blob: cea9de6b81cc8147e3efd48dd3950b109ab3370e [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "PowerPC.h"
11#include "PowerPCInstrBuilder.h"
12#include "PowerPCInstrInfo.h"
13#include "llvm/Constants.h"
14#include "llvm/DerivedTypes.h"
15#include "llvm/Function.h"
16#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000017#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000018#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000019#include "llvm/CodeGen/MachineConstantPool.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/SSARegMap.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/InstVisitor.h"
27using namespace llvm;
28
29namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000030 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
31 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000032 ///
33 enum TypeClass {
34 cByte, cShort, cInt, cFP, cLong
35 };
36}
37
38/// getClass - Turn a primitive type into a "class" number which is based on the
39/// size of the type, and whether or not it is floating point.
40///
41static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000042 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000043 case Type::SByteTyID:
44 case Type::UByteTyID: return cByte; // Byte operands are class #0
45 case Type::ShortTyID:
46 case Type::UShortTyID: return cShort; // Short operands are class #1
47 case Type::IntTyID:
48 case Type::UIntTyID:
49 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
50
51 case Type::FloatTyID:
52 case Type::DoubleTyID: return cFP; // Floating Point is #3
53
54 case Type::LongTyID:
55 case Type::ULongTyID: return cLong; // Longs are class #4
56 default:
57 assert(0 && "Invalid type to getClass!");
58 return cByte; // not reached
59 }
60}
61
62// getClassB - Just like getClass, but treat boolean values as ints.
63static inline TypeClass getClassB(const Type *Ty) {
64 if (Ty == Type::BoolTy) return cInt;
65 return getClass(Ty);
66}
67
68namespace {
69 struct ISel : public FunctionPass, InstVisitor<ISel> {
70 TargetMachine &TM;
71 MachineFunction *F; // The function we are compiling into
72 MachineBasicBlock *BB; // The current MBB we are compiling
73 int VarArgsFrameIndex; // FrameIndex for start of varargs area
74 int ReturnAddressIndex; // FrameIndex for the return address
75
76 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
77
78 // MBBMap - Mapping between LLVM BB -> Machine BB
79 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
80
81 // AllocaMap - Mapping from fixed sized alloca instructions to the
82 // FrameIndex for the alloca.
83 std::map<AllocaInst*, unsigned> AllocaMap;
84
85 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
86
87 /// runOnFunction - Top level implementation of instruction selection for
88 /// the entire function.
89 ///
90 bool runOnFunction(Function &Fn) {
91 // First pass over the function, lower any unknown intrinsic functions
92 // with the IntrinsicLowering class.
93 LowerUnknownIntrinsicFunctionCalls(Fn);
94
95 F = &MachineFunction::construct(&Fn, TM);
96
97 // Create all of the machine basic blocks for the function...
98 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
99 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
100
101 BB = &F->front();
102
103 // Set up a frame object for the return address. This is used by the
104 // llvm.returnaddress & llvm.frameaddress intrinisics.
105 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
106
107 // Copy incoming arguments off of the stack...
108 LoadArgumentsToVirtualRegs(Fn);
109
110 // Instruction select everything except PHI nodes
111 visit(Fn);
112
113 // Select the PHI nodes
114 SelectPHINodes();
115
116 RegMap.clear();
117 MBBMap.clear();
118 AllocaMap.clear();
119 F = 0;
120 // We always build a machine code representation for the function
121 return true;
122 }
123
124 virtual const char *getPassName() const {
125 return "PowerPC Simple Instruction Selection";
126 }
127
128 /// visitBasicBlock - This method is called when we are visiting a new basic
129 /// block. This simply creates a new MachineBasicBlock to emit code into
130 /// and adds it to the current MachineFunction. Subsequent visit* for
131 /// instructions will be invoked for all instructions in the basic block.
132 ///
133 void visitBasicBlock(BasicBlock &LLVM_BB) {
134 BB = MBBMap[&LLVM_BB];
135 }
136
137 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
138 /// function, lowering any calls to unknown intrinsic functions into the
139 /// equivalent LLVM code.
140 ///
141 void LowerUnknownIntrinsicFunctionCalls(Function &F);
142
143 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
144 /// from the stack into virtual registers.
145 ///
146 void LoadArgumentsToVirtualRegs(Function &F);
147
148 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
149 /// because we have to generate our sources into the source basic blocks,
150 /// not the current one.
151 ///
152 void SelectPHINodes();
153
154 // Visitation methods for various instructions. These methods simply emit
155 // fixed PowerPC code for each instruction.
156
157 // Control flow operators
158 void visitReturnInst(ReturnInst &RI);
159 void visitBranchInst(BranchInst &BI);
160
161 struct ValueRecord {
162 Value *Val;
163 unsigned Reg;
164 const Type *Ty;
165 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
166 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
167 };
168 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
169 const std::vector<ValueRecord> &Args);
170 void visitCallInst(CallInst &I);
171 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
172
173 // Arithmetic operators
174 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
175 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
176 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
177 void visitMul(BinaryOperator &B);
178
179 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
180 void visitRem(BinaryOperator &B) { visitDivRem(B); }
181 void visitDivRem(BinaryOperator &B);
182
183 // Bitwise operators
184 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
185 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
186 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
187
188 // Comparison operators...
189 void visitSetCondInst(SetCondInst &I);
190 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
191 MachineBasicBlock *MBB,
192 MachineBasicBlock::iterator MBBI);
193 void visitSelectInst(SelectInst &SI);
194
195
196 // Memory Instructions
197 void visitLoadInst(LoadInst &I);
198 void visitStoreInst(StoreInst &I);
199 void visitGetElementPtrInst(GetElementPtrInst &I);
200 void visitAllocaInst(AllocaInst &I);
201 void visitMallocInst(MallocInst &I);
202 void visitFreeInst(FreeInst &I);
203
204 // Other operators
205 void visitShiftInst(ShiftInst &I);
206 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
207 void visitCastInst(CastInst &I);
208 void visitVANextInst(VANextInst &I);
209 void visitVAArgInst(VAArgInst &I);
210
211 void visitInstruction(Instruction &I) {
212 std::cerr << "Cannot instruction select: " << I;
213 abort();
214 }
215
216 /// promote32 - Make a value 32-bits wide, and put it somewhere.
217 ///
218 void promote32(unsigned targetReg, const ValueRecord &VR);
219
220 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
221 /// constant expression GEP support.
222 ///
223 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
224 Value *Src, User::op_iterator IdxBegin,
225 User::op_iterator IdxEnd, unsigned TargetReg);
226
227 /// emitCastOperation - Common code shared between visitCastInst and
228 /// constant expression cast support.
229 ///
230 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
231 Value *Src, const Type *DestTy, unsigned TargetReg);
232
233 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
234 /// and constant expression support.
235 ///
236 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
237 MachineBasicBlock::iterator IP,
238 Value *Op0, Value *Op1,
239 unsigned OperatorClass, unsigned TargetReg);
240
241 /// emitBinaryFPOperation - This method handles emission of floating point
242 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
243 void emitBinaryFPOperation(MachineBasicBlock *BB,
244 MachineBasicBlock::iterator IP,
245 Value *Op0, Value *Op1,
246 unsigned OperatorClass, unsigned TargetReg);
247
248 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
249 Value *Op0, Value *Op1, unsigned TargetReg);
250
251 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
252 unsigned DestReg, const Type *DestTy,
253 unsigned Op0Reg, unsigned Op1Reg);
254 void doMultiplyConst(MachineBasicBlock *MBB,
255 MachineBasicBlock::iterator MBBI,
256 unsigned DestReg, const Type *DestTy,
257 unsigned Op0Reg, unsigned Op1Val);
258
259 void emitDivRemOperation(MachineBasicBlock *BB,
260 MachineBasicBlock::iterator IP,
261 Value *Op0, Value *Op1, bool isDiv,
262 unsigned TargetReg);
263
264 /// emitSetCCOperation - Common code shared between visitSetCondInst and
265 /// constant expression support.
266 ///
267 void emitSetCCOperation(MachineBasicBlock *BB,
268 MachineBasicBlock::iterator IP,
269 Value *Op0, Value *Op1, unsigned Opcode,
270 unsigned TargetReg);
271
272 /// emitShiftOperation - Common code shared between visitShiftInst and
273 /// constant expression support.
274 ///
275 void emitShiftOperation(MachineBasicBlock *MBB,
276 MachineBasicBlock::iterator IP,
277 Value *Op, Value *ShiftAmount, bool isLeftShift,
278 const Type *ResultTy, unsigned DestReg);
279
280 /// emitSelectOperation - Common code shared between visitSelectInst and the
281 /// constant expression support.
282 void emitSelectOperation(MachineBasicBlock *MBB,
283 MachineBasicBlock::iterator IP,
284 Value *Cond, Value *TrueVal, Value *FalseVal,
285 unsigned DestReg);
286
287 /// copyConstantToRegister - Output the instructions required to put the
288 /// specified constant into the specified register.
289 ///
290 void copyConstantToRegister(MachineBasicBlock *MBB,
291 MachineBasicBlock::iterator MBBI,
292 Constant *C, unsigned Reg);
293
294 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
295 unsigned LHS, unsigned RHS);
296
297 /// makeAnotherReg - This method returns the next register number we haven't
298 /// yet used.
