off),
708 (TCRETURNmi addr:$dst, imm:$off)>,
709 Requires<[In32BitMode, IsNotPIC]>;
710
711def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
712 (TCRETURNdi texternalsym:$dst, imm:$off)>,
713 Requires<[In32BitMode]>;
714
715def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
716 (TCRETURNdi texternalsym:$dst, imm:$off)>,
717 Requires<[In32BitMode]>;
718
719def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
720 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
721 Requires<[In64BitMode]>;
722
723def : Pat<(X86tcret (load addr:$dst), imm:$off),
724 (TCRETURNmi64 addr:$dst, imm:$off)>,
725 Requires<[In64BitMode]>;
726
727def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
728 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
729 Requires<[In64BitMode]>;
730
731def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
732 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
733 Requires<[In64BitMode]>;
734
735// Normal calls, with various flavors of addresses.
736def : Pat<(X86call (i32 tglobaladdr:$dst)),
737 (CALLpcrel32 tglobaladdr:$dst)>;
738def : Pat<(X86call (i32 texternalsym:$dst)),
739 (CALLpcrel32 texternalsym:$dst)>;
740def : Pat<(X86call (i32 imm:$dst)),
741 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
742
743// X86 specific add which produces a flag.
744def : Pat<(addc GR32:$src1, GR32:$src2),
745 (ADD32rr GR32:$src1, GR32:$src2)>;
746def : Pat<(addc GR32:$src1, (load addr:$src2)),
747 (ADD32rm GR32:$src1, addr:$src2)>;
748def : Pat<(addc GR32:$src1, imm:$src2),
749 (ADD32ri GR32:$src1, imm:$src2)>;
750def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
751 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
752
753def : Pat<(addc GR64:$src1, GR64:$src2),
754 (ADD64rr GR64:$src1, GR64:$src2)>;
755def : Pat<(addc GR64:$src1, (load addr:$src2)),
756 (ADD64rm GR64:$src1, addr:$src2)>;
757def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
758 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
759def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
760 (ADD64ri32 GR64:$src1, imm:$src2)>;
761
762def : Pat<(subc GR32:$src1, GR32:$src2),
763 (SUB32rr GR32:$src1, GR32:$src2)>;
764def : Pat<(subc GR32:$src1, (load addr:$src2)),
765 (SUB32rm GR32:$src1, addr:$src2)>;
766def : Pat<(subc GR32:$src1, imm:$src2),
767 (SUB32ri GR32:$src1, imm:$src2)>;
768def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
769 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
770
771def : Pat<(subc GR64:$src1, GR64:$src2),
772 (SUB64rr GR64:$src1, GR64:$src2)>;
773def : Pat<(subc GR64:$src1, (load addr:$src2)),
774 (SUB64rm GR64:$src1, addr:$src2)>;
775def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
776 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
777def : Pat<(subc GR64:$src1, imm:$src2),
778 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
779
780// Comparisons.
781
782// TEST R,R is smaller than CMP R,0
783def : Pat<(X86cmp GR8:$src1, 0),
784 (TEST8rr GR8:$src1, GR8:$src1)>;
785def : Pat<(X86cmp GR16:$src1, 0),
786 (TEST16rr GR16:$src1, GR16:$src1)>;
787def : Pat<(X86cmp GR32:$src1, 0),
788 (TEST32rr GR32:$src1, GR32:$src1)>;
789def : Pat<(X86cmp GR64:$src1, 0),
790 (TEST64rr GR64:$src1, GR64:$src1)>;
791
792// Conditional moves with folded loads with operands swapped and conditions
793// inverted.
