blob: e52b6531faf47c47c4a179b09dc8580a9cd6082c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000037#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41 : TargetLowering(TM) {
42 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000043 X86ScalarSSEf64 = Subtarget->hasSSE2();
44 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000045 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47 RegInfo = TM.getRegisterInfo();
48
49 // Set up the TargetLowering object.
50
51 // X86 is weird, it always uses i8 for shift amounts and setcc results.
52 setShiftAmountType(MVT::i8);
53 setSetCCResultType(MVT::i8);
54 setSetCCResultContents(ZeroOrOneSetCCResult);
55 setSchedulingPreference(SchedulingForRegPressure);
56 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
57 setStackPointerRegisterToSaveRestore(X86StackPtr);
58
59 if (Subtarget->isTargetDarwin()) {
60 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
61 setUseUnderscoreSetJmp(false);
62 setUseUnderscoreLongJmp(false);
63 } else if (Subtarget->isTargetMingw()) {
64 // MS runtime is weird: it exports _setjmp, but longjmp!
65 setUseUnderscoreSetJmp(true);
66 setUseUnderscoreLongJmp(false);
67 } else {
68 setUseUnderscoreSetJmp(true);
69 setUseUnderscoreLongJmp(true);
70 }
71
72 // Set up the register classes.
73 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
74 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
75 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
76 if (Subtarget->is64Bit())
77 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
78
79 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
80
81 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
82 // operation.
83 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
84 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
85 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
86
87 if (Subtarget->is64Bit()) {
88 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
89 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
90 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000091 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000092 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
93 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
94 else
95 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
96 }
97
98 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
99 // this operation.
100 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
101 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
102 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000103 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000105 // f32 and f64 cases are Legal, f80 case is not
106 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
107 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
109 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
110 }
111
Dale Johannesen958b08b2007-09-19 23:55:34 +0000112 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
113 // are Legal, f80 is custom lowered.
114 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
115 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116
117 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
118 // this operation.
119 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
120 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
121
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000122 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000124 // f32 and f64 cases are Legal, f80 case is not
125 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 } else {
127 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
128 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
129 }
130
131 // Handle FP_TO_UINT by promoting the destination to a larger signed
132 // conversion.
133 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
134 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
135 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
136
137 if (Subtarget->is64Bit()) {
138 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
139 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
140 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000141 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000142 // Expand FP_TO_UINT into a select.
143 // FIXME: We would like to use a Custom expander here eventually to do
144 // the optimal thing for SSE vs. the default expansion in the legalizer.
145 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
146 else
147 // With SSE3 we can use fisttpll to convert to a signed i64.
148 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
149 }
150
151 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000152 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
154 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
155 }
156
157 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
158 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
159 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
160 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
161 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
162 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
167 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
168 setOperationAction(ISD::FREM , MVT::f64 , Expand);
169
170 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
171 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
172 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
173 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
174 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
175 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
176 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
177 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
178 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
179 if (Subtarget->is64Bit()) {
180 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
181 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
182 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
183 }
184
185 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
186 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
187
188 // These should be promoted to a larger select which is supported.
189 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
190 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
191 // X86 wants to expand cmov itself.
192 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
193 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
194 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
195 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000196 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
198 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
199 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
200 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
201 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000202 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 if (Subtarget->is64Bit()) {
204 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
205 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
206 }
207 // X86 ret instruction may pop stack.
208 setOperationAction(ISD::RET , MVT::Other, Custom);
209 if (!Subtarget->is64Bit())
210 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
211
212 // Darwin ABI issue.
213 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
214 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
215 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
216 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
217 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
218 if (Subtarget->is64Bit()) {
219 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
220 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
221 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
222 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
223 }
224 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
225 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
226 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
227 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
228 // X86 wants to expand memset / memcpy itself.
229 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
230 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
231
232 // We don't have line number support yet.
233 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
234 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
235 // FIXME - use subtarget debug flags
236 if (!Subtarget->isTargetDarwin() &&
237 !Subtarget->isTargetELF() &&
238 !Subtarget->isTargetCygMing())
239 setOperationAction(ISD::LABEL, MVT::Other, Expand);
240
241 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
242 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
243 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
244 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
245 if (Subtarget->is64Bit()) {
246 // FIXME: Verify
247 setExceptionPointerRegister(X86::RAX);
248 setExceptionSelectorRegister(X86::RDX);
249 } else {
250 setExceptionPointerRegister(X86::EAX);
251 setExceptionSelectorRegister(X86::EDX);
252 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000253 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254
Duncan Sands7407a9f2007-09-11 14:10:23 +0000255 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000256
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
258 setOperationAction(ISD::VASTART , MVT::Other, Custom);
259 setOperationAction(ISD::VAARG , MVT::Other, Expand);
260 setOperationAction(ISD::VAEND , MVT::Other, Expand);
261 if (Subtarget->is64Bit())
262 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
263 else
264 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
265
266 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
267 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
268 if (Subtarget->is64Bit())
269 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
270 if (Subtarget->isTargetCygMing())
271 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
272 else
273 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
274
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000275 if (X86ScalarSSEf64) {
276 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 // Set up the FP register classes.
