blob: a60a304330e598585467a878d4fdb5b3b300e5e6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87 "Number of brute force evaluations needed to "
88 "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant derived loop"),
102 cl::init(100));
103
104namespace {
105 RegisterPass<ScalarEvolution>
106 R("scalar-evolution", "Scalar Evolution Analysis");
107}
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117SCEV::~SCEV() {}
118void SCEV::dump() const {
119 print(cerr);
120}
121
122/// getValueRange - Return the tightest constant bounds that this value is
123/// known to have. This method is only valid on integer SCEV objects.
124ConstantRange SCEV::getValueRange() const {
125 const Type *Ty = getType();
126 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
127 // Default to a full range if no better information is available.
128 return ConstantRange(getBitWidth());
129}
130
131uint32_t SCEV::getBitWidth() const {
132 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
133 return ITy->getBitWidth();
134 return 0;
135}
136
137
138SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
139
140bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142 return false;
143}
144
145const Type *SCEVCouldNotCompute::getType() const {
146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147 return 0;
148}
149
150bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152 return false;
153}
154
155SCEVHandle SCEVCouldNotCompute::
156replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000157 const SCEVHandle &Conc,
158 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 return this;
160}
161
162void SCEVCouldNotCompute::print(std::ostream &OS) const {
163 OS << "***COULDNOTCOMPUTE***";
164}
165
166bool SCEVCouldNotCompute::classof(const SCEV *S) {
167 return S->getSCEVType() == scCouldNotCompute;
168}
169
170
171// SCEVConstants - Only allow the creation of one SCEVConstant for any
172// particular value. Don't use a SCEVHandle here, or else the object will
173// never be deleted!
174static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
175
176
177SCEVConstant::~SCEVConstant() {
178 SCEVConstants->erase(V);
179}
180
Dan Gohman89f85052007-10-22 18:31:58 +0000181SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182 SCEVConstant *&R = (*SCEVConstants)[V];
183 if (R == 0) R = new SCEVConstant(V);
184 return R;
185}
186
Dan Gohman89f85052007-10-22 18:31:58 +0000187SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
188 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000189}
190
191ConstantRange SCEVConstant::getValueRange() const {
192 return ConstantRange(V->getValue());
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(std::ostream &OS) const {
198 WriteAsOperand(OS, V, false);
199}
200
201// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202// particular input. Don't use a SCEVHandle here, or else the object will
203// never be deleted!
204static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
205 SCEVTruncateExpr*> > SCEVTruncates;
206
207SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208 : SCEV(scTruncate), Op(op), Ty(ty) {
209 assert(Op->getType()->isInteger() && Ty->isInteger() &&
210 "Cannot truncate non-integer value!");
211 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
212 && "This is not a truncating conversion!");
213}
214
215SCEVTruncateExpr::~SCEVTruncateExpr() {
216 SCEVTruncates->erase(std::make_pair(Op, Ty));
217}
218
219ConstantRange SCEVTruncateExpr::getValueRange() const {
220 return getOperand()->getValueRange().truncate(getBitWidth());
221}
222
223void SCEVTruncateExpr::print(std::ostream &OS) const {
224 OS << "(truncate " << *Op << " to " << *Ty << ")";
225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input. Don't use a SCEVHandle here, or else the object will never
229// be deleted!
230static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
231 SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
234 : SCEV(scZeroExtend), Op(op), Ty(ty) {
235 assert(Op->getType()->isInteger() && Ty->isInteger() &&
236 "Cannot zero extend non-integer value!");
237 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
238 && "This is not an extending conversion!");
239}
240
241SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
242 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
243}
244
245ConstantRange SCEVZeroExtendExpr::getValueRange() const {
246 return getOperand()->getValueRange().zeroExtend(getBitWidth());
247}
248
249void SCEVZeroExtendExpr::print(std::ostream &OS) const {
250 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
251}
252
253// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
254// particular input. Don't use a SCEVHandle here, or else the object will never
255// be deleted!
256static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
257 SCEVSignExtendExpr*> > SCEVSignExtends;
258
259SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
260 : SCEV(scSignExtend), Op(op), Ty(ty) {
261 assert(Op->getType()->isInteger() && Ty->isInteger() &&
262 "Cannot sign extend non-integer value!");
263 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
264 && "This is not an extending conversion!");
265}
266
267SCEVSignExtendExpr::~SCEVSignExtendExpr() {
268 SCEVSignExtends->erase(std::make_pair(Op, Ty));
269}
270
271ConstantRange SCEVSignExtendExpr::getValueRange() const {
272 return getOperand()->getValueRange().signExtend(getBitWidth());
273}
274
275void SCEVSignExtendExpr::print(std::ostream &OS) const {
276 OS << "(signextend " << *Op << " to " << *Ty << ")";
277}
278
279// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
280// particular input. Don't use a SCEVHandle here, or else the object will never
281// be deleted!
282static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
283 SCEVCommutativeExpr*> > SCEVCommExprs;
284
285SCEVCommutativeExpr::~SCEVCommutativeExpr() {
286 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
287 std::vector<SCEV*>(Operands.begin(),
288 Operands.end())));
289}
290
291void SCEVCommutativeExpr::print(std::ostream &OS) const {
292 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
293 const char *OpStr = getOperationStr();
294 OS << "(" << *Operands[0];
295 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
296 OS << OpStr << *Operands[i];
297 OS << ")";
298}
299
300SCEVHandle SCEVCommutativeExpr::
301replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000302 const SCEVHandle &Conc,
303 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000305 SCEVHandle H =
306 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 if (H != getOperand(i)) {
308 std::vector<SCEVHandle> NewOps;
309 NewOps.reserve(getNumOperands());
310 for (unsigned j = 0; j != i; ++j)
311 NewOps.push_back(getOperand(j));
312 NewOps.push_back(H);
313 for (++i; i != e; ++i)
314 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000315 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316
317 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000318 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000320 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000321 else if (isa<SCEVSMaxExpr>(this))
322 return SE.getSMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323 else
324 assert(0 && "Unknown commutative expr!");
325 }
326 }
327 return this;
328}
329
330
331// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
332// input. Don't use a SCEVHandle here, or else the object will never be
333// deleted!
334static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
335 SCEVSDivExpr*> > SCEVSDivs;
336
337SCEVSDivExpr::~SCEVSDivExpr() {
338 SCEVSDivs->erase(std::make_pair(LHS, RHS));
339}
340
341void SCEVSDivExpr::print(std::ostream &OS) const {
342 OS << "(" << *LHS << " /s " << *RHS << ")";
343}
344
345const Type *SCEVSDivExpr::getType() const {
346 return LHS->getType();
347}
348
349// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
350// particular input. Don't use a SCEVHandle here, or else the object will never
351// be deleted!
352static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
353 SCEVAddRecExpr*> > SCEVAddRecExprs;
354
355SCEVAddRecExpr::~SCEVAddRecExpr() {
356 SCEVAddRecExprs->erase(std::make_pair(L,
357 std::vector<SCEV*>(Operands.begin(),
358 Operands.end())));
359}
360
361SCEVHandle SCEVAddRecExpr::
362replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000363 const SCEVHandle &Conc,
364 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000366 SCEVHandle H =
367 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 if (H != getOperand(i)) {
369 std::vector<SCEVHandle> NewOps;
370 NewOps.reserve(getNumOperands());
371 for (unsigned j = 0; j != i; ++j)
372 NewOps.push_back(getOperand(j));
373 NewOps.push_back(H);
374 for (++i; i != e; ++i)
375 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000376 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377
Dan Gohman89f85052007-10-22 18:31:58 +0000378 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 }
380 }
381 return this;
382}
383
384
385bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
386 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
387 // contain L and if the start is invariant.
388 return !QueryLoop->contains(L->getHeader()) &&
389 getOperand(0)->isLoopInvariant(QueryLoop);
390}
391
392
393void SCEVAddRecExpr::print(std::ostream &OS) const {
394 OS << "{" << *Operands[0];
395 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
396 OS << ",+," << *Operands[i];
397 OS << "}<" << L->getHeader()->getName() + ">";
398}
399
400// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
401// value. Don't use a SCEVHandle here, or else the object will never be
402// deleted!
403static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
404
405SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
406
407bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
408 // All non-instruction values are loop invariant. All instructions are loop
409 // invariant if they are not contained in the specified loop.
410 if (Instruction *I = dyn_cast<Instruction>(V))
411 return !L->contains(I->getParent());
412 return true;
413}
414
415const Type *SCEVUnknown::getType() const {
416 return V->getType();
417}
418
419void SCEVUnknown::print(std::ostream &OS) const {
420 WriteAsOperand(OS, V, false);
421}
422
423//===----------------------------------------------------------------------===//
424// SCEV Utilities
425//===----------------------------------------------------------------------===//
426
427namespace {
428 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
429 /// than the complexity of the RHS. This comparator is used to canonicalize
430 /// expressions.
431 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
432 bool operator()(SCEV *LHS, SCEV *RHS) {
433 return LHS->getSCEVType() < RHS->getSCEVType();
434 }
435 };
436}
437
438/// GroupByComplexity - Given a list of SCEV objects, order them by their
439/// complexity, and group objects of the same complexity together by value.
440/// When this routine is finished, we know that any duplicates in the vector are
441/// consecutive and that complexity is monotonically increasing.
442///
443/// Note that we go take special precautions to ensure that we get determinstic
444/// results from this routine. In other words, we don't want the results of
445/// this to depend on where the addresses of various SCEV objects happened to
446/// land in memory.
447///
448static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
449 if (Ops.size() < 2) return; // Noop
450 if (Ops.size() == 2) {
451 // This is the common case, which also happens to be trivially simple.
452 // Special case it.
453 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
454 std::swap(Ops[0], Ops[1]);
455 return;
456 }
457
458 // Do the rough sort by complexity.
459 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
460
461 // Now that we are sorted by complexity, group elements of the same
462 // complexity. Note that this is, at worst, N^2, but the vector is likely to
463 // be extremely short in practice. Note that we take this approach because we
464 // do not want to depend on the addresses of the objects we are grouping.
465 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
466 SCEV *S = Ops[i];
467 unsigned Complexity = S->getSCEVType();
468
469 // If there are any objects of the same complexity and same value as this
470 // one, group them.
471 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
472 if (Ops[j] == S) { // Found a duplicate.
473 // Move it to immediately after i'th element.
474 std::swap(Ops[i+1], Ops[j]);
475 ++i; // no need to rescan it.
476 if (i == e-2) return; // Done!