794def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS),
795 (CMOVAE16rm GR16:$src2, addr:$src1)>;
796def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS),
797 (CMOVAE32rm GR32:$src2, addr:$src1)>;
798def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS),
799 (CMOVB16rm GR16:$src2, addr:$src1)>;
800def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS),
801 (CMOVB32rm GR32:$src2, addr:$src1)>;
802def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS),
803 (CMOVNE16rm GR16:$src2, addr:$src1)>;
804def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS),
805 (CMOVNE32rm GR32:$src2, addr:$src1)>;
806def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS),
807 (CMOVE16rm GR16:$src2, addr:$src1)>;
808def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS),
809 (CMOVE32rm GR32:$src2, addr:$src1)>;
810def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS),
811 (CMOVA16rm GR16:$src2, addr:$src1)>;
812def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS),
813 (CMOVA32rm GR32:$src2, addr:$src1)>;
814def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS),
815 (CMOVBE16rm GR16:$src2, addr:$src1)>;
816def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS),
817 (CMOVBE32rm GR32:$src2, addr:$src1)>;
818def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS),
819 (CMOVGE16rm GR16:$src2, addr:$src1)>;
820def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS),
821 (CMOVGE32rm GR32:$src2, addr:$src1)>;
822def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS),
823 (CMOVL16rm GR16:$src2, addr:$src1)>;
824def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS),
825 (CMOVL32rm GR32:$src2, addr:$src1)>;
826def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS),
827 (CMOVG16rm GR16:$src2, addr:$src1)>;
828def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS),
829 (CMOVG32rm GR32:$src2, addr:$src1)>;
830def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS),
831 (CMOVLE16rm GR16:$src2, addr:$src1)>;
832def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS),
833 (CMOVLE32rm GR32:$src2, addr:$src1)>;
834def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS),
835 (CMOVNP16rm GR16:$src2, addr:$src1)>;
836def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS),
837 (CMOVNP32rm GR32:$src2, addr:$src1)>;
838def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS),
839 (CMOVP16rm GR16:$src2, addr:$src1)>;
840def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS),
841 (CMOVP32rm GR32:$src2, addr:$src1)>;
842def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS),
843 (CMOVNS16rm GR16:$src2, addr:$src1)>;
844def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS),
845 (CMOVNS32rm GR32:$src2, addr:$src1)>;
846def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS),
847 (CMOVS16rm GR16:$src2, addr:$src1)>;
848def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS),
849 (CMOVS32rm GR32:$src2, addr:$src1)>;
850def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS),
851 (CMOVNO16rm GR16:$src2, addr:$src1)>;
852def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS),
853 (CMOVNO32rm GR32:$src2, addr:$src1)>;
854def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS),
855 (CMOVO16rm GR16:$src2, addr:$src1)>;
856def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS),
857 (CMOVO32rm GR32:$src2, addr:$src1)>;
858
859def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
860 (CMOVAE64rm GR64:$src2, addr:$src1)>;
861def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
862 (CMOVB64rm GR64:$src2, addr:$src1)>;
863def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
864 (CMOVNE64rm GR64:$src2, addr:$src1)>;
865def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
866 (CMOVE64rm GR64:$src2, addr:$src1)>;
867def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
868 (CMOVA64rm GR64:$src2, addr:$src1)>;
869def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
870 (CMOVBE64rm GR64:$src2, addr:$src1)>;
871def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
872 (CMOVGE64rm GR64:$src2, addr:$src1)>;
873def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
874 (CMOVL64rm GR64:$src2, addr:$src1)>;
875def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
876 (CMOVG64rm GR64:$src2, addr:$src1)>;
877def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
878 (CMOVLE64rm GR64:$src2, addr:$src1)>;
879def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
880 (CMOVNP64rm GR64:$src2, addr:$src1)>;
881def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
882 (CMOVP64rm GR64:$src2, addr:$src1)>;
883def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
884 (CMOVNS64rm GR64:$src2, addr:$src1)>;
885def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
886 (CMOVS64rm GR64:$src2, addr:$src1)>;
887def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
888 (CMOVNO64rm GR64:$src2, addr:$src1)>;
889def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
890 (CMOVO64rm GR64:$src2, addr:$src1)>;
891
892
893// zextload bool -> zextload byte
894def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
895def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
896def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
897def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
898
899// extload bool -> extload byte
900// When extloading from 16-bit and smaller memory locations into 64-bit
901// registers, use zero-extending loads so that the entire 64-bit register is
902// defined, avoiding partial-register updates.
903
904def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
905def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
906def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
907def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
908def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
909def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
910
911def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
912def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
913def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
914// For other extloads, use subregs, since the high contents of the register are
915// defined after an extload.
916def : Pat<(extloadi64i32 addr:$src),
917 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
918 sub_32bit)>;
919
920// anyext. Define these to do an explicit zero-extend to
921// avoid partial-register updates.
922def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
923def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
924
925// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
926def : Pat<(i32 (anyext GR16:$src)),
927 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
928
929def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
930def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
931def : Pat<(i64 (anyext GR32:$src)),
932 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
933
934//===----------------------------------------------------------------------===//
935// Some peepholes
936//===----------------------------------------------------------------------===//
937
938// Odd encoding trick: -128 fits into an 8-bit immediate field while
939// +128 doesn't, so in this special case use a sub instead of an add.