278 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
279 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
280
281 // Use ANDPD to simulate FABS.
282 setOperationAction(ISD::FABS , MVT::f64, Custom);
283 setOperationAction(ISD::FABS , MVT::f32, Custom);
284
285 // Use XORP to simulate FNEG.
286 setOperationAction(ISD::FNEG , MVT::f64, Custom);
287 setOperationAction(ISD::FNEG , MVT::f32, Custom);
288
289 // Use ANDPD and ORPD to simulate FCOPYSIGN.
290 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
291 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
292
293 // We don't support sin/cos/fmod
294 setOperationAction(ISD::FSIN , MVT::f64, Expand);
295 setOperationAction(ISD::FCOS , MVT::f64, Expand);
296 setOperationAction(ISD::FREM , MVT::f64, Expand);
297 setOperationAction(ISD::FSIN , MVT::f32, Expand);
298 setOperationAction(ISD::FCOS , MVT::f32, Expand);
299 setOperationAction(ISD::FREM , MVT::f32, Expand);
300
301 // Expand FP immediates into loads from the stack, except for the special
302 // cases we handle.
303 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
304 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000305 addLegalFPImmediate(APFloat(+0.0)); // xorpd
306 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000307
308 // Conversions to long double (in X87) go through memory.
309 setConvertAction(MVT::f32, MVT::f80, Expand);
310 setConvertAction(MVT::f64, MVT::f80, Expand);
311
312 // Conversions from long double (in X87) go through memory.
313 setConvertAction(MVT::f80, MVT::f32, Expand);
314 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000315 } else if (X86ScalarSSEf32) {
316 // Use SSE for f32, x87 for f64.
317 // Set up the FP register classes.
318 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
319 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
320
321 // Use ANDPS to simulate FABS.
322 setOperationAction(ISD::FABS , MVT::f32, Custom);
323
324 // Use XORP to simulate FNEG.
325 setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
328
329 // Use ANDPS and ORPS to simulate FCOPYSIGN.
330 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
331 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
332
333 // We don't support sin/cos/fmod
334 setOperationAction(ISD::FSIN , MVT::f32, Expand);
335 setOperationAction(ISD::FCOS , MVT::f32, Expand);
336 setOperationAction(ISD::FREM , MVT::f32, Expand);
337
338 // Expand FP immediates into loads from the stack, except for the special
339 // cases we handle.
340 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
341 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
342 addLegalFPImmediate(APFloat(+0.0f)); // xorps
343 addLegalFPImmediate(APFloat(+0.0)); // FLD0
344 addLegalFPImmediate(APFloat(+1.0)); // FLD1
345 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
346 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
347
348 // SSE->x87 conversions go through memory.
349 setConvertAction(MVT::f32, MVT::f64, Expand);
350 setConvertAction(MVT::f32, MVT::f80, Expand);
351
352 // x87->SSE truncations need to go through memory.
353 setConvertAction(MVT::f80, MVT::f32, Expand);
354 setConvertAction(MVT::f64, MVT::f32, Expand);
355 // And x87->x87 truncations also.
356 setConvertAction(MVT::f80, MVT::f64, Expand);
357
358 if (!UnsafeFPMath) {
359 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
360 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
361 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000363 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000364 // Set up the FP register classes.
365 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
366 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
367
368 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
369 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
370 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
371 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000372
373 // Floating truncations need to go through memory.
374 setConvertAction(MVT::f80, MVT::f32, Expand);
375 setConvertAction(MVT::f64, MVT::f32, Expand);
376 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377
378 if (!UnsafeFPMath) {
379 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
380 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
381 }
382
383 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
384 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000385 addLegalFPImmediate(APFloat(+0.0)); // FLD0
386 addLegalFPImmediate(APFloat(+1.0)); // FLD1
387 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
388 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000389 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
390 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
391 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
392 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 }
394
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000395 // Long double always uses X87.
396 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000397 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
398 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
399 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000400
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000401 // First set operation action for all vector types to expand. Then we
402 // will selectively turn on ones that can be effectively codegen'd.
