blob: 06a3a3a2dfd7cd8bc492f5b91af9d6f77b188dfb [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
12#include "llvm/Support/Compiler.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000013#include "llvm/Support/ErrorHandling.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000014#include "llvm/Support/raw_ostream.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000015#include "llvm/ADT/DepthFirstIterator.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/STLExtras.h"
18#include <algorithm>
19using namespace llvm;
20
21STATISTIC(NumDSE , "Number of dead stores elided");
22STATISTIC(NumDSS , "Number of dead spill slots removed");
23STATISTIC(NumCommutes, "Number of instructions commuted");
24STATISTIC(NumDRM , "Number of re-materializable defs elided");
25STATISTIC(NumStores , "Number of stores added");
26STATISTIC(NumPSpills , "Number of physical register spills");
27STATISTIC(NumOmitted , "Number of reloads omited");
28STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
29STATISTIC(NumCopified, "Number of available reloads turned into copies");
30STATISTIC(NumReMats , "Number of re-materialization");
31STATISTIC(NumLoads , "Number of loads added");
32STATISTIC(NumReused , "Number of values reused");
33STATISTIC(NumDCE , "Number of copies elided");
34STATISTIC(NumSUnfold , "Number of stores unfolded");
35STATISTIC(NumModRefUnfold, "Number of modref unfolded");
36
37namespace {
Lang Hamesac276402009-06-04 18:45:36 +000038 enum RewriterName { local, trivial };
Lang Hames87e3bca2009-05-06 02:36:21 +000039}
40
41static cl::opt<RewriterName>
42RewriterOpt("rewriter",
43 cl::desc("Rewriter to use: (default: local)"),
44 cl::Prefix,
Lang Hamesac276402009-06-04 18:45:36 +000045 cl::values(clEnumVal(local, "local rewriter"),
Lang Hamesf41538d2009-06-02 16:53:25 +000046 clEnumVal(trivial, "trivial rewriter"),
Lang Hames87e3bca2009-05-06 02:36:21 +000047 clEnumValEnd),
48 cl::init(local));
49
50VirtRegRewriter::~VirtRegRewriter() {}
51
Lang Hames87e3bca2009-05-06 02:36:21 +000052
Lang Hames87e3bca2009-05-06 02:36:21 +000053
Lang Hamesf41538d2009-06-02 16:53:25 +000054/// This class is intended for use with the new spilling framework only. It
55/// rewrites vreg def/uses to use the assigned preg, but does not insert any
56/// spill code.
57struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
58
59 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
60 LiveIntervals* LIs) {
61 DOUT << "********** REWRITE MACHINE CODE **********\n";
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000062 DEBUG(errs() << "********** Function: "
63 << MF.getFunction()->getName() << '\n');
Lang Hamesf41538d2009-06-02 16:53:25 +000064 MachineRegisterInfo *mri = &MF.getRegInfo();
65
66 bool changed = false;
67
68 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
69 liItr != liEnd; ++liItr) {
70
71 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
72 if (VRM.hasPhys(liItr->first)) {
73 unsigned preg = VRM.getPhys(liItr->first);
74 mri->replaceRegWith(liItr->first, preg);
75 mri->setPhysRegUsed(preg);
76 changed = true;
77 }
78 }
79 else {
80 if (!liItr->second->empty()) {
81 mri->setPhysRegUsed(liItr->first);
82 }
83 }
84 }
85
86 return changed;
87 }
88
89};
90
Lang Hames87e3bca2009-05-06 02:36:21 +000091// ************************************************************************ //
92
93/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
94/// from top down, keep track of which spill slots or remat are available in
95/// each register.
96///
97/// Note that not all physregs are created equal here. In particular, some
98/// physregs are reloads that we are allowed to clobber or ignore at any time.
99/// Other physregs are values that the register allocated program is using
100/// that we cannot CHANGE, but we can read if we like. We keep track of this
101/// on a per-stack-slot / remat id basis as the low bit in the value of the
102/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
103/// this bit and addAvailable sets it if.
104class VISIBILITY_HIDDEN AvailableSpills {
105 const TargetRegisterInfo *TRI;
106 const TargetInstrInfo *TII;
107
108 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
109 // or remat'ed virtual register values that are still available, due to
110 // being loaded or stored to, but not invalidated yet.
111 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
112
113 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
114 // indicating which stack slot values are currently held by a physreg. This
115 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
116 // physreg is modified.
117 std::multimap<unsigned, int> PhysRegsAvailable;
118
119 void disallowClobberPhysRegOnly(unsigned PhysReg);
120
121 void ClobberPhysRegOnly(unsigned PhysReg);
122public:
123 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
124 : TRI(tri), TII(tii) {
125 }
126
127 /// clear - Reset the state.
128 void clear() {
129 SpillSlotsOrReMatsAvailable.clear();
130 PhysRegsAvailable.clear();
131 }
132
133 const TargetRegisterInfo *getRegInfo() const { return TRI; }
134
135 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
136 /// available in a physical register, return that PhysReg, otherwise
137 /// return 0.
138 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
139 std::map<int, unsigned>::const_iterator I =
140 SpillSlotsOrReMatsAvailable.find(Slot);
141 if (I != SpillSlotsOrReMatsAvailable.end()) {
142 return I->second >> 1; // Remove the CanClobber bit.
143 }
144 return 0;
145 }
146
147 /// addAvailable - Mark that the specified stack slot / remat is available
148 /// in the specified physreg. If CanClobber is true, the physreg can be
149 /// modified at any time without changing the semantics of the program.
150 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
151 // If this stack slot is thought to be available in some other physreg,
152 // remove its record.
153 ModifyStackSlotOrReMat(SlotOrReMat);
154
155 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
156 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
157 (unsigned)CanClobber;
158
159 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
160 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
161 else
162 DOUT << "Remembering SS#" << SlotOrReMat;
163 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
164 }
165
166 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
167 /// the value of the specified stackslot register if it desires. The
168 /// specified stack slot must be available in a physreg for this query to
169 /// make sense.
170 bool canClobberPhysRegForSS(int SlotOrReMat) const {
171 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
172 "Value not available!");
173 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
174 }
175
176 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
177 /// physical register where values for some stack slot(s) might be
178 /// available.
179 bool canClobberPhysReg(unsigned PhysReg) const {
180 std::multimap<unsigned, int>::const_iterator I =
181 PhysRegsAvailable.lower_bound(PhysReg);
182 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
183 int SlotOrReMat = I->second;
184 I++;
185 if (!canClobberPhysRegForSS(SlotOrReMat))
186 return false;
187 }
188 return true;
189 }
190
191 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
192 /// stackslot register. The register is still available but is no longer
193 /// allowed to be modifed.
194 void disallowClobberPhysReg(unsigned PhysReg);
195
196 /// ClobberPhysReg - This is called when the specified physreg changes
197 /// value. We use this to invalidate any info about stuff that lives in
198 /// it and any of its aliases.
199 void ClobberPhysReg(unsigned PhysReg);
200
201 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
202 /// slot changes. This removes information about which register the
203 /// previous value for this slot lives in (as the previous value is dead
204 /// now).
205 void ModifyStackSlotOrReMat(int SlotOrReMat);
206
207 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
208 /// into the specified MBB. Add available physical registers as potential
209 /// live-in's. If they are reused in the MBB, they will be added to the
210 /// live-in set to make register scavenger and post-allocation scheduler.
211 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
212 std::vector<MachineOperand*> &KillOps);
213};
214
215// ************************************************************************ //
216
217// ReusedOp - For each reused operand, we keep track of a bit of information,
218// in case we need to rollback upon processing a new operand. See comments
219// below.
220struct ReusedOp {
221 // The MachineInstr operand that reused an available value.
222 unsigned Operand;
223
224 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
225 unsigned StackSlotOrReMat;
226
227 // PhysRegReused - The physical register the value was available in.
228 unsigned PhysRegReused;
229
230 // AssignedPhysReg - The physreg that was assigned for use by the reload.
231 unsigned AssignedPhysReg;
232
233 // VirtReg - The virtual register itself.
234 unsigned VirtReg;
235
236 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
237 unsigned vreg)
238 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
239 AssignedPhysReg(apr), VirtReg(vreg) {}
240};
241
242/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
243/// is reused instead of reloaded.
244class VISIBILITY_HIDDEN ReuseInfo {
245 MachineInstr &MI;
246 std::vector<ReusedOp> Reuses;
247 BitVector PhysRegsClobbered;
248public:
249 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
250 PhysRegsClobbered.resize(tri->getNumRegs());
251 }
252
253 bool hasReuses() const {
254 return !Reuses.empty();
255 }
256
257 /// addReuse - If we choose to reuse a virtual register that is already
258 /// available instead of reloading it, remember that we did so.
259 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
260 unsigned PhysRegReused, unsigned AssignedPhysReg,
261 unsigned VirtReg) {
262 // If the reload is to the assigned register anyway, no undo will be
263 // required.
264 if (PhysRegReused == AssignedPhysReg) return;
265
266 // Otherwise, remember this.
267 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
268 AssignedPhysReg, VirtReg));
269 }
270
271 void markClobbered(unsigned PhysReg) {
272 PhysRegsClobbered.set(PhysReg);
273 }
274
275 bool isClobbered(unsigned PhysReg) const {
276 return PhysRegsClobbered.test(PhysReg);
277 }
278
279 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
280 /// is some other operand that is using the specified register, either pick
281 /// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000282 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
283 MachineFunction &MF, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000284 AvailableSpills &Spills,
285 std::vector<MachineInstr*> &MaybeDeadStores,
286 SmallSet<unsigned, 8> &Rejected,
287 BitVector &RegKills,
288 std::vector<MachineOperand*> &KillOps,
289 VirtRegMap &VRM);
290
291 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
292 /// 'Rejected' set to remember which registers have been considered and
293 /// rejected for the reload. This avoids infinite looping in case like
294 /// this:
295 /// t1 := op t2, t3
296 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
297 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
298 /// t1 <- desires r1
299 /// sees r1 is taken by t2, tries t2's reload register r0
300 /// sees r0 is taken by t3, tries t3's reload register r1
301 /// sees r1 is taken by t2, tries t2's reload register r0 ...