940def : Pat<(add GR16:$src1, 128),
941 (SUB16ri8 GR16:$src1, -128)>;
942def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
943 (SUB16mi8 addr:$dst, -128)>;
944
945def : Pat<(add GR32:$src1, 128),
946 (SUB32ri8 GR32:$src1, -128)>;
947def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
948 (SUB32mi8 addr:$dst, -128)>;
949
950def : Pat<(add GR64:$src1, 128),
951 (SUB64ri8 GR64:$src1, -128)>;
952def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
953 (SUB64mi8 addr:$dst, -128)>;
954
955// The same trick applies for 32-bit immediate fields in 64-bit
956// instructions.
957def : Pat<(add GR64:$src1, 0x0000000080000000),
958 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
959def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
960 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
961
962// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
963// has an immediate with at least 32 bits of leading zeros, to avoid needing to
964// materialize that immediate in a register first.
965def : Pat<(and GR64:$src, i64immZExt32:$imm),
966 (SUBREG_TO_REG
967 (i64 0),
968 (AND32ri
969 (EXTRACT_SUBREG GR64:$src, sub_32bit),
970 (i32 (GetLo32XForm imm:$imm))),
971 sub_32bit)>;
972
973
974// r & (2^16-1) ==> movz
975def : Pat<(and GR32:$src1, 0xffff),
976 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
977// r & (2^8-1) ==> movz
978def : Pat<(and GR32:$src1, 0xff),
979 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
980 GR32_ABCD)),
981 sub_8bit))>,
982 Requires<[In32BitMode]>;
983// r & (2^8-1) ==> movz
984def : Pat<(and GR16:$src1, 0xff),
985 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
986 GR16_ABCD)),
987 sub_8bit))>,
988 Requires<[In32BitMode]>;
989
990// r & (2^32-1) ==> movz
991def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
992 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
993// r & (2^16-1) ==> movz
994def : Pat<(and GR64:$src, 0xffff),
995 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
996// r & (2^8-1) ==> movz
997def : Pat<(and GR64:$src, 0xff),
998 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
999// r & (2^8-1) ==> movz
1000def : Pat<(and GR32:$src1, 0xff),
1001 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1002 Requires<[In64BitMode]>;
1003// r & (2^8-1) ==> movz
1004def : Pat<(and GR16:$src1, 0xff),
1005 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
1006 Requires<[In64BitMode]>;
1007
1008
1009// sext_inreg patterns
1010def : Pat<(sext_inreg GR32:$src, i16),
1011 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1012def : Pat<(sext_inreg GR32:$src, i8),
1013 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1014 GR32_ABCD)),
1015 sub_8bit))>,
1016 Requires<[In32BitMode]>;
1017def : Pat<(sext_inreg GR16:$src, i8),
1018 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1019 GR16_ABCD)),
1020 sub_8bit))>,
1021 Requires<[In32BitMode]>;
1022
1023def : Pat<(sext_inreg GR64:$src, i32),
1024 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1025def : Pat<(sext_inreg GR64:$src, i16),
1026 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1027def : Pat<(sext_inreg GR64:$src, i8),
1028 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1029def : Pat<(sext_inreg GR32:$src, i8),
1030 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1031 Requires<[In64BitMode]>;
1032def : Pat<(sext_inreg GR16:$src, i8),
1033 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1034 Requires<[In64BitMode]>;
1035
1036
1037// trunc patterns
1038def : Pat<(i16 (trunc GR32:$src)),
1039 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1040def : Pat<(i8 (trunc GR32:$src)),
1041 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1042 sub_8bit)>,
1043 Requires<[In32BitMode]>;
1044def : Pat<(i8 (trunc GR16:$src)),
1045 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1046 sub_8bit)>,
1047 Requires<[In32BitMode]>;
1048def : Pat<(i32 (trunc GR64:$src)),
1049 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1050def : Pat<(i16 (trunc GR64:$src)),
1051 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1052def : Pat<(i8 (trunc GR64:$src)),
1053 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1054def : Pat<(i8 (trunc GR32:$src)),
1055 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1056 Requires<[In64BitMode]>;
1057def : Pat<(i8 (trunc GR16:$src)),
1058 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1059 Requires<[In64BitMode]>;
1060
1061// h-register tricks
1062def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1063 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1064 sub_8bit_hi)>,
1065 Requires<[In32BitMode]>;
1066def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1067 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1068 sub_8bit_hi)>,
1069 Requires<[In32BitMode]>;
1070def : Pat<(srl GR16:$src, (i8 8)),
1071 (EXTRACT_SUBREG
1072 (MOVZX32rr8
1073 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1074 sub_8bit_hi)),
1075 sub_16bit)>,
1076 Requires<[In32BitMode]>;
1077def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1078 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1079 GR16_ABCD)),
1080 sub_8bit_hi))>,
1081 Requires<[In32BitMode]>;
1082def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1083 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1084 GR16_ABCD)),
1085 sub_8bit_hi))>,
1086 Requires<[In32BitMode]>;
1087def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1088 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1089 GR32_ABCD)),
1090 sub_8bit_hi))>,
1091 Requires<[In32BitMode]>;
1092def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1093 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1094 GR32_ABCD)),
1095 sub_8bit_hi))>,
1096 Requires<[In32BitMode]>;
1097
1098// h-register tricks.