299 ///
300 /// Long values are handled somewhat specially. They are always allocated
301 /// as pairs of 32 bit integer values. The register number returned is the
302 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
303 /// of the long value.
304 ///
305 unsigned makeAnotherReg(const Type *Ty) {
306 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
307 "Current target doesn't have PPC reg info??");
308 const PowerPCRegisterInfo *MRI =
309 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
310 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
311 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
312 // Create the lower part
313 F->getSSARegMap()->createVirtualRegister(RC);
314 // Create the upper part.
315 return F->getSSARegMap()->createVirtualRegister(RC)-1;
316 }
317
318 // Add the mapping of regnumber => reg class to MachineFunction
319 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
320 return F->getSSARegMap()->createVirtualRegister(RC);
321 }
322
323 /// getReg - This method turns an LLVM value into a register number.
324 ///
325 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
326 unsigned getReg(Value *V) {
327 // Just append to the end of the current bb.
328 MachineBasicBlock::iterator It = BB->end();
329 return getReg(V, BB, It);
330 }
331 unsigned getReg(Value *V, MachineBasicBlock *MBB,
332 MachineBasicBlock::iterator IPt);
333
334 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
335 /// that is to be statically allocated with the initial stack frame
336 /// adjustment.
337 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
338 };
339}
340
341/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
342/// instruction in the entry block, return it. Otherwise, return a null
343/// pointer.
344static AllocaInst *dyn_castFixedAlloca(Value *V) {
345 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
346 BasicBlock *BB = AI->getParent();
347 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
348 return AI;
349 }
350 return 0;
351}
352
353/// getReg - This method turns an LLVM value into a register number.
354///
355unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
356 MachineBasicBlock::iterator IPt) {
357 // If this operand is a constant, emit the code to copy the constant into
358 // the register here...
359 //
360 if (Constant *C = dyn_cast<Constant>(V)) {
361 unsigned Reg = makeAnotherReg(V->getType());
362 copyConstantToRegister(MBB, IPt, C, Reg);
363 return Reg;
364 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
365 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000366 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000367 // Move the address of the global into the register
368 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0).addGlobalAddress(GV);
369 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1).addGlobalAddress(GV);
370 return Reg2;
371 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
372 // Do not emit noop casts at all.
373 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
374 return getReg(CI->getOperand(0), MBB, IPt);
375 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
376 unsigned Reg = makeAnotherReg(V->getType());
377 unsigned FI = getFixedSizedAllocaFI(AI);
378 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
379 return Reg;
380 }
381
382 unsigned &Reg = RegMap[V];
383 if (Reg == 0) {
384 Reg = makeAnotherReg(V->getType());
385 RegMap[V] = Reg;
386 }
387
388 return Reg;
389}
390
391/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
392/// that is to be statically allocated with the initial stack frame
393/// adjustment.
394unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
395 // Already computed this?
396 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
397 if (I != AllocaMap.end() && I->first == AI) return I->second;
398
399 const Type *Ty = AI->getAllocatedType();
400 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
401 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
402 TySize *= CUI->getValue(); // Get total allocated size...
403 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
404
405 // Create a new stack object using the frame manager...
406 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
407 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
408 return FrameIdx;
409}
410
411
412/// copyConstantToRegister - Output the instructions required to put the
413/// specified constant into the specified register.
414///
415void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
416 MachineBasicBlock::iterator IP,
417 Constant *C, unsigned R) {
418 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
419 unsigned Class = 0;
420 switch (CE->getOpcode()) {
421 case Instruction::GetElementPtr:
422 emitGEPOperation(MBB, IP, CE->getOperand(0),
423 CE->op_begin()+1, CE->op_end(), R);
424 return;
425 case Instruction::Cast:
426 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
427 return;
428
429 case Instruction::Xor: ++Class; // FALL THROUGH
430 case Instruction::Or: ++Class; // FALL THROUGH
431 case Instruction::And: ++Class; // FALL THROUGH
432 case Instruction::Sub: ++Class; // FALL THROUGH
433 case Instruction::Add:
434 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
435 Class, R);
436 return;
437
438 case Instruction::Mul:
439 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
440 return;
441
442 case Instruction::Div:
443 case Instruction::Rem:
444 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
445 CE->getOpcode() == Instruction::Div, R);
446 return;
447
448 case Instruction::SetNE:
449 case Instruction::SetEQ:
450 case Instruction::SetLT:
451 case Instruction::SetGT:
452 case Instruction::SetLE:
453 case Instruction::SetGE:
454 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
455 CE->getOpcode(), R);
456 return;
457
458 case Instruction::Shl:
459 case Instruction::Shr:
460 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
461 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
462 return;
463
464 case Instruction::Select:
465 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
466 CE->getOperand(2), R);
467 return;
468
469 default:
470 std::cerr << "Offending expr: " << C << "\n";
471 assert(0 && "Constant expression not yet handled!\n");
472 }
473 }
474
475 if (C->getType()->isIntegral()) {
476 unsigned Class = getClassB(C->getType());
477
478 if (Class == cLong) {
479 // Copy the value into the register pair.
480 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000481 unsigned hiTmp = makeAnotherReg(Type::IntTy);
482 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000483 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0).addImm(Val >> 48);
484 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp).addImm((Val >> 32) & 0xFFFF);
485 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0).addImm((Val >> 16) & 0xFFFF);
486 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
487 return;
488 }
489
490 assert(Class <= cInt && "Type not handled yet!");
491
492 if (C->getType() == Type::BoolTy) {
493 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(C == ConstantBool::True);
494 } else if (Class == cByte || Class == cShort) {
495 ConstantInt *CI = cast<ConstantInt>(C);
496 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
497 } else {
498 ConstantInt *CI = cast<ConstantInt>(C);
499 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
500 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +0000501 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
502 } else {
503 unsigned TmpReg = makeAnotherReg(Type::IntTy);
504 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(CI->getRawValue() >> 16);
505 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg).addImm(CI->getRawValue() & 0xFFFF);
506 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000507 }
508 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
509 // We need to spill the constant to memory...
510 MachineConstantPool *CP = F->getConstantPool();
511 unsigned CPI = CP->getConstantPoolIndex(CFP);
512 const Type *Ty = CFP->getType();
513
514 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
515 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
516 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
517 } else if (isa<ConstantPointerNull>(C)) {
518 // Copy zero (null pointer) to the register.
519 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
520 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000521 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
522 .addGlobalAddress(CPR->getValue());
523 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
524 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000525 } else {
526 std::cerr << "Offending constant: " << C << "\n";
527 assert(0 && "Type not handled yet!");
528 }
529}
530
531/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
532/// the stack into virtual registers.
533///
534/// FIXME: When we can calculate which args are coming in via registers
535/// source them from there instead.
536void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
537 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
538 unsigned GPR_remaining = 8;
539 unsigned FPR_remaining = 13;
540 unsigned GPR_idx = 3;
541 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000542
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000543 MachineFrameInfo *MFI = F->getFrameInfo();
544
545 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
546 bool ArgLive = !I->use_empty();
547 unsigned Reg = ArgLive ? getReg(*I) : 0;
548 int FI; // Frame object index
549
550 switch (getClassB(I->getType())) {
551 case cByte:
552 if (ArgLive) {
553 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000554 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000555 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
556 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000557 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000558 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000559 }
560 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000561 break;
562 case cShort:
563 if (ArgLive) {
564 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000565 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000566 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
567 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000568 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000569 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000570 }
571 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000572 break;
573 case cInt:
574 if (ArgLive) {
575 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000576 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000577 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
578 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000579 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000580 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000581 }
582 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000583 break;
584 case cLong:
585 if (ArgLive) {
586 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000587 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000588 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
589 .addReg(PPC32::R0+GPR_idx);
590 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
591 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000592 } else {
593 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
594 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
595 }
596 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000597 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000598 if (GPR_remaining > 1) {
599 GPR_remaining--; // uses up 2 GPRs
600 GPR_idx++;
601 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000602 break;
603 case cFP:
604 if (ArgLive) {
605 unsigned Opcode;
606 if (I->getType() == Type::FloatTy) {
607 Opcode = PPC32::LFS;
608 FI = MFI->CreateFixedObject(4, ArgOffset);
609 } else {
610 Opcode = PPC32::LFD;
611 FI = MFI->CreateFixedObject(8, ArgOffset);
612 }
Misha Brukman422791f2004-06-21 17:41:12 +0000613 if (FPR_remaining > 0) {
614 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
615 FPR_remaining--;
616 FPR_idx++;
617 } else {
618 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
619 }
620 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000621 if (I->getType() == Type::DoubleTy) {
622 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000623 if (GPR_remaining > 0) {
624 GPR_remaining--; // uses up 2 GPRs
625 GPR_idx++;
626 }
627 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000628 break;
629 default:
630 assert(0 && "Unhandled argument type!");
631 }
632 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000633 if (GPR_remaining > 0) {
634 GPR_remaining--; // uses up 2 GPRs
635 GPR_idx++;
636 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000637 }
638
639 // If the function takes variable number of arguments, add a frame offset for
640 // the start of the first vararg value... this is used to expand
641 // llvm.va_start.