477 }
478 }
479 }
480}
481
482
483
484//===----------------------------------------------------------------------===//
485// Simple SCEV method implementations
486//===----------------------------------------------------------------------===//
487
488/// getIntegerSCEV - Given an integer or FP type, create a constant for the
489/// specified signed integer value and return a SCEV for the constant.
Dan Gohman89f85052007-10-22 18:31:58 +0000490SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 Constant *C;
492 if (Val == 0)
493 C = Constant::getNullValue(Ty);
494 else if (Ty->isFloatingPoint())
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000495 C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
496 APFloat::IEEEdouble, Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497 else
498 C = ConstantInt::get(Ty, Val);
Dan Gohman89f85052007-10-22 18:31:58 +0000499 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000500}
501
502/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
503/// input value to the specified type. If the type must be extended, it is zero
504/// extended.
Dan Gohman89f85052007-10-22 18:31:58 +0000505static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty,
506 ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 const Type *SrcTy = V->getType();
508 assert(SrcTy->isInteger() && Ty->isInteger() &&
509 "Cannot truncate or zero extend with non-integer arguments!");
510 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
511 return V; // No conversion
512 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
Dan Gohman89f85052007-10-22 18:31:58 +0000513 return SE.getTruncateExpr(V, Ty);
514 return SE.getZeroExtendExpr(V, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000515}
516
517/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
518///
Dan Gohman89f85052007-10-22 18:31:58 +0000519SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000520 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohman89f85052007-10-22 18:31:58 +0000521 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000522
Dan Gohman89f85052007-10-22 18:31:58 +0000523 return getMulExpr(V, getIntegerSCEV(-1, V->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000524}
525
526/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
527///
Dan Gohman89f85052007-10-22 18:31:58 +0000528SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
529 const SCEVHandle &RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000530 // X - Y --> X + -Y
Dan Gohman89f85052007-10-22 18:31:58 +0000531 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000532}
533
534
535/// PartialFact - Compute V!/(V-NumSteps)!
Dan Gohman89f85052007-10-22 18:31:58 +0000536static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps,
537 ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000538 // Handle this case efficiently, it is common to have constant iteration
539 // counts while computing loop exit values.
540 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
541 const APInt& Val = SC->getValue()->getValue();
542 APInt Result(Val.getBitWidth(), 1);
543 for (; NumSteps; --NumSteps)
544 Result *= Val-(NumSteps-1);
Dan Gohman89f85052007-10-22 18:31:58 +0000545 return SE.getConstant(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000546 }
547
548 const Type *Ty = V->getType();
549 if (NumSteps == 0)
Dan Gohman89f85052007-10-22 18:31:58 +0000550 return SE.getIntegerSCEV(1, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000551
552 SCEVHandle Result = V;
553 for (unsigned i = 1; i != NumSteps; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +0000554 Result = SE.getMulExpr(Result, SE.getMinusSCEV(V,
555 SE.getIntegerSCEV(i, Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000556 return Result;
557}
558
559
560/// evaluateAtIteration - Return the value of this chain of recurrences at
561/// the specified iteration number. We can evaluate this recurrence by
562/// multiplying each element in the chain by the binomial coefficient
563/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
564///
565/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
566///
567/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
568/// Is the binomial equation safe using modular arithmetic??
569///
Dan Gohman89f85052007-10-22 18:31:58 +0000570SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
571 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000572 SCEVHandle Result = getStart();
573 int Divisor = 1;
574 const Type *Ty = It->getType();
575 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000576 SCEVHandle BC = PartialFact(It, i, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000577 Divisor *= i;
Anton Korobeynikoveb61bf52007-11-15 18:33:16 +0000578 SCEVHandle Val = SE.getSDivExpr(SE.getMulExpr(BC, getOperand(i)),
Dan Gohman89f85052007-10-22 18:31:58 +0000579 SE.getIntegerSCEV(Divisor,Ty));
580 Result = SE.getAddExpr(Result, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000581 }
582 return Result;
583}
584
585
586//===----------------------------------------------------------------------===//
587// SCEV Expression folder implementations
588//===----------------------------------------------------------------------===//
589
Dan Gohman89f85052007-10-22 18:31:58 +0000590SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000591 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000592 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000593 ConstantExpr::getTrunc(SC->getValue(), Ty));
594
595 // If the input value is a chrec scev made out of constants, truncate
596 // all of the constants.
597 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
598 std::vector<SCEVHandle> Operands;
599 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
600 // FIXME: This should allow truncation of other expression types!
601 if (isa<SCEVConstant>(AddRec->getOperand(i)))
Dan Gohman89f85052007-10-22 18:31:58 +0000602 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000603 else
604 break;
605 if (Operands.size() == AddRec->getNumOperands())
Dan Gohman89f85052007-10-22 18:31:58 +0000606 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000607 }
608
609 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
610 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
611 return Result;
612}
613
Dan Gohman89f85052007-10-22 18:31:58 +0000614SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000615 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000616 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000617 ConstantExpr::getZExt(SC->getValue(), Ty));
618
619 // FIXME: If the input value is a chrec scev, and we can prove that the value
620 // did not overflow the old, smaller, value, we can zero extend all of the
621 // operands (often constants). This would allow analysis of something like
622 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
623
624 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
625 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
626 return Result;
627}
628
Dan Gohman89f85052007-10-22 18:31:58 +0000629SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000631 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632 ConstantExpr::getSExt(SC->getValue(), Ty));
633
634 // FIXME: If the input value is a chrec scev, and we can prove that the value
635 // did not overflow the old, smaller, value, we can sign extend all of the
636 // operands (often constants). This would allow analysis of something like
637 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
638
639 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
640 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
641 return Result;
642}
643
644// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000645SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000646 assert(!Ops.empty() && "Cannot get empty add!");
647 if (Ops.size() == 1) return Ops[0];
648
649 // Sort by complexity, this groups all similar expression types together.
650 GroupByComplexity(Ops);
651
652 // If there are any constants, fold them together.
653 unsigned Idx = 0;
654 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
655 ++Idx;
656 assert(Idx < Ops.size());
657 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
658 // We found two constants, fold them together!
659 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
660 RHSC->getValue()->getValue());
661 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
Dan Gohman89f85052007-10-22 18:31:58 +0000662 Ops[0] = getConstant(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000663 Ops.erase(Ops.begin()+1); // Erase the folded element
664 if (Ops.size() == 1) return Ops[0];
665 LHSC = cast<SCEVConstant>(Ops[0]);
666 } else {
667 // If we couldn't fold the expression, move to the next constant. Note
668 // that this is impossible to happen in practice because we always
669 // constant fold constant ints to constant ints.
670 ++Idx;
671 }
672 }
673
674 // If we are left with a constant zero being added, strip it off.
675 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
676 Ops.erase(Ops.begin());
677 --Idx;
678 }
679 }
680
681 if (Ops.size() == 1) return Ops[0];
682
683 // Okay, check to see if the same value occurs in the operand list twice. If
684 // so, merge them together into an multiply expression. Since we sorted the
685 // list, these values are required to be adjacent.
686 const Type *Ty = Ops[0]->getType();
687 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
688 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
689 // Found a match, merge the two values into a multiply, and add any
690 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000691 SCEVHandle Two = getIntegerSCEV(2, Ty);
692 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693 if (Ops.size() == 2)
694 return Mul;
695 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
696 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000697 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698 }
699
700 // Now we know the first non-constant operand. Skip past any cast SCEVs.
701 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
702 ++Idx;
703
704 // If there are add operands they would be next.
705 if (Idx < Ops.size()) {
706 bool DeletedAdd = false;
707 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
708 // If we have an add, expand the add operands onto the end of the operands
709 // list.
710 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
711 Ops.erase(Ops.begin()+Idx);
712 DeletedAdd = true;
713 }
714
715 // If we deleted at least one add, we added operands to the end of the list,
716 // and they are not necessarily sorted. Recurse to resort and resimplify
717 // any operands we just aquired.
718 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +0000719 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 }
721
722 // Skip over the add expression until we get to a multiply.
723 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
724 ++Idx;
725
726 // If we are adding something to a multiply expression, make sure the
727 // something is not already an operand of the multiply. If so, merge it into
728 // the multiply.
729 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
730 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
731 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
732 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
733 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
734 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
735 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
736 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
737 if (Mul->getNumOperands() != 2) {
738 // If the multiply has more than two operands, we must get the
739 // Y*Z term.
740 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
741 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000742 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 }
Dan Gohman89f85052007-10-22 18:31:58 +0000744 SCEVHandle One = getIntegerSCEV(1, Ty);
745 SCEVHandle AddOne = getAddExpr(InnerMul, One);
746 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 if (Ops.size() == 2) return OuterMul;
748 if (AddOp < Idx) {
749 Ops.erase(Ops.begin()+AddOp);
750 Ops.erase(Ops.begin()+Idx-1);
751 } else {
752 Ops.erase(Ops.begin()+Idx);
753 Ops.erase(Ops.begin()+AddOp-1);
754 }
755 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000756 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757 }
758
759 // Check this multiply against other multiplies being added together.
760 for (unsigned OtherMulIdx = Idx+1;
761 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
762 ++OtherMulIdx) {
763 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
764 // If MulOp occurs in OtherMul, we can fold the two multiplies
765 // together.
766 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
767 OMulOp != e; ++OMulOp)
768 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
769 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
770 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
771 if (Mul->getNumOperands() != 2) {
772 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
773 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000774 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 }
776 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
777 if (OtherMul->getNumOperands() != 2) {
778 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
779 OtherMul->op_end());
780 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000781 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000782 }
Dan Gohman89f85052007-10-22 18:31:58 +0000783 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
784 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785 if (Ops.size() == 2) return OuterMul;
786 Ops.erase(Ops.begin()+Idx);
787 Ops.erase(Ops.begin()+OtherMulIdx-1);
788 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000789 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 }
791 }
792 }
793 }
794
795 // If there are any add recurrences in the operands list, see if any other
796 // added values are loop invariant. If so, we can fold them into the
797 // recurrence.
798 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
799 ++Idx;
800
801 // Scan over all recurrences, trying to fold loop invariants into them.
802 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
803 // Scan all of the other operands to this add and add them to the vector if
804 // they are loop invariant w.r.t. the recurrence.
805 std::vector<SCEVHandle> LIOps;
806 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
807 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
808 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
809 LIOps.push_back(Ops[i]);
810 Ops.erase(Ops.begin()+i);
811 --i; --e;
812 }
813
814 // If we found some loop invariants, fold them into the recurrence.