1099// For now, be conservative on x86-64 and use an h-register extract only if the
1100// value is immediately zero-extended or stored, which are somewhat common
1101// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1102// from being allocated in the same instruction as the h register, as there's
1103// currently no way to describe this requirement to the register allocator.
1104
1105// h-register extract and zero-extend.
1106def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1107 (SUBREG_TO_REG
1108 (i64 0),
1109 (MOVZX32_NOREXrr8
1110 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1111 sub_8bit_hi)),
1112 sub_32bit)>;
1113def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1114 (MOVZX32_NOREXrr8
1115 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1116 sub_8bit_hi))>,
1117 Requires<[In64BitMode]>;
1118def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1119 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1120 GR32_ABCD)),
1121 sub_8bit_hi))>,
1122 Requires<[In64BitMode]>;
1123def : Pat<(srl GR16:$src, (i8 8)),
1124 (EXTRACT_SUBREG
1125 (MOVZX32_NOREXrr8
1126 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1127 sub_8bit_hi)),
1128 sub_16bit)>,
1129 Requires<[In64BitMode]>;
1130def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1131 (MOVZX32_NOREXrr8
1132 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1133 sub_8bit_hi))>,
1134 Requires<[In64BitMode]>;
1135def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1136 (MOVZX32_NOREXrr8
1137 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1138 sub_8bit_hi))>,
1139 Requires<[In64BitMode]>;
1140def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1141 (SUBREG_TO_REG
1142 (i64 0),
1143 (MOVZX32_NOREXrr8
1144 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1145 sub_8bit_hi)),
1146 sub_32bit)>;
1147def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1148 (SUBREG_TO_REG
1149 (i64 0),
1150 (MOVZX32_NOREXrr8
1151 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1152 sub_8bit_hi)),
1153 sub_32bit)>;
1154
1155// h-register extract and store.
1156def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1157 (MOV8mr_NOREX
1158 addr:$dst,
1159 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1160 sub_8bit_hi))>;
1161def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1162 (MOV8mr_NOREX
1163 addr:$dst,
1164 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1165 sub_8bit_hi))>,
1166 Requires<[In64BitMode]>;
1167def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1168 (MOV8mr_NOREX
1169 addr:$dst,
1170 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1171 sub_8bit_hi))>,
1172 Requires<[In64BitMode]>;
1173
1174
1175// (shl x, 1) ==> (add x, x)
1176def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1177def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1178def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1179def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1180
1181// (shl x (and y, 31)) ==> (shl x, y)
1182def : Pat<(shl GR8:$src1, (and CL, 31)),
1183 (SHL8rCL GR8:$src1)>;
1184def : Pat<(shl GR16:$src1, (and CL, 31)),
1185 (SHL16rCL GR16:$src1)>;
1186def : Pat<(shl GR32:$src1, (and CL, 31)),
1187 (SHL32rCL GR32:$src1)>;
1188def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1189 (SHL8mCL addr:$dst)>;
1190def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1191 (SHL16mCL addr:$dst)>;
1192def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1193 (SHL32mCL addr:$dst)>;
1194
1195def : Pat<(srl GR8:$src1, (and CL, 31)),
1196 (SHR8rCL GR8:$src1)>;
1197def : Pat<(srl GR16:$src1, (and CL, 31)),
1198 (SHR16rCL GR16:$src1)>;
1199def : Pat<(srl GR32:$src1, (and CL, 31)),
1200 (SHR32rCL GR32:$src1)>;
1201def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1202 (SHR8mCL addr:$dst)>;
1203def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1204 (SHR16mCL addr:$dst)>;
1205def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1206 (SHR32mCL addr:$dst)>;
1207
1208def : Pat<(sra GR8:$src1, (and CL, 31)),
1209 (SAR8rCL GR8:$src1)>;
1210def : Pat<(sra GR16:$src1, (and CL, 31)),
1211 (SAR16rCL GR16:$src1)>;
1212def : Pat<(sra GR32:$src1, (and CL, 31)),
1213 (SAR32rCL GR32:$src1)>;
1214def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1215 (SAR8mCL addr:$dst)>;
1216def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1217 (SAR16mCL addr:$dst)>;
1218def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1219 (SAR32mCL addr:$dst)>;
1220
1221// (shl x (and y, 63)) ==> (shl x, y)
1222def : Pat<(shl GR64:$src1, (and CL, 63)),
1223 (SHL64rCL GR64:$src1)>;
1224def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1225 (SHL64mCL addr:$dst)>;
1226
1227def : Pat<(srl GR64:$src1, (and CL, 63)),
1228 (SHR64rCL GR64:$src1)>;
1229def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1230 (SHR64mCL addr:$dst)>;
1231
1232def : Pat<(sra GR64:$src1, (and CL, 63)),
1233 (SAR64rCL GR64:$src1)>;
1234def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1235 (SAR64mCL addr:$dst)>;