403 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
404 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
405 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
406 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
407 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
408 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
409 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
410 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
411 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
412 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
413 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
414 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
415 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
416 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
417 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
418 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
419 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
420 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
421 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
422 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
423 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
424 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
425 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
426 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
427 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
428 }
429
430 if (Subtarget->hasMMX()) {
431 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
432 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
433 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
434 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
435
436 // FIXME: add MMX packed arithmetics
437
438 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
439 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
440 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
441 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
442
443 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
444 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
445 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
446
447 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
448 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
449
450 setOperationAction(ISD::AND, MVT::v8i8, Promote);
451 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
452 setOperationAction(ISD::AND, MVT::v4i16, Promote);
453 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
454 setOperationAction(ISD::AND, MVT::v2i32, Promote);
455 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
456 setOperationAction(ISD::AND, MVT::v1i64, Legal);
457
458 setOperationAction(ISD::OR, MVT::v8i8, Promote);
459 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
460 setOperationAction(ISD::OR, MVT::v4i16, Promote);
461 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
462 setOperationAction(ISD::OR, MVT::v2i32, Promote);
463 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
464 setOperationAction(ISD::OR, MVT::v1i64, Legal);
465
466 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
467 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
468 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
469 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
470 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
471 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
472 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
473
474 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
475 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
476 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
477 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
478 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
479 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
480 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
481
482 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
483 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
484 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
485 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
486
487 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
488 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
489 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
490 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
491
492 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
493 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
494 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
495 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
496 }
497
498 if (Subtarget->hasSSE1()) {
499 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
500
501 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
502 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
503 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
504 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
505 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
506 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
508 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
509 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
510 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
511 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
512 }
513
514 if (Subtarget->hasSSE2()) {
515 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
516 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
517 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
518 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
519 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
520
521 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
522 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
523 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
524 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
525 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
526 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
527 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
528 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
529 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
530 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
531 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
532 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
533 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
534 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
535 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000536
537 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
538 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
539 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
540 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
541 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
542 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
543
544 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
545 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
546 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
547 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
548 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
549 }
550 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
551 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
552 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
553 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
554 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
555 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
556
557 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
558 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
559 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
560 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
561 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
562 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
563 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
564 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
565 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
566 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
567 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
568 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
569 }
570
571 // Custom lower v2i64 and v2f64 selects.
572 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
573 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
574 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
575 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
576 }
577
578 // We want to custom lower some of our intrinsics.
579 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
580
581 // We have target-specific dag combine patterns for the following nodes:
582 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
583 setTargetDAGCombine(ISD::SELECT);
584
585 computeRegisterProperties();
586
587 // FIXME: These should be based on subtarget info. Plus, the values should
588 // be smaller when we are in optimizing for size mode.
589 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
590 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
591 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
592 allowUnalignedMemoryAccesses = true; // x86 supports it!
593}
594
595
596//===----------------------------------------------------------------------===//
597// Return Value Calling Convention Implementation
598//===----------------------------------------------------------------------===//
599
600#include "X86GenCallingConv.inc"
601
602/// LowerRET - Lower an ISD::RET node.
603SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
604 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
605
606 SmallVector<CCValAssign, 16> RVLocs;
607 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
608 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
609 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
610 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
611
612
613 // If this is the first return lowered for this function, add the regs to the
614 // liveout set for the function.
615 if (DAG.getMachineFunction().liveout_empty()) {
616 for (unsigned i = 0; i != RVLocs.size(); ++i)
617 if (RVLocs[i].isRegLoc())
618 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
619 }
620
621 SDOperand Chain = Op.getOperand(0);
622 SDOperand Flag;
623
624 // Copy the result values into the output registers.
625 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
626 RVLocs[0].getLocReg() != X86::ST0) {
627 for (unsigned i = 0; i != RVLocs.size(); ++i) {
628 CCValAssign &VA = RVLocs[i];
629 assert(VA.isRegLoc() && "Can only return in registers!");
630 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
631 Flag);
632 Flag = Chain.getValue(1);
633 }
634 } else {
635 // We need to handle a destination of ST0 specially, because it isn't really
636 // a register.
637 SDOperand Value = Op.getOperand(1);
638
639 // If this is an FP return with ScalarSSE, we need to move the value from
640 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000641 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
642 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643 SDOperand MemLoc;
644
645 // If this is a load into a scalarsse value, don't store the loaded value
646 // back to the stack, only to reload it: just replace the scalar-sse load.
647 if (ISD::isNON_EXTLoad(Value.Val) &&
648 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
649 Chain = Value.getOperand(0);
650 MemLoc = Value.getOperand(1);
651 } else {
652 // Spill the value to memory and reload it into top of stack.
653 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
654 MachineFunction &MF = DAG.getMachineFunction();
655 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
656 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
657 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
658 }
659 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
660 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
661 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
662 Chain = Value.getValue(1);
663 }
664
665 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
666 SDOperand Ops[] = { Chain, Value };
667 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
668 Flag = Chain.getValue(1);
669 }
670
671 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
672 if (Flag.Val)
673 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
674 else
675 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
676}
677
678
679/// LowerCallResult - Lower the result values of an ISD::CALL into the
680/// appropriate copies out of appropriate physical registers. This assumes that
681/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
682/// being lowered. The returns a SDNode with the same number of values as the
683/// ISD::CALL.
684SDNode *X86TargetLowering::
685LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
686 unsigned CallingConv, SelectionDAG &DAG) {
687
688 // Assign locations to each value returned by this call.
689 SmallVector<CCValAssign, 16> RVLocs;
690 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
691 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
692 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
693
694
695 SmallVector<SDOperand, 8> ResultVals;
696
697 // Copy all of the result registers out of their specified physreg.