815 if (!LIOps.empty()) {
816 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
817 LIOps.push_back(AddRec->getStart());
818
819 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +0000820 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821
Dan Gohman89f85052007-10-22 18:31:58 +0000822 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 // If all of the other operands were loop invariant, we are done.
824 if (Ops.size() == 1) return NewRec;
825
826 // Otherwise, add the folded AddRec by the non-liv parts.
827 for (unsigned i = 0;; ++i)
828 if (Ops[i] == AddRec) {
829 Ops[i] = NewRec;
830 break;
831 }
Dan Gohman89f85052007-10-22 18:31:58 +0000832 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833 }
834
835 // Okay, if there weren't any loop invariants to be folded, check to see if
836 // there are multiple AddRec's with the same loop induction variable being
837 // added together. If so, we can fold them.
838 for (unsigned OtherIdx = Idx+1;
839 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
840 if (OtherIdx != Idx) {
841 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
842 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
843 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
844 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
845 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
846 if (i >= NewOps.size()) {
847 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
848 OtherAddRec->op_end());
849 break;
850 }
Dan Gohman89f85052007-10-22 18:31:58 +0000851 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000852 }
Dan Gohman89f85052007-10-22 18:31:58 +0000853 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000854
855 if (Ops.size() == 2) return NewAddRec;
856
857 Ops.erase(Ops.begin()+Idx);
858 Ops.erase(Ops.begin()+OtherIdx-1);
859 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +0000860 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000861 }
862 }
863
864 // Otherwise couldn't fold anything into this recurrence. Move onto the
865 // next one.
866 }
867
868 // Okay, it looks like we really DO need an add expr. Check to see if we
869 // already have one, otherwise create a new one.
870 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
871 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
872 SCEVOps)];
873 if (Result == 0) Result = new SCEVAddExpr(Ops);
874 return Result;
875}
876
877
Dan Gohman89f85052007-10-22 18:31:58 +0000878SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879 assert(!Ops.empty() && "Cannot get empty mul!");
880
881 // Sort by complexity, this groups all similar expression types together.
882 GroupByComplexity(Ops);
883
884 // If there are any constants, fold them together.
885 unsigned Idx = 0;
886 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
887
888 // C1*(C2+V) -> C1*C2 + C1*V
889 if (Ops.size() == 2)
890 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
891 if (Add->getNumOperands() == 2 &&
892 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +0000893 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
894 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000895
896
897 ++Idx;
898 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
899 // We found two constants, fold them together!
900 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
901 RHSC->getValue()->getValue());
902 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
Dan Gohman89f85052007-10-22 18:31:58 +0000903 Ops[0] = getConstant(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904 Ops.erase(Ops.begin()+1); // Erase the folded element
905 if (Ops.size() == 1) return Ops[0];
906 LHSC = cast<SCEVConstant>(Ops[0]);
907 } else {
908 // If we couldn't fold the expression, move to the next constant. Note
909 // that this is impossible to happen in practice because we always
910 // constant fold constant ints to constant ints.
911 ++Idx;
912 }
913 }
914
915 // If we are left with a constant one being multiplied, strip it off.
916 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
917 Ops.erase(Ops.begin());
918 --Idx;
919 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
920 // If we have a multiply of zero, it will always be zero.
921 return Ops[0];
922 }
923 }
924
925 // Skip over the add expression until we get to a multiply.
926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
927 ++Idx;
928
929 if (Ops.size() == 1)
930 return Ops[0];
931
932 // If there are mul operands inline them all into this expression.
933 if (Idx < Ops.size()) {
934 bool DeletedMul = false;
935 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
936 // If we have an mul, expand the mul operands onto the end of the operands
937 // list.
938 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
939 Ops.erase(Ops.begin()+Idx);
940 DeletedMul = true;
941 }
942
943 // If we deleted at least one mul, we added operands to the end of the list,
944 // and they are not necessarily sorted. Recurse to resort and resimplify
945 // any operands we just aquired.
946 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +0000947 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948 }
949
950 // If there are any add recurrences in the operands list, see if any other
951 // added values are loop invariant. If so, we can fold them into the
952 // recurrence.
953 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
954 ++Idx;
955
956 // Scan over all recurrences, trying to fold loop invariants into them.
957 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
958 // Scan all of the other operands to this mul and add them to the vector if
959 // they are loop invariant w.r.t. the recurrence.
960 std::vector<SCEVHandle> LIOps;
961 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
962 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
963 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
964 LIOps.push_back(Ops[i]);
965 Ops.erase(Ops.begin()+i);
966 --i; --e;
967 }
968
969 // If we found some loop invariants, fold them into the recurrence.
970 if (!LIOps.empty()) {
971 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
972 std::vector<SCEVHandle> NewOps;
973 NewOps.reserve(AddRec->getNumOperands());
974 if (LIOps.size() == 1) {
975 SCEV *Scale = LIOps[0];
976 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +0000977 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000978 } else {
979 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
980 std::vector<SCEVHandle> MulOps(LIOps);
981 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +0000982 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000983 }
984 }
985
Dan Gohman89f85052007-10-22 18:31:58 +0000986 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000987
988 // If all of the other operands were loop invariant, we are done.
989 if (Ops.size() == 1) return NewRec;
990
991 // Otherwise, multiply the folded AddRec by the non-liv parts.
992 for (unsigned i = 0;; ++i)
993 if (Ops[i] == AddRec) {
994 Ops[i] = NewRec;
995 break;
996 }
Dan Gohman89f85052007-10-22 18:31:58 +0000997 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000998 }
999
1000 // Okay, if there weren't any loop invariants to be folded, check to see if
1001 // there are multiple AddRec's with the same loop induction variable being
1002 // multiplied together. If so, we can fold them.
1003 for (unsigned OtherIdx = Idx+1;
1004 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1005 if (OtherIdx != Idx) {
1006 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1007 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1008 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1009 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001010 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001012 SCEVHandle B = F->getStepRecurrence(*this);
1013 SCEVHandle D = G->getStepRecurrence(*this);
1014 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1015 getMulExpr(G, B),
1016 getMulExpr(B, D));
1017 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1018 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 if (Ops.size() == 2) return NewAddRec;
1020
1021 Ops.erase(Ops.begin()+Idx);
1022 Ops.erase(Ops.begin()+OtherIdx-1);
1023 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001024 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001025 }
1026 }
1027
1028 // Otherwise couldn't fold anything into this recurrence. Move onto the
1029 // next one.
1030 }
1031
1032 // Okay, it looks like we really DO need an mul expr. Check to see if we
1033 // already have one, otherwise create a new one.
1034 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1035 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1036 SCEVOps)];
1037 if (Result == 0)
1038 Result = new SCEVMulExpr(Ops);
1039 return Result;
1040}
1041
Anton Korobeynikoveb61bf52007-11-15 18:33:16 +00001042SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1044 if (RHSC->getValue()->equalsInt(1))
1045 return LHS; // X sdiv 1 --> x
1046 if (RHSC->getValue()->isAllOnesValue())
Dan Gohman89f85052007-10-22 18:31:58 +00001047 return getNegativeSCEV(LHS); // X sdiv -1 --> -x
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048
1049 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1050 Constant *LHSCV = LHSC->getValue();
1051 Constant *RHSCV = RHSC->getValue();
Dan Gohman89f85052007-10-22 18:31:58 +00001052 return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 }
1054 }
1055
1056 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1057
1058 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1059 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1060 return Result;
1061}
1062
1063
1064/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1065/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001066SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 const SCEVHandle &Step, const Loop *L) {
1068 std::vector<SCEVHandle> Operands;
1069 Operands.push_back(Start);
1070 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1071 if (StepChrec->getLoop() == L) {
1072 Operands.insert(Operands.end(), StepChrec->op_begin(),
1073 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001074 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 }
1076
1077 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001078 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001079}
1080
1081/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1082/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001083SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001084 const Loop *L) {
1085 if (Operands.size() == 1) return Operands[0];
1086
1087 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1088 if (StepC->getValue()->isZero()) {
1089 Operands.pop_back();
Dan Gohman89f85052007-10-22 18:31:58 +00001090 return getAddRecExpr(Operands, L); // { X,+,0 } --> X
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 }
1092
1093 SCEVAddRecExpr *&Result =
1094 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1095 Operands.end()))];
1096 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1097 return Result;
1098}
1099
Nick Lewycky711640a2007-11-25 22:41:31 +00001100SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1101 const SCEVHandle &RHS) {
1102 std::vector<SCEVHandle> Ops;
1103 Ops.push_back(LHS);
1104 Ops.push_back(RHS);
1105 return getSMaxExpr(Ops);
1106}
1107
1108SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1109 assert(!Ops.empty() && "Cannot get empty smax!");
1110 if (Ops.size() == 1) return Ops[0];
1111
1112 // Sort by complexity, this groups all similar expression types together.
1113 GroupByComplexity(Ops);
1114
1115 // If there are any constants, fold them together.
1116 unsigned Idx = 0;
1117 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1118 ++Idx;
1119 assert(Idx < Ops.size());
1120 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1121 // We found two constants, fold them together!
1122 Constant *Fold = ConstantInt::get(
1123 APIntOps::smax(LHSC->getValue()->getValue(),
1124 RHSC->getValue()->getValue()));
1125 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
1126 Ops[0] = getConstant(CI);
1127 Ops.erase(Ops.begin()+1); // Erase the folded element
1128 if (Ops.size() == 1) return Ops[0];
1129 LHSC = cast<SCEVConstant>(Ops[0]);
1130 } else {
1131 // If we couldn't fold the expression, move to the next constant. Note
1132 // that this is impossible to happen in practice because we always
1133 // constant fold constant ints to constant ints.
1134 ++Idx;
1135 }
1136 }
1137
1138 // If we are left with a constant -inf, strip it off.
1139 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1140 Ops.erase(Ops.begin());
1141 --Idx;
1142 }
1143 }
1144
1145 if (Ops.size() == 1) return Ops[0];
1146
1147 // Find the first SMax
1148 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1149 ++Idx;
1150
1151 // Check to see if one of the operands is an SMax. If so, expand its operands
1152 // onto our operand list, and recurse to simplify.
1153 if (Idx < Ops.size()) {
1154 bool DeletedSMax = false;
1155 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1156 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1157 Ops.erase(Ops.begin()+Idx);
1158 DeletedSMax = true;
1159 }
1160
1161 if (DeletedSMax)
1162 return getSMaxExpr(Ops);
1163 }
1164
1165 // Okay, check to see if the same value occurs in the operand list twice. If
1166 // so, delete one. Since we sorted the list, these values are required to
1167 // be adjacent.