Evan Cheng5d885022009-07-21 09:15:00 +0000302 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000303 AvailableSpills &Spills,
304 std::vector<MachineInstr*> &MaybeDeadStores,
305 BitVector &RegKills,
306 std::vector<MachineOperand*> &KillOps,
307 VirtRegMap &VRM) {
308 SmallSet<unsigned, 8> Rejected;
Evan Cheng5d885022009-07-21 09:15:00 +0000309 MachineFunction &MF = *MI->getParent()->getParent();
310 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
311 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
312 Rejected, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +0000313 }
314};
315
316
317// ****************** //
318// Utility Functions //
319// ****************** //
320
Lang Hames87e3bca2009-05-06 02:36:21 +0000321/// findSinglePredSuccessor - Return via reference a vector of machine basic
322/// blocks each of which is a successor of the specified BB and has no other
323/// predecessor.
324static void findSinglePredSuccessor(MachineBasicBlock *MBB,
325 SmallVectorImpl<MachineBasicBlock *> &Succs) {
326 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
327 SE = MBB->succ_end(); SI != SE; ++SI) {
328 MachineBasicBlock *SuccMBB = *SI;
329 if (SuccMBB->pred_size() == 1)
330 Succs.push_back(SuccMBB);
331 }
332}
333
Evan Cheng427a6b62009-05-15 06:48:19 +0000334/// InvalidateKill - Invalidate register kill information for a specific
335/// register. This also unsets the kills marker on the last kill operand.
336static void InvalidateKill(unsigned Reg,
337 const TargetRegisterInfo* TRI,
338 BitVector &RegKills,
339 std::vector<MachineOperand*> &KillOps) {
340 if (RegKills[Reg]) {
341 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000342 // KillOps[Reg] might be a def of a super-register.
343 unsigned KReg = KillOps[Reg]->getReg();
344 KillOps[KReg] = NULL;
345 RegKills.reset(KReg);
346 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
Evan Cheng427a6b62009-05-15 06:48:19 +0000347 if (RegKills[*SR]) {
348 KillOps[*SR]->setIsKill(false);
349 KillOps[*SR] = NULL;
350 RegKills.reset(*SR);
351 }
352 }
353 }
354}
355
Lang Hames87e3bca2009-05-06 02:36:21 +0000356/// InvalidateKills - MI is going to be deleted. If any of its operands are
357/// marked kill, then invalidate the information.
Evan Cheng427a6b62009-05-15 06:48:19 +0000358static void InvalidateKills(MachineInstr &MI,
359 const TargetRegisterInfo* TRI,
360 BitVector &RegKills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000361 std::vector<MachineOperand*> &KillOps,
362 SmallVector<unsigned, 2> *KillRegs = NULL) {
363 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
364 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000365 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000366 continue;
367 unsigned Reg = MO.getReg();
368 if (TargetRegisterInfo::isVirtualRegister(Reg))
369 continue;
370 if (KillRegs)
371 KillRegs->push_back(Reg);
372 assert(Reg < KillOps.size());
373 if (KillOps[Reg] == &MO) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000374 KillOps[Reg] = NULL;
Evan Cheng427a6b62009-05-15 06:48:19 +0000375 RegKills.reset(Reg);
376 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
377 if (RegKills[*SR]) {
378 KillOps[*SR] = NULL;
379 RegKills.reset(*SR);
380 }
381 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000382 }
383 }
384}
385
386/// InvalidateRegDef - If the def operand of the specified def MI is now dead
387/// (since it's spill instruction is removed), mark it isDead. Also checks if
388/// the def MI has other definition operands that are not dead. Returns it by
389/// reference.
390static bool InvalidateRegDef(MachineBasicBlock::iterator I,
391 MachineInstr &NewDef, unsigned Reg,
392 bool &HasLiveDef) {
393 // Due to remat, it's possible this reg isn't being reused. That is,
394 // the def of this reg (by prev MI) is now dead.
395 MachineInstr *DefMI = I;
396 MachineOperand *DefOp = NULL;
397 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
398 MachineOperand &MO = DefMI->getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000399 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
400 continue;
401 if (MO.getReg() == Reg)
402 DefOp = &MO;
403 else if (!MO.isDead())
404 HasLiveDef = true;
Lang Hames87e3bca2009-05-06 02:36:21 +0000405 }
406 if (!DefOp)
407 return false;
408
409 bool FoundUse = false, Done = false;
410 MachineBasicBlock::iterator E = &NewDef;
411 ++I; ++E;
412 for (; !Done && I != E; ++I) {
413 MachineInstr *NMI = I;
414 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
415 MachineOperand &MO = NMI->getOperand(j);
416 if (!MO.isReg() || MO.getReg() != Reg)
417 continue;
418 if (MO.isUse())
419 FoundUse = true;
420 Done = true; // Stop after scanning all the operands of this MI.
421 }
422 }
423 if (!FoundUse) {
424 // Def is dead!
425 DefOp->setIsDead();
426 return true;
427 }
428 return false;
429}
430
431/// UpdateKills - Track and update kill info. If a MI reads a register that is
432/// marked kill, then it must be due to register reuse. Transfer the kill info
433/// over.
Evan Cheng427a6b62009-05-15 06:48:19 +0000434static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
435 BitVector &RegKills,
436 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000437 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
438 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000439 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000440 continue;
441 unsigned Reg = MO.getReg();
442 if (Reg == 0)
443 continue;
444
445 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
446 // That can't be right. Register is killed but not re-defined and it's
447 // being reused. Let's fix that.
448 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000449 // KillOps[Reg] might be a def of a super-register.
450 unsigned KReg = KillOps[Reg]->getReg();
451 KillOps[KReg] = NULL;
452 RegKills.reset(KReg);
453
454 // Must be a def of a super-register. Its other sub-regsters are no
455 // longer killed as well.
456 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
457 KillOps[*SR] = NULL;
458 RegKills.reset(*SR);
459 }
460
Lang Hames87e3bca2009-05-06 02:36:21 +0000461 if (!MI.isRegTiedToDefOperand(i))
462 // Unless it's a two-address operand, this is the new kill.
463 MO.setIsKill();
464 }
465 if (MO.isKill()) {
466 RegKills.set(Reg);
467 KillOps[Reg] = &MO;
Evan Cheng427a6b62009-05-15 06:48:19 +0000468 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
469 RegKills.set(*SR);
470 KillOps[*SR] = &MO;
471 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000472 }
473 }
474
475 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
476 const MachineOperand &MO = MI.getOperand(i);
477 if (!MO.isReg() || !MO.isDef())
478 continue;
479 unsigned Reg = MO.getReg();
480 RegKills.reset(Reg);
481 KillOps[Reg] = NULL;
482 // It also defines (or partially define) aliases.
Evan Cheng427a6b62009-05-15 06:48:19 +0000483 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
484 RegKills.reset(*SR);
485 KillOps[*SR] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000486 }
487 }
488}
489
490/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
491///
492static void ReMaterialize(MachineBasicBlock &MBB,
493 MachineBasicBlock::iterator &MII,
494 unsigned DestReg, unsigned Reg,
495 const TargetInstrInfo *TII,
496 const TargetRegisterInfo *TRI,
497 VirtRegMap &VRM) {
Evan Cheng5f159922009-07-16 20:15:00 +0000498 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
Daniel Dunbar24cd3c42009-07-16 22:08:25 +0000499#ifndef NDEBUG
Evan Cheng5f159922009-07-16 20:15:00 +0000500 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
Evan Chengc1b46f92009-07-17 00:32:06 +0000501 assert(TID.getNumDefs() == 1 &&
Evan Cheng5f159922009-07-16 20:15:00 +0000502 "Don't know how to remat instructions that define > 1 values!");
503#endif
504 TII->reMaterialize(MBB, MII, DestReg,
505 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000506 MachineInstr *NewMI = prior(MII);
507 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
508 MachineOperand &MO = NewMI->getOperand(i);
509 if (!MO.isReg() || MO.getReg() == 0)
510 continue;
511 unsigned VirtReg = MO.getReg();
512 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
513 continue;
514 assert(MO.isUse());
515 unsigned SubIdx = MO.getSubReg();
516 unsigned Phys = VRM.getPhys(VirtReg);
517 assert(Phys);
518 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
519 MO.setReg(RReg);
520 MO.setSubReg(0);
521 }
522 ++NumReMats;
523}
524
525/// findSuperReg - Find the SubReg's super-register of given register class
526/// where its SubIdx sub-register is SubReg.
527static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
528 unsigned SubIdx, const TargetRegisterInfo *TRI) {
529 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
530 I != E; ++I) {
531 unsigned Reg = *I;
532 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
533 return Reg;
534 }
535 return 0;
536}
537
538// ******************************** //
539// Available Spills Implementation //
540// ******************************** //
541
542/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
543/// stackslot register. The register is still available but is no longer
544/// allowed to be modifed.
545void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
546 std::multimap<unsigned, int>::iterator I =
547 PhysRegsAvailable.lower_bound(PhysReg);
548 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
549 int SlotOrReMat = I->second;
550 I++;
551 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
552 "Bidirectional map mismatch!");
553 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
554 DOUT << "PhysReg " << TRI->getName(PhysReg)
555 << " copied, it is available for use but can no longer be modified\n";
556 }
557}
558
559/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
560/// stackslot register and its aliases. The register and its aliases may
561/// still available but is no longer allowed to be modifed.
562void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
563 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
564 disallowClobberPhysRegOnly(*AS);
565 disallowClobberPhysRegOnly(PhysReg);
566}
567
568/// ClobberPhysRegOnly - This is called when the specified physreg changes
569/// value. We use this to invalidate any info about stuff we thing lives in it.
570void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
571 std::multimap<unsigned, int>::iterator I =
572 PhysRegsAvailable.lower_bound(PhysReg);
573 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
574 int SlotOrReMat = I->second;
575 PhysRegsAvailable.erase(I++);
576 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
577 "Bidirectional map mismatch!");
578 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
579 DOUT << "PhysReg " << TRI->getName(PhysReg)
580 << " clobbered, invalidating ";
581 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
582 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
583 else
584 DOUT << "SS#" << SlotOrReMat << "\n";
585 }
586}
587
588/// ClobberPhysReg - This is called when the specified physreg changes
589/// value. We use this to invalidate any info about stuff we thing lives in
590/// it and any of its aliases.