698 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
699 for (unsigned i = 0; i != RVLocs.size(); ++i) {
700 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
701 RVLocs[i].getValVT(), InFlag).getValue(1);
702 InFlag = Chain.getValue(2);
703 ResultVals.push_back(Chain.getValue(0));
704 }
705 } else {
706 // Copies from the FP stack are special, as ST0 isn't a valid register
707 // before the fp stackifier runs.
708
709 // Copy ST0 into an RFP register with FP_GET_RESULT.
710 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
711 SDOperand GROps[] = { Chain, InFlag };
712 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
713 Chain = RetVal.getValue(1);
714 InFlag = RetVal.getValue(2);
715
716 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
717 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000718 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
719 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
721 // shouldn't be necessary except that RFP cannot be live across
722 // multiple blocks. When stackifier is fixed, they can be uncoupled.
723 MachineFunction &MF = DAG.getMachineFunction();
724 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
725 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
726 SDOperand Ops[] = {
727 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
728 };
729 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
730 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
731 Chain = RetVal.getValue(1);
732 }
733 ResultVals.push_back(RetVal);
734 }
735
736 // Merge everything together with a MERGE_VALUES node.
737 ResultVals.push_back(Chain);
738 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
739 &ResultVals[0], ResultVals.size()).Val;
740}
741
742
743//===----------------------------------------------------------------------===//
744// C & StdCall Calling Convention implementation
745//===----------------------------------------------------------------------===//
746// StdCall calling convention seems to be standard for many Windows' API
747// routines and around. It differs from C calling convention just a little:
748// callee should clean up the stack, not caller. Symbols should be also
749// decorated in some fancy way :) It doesn't support any vector arguments.
750
751/// AddLiveIn - This helper function adds the specified physical register to the
752/// MachineFunction as a live in value. It also creates a corresponding virtual
753/// register for it.
754static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
755 const TargetRegisterClass *RC) {
756 assert(RC->contains(PReg) && "Not the correct regclass!");
757 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
758 MF.addLiveIn(PReg, VReg);
759 return VReg;
760}
761
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000762SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
763 const CCValAssign &VA,
764 MachineFrameInfo *MFI,
765 SDOperand Root, unsigned i) {
766 // Create the nodes corresponding to a load from this parameter slot.
767 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
768 VA.getLocMemOffset());
769 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
770
771 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
772
773 if (Flags & ISD::ParamFlags::ByVal)
774 return FIN;
775 else
776 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
777}
778
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
780 bool isStdCall) {
781 unsigned NumArgs = Op.Val->getNumValues() - 1;
782 MachineFunction &MF = DAG.getMachineFunction();
783 MachineFrameInfo *MFI = MF.getFrameInfo();
784 SDOperand Root = Op.getOperand(0);
785 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
786
787 // Assign locations to all of the incoming arguments.
788 SmallVector<CCValAssign, 16> ArgLocs;
789 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
790 getTargetMachine(), ArgLocs);
791 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
792
793 SmallVector<SDOperand, 8> ArgValues;
794 unsigned LastVal = ~0U;
795 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
796 CCValAssign &VA = ArgLocs[i];
797 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
798 // places.
799 assert(VA.getValNo() != LastVal &&
800 "Don't support value assigned to multiple locs yet");
801 LastVal = VA.getValNo();
802
803 if (VA.isRegLoc()) {
804 MVT::ValueType RegVT = VA.getLocVT();
805 TargetRegisterClass *RC;
806 if (RegVT == MVT::i32)
807 RC = X86::GR32RegisterClass;
808 else {
809 assert(MVT::isVector(RegVT));
810 RC = X86::VR128RegisterClass;
811 }
812
813 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
814 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
815
816 // If this is an 8 or 16-bit value, it is really passed promoted to 32
817 // bits. Insert an assert[sz]ext to capture this, then truncate to the
818 // right size.
819 if (VA.getLocInfo() == CCValAssign::SExt)
820 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
821 DAG.getValueType(VA.getValVT()));
822 else if (VA.getLocInfo() == CCValAssign::ZExt)
823 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
824 DAG.getValueType(VA.getValVT()));
825
826 if (VA.getLocInfo() != CCValAssign::Full)
827 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
828
829 ArgValues.push_back(ArgValue);
830 } else {
831 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000832 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833 }
834 }
835
836 unsigned StackSize = CCInfo.getNextStackOffset();
837
838 ArgValues.push_back(Root);
839
840 // If the function takes variable number of arguments, make a frame index for
841 // the start of the first vararg value... for expansion of llvm.va_start.
842 if (isVarArg)
843 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
844
845 if (isStdCall && !isVarArg) {
846 BytesToPopOnReturn = StackSize; // Callee pops everything..
847 BytesCallerReserves = 0;
848 } else {
849 BytesToPopOnReturn = 0; // Callee pops nothing.
850
851 // If this is an sret function, the return should pop the hidden pointer.
852 if (NumArgs &&
853 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
854 ISD::ParamFlags::StructReturn))
855 BytesToPopOnReturn = 4;
856
857 BytesCallerReserves = StackSize;
858 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000859
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000861
Anton Korobeynikove844e472007-08-15 17:12:32 +0000862 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
863 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000864
865 // Return the new list of results.