1168 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1169 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1170 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1171 --i; --e;
1172 }
1173
1174 if (Ops.size() == 1) return Ops[0];
1175
1176 assert(!Ops.empty() && "Reduced smax down to nothing!");
1177
1178 // Okay, it looks like we really DO need an add expr. Check to see if we
1179 // already have one, otherwise create a new one.
1180 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1181 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1182 SCEVOps)];
1183 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1184 return Result;
1185}
1186
Dan Gohman89f85052007-10-22 18:31:58 +00001187SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001188 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001189 return getConstant(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001190 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1191 if (Result == 0) Result = new SCEVUnknown(V);
1192 return Result;
1193}
1194
1195
1196//===----------------------------------------------------------------------===//
1197// ScalarEvolutionsImpl Definition and Implementation
1198//===----------------------------------------------------------------------===//
1199//
1200/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1201/// evolution code.
1202///
1203namespace {
1204 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Dan Gohman89f85052007-10-22 18:31:58 +00001205 /// SE - A reference to the public ScalarEvolution object.
1206 ScalarEvolution &SE;
1207
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 /// F - The function we are analyzing.
1209 ///
1210 Function &F;
1211
1212 /// LI - The loop information for the function we are currently analyzing.
1213 ///
1214 LoopInfo &LI;
1215
1216 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1217 /// things.
1218 SCEVHandle UnknownValue;
1219
1220 /// Scalars - This is a cache of the scalars we have analyzed so far.
1221 ///
1222 std::map<Value*, SCEVHandle> Scalars;
1223
1224 /// IterationCounts - Cache the iteration count of the loops for this
1225 /// function as they are computed.
1226 std::map<const Loop*, SCEVHandle> IterationCounts;
1227
1228 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1229 /// the PHI instructions that we attempt to compute constant evolutions for.
1230 /// This allows us to avoid potentially expensive recomputation of these
1231 /// properties. An instruction maps to null if we are unable to compute its
1232 /// exit value.
1233 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1234
1235 public:
Dan Gohman89f85052007-10-22 18:31:58 +00001236 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li)
1237 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001238
1239 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1240 /// expression and create a new one.
1241 SCEVHandle getSCEV(Value *V);
1242
1243 /// hasSCEV - Return true if the SCEV for this value has already been
1244 /// computed.
1245 bool hasSCEV(Value *V) const {
1246 return Scalars.count(V);
1247 }
1248
1249 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1250 /// the specified value.
1251 void setSCEV(Value *V, const SCEVHandle &H) {
1252 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1253 assert(isNew && "This entry already existed!");
1254 }
1255
1256
1257 /// getSCEVAtScope - Compute the value of the specified expression within
1258 /// the indicated loop (which may be null to indicate in no loop). If the
1259 /// expression cannot be evaluated, return UnknownValue itself.
1260 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1261
1262
1263 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1264 /// an analyzable loop-invariant iteration count.
1265 bool hasLoopInvariantIterationCount(const Loop *L);
1266
1267 /// getIterationCount - If the specified loop has a predictable iteration
1268 /// count, return it. Note that it is not valid to call this method on a
1269 /// loop without a loop-invariant iteration count.
1270 SCEVHandle getIterationCount(const Loop *L);
1271
1272 /// deleteValueFromRecords - This method should be called by the
1273 /// client before it removes a value from the program, to make sure
1274 /// that no dangling references are left around.
1275 void deleteValueFromRecords(Value *V);
1276
1277 private:
1278 /// createSCEV - We know that there is no SCEV for the specified value.
1279 /// Analyze the expression.
1280 SCEVHandle createSCEV(Value *V);
1281
1282 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1283 /// SCEVs.
1284 SCEVHandle createNodeForPHI(PHINode *PN);
1285
1286 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1287 /// for the specified instruction and replaces any references to the
1288 /// symbolic value SymName with the specified value. This is used during
1289 /// PHI resolution.
1290 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1291 const SCEVHandle &SymName,
1292 const SCEVHandle &NewVal);
1293
1294 /// ComputeIterationCount - Compute the number of times the specified loop
1295 /// will iterate.
1296 SCEVHandle ComputeIterationCount(const Loop *L);
1297
1298 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
Nick Lewycky3a8a41f2007-11-20 08:44:50 +00001299 /// 'icmp op load X, cst', try to see if we can compute the trip count.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1301 Constant *RHS,
1302 const Loop *L,
1303 ICmpInst::Predicate p);
1304
1305 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1306 /// constant number of times (the condition evolves only from constants),
1307 /// try to evaluate a few iterations of the loop until we get the exit
1308 /// condition gets a value of ExitWhen (true or false). If we cannot
1309 /// evaluate the trip count of the loop, return UnknownValue.
1310 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1311 bool ExitWhen);
1312
1313 /// HowFarToZero - Return the number of times a backedge comparing the
1314 /// specified value to zero will execute. If not computable, return
1315 /// UnknownValue.
1316 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1317
1318 /// HowFarToNonZero - Return the number of times a backedge checking the
1319 /// specified value for nonzero will execute. If not computable, return
1320 /// UnknownValue.
1321 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1322
1323 /// HowManyLessThans - Return the number of times a backedge containing the
1324 /// specified less-than comparison will execute. If not computable, return
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001325 /// UnknownValue. isSigned specifies whether the less-than is signed.
1326 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1327 bool isSigned);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328
1329 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1330 /// in the header of its containing loop, we know the loop executes a
1331 /// constant number of times, and the PHI node is just a recurrence
1332 /// involving constants, fold it.
1333 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1334 const Loop *L);
1335 };
1336}
1337
1338//===----------------------------------------------------------------------===//
1339// Basic SCEV Analysis and PHI Idiom Recognition Code
1340//
1341
1342/// deleteValueFromRecords - This method should be called by the
1343/// client before it removes an instruction from the program, to make sure
1344/// that no dangling references are left around.
1345void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1346 SmallVector<Value *, 16> Worklist;
1347
1348 if (Scalars.erase(V)) {
1349 if (PHINode *PN = dyn_cast<PHINode>(V))
1350 ConstantEvolutionLoopExitValue.erase(PN);
1351 Worklist.push_back(V);
1352 }
1353
1354 while (!Worklist.empty()) {
1355 Value *VV = Worklist.back();
1356 Worklist.pop_back();
1357
1358 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1359 UI != UE; ++UI) {
1360 Instruction *Inst = cast<Instruction>(*UI);
1361 if (Scalars.erase(Inst)) {
1362 if (PHINode *PN = dyn_cast<PHINode>(VV))
1363 ConstantEvolutionLoopExitValue.erase(PN);
1364 Worklist.push_back(Inst);
1365 }
1366 }
1367 }
1368}
1369
1370
1371/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1372/// expression and create a new one.
1373SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1374 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1375
1376 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1377 if (I != Scalars.end()) return I->second;
1378 SCEVHandle S = createSCEV(V);
1379 Scalars.insert(std::make_pair(V, S));
1380 return S;
1381}
1382
1383/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1384/// the specified instruction and replaces any references to the symbolic value
1385/// SymName with the specified value. This is used during PHI resolution.
1386void ScalarEvolutionsImpl::
1387ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1388 const SCEVHandle &NewVal) {
1389 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1390 if (SI == Scalars.end()) return;
1391
1392 SCEVHandle NV =
Dan Gohman89f85052007-10-22 18:31:58 +00001393 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001394 if (NV == SI->second) return; // No change.
1395
1396 SI->second = NV; // Update the scalars map!
1397
1398 // Any instruction values that use this instruction might also need to be
1399 // updated!
1400 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1401 UI != E; ++UI)
1402 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1403}
1404
1405/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1406/// a loop header, making it a potential recurrence, or it doesn't.
1407///
1408SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1409 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1410 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1411 if (L->getHeader() == PN->getParent()) {
1412 // If it lives in the loop header, it has two incoming values, one
1413 // from outside the loop, and one from inside.
1414 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1415 unsigned BackEdge = IncomingEdge^1;
1416
1417 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman89f85052007-10-22 18:31:58 +00001418 SCEVHandle SymbolicName = SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001419 assert(Scalars.find(PN) == Scalars.end() &&
1420 "PHI node already processed?");
1421 Scalars.insert(std::make_pair(PN, SymbolicName));
1422
1423 // Using this symbolic name for the PHI, analyze the value coming around
1424 // the back-edge.
1425 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1426
1427 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1428 // has a special value for the first iteration of the loop.
1429
1430 // If the value coming around the backedge is an add with the symbolic
1431 // value we just inserted, then we found a simple induction variable!
1432 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1433 // If there is a single occurrence of the symbolic value, replace it
1434 // with a recurrence.
1435 unsigned FoundIndex = Add->getNumOperands();
1436 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1437 if (Add->getOperand(i) == SymbolicName)
1438 if (FoundIndex == e) {
1439 FoundIndex = i;
1440 break;
1441 }
1442
1443 if (FoundIndex != Add->getNumOperands()) {
1444 // Create an add with everything but the specified operand.
1445 std::vector<SCEVHandle> Ops;
1446 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1447 if (i != FoundIndex)
1448 Ops.push_back(Add->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001449 SCEVHandle Accum = SE.getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450
1451 // This is not a valid addrec if the step amount is varying each
1452 // loop iteration, but is not itself an addrec in this loop.
1453 if (Accum->isLoopInvariant(L) ||
1454 (isa<SCEVAddRecExpr>(Accum) &&
1455 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1456 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohman89f85052007-10-22 18:31:58 +00001457 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001458
1459 // Okay, for the entire analysis of this edge we assumed the PHI
1460 // to be symbolic. We now need to go back and update all of the
1461 // entries for the scalars that use the PHI (except for the PHI
1462 // itself) to use the new analyzed value instead of the "symbolic"
1463 // value.
1464 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1465 return PHISCEV;
1466 }
1467 }
1468 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1469 // Otherwise, this could be a loop like this:
1470 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1471 // In this case, j = {1,+,1} and BEValue is j.
1472 // Because the other in-value of i (0) fits the evolution of BEValue
1473 // i really is an addrec evolution.
1474 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1475 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1476
1477 // If StartVal = j.start - j.stride, we can use StartVal as the
1478 // initial step of the addrec evolution.
