blob: b6bae6dffaef863e6e18129bdcb7c19bd803a0a7 [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnercb533582003-08-03 21:14:38 +000015#define DEBUG_TYPE "fp"
Chris Lattnera960d952003-01-13 01:01:59 +000016#include "X86.h"
17#include "X86InstrInfo.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/LiveVariables.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000021#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000022#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000023#include "llvm/Target/TargetMachine.h"
Chris Lattnera11136b2003-08-01 22:21:34 +000024#include "Support/Debug.h"
Chris Lattnera960d952003-01-13 01:01:59 +000025#include "Support/Statistic.h"
26#include <algorithm>
27#include <iostream>
28
Brian Gaeked0fde302003-11-11 22:41:34 +000029namespace llvm {
30
Chris Lattnera960d952003-01-13 01:01:59 +000031namespace {
32 Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
33 Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
34
35 struct FPS : public MachineFunctionPass {
36 virtual bool runOnMachineFunction(MachineFunction &MF);
37
38 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
39
40 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
41 AU.addRequired<LiveVariables>();
42 MachineFunctionPass::getAnalysisUsage(AU);
43 }
44 private:
45 LiveVariables *LV; // Live variable info for current function...
46 MachineBasicBlock *MBB; // Current basic block
47 unsigned Stack[8]; // FP<n> Registers in each stack slot...
48 unsigned RegMap[8]; // Track which stack slot contains each register
49 unsigned StackTop; // The current top of the FP stack.
50
51 void dumpStack() const {
52 std::cerr << "Stack contents:";
53 for (unsigned i = 0; i != StackTop; ++i) {
54 std::cerr << " FP" << Stack[i];
55 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
56 }
57 std::cerr << "\n";
58 }
59 private:
60 // getSlot - Return the stack slot number a particular register number is
61 // in...
62 unsigned getSlot(unsigned RegNo) const {
63 assert(RegNo < 8 && "Regno out of range!");
64 return RegMap[RegNo];
65 }
66
67 // getStackEntry - Return the X86::FP<n> register in register ST(i)
68 unsigned getStackEntry(unsigned STi) const {
69 assert(STi < StackTop && "Access past stack top!");
70 return Stack[StackTop-1-STi];
71 }
72
73 // getSTReg - Return the X86::ST(i) register which contains the specified
74 // FP<RegNo> register
75 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +000076 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +000077 }
78
79 // pushReg - Push the specifiex FP<n> register onto the stack
80 void pushReg(unsigned Reg) {
81 assert(Reg < 8 && "Register number out of range!");
82 assert(StackTop < 8 && "Stack overflow!");
83 Stack[StackTop] = Reg;
84 RegMap[Reg] = StackTop++;
85 }
86
87 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
88 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
89 if (!isAtTop(RegNo)) {
90 unsigned Slot = getSlot(RegNo);
91 unsigned STReg = getSTReg(RegNo);
92 unsigned RegOnTop = getStackEntry(0);
93
94 // Swap the slots the regs are in
95 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
96
97 // Swap stack slot contents
98 assert(RegMap[RegOnTop] < StackTop);
99 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
100
101 // Emit an fxch to update the runtime processors version of the state
102 MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
103 I = 1+MBB->insert(I, MI);
104 NumFXCH++;
105 }
106 }
107
108 void duplicateToTop(unsigned RegNo, unsigned AsReg,
109 MachineBasicBlock::iterator &I) {
110 unsigned STReg = getSTReg(RegNo);
111 pushReg(AsReg); // New register on top of stack
112
113 MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
114 I = 1+MBB->insert(I, MI);
115 }
116
117 // popStackAfter - Pop the current value off of the top of the FP stack
118 // after the specified instruction.
119 void popStackAfter(MachineBasicBlock::iterator &I);
120
121 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
122
123 void handleZeroArgFP(MachineBasicBlock::iterator &I);
124 void handleOneArgFP(MachineBasicBlock::iterator &I);
125 void handleTwoArgFP(MachineBasicBlock::iterator &I);
126 void handleSpecialFP(MachineBasicBlock::iterator &I);
127 };
128}
129
Brian Gaeke19df3872003-08-13 18:18:15 +0000130FunctionPass *createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000131
132/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
133/// register references into FP stack references.
134///
135bool FPS::runOnMachineFunction(MachineFunction &MF) {
136 LV = &getAnalysis<LiveVariables>();
137 StackTop = 0;
138
139 bool Changed = false;
140 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
141 Changed |= processBasicBlock(MF, *I);
142 return Changed;
143}
144
145/// processBasicBlock - Loop over all of the instructions in the basic block,
146/// transforming FP instructions into their stack form.
147///
148bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
149 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
150 bool Changed = false;
151 MBB = &BB;
152
153 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
154 MachineInstr *MI = *I;
155 MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
156 unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
157
158 if ((Flags & X86II::FPTypeMask) == 0) continue; // Ignore non-fp insts!
159
160 ++NumFP; // Keep track of # of pseudo instrs
161 DEBUG(std::cerr << "\nFPInst:\t";
162 MI->print(std::cerr, MF.getTarget()));
163
164 // Get dead variables list now because the MI pointer may be deleted as part
165 // of processing!
166 LiveVariables::killed_iterator IB = LV->dead_begin(MI);
167 LiveVariables::killed_iterator IE = LV->dead_end(MI);
168
169 DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
170 LiveVariables::killed_iterator I = LV->killed_begin(MI);
171 LiveVariables::killed_iterator E = LV->killed_end(MI);
172 if (I != E) {
173 std::cerr << "Killed Operands:";
174 for (; I != E; ++I)
175 std::cerr << " %" << MRI->getName(I->second);
176 std::cerr << "\n";
177 });
178
179 switch (Flags & X86II::FPTypeMask) {
180 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
181 case X86II::OneArgFP: handleOneArgFP(I); break;
182
183 case X86II::OneArgFPRW: // ST(0) = fsqrt(ST(0))
184 assert(0 && "FP instr type not handled yet!");
185
186 case X86II::TwoArgFP: handleTwoArgFP(I); break;
187 case X86II::SpecialFP: handleSpecialFP(I); break;
188 default: assert(0 && "Unknown FP Type!");
189 }
190
191 // Check to see if any of the values defined by this instruction are dead
192 // after definition. If so, pop them.
193 for (; IB != IE; ++IB) {
194 unsigned Reg = IB->second;
195 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
196 DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
197 ++I; // Insert fxch AFTER the instruction
Misha Brukman5560c9d2003-08-18 14:43:39 +0000198 moveToTop(Reg-X86::FP0, I); // Insert fxch if necessary
Chris Lattnera960d952003-01-13 01:01:59 +0000199 --I; // Move to fxch or old instruction
200 popStackAfter(I); // Pop the top of the stack, killing value
201 }
202 }
203
204 // Print out all of the instructions expanded to if -debug
205 DEBUG(if (*I == PrevMI) {
206 std::cerr<< "Just deleted pseudo instruction\n";
207 } else {
208 MachineBasicBlock::iterator Start = I;
209 // Rewind to first instruction newly inserted.
210 while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
Brian Gaeked7908f62003-06-27 00:00:48 +0000211 std::cerr << "Inserted instructions:\n\t";
212 (*Start)->print(std::cerr, MF.getTarget());
Chris Lattnera960d952003-01-13 01:01:59 +0000213 while (++Start != I+1);
214 }
215 dumpStack();
216 );
217
218 Changed = true;
219 }
220
221 assert(StackTop == 0 && "Stack not empty at end of basic block?");
222 return Changed;
223}
224
225//===----------------------------------------------------------------------===//
226// Efficient Lookup Table Support
227//===----------------------------------------------------------------------===//
228
229struct TableEntry {
230 unsigned from;
231 unsigned to;
232 bool operator<(const TableEntry &TE) const { return from < TE.from; }
233 bool operator<(unsigned V) const { return from < V; }
234};
235
236static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
237 for (unsigned i = 0; i != NumEntries-1; ++i)
238 if (!(Table[i] < Table[i+1])) return false;
239 return true;
240}
241
242static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
243 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
244 if (I != Table+N && I->from == Opcode)
245 return I->to;
246 return -1;
247}
248
249#define ARRAY_SIZE(TABLE) \
250 (sizeof(TABLE)/sizeof(TABLE[0]))
251
252#ifdef NDEBUG
253#define ASSERT_SORTED(TABLE)
254#else
255#define ASSERT_SORTED(TABLE) \
256 { static bool TABLE##Checked = false; \
257 if (!TABLE##Checked) \
258 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
259 "All lookup tables must be sorted for efficient access!"); \
260 }
261#endif
262
263
264//===----------------------------------------------------------------------===//
265// Helper Methods
266//===----------------------------------------------------------------------===//
267
268// PopTable - Sorted map of instructions to their popping version. The first
269// element is an instruction, the second is the version which pops.
270//
271static const TableEntry PopTable[] = {
Chris Lattner113455b2003-08-03 21:56:36 +0000272 { X86::FADDrST0 , X86::FADDPrST0 },
273
274 { X86::FDIVRrST0, X86::FDIVRPrST0 },
275 { X86::FDIVrST0 , X86::FDIVPrST0 },
276
Chris Lattnera960d952003-01-13 01:01:59 +0000277 { X86::FISTr16 , X86::FISTPr16 },
278 { X86::FISTr32 , X86::FISTPr32 },
279
Chris Lattnera960d952003-01-13 01:01:59 +0000280 { X86::FMULrST0 , X86::FMULPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000281
Chris Lattner113455b2003-08-03 21:56:36 +0000282 { X86::FSTr32 , X86::FSTPr32 },
283 { X86::FSTr64 , X86::FSTPr64 },
284 { X86::FSTrr , X86::FSTPrr },
285
286 { X86::FSUBRrST0, X86::FSUBRPrST0 },
287 { X86::FSUBrST0 , X86::FSUBPrST0 },
288
Chris Lattnera960d952003-01-13 01:01:59 +0000289 { X86::FUCOMPr , X86::FUCOMPPr },
Chris Lattner113455b2003-08-03 21:56:36 +0000290 { X86::FUCOMr , X86::FUCOMPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000291};
292
293/// popStackAfter - Pop the current value off of the top of the FP stack after
294/// the specified instruction. This attempts to be sneaky and combine the pop
295/// into the instruction itself if possible. The iterator is left pointing to
296/// the last instruction, be it a new pop instruction inserted, or the old
297/// instruction if it was modified in place.
298///
299void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
300 ASSERT_SORTED(PopTable);
301 assert(StackTop > 0 && "Cannot pop empty stack!");
302 RegMap[Stack[--StackTop]] = ~0; // Update state
303
304 // Check to see if there is a popping version of this instruction...
305 int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
306 if (Opcode != -1) {
307 (*I)->setOpcode(Opcode);
308 if (Opcode == X86::FUCOMPPr)
309 (*I)->RemoveOperand(0);
310
311 } else { // Insert an explicit pop
312 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
313 I = MBB->insert(I+1, MI);
314 }
315}
316
317static unsigned getFPReg(const MachineOperand &MO) {
318 assert(MO.isPhysicalRegister() && "Expected an FP register!");
319 unsigned Reg = MO.getReg();
320 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
321 return Reg - X86::FP0;
322}
323
324
325//===----------------------------------------------------------------------===//
326// Instruction transformation implementation
327//===----------------------------------------------------------------------===//
328
329/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
330//
331void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
332 MachineInstr *MI = *I;
333 unsigned DestReg = getFPReg(MI->getOperand(0));
334 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
335
336 // Result gets pushed on the stack...
337 pushReg(DestReg);
338}
339
340/// handleOneArgFP - fst ST(0), <mem>
341//
342void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
343 MachineInstr *MI = *I;
344 assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
345
346 unsigned Reg = getFPReg(MI->getOperand(4));
347 bool KillsSrc = false;
348 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
349 E = LV->killed_end(MI); KI != E; ++KI)
350 KillsSrc |= KI->second == X86::FP0+Reg;
351
352 // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
353 // If we have one _and_ we don't want to pop the operand, duplicate the value
354 // on the stack instead of moving it. This ensure that popping the value is
355 // always ok.
356 //
357 if ((MI->getOpcode() == X86::FSTPr80 ||
358 MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
359 duplicateToTop(Reg, 7 /*temp register*/, I);
360 } else {
361 moveToTop(Reg, I); // Move to the top of the stack...
362 }
363 MI->RemoveOperand(4); // Remove explicit ST(0) operand
364
365 if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
366 assert(StackTop > 0 && "Stack empty??");
367 --StackTop;
368 } else if (KillsSrc) { // Last use of operand?
369 popStackAfter(I);
370 }
371}
372
373//===----------------------------------------------------------------------===//
374// Define tables of various ways to map pseudo instructions
375//
376
377// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
378static const TableEntry ForwardST0Table[] = {
379 { X86::FpADD, X86::FADDST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000380 { X86::FpDIV, X86::FDIVST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000381 { X86::FpMUL, X86::FMULST0r },
382 { X86::FpSUB, X86::FSUBST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000383 { X86::FpUCOM, X86::FUCOMr },
384};
385
386// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
387static const TableEntry ReverseST0Table[] = {
388 { X86::FpADD, X86::FADDST0r }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000389 { X86::FpDIV, X86::FDIVRST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000390 { X86::FpMUL, X86::FMULST0r }, // commutative
391 { X86::FpSUB, X86::FSUBRST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000392 { X86::FpUCOM, ~0 },
393};
394
395// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
396static const TableEntry ForwardSTiTable[] = {
397 { X86::FpADD, X86::FADDrST0 }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000398 { X86::FpDIV, X86::FDIVRrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000399 { X86::FpMUL, X86::FMULrST0 }, // commutative
400 { X86::FpSUB, X86::FSUBRrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000401 { X86::FpUCOM, X86::FUCOMr },
402};
403
404// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
405static const TableEntry ReverseSTiTable[] = {
406 { X86::FpADD, X86::FADDrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000407 { X86::FpDIV, X86::FDIVrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000408 { X86::FpMUL, X86::FMULrST0 },
409 { X86::FpSUB, X86::FSUBrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000410 { X86::FpUCOM, ~0 },
411};
412
413
414/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
415/// instructions which need to be simplified and possibly transformed.
416///
417/// Result: ST(0) = fsub ST(0), ST(i)
418/// ST(i) = fsub ST(0), ST(i)
419/// ST(0) = fsubr ST(0), ST(i)
420/// ST(i) = fsubr ST(0), ST(i)
421///
422/// In addition to three address instructions, this also handles the FpUCOM
423/// instruction which only has two operands, but no destination. This
424/// instruction is also annoying because there is no "reverse" form of it
425/// available.
426///
427void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
428 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
429 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
430 MachineInstr *MI = *I;
431
432 unsigned NumOperands = MI->getNumOperands();
433 assert(NumOperands == 3 ||
434 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
435 "Illegal TwoArgFP instruction!");
436 unsigned Dest = getFPReg(MI->getOperand(0));
437 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
438 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
439 bool KillsOp0 = false, KillsOp1 = false;
440
441 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
442 E = LV->killed_end(MI); KI != E; ++KI) {
443 KillsOp0 |= (KI->second == X86::FP0+Op0);
444 KillsOp1 |= (KI->second == X86::FP0+Op1);
445 }
446
447 // If this is an FpUCOM instruction, we must make sure the first operand is on
448 // the top of stack, the other one can be anywhere...
449 if (MI->getOpcode() == X86::FpUCOM)
450 moveToTop(Op0, I);
451
452 unsigned TOS = getStackEntry(0);
453
454 // One of our operands must be on the top of the stack. If neither is yet, we
455 // need to move one.
456 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
457 // We can choose to move either operand to the top of the stack. If one of
458 // the operands is killed by this instruction, we want that one so that we
459 // can update right on top of the old version.
460 if (KillsOp0) {
461 moveToTop(Op0, I); // Move dead operand to TOS.
462 TOS = Op0;
463 } else if (KillsOp1) {
464 moveToTop(Op1, I);
465 TOS = Op1;
466 } else {
467 // All of the operands are live after this instruction executes, so we
468 // cannot update on top of any operand. Because of this, we must
469 // duplicate one of the stack elements to the top. It doesn't matter
470 // which one we pick.
471 //
472 duplicateToTop(Op0, Dest, I);
473 Op0 = TOS = Dest;
474 KillsOp0 = true;
475 }
476 } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
477 // If we DO have one of our operands at the top of the stack, but we don't
478 // have a dead operand, we must duplicate one of the operands to a new slot
479 // on the stack.
480 duplicateToTop(Op0, Dest, I);
481 Op0 = TOS = Dest;
482 KillsOp0 = true;
483 }
484
485 // Now we know that one of our operands is on the top of the stack, and at
486 // least one of our operands is killed by this instruction.
487 assert((TOS == Op0 || TOS == Op1) &&
488 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
489 "Stack conditions not set up right!");
490
491 // We decide which form to use based on what is on the top of the stack, and
492 // which operand is killed by this instruction.
493 const TableEntry *InstTable;
494 bool isForward = TOS == Op0;
495 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
496 if (updateST0) {
497 if (isForward)
498 InstTable = ForwardST0Table;
499 else
500 InstTable = ReverseST0Table;
501 } else {
502 if (isForward)
503 InstTable = ForwardSTiTable;
504 else
505 InstTable = ReverseSTiTable;
506 }
507
508 int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
509 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
510
511 // NotTOS - The register which is not on the top of stack...
512 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
513
514 // Replace the old instruction with a new instruction
515 *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
516
517 // If both operands are killed, pop one off of the stack in addition to
518 // overwriting the other one.
519 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
520 assert(!updateST0 && "Should have updated other operand!");
521 popStackAfter(I); // Pop the top of stack
522 }
523
524 // Insert an explicit pop of the "updated" operand for FUCOM
525 if (MI->getOpcode() == X86::FpUCOM) {
526 if (KillsOp0 && !KillsOp1)
527 popStackAfter(I); // If we kill the first operand, pop it!
528 else if (KillsOp1 && Op0 != Op1) {
529 if (getStackEntry(0) == Op1) {
530 popStackAfter(I); // If it's right at the top of stack, just pop it
531 } else {
532 // Otherwise, move the top of stack into the dead slot, killing the
533 // operand without having to add in an explicit xchg then pop.
534 //
535 unsigned STReg = getSTReg(Op1);
536 unsigned OldSlot = getSlot(Op1);
537 unsigned TopReg = Stack[StackTop-1];
538 Stack[OldSlot] = TopReg;
539 RegMap[TopReg] = OldSlot;
540 RegMap[Op1] = ~0;
541 Stack[--StackTop] = ~0;
542
543 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
544 I = MBB->insert(I+1, MI);
545 }
546 }
547 }
548
549 // Update stack information so that we know the destination register is now on
550 // the stack.
551 if (MI->getOpcode() != X86::FpUCOM) {
552 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
553 assert(UpdatedSlot < StackTop && Dest < 7);
554 Stack[UpdatedSlot] = Dest;
555 RegMap[Dest] = UpdatedSlot;
556 }
557 delete MI; // Remove the old instruction
558}
559
560
561/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000562/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000563/// instructions.
564///
565void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
566 MachineInstr *MI = *I;
567 switch (MI->getOpcode()) {
568 default: assert(0 && "Unknown SpecialFP instruction!");
569 case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
570 assert(StackTop == 0 && "Stack should be empty after a call!");
571 pushReg(getFPReg(MI->getOperand(0)));
572 break;
573 case X86::FpSETRESULT:
574 assert(StackTop == 1 && "Stack should have one element on it to return!");
575 --StackTop; // "Forget" we have something on the top of stack!
576 break;
577 case X86::FpMOV: {
578 unsigned SrcReg = getFPReg(MI->getOperand(1));
579 unsigned DestReg = getFPReg(MI->getOperand(0));
580 bool KillsSrc = false;
581 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
582 E = LV->killed_end(MI); KI != E; ++KI)
583 KillsSrc |= KI->second == X86::FP0+SrcReg;
584
585 if (KillsSrc) {
586 // If the input operand is killed, we can just change the owner of the
587 // incoming stack slot into the result.
588 unsigned Slot = getSlot(SrcReg);
589 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
590 Stack[Slot] = DestReg;
591 RegMap[DestReg] = Slot;
592
593 } else {
594 // For FMOV we just duplicate the specified value to a new stack slot.
595 // This could be made better, but would require substantial changes.
596 duplicateToTop(SrcReg, DestReg, I);
597 }
598 break;
599 }
600 }
601
602 I = MBB->erase(I)-1; // Remove the pseudo instruction
603}
Brian Gaeked0fde302003-11-11 22:41:34 +0000604
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +0000605namespace {
606
607 struct FPK : public MachineFunctionPass {
608 virtual const char *getPassName() const { return "X86 FP Killer"; }
609 virtual bool runOnMachineFunction(MachineFunction &MF);
610 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
611 AU.setPreservesAll();
612 AU.addRequired<LiveVariables>();
613 AU.addRequiredID(PHIEliminationID);
614 MachineFunctionPass::getAnalysisUsage(AU);
615 }
616 };
617}
618
619FunctionPass * createX86FloatingPointKillerPass() { return new FPK(); }
620
621bool FPK::runOnMachineFunction(MachineFunction &MF)
622{
623 const TargetInstrInfo& tii = MF.getTarget().getInstrInfo();;
624
625 for (MachineFunction::iterator
626 mbbi = MF.begin(), mbbe = MF.end(); mbbi != mbbe; ++mbbi) {
627 MachineBasicBlock& mbb = *mbbi;
628 MachineBasicBlock::reverse_iterator mii = mbb.rbegin();
629 // rewind to the last non terminating instruction
630 while (mii != mbb.rend() && tii.isTerminatorInstr((*mii)->getOpcode())) {
631 ++mii;
632 }
633 // add implicit def for all virtual floating point registers so that
634 // they are spilled at the end of each basic block, since our
635 // register stackifier doesn't handle them otherwise.
636 MachineInstr* instr = BuildMI(X86::IMPLICIT_DEF, 7)
637 .addReg(X86::FP6, MOTy::Def)
638 .addReg(X86::FP5, MOTy::Def)
639 .addReg(X86::FP4, MOTy::Def)
640 .addReg(X86::FP3, MOTy::Def)
641 .addReg(X86::FP2, MOTy::Def)
642 .addReg(X86::FP1, MOTy::Def)
643 .addReg(X86::FP0, MOTy::Def);
644
645 mbb.insert(mii.base(), instr);
646 LiveVariables& lv = getAnalysis<LiveVariables>();
647 for (unsigned i = 0; i < instr->getNumOperands(); ++i) {
648 lv.HandlePhysRegDef(instr->getOperand(i).getAllocatedRegNum(), instr);
649 // force live variables to compute that these registers are dead
650 lv.HandlePhysRegDef(instr->getOperand(i).getAllocatedRegNum(), 0);
651 }
652 }
653 return true;
654}
655
Brian Gaeked0fde302003-11-11 22:41:34 +0000656} // End llvm namespace