866 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
867 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
868}
869
870SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
871 unsigned CC) {
872 SDOperand Chain = Op.getOperand(0);
873 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
874 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
875 SDOperand Callee = Op.getOperand(4);
876 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
877
878 // Analyze operands of the call, assigning locations to each operand.
879 SmallVector<CCValAssign, 16> ArgLocs;
880 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
881 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
882
883 // Get a count of how many bytes are to be pushed on the stack.
884 unsigned NumBytes = CCInfo.getNextStackOffset();
885
886 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
887
888 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
889 SmallVector<SDOperand, 8> MemOpChains;
890
891 SDOperand StackPtr;
892
893 // Walk the register/memloc assignments, inserting copies/loads.
894 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
895 CCValAssign &VA = ArgLocs[i];
896 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
897
898 // Promote the value if needed.
899 switch (VA.getLocInfo()) {
900 default: assert(0 && "Unknown loc info!");
901 case CCValAssign::Full: break;
902 case CCValAssign::SExt:
903 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
904 break;
905 case CCValAssign::ZExt:
906 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
907 break;
908 case CCValAssign::AExt:
909 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
910 break;
911 }
912
913 if (VA.isRegLoc()) {
914 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
915 } else {
916 assert(VA.isMemLoc());
917 if (StackPtr.Val == 0)
918 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +0000919
920 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
921 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 }
923 }
924
925 // If the first argument is an sret pointer, remember it.
926 bool isSRet = NumOps &&
927 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
928 ISD::ParamFlags::StructReturn);
929
930 if (!MemOpChains.empty())
931 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
932 &MemOpChains[0], MemOpChains.size());
933
934 // Build a sequence of copy-to-reg nodes chained together with token chain
935 // and flag operands which copy the outgoing args into registers.
936 SDOperand InFlag;
937 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
938 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
939 InFlag);
940 InFlag = Chain.getValue(1);
941 }
942
943 // ELF / PIC requires GOT in the EBX register before function calls via PLT
944 // GOT pointer.
945 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
946 Subtarget->isPICStyleGOT()) {
947 Chain = DAG.getCopyToReg(Chain, X86::EBX,
948 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
949 InFlag);
950 InFlag = Chain.getValue(1);
951 }
952
953 // If the callee is a GlobalAddress node (quite common, every direct call is)
954 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
955 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
956 // We should use extra load for direct calls to dllimported functions in
957 // non-JIT mode.
958 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
959 getTargetMachine(), true))
960 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
961 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
962 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
963
964 // Returns a chain & a flag for retval copy to use.
965 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
966 SmallVector<SDOperand, 8> Ops;
967 Ops.push_back(Chain);
968 Ops.push_back(Callee);
969
970 // Add argument registers to the end of the list so that they are known live
971 // into the call.
972 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
973 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
974 RegsToPass[i].second.getValueType()));
975
976 // Add an implicit use GOT pointer in EBX.
977 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
978 Subtarget->isPICStyleGOT())
979 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
980
981 if (InFlag.Val)
982 Ops.push_back(InFlag);
983
984 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
985 NodeTys, &Ops[0], Ops.size());
986 InFlag = Chain.getValue(1);
987
988 // Create the CALLSEQ_END node.
989 unsigned NumBytesForCalleeToPush = 0;
990
991 if (CC == CallingConv::X86_StdCall) {
992 if (isVarArg)
993 NumBytesForCalleeToPush = isSRet ? 4 : 0;
994 else
995 NumBytesForCalleeToPush = NumBytes;
996 } else {
997 // If this is is a call to a struct-return function, the callee
998 // pops the hidden struct pointer, so we have to push it back.
999 // This is common for Darwin/X86, Linux & Mingw32 targets.
1000 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1001 }
1002
1003 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1004 Ops.clear();
1005 Ops.push_back(Chain);
1006 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1007 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1008 Ops.push_back(InFlag);
1009 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1010 InFlag = Chain.getValue(1);
1011
1012 // Handle result values, copying them out of physregs into vregs that we
1013 // return.
1014 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1015}
1016
1017
1018//===----------------------------------------------------------------------===//
1019// FastCall Calling Convention implementation
1020//===----------------------------------------------------------------------===//
1021//
1022// The X86 'fastcall' calling convention passes up to two integer arguments in
1023// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1024// and requires that the callee pop its arguments off the stack (allowing proper
1025// tail calls), and has the same return value conventions as C calling convs.
1026//
1027// This calling convention always arranges for the callee pop value to be 8n+4
1028// bytes, which is needed for tail recursion elimination and stack alignment
1029// reasons.
1030SDOperand
1031X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1032 MachineFunction &MF = DAG.getMachineFunction();
1033 MachineFrameInfo *MFI = MF.getFrameInfo();
1034 SDOperand Root = Op.getOperand(0);
1035 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1036
1037 // Assign locations to all of the incoming arguments.