591void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
592 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
593 ClobberPhysRegOnly(*AS);
594 ClobberPhysRegOnly(PhysReg);
595}
596
597/// AddAvailableRegsToLiveIn - Availability information is being kept coming
598/// into the specified MBB. Add available physical registers as potential
599/// live-in's. If they are reused in the MBB, they will be added to the
600/// live-in set to make register scavenger and post-allocation scheduler.
601void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
602 BitVector &RegKills,
603 std::vector<MachineOperand*> &KillOps) {
604 std::set<unsigned> NotAvailable;
605 for (std::multimap<unsigned, int>::iterator
606 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
607 I != E; ++I) {
608 unsigned Reg = I->first;
609 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
610 // FIXME: A temporary workaround. We can't reuse available value if it's
611 // not safe to move the def of the virtual register's class. e.g.
612 // X86::RFP* register classes. Do not add it as a live-in.
613 if (!TII->isSafeToMoveRegClassDefs(RC))
614 // This is no longer available.
615 NotAvailable.insert(Reg);
616 else {
617 MBB.addLiveIn(Reg);
Evan Cheng427a6b62009-05-15 06:48:19 +0000618 InvalidateKill(Reg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000619 }
620
621 // Skip over the same register.
622 std::multimap<unsigned, int>::iterator NI = next(I);
623 while (NI != E && NI->first == Reg) {
624 ++I;
625 ++NI;
626 }
627 }
628
629 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
630 E = NotAvailable.end(); I != E; ++I) {
631 ClobberPhysReg(*I);
632 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
633 *SubRegs; ++SubRegs)
634 ClobberPhysReg(*SubRegs);
635 }
636}
637
638/// ModifyStackSlotOrReMat - This method is called when the value in a stack
639/// slot changes. This removes information about which register the previous
640/// value for this slot lives in (as the previous value is dead now).
641void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
642 std::map<int, unsigned>::iterator It =
643 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
644 if (It == SpillSlotsOrReMatsAvailable.end()) return;
645 unsigned Reg = It->second >> 1;
646 SpillSlotsOrReMatsAvailable.erase(It);
647
648 // This register may hold the value of multiple stack slots, only remove this
649 // stack slot from the set of values the register contains.
650 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
651 for (; ; ++I) {
652 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
653 "Map inverse broken!");
654 if (I->second == SlotOrReMat) break;
655 }
656 PhysRegsAvailable.erase(I);
657}
658
659// ************************** //
660// Reuse Info Implementation //
661// ************************** //
662
663/// GetRegForReload - We are about to emit a reload into PhysReg. If there
664/// is some other operand that is using the specified register, either pick
665/// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000666unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
667 unsigned PhysReg,
668 MachineFunction &MF,
669 MachineInstr *MI, AvailableSpills &Spills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000670 std::vector<MachineInstr*> &MaybeDeadStores,
671 SmallSet<unsigned, 8> &Rejected,
672 BitVector &RegKills,
673 std::vector<MachineOperand*> &KillOps,
674 VirtRegMap &VRM) {
Evan Cheng5d885022009-07-21 09:15:00 +0000675 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
676 const TargetRegisterInfo *TRI = Spills.getRegInfo();
Lang Hames87e3bca2009-05-06 02:36:21 +0000677
678 if (Reuses.empty()) return PhysReg; // This is most often empty.
679
680 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
681 ReusedOp &Op = Reuses[ro];
682 // If we find some other reuse that was supposed to use this register
683 // exactly for its reload, we can change this reload to use ITS reload
684 // register. That is, unless its reload register has already been
685 // considered and subsequently rejected because it has also been reused
686 // by another operand.
687 if (Op.PhysRegReused == PhysReg &&
Evan Cheng5d885022009-07-21 09:15:00 +0000688 Rejected.count(Op.AssignedPhysReg) == 0 &&
689 RC->contains(Op.AssignedPhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000690 // Yup, use the reload register that we didn't use before.
691 unsigned NewReg = Op.AssignedPhysReg;
692 Rejected.insert(PhysReg);
Evan Cheng5d885022009-07-21 09:15:00 +0000693 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
Lang Hames87e3bca2009-05-06 02:36:21 +0000694 RegKills, KillOps, VRM);
695 } else {
696 // Otherwise, we might also have a problem if a previously reused
Evan Cheng5d885022009-07-21 09:15:00 +0000697 // value aliases the new register. If so, codegen the previous reload
Lang Hames87e3bca2009-05-06 02:36:21 +0000698 // and use this one.
699 unsigned PRRU = Op.PhysRegReused;
Lang Hames87e3bca2009-05-06 02:36:21 +0000700 if (TRI->areAliases(PRRU, PhysReg)) {
701 // Okay, we found out that an alias of a reused register
702 // was used. This isn't good because it means we have
703 // to undo a previous reuse.
704 MachineBasicBlock *MBB = MI->getParent();
705 const TargetRegisterClass *AliasRC =
706 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
707
708 // Copy Op out of the vector and remove it, we're going to insert an
709 // explicit load for it.
710 ReusedOp NewOp = Op;
711 Reuses.erase(Reuses.begin()+ro);
712
713 // Ok, we're going to try to reload the assigned physreg into the
714 // slot that we were supposed to in the first place. However, that
715 // register could hold a reuse. Check to see if it conflicts or
716 // would prefer us to use a different register.
Evan Cheng5d885022009-07-21 09:15:00 +0000717 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
718 MF, MI, Spills, MaybeDeadStores,
719 Rejected, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +0000720
721 MachineBasicBlock::iterator MII = MI;
722 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
723 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
724 } else {
725 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
726 NewOp.StackSlotOrReMat, AliasRC);
727 MachineInstr *LoadMI = prior(MII);
728 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
729 // Any stores to this stack slot are not dead anymore.
730 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
731 ++NumLoads;
732 }
733 Spills.ClobberPhysReg(NewPhysReg);
734 Spills.ClobberPhysReg(NewOp.PhysRegReused);
735
736 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
737 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
738 MI->getOperand(NewOp.Operand).setReg(RReg);
739 MI->getOperand(NewOp.Operand).setSubReg(0);
740
741 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
742 --MII;
Evan Cheng427a6b62009-05-15 06:48:19 +0000743 UpdateKills(*MII, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000744 DOUT << '\t' << *MII;
745
746 DOUT << "Reuse undone!\n";
747 --NumReused;
748
749 // Finally, PhysReg is now available, go ahead and use it.
750 return PhysReg;
751 }
752 }
753 }
754 return PhysReg;
755}
756
757// ************************************************************************ //
758
759/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
760/// stack slot mod/ref. It also checks if it's possible to unfold the
761/// instruction by having it define a specified physical register instead.
762static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
763 const TargetInstrInfo *TII,
764 const TargetRegisterInfo *TRI,
765 VirtRegMap &VRM) {
766 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
767 return false;
768
769 bool Found = false;
770 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
771 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
772 unsigned VirtReg = I->second.first;
773 VirtRegMap::ModRef MR = I->second.second;
774 if (MR & VirtRegMap::isModRef)
775 if (VRM.getStackSlot(VirtReg) == SS) {
776 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
777 break;
778 }
779 }
780 if (!Found)
781 return false;
782
783 // Does the instruction uses a register that overlaps the scratch register?
784 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
785 MachineOperand &MO = MI.getOperand(i);
786 if (!MO.isReg() || MO.getReg() == 0)
787 continue;
788 unsigned Reg = MO.getReg();
789 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
790 if (!VRM.hasPhys(Reg))
791 continue;
792 Reg = VRM.getPhys(Reg);
793 }
794 if (TRI->regsOverlap(PhysReg, Reg))
795 return false;
796 }
797 return true;
798}
799
800/// FindFreeRegister - Find a free register of a given register class by looking
801/// at (at most) the last two machine instructions.
802static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
803 MachineBasicBlock &MBB,
804 const TargetRegisterClass *RC,
805 const TargetRegisterInfo *TRI,
806 BitVector &AllocatableRegs) {
807 BitVector Defs(TRI->getNumRegs());
808 BitVector Uses(TRI->getNumRegs());
809 SmallVector<unsigned, 4> LocalUses;
810 SmallVector<unsigned, 4> Kills;
811
812 // Take a look at 2 instructions at most.
813 for (unsigned Count = 0; Count < 2; ++Count) {
814 if (MII == MBB.begin())
815 break;
816 MachineInstr *PrevMI = prior(MII);
817 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
818 MachineOperand &MO = PrevMI->getOperand(i);
819 if (!MO.isReg() || MO.getReg() == 0)
820 continue;
821 unsigned Reg = MO.getReg();
822 if (MO.isDef()) {
823 Defs.set(Reg);
824 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
825 Defs.set(*AS);
826 } else {
827 LocalUses.push_back(Reg);
828 if (MO.isKill() && AllocatableRegs[Reg])
829 Kills.push_back(Reg);
830 }
831 }
832
833 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
834 unsigned Kill = Kills[i];
835 if (!Defs[Kill] && !Uses[Kill] &&
836 TRI->getPhysicalRegisterRegClass(Kill) == RC)
837 return Kill;
838 }
839 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
840 unsigned Reg = LocalUses[i];
841 Uses.set(Reg);
842 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
843 Uses.set(*AS);
844 }
845
846 MII = PrevMI;
847 }
848
849 return 0;
850}
851
852static
853void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
854 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
855 MachineOperand &MO = MI->getOperand(i);
856 if (MO.isReg() && MO.getReg() == VirtReg)
857 MO.setReg(PhysReg);
858 }
859}
860
Evan Chengeca24fb2009-05-12 23:07:00 +0000861namespace {
862 struct RefSorter {
863 bool operator()(const std::pair<MachineInstr*, int> &A,
864 const std::pair<MachineInstr*, int> &B) {
865 return A.second < B.second;
866 }
867 };
868}
Lang Hames87e3bca2009-05-06 02:36:21 +0000869
870// ***************************** //
871// Local Spiller Implementation //
872// ***************************** //
873
874class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
875 MachineRegisterInfo *RegInfo;
876 const TargetRegisterInfo *TRI;
877 const TargetInstrInfo *TII;
878 BitVector AllocatableRegs;
879 DenseMap<MachineInstr*, unsigned> DistanceMap;
880public:
881
882 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
883 LiveIntervals* LIs) {
884 RegInfo = &MF.getRegInfo();
885 TRI = MF.getTarget().getRegisterInfo();
886 TII = MF.getTarget().getInstrInfo();
887 AllocatableRegs = TRI->getAllocatableSet(MF);
Daniel Dunbarce63ffb2009-07-25 00:23:56 +0000888 DEBUG(errs() << "\n**** Local spiller rewriting function '"
889 << MF.getFunction()->getName() << "':\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000890 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
891 " ****\n";
892 DEBUG(MF.dump());
893
894 // Spills - Keep track of which spilled values are available in physregs
895 // so that we can choose to reuse the physregs instead of emitting
896 // reloads. This is usually refreshed per basic block.