642 if (Fn.getFunctionType()->isVarArg())
643 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
644}
645
646
647/// SelectPHINodes - Insert machine code to generate phis. This is tricky
648/// because we have to generate our sources into the source basic blocks, not
649/// the current one.
650///
651void ISel::SelectPHINodes() {
652 const TargetInstrInfo &TII = *TM.getInstrInfo();
653 const Function &LF = *F->getFunction(); // The LLVM function...
654 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
655 const BasicBlock *BB = I;
656 MachineBasicBlock &MBB = *MBBMap[I];
657
658 // Loop over all of the PHI nodes in the LLVM basic block...
659 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
660 for (BasicBlock::const_iterator I = BB->begin();
661 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
662
663 // Create a new machine instr PHI node, and insert it.
664 unsigned PHIReg = getReg(*PN);
665 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
666 PPC32::PHI, PN->getNumOperands(), PHIReg);
667
668 MachineInstr *LongPhiMI = 0;
669 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
670 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
671 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
672
673 // PHIValues - Map of blocks to incoming virtual registers. We use this
674 // so that we only initialize one incoming value for a particular block,
675 // even if the block has multiple entries in the PHI node.
676 //
677 std::map<MachineBasicBlock*, unsigned> PHIValues;
678
679 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
680 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
681 unsigned ValReg;
682 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
683 PHIValues.lower_bound(PredMBB);
684
685 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
686 // We already inserted an initialization of the register for this
687 // predecessor. Recycle it.
688 ValReg = EntryIt->second;
689
690 } else {
691 // Get the incoming value into a virtual register.
692 //
693 Value *Val = PN->getIncomingValue(i);
694
695 // If this is a constant or GlobalValue, we may have to insert code
696 // into the basic block to compute it into a virtual register.
697 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
698 isa<GlobalValue>(Val)) {
699 // Simple constants get emitted at the end of the basic block,
700 // before any terminator instructions. We "know" that the code to
701 // move a constant into a register will never clobber any flags.
702 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
703 } else {
704 // Because we don't want to clobber any values which might be in
705 // physical registers with the computation of this constant (which
706 // might be arbitrarily complex if it is a constant expression),
707 // just insert the computation at the top of the basic block.
708 MachineBasicBlock::iterator PI = PredMBB->begin();
709
710 // Skip over any PHI nodes though!
711 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
712 ++PI;
713
714 ValReg = getReg(Val, PredMBB, PI);
715 }
716
717 // Remember that we inserted a value for this PHI for this predecessor
718 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
719 }
720
721 PhiMI->addRegOperand(ValReg);
722 PhiMI->addMachineBasicBlockOperand(PredMBB);
723 if (LongPhiMI) {
724 LongPhiMI->addRegOperand(ValReg+1);
725 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
726 }
727 }
728
729 // Now that we emitted all of the incoming values for the PHI node, make
730 // sure to reposition the InsertPoint after the PHI that we just added.
731 // This is needed because we might have inserted a constant into this
732 // block, right after the PHI's which is before the old insert point!
733 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
734 ++PHIInsertPoint;
735 }
736 }
737}
738
739
740// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
741// it into the conditional branch or select instruction which is the only user
742// of the cc instruction. This is the case if the conditional branch is the
743// only user of the setcc, and if the setcc is in the same basic block as the
744// conditional branch. We also don't handle long arguments below, so we reject
745// them here as well.
746//
747static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
748 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
749 if (SCI->hasOneUse()) {
750 Instruction *User = cast<Instruction>(SCI->use_back());
751 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
752 SCI->getParent() == User->getParent() &&
753 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
754 SCI->getOpcode() == Instruction::SetEQ ||
755 SCI->getOpcode() == Instruction::SetNE))
756 return SCI;
757 }
758 return 0;
759}
760
761// Return a fixed numbering for setcc instructions which does not depend on the
762// order of the opcodes.
763//
764static unsigned getSetCCNumber(unsigned Opcode) {
765 switch(Opcode) {
766 default: assert(0 && "Unknown setcc instruction!");
767 case Instruction::SetEQ: return 0;
768 case Instruction::SetNE: return 1;
769 case Instruction::SetLT: return 2;
770 case Instruction::SetGE: return 3;
771 case Instruction::SetGT: return 4;
772 case Instruction::SetLE: return 5;
773 }
774}
775
776/// emitUCOM - emits an unordered FP compare.
777void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
778 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000779 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000780}
781
782// EmitComparison - This function emits a comparison of the two operands,
783// returning the extended setcc code to use.
784unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
785 MachineBasicBlock *MBB,
786 MachineBasicBlock::iterator IP) {
787 // The arguments are already supposed to be of the same type.
788 const Type *CompTy = Op0->getType();
789 unsigned Class = getClassB(CompTy);
790 unsigned Op0r = getReg(Op0, MBB, IP);
791
792 // Special case handling of: cmp R, i
793 if (isa<ConstantPointerNull>(Op1)) {
794 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
795 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
796 if (Class == cByte || Class == cShort || Class == cInt) {
797 unsigned Op1v = CI->getRawValue();
798
799 // Mask off any upper bits of the constant, if there are any...
800 Op1v &= (1ULL << (8 << Class)) - 1;
801
Misha Brukman422791f2004-06-21 17:41:12 +0000802 // Compare immediate or promote to reg?
803 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000804 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
805 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000806 } else {
807 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000808 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
809 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000810 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000811 return OpNum;
812 } else {
813 assert(Class == cLong && "Unknown integer class!");
814 unsigned LowCst = CI->getRawValue();
815 unsigned HiCst = CI->getRawValue() >> 32;
816 if (OpNum < 2) { // seteq, setne
817 unsigned LoTmp = Op0r;
818 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000819 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000820 unsigned LoTmp = makeAnotherReg(Type::IntTy);
821 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000822 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
823 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000824 }
825 unsigned HiTmp = Op0r+1;
826 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000827 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000828 unsigned HiTmp = makeAnotherReg(Type::IntTy);
829 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000830 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
831 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000832 }
833 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
834 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
835 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
836 return OpNum;
837 } else {
838 // Emit a sequence of code which compares the high and low parts once
839 // each, then uses a conditional move to handle the overflow case. For
840 // example, a setlt for long would generate code like this:
841 //
842 // AL = lo(op1) < lo(op2) // Always unsigned comparison
843 // BL = hi(op1) < hi(op2) // Signedness depends on operands
844 // dest = hi(op1) == hi(op2) ? BL : AL;
845 //
846
847 // FIXME: Not Yet Implemented
Misha Brukman422791f2004-06-21 17:41:12 +0000848 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000849 }
850 }
851 }
852
853 unsigned Op1r = getReg(Op1, MBB, IP);
854 switch (Class) {
855 default: assert(0 && "Unknown type class!");
856 case cByte:
857 case cShort:
858 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000859 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
860 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000861 break;
862 case cFP:
863 emitUCOM(MBB, IP, Op0r, Op1r);
864 break;
865
866 case cLong:
867 if (OpNum < 2) { // seteq, setne
868 unsigned LoTmp = makeAnotherReg(Type::IntTy);
869 unsigned HiTmp = makeAnotherReg(Type::IntTy);
870 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
871 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
872 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
873 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
874 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
875 break; // Allow the sete or setne to be generated from flags set by OR
876 } else {
877 // Emit a sequence of code which compares the high and low parts once
878 // each, then uses a conditional move to handle the overflow case. For
879 // example, a setlt for long would generate code like this:
880 //
881 // AL = lo(op1) < lo(op2) // Signedness depends on operands
882 // BL = hi(op1) < hi(op2) // Always unsigned comparison
883 // dest = hi(op1) == hi(op2) ? BL : AL;
884 //
885
886 // FIXME: Not Yet Implemented
887 return OpNum;
888 }
889 }
890 return OpNum;
891}
892
893/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
894/// register, then move it to wherever the result should be.
895///
896void ISel::visitSetCondInst(SetCondInst &I) {
897 if (canFoldSetCCIntoBranchOrSelect(&I))
898 return; // Fold this into a branch or select.
899
900 unsigned DestReg = getReg(I);
901 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000902 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
903 DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000904}
905
906/// emitSetCCOperation - Common code shared between visitSetCondInst and
907/// constant expression support.
908///
909/// FIXME: this is wrong. we should figure out a way to guarantee
910/// TargetReg is a CR and then make it a no-op
911void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
912 MachineBasicBlock::iterator IP,
913 Value *Op0, Value *Op1, unsigned Opcode,
914 unsigned TargetReg) {
915 unsigned OpNum = getSetCCNumber(Opcode);
916 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
917
918 // The value is already in CR0 at this point, do nothing.
919}
920
921
922void ISel::visitSelectInst(SelectInst &SI) {
923 unsigned DestReg = getReg(SI);
924 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000925 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
926 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000927}
928
929/// emitSelect - Common code shared between visitSelectInst and the constant
930/// expression support.
931/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
932/// no select instruction. FSEL only works for comparisons against zero.