Dan Gohman89f85052007-10-22 18:31:58 +00001479 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1480 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001481 SCEVHandle PHISCEV =
Dan Gohman89f85052007-10-22 18:31:58 +00001482 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001483
1484 // Okay, for the entire analysis of this edge we assumed the PHI
1485 // to be symbolic. We now need to go back and update all of the
1486 // entries for the scalars that use the PHI (except for the PHI
1487 // itself) to use the new analyzed value instead of the "symbolic"
1488 // value.
1489 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1490 return PHISCEV;
1491 }
1492 }
1493 }
1494
1495 return SymbolicName;
1496 }
1497
1498 // If it's not a loop phi, we can't handle it yet.
Dan Gohman89f85052007-10-22 18:31:58 +00001499 return SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500}
1501
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001502/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1503/// guaranteed to end in (at every loop iteration). It is, at the same time,
1504/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1505/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
1506static uint32_t GetMinTrailingZeros(SCEVHandle S) {
1507 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00001508 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001509
Nick Lewycky3a8a41f2007-11-20 08:44:50 +00001510 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001511 return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth());
1512
1513 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1514 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1515 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1516 }
1517
1518 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1519 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1520 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1521 }
1522
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001523 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001524 // The result is the min of all operands results.
1525 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1526 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1527 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1528 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001529 }
1530
1531 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001532 // The result is the sum of all operands results.
1533 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
1534 uint32_t BitWidth = M->getBitWidth();
1535 for (unsigned i = 1, e = M->getNumOperands();
1536 SumOpRes != BitWidth && i != e; ++i)
1537 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
1538 BitWidth);
1539 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001540 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001541
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001542 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001543 // The result is the min of all operands results.
1544 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1545 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1546 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1547 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001548 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001549
Nick Lewycky711640a2007-11-25 22:41:31 +00001550 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1551 // The result is the min of all operands results.
1552 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1553 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1554 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1555 return MinOpRes;
1556 }
1557
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001558 // SCEVSDivExpr, SCEVUnknown
1559 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001560}
1561
1562/// createSCEV - We know that there is no SCEV for the specified value.
1563/// Analyze the expression.
1564///
1565SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
Chris Lattner3fff4642007-11-23 08:46:22 +00001566 if (!isa<IntegerType>(V->getType()))
1567 return SE.getUnknown(V);
1568
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001569 if (Instruction *I = dyn_cast<Instruction>(V)) {
1570 switch (I->getOpcode()) {
1571 case Instruction::Add:
Dan Gohman89f85052007-10-22 18:31:58 +00001572 return SE.getAddExpr(getSCEV(I->getOperand(0)),
1573 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001574 case Instruction::Mul:
Dan Gohman89f85052007-10-22 18:31:58 +00001575 return SE.getMulExpr(getSCEV(I->getOperand(0)),
1576 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001577 case Instruction::SDiv:
Dan Gohman89f85052007-10-22 18:31:58 +00001578 return SE.getSDivExpr(getSCEV(I->getOperand(0)),
1579 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001580 case Instruction::Sub:
Dan Gohman89f85052007-10-22 18:31:58 +00001581 return SE.getMinusSCEV(getSCEV(I->getOperand(0)),
1582 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583 case Instruction::Or:
1584 // If the RHS of the Or is a constant, we may have something like:
Nick Lewyckyef947492007-11-20 08:24:44 +00001585 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001586 // optimizations will transparently handle this case.
Nick Lewyckyef947492007-11-20 08:24:44 +00001587 //
1588 // In order for this transformation to be safe, the LHS must be of the
1589 // form X*(2^n) and the Or constant must be less than 2^n.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001590 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1591 SCEVHandle LHS = getSCEV(I->getOperand(0));
Nick Lewyckyef947492007-11-20 08:24:44 +00001592 const APInt &CIVal = CI->getValue();
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001593 if (GetMinTrailingZeros(LHS) >=
Nick Lewyckyef947492007-11-20 08:24:44 +00001594 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001595 return SE.getAddExpr(LHS, getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596 }
1597 break;
1598 case Instruction::Xor:
1599 // If the RHS of the xor is a signbit, then this is just an add.
1600 // Instcombine turns add of signbit into xor as a strength reduction step.
1601 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1602 if (CI->getValue().isSignBit())
Dan Gohman89f85052007-10-22 18:31:58 +00001603 return SE.getAddExpr(getSCEV(I->getOperand(0)),
1604 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001605 }
1606 break;
1607
1608 case Instruction::Shl:
1609 // Turn shift left of a constant amount into a multiply.
1610 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1611 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1612 Constant *X = ConstantInt::get(
1613 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohman89f85052007-10-22 18:31:58 +00001614 return SE.getMulExpr(getSCEV(I->getOperand(0)), getSCEV(X));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001615 }
1616 break;
1617
1618 case Instruction::Trunc:
Dan Gohman89f85052007-10-22 18:31:58 +00001619 return SE.getTruncateExpr(getSCEV(I->getOperand(0)), I->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620
1621 case Instruction::ZExt:
Dan Gohman89f85052007-10-22 18:31:58 +00001622 return SE.getZeroExtendExpr(getSCEV(I->getOperand(0)), I->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623
1624 case Instruction::SExt:
Dan Gohman89f85052007-10-22 18:31:58 +00001625 return SE.getSignExtendExpr(getSCEV(I->getOperand(0)), I->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001626
1627 case Instruction::BitCast:
1628 // BitCasts are no-op casts so we just eliminate the cast.
1629 if (I->getType()->isInteger() &&
1630 I->getOperand(0)->getType()->isInteger())
1631 return getSCEV(I->getOperand(0));
1632 break;
1633
1634 case Instruction::PHI:
1635 return createNodeForPHI(cast<PHINode>(I));
1636
Nick Lewycky711640a2007-11-25 22:41:31 +00001637 case Instruction::Select:
1638 // This could be an SCEVSMax that was lowered earlier. Try to recover it.
1639 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I->getOperand(0))) {
1640 Value *LHS = ICI->getOperand(0);
1641 Value *RHS = ICI->getOperand(1);
1642 switch (ICI->getPredicate()) {
1643 case ICmpInst::ICMP_SLT:
1644 case ICmpInst::ICMP_SLE:
1645 std::swap(LHS, RHS);
1646 // fall through
1647 case ICmpInst::ICMP_SGT:
1648 case ICmpInst::ICMP_SGE:
1649 if (LHS == I->getOperand(1) && RHS == I->getOperand(2))
1650 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
1651 default:
1652 break;
1653 }
1654 }
1655
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001656 default: // We cannot analyze this expression.
1657 break;
1658 }
1659 }
1660
Dan Gohman89f85052007-10-22 18:31:58 +00001661 return SE.getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001662}
1663
1664
1665
1666//===----------------------------------------------------------------------===//
1667// Iteration Count Computation Code
1668//
1669
1670/// getIterationCount - If the specified loop has a predictable iteration
1671/// count, return it. Note that it is not valid to call this method on a
1672/// loop without a loop-invariant iteration count.
1673SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1674 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1675 if (I == IterationCounts.end()) {
1676 SCEVHandle ItCount = ComputeIterationCount(L);
1677 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1678 if (ItCount != UnknownValue) {
1679 assert(ItCount->isLoopInvariant(L) &&
1680 "Computed trip count isn't loop invariant for loop!");
1681 ++NumTripCountsComputed;
1682 } else if (isa<PHINode>(L->getHeader()->begin())) {
1683 // Only count loops that have phi nodes as not being computable.
1684 ++NumTripCountsNotComputed;
1685 }
1686 }
1687 return I->second;
1688}
1689
1690/// ComputeIterationCount - Compute the number of times the specified loop
1691/// will iterate.
1692SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1693 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00001694 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001695 L->getExitBlocks(ExitBlocks);
1696 if (ExitBlocks.size() != 1) return UnknownValue;
1697
1698 // Okay, there is one exit block. Try to find the condition that causes the
1699 // loop to be exited.
1700 BasicBlock *ExitBlock = ExitBlocks[0];
1701
1702 BasicBlock *ExitingBlock = 0;
1703 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1704 PI != E; ++PI)
1705 if (L->contains(*PI)) {
1706 if (ExitingBlock == 0)
1707 ExitingBlock = *PI;
1708 else
1709 return UnknownValue; // More than one block exiting!
1710 }
1711 assert(ExitingBlock && "No exits from loop, something is broken!");
1712
1713 // Okay, we've computed the exiting block. See what condition causes us to
1714 // exit.
1715 //
1716 // FIXME: we should be able to handle switch instructions (with a single exit)
1717 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1718 if (ExitBr == 0) return UnknownValue;
1719 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1720
1721 // At this point, we know we have a conditional branch that determines whether
1722 // the loop is exited. However, we don't know if the branch is executed each
1723 // time through the loop. If not, then the execution count of the branch will
1724 // not be equal to the trip count of the loop.
1725 //
1726 // Currently we check for this by checking to see if the Exit branch goes to
1727 // the loop header. If so, we know it will always execute the same number of
1728 // times as the loop. We also handle the case where the exit block *is* the
1729 // loop header. This is common for un-rotated loops. More extensive analysis
1730 // could be done to handle more cases here.
1731 if (ExitBr->getSuccessor(0) != L->getHeader() &&
1732 ExitBr->getSuccessor(1) != L->getHeader() &&
1733 ExitBr->getParent() != L->getHeader())
1734 return UnknownValue;
1735
1736 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1737
1738 // If its not an integer comparison then compute it the hard way.
1739 // Note that ICmpInst deals with pointer comparisons too so we must check
1740 // the type of the operand.
1741 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1742 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1743 ExitBr->getSuccessor(0) == ExitBlock);
1744
1745 // If the condition was exit on true, convert the condition to exit on false
1746 ICmpInst::Predicate Cond;
1747 if (ExitBr->getSuccessor(1) == ExitBlock)
1748 Cond = ExitCond->getPredicate();
1749 else
1750 Cond = ExitCond->getInversePredicate();
1751
1752 // Handle common loops like: for (X = "string"; *X; ++X)
1753 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1754 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1755 SCEVHandle ItCnt =
1756 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1757 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1758 }
1759
1760 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1761 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1762
1763 // Try to evaluate any dependencies out of the loop.
1764 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1765 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1766 Tmp = getSCEVAtScope(RHS, L);
1767 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1768
1769 // At this point, we would like to compute how many iterations of the
1770 // loop the predicate will return true for these inputs.
1771 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1772 // If there is a constant, force it into the RHS.
1773 std::swap(LHS, RHS);
1774 Cond = ICmpInst::getSwappedPredicate(Cond);
1775 }
1776
1777 // FIXME: think about handling pointer comparisons! i.e.:
1778 // while (P != P+100) ++P;
1779
1780 // If we have a comparison of a chrec against a constant, try to use value
1781 // ranges to answer this query.