1236
1237
1238// (anyext (setcc_carry)) -> (setcc_carry)
1239def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1240 (SETB_C16r)>;
1241def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1242 (SETB_C32r)>;
1243def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1244 (SETB_C32r)>;
1245
1246// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1247let AddedComplexity = 5 in { // Try this before the selecting to OR
1248def : Pat<(or_is_add GR16:$src1, imm:$src2),
1249 (ADD16ri GR16:$src1, imm:$src2)>;
1250def : Pat<(or_is_add GR32:$src1, imm:$src2),
1251 (ADD32ri GR32:$src1, imm:$src2)>;
1252def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2),
1253 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1254def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2),
1255 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1256def : Pat<(or_is_add GR16:$src1, GR16:$src2),
1257 (ADD16rr GR16:$src1, GR16:$src2)>;
1258def : Pat<(or_is_add GR32:$src1, GR32:$src2),
1259 (ADD32rr GR32:$src1, GR32:$src2)>;
1260def : Pat<(or_is_add GR64:$src1, i64immSExt8:$src2),
1261 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1262def : Pat<(or_is_add GR64:$src1, i64immSExt32:$src2),
1263 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1264def : Pat<(or_is_add GR64:$src1, GR64:$src2),
1265 (ADD64rr GR64:$src1, GR64:$src2)>;
1266} // AddedComplexity
1267
1268//===----------------------------------------------------------------------===//
1269// EFLAGS-defining Patterns
1270//===----------------------------------------------------------------------===//
1271
1272// add reg, reg
1273def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1274def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1275def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1276
1277// add reg, mem
1278def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1279 (ADD8rm GR8:$src1, addr:$src2)>;
1280def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1281 (ADD16rm GR16:$src1, addr:$src2)>;
1282def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1283 (ADD32rm GR32:$src1, addr:$src2)>;
1284
1285// add reg, imm
1286def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1287def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1288def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1289def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1290 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1291def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1292 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1293
1294// sub reg, reg
1295def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1296def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1297def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1298
1299// sub reg, mem
1300def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1301 (SUB8rm GR8:$src1, addr:$src2)>;
1302def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1303 (SUB16rm GR16:$src1, addr:$src2)>;
1304def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1305 (SUB32rm GR32:$src1, addr:$src2)>;
1306
1307// sub reg, imm
1308def : Pat<(sub GR8:$src1, imm:$src2),
1309 (SUB8ri GR8:$src1, imm:$src2)>;
1310def : Pat<(sub GR16:$src1, imm:$src2),
1311 (SUB16ri GR16:$src1, imm:$src2)>;
1312def : Pat<(sub GR32:$src1, imm:$src2),
1313 (SUB32ri GR32:$src1, imm:$src2)>;
1314def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1315 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1316def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1317 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1318
1319// mul reg, reg
1320def : Pat<(mul GR16:$src1, GR16:$src2),
1321 (IMUL16rr GR16:$src1, GR16:$src2)>;
1322def : Pat<(mul GR32:$src1, GR32:$src2),
1323 (IMUL32rr GR32:$src1, GR32:$src2)>;
1324
1325// mul reg, mem
1326def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1327 (IMUL16rm GR16:$src1, addr:$src2)>;
1328def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1329 (IMUL32rm GR32:$src1, addr:$src2)>;
1330
1331// mul reg, imm
1332def : Pat<(mul GR16:$src1, imm:$src2),
1333 (IMUL16rri GR16:$src1, imm:$src2)>;
1334def : Pat<(mul GR32:$src1, imm:$src2),
1335 (IMUL32rri GR32:$src1, imm:$src2)>;
1336def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1337 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1338def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1339 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1340
1341// reg = mul mem, imm
1342def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1343 (IMUL16rmi addr:$src1, imm:$src2)>;
1344def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1345 (IMUL32rmi addr:$src1, imm:$src2)>;
1346def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1347 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1348def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1349 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1350
1351// Optimize multiply by 2 with EFLAGS result.