933void ISel::emitSelectOperation(MachineBasicBlock *MBB,
934 MachineBasicBlock::iterator IP,
935 Value *Cond, Value *TrueVal, Value *FalseVal,
936 unsigned DestReg) {
937 unsigned SelectClass = getClassB(TrueVal->getType());
938
939 unsigned TrueReg = getReg(TrueVal, MBB, IP);
940 unsigned FalseReg = getReg(FalseVal, MBB, IP);
941
942 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000943 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000944 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000945 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000946 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000947 }
948
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000949 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000950 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
951 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000952 return;
953 }
954
955 unsigned CondReg = getReg(Cond, MBB, IP);
956 unsigned numZeros = makeAnotherReg(Type::IntTy);
957 unsigned falseHi = makeAnotherReg(Type::IntTy);
958 unsigned falseAll = makeAnotherReg(Type::IntTy);
959 unsigned trueAll = makeAnotherReg(Type::IntTy);
960 unsigned Temp1 = makeAnotherReg(Type::IntTy);
961 unsigned Temp2 = makeAnotherReg(Type::IntTy);
962
963 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000964 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
965 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000966 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
967 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
968 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
969 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
970 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
971
972 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000973 unsigned Temp3 = makeAnotherReg(Type::IntTy);
974 unsigned Temp4 = makeAnotherReg(Type::IntTy);
975 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
976 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
977 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000978 }
979
980 return;
981}
982
983
984
985/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
986/// operand, in the specified target register.
987///
988void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
989 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
990
991 Value *Val = VR.Val;
992 const Type *Ty = VR.Ty;
993 if (Val) {
994 if (Constant *C = dyn_cast<Constant>(Val)) {
995 Val = ConstantExpr::getCast(C, Type::IntTy);
996 Ty = Type::IntTy;
997 }
998
Misha Brukman2fec9902004-06-21 20:22:03 +0000999 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001000 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1001 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1002
1003 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001004 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1005 } else {
1006 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001007 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1008 .addImm(TheVal >> 16);
1009 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1010 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001011 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001012 return;
1013 }
1014 }
1015
1016 // Make sure we have the register number for this value...
1017 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1018
1019 switch (getClassB(Ty)) {
1020 case cByte:
1021 // Extend value into target register (8->32)
1022 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001023 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1024 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001025 else
1026 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1027 break;
1028 case cShort:
1029 // Extend value into target register (16->32)
1030 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001031 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1032 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001033 else
1034 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1035 break;
1036 case cInt:
1037 // Move value into target register (32->32)
1038 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
1039 break;
1040 default:
1041 assert(0 && "Unpromotable operand class in promote32");
1042 }
1043}
1044
Misha Brukman2fec9902004-06-21 20:22:03 +00001045/// visitReturnInst - implemented with BLR
1046///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001047void ISel::visitReturnInst(ReturnInst &I) {
1048 Value *RetVal = I.getOperand(0);
1049
1050 switch (getClassB(RetVal->getType())) {
1051 case cByte: // integral return values: extend or move into r3 and return
1052 case cShort:
1053 case cInt:
1054 promote32(PPC32::R3, ValueRecord(RetVal));
1055 break;
1056 case cFP: { // Floats & Doubles: Return in f1
1057 unsigned RetReg = getReg(RetVal);
1058 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1059 break;
1060 }
1061 case cLong: {
1062 unsigned RetReg = getReg(RetVal);
1063 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1064 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1065 break;
1066 }
1067 default:
1068 visitInstruction(I);
1069 }
1070 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1071}
1072
1073// getBlockAfter - Return the basic block which occurs lexically after the
1074// specified one.
1075static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1076 Function::iterator I = BB; ++I; // Get iterator to next block
1077 return I != BB->getParent()->end() ? &*I : 0;
1078}
1079
1080/// visitBranchInst - Handle conditional and unconditional branches here. Note
1081/// that since code layout is frozen at this point, that if we are trying to
1082/// jump to a block that is the immediate successor of the current block, we can
1083/// just make a fall-through (but we don't currently).
1084///
1085void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001086 // Update machine-CFG edges
1087 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1088 if (BI.isConditional())
1089 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1090
1091 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1092
1093 if (!BI.isConditional()) { // Unconditional branch?
1094 if (BI.getSuccessor(0) != NextBB)
1095 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1096 return;
1097 }
1098
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001099 // See if we can fold the setcc into the branch itself...
1100 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1101 if (SCI == 0) {
1102 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1103 // computed some other way...
1104 unsigned condReg = getReg(BI.getCondition());
Misha Brukman2fec9902004-06-21 20:22:03 +00001105 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
1106 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001107 if (BI.getSuccessor(1) == NextBB) {
1108 if (BI.getSuccessor(0) != NextBB)
Misha Brukman2fec9902004-06-21 20:22:03 +00001109 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
1110 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001111 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001112 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
1113 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001114
1115 if (BI.getSuccessor(0) != NextBB)
1116 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1117 }
1118 return;
1119 }
1120
1121
1122 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1123 MachineBasicBlock::iterator MII = BB->end();
1124 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1125
1126 const Type *CompTy = SCI->getOperand(0)->getType();
1127 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1128
1129 // LLVM -> X86 signed X86 unsigned
1130 // ----- ---------- ------------
1131 // seteq -> je je
1132 // setne -> jne jne
1133 // setlt -> jl jb
1134 // setge -> jge jae
1135 // setgt -> jg ja
1136 // setle -> jle jbe
1137
1138 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1139 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1140 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1141 unsigned BIval = BITab[0];
1142
1143 if (BI.getSuccessor(0) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001144 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
1145 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001146 if (BI.getSuccessor(1) != NextBB)
Misha Brukman422791f2004-06-21 17:41:12 +00001147 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001148 } else {
1149 // Change to the inverse condition...
1150 if (BI.getSuccessor(1) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001151 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
1152 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001153 }
1154 }
1155}
1156
1157
1158/// doCall - This emits an abstract call instruction, setting up the arguments
1159/// and the return value as appropriate. For the actual function call itself,
1160/// it inserts the specified CallMI instruction into the stream.
1161///
1162/// FIXME: See Documentation at the following URL for "correct" behavior
1163/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1164void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1165 const std::vector<ValueRecord> &Args) {
1166 // Count how many bytes are to be pushed on the stack...
1167 unsigned NumBytes = 0;
1168
1169 if (!Args.empty()) {
1170 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1171 switch (getClassB(Args[i].Ty)) {
1172 case cByte: case cShort: case cInt:
1173 NumBytes += 4; break;
1174 case cLong:
1175 NumBytes += 8; break;
1176 case cFP:
1177 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1178 break;
1179 default: assert(0 && "Unknown class!");
1180 }
1181
1182 // Adjust the stack pointer for the new arguments...
1183 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1184
1185 // Arguments go on the stack in reverse order, as specified by the ABI.
1186 unsigned ArgOffset = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001187 unsigned GPR_remaining = 8;
1188 unsigned FPR_remaining = 13;
1189 unsigned GPR_idx = 3;
1190 unsigned FPR_idx = 1;
1191
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001192 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1193 unsigned ArgReg;
1194 switch (getClassB(Args[i].Ty)) {
1195 case cByte:
1196 case cShort:
1197 // Promote arg to 32 bits wide into a temporary register...
1198 ArgReg = makeAnotherReg(Type::UIntTy);
1199 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001200
1201 // Reg or stack?
1202 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001203 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1204 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001205 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001206 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1207 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001208 }
1209 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001210 case cInt:
1211 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1212
Misha Brukman422791f2004-06-21 17:41:12 +00001213 // Reg or stack?
1214 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001215 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1216 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001217 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001218 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1219 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001220 }
1221 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001222 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001223 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001224
Misha Brukman422791f2004-06-21 17:41:12 +00001225 // Reg or stack?
1226 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001227 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1228 .addReg(ArgReg);
1229 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1)
1230 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001231 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001232 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1233 .addReg(PPC32::R1);
1234 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1235 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001236 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001237
1238 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman422791f2004-06-21 17:41:12 +00001239 if (GPR_remaining > 0) {
1240 GPR_remaining -= 1; // uses up 2 GPRs
1241 GPR_idx += 1;
1242 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001243 break;
1244 case cFP:
1245 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1246 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman422791f2004-06-21 17:41:12 +00001247 // Reg or stack?
1248 if (FPR_remaining > 0) {
1249 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1250 FPR_remaining--;
1251 FPR_idx++;
1252 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001253 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1254 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001255 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001256 } else {
1257 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001258 // Reg or stack?
1259 if (FPR_remaining > 0) {
1260 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1261 FPR_remaining--;
1262 FPR_idx++;
1263 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001264 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1265 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001266 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001267
Misha Brukman422791f2004-06-21 17:41:12 +00001268 ArgOffset += 4; // 8 byte entry, not 4.
1269 if (GPR_remaining > 0) {
1270 GPR_remaining--; // uses up 2 GPRs
1271 GPR_idx++;
1272 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001273 }
1274 break;
1275
1276 default: assert(0 && "Unknown class!");
1277 }
1278 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +00001279 if (GPR_remaining > 0) {
1280 GPR_remaining--; // uses up 2 GPRs
1281 GPR_idx++;
1282 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001283 }
1284 } else {
1285 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1286 }
1287
1288 BB->push_back(CallMI);
1289
1290 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1291
1292 // If there is a return value, scavenge the result from the location the call
1293 // leaves it in...