1038 SmallVector<CCValAssign, 16> ArgLocs;
1039 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1040 getTargetMachine(), ArgLocs);
1041 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1042
1043 SmallVector<SDOperand, 8> ArgValues;
1044 unsigned LastVal = ~0U;
1045 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1046 CCValAssign &VA = ArgLocs[i];
1047 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1048 // places.
1049 assert(VA.getValNo() != LastVal &&
1050 "Don't support value assigned to multiple locs yet");
1051 LastVal = VA.getValNo();
1052
1053 if (VA.isRegLoc()) {
1054 MVT::ValueType RegVT = VA.getLocVT();
1055 TargetRegisterClass *RC;
1056 if (RegVT == MVT::i32)
1057 RC = X86::GR32RegisterClass;
1058 else {
1059 assert(MVT::isVector(RegVT));
1060 RC = X86::VR128RegisterClass;
1061 }
1062
1063 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1064 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1065
1066 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1067 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1068 // right size.
1069 if (VA.getLocInfo() == CCValAssign::SExt)
1070 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1071 DAG.getValueType(VA.getValVT()));
1072 else if (VA.getLocInfo() == CCValAssign::ZExt)
1073 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1074 DAG.getValueType(VA.getValVT()));
1075
1076 if (VA.getLocInfo() != CCValAssign::Full)
1077 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1078
1079 ArgValues.push_back(ArgValue);
1080 } else {
1081 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001082 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001083 }
1084 }
1085
1086 ArgValues.push_back(Root);
1087
1088 unsigned StackSize = CCInfo.getNextStackOffset();
1089
1090 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1091 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1092 // arguments and the arguments after the retaddr has been pushed are aligned.
1093 if ((StackSize & 7) == 0)
1094 StackSize += 4;
1095 }
1096
1097 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1098 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001099 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1100 BytesCallerReserves = 0;
1101
Anton Korobeynikove844e472007-08-15 17:12:32 +00001102 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1103 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001104
1105 // Return the new list of results.
1106 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1107 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1108}
1109
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001110SDOperand
1111X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1112 const SDOperand &StackPtr,
1113 const CCValAssign &VA,
1114 SDOperand Chain,
1115 SDOperand Arg) {
1116 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1117 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1118 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1119 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1120 if (Flags & ISD::ParamFlags::ByVal) {
1121 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1122 ISD::ParamFlags::ByValAlignOffs);
1123
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001124 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1125 ISD::ParamFlags::ByValSizeOffs;
1126
1127 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1128 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1129
1130 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1131 AlignNode);
1132 } else {
1133 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1134 }
1135}
1136
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001137SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1138 unsigned CC) {
1139 SDOperand Chain = Op.getOperand(0);
1140 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1141 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1142 SDOperand Callee = Op.getOperand(4);
1143
1144 // Analyze operands of the call, assigning locations to each operand.
1145 SmallVector<CCValAssign, 16> ArgLocs;
1146 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1147 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1148
1149 // Get a count of how many bytes are to be pushed on the stack.
1150 unsigned NumBytes = CCInfo.getNextStackOffset();
1151
1152 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1153 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1154 // arguments and the arguments after the retaddr has been pushed are aligned.
1155 if ((NumBytes & 7) == 0)
1156 NumBytes += 4;
1157 }
1158
1159 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1160
1161 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1162 SmallVector<SDOperand, 8> MemOpChains;
1163
1164 SDOperand StackPtr;
1165
1166 // Walk the register/memloc assignments, inserting copies/loads.
1167 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1168 CCValAssign &VA = ArgLocs[i];
1169 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1170
1171 // Promote the value if needed.
1172 switch (VA.getLocInfo()) {
1173 default: assert(0 && "Unknown loc info!");
1174 case CCValAssign::Full: break;
1175 case CCValAssign::SExt:
1176 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1177 break;
1178 case CCValAssign::ZExt:
1179 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1180 break;
1181 case CCValAssign::AExt:
1182 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1183 break;
1184 }
1185
1186 if (VA.isRegLoc()) {
1187 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1188 } else {
1189 assert(VA.isMemLoc());
1190 if (StackPtr.Val == 0)
1191 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001192
1193 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1194 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 }
1196 }
1197
1198 if (!MemOpChains.empty())
1199 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1200 &MemOpChains[0], MemOpChains.size());
1201
1202 // Build a sequence of copy-to-reg nodes chained together with token chain
1203 // and flag operands which copy the outgoing args into registers.
1204 SDOperand InFlag;
1205 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1206 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1207 InFlag);
1208 InFlag = Chain.getValue(1);
1209 }
1210
1211 // If the callee is a GlobalAddress node (quite common, every direct call is)
1212 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1213 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1214 // We should use extra load for direct calls to dllimported functions in
1215 // non-JIT mode.
1216 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1217 getTargetMachine(), true))
1218 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1219 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1220 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1221
1222 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1223 // GOT pointer.
1224 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1225 Subtarget->isPICStyleGOT()) {
1226 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1227 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1228 InFlag);
1229 InFlag = Chain.getValue(1);
1230 }
1231
1232 // Returns a chain & a flag for retval copy to use.