897 AvailableSpills Spills(TRI, TII);
898
899 // Keep track of kill information.
900 BitVector RegKills(TRI->getNumRegs());
901 std::vector<MachineOperand*> KillOps;
902 KillOps.resize(TRI->getNumRegs(), NULL);
903
904 // SingleEntrySuccs - Successor blocks which have a single predecessor.
905 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
906 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
907
908 // Traverse the basic blocks depth first.
909 MachineBasicBlock *Entry = MF.begin();
910 SmallPtrSet<MachineBasicBlock*,16> Visited;
911 for (df_ext_iterator<MachineBasicBlock*,
912 SmallPtrSet<MachineBasicBlock*,16> >
913 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
914 DFI != E; ++DFI) {
915 MachineBasicBlock *MBB = *DFI;
916 if (!EarlyVisited.count(MBB))
917 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
918
919 // If this MBB is the only predecessor of a successor. Keep the
920 // availability information and visit it next.
921 do {
922 // Keep visiting single predecessor successor as long as possible.
923 SinglePredSuccs.clear();
924 findSinglePredSuccessor(MBB, SinglePredSuccs);
925 if (SinglePredSuccs.empty())
926 MBB = 0;
927 else {
928 // FIXME: More than one successors, each of which has MBB has
929 // the only predecessor.
930 MBB = SinglePredSuccs[0];
931 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
932 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
933 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
934 }
935 }
936 } while (MBB);
937
938 // Clear the availability info.
939 Spills.clear();
940 }
941
942 DOUT << "**** Post Machine Instrs ****\n";
943 DEBUG(MF.dump());
944
945 // Mark unused spill slots.
946 MachineFrameInfo *MFI = MF.getFrameInfo();
947 int SS = VRM.getLowSpillSlot();
948 if (SS != VirtRegMap::NO_STACK_SLOT)
949 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
950 if (!VRM.isSpillSlotUsed(SS)) {
951 MFI->RemoveStackObject(SS);
952 ++NumDSS;
953 }
954
955 return true;
956 }
957
958private:
959
960 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
961 /// a scratch register is available.
962 /// xorq %r12<kill>, %r13
963 /// addq %rax, -184(%rbp)
964 /// addq %r13, -184(%rbp)
965 /// ==>
966 /// xorq %r12<kill>, %r13
967 /// movq -184(%rbp), %r12
968 /// addq %rax, %r12
969 /// addq %r13, %r12
970 /// movq %r12, -184(%rbp)
971 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
972 MachineBasicBlock &MBB,
973 MachineBasicBlock::iterator &MII,
974 std::vector<MachineInstr*> &MaybeDeadStores,
975 AvailableSpills &Spills,
976 BitVector &RegKills,
977 std::vector<MachineOperand*> &KillOps,
978 VirtRegMap &VRM) {
979
980 MachineBasicBlock::iterator NextMII = next(MII);
981 if (NextMII == MBB.end())
982 return false;
983
984 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
985 return false;
986
987 // Now let's see if the last couple of instructions happens to have freed up
988 // a register.
989 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
990 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
991 if (!PhysReg)
992 return false;
993
994 MachineFunction &MF = *MBB.getParent();
995 TRI = MF.getTarget().getRegisterInfo();
996 MachineInstr &MI = *MII;
997 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
998 return false;
999
1000 // If the next instruction also folds the same SS modref and can be unfoled,
1001 // then it's worthwhile to issue a load from SS into the free register and
1002 // then unfold these instructions.
1003 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1004 return false;
1005
1006 // Load from SS to the spare physical register.
1007 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1008 // This invalidates Phys.
1009 Spills.ClobberPhysReg(PhysReg);
1010 // Remember it's available.
1011 Spills.addAvailable(SS, PhysReg);
1012 MaybeDeadStores[SS] = NULL;
1013
1014 // Unfold current MI.
1015 SmallVector<MachineInstr*, 4> NewMIs;
1016 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001017 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001018 assert(NewMIs.size() == 1);
1019 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1020 VRM.transferRestorePts(&MI, NewMIs[0]);
1021 MII = MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001022 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001023 VRM.RemoveMachineInstrFromMaps(&MI);
1024 MBB.erase(&MI);
1025 ++NumModRefUnfold;
1026
1027 // Unfold next instructions that fold the same SS.
1028 do {
1029 MachineInstr &NextMI = *NextMII;
1030 NextMII = next(NextMII);
1031 NewMIs.clear();
1032 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001033 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001034 assert(NewMIs.size() == 1);
1035 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1036 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1037 MBB.insert(NextMII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001038 InvalidateKills(NextMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001039 VRM.RemoveMachineInstrFromMaps(&NextMI);
1040 MBB.erase(&NextMI);
1041 ++NumModRefUnfold;
Evan Cheng2c48fe62009-06-03 09:00:27 +00001042 if (NextMII == MBB.end())
1043 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001044 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1045
1046 // Store the value back into SS.
1047 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1048 MachineInstr *StoreMI = prior(NextMII);
1049 VRM.addSpillSlotUse(SS, StoreMI);
1050 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1051
1052 return true;
1053 }
1054
1055 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1056 /// instruction. e.g.
1057 /// xorl %edi, %eax
1058 /// movl %eax, -32(%ebp)
1059 /// movl -36(%ebp), %eax
1060 /// orl %eax, -32(%ebp)
1061 /// ==>
1062 /// xorl %edi, %eax
1063 /// orl -36(%ebp), %eax
1064 /// mov %eax, -32(%ebp)
1065 /// This enables unfolding optimization for a subsequent instruction which will
1066 /// also eliminate the newly introduced store instruction.
1067 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1068 MachineBasicBlock::iterator &MII,
1069 std::vector<MachineInstr*> &MaybeDeadStores,
1070 AvailableSpills &Spills,
1071 BitVector &RegKills,
1072 std::vector<MachineOperand*> &KillOps,
1073 VirtRegMap &VRM) {
1074 MachineFunction &MF = *MBB.getParent();
1075 MachineInstr &MI = *MII;
1076 unsigned UnfoldedOpc = 0;
1077 unsigned UnfoldPR = 0;
1078 unsigned UnfoldVR = 0;
1079 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1080 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1081 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1082 // Only transform a MI that folds a single register.
1083 if (UnfoldedOpc)
1084 return false;
1085 UnfoldVR = I->second.first;
1086 VirtRegMap::ModRef MR = I->second.second;
1087 // MI2VirtMap be can updated which invalidate the iterator.
1088 // Increment the iterator first.
1089 ++I;
1090 if (VRM.isAssignedReg(UnfoldVR))
1091 continue;
1092 // If this reference is not a use, any previous store is now dead.
1093 // Otherwise, the store to this stack slot is not dead anymore.
1094 FoldedSS = VRM.getStackSlot(UnfoldVR);
1095 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1096 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1097 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1098 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1099 continue;
1100 UnfoldPR = PhysReg;
1101 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1102 false, true);
1103 }
1104 }
1105
1106 if (!UnfoldedOpc) {
1107 if (!UnfoldVR)
1108 return false;
1109
1110 // Look for other unfolding opportunities.
1111 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1112 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1113 }
1114
1115 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1116 MachineOperand &MO = MI.getOperand(i);
1117 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1118 continue;
1119 unsigned VirtReg = MO.getReg();
1120 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1121 continue;
1122 if (VRM.isAssignedReg(VirtReg)) {
1123 unsigned PhysReg = VRM.getPhys(VirtReg);
1124 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1125 return false;
1126 } else if (VRM.isReMaterialized(VirtReg))
1127 continue;
1128 int SS = VRM.getStackSlot(VirtReg);
1129 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1130 if (PhysReg) {
1131 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1132 return false;
1133 continue;
1134 }
1135 if (VRM.hasPhys(VirtReg)) {
1136 PhysReg = VRM.getPhys(VirtReg);
1137 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1138 continue;
1139 }
1140
1141 // Ok, we'll need to reload the value into a register which makes
1142 // it impossible to perform the store unfolding optimization later.
1143 // Let's see if it is possible to fold the load if the store is
1144 // unfolded. This allows us to perform the store unfolding
1145 // optimization.
1146 SmallVector<MachineInstr*, 4> NewMIs;
1147 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1148 assert(NewMIs.size() == 1);
1149 MachineInstr *NewMI = NewMIs.back();
1150 NewMIs.clear();
1151 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1152 assert(Idx != -1);
1153 SmallVector<unsigned, 1> Ops;
1154 Ops.push_back(Idx);
1155 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1156 if (FoldedMI) {
1157 VRM.addSpillSlotUse(SS, FoldedMI);
1158 if (!VRM.hasPhys(UnfoldVR))
1159 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1160 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1161 MII = MBB.insert(MII, FoldedMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001162 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001163 VRM.RemoveMachineInstrFromMaps(&MI);
1164 MBB.erase(&MI);
1165 MF.DeleteMachineInstr(NewMI);
1166 return true;
1167 }
1168 MF.DeleteMachineInstr(NewMI);
1169 }
1170 }
1171
1172 return false;
1173 }
1174
Evan Cheng261ce1d2009-07-10 19:15:51 +00001175 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1176 /// where SrcReg is r1 and it is tied to r0. Return true if after
1177 /// commuting this instruction it will be r0 = op r2, r1.