1294 //
1295 if (Ret.Ty != Type::VoidTy) {
1296 unsigned DestClass = getClassB(Ret.Ty);
1297 switch (DestClass) {
1298 case cByte:
1299 case cShort:
1300 case cInt:
1301 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001302 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001303 case cFP: // Floating-point return values live in f1
1304 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1305 break;
1306 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001307 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1308 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001309 break;
1310 default: assert(0 && "Unknown class!");
1311 }
1312 }
1313}
1314
1315
1316/// visitCallInst - Push args on stack and do a procedure call instruction.
1317void ISel::visitCallInst(CallInst &CI) {
1318 MachineInstr *TheCall;
1319 if (Function *F = CI.getCalledFunction()) {
1320 // Is it an intrinsic function call?
1321 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1322 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1323 return;
1324 }
1325
1326 // Emit a CALL instruction with PC-relative displacement.
1327 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1328 } else { // Emit an indirect call through the CTR
1329 unsigned Reg = getReg(CI.getCalledValue());
1330 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1331 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1332 }
1333
1334 std::vector<ValueRecord> Args;
1335 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1336 Args.push_back(ValueRecord(CI.getOperand(i)));
1337
1338 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1339 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1340}
1341
1342
1343/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1344///
1345static Value *dyncastIsNan(Value *V) {
1346 if (CallInst *CI = dyn_cast<CallInst>(V))
1347 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001348 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001349 return CI->getOperand(1);
1350 return 0;
1351}
1352
1353/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1354/// or's whos operands are all calls to the isnan predicate.
1355static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1356 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1357
1358 // Check all uses, which will be or's of isnans if this predicate is true.
1359 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1360 Instruction *I = cast<Instruction>(*UI);
1361 if (I->getOpcode() != Instruction::Or) return false;
1362 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1363 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1364 }
1365
1366 return true;
1367}
1368
1369/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1370/// function, lowering any calls to unknown intrinsic functions into the
1371/// equivalent LLVM code.
1372///
1373void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1374 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1375 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1376 if (CallInst *CI = dyn_cast<CallInst>(I++))
1377 if (Function *F = CI->getCalledFunction())
1378 switch (F->getIntrinsicID()) {
1379 case Intrinsic::not_intrinsic:
1380 case Intrinsic::vastart:
1381 case Intrinsic::vacopy:
1382 case Intrinsic::vaend:
1383 case Intrinsic::returnaddress:
1384 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001385 // FIXME: should lower this ourselves
1386 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001387 // We directly implement these intrinsics
1388 break;
1389 case Intrinsic::readio: {
1390 // On PPC, memory operations are in-order. Lower this intrinsic
1391 // into a volatile load.
1392 Instruction *Before = CI->getPrev();
1393 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1394 CI->replaceAllUsesWith(LI);
1395 BB->getInstList().erase(CI);
1396 break;
1397 }
1398 case Intrinsic::writeio: {
1399 // On PPC, memory operations are in-order. Lower this intrinsic
1400 // into a volatile store.
1401 Instruction *Before = CI->getPrev();
1402 StoreInst *LI = new StoreInst(CI->getOperand(1),
1403 CI->getOperand(2), true, CI);
1404 CI->replaceAllUsesWith(LI);
1405 BB->getInstList().erase(CI);
1406 break;
1407 }
1408 default:
1409 // All other intrinsic calls we must lower.
1410 Instruction *Before = CI->getPrev();
1411 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1412 if (Before) { // Move iterator to instruction after call
1413 I = Before; ++I;
1414 } else {
1415 I = BB->begin();
1416 }
1417 }
1418}
1419
1420void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1421 unsigned TmpReg1, TmpReg2, TmpReg3;
1422 switch (ID) {
1423 case Intrinsic::vastart:
1424 // Get the address of the first vararg value...
1425 TmpReg1 = getReg(CI);
1426 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1427 return;
1428
1429 case Intrinsic::vacopy:
1430 TmpReg1 = getReg(CI);
1431 TmpReg2 = getReg(CI.getOperand(1));
1432 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1433 return;
1434 case Intrinsic::vaend: return;
1435
1436 case Intrinsic::returnaddress:
1437 case Intrinsic::frameaddress:
1438 TmpReg1 = getReg(CI);
1439 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1440 if (ID == Intrinsic::returnaddress) {
1441 // Just load the return address
1442 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1443 ReturnAddressIndex);
1444 } else {
1445 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1446 ReturnAddressIndex, -4, false);
1447 }
1448 } else {
1449 // Values other than zero are not implemented yet.
1450 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1451 }
1452 return;
1453
Misha Brukmana2916ce2004-06-21 17:58:36 +00001454#if 0
1455 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001456 case Intrinsic::isnan:
1457 // If this is only used by 'isunordered' style comparisons, don't emit it.
1458 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1459 TmpReg1 = getReg(CI.getOperand(1));
1460 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001461 TmpReg2 = makeAnotherReg(Type::IntTy);
1462 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001463 TmpReg3 = getReg(CI);
1464 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1465 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001466#endif
1467
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001468 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1469 }
1470}
1471
1472/// visitSimpleBinary - Implement simple binary operators for integral types...
1473/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1474/// Xor.
1475///
1476void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1477 unsigned DestReg = getReg(B);
1478 MachineBasicBlock::iterator MI = BB->end();
1479 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1480 unsigned Class = getClassB(B.getType());
1481
1482 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1483}
1484
1485/// emitBinaryFPOperation - This method handles emission of floating point
1486/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1487void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1488 MachineBasicBlock::iterator IP,
1489 Value *Op0, Value *Op1,
1490 unsigned OperatorClass, unsigned DestReg) {
1491
1492 // Special case: op Reg, <const fp>
1493 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1494 // Create a constant pool entry for this constant.
1495 MachineConstantPool *CP = F->getConstantPool();
1496 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1497 const Type *Ty = Op1->getType();
1498
1499 static const unsigned OpcodeTab[][4] = {
1500 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1501 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1502 };
1503
1504 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001505 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001506 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1507 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1508
1509 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1510 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001511 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001512 return;
1513 }
1514
1515 // Special case: R1 = op <const fp>, R2
1516 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1517 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1518 // -0.0 - X === -X
1519 unsigned op1Reg = getReg(Op1, BB, IP);
1520 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1521 return;
1522 } else {
1523 // R1 = op CST, R2 --> R1 = opr R2, CST
1524
1525 // Create a constant pool entry for this constant.
1526 MachineConstantPool *CP = F->getConstantPool();
1527 unsigned CPI = CP->getConstantPoolIndex(CFP);
1528 const Type *Ty = CFP->getType();
1529
1530 static const unsigned OpcodeTab[][4] = {
1531 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1532 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1533 };
1534
1535 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001536 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001537 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1538 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1539
1540 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1541 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001542 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001543 return;
1544 }
1545
1546 // General case.
1547 static const unsigned OpcodeTab[4] = {
1548 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1549 };
1550
1551 unsigned Opcode = OpcodeTab[OperatorClass];
1552 unsigned Op0r = getReg(Op0, BB, IP);
1553 unsigned Op1r = getReg(Op1, BB, IP);
1554 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1555}
1556
1557/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1558/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1559/// Or, 4 for Xor.
1560///
1561/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1562/// and constant expression support.
1563///
1564void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1565 MachineBasicBlock::iterator IP,
1566 Value *Op0, Value *Op1,
1567 unsigned OperatorClass, unsigned DestReg) {
1568 unsigned Class = getClassB(Op0->getType());
1569
Misha Brukman422791f2004-06-21 17:41:12 +00001570 // Arithmetic and Bitwise operators
1571 static const unsigned OpcodeTab[5] = {
1572 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1573 };
1574 // Otherwise, code generate the full operation with a constant.
1575 static const unsigned BottomTab[] = {
1576 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1577 };
1578 static const unsigned TopTab[] = {
1579 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1580 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001581
1582 if (Class == cFP) {
1583 assert(OperatorClass < 2 && "No logical ops for FP!");
1584 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1585 return;
1586 }
1587
1588 if (Op0->getType() == Type::BoolTy) {
1589 if (OperatorClass == 3)
1590 // If this is an or of two isnan's, emit an FP comparison directly instead
1591 // of or'ing two isnan's together.
1592 if (Value *LHS = dyncastIsNan(Op0))
1593 if (Value *RHS = dyncastIsNan(Op1)) {
1594 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001595 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001596 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001597 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001598 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1599 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001600 return;
1601 }
1602 }
1603
1604 // sub 0, X -> neg X
1605 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1606 if (OperatorClass == 1 && CI->isNullValue()) {
1607 unsigned op1Reg = getReg(Op1, MBB, IP);
1608 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1609
1610 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001611 unsigned zeroes = makeAnotherReg(Type::IntTy);
1612 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001613 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001614 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001615 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1616 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001617 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1618 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001619 }
1620 return;
1621 }
1622
1623 // Special case: op Reg, <const int>
1624 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1625 unsigned Op0r = getReg(Op0, MBB, IP);
1626
1627 // xor X, -1 -> not X
1628 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1629 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1630 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001631 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1632 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001633 return;
1634 }
1635
1636 unsigned Opcode = OpcodeTab[OperatorClass];
1637 unsigned Op1r = getReg(Op1, MBB, IP);
1638
1639 if (Class != cLong) {
1640 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1641 return;
1642 }
1643
1644 // If the constant is zero in the low 32-bits, just copy the low part
1645 // across and apply the normal 32-bit operation to the high parts. There
1646 // will be no carry or borrow into the top.