1233 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1234 SmallVector<SDOperand, 8> Ops;
1235 Ops.push_back(Chain);
1236 Ops.push_back(Callee);
1237
1238 // Add argument registers to the end of the list so that they are known live
1239 // into the call.
1240 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1241 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1242 RegsToPass[i].second.getValueType()));
1243
1244 // Add an implicit use GOT pointer in EBX.
1245 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1246 Subtarget->isPICStyleGOT())
1247 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1248
1249 if (InFlag.Val)
1250 Ops.push_back(InFlag);
1251
1252 // FIXME: Do not generate X86ISD::TAILCALL for now.
1253 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1254 NodeTys, &Ops[0], Ops.size());
1255 InFlag = Chain.getValue(1);
1256
1257 // Returns a flag for retval copy to use.
1258 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1259 Ops.clear();
1260 Ops.push_back(Chain);
1261 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1262 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1263 Ops.push_back(InFlag);
1264 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1265 InFlag = Chain.getValue(1);
1266
1267 // Handle result values, copying them out of physregs into vregs that we
1268 // return.
1269 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1270}
1271
1272
1273//===----------------------------------------------------------------------===//
1274// X86-64 C Calling Convention implementation
1275//===----------------------------------------------------------------------===//
1276
1277SDOperand
1278X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1279 MachineFunction &MF = DAG.getMachineFunction();
1280 MachineFrameInfo *MFI = MF.getFrameInfo();
1281 SDOperand Root = Op.getOperand(0);
1282 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1283
1284 static const unsigned GPR64ArgRegs[] = {
1285 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1286 };
1287 static const unsigned XMMArgRegs[] = {
1288 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1289 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1290 };
1291
1292
1293 // Assign locations to all of the incoming arguments.
1294 SmallVector<CCValAssign, 16> ArgLocs;
1295 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1296 getTargetMachine(), ArgLocs);
1297 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1298
1299 SmallVector<SDOperand, 8> ArgValues;
1300 unsigned LastVal = ~0U;
1301 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1302 CCValAssign &VA = ArgLocs[i];
1303 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1304 // places.
1305 assert(VA.getValNo() != LastVal &&
1306 "Don't support value assigned to multiple locs yet");
1307 LastVal = VA.getValNo();
1308
1309 if (VA.isRegLoc()) {
1310 MVT::ValueType RegVT = VA.getLocVT();
1311 TargetRegisterClass *RC;
1312 if (RegVT == MVT::i32)
1313 RC = X86::GR32RegisterClass;
1314 else if (RegVT == MVT::i64)
1315 RC = X86::GR64RegisterClass;
1316 else if (RegVT == MVT::f32)
1317 RC = X86::FR32RegisterClass;
1318 else if (RegVT == MVT::f64)
1319 RC = X86::FR64RegisterClass;
1320 else {
1321 assert(MVT::isVector(RegVT));
1322 if (MVT::getSizeInBits(RegVT) == 64) {
1323 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1324 RegVT = MVT::i64;
1325 } else
1326 RC = X86::VR128RegisterClass;
1327 }
1328
1329 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1330 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1331
1332 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1333 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1334 // right size.
1335 if (VA.getLocInfo() == CCValAssign::SExt)
1336 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1337 DAG.getValueType(VA.getValVT()));
1338 else if (VA.getLocInfo() == CCValAssign::ZExt)
1339 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1340 DAG.getValueType(VA.getValVT()));
1341
1342 if (VA.getLocInfo() != CCValAssign::Full)
1343 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1344
1345 // Handle MMX values passed in GPRs.
1346 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1347 MVT::getSizeInBits(RegVT) == 64)
1348 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1349
1350 ArgValues.push_back(ArgValue);
1351 } else {
1352 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001353 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354 }
1355 }
1356
1357 unsigned StackSize = CCInfo.getNextStackOffset();
1358
1359 // If the function takes variable number of arguments, make a frame index for
1360 // the start of the first vararg value... for expansion of llvm.va_start.
1361 if (isVarArg) {
1362 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1363 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1364
1365 // For X86-64, if there are vararg parameters that are passed via
1366 // registers, then we must store them to their spots on the stack so they
1367 // may be loaded by deferencing the result of va_next.
1368 VarArgsGPOffset = NumIntRegs * 8;
1369 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1370 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1371 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1372
1373 // Store the integer parameter registers.
1374 SmallVector<SDOperand, 8> MemOps;
1375 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1376 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1377 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1378 for (; NumIntRegs != 6; ++NumIntRegs) {
1379 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1380 X86::GR64RegisterClass);
1381 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1382 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1383 MemOps.push_back(Store);
1384 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1385 DAG.getConstant(8, getPointerTy()));
1386 }
1387
1388 // Now store the XMM (fp + vector) parameter registers.
1389 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1390 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1391 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1392 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1393 X86::VR128RegisterClass);
1394 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1395 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1396 MemOps.push_back(Store);
1397 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1398 DAG.getConstant(16, getPointerTy()));
1399 }
1400 if (!MemOps.empty())
1401 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1402 &MemOps[0], MemOps.size());
1403 }
1404
1405 ArgValues.push_back(Root);
1406
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407 BytesToPopOnReturn = 0; // Callee pops nothing.
1408 BytesCallerReserves = StackSize;
1409
Anton Korobeynikove844e472007-08-15 17:12:32 +00001410 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1411 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1412
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001413 // Return the new list of results.
1414 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1415 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1416}
1417
1418SDOperand
1419X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1420 unsigned CC) {
1421 SDOperand Chain = Op.getOperand(0);
1422 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1423 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1424 SDOperand Callee = Op.getOperand(4);
1425
1426 // Analyze operands of the call, assigning locations to each operand.
1427 SmallVector<CCValAssign, 16> ArgLocs;
1428 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1429 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1430
1431 // Get a count of how many bytes are to be pushed on the stack.
1432 unsigned NumBytes = CCInfo.getNextStackOffset();
1433 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1434
1435 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1436 SmallVector<SDOperand, 8> MemOpChains;
1437
1438 SDOperand StackPtr;
1439
1440 // Walk the register/memloc assignments, inserting copies/loads.
1441 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1442 CCValAssign &VA = ArgLocs[i];
1443 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1444
1445 // Promote the value if needed.
1446 switch (VA.getLocInfo()) {
1447 default: assert(0 && "Unknown loc info!");
1448 case CCValAssign::Full: break;
1449 case CCValAssign::SExt:
1450 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1451 break;
1452 case CCValAssign::ZExt:
1453 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1454 break;
1455 case CCValAssign::AExt:
1456 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1457 break;
1458 }
1459
1460 if (VA.isRegLoc()) {
1461 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1462 } else {
1463 assert(VA.isMemLoc());
1464 if (StackPtr.Val == 0)
1465 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001466
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001467 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1468 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001469 }
1470 }
1471
1472 if (!MemOpChains.empty())
1473 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1474 &MemOpChains[0], MemOpChains.size());
1475
1476 // Build a sequence of copy-to-reg nodes chained together with token chain
1477 // and flag operands which copy the outgoing args into registers.
1478 SDOperand InFlag;
1479 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1480 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1481 InFlag);
1482 InFlag = Chain.getValue(1);
1483 }
1484
1485 if (isVarArg) {
1486 // From AMD64 ABI document:
1487 // For calls that may call functions that use varargs or stdargs
1488 // (prototype-less calls or calls to functions containing ellipsis (...) in
1489 // the declaration) %al is used as hidden argument to specify the number
1490 // of SSE registers used. The contents of %al do not need to match exactly
1491 // the number of registers, but must be an ubound on the number of SSE
1492 // registers used and is in the range 0 - 8 inclusive.
1493
1494 // Count the number of XMM registers allocated.
1495 static const unsigned XMMArgRegs[] = {
1496 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1497 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1498 };
1499 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1500
1501 Chain = DAG.getCopyToReg(Chain, X86::AL,
1502 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1503 InFlag = Chain.getValue(1);
1504 }
1505
1506 // If the callee is a GlobalAddress node (quite common, every direct call is)
1507 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1508 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1509 // We should use extra load for direct calls to dllimported functions in
1510 // non-JIT mode.
1511 if (getTargetMachine().getCodeModel() != CodeModel::Large
1512 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1513 getTargetMachine(), true))
1514 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1515 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1516 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1517 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1518
1519 // Returns a chain & a flag for retval copy to use.
1520 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1521 SmallVector<SDOperand, 8> Ops;
1522 Ops.push_back(Chain);
1523 Ops.push_back(Callee);
1524
1525 // Add argument registers to the end of the list so that they are known live
1526 // into the call.
1527 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1528 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1529 RegsToPass[i].second.getValueType()));
1530
1531 if (InFlag.Val)
1532 Ops.push_back(InFlag);
1533
1534 // FIXME: Do not generate X86ISD::TAILCALL for now.
1535 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1536 NodeTys, &Ops[0], Ops.size());
1537 InFlag = Chain.getValue(1);
1538
1539 // Returns a flag for retval copy to use.
1540 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1541 Ops.clear();
1542 Ops.push_back(Chain);
1543 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1544 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1545 Ops.push_back(InFlag);
1546 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1547 InFlag = Chain.getValue(1);
1548
1549 // Handle result values, copying them out of physregs into vregs that we
1550 // return.
1551 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1552}
1553
1554
1555//===----------------------------------------------------------------------===//
1556// Other Lowering Hooks
1557//===----------------------------------------------------------------------===//
1558
1559
1560SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001561 MachineFunction &MF = DAG.getMachineFunction();
1562 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1563 int ReturnAddrIndex = FuncInfo->getRAIndex();
1564
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565 if (ReturnAddrIndex == 0) {
1566 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567 if (Subtarget->is64Bit())
1568 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1569 else
1570 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001571
1572 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 }
1574
1575 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1576}
1577
1578
1579
1580/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1581/// specific condition code