1178 static bool CommuteChangesDestination(MachineInstr *DefMI,
1179 const TargetInstrDesc &TID,
1180 unsigned SrcReg,
1181 const TargetInstrInfo *TII,
1182 unsigned &DstIdx) {
1183 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1184 return false;
1185 if (!DefMI->getOperand(1).isReg() ||
1186 DefMI->getOperand(1).getReg() != SrcReg)
1187 return false;
1188 unsigned DefIdx;
1189 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1190 return false;
1191 unsigned SrcIdx1, SrcIdx2;
1192 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1193 return false;
1194 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1195 DstIdx = 2;
1196 return true;
1197 }
1198 return false;
1199 }
1200
Lang Hames87e3bca2009-05-06 02:36:21 +00001201 /// CommuteToFoldReload -
1202 /// Look for
1203 /// r1 = load fi#1
1204 /// r1 = op r1, r2<kill>
1205 /// store r1, fi#1
1206 ///
1207 /// If op is commutable and r2 is killed, then we can xform these to
1208 /// r2 = op r2, fi#1
1209 /// store r2, fi#1
1210 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1211 MachineBasicBlock::iterator &MII,
1212 unsigned VirtReg, unsigned SrcReg, int SS,
1213 AvailableSpills &Spills,
1214 BitVector &RegKills,
1215 std::vector<MachineOperand*> &KillOps,
1216 const TargetRegisterInfo *TRI,
1217 VirtRegMap &VRM) {
1218 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1219 return false;
1220
1221 MachineFunction &MF = *MBB.getParent();
1222 MachineInstr &MI = *MII;
1223 MachineBasicBlock::iterator DefMII = prior(MII);
1224 MachineInstr *DefMI = DefMII;
1225 const TargetInstrDesc &TID = DefMI->getDesc();
1226 unsigned NewDstIdx;
1227 if (DefMII != MBB.begin() &&
1228 TID.isCommutable() &&
Evan Cheng261ce1d2009-07-10 19:15:51 +00001229 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001230 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1231 unsigned NewReg = NewDstMO.getReg();
1232 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1233 return false;
1234 MachineInstr *ReloadMI = prior(DefMII);
1235 int FrameIdx;
1236 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1237 if (DestReg != SrcReg || FrameIdx != SS)
1238 return false;
1239 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1240 if (UseIdx == -1)
1241 return false;
1242 unsigned DefIdx;
1243 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1244 return false;
1245 assert(DefMI->getOperand(DefIdx).isReg() &&
1246 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1247
1248 // Now commute def instruction.
1249 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1250 if (!CommutedMI)
1251 return false;
1252 SmallVector<unsigned, 1> Ops;
1253 Ops.push_back(NewDstIdx);
1254 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1255 // Not needed since foldMemoryOperand returns new MI.
1256 MF.DeleteMachineInstr(CommutedMI);
1257 if (!FoldedMI)
1258 return false;
1259
1260 VRM.addSpillSlotUse(SS, FoldedMI);
1261 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1262 // Insert new def MI and spill MI.
1263 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1264 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1265 MII = prior(MII);
1266 MachineInstr *StoreMI = MII;
1267 VRM.addSpillSlotUse(SS, StoreMI);
1268 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1269 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1270
1271 // Delete all 3 old instructions.
Evan Cheng427a6b62009-05-15 06:48:19 +00001272 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001273 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1274 MBB.erase(ReloadMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001275 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001276 VRM.RemoveMachineInstrFromMaps(DefMI);
1277 MBB.erase(DefMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001278 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001279 VRM.RemoveMachineInstrFromMaps(&MI);
1280 MBB.erase(&MI);
1281
1282 // If NewReg was previously holding value of some SS, it's now clobbered.
1283 // This has to be done now because it's a physical register. When this
1284 // instruction is re-visited, it's ignored.
1285 Spills.ClobberPhysReg(NewReg);
1286
1287 ++NumCommutes;
1288 return true;
1289 }
1290
1291 return false;
1292 }
1293
1294 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1295 /// the last store to the same slot is now dead. If so, remove the last store.
1296 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1297 MachineBasicBlock::iterator &MII,
1298 int Idx, unsigned PhysReg, int StackSlot,
1299 const TargetRegisterClass *RC,
1300 bool isAvailable, MachineInstr *&LastStore,
1301 AvailableSpills &Spills,
1302 SmallSet<MachineInstr*, 4> &ReMatDefs,
1303 BitVector &RegKills,
1304 std::vector<MachineOperand*> &KillOps,
1305 VirtRegMap &VRM) {
1306
1307 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1308 MachineInstr *StoreMI = next(MII);
1309 VRM.addSpillSlotUse(StackSlot, StoreMI);
1310 DOUT << "Store:\t" << *StoreMI;
1311
1312 // If there is a dead store to this stack slot, nuke it now.
1313 if (LastStore) {
1314 DOUT << "Removed dead store:\t" << *LastStore;
1315 ++NumDSE;
1316 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00001317 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00001318 MachineBasicBlock::iterator PrevMII = LastStore;
1319 bool CheckDef = PrevMII != MBB.begin();
1320 if (CheckDef)
1321 --PrevMII;
1322 VRM.RemoveMachineInstrFromMaps(LastStore);
1323 MBB.erase(LastStore);
1324 if (CheckDef) {
1325 // Look at defs of killed registers on the store. Mark the defs
1326 // as dead since the store has been deleted and they aren't
1327 // being reused.
1328 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1329 bool HasOtherDef = false;
1330 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1331 MachineInstr *DeadDef = PrevMII;
1332 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
Evan Cheng4784f1f2009-06-30 08:49:04 +00001333 // FIXME: This assumes a remat def does not have side effects.
Lang Hames87e3bca2009-05-06 02:36:21 +00001334 VRM.RemoveMachineInstrFromMaps(DeadDef);
1335 MBB.erase(DeadDef);
1336 ++NumDRM;
1337 }
1338 }
1339 }
1340 }
1341 }
1342
1343 LastStore = next(MII);
1344
1345 // If the stack slot value was previously available in some other
1346 // register, change it now. Otherwise, make the register available,
1347 // in PhysReg.
1348 Spills.ModifyStackSlotOrReMat(StackSlot);
1349 Spills.ClobberPhysReg(PhysReg);
1350 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1351 ++NumStores;
1352 }
1353
1354 /// TransferDeadness - A identity copy definition is dead and it's being
1355 /// removed. Find the last def or use and mark it as dead / kill.
1356 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1357 unsigned Reg, BitVector &RegKills,
Evan Chengeca24fb2009-05-12 23:07:00 +00001358 std::vector<MachineOperand*> &KillOps,
1359 VirtRegMap &VRM) {
1360 SmallPtrSet<MachineInstr*, 4> Seens;
1361 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
Lang Hames87e3bca2009-05-06 02:36:21 +00001362 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1363 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1364 MachineInstr *UDMI = &*RI;
1365 if (UDMI->getParent() != MBB)
1366 continue;
1367 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1368 if (DI == DistanceMap.end() || DI->second > CurDist)
1369 continue;
Evan Chengeca24fb2009-05-12 23:07:00 +00001370 if (Seens.insert(UDMI))
1371 Refs.push_back(std::make_pair(UDMI, DI->second));
Lang Hames87e3bca2009-05-06 02:36:21 +00001372 }
1373
Evan Chengeca24fb2009-05-12 23:07:00 +00001374 if (Refs.empty())
1375 return;
1376 std::sort(Refs.begin(), Refs.end(), RefSorter());
1377
1378 while (!Refs.empty()) {
1379 MachineInstr *LastUDMI = Refs.back().first;
1380 Refs.pop_back();
1381
Lang Hames87e3bca2009-05-06 02:36:21 +00001382 MachineOperand *LastUD = NULL;
1383 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1384 MachineOperand &MO = LastUDMI->getOperand(i);
1385 if (!MO.isReg() || MO.getReg() != Reg)
1386 continue;
1387 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1388 LastUD = &MO;
1389 if (LastUDMI->isRegTiedToDefOperand(i))
Evan Chengeca24fb2009-05-12 23:07:00 +00001390 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001391 }
Evan Chengeca24fb2009-05-12 23:07:00 +00001392 if (LastUD->isDef()) {
1393 // If the instruction has no side effect, delete it and propagate
1394 // backward further. Otherwise, mark is dead and we are done.
Evan Chengfc6ad402009-07-22 00:25:27 +00001395 if (!TII->isDeadInstruction(LastUDMI)) {
Evan Chengeca24fb2009-05-12 23:07:00 +00001396 LastUD->setIsDead();
1397 break;
1398 }
1399 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1400 MBB->erase(LastUDMI);
1401 } else {
Lang Hames87e3bca2009-05-06 02:36:21 +00001402 LastUD->setIsKill();
1403 RegKills.set(Reg);
1404 KillOps[Reg] = LastUD;
Evan Chengeca24fb2009-05-12 23:07:00 +00001405 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001406 }
1407 }
1408 }
1409
1410 /// rewriteMBB - Keep track of which spills are available even after the
1411 /// register allocator is done with them. If possible, avid reloading vregs.
1412 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1413 LiveIntervals *LIs,
1414 AvailableSpills &Spills, BitVector &RegKills,
1415 std::vector<MachineOperand*> &KillOps) {
1416
Daniel Dunbarce63ffb2009-07-25 00:23:56 +00001417 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1418 << MBB.getBasicBlock()->getName() << "':\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001419
1420 MachineFunction &MF = *MBB.getParent();
1421
1422 // MaybeDeadStores - When we need to write a value back into a stack slot,
1423 // keep track of the inserted store. If the stack slot value is never read
1424 // (because the value was used from some available register, for example), and
1425 // subsequently stored to, the original store is dead. This map keeps track
1426 // of inserted stores that are not used. If we see a subsequent store to the
1427 // same stack slot, the original store is deleted.