1647 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1648 if (OperatorClass != 2) // All but and...
1649 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1650 else
1651 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001652 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001653 return;
1654 }
1655
1656 // If this is a long value and the high or low bits have a special
1657 // property, emit some special cases.
1658 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1659
1660 // If this is a logical operation and the top 32-bits are zero, just
1661 // operate on the lower 32.
1662 if (Op1h == 0 && OperatorClass > 1) {
1663 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1664 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001665 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001666 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001667 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001668 return;
1669 }
1670
1671 // TODO: We could handle lots of other special cases here, such as AND'ing
1672 // with 0xFFFFFFFF00000000 -> noop, etc.
1673
Misha Brukman2fec9902004-06-21 20:22:03 +00001674 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1675 .addImm(Op1r);
1676 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1677 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001678 return;
1679 }
1680
1681 unsigned Op0r = getReg(Op0, MBB, IP);
1682 unsigned Op1r = getReg(Op1, MBB, IP);
1683
1684 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001685 unsigned Opcode = OpcodeTab[OperatorClass];
1686 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001687 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001688 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1689 .addImm(Op1r);
1690 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1691 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001692 }
1693 return;
1694}
1695
1696/// doMultiply - Emit appropriate instructions to multiply together the
1697/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1698/// result should be given as DestTy.
1699///
1700void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1701 unsigned DestReg, const Type *DestTy,
1702 unsigned op0Reg, unsigned op1Reg) {
1703 unsigned Class = getClass(DestTy);
1704 switch (Class) {
1705 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001706 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1707 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001708 case cInt:
1709 case cShort:
1710 case cByte:
1711 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1712 return;
1713 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001714 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001715 }
1716}
1717
1718// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1719// returns zero when the input is not exactly a power of two.
1720static unsigned ExactLog2(unsigned Val) {
1721 if (Val == 0 || (Val & (Val-1))) return 0;
1722 unsigned Count = 0;
1723 while (Val != 1) {
1724 Val >>= 1;
1725 ++Count;
1726 }
1727 return Count+1;
1728}
1729
1730
1731/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1732/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001733///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001734void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1735 MachineBasicBlock::iterator IP,
1736 unsigned DestReg, const Type *DestTy,
1737 unsigned op0Reg, unsigned ConstRHS) {
1738 unsigned Class = getClass(DestTy);
1739 // Handle special cases here.
1740 switch (ConstRHS) {
1741 case 0:
1742 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1743 return;
1744 case 1:
1745 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1746 return;
1747 case 2:
1748 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1749 return;
1750 }
1751
1752 // If the element size is exactly a power of 2, use a shift to get it.
1753 if (unsigned Shift = ExactLog2(ConstRHS)) {
1754 switch (Class) {
1755 default: assert(0 && "Unknown class for this function!");
1756 case cByte:
1757 case cShort:
1758 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001759 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1760 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001761 return;
1762 }
1763 }
1764
1765 // Most general case, emit a normal multiply...
1766 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1767 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001768 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1769 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001770 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1771
1772 // Emit a MUL to multiply the register holding the index by
1773 // elementSize, putting the result in OffsetReg.
1774 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1775}
1776
1777void ISel::visitMul(BinaryOperator &I) {
1778 unsigned ResultReg = getReg(I);
1779
1780 Value *Op0 = I.getOperand(0);
1781 Value *Op1 = I.getOperand(1);
1782
1783 MachineBasicBlock::iterator IP = BB->end();
1784 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1785}
1786
1787void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1788 Value *Op0, Value *Op1, unsigned DestReg) {
1789 MachineBasicBlock &BB = *MBB;
1790 TypeClass Class = getClass(Op0->getType());
1791
1792 // Simple scalar multiply?
1793 unsigned Op0Reg = getReg(Op0, &BB, IP);
1794 switch (Class) {
1795 case cByte:
1796 case cShort:
1797 case cInt:
1798 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1799 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1800 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1801 } else {
1802 unsigned Op1Reg = getReg(Op1, &BB, IP);
1803 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1804 }
1805 return;
1806 case cFP:
1807 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1808 return;
1809 case cLong:
1810 break;
1811 }
1812
1813 // Long value. We have to do things the hard way...
1814 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1815 unsigned CLow = CI->getRawValue();
1816 unsigned CHi = CI->getRawValue() >> 32;
1817
1818 if (CLow == 0) {
1819 // If the low part of the constant is all zeros, things are simple.
1820 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1821 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1822 return;
1823 }
1824
1825 // Multiply the two low parts
1826 unsigned OverflowReg = 0;
1827 if (CLow == 1) {
1828 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1829 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001830 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001831 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1832 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001833 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1834 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001835 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1836 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001837 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1838 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001839 }
1840
1841 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1842 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1843
1844 unsigned AHBLplusOverflowReg;
1845 if (OverflowReg) {
1846 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1847 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1848 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1849 } else {
1850 AHBLplusOverflowReg = AHBLReg;
1851 }
1852
1853 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001854 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1855 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001856 } else {
1857 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1858 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1859
1860 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1861 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1862 }
1863 return;
1864 }
1865
1866 // General 64x64 multiply
1867
1868 unsigned Op1Reg = getReg(Op1, &BB, IP);
1869
1870 // Multiply the two low parts... capturing carry into EDX
1871 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL
1872
1873 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1874 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
1875
1876 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1877 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1878
1879 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1880 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1881 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1882
1883 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1884 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1885
1886 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1887 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1888}
1889
1890
1891/// visitDivRem - Handle division and remainder instructions... these
1892/// instruction both require the same instructions to be generated, they just
1893/// select the result from a different register. Note that both of these
1894/// instructions work differently for signed and unsigned operands.
1895///
1896void ISel::visitDivRem(BinaryOperator &I) {
1897 unsigned ResultReg = getReg(I);
1898 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1899
1900 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001901 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1902 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001903}
1904
1905void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1906 MachineBasicBlock::iterator IP,
1907 Value *Op0, Value *Op1, bool isDiv,
1908 unsigned ResultReg) {
1909 const Type *Ty = Op0->getType();
1910 unsigned Class = getClass(Ty);
1911 switch (Class) {
1912 case cFP: // Floating point divide
1913 if (isDiv) {
1914 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1915 return;
1916 } else { // Floating point remainder...
1917 unsigned Op0Reg = getReg(Op0, BB, IP);
1918 unsigned Op1Reg = getReg(Op1, BB, IP);
1919 MachineInstr *TheCall =
1920 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1921 std::vector<ValueRecord> Args;
1922 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1923 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1924 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1925 }
1926 return;
1927 case cLong: {
1928 static const char *FnName[] =
1929 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1930 unsigned Op0Reg = getReg(Op0, BB, IP);
1931 unsigned Op1Reg = getReg(Op1, BB, IP);
1932 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1933 MachineInstr *TheCall =
1934 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1935
1936 std::vector<ValueRecord> Args;
1937 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1938 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1939 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1940 return;
1941 }
1942 case cByte: case cShort: case cInt:
1943 break; // Small integrals, handled below...
1944 default: assert(0 && "Unknown class!");
1945 }
1946
1947 // Special case signed division by power of 2.
1948 if (isDiv)
1949 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1950 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1951 int V = CI->getValue();
1952
1953 if (V == 1) { // X /s 1 => X
1954 unsigned Op0Reg = getReg(Op0, BB, IP);
1955 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1956 return;
1957 }
1958
1959 if (V == -1) { // X /s -1 => -X
1960 unsigned Op0Reg = getReg(Op0, BB, IP);
1961 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1962 return;
1963 }
1964
1965 bool isNeg = false;
1966 if (V < 0) { // Not a positive power of 2?
1967 V = -V;
1968 isNeg = true; // Maybe it's a negative power of 2.
1969 }
1970 if (unsigned Log = ExactLog2(V)) {
1971 --Log;
1972 unsigned Op0Reg = getReg(Op0, BB, IP);
1973 unsigned TmpReg = makeAnotherReg(Op0->getType());
1974 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001975 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001976 else
1977 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1978
1979 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001980 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
1981 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001982
1983 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1984 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1985
1986 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
1987 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
1988
1989 if (isNeg)
1990 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
1991 return;
1992 }
1993 }
1994
1995 unsigned Op0Reg = getReg(Op0, BB, IP);
1996 unsigned Op1Reg = getReg(Op1, BB, IP);
1997
1998 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00001999 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002000 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002001 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002002 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002003 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002004 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002005 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2006 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2007
2008 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002009 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002010 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002011 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002012 }
2013 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2014 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002015 }
2016}
2017
2018
2019/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2020/// for constant immediate shift values, and for constant immediate
2021/// shift values equal to 1. Even the general case is sort of special,
2022/// because the shift amount has to be in CL, not just any old register.