1352let AddedComplexity = 2 in {
1353def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1354def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1355}
1356
1357// Patterns for nodes that do not produce flags, for instructions that do.
1358
1359// addition
1360def : Pat<(add GR64:$src1, GR64:$src2),
1361 (ADD64rr GR64:$src1, GR64:$src2)>;
1362def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1363 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1364def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1365 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1366def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1367 (ADD64rm GR64:$src1, addr:$src2)>;
1368
1369// subtraction
1370def : Pat<(sub GR64:$src1, GR64:$src2),
1371 (SUB64rr GR64:$src1, GR64:$src2)>;
1372def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1373 (SUB64rm GR64:$src1, addr:$src2)>;
1374def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1375 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1376def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1377 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1378
1379// Multiply
1380def : Pat<(mul GR64:$src1, GR64:$src2),
1381 (IMUL64rr GR64:$src1, GR64:$src2)>;
1382def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1383 (IMUL64rm GR64:$src1, addr:$src2)>;
1384def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1385 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1386def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1387 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1388def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1389 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1390def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1391 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1392
1393// Increment reg.
1394def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1395def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1396def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1397def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1398def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1399def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1400
1401// Decrement reg.
1402def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1403def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1404def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1405def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1406def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1407def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1408
1409// or reg/reg.
1410def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1411def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1412def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1413def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1414
1415// or reg/mem
1416def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1417 (OR8rm GR8:$src1, addr:$src2)>;
1418def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1419 (OR16rm GR16:$src1, addr:$src2)>;
1420def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1421 (OR32rm GR32:$src1, addr:$src2)>;
1422def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1423 (OR64rm GR64:$src1, addr:$src2)>;
1424
1425// or reg/imm
1426def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1427def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1428def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1429def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1430 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1431def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1432 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1433def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1434 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1435def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1436 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1437
1438// xor reg/reg
1439def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1440def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1441def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1442def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1443
1444// xor reg/mem
1445def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1446 (XOR8rm GR8:$src1, addr:$src2)>;
1447def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1448 (XOR16rm GR16:$src1, addr:$src2)>;
1449def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1450 (XOR32rm GR32:$src1, addr:$src2)>;
1451def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1452 (XOR64rm GR64:$src1, addr:$src2)>;
1453
1454// xor reg/imm
1455def : Pat<(xor GR8:$src1, imm:$src2),
1456 (XOR8ri GR8:$src1, imm:$src2)>;
1457def : Pat<(xor GR16:$src1, imm:$src2),
1458 (XOR16ri GR16:$src1, imm:$src2)>;
1459def : Pat<(xor GR32:$src1, imm:$src2),
1460 (XOR32ri GR32:$src1, imm:$src2)>;
1461def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1462 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1463def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1464 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1465def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1466 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1467def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1468 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1469
1470// and reg/reg
1471def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1472def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1473def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1474def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1475
1476// and reg/mem
1477def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1478 (AND8rm GR8:$src1, addr:$src2)>;
1479def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1480 (AND16rm GR16:$src1, addr:$src2)>;
1481def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1482 (AND32rm GR32:$src1, addr:$src2)>;
1483def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1484 (AND64rm GR64:$src1, addr:$src2)>;
1485
1486// and reg/imm
1487def : Pat<(and GR8:$src1, imm:$src2),
1488 (AND8ri GR8:$src1, imm:$src2)>;
1489def : Pat<(and GR16:$src1, imm:$src2),
1490 (AND16ri GR16:$src1, imm:$src2)>;
1491def : Pat<(and GR32:$src1, imm:$src2),
1492 (AND32ri GR32:$src1, imm:$src2)>;
1493def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1494 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1495def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1496 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1497def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1498 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1499def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1500 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001501