1428 std::vector<MachineInstr*> MaybeDeadStores;
1429 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1430
1431 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1432 SmallSet<MachineInstr*, 4> ReMatDefs;
1433
1434 // Clear kill info.
1435 SmallSet<unsigned, 2> KilledMIRegs;
1436 RegKills.reset();
1437 KillOps.clear();
1438 KillOps.resize(TRI->getNumRegs(), NULL);
1439
1440 unsigned Dist = 0;
1441 DistanceMap.clear();
1442 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1443 MII != E; ) {
1444 MachineBasicBlock::iterator NextMII = next(MII);
1445
1446 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1447 bool Erased = false;
1448 bool BackTracked = false;
1449 if (OptimizeByUnfold(MBB, MII,
1450 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1451 NextMII = next(MII);
1452
1453 MachineInstr &MI = *MII;
1454
1455 if (VRM.hasEmergencySpills(&MI)) {
1456 // Spill physical register(s) in the rare case the allocator has run out
1457 // of registers to allocate.
1458 SmallSet<int, 4> UsedSS;
1459 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1460 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1461 unsigned PhysReg = EmSpills[i];
1462 const TargetRegisterClass *RC =
1463 TRI->getPhysicalRegisterRegClass(PhysReg);
1464 assert(RC && "Unable to determine register class!");
1465 int SS = VRM.getEmergencySpillSlot(RC);
1466 if (UsedSS.count(SS))
Torok Edwinc23197a2009-07-14 16:55:14 +00001467 llvm_unreachable("Need to spill more than one physical registers!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001468 UsedSS.insert(SS);
1469 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1470 MachineInstr *StoreMI = prior(MII);
1471 VRM.addSpillSlotUse(SS, StoreMI);
1472 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1473 MachineInstr *LoadMI = next(MII);
1474 VRM.addSpillSlotUse(SS, LoadMI);
1475 ++NumPSpills;
1476 }
1477 NextMII = next(MII);
1478 }
1479
1480 // Insert restores here if asked to.
1481 if (VRM.isRestorePt(&MI)) {
1482 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1483 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1484 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1485 if (!VRM.getPreSplitReg(VirtReg))
1486 continue; // Split interval spilled again.
1487 unsigned Phys = VRM.getPhys(VirtReg);
1488 RegInfo->setPhysRegUsed(Phys);
1489
1490 // Check if the value being restored if available. If so, it must be
1491 // from a predecessor BB that fallthrough into this BB. We do not
1492 // expect:
1493 // BB1:
1494 // r1 = load fi#1
1495 // ...
1496 // = r1<kill>
1497 // ... # r1 not clobbered
1498 // ...
1499 // = load fi#1
1500 bool DoReMat = VRM.isReMaterialized(VirtReg);
1501 int SSorRMId = DoReMat
1502 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1503 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1504 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1505 if (InReg == Phys) {
1506 // If the value is already available in the expected register, save
1507 // a reload / remat.
1508 if (SSorRMId)
1509 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1510 else
1511 DOUT << "Reusing SS#" << SSorRMId;
1512 DOUT << " from physreg "
1513 << TRI->getName(InReg) << " for vreg"
1514 << VirtReg <<" instead of reloading into physreg "
1515 << TRI->getName(Phys) << "\n";
1516 ++NumOmitted;
1517 continue;
1518 } else if (InReg && InReg != Phys) {
1519 if (SSorRMId)
1520 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1521 else
1522 DOUT << "Reusing SS#" << SSorRMId;
1523 DOUT << " from physreg "
1524 << TRI->getName(InReg) << " for vreg"
1525 << VirtReg <<" by copying it into physreg "
1526 << TRI->getName(Phys) << "\n";
1527
1528 // If the reloaded / remat value is available in another register,
1529 // copy it to the desired register.
1530 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1531
1532 // This invalidates Phys.
1533 Spills.ClobberPhysReg(Phys);
1534 // Remember it's available.
1535 Spills.addAvailable(SSorRMId, Phys);
1536
1537 // Mark is killed.
1538 MachineInstr *CopyMI = prior(MII);
1539 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1540 KillOpnd->setIsKill();
Evan Cheng427a6b62009-05-15 06:48:19 +00001541 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001542
1543 DOUT << '\t' << *CopyMI;
1544 ++NumCopified;
1545 continue;
1546 }
1547
1548 if (VRM.isReMaterialized(VirtReg)) {
1549 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1550 } else {
1551 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1552 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1553 MachineInstr *LoadMI = prior(MII);
1554 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1555 ++NumLoads;
1556 }
1557
1558 // This invalidates Phys.
1559 Spills.ClobberPhysReg(Phys);
1560 // Remember it's available.
1561 Spills.addAvailable(SSorRMId, Phys);
1562
Evan Cheng427a6b62009-05-15 06:48:19 +00001563 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001564 DOUT << '\t' << *prior(MII);
1565 }
1566 }
1567
1568 // Insert spills here if asked to.
1569 if (VRM.isSpillPt(&MI)) {
1570 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1571 VRM.getSpillPtSpills(&MI);
1572 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1573 unsigned VirtReg = SpillRegs[i].first;
1574 bool isKill = SpillRegs[i].second;
1575 if (!VRM.getPreSplitReg(VirtReg))
1576 continue; // Split interval spilled again.
1577 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1578 unsigned Phys = VRM.getPhys(VirtReg);
1579 int StackSlot = VRM.getStackSlot(VirtReg);
1580 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1581 MachineInstr *StoreMI = next(MII);
1582 VRM.addSpillSlotUse(StackSlot, StoreMI);
1583 DOUT << "Store:\t" << *StoreMI;
1584 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1585 }
1586 NextMII = next(MII);
1587 }
1588
1589 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1590 /// reuse.
1591 ReuseInfo ReusedOperands(MI, TRI);
1592 SmallVector<unsigned, 4> VirtUseOps;
1593 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1594 MachineOperand &MO = MI.getOperand(i);
1595 if (!MO.isReg() || MO.getReg() == 0)
1596 continue; // Ignore non-register operands.
1597
1598 unsigned VirtReg = MO.getReg();
1599 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1600 // Ignore physregs for spilling, but remember that it is used by this
1601 // function.
1602 RegInfo->setPhysRegUsed(VirtReg);
1603 continue;
1604 }
1605
1606 // We want to process implicit virtual register uses first.
1607 if (MO.isImplicit())
1608 // If the virtual register is implicitly defined, emit a implicit_def
1609 // before so scavenger knows it's "defined".
Evan Cheng4784f1f2009-06-30 08:49:04 +00001610 // FIXME: This is a horrible hack done the by register allocator to
1611 // remat a definition with virtual register operand.
Lang Hames87e3bca2009-05-06 02:36:21 +00001612 VirtUseOps.insert(VirtUseOps.begin(), i);
1613 else
1614 VirtUseOps.push_back(i);
1615 }
1616
1617 // Process all of the spilled uses and all non spilled reg references.
1618 SmallVector<int, 2> PotentialDeadStoreSlots;
1619 KilledMIRegs.clear();
1620 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1621 unsigned i = VirtUseOps[j];
1622 MachineOperand &MO = MI.getOperand(i);
1623 unsigned VirtReg = MO.getReg();
1624 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1625 "Not a virtual register?");
1626
1627 unsigned SubIdx = MO.getSubReg();
1628 if (VRM.isAssignedReg(VirtReg)) {
1629 // This virtual register was assigned a physreg!
1630 unsigned Phys = VRM.getPhys(VirtReg);
1631 RegInfo->setPhysRegUsed(Phys);
1632 if (MO.isDef())
1633 ReusedOperands.markClobbered(Phys);
1634 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1635 MI.getOperand(i).setReg(RReg);
1636 MI.getOperand(i).setSubReg(0);
1637 if (VRM.isImplicitlyDefined(VirtReg))
Evan Cheng4784f1f2009-06-30 08:49:04 +00001638 // FIXME: Is this needed?
Lang Hames87e3bca2009-05-06 02:36:21 +00001639 BuildMI(MBB, &MI, MI.getDebugLoc(),
1640 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1641 continue;
1642 }
1643
1644 // This virtual register is now known to be a spilled value.
1645 if (!MO.isUse())
1646 continue; // Handle defs in the loop below (handle use&def here though)
1647
Evan Cheng4784f1f2009-06-30 08:49:04 +00001648 bool AvoidReload = MO.isUndef();
1649 // Check if it is defined by an implicit def. It should not be spilled.
1650 // Note, this is for correctness reason. e.g.
1651 // 8 %reg1024<def> = IMPLICIT_DEF
1652 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1653 // The live range [12, 14) are not part of the r1024 live interval since
1654 // it's defined by an implicit def. It will not conflicts with live
1655 // interval of r1025. Now suppose both registers are spilled, you can
1656 // easily see a situation where both registers are reloaded before
1657 // the INSERT_SUBREG and both target registers that would overlap.
Lang Hames87e3bca2009-05-06 02:36:21 +00001658 bool DoReMat = VRM.isReMaterialized(VirtReg);
1659 int SSorRMId = DoReMat
1660 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1661 int ReuseSlot = SSorRMId;
1662
1663 // Check to see if this stack slot is available.
1664 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1665
1666 // If this is a sub-register use, make sure the reuse register is in the
1667 // right register class. For example, for x86 not all of the 32-bit
1668 // registers have accessible sub-registers.
1669 // Similarly so for EXTRACT_SUBREG. Consider this:
1670 // EDI = op
1671 // MOV32_mr fi#1, EDI
1672 // ...
1673 // = EXTRACT_SUBREG fi#1
1674 // fi#1 is available in EDI, but it cannot be reused because it's not in
1675 // the right register file.
1676 if (PhysReg && !AvoidReload &&
1677 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1678 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1679 if (!RC->contains(PhysReg))
1680 PhysReg = 0;
1681 }
1682
1683 if (PhysReg && !AvoidReload) {
1684 // This spilled operand might be part of a two-address operand. If this
1685 // is the case, then changing it will necessarily require changing the
1686 // def part of the instruction as well. However, in some cases, we
1687 // aren't allowed to modify the reused register. If none of these cases
1688 // apply, reuse it.