2023///
2024void ISel::visitShiftInst(ShiftInst &I) {
2025 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002026 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2027 I.getOpcode () == Instruction::Shl, I.getType (),
2028 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002029}
2030
2031/// emitShiftOperation - Common code shared between visitShiftInst and
2032/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002033///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002034void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2035 MachineBasicBlock::iterator IP,
2036 Value *Op, Value *ShiftAmount, bool isLeftShift,
2037 const Type *ResultTy, unsigned DestReg) {
2038 unsigned SrcReg = getReg (Op, MBB, IP);
2039 bool isSigned = ResultTy->isSigned ();
2040 unsigned Class = getClass (ResultTy);
2041
2042 // Longs, as usual, are handled specially...
2043 if (Class == cLong) {
2044 // If we have a constant shift, we can generate much more efficient code
2045 // than otherwise...
2046 //
2047 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2048 unsigned Amount = CUI->getValue();
2049 if (Amount < 32) {
2050 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002051 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002052 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2053 .addImm(Amount).addImm(0).addImm(31-Amount);
2054 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2055 .addImm(Amount).addImm(32-Amount).addImm(31);
2056 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2057 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002058 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002059 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002060 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2061 .addImm(32-Amount).addImm(Amount).addImm(31);
2062 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2063 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2064 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2065 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002066 }
2067 } else { // Shifting more than 32 bits
2068 Amount -= 32;
2069 if (isLeftShift) {
2070 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002071 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2072 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002073 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002074 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2075 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002076 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002077 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002078 } else {
2079 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002080 if (isSigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00002081 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2082 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002083 else
Misha Brukman2fec9902004-06-21 20:22:03 +00002084 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2085 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002086 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002087 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2088 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002089 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002090 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002091 }
2092 }
2093 } else {
2094 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2095 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002096 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2097 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2098 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2099 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2100 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2101
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002102 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002103 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2104 .addImm(32);
2105 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2106 .addReg(ShiftAmountReg);
2107 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2108 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2109 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2110 .addImm(-32);
2111 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2112 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2113 .addReg(TmpReg6);
2114 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2115 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002116 } else {
2117 if (isSigned) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002118 // FIXME: Unimplmented
2119 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman422791f2004-06-21 17:41:12 +00002120 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002121 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2122 .addImm(32);
2123 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2124 .addReg(ShiftAmountReg);
2125 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2126 .addReg(TmpReg1);
2127 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2128 .addReg(TmpReg3);
2129 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2130 .addImm(-32);
2131 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2132 .addReg(TmpReg5);
2133 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2134 .addReg(TmpReg6);
2135 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2136 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002137 }
2138 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002139 }
2140 return;
2141 }
2142
2143 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2144 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2145 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2146 unsigned Amount = CUI->getValue();
2147
Misha Brukman422791f2004-06-21 17:41:12 +00002148 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002149 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2150 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002151 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002152 if (isSigned) {
2153 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2154 } else {
2155 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2156 .addImm(32-Amount).addImm(Amount).addImm(31);
2157 }
Misha Brukman422791f2004-06-21 17:41:12 +00002158 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002159 } else { // The shift amount is non-constant.
2160 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2161
Misha Brukman422791f2004-06-21 17:41:12 +00002162 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002163 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2164 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002165 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002166 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2167 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002168 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002169 }
2170}
2171
2172
2173/// visitLoadInst - Implement LLVM load instructions
2174///
2175void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002176 static const unsigned Opcodes[] = {
2177 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2178 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002179 unsigned Class = getClassB(I.getType());
2180 unsigned Opcode = Opcodes[Class];
2181 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2182
2183 unsigned DestReg = getReg(I);
2184
2185 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002186 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002187 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002188 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2189 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002190 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002191 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002192 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002193 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002194 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002195
2196 if (Class == cLong) {
2197 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2198 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2199 } else {
2200 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2201 }
2202 }
2203}
2204
2205/// visitStoreInst - Implement LLVM store instructions
2206///
2207void ISel::visitStoreInst(StoreInst &I) {
2208 unsigned ValReg = getReg(I.getOperand(0));
2209 unsigned AddressReg = getReg(I.getOperand(1));
2210
2211 const Type *ValTy = I.getOperand(0)->getType();
2212 unsigned Class = getClassB(ValTy);
2213
2214 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002215 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002216 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002217 return;
2218 }
2219
2220 static const unsigned Opcodes[] = {
2221 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2222 };
2223 unsigned Opcode = Opcodes[Class];
2224 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2225 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2226}
2227
2228
2229/// visitCastInst - Here we have various kinds of copying with or without sign
2230/// extension going on.
2231///
2232void ISel::visitCastInst(CastInst &CI) {
2233 Value *Op = CI.getOperand(0);
2234
2235 unsigned SrcClass = getClassB(Op->getType());
2236 unsigned DestClass = getClassB(CI.getType());
2237 // Noop casts are not emitted: getReg will return the source operand as the
2238 // register to use for any uses of the noop cast.
2239 if (DestClass == SrcClass)
2240 return;
2241
2242 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2243 // of the case are GEP instructions, then the cast does not need to be
2244 // generated explicitly, it will be folded into the GEP.
2245 if (DestClass == cLong && SrcClass == cInt) {
2246 bool AllUsesAreGEPs = true;
2247 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2248 if (!isa<GetElementPtrInst>(*I)) {
2249 AllUsesAreGEPs = false;
2250 break;
2251 }
2252
2253 // No need to codegen this cast if all users are getelementptr instrs...
2254 if (AllUsesAreGEPs) return;
2255 }
2256
2257 unsigned DestReg = getReg(CI);
2258 MachineBasicBlock::iterator MI = BB->end();
2259 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2260}
2261
2262/// emitCastOperation - Common code shared between visitCastInst and constant
2263/// expression cast support.
2264///
2265void ISel::emitCastOperation(MachineBasicBlock *BB,
2266 MachineBasicBlock::iterator IP,
2267 Value *Src, const Type *DestTy,
2268 unsigned DestReg) {
2269 const Type *SrcTy = Src->getType();
2270 unsigned SrcClass = getClassB(SrcTy);
2271 unsigned DestClass = getClassB(DestTy);
2272 unsigned SrcReg = getReg(Src, BB, IP);
2273
2274 // Implement casts to bool by using compare on the operand followed by set if
2275 // not zero on the result.
2276 if (DestTy == Type::BoolTy) {
2277 switch (SrcClass) {
2278 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002279 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002280 case cInt: {
2281 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002282 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2283 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002284 break;
2285 }
2286 case cLong: {
2287 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2288 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2289 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002290 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2291 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002292 break;
2293 }
2294 case cFP:
2295 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002296 // Load -0.0
2297 // Compare
2298 // move to CR1
2299 // Negate -0.0
2300 // Compare
2301 // CROR
2302 // MFCR
2303 // Left-align
2304 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002305 break;
2306 }
2307 return;
2308 }
2309
2310 // Implement casts between values of the same type class (as determined by
2311 // getClass) by using a register-to-register move.
2312 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002313 if (SrcClass <= cInt) {
2314 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2315 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002316 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2317 } else if (SrcClass == cFP) {
2318 if (SrcTy == Type::FloatTy) { // float -> double
2319 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2320 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2321 } else { // double -> float
2322 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2323 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002324 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002325 }
2326 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002327 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002328 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2329 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002330 } else {
2331 assert(0 && "Cannot handle this type of cast instruction!");
2332 abort();
2333 }
2334 return;
2335 }
2336
2337 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2338 // or zero extension, depending on whether the source type was signed.
2339 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2340 SrcClass < DestClass) {
2341 bool isLong = DestClass == cLong;
2342 if (isLong) DestClass = cInt;
2343
2344 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2345 if (SrcClass < cInt) {
2346 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002347 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002348 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2349 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002350 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002351 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2352 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002353 }
2354 } else {
2355 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2356 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002357
2358 if (isLong) { // Handle upper 32 bits as appropriate...
2359 if (isUnsigned) // Zero out top bits...
2360 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2361 else // Sign extend bottom half...
2362 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2363 }
2364 return;
2365 }
2366
2367 // Special case long -> int ...
2368 if (SrcClass == cLong && DestClass == cInt) {
2369 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2370 return;
2371 }
2372
2373 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2374 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2375 && SrcClass > DestClass) {
2376 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002377 if (isUnsigned) {
2378 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002379 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2380 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002381 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002382 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2383 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002384 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002385 return;
2386 }
2387
2388 // Handle casts from integer to floating point now...
2389 if (DestClass == cFP) {
2390
Misha Brukman422791f2004-06-21 17:41:12 +00002391 // Emit a library call for long to float conversion
2392 if (SrcClass == cLong) {
2393 std::vector<ValueRecord> Args;
2394 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002395 MachineInstr *TheCall =
2396 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002397 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2398 return;
2399 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002400
2401 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002402 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002403 case Type::BoolTyID:
2404 case Type::SByteTyID:
2405 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2406 break;
2407 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002408 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2409 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002410 break;
2411 case Type::ShortTyID:
2412 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2413 break;
2414 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002415 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2416 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002417 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002418 case Type::IntTyID:
2419 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2420 break;
2421 case Type::UIntTyID:
2422 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2423 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002424 default: // No promotion needed...