1782 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1783 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1784 if (AddRec->getLoop() == L) {
1785 // Form the comparison range using the constant of the correct type so
1786 // that the ConstantRange class knows to do a signed or unsigned
1787 // comparison.
1788 ConstantInt *CompVal = RHSC->getValue();
1789 const Type *RealTy = ExitCond->getOperand(0)->getType();
1790 CompVal = dyn_cast<ConstantInt>(
1791 ConstantExpr::getBitCast(CompVal, RealTy));
1792 if (CompVal) {
1793 // Form the constant range.
1794 ConstantRange CompRange(
1795 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1796
Dan Gohman89f85052007-10-22 18:31:58 +00001797 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1799 }
1800 }
1801
1802 switch (Cond) {
1803 case ICmpInst::ICMP_NE: { // while (X != Y)
1804 // Convert to: while (X-Y != 0)
Dan Gohman89f85052007-10-22 18:31:58 +00001805 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001806 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1807 break;
1808 }
1809 case ICmpInst::ICMP_EQ: {
1810 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman89f85052007-10-22 18:31:58 +00001811 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001812 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1813 break;
1814 }
1815 case ICmpInst::ICMP_SLT: {
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001816 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001817 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1818 break;
1819 }
1820 case ICmpInst::ICMP_SGT: {
Dan Gohman89f85052007-10-22 18:31:58 +00001821 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS),
1822 SE.getNegativeSCEV(RHS), L, true);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001823 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1824 break;
1825 }
1826 case ICmpInst::ICMP_ULT: {
1827 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
1828 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1829 break;
1830 }
1831 case ICmpInst::ICMP_UGT: {
Dan Gohman89f85052007-10-22 18:31:58 +00001832 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS),
1833 SE.getNegativeSCEV(RHS), L, false);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001834 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1835 break;
1836 }
1837 default:
1838#if 0
1839 cerr << "ComputeIterationCount ";
1840 if (ExitCond->getOperand(0)->getType()->isUnsigned())
1841 cerr << "[unsigned] ";
1842 cerr << *LHS << " "
1843 << Instruction::getOpcodeName(Instruction::ICmp)
1844 << " " << *RHS << "\n";
1845#endif
1846 break;
1847 }
1848 return ComputeIterationCountExhaustively(L, ExitCond,
1849 ExitBr->getSuccessor(0) == ExitBlock);
1850}
1851
1852static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00001853EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
1854 ScalarEvolution &SE) {
1855 SCEVHandle InVal = SE.getConstant(C);
1856 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001857 assert(isa<SCEVConstant>(Val) &&
1858 "Evaluation of SCEV at constant didn't fold correctly?");
1859 return cast<SCEVConstant>(Val)->getValue();
1860}
1861
1862/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1863/// and a GEP expression (missing the pointer index) indexing into it, return
1864/// the addressed element of the initializer or null if the index expression is
1865/// invalid.
1866static Constant *
1867GetAddressedElementFromGlobal(GlobalVariable *GV,
1868 const std::vector<ConstantInt*> &Indices) {
1869 Constant *Init = GV->getInitializer();
1870 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1871 uint64_t Idx = Indices[i]->getZExtValue();
1872 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1873 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1874 Init = cast<Constant>(CS->getOperand(Idx));
1875 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1876 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1877 Init = cast<Constant>(CA->getOperand(Idx));
1878 } else if (isa<ConstantAggregateZero>(Init)) {
1879 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1880 assert(Idx < STy->getNumElements() && "Bad struct index!");
1881 Init = Constant::getNullValue(STy->getElementType(Idx));
1882 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1883 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1884 Init = Constant::getNullValue(ATy->getElementType());
1885 } else {
1886 assert(0 && "Unknown constant aggregate type!");
1887 }
1888 return 0;
1889 } else {
1890 return 0; // Unknown initializer type
1891 }
1892 }
1893 return Init;
1894}
1895
1896/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
Nick Lewycky3a8a41f2007-11-20 08:44:50 +00001897/// 'icmp op load X, cst', try to se if we can compute the trip count.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898SCEVHandle ScalarEvolutionsImpl::
1899ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1900 const Loop *L,
1901 ICmpInst::Predicate predicate) {
1902 if (LI->isVolatile()) return UnknownValue;
1903
1904 // Check to see if the loaded pointer is a getelementptr of a global.
1905 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1906 if (!GEP) return UnknownValue;
1907
1908 // Make sure that it is really a constant global we are gepping, with an
1909 // initializer, and make sure the first IDX is really 0.
1910 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1911 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1912 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1913 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1914 return UnknownValue;
1915
1916 // Okay, we allow one non-constant index into the GEP instruction.
1917 Value *VarIdx = 0;
1918 std::vector<ConstantInt*> Indexes;
1919 unsigned VarIdxNum = 0;
1920 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1921 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1922 Indexes.push_back(CI);
1923 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1924 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1925 VarIdx = GEP->getOperand(i);
1926 VarIdxNum = i-2;
1927 Indexes.push_back(0);
1928 }
1929
1930 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1931 // Check to see if X is a loop variant variable value now.
1932 SCEVHandle Idx = getSCEV(VarIdx);
1933 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1934 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1935
1936 // We can only recognize very limited forms of loop index expressions, in
1937 // particular, only affine AddRec's like {C1,+,C2}.
1938 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1939 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1940 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1941 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1942 return UnknownValue;
1943
1944 unsigned MaxSteps = MaxBruteForceIterations;
1945 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1946 ConstantInt *ItCst =
1947 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohman89f85052007-10-22 18:31:58 +00001948 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001949
1950 // Form the GEP offset.
1951 Indexes[VarIdxNum] = Val;
1952
1953 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1954 if (Result == 0) break; // Cannot compute!
1955
1956 // Evaluate the condition for this iteration.
1957 Result = ConstantExpr::getICmp(predicate, Result, RHS);
1958 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
1959 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
1960#if 0
1961 cerr << "\n***\n*** Computed loop count " << *ItCst
1962 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1963 << "***\n";
1964#endif
1965 ++NumArrayLenItCounts;
Dan Gohman89f85052007-10-22 18:31:58 +00001966 return SE.getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001967 }
1968 }
1969 return UnknownValue;
1970}
1971
1972
1973/// CanConstantFold - Return true if we can constant fold an instruction of the
1974/// specified type, assuming that all operands were constants.
1975static bool CanConstantFold(const Instruction *I) {
1976 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1977 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1978 return true;
1979
1980 if (const CallInst *CI = dyn_cast<CallInst>(I))
1981 if (const Function *F = CI->getCalledFunction())
1982 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1983 return false;
1984}
1985
1986/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1987/// in the loop that V is derived from. We allow arbitrary operations along the
1988/// way, but the operands of an operation must either be constants or a value
1989/// derived from a constant PHI. If this expression does not fit with these
1990/// constraints, return null.
1991static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1992 // If this is not an instruction, or if this is an instruction outside of the
1993 // loop, it can't be derived from a loop PHI.
1994 Instruction *I = dyn_cast<Instruction>(V);
1995 if (I == 0 || !L->contains(I->getParent())) return 0;
1996
1997 if (PHINode *PN = dyn_cast<PHINode>(I))
1998 if (L->getHeader() == I->getParent())
1999 return PN;
2000 else
2001 // We don't currently keep track of the control flow needed to evaluate
2002 // PHIs, so we cannot handle PHIs inside of loops.
2003 return 0;
2004
2005 // If we won't be able to constant fold this expression even if the operands
2006 // are constants, return early.
2007 if (!CanConstantFold(I)) return 0;
2008
2009 // Otherwise, we can evaluate this instruction if all of its operands are
2010 // constant or derived from a PHI node themselves.
2011 PHINode *PHI = 0;
2012 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2013 if (!(isa<Constant>(I->getOperand(Op)) ||
2014 isa<GlobalValue>(I->getOperand(Op)))) {
2015 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2016 if (P == 0) return 0; // Not evolving from PHI
2017 if (PHI == 0)
2018 PHI = P;
2019 else if (PHI != P)
2020 return 0; // Evolving from multiple different PHIs.
2021 }
2022
2023 // This is a expression evolving from a constant PHI!
2024 return PHI;
2025}
2026
2027/// EvaluateExpression - Given an expression that passes the
2028/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2029/// in the loop has the value PHIVal. If we can't fold this expression for some
2030/// reason, return null.
2031static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2032 if (isa<PHINode>(V)) return PHIVal;
2033 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
2034 return GV;
2035 if (Constant *C = dyn_cast<Constant>(V)) return C;
2036 Instruction *I = cast<Instruction>(V);
2037
2038 std::vector<Constant*> Operands;
2039 Operands.resize(I->getNumOperands());
2040
2041 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2042 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2043 if (Operands[i] == 0) return 0;
2044 }
2045
Chris Lattnerd6e56912007-12-10 22:53:04 +00002046 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2047 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2048 &Operands[0], Operands.size());
2049 else
2050 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2051 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002052}
2053
2054/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2055/// in the header of its containing loop, we know the loop executes a
2056/// constant number of times, and the PHI node is just a recurrence
2057/// involving constants, fold it.
2058Constant *ScalarEvolutionsImpl::
2059getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
2060 std::map<PHINode*, Constant*>::iterator I =
2061 ConstantEvolutionLoopExitValue.find(PN);
2062 if (I != ConstantEvolutionLoopExitValue.end())
2063 return I->second;
2064
2065 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
2066 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2067
2068 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2069
2070 // Since the loop is canonicalized, the PHI node must have two entries. One
2071 // entry must be a constant (coming in from outside of the loop), and the
2072 // second must be derived from the same PHI.
2073 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2074 Constant *StartCST =
2075 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2076 if (StartCST == 0)
2077 return RetVal = 0; // Must be a constant.
2078
2079 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2080 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2081 if (PN2 != PN)
2082 return RetVal = 0; // Not derived from same PHI.
2083
2084 // Execute the loop symbolically to determine the exit value.
2085 if (Its.getActiveBits() >= 32)
2086 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2087
2088 unsigned NumIterations = Its.getZExtValue(); // must be in range
2089 unsigned IterationNum = 0;
2090 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2091 if (IterationNum == NumIterations)
2092 return RetVal = PHIVal; // Got exit value!
2093
2094 // Compute the value of the PHI node for the next iteration.
2095 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2096 if (NextPHI == PHIVal)
2097 return RetVal = NextPHI; // Stopped evolving!