1689 bool CanReuse = true;
1690 bool isTied = MI.isRegTiedToDefOperand(i);
1691 if (isTied) {
1692 // Okay, we have a two address operand. We can reuse this physreg as
1693 // long as we are allowed to clobber the value and there isn't an
1694 // earlier def that has already clobbered the physreg.
1695 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1696 Spills.canClobberPhysReg(PhysReg);
1697 }
1698
1699 if (CanReuse) {
1700 // If this stack slot value is already available, reuse it!
1701 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1702 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1703 else
1704 DOUT << "Reusing SS#" << ReuseSlot;
1705 DOUT << " from physreg "
1706 << TRI->getName(PhysReg) << " for vreg"
1707 << VirtReg <<" instead of reloading into physreg "
1708 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1709 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1710 MI.getOperand(i).setReg(RReg);
1711 MI.getOperand(i).setSubReg(0);
1712
1713 // The only technical detail we have is that we don't know that
1714 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1715 // later in the instruction. In particular, consider 'op V1, V2'.
1716 // If V1 is available in physreg R0, we would choose to reuse it
1717 // here, instead of reloading it into the register the allocator
1718 // indicated (say R1). However, V2 might have to be reloaded
1719 // later, and it might indicate that it needs to live in R0. When
1720 // this occurs, we need to have information available that
1721 // indicates it is safe to use R1 for the reload instead of R0.
1722 //
1723 // To further complicate matters, we might conflict with an alias,
1724 // or R0 and R1 might not be compatible with each other. In this
1725 // case, we actually insert a reload for V1 in R1, ensuring that
1726 // we can get at R0 or its alias.
1727 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1728 VRM.getPhys(VirtReg), VirtReg);
1729 if (isTied)
1730 // Only mark it clobbered if this is a use&def operand.
1731 ReusedOperands.markClobbered(PhysReg);
1732 ++NumReused;
1733
1734 if (MI.getOperand(i).isKill() &&
1735 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1736
1737 // The store of this spilled value is potentially dead, but we
1738 // won't know for certain until we've confirmed that the re-use
1739 // above is valid, which means waiting until the other operands
1740 // are processed. For now we just track the spill slot, we'll
1741 // remove it after the other operands are processed if valid.
1742
1743 PotentialDeadStoreSlots.push_back(ReuseSlot);
1744 }
1745
1746 // Mark is isKill if it's there no other uses of the same virtual
1747 // register and it's not a two-address operand. IsKill will be
1748 // unset if reg is reused.
1749 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1750 MI.getOperand(i).setIsKill();
1751 KilledMIRegs.insert(VirtReg);
1752 }
1753
1754 continue;
1755 } // CanReuse
1756
1757 // Otherwise we have a situation where we have a two-address instruction
1758 // whose mod/ref operand needs to be reloaded. This reload is already
1759 // available in some register "PhysReg", but if we used PhysReg as the
1760 // operand to our 2-addr instruction, the instruction would modify
1761 // PhysReg. This isn't cool if something later uses PhysReg and expects
1762 // to get its initial value.
1763 //
1764 // To avoid this problem, and to avoid doing a load right after a store,
1765 // we emit a copy from PhysReg into the designated register for this
1766 // operand.
1767 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1768 assert(DesignatedReg && "Must map virtreg to physreg!");
1769
1770 // Note that, if we reused a register for a previous operand, the
1771 // register we want to reload into might not actually be
1772 // available. If this occurs, use the register indicated by the
1773 // reuser.
1774 if (ReusedOperands.hasReuses())
Evan Cheng5d885022009-07-21 09:15:00 +00001775 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1776 DesignatedReg, &MI,
1777 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001778
1779 // If the mapped designated register is actually the physreg we have
1780 // incoming, we don't need to inserted a dead copy.
1781 if (DesignatedReg == PhysReg) {
1782 // If this stack slot value is already available, reuse it!
1783 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1784 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1785 else
1786 DOUT << "Reusing SS#" << ReuseSlot;
1787 DOUT << " from physreg " << TRI->getName(PhysReg)
1788 << " for vreg" << VirtReg
1789 << " instead of reloading into same physreg.\n";
1790 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1791 MI.getOperand(i).setReg(RReg);
1792 MI.getOperand(i).setSubReg(0);
1793 ReusedOperands.markClobbered(RReg);
1794 ++NumReused;
1795 continue;
1796 }
1797
1798 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1799 RegInfo->setPhysRegUsed(DesignatedReg);
1800 ReusedOperands.markClobbered(DesignatedReg);
1801 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1802
1803 MachineInstr *CopyMI = prior(MII);
Evan Cheng427a6b62009-05-15 06:48:19 +00001804 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001805
1806 // This invalidates DesignatedReg.
1807 Spills.ClobberPhysReg(DesignatedReg);
1808
1809 Spills.addAvailable(ReuseSlot, DesignatedReg);
1810 unsigned RReg =
1811 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1812 MI.getOperand(i).setReg(RReg);
1813 MI.getOperand(i).setSubReg(0);
1814 DOUT << '\t' << *prior(MII);
1815 ++NumReused;
1816 continue;
1817 } // if (PhysReg)
1818
1819 // Otherwise, reload it and remember that we have it.
1820 PhysReg = VRM.getPhys(VirtReg);
1821 assert(PhysReg && "Must map virtreg to physreg!");
1822
1823 // Note that, if we reused a register for a previous operand, the
1824 // register we want to reload into might not actually be
1825 // available. If this occurs, use the register indicated by the
1826 // reuser.
1827 if (ReusedOperands.hasReuses())
Evan Cheng5d885022009-07-21 09:15:00 +00001828 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
1829 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001830
1831 RegInfo->setPhysRegUsed(PhysReg);
1832 ReusedOperands.markClobbered(PhysReg);
1833 if (AvoidReload)
1834 ++NumAvoided;
1835 else {
1836 if (DoReMat) {
1837 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1838 } else {
1839 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1840 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1841 MachineInstr *LoadMI = prior(MII);
1842 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1843 ++NumLoads;
1844 }
1845 // This invalidates PhysReg.
1846 Spills.ClobberPhysReg(PhysReg);
1847
1848 // Any stores to this stack slot are not dead anymore.
1849 if (!DoReMat)
1850 MaybeDeadStores[SSorRMId] = NULL;
1851 Spills.addAvailable(SSorRMId, PhysReg);
1852 // Assumes this is the last use. IsKill will be unset if reg is reused
1853 // unless it's a two-address operand.
1854 if (!MI.isRegTiedToDefOperand(i) &&
1855 KilledMIRegs.count(VirtReg) == 0) {
1856 MI.getOperand(i).setIsKill();
1857 KilledMIRegs.insert(VirtReg);
1858 }
1859
Evan Cheng427a6b62009-05-15 06:48:19 +00001860 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001861 DOUT << '\t' << *prior(MII);
1862 }
1863 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1864 MI.getOperand(i).setReg(RReg);
1865 MI.getOperand(i).setSubReg(0);
1866 }
1867
1868 // Ok - now we can remove stores that have been confirmed dead.
1869 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1870 // This was the last use and the spilled value is still available
1871 // for reuse. That means the spill was unnecessary!
1872 int PDSSlot = PotentialDeadStoreSlots[j];
1873 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1874 if (DeadStore) {
1875 DOUT << "Removed dead store:\t" << *DeadStore;
Evan Cheng427a6b62009-05-15 06:48:19 +00001876 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001877 VRM.RemoveMachineInstrFromMaps(DeadStore);
1878 MBB.erase(DeadStore);
1879 MaybeDeadStores[PDSSlot] = NULL;
1880 ++NumDSE;
1881 }
1882 }
1883
1884
1885 DOUT << '\t' << MI;
1886
1887
1888 // If we have folded references to memory operands, make sure we clear all
1889 // physical registers that may contain the value of the spilled virtual
1890 // register
1891 SmallSet<int, 2> FoldedSS;
1892 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1893 unsigned VirtReg = I->second.first;
1894 VirtRegMap::ModRef MR = I->second.second;
1895 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1896
1897 // MI2VirtMap be can updated which invalidate the iterator.
1898 // Increment the iterator first.
1899 ++I;
1900 int SS = VRM.getStackSlot(VirtReg);
1901 if (SS == VirtRegMap::NO_STACK_SLOT)
1902 continue;
1903 FoldedSS.insert(SS);
1904 DOUT << " - StackSlot: " << SS << "\n";
1905
1906 // If this folded instruction is just a use, check to see if it's a
1907 // straight load from the virt reg slot.
1908 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1909 int FrameIdx;
1910 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1911 if (DestReg && FrameIdx == SS) {
1912 // If this spill slot is available, turn it into a copy (or nothing)
1913 // instead of leaving it as a load!
1914 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1915 DOUT << "Promoted Load To Copy: " << MI;
1916 if (DestReg != InReg) {
1917 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1918 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1919 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1920 unsigned SubIdx = DefMO->getSubReg();
1921 // Revisit the copy so we make sure to notice the effects of the
1922 // operation on the destreg (either needing to RA it if it's
1923 // virtual or needing to clobber any values if it's physical).
1924 NextMII = &MI;
1925 --NextMII; // backtrack to the copy.
1926 // Propagate the sub-register index over.
1927 if (SubIdx) {
1928 DefMO = NextMII->findRegisterDefOperand(DestReg);
1929 DefMO->setSubReg(SubIdx);
1930 }
1931
1932 // Mark is killed.
1933 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1934 KillOpnd->setIsKill();
1935
1936 BackTracked = true;
1937 } else {
1938 DOUT << "Removing now-noop copy: " << MI;
1939 // Unset last kill since it's being reused.
Evan Cheng427a6b62009-05-15 06:48:19 +00001940 InvalidateKill(InReg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001941 Spills.disallowClobberPhysReg(InReg);
1942 }
1943
Evan Cheng427a6b62009-05-15 06:48:19 +00001944 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001945 VRM.RemoveMachineInstrFromMaps(&MI);
1946 MBB.erase(&MI);
1947 Erased = true;
1948 goto ProcessNextInst;
1949 }
1950 } else {
1951 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1952 SmallVector<MachineInstr*, 4> NewMIs;
1953 if (PhysReg &&
1954 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1955 MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001956 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001957 VRM.RemoveMachineInstrFromMaps(&MI);
1958 MBB.erase(&MI);
1959 Erased = true;
1960 --NextMII; // backtrack to the unfolded instruction.
1961 BackTracked = true;
1962 goto ProcessNextInst;
1963 }
1964 }
1965 }
1966
1967 // If this reference is not a use, any previous store is now dead.
1968 // Otherwise, the store to this stack slot is not dead anymore.
1969 MachineInstr* DeadStore = MaybeDeadStores[SS];
1970 if (DeadStore) {
1971 bool isDead = !(MR & VirtRegMap::isRef);
1972 MachineInstr *NewStore = NULL;
1973 if (MR & VirtRegMap::isModRef) {
1974 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1975 SmallVector<MachineInstr*, 4> NewMIs;
1976 // We can reuse this physreg as long as we are allowed to clobber
1977 // the value and there isn't an earlier def that has already clobbered
1978 // the physreg.
1979 if (PhysReg &&
1980 !ReusedOperands.isClobbered(PhysReg) &&
1981 Spills.canClobberPhysReg(PhysReg) &&
1982 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1983 MachineOperand *KillOpnd =
1984 DeadStore->findRegisterUseOperand(PhysReg, true);
1985 // Note, if the store is storing a sub-register, it's possible the
1986 // super-register is needed below.
1987 if (KillOpnd && !KillOpnd->getSubReg() &&
1988 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1989 MBB.insert(MII, NewMIs[0]);
1990 NewStore = NewMIs[1];
1991 MBB.insert(MII, NewStore);
1992 VRM.addSpillSlotUse(SS, NewStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00001993 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001994 VRM.RemoveMachineInstrFromMaps(&MI);
1995 MBB.erase(&MI);
1996 Erased = true;
1997 --NextMII;
1998 --NextMII; // backtrack to the unfolded instruction.
1999 BackTracked = true;
2000 isDead = true;
2001 ++NumSUnfold;
2002 }
2003 }
2004 }
2005
2006 if (isDead) { // Previous store is dead.
2007 // If we get here, the store is dead, nuke it now.
2008 DOUT << "Removed dead store:\t" << *DeadStore;
Evan Cheng427a6b62009-05-15 06:48:19 +00002009 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002010 VRM.RemoveMachineInstrFromMaps(DeadStore);
2011 MBB.erase(DeadStore);
2012 if (!NewStore)
2013 ++NumDSE;
2014 }
2015
2016 MaybeDeadStores[SS] = NULL;
2017 if (NewStore) {
2018 // Treat this store as a spill merged into a copy. That makes the
2019 // stack slot value available.
2020 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2021 goto ProcessNextInst;
2022 }
2023 }
2024
2025 // If the spill slot value is available, and this is a new definition of
2026 // the value, the value is not available anymore.
2027 if (MR & VirtRegMap::isMod) {
2028 // Notice that the value in this stack slot has been modified.
2029 Spills.ModifyStackSlotOrReMat(SS);
2030
2031 // If this is *just* a mod of the value, check to see if this is just a
2032 // store to the spill slot (i.e. the spill got merged into the copy). If
2033 // so, realize that the vreg is available now, and add the store to the
2034 // MaybeDeadStore info.
2035 int StackSlot;
2036 if (!(MR & VirtRegMap::isRef)) {
2037 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2038 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2039 "Src hasn't been allocated yet?");
2040
2041 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2042 Spills, RegKills, KillOps, TRI, VRM)) {
2043 NextMII = next(MII);
2044 BackTracked = true;
2045 goto ProcessNextInst;
2046 }
2047
2048 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2049 // this as a potentially dead store in case there is a subsequent
2050 // store into the stack slot without a read from it.
2051 MaybeDeadStores[StackSlot] = &MI;
2052
2053 // If the stack slot value was previously available in some other
2054 // register, change it now. Otherwise, make the register
2055 // available in PhysReg.
2056 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2057 }
2058 }
2059 }
2060 }
2061
2062 // Process all of the spilled defs.
2063 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2064 MachineOperand &MO = MI.getOperand(i);
2065 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2066 continue;
2067
2068 unsigned VirtReg = MO.getReg();
2069 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2070 // Check to see if this is a noop copy. If so, eliminate the
2071 // instruction before considering the dest reg to be changed.
Evan Cheng2578ba22009-07-01 01:59:31 +00002072 // Also check if it's copying from an "undef", if so, we can't
2073 // eliminate this or else the undef marker is lost and it will
2074 // confuses the scavenger. This is extremely rare.
Lang Hames87e3bca2009-05-06 02:36:21 +00002075 unsigned Src, Dst, SrcSR, DstSR;
Evan Cheng2578ba22009-07-01 01:59:31 +00002076 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2077 !MI.findRegisterUseOperand(Src)->isUndef()) {
Lang Hames87e3bca2009-05-06 02:36:21 +00002078 ++NumDCE;
2079 DOUT << "Removing now-noop copy: " << MI;
2080 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00002081 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00002082 if (MO.isDead() && !KillRegs.empty()) {
2083 // Source register or an implicit super/sub-register use is killed.
2084 assert(KillRegs[0] == Dst ||
2085 TRI->isSubRegister(KillRegs[0], Dst) ||
2086 TRI->isSuperRegister(KillRegs[0], Dst));
2087 // Last def is now dead.
Evan Chengeca24fb2009-05-12 23:07:00 +00002088 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002089 }
2090 VRM.RemoveMachineInstrFromMaps(&MI);
2091 MBB.erase(&MI);
2092 Erased = true;
2093 Spills.disallowClobberPhysReg(VirtReg);
2094 goto ProcessNextInst;
2095 }
Evan Cheng2578ba22009-07-01 01:59:31 +00002096
Lang Hames87e3bca2009-05-06 02:36:21 +00002097 // If it's not a no-op copy, it clobbers the value in the destreg.
2098 Spills.ClobberPhysReg(VirtReg);
2099 ReusedOperands.markClobbered(VirtReg);
2100
2101 // Check to see if this instruction is a load from a stack slot into
2102 // a register. If so, this provides the stack slot value in the reg.
2103 int FrameIdx;
2104 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2105 assert(DestReg == VirtReg && "Unknown load situation!");
2106
2107 // If it is a folded reference, then it's not safe to clobber.
2108 bool Folded = FoldedSS.count(FrameIdx);
2109 // Otherwise, if it wasn't available, remember that it is now!
2110 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2111 goto ProcessNextInst;
2112 }
2113
2114 continue;
2115 }
2116
2117 unsigned SubIdx = MO.getSubReg();
2118 bool DoReMat = VRM.isReMaterialized(VirtReg);
2119 if (DoReMat)
2120 ReMatDefs.insert(&MI);
2121
2122 // The only vregs left are stack slot definitions.
2123 int StackSlot = VRM.getStackSlot(VirtReg);
2124 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2125
2126 // If this def is part of a two-address operand, make sure to execute
2127 // the store from the correct physical register.
2128 unsigned PhysReg;
2129 unsigned TiedOp;
2130 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2131 PhysReg = MI.getOperand(TiedOp).getReg();
2132 if (SubIdx) {
2133 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2134 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2135 "Can't find corresponding super-register!");
2136 PhysReg = SuperReg;
2137 }
2138 } else {
2139 PhysReg = VRM.getPhys(VirtReg);
2140 if (ReusedOperands.isClobbered(PhysReg)) {
2141 // Another def has taken the assigned physreg. It must have been a
2142 // use&def which got it due to reuse. Undo the reuse!
Evan Cheng5d885022009-07-21 09:15:00 +00002143 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2144 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002145 }
2146 }
2147
2148 assert(PhysReg && "VR not assigned a physical register?");
2149 RegInfo->setPhysRegUsed(PhysReg);
2150 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2151 ReusedOperands.markClobbered(RReg);
2152 MI.getOperand(i).setReg(RReg);
2153 MI.getOperand(i).setSubReg(0);
2154
2155 if (!MO.isDead()) {
2156 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2157 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2158 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2159 NextMII = next(MII);
2160
2161 // Check to see if this is a noop copy. If so, eliminate the
2162 // instruction before considering the dest reg to be changed.
2163 {
2164 unsigned Src, Dst, SrcSR, DstSR;
2165 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2166 ++NumDCE;
2167 DOUT << "Removing now-noop copy: " << MI;
Evan Cheng427a6b62009-05-15 06:48:19 +00002168 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002169 VRM.RemoveMachineInstrFromMaps(&MI);
2170 MBB.erase(&MI);
2171 Erased = true;
Evan Cheng427a6b62009-05-15 06:48:19 +00002172 UpdateKills(*LastStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002173 goto ProcessNextInst;
2174 }
2175 }
2176 }
2177 }
2178 ProcessNextInst:
Evan Cheng52484682009-07-18 02:10:10 +00002179 // Delete dead instructions without side effects.
Evan Chengfc6ad402009-07-22 00:25:27 +00002180 if (!Erased && !BackTracked && TII->isDeadInstruction(&MI)) {
Evan Cheng52484682009-07-18 02:10:10 +00002181 InvalidateKills(MI, TRI, RegKills, KillOps);
2182 VRM.RemoveMachineInstrFromMaps(&MI);
2183 MBB.erase(&MI);
2184 Erased = true;
2185 }
2186 if (!Erased)
2187 DistanceMap.insert(std::make_pair(&MI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00002188 if (!Erased && !BackTracked) {
2189 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
Evan Cheng427a6b62009-05-15 06:48:19 +00002190 UpdateKills(*II, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002191 }
2192 MII = NextMII;
2193 }
2194
2195 }
2196
2197};
2198
2199llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2200 switch (RewriterOpt) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002201 default: llvm_unreachable("Unreachable!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002202 case local:
2203 return new LocalRewriter();
Lang Hamesf41538d2009-06-02 16:53:25 +00002204 case trivial:
2205 return new TrivialRewriter();
Lang Hames87e3bca2009-05-06 02:36:21 +00002206 }
2207}