2425 break;
2426 }
2427
2428 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002429
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002430 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002431 // Also spill room for a special conversion constant
2432 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002433 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2434 int ValueFrameIdx =
2435 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2436
Misha Brukman422791f2004-06-21 17:41:12 +00002437 unsigned constantHi = makeAnotherReg(Type::IntTy);
2438 unsigned constantLo = makeAnotherReg(Type::IntTy);
2439 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2440 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2441
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002442 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002443 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2444 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002445 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002446 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2447 ConstantFrameIndex);
2448 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2449 ConstantFrameIndex, 4);
2450 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2451 ValueFrameIdx);
2452 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2453 ValueFrameIdx, 4);
2454 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2455 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002456 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2457 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2458 } else {
2459 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002460 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2461 .addImm(0x4330);
2462 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2463 .addImm(0x8000);
2464 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2465 ConstantFrameIndex);
2466 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2467 ConstantFrameIndex, 4);
2468 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2469 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002470 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002471 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2472 ValueFrameIdx, 4);
2473 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2474 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002475 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002476 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002477 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002478 return;
2479 }
2480
2481 // Handle casts from floating point to integer now...
2482 if (SrcClass == cFP) {
2483
Misha Brukman422791f2004-06-21 17:41:12 +00002484 // emit library call
2485 if (DestClass == cLong) {
2486 std::vector<ValueRecord> Args;
2487 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002488 MachineInstr *TheCall =
2489 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002490 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2491 return;
2492 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002493
2494 int ValueFrameIdx =
2495 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2496
Misha Brukman422791f2004-06-21 17:41:12 +00002497 // load into 32 bit value, and then truncate as necessary
2498 // FIXME: This is wrong for unsigned dest types
2499 //if (DestTy->isSigned()) {
2500 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2501 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002502 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2503 .addReg(TempReg), ValueFrameIdx);
2504 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2505 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002506 //} else {
2507 //}
2508
2509 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002510 return;
2511 }
2512
2513 // Anything we haven't handled already, we can't (yet) handle at all.
2514 assert(0 && "Unhandled cast instruction!");
2515 abort();
2516}
2517
2518/// visitVANextInst - Implement the va_next instruction...
2519///
2520void ISel::visitVANextInst(VANextInst &I) {
2521 unsigned VAList = getReg(I.getOperand(0));
2522 unsigned DestReg = getReg(I);
2523
2524 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002525 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002526 default:
2527 std::cerr << I;
2528 assert(0 && "Error: bad type for va_next instruction!");
2529 return;
2530 case Type::PointerTyID:
2531 case Type::UIntTyID:
2532 case Type::IntTyID:
2533 Size = 4;
2534 break;
2535 case Type::ULongTyID:
2536 case Type::LongTyID:
2537 case Type::DoubleTyID:
2538 Size = 8;
2539 break;
2540 }
2541
2542 // Increment the VAList pointer...
2543 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2544}
2545
2546void ISel::visitVAArgInst(VAArgInst &I) {
2547 unsigned VAList = getReg(I.getOperand(0));
2548 unsigned DestReg = getReg(I);
2549
Misha Brukman358829f2004-06-21 17:25:55 +00002550 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002551 default:
2552 std::cerr << I;
2553 assert(0 && "Error: bad type for va_next instruction!");
2554 return;
2555 case Type::PointerTyID:
2556 case Type::UIntTyID:
2557 case Type::IntTyID:
2558 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2559 break;
2560 case Type::ULongTyID:
2561 case Type::LongTyID:
2562 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2563 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2564 break;
2565 case Type::DoubleTyID:
2566 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2567 break;
2568 }
2569}
2570
2571/// visitGetElementPtrInst - instruction-select GEP instructions
2572///
2573void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2574 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002575 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2576 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002577}
2578
2579void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2580 MachineBasicBlock::iterator IP,
2581 Value *Src, User::op_iterator IdxBegin,
2582 User::op_iterator IdxEnd, unsigned TargetReg) {
2583 const TargetData &TD = TM.getTargetData();
2584 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2585 Src = CPR->getValue();
2586
2587 std::vector<Value*> GEPOps;
2588 GEPOps.resize(IdxEnd-IdxBegin+1);
2589 GEPOps[0] = Src;
2590 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2591
2592 std::vector<const Type*> GEPTypes;
2593 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2594 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2595
2596 // Keep emitting instructions until we consume the entire GEP instruction.
2597 while (!GEPOps.empty()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002598 // It's an array or pointer access: [ArraySize x ElementType].
2599 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2600 Value *idx = GEPOps.back();
2601 GEPOps.pop_back(); // Consume a GEP operand
2602 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002603
Misha Brukman2fec9902004-06-21 20:22:03 +00002604 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2605 // operand on X86. Handle this case directly now...
2606 if (CastInst *CI = dyn_cast<CastInst>(idx))
2607 if (CI->getOperand(0)->getType() == Type::IntTy ||
2608 CI->getOperand(0)->getType() == Type::UIntTy)
2609 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002610
Misha Brukman2fec9902004-06-21 20:22:03 +00002611 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2612 // must find the size of the pointed-to type (Not coincidentally, the next
2613 // type is the type of the elements in the array).
2614 const Type *ElTy = SqTy->getElementType();
2615 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002616
Misha Brukman2fec9902004-06-21 20:22:03 +00002617 if (elementSize == 1) {
2618 // If the element size is 1, we don't have to multiply, just add
2619 unsigned idxReg = getReg(idx, MBB, IP);
2620 unsigned Reg = makeAnotherReg(Type::UIntTy);
2621 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2622 --IP; // Insert the next instruction before this one.
2623 TargetReg = Reg; // Codegen the rest of the GEP into this
2624 } else {
2625 unsigned idxReg = getReg(idx, MBB, IP);
2626 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002627
Misha Brukman2fec9902004-06-21 20:22:03 +00002628 // Make sure we can back the iterator up to point to the first
2629 // instruction emitted.
2630 MachineBasicBlock::iterator BeforeIt = IP;
2631 if (IP == MBB->begin())
2632 BeforeIt = MBB->end();
2633 else
2634 --BeforeIt;
2635 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002636
Misha Brukman2fec9902004-06-21 20:22:03 +00002637 // Emit an ADD to add OffsetReg to the basePtr.
2638 unsigned Reg = makeAnotherReg(Type::UIntTy);
2639 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002640
Misha Brukman2fec9902004-06-21 20:22:03 +00002641 // Step to the first instruction of the multiply.
2642 if (BeforeIt == MBB->end())
2643 IP = MBB->begin();
2644 else
2645 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002646
Misha Brukman2fec9902004-06-21 20:22:03 +00002647 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002648 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002649 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002650}
2651
2652/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2653/// frame manager, otherwise do it the hard way.
2654///
2655void ISel::visitAllocaInst(AllocaInst &I) {
2656 // If this is a fixed size alloca in the entry block for the function, we
2657 // statically stack allocate the space, so we don't need to do anything here.
2658 //
2659 if (dyn_castFixedAlloca(&I)) return;
2660
2661 // Find the data size of the alloca inst's getAllocatedType.
2662 const Type *Ty = I.getAllocatedType();
2663 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2664
2665 // Create a register to hold the temporary result of multiplying the type size
2666 // constant by the variable amount.
2667 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2668 unsigned SrcReg1 = getReg(I.getArraySize());
2669
2670 // TotalSizeReg = mul <numelements>, <TypeSize>
2671 MachineBasicBlock::iterator MBBI = BB->end();
2672 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2673
2674 // AddedSize = add <TotalSizeReg>, 15
2675 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2676 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2677
2678 // AlignedSize = and <AddedSize>, ~15
2679 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002680 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2681 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002682
2683 // Subtract size from stack pointer, thereby allocating some space.
2684 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2685
2686 // Put a pointer to the space into the result register, by copying
2687 // the stack pointer.
2688 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2689
2690 // Inform the Frame Information that we have just allocated a variable-sized
2691 // object.
2692 F->getFrameInfo()->CreateVariableSizedObject();
2693}
2694
2695/// visitMallocInst - Malloc instructions are code generated into direct calls
2696/// to the library malloc.
2697///
2698void ISel::visitMallocInst(MallocInst &I) {
2699 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2700 unsigned Arg;
2701
2702 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2703 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2704 } else {
2705 Arg = makeAnotherReg(Type::UIntTy);
2706 unsigned Op0Reg = getReg(I.getOperand(0));
2707 MachineBasicBlock::iterator MBBI = BB->end();
2708 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2709 }
2710
2711 std::vector<ValueRecord> Args;
2712 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002713 MachineInstr *TheCall =
2714 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002715 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2716}
2717
2718
2719/// visitFreeInst - Free instructions are code gen'd to call the free libc
2720/// function.
2721///
2722void ISel::visitFreeInst(FreeInst &I) {
2723 std::vector<ValueRecord> Args;
2724 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002725 MachineInstr *TheCall =
2726 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002727 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2728}
2729
2730/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2731/// into a machine code representation is a very simple peep-hole fashion. The
2732/// generated code sucks but the implementation is nice and simple.
2733///
2734FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2735 return new ISel(TM);
2736}