2098 if (NextPHI == 0)
2099 return 0; // Couldn't evaluate!
2100 PHIVal = NextPHI;
2101 }
2102}
2103
2104/// ComputeIterationCountExhaustively - If the trip is known to execute a
2105/// constant number of times (the condition evolves only from constants),
2106/// try to evaluate a few iterations of the loop until we get the exit
2107/// condition gets a value of ExitWhen (true or false). If we cannot
2108/// evaluate the trip count of the loop, return UnknownValue.
2109SCEVHandle ScalarEvolutionsImpl::
2110ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2111 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2112 if (PN == 0) return UnknownValue;
2113
2114 // Since the loop is canonicalized, the PHI node must have two entries. One
2115 // entry must be a constant (coming in from outside of the loop), and the
2116 // second must be derived from the same PHI.
2117 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2118 Constant *StartCST =
2119 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2120 if (StartCST == 0) return UnknownValue; // Must be a constant.
2121
2122 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2123 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2124 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2125
2126 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2127 // the loop symbolically to determine when the condition gets a value of
2128 // "ExitWhen".
2129 unsigned IterationNum = 0;
2130 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2131 for (Constant *PHIVal = StartCST;
2132 IterationNum != MaxIterations; ++IterationNum) {
2133 ConstantInt *CondVal =
2134 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2135
2136 // Couldn't symbolically evaluate.
2137 if (!CondVal) return UnknownValue;
2138
2139 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2140 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2141 ++NumBruteForceTripCountsComputed;
Dan Gohman89f85052007-10-22 18:31:58 +00002142 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002143 }
2144
2145 // Compute the value of the PHI node for the next iteration.
2146 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2147 if (NextPHI == 0 || NextPHI == PHIVal)
2148 return UnknownValue; // Couldn't evaluate or not making progress...
2149 PHIVal = NextPHI;
2150 }
2151
2152 // Too many iterations were needed to evaluate.
2153 return UnknownValue;
2154}
2155
2156/// getSCEVAtScope - Compute the value of the specified expression within the
2157/// indicated loop (which may be null to indicate in no loop). If the
2158/// expression cannot be evaluated, return UnknownValue.
2159SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2160 // FIXME: this should be turned into a virtual method on SCEV!
2161
2162 if (isa<SCEVConstant>(V)) return V;
2163
2164 // If this instruction is evolves from a constant-evolving PHI, compute the
2165 // exit value from the loop without using SCEVs.
2166 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2167 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2168 const Loop *LI = this->LI[I->getParent()];
2169 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2170 if (PHINode *PN = dyn_cast<PHINode>(I))
2171 if (PN->getParent() == LI->getHeader()) {
2172 // Okay, there is no closed form solution for the PHI node. Check
2173 // to see if the loop that contains it has a known iteration count.
2174 // If so, we may be able to force computation of the exit value.
2175 SCEVHandle IterationCount = getIterationCount(LI);
2176 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2177 // Okay, we know how many times the containing loop executes. If
2178 // this is a constant evolving PHI node, get the final value at
2179 // the specified iteration number.
2180 Constant *RV = getConstantEvolutionLoopExitValue(PN,
2181 ICC->getValue()->getValue(),
2182 LI);
Dan Gohman89f85052007-10-22 18:31:58 +00002183 if (RV) return SE.getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002184 }
2185 }
2186
2187 // Okay, this is an expression that we cannot symbolically evaluate
2188 // into a SCEV. Check to see if it's possible to symbolically evaluate
2189 // the arguments into constants, and if so, try to constant propagate the
2190 // result. This is particularly useful for computing loop exit values.
2191 if (CanConstantFold(I)) {
2192 std::vector<Constant*> Operands;
2193 Operands.reserve(I->getNumOperands());
2194 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2195 Value *Op = I->getOperand(i);
2196 if (Constant *C = dyn_cast<Constant>(Op)) {
2197 Operands.push_back(C);
2198 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002199 // If any of the operands is non-constant and if they are
2200 // non-integer, don't even try to analyze them with scev techniques.
2201 if (!isa<IntegerType>(Op->getType()))
2202 return V;
2203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002204 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2205 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2206 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2207 Op->getType(),
2208 false));
2209 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2210 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2211 Operands.push_back(ConstantExpr::getIntegerCast(C,
2212 Op->getType(),
2213 false));
2214 else
2215 return V;
2216 } else {
2217 return V;
2218 }
2219 }
2220 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002221
2222 Constant *C;
2223 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2224 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2225 &Operands[0], Operands.size());
2226 else
2227 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2228 &Operands[0], Operands.size());
Dan Gohman89f85052007-10-22 18:31:58 +00002229 return SE.getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002230 }
2231 }
2232
2233 // This is some other type of SCEVUnknown, just return it.
2234 return V;
2235 }
2236
2237 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2238 // Avoid performing the look-up in the common case where the specified
2239 // expression has no loop-variant portions.
2240 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2241 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2242 if (OpAtScope != Comm->getOperand(i)) {
2243 if (OpAtScope == UnknownValue) return UnknownValue;
2244 // Okay, at least one of these operands is loop variant but might be
2245 // foldable. Build a new instance of the folded commutative expression.
2246 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2247 NewOps.push_back(OpAtScope);
2248
2249 for (++i; i != e; ++i) {
2250 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2251 if (OpAtScope == UnknownValue) return UnknownValue;
2252 NewOps.push_back(OpAtScope);
2253 }
2254 if (isa<SCEVAddExpr>(Comm))
Dan Gohman89f85052007-10-22 18:31:58 +00002255 return SE.getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002256 if (isa<SCEVMulExpr>(Comm))
2257 return SE.getMulExpr(NewOps);
2258 if (isa<SCEVSMaxExpr>(Comm))
2259 return SE.getSMaxExpr(NewOps);
2260 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002261 }
2262 }
2263 // If we got here, all operands are loop invariant.
2264 return Comm;
2265 }
2266
2267 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2268 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2269 if (LHS == UnknownValue) return LHS;
2270 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2271 if (RHS == UnknownValue) return RHS;
2272 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2273 return Div; // must be loop invariant
Dan Gohman89f85052007-10-22 18:31:58 +00002274 return SE.getSDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002275 }
2276
2277 // If this is a loop recurrence for a loop that does not contain L, then we
2278 // are dealing with the final value computed by the loop.
2279 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2280 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2281 // To evaluate this recurrence, we need to know how many times the AddRec
2282 // loop iterates. Compute this now.
2283 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2284 if (IterationCount == UnknownValue) return UnknownValue;
2285 IterationCount = getTruncateOrZeroExtend(IterationCount,
Dan Gohman89f85052007-10-22 18:31:58 +00002286 AddRec->getType(), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002287
2288 // If the value is affine, simplify the expression evaluation to just
2289 // Start + Step*IterationCount.
2290 if (AddRec->isAffine())
Dan Gohman89f85052007-10-22 18:31:58 +00002291 return SE.getAddExpr(AddRec->getStart(),
2292 SE.getMulExpr(IterationCount,
2293 AddRec->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002294
2295 // Otherwise, evaluate it the hard way.
Dan Gohman89f85052007-10-22 18:31:58 +00002296 return AddRec->evaluateAtIteration(IterationCount, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002297 }
2298 return UnknownValue;
2299 }
2300
2301 //assert(0 && "Unknown SCEV type!");
2302 return UnknownValue;
2303}
2304
2305
2306/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2307/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2308/// might be the same) or two SCEVCouldNotCompute objects.
2309///
2310static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00002311SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002312 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2313 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2314 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2315 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2316
2317 // We currently can only solve this if the coefficients are constants.
2318 if (!LC || !MC || !NC) {
2319 SCEV *CNC = new SCEVCouldNotCompute();
2320 return std::make_pair(CNC, CNC);
2321 }
2322
2323 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2324 const APInt &L = LC->getValue()->getValue();
2325 const APInt &M = MC->getValue()->getValue();
2326 const APInt &N = NC->getValue()->getValue();
2327 APInt Two(BitWidth, 2);
2328 APInt Four(BitWidth, 4);
2329
2330 {
2331 using namespace APIntOps;
2332 const APInt& C = L;
2333 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2334 // The B coefficient is M-N/2
2335 APInt B(M);
2336 B -= sdiv(N,Two);
2337
2338 // The A coefficient is N/2
2339 APInt A(N.sdiv(Two));
2340
2341 // Compute the B^2-4ac term.
2342 APInt SqrtTerm(B);
2343 SqrtTerm *= B;
2344 SqrtTerm -= Four * (A * C);
2345
2346 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2347 // integer value or else APInt::sqrt() will assert.
2348 APInt SqrtVal(SqrtTerm.sqrt());
2349
2350 // Compute the two solutions for the quadratic formula.
2351 // The divisions must be performed as signed divisions.
2352 APInt NegB(-B);
2353 APInt TwoA( A << 1 );
2354 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2355 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2356
Dan Gohman89f85052007-10-22 18:31:58 +00002357 return std::make_pair(SE.getConstant(Solution1),
2358 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359 } // end APIntOps namespace
2360}
2361
2362/// HowFarToZero - Return the number of times a backedge comparing the specified
2363/// value to zero will execute. If not computable, return UnknownValue
2364SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2365 // If the value is a constant
2366 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2367 // If the value is already zero, the branch will execute zero times.
2368 if (C->getValue()->isZero()) return C;
2369 return UnknownValue; // Otherwise it will loop infinitely.
2370 }
2371
2372 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2373 if (!AddRec || AddRec->getLoop() != L)
2374 return UnknownValue;
2375
2376 if (AddRec->isAffine()) {
2377 // If this is an affine expression the execution count of this branch is
2378 // equal to:
2379 //
2380 // (0 - Start/Step) iff Start % Step == 0
2381 //
2382 // Get the initial value for the loop.
2383 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2384 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2385 SCEVHandle Step = AddRec->getOperand(1);
2386
2387 Step = getSCEVAtScope(Step, L->getParentLoop());
2388
2389 // Figure out if Start % Step == 0.
2390 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2391 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2392 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Dan Gohman89f85052007-10-22 18:31:58 +00002393 return SE.getNegativeSCEV(Start); // 0 - Start/1 == -Start
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2395 return Start; // 0 - Start/-1 == Start
2396
2397 // Check to see if Start is divisible by SC with no remainder.
2398 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2399 ConstantInt *StartCC = StartC->getValue();
2400 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2401 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2402 if (Rem->isNullValue()) {
2403 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
Dan Gohman89f85052007-10-22 18:31:58 +00002404 return SE.getUnknown(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405 }
2406 }
2407 }
2408 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2409 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2410 // the quadratic equation to solve it.
Dan Gohman89f85052007-10-22 18:31:58 +00002411 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2413 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2414 if (R1) {
2415#if 0
2416 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2417 << " sol#2: " << *R2 << "\n";
2418#endif
2419 // Pick the smallest positive root value.
2420 if (ConstantInt *CB =
2421 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2422 R1->getValue(), R2->getValue()))) {
2423 if (CB->getZExtValue() == false)
2424 std::swap(R1, R2); // R1 is the minimum root now.
2425
2426 // We can only use this value if the chrec ends up with an exact zero
2427 // value at this index. When solving for "X*X != 5", for example, we
2428 // should not accept a root of 2.
Dan Gohman89f85052007-10-22 18:31:58 +00002429 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2431 if (EvalVal->getValue()->isZero())
2432 return R1; // We found a quadratic root!
2433 }
2434 }
2435 }
2436
2437 return UnknownValue;
2438}
2439
2440/// HowFarToNonZero - Return the number of times a backedge checking the
2441/// specified value for nonzero will execute. If not computable, return
2442/// UnknownValue
2443SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2444 // Loops that look like: while (X == 0) are very strange indeed. We don't
2445 // handle them yet except for the trivial case. This could be expanded in the
2446 // future as needed.
2447
2448 // If the value is a constant, check to see if it is known to be non-zero
2449 // already. If so, the backedge will execute zero times.
2450 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2451 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2452 Constant *NonZero =
2453 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2454 if (NonZero == ConstantInt::getTrue())
2455 return getSCEV(Zero);
2456 return UnknownValue; // Otherwise it will loop infinitely.
2457 }
2458
2459 // We could implement others, but I really doubt anyone writes loops like
2460 // this, and if they did, they would already be constant folded.
2461 return UnknownValue;
2462}
2463
2464/// HowManyLessThans - Return the number of times a backedge containing the
2465/// specified less-than comparison will execute. If not computable, return
2466/// UnknownValue.
2467SCEVHandle ScalarEvolutionsImpl::
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002468HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469 // Only handle: "ADDREC < LoopInvariant".
2470 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2471
2472 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2473 if (!AddRec || AddRec->getLoop() != L)
2474 return UnknownValue;
2475
2476 if (AddRec->isAffine()) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002477 // The number of iterations for "{n,+,1} < m", is m-n. However, we don't
2478 // know that m is >= n on input to the loop. If it is, the condition
2479 // returns true zero times. To handle both cases, we return SMAX(0, m-n).
2480
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002481 // FORNOW: We only support unit strides.
Dan Gohman89f85052007-10-22 18:31:58 +00002482 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002483 if (AddRec->getOperand(1) != One)
2484 return UnknownValue;
2485
Nick Lewycky711640a2007-11-25 22:41:31 +00002486 SCEVHandle Iters = SE.getMinusSCEV(RHS, AddRec->getOperand(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002487
Nick Lewycky711640a2007-11-25 22:41:31 +00002488 if (isSigned)
2489 return SE.getSMaxExpr(SE.getIntegerSCEV(0, RHS->getType()), Iters);
2490 else
2491 return Iters;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002492 }
2493
2494 return UnknownValue;
2495}
2496
2497/// getNumIterationsInRange - Return the number of iterations of this loop that
2498/// produce values in the specified constant range. Another way of looking at
2499/// this is that it returns the first iteration number where the value is not in
2500/// the condition, thus computing the exit count. If the iteration count can't
2501/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00002502SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2503 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504 if (Range.isFullSet()) // Infinite loop.
2505 return new SCEVCouldNotCompute();
2506
2507 // If the start is a non-zero constant, shift the range to simplify things.
2508 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2509 if (!SC->getValue()->isZero()) {
2510 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00002511 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
2512 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002513 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2514 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00002515 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002516 // This is strange and shouldn't happen.
2517 return new SCEVCouldNotCompute();
2518 }
2519
2520 // The only time we can solve this is when we have all constant indices.
2521 // Otherwise, we cannot determine the overflow conditions.
2522 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2523 if (!isa<SCEVConstant>(getOperand(i)))
2524 return new SCEVCouldNotCompute();
2525
2526
2527 // Okay at this point we know that all elements of the chrec are constants and
2528 // that the start element is zero.
2529
2530 // First check to see if the range contains zero. If not, the first
2531 // iteration exits.
2532 if (!Range.contains(APInt(getBitWidth(),0)))
Dan Gohman89f85052007-10-22 18:31:58 +00002533 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002534
2535 if (isAffine()) {
2536 // If this is an affine expression then we have this situation:
2537 // Solve {0,+,A} in Range === Ax in Range
2538
2539 // We know that zero is in the range. If A is positive then we know that
2540 // the upper value of the range must be the first possible exit value.
2541 // If A is negative then the lower of the range is the last possible loop
2542 // value. Also note that we already checked for a full range.
2543 APInt One(getBitWidth(),1);
2544 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2545 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
2546
2547 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00002548 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002549 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2550
2551 // Evaluate at the exit value. If we really did fall out of the valid
2552 // range, then we computed our trip count, otherwise wrap around or other
2553 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00002554 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002555 if (Range.contains(Val->getValue()))
2556 return new SCEVCouldNotCompute(); // Something strange happened
2557
2558 // Ensure that the previous value is in the range. This is a sanity check.
2559 assert(Range.contains(
2560 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00002561 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002562 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00002563 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002564 } else if (isQuadratic()) {
2565 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2566 // quadratic equation to solve it. To do this, we must frame our problem in
2567 // terms of figuring out when zero is crossed, instead of when
2568 // Range.getUpper() is crossed.
2569 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00002570 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
2571 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002572
2573 // Next, solve the constructed addrec
2574 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00002575 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002576 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2577 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2578 if (R1) {
2579 // Pick the smallest positive root value.
2580 if (ConstantInt *CB =
2581 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2582 R1->getValue(), R2->getValue()))) {
2583 if (CB->getZExtValue() == false)
2584 std::swap(R1, R2); // R1 is the minimum root now.
2585
2586 // Make sure the root is not off by one. The returned iteration should
2587 // not be in the range, but the previous one should be. When solving
2588 // for "X*X < 5", for example, we should not return a root of 2.
2589 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00002590 R1->getValue(),
2591 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002592 if (Range.contains(R1Val->getValue())) {
2593 // The next iteration must be out of the range...
2594 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2595
Dan Gohman89f85052007-10-22 18:31:58 +00002596 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002597 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00002598 return SE.getConstant(NextVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002599 return new SCEVCouldNotCompute(); // Something strange happened
2600 }
2601
2602 // If R1 was not in the range, then it is a good return value. Make
2603 // sure that R1-1 WAS in the range though, just in case.
2604 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00002605 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002606 if (Range.contains(R1Val->getValue()))
2607 return R1;
2608 return new SCEVCouldNotCompute(); // Something strange happened
2609 }
2610 }
2611 }
2612
2613 // Fallback, if this is a general polynomial, figure out the progression
2614 // through brute force: evaluate until we find an iteration that fails the
2615 // test. This is likely to be slow, but getting an accurate trip count is
2616 // incredibly important, we will be able to simplify the exit test a lot, and
2617 // we are almost guaranteed to get a trip count in this case.
2618 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2619 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2620 do {
2621 ++NumBruteForceEvaluations;
Dan Gohman89f85052007-10-22 18:31:58 +00002622 SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002623 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2624 return new SCEVCouldNotCompute();
2625
2626 // Check to see if we found the value!
2627 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00002628 return SE.getConstant(TestVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002629
2630 // Increment to test the next index.
2631 TestVal = ConstantInt::get(TestVal->getValue()+1);
2632 } while (TestVal != EndVal);
2633
2634 return new SCEVCouldNotCompute();
2635}
2636
2637
2638
2639//===----------------------------------------------------------------------===//
2640// ScalarEvolution Class Implementation
2641//===----------------------------------------------------------------------===//
2642
2643bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohman89f85052007-10-22 18:31:58 +00002644 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645 return false;
2646}
2647
2648void ScalarEvolution::releaseMemory() {
2649 delete (ScalarEvolutionsImpl*)Impl;
2650 Impl = 0;
2651}
2652
2653void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2654 AU.setPreservesAll();
2655 AU.addRequiredTransitive<LoopInfo>();
2656}
2657
2658SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2659 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2660}
2661
2662/// hasSCEV - Return true if the SCEV for this value has already been
2663/// computed.
2664bool ScalarEvolution::hasSCEV(Value *V) const {
2665 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2666}
2667
2668
2669/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2670/// the specified value.
2671void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2672 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2673}
2674
2675
2676SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2677 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2678}
2679
2680bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2681 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2682}
2683
2684SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2685 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2686}
2687
2688void ScalarEvolution::deleteValueFromRecords(Value *V) const {
2689 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
2690}
2691
2692static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2693 const Loop *L) {
2694 // Print all inner loops first
2695 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2696 PrintLoopInfo(OS, SE, *I);
2697
2698 cerr << "Loop " << L->getHeader()->getName() << ": ";
2699
Devang Patel02451fa2007-08-21 00:31:24 +00002700 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002701 L->getExitBlocks(ExitBlocks);
2702 if (ExitBlocks.size() != 1)
2703 cerr << "<multiple exits> ";
2704
2705 if (SE->hasLoopInvariantIterationCount(L)) {
2706 cerr << *SE->getIterationCount(L) << " iterations! ";
2707 } else {
2708 cerr << "Unpredictable iteration count. ";
2709 }
2710
2711 cerr << "\n";
2712}
2713
2714void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2715 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2716 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2717
2718 OS << "Classifying expressions for: " << F.getName() << "\n";
2719 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2720 if (I->getType()->isInteger()) {
2721 OS << *I;
2722 OS << " --> ";
2723 SCEVHandle SV = getSCEV(&*I);
2724 SV->print(OS);
2725 OS << "\t\t";
2726
2727 if ((*I).getType()->isInteger()) {
2728 ConstantRange Bounds = SV->getValueRange();
2729 if (!Bounds.isFullSet())
2730 OS << "Bounds: " << Bounds << " ";
2731 }
2732
2733 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2734 OS << "Exits: ";
2735 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2736 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2737 OS << "<<Unknown>>";
2738 } else {
2739 OS << *ExitValue;
2740 }
2741 }
2742
2743
2744 OS << "\n";
2745 }
2746
2747 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2748 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2749 PrintLoopInfo(OS, this, *I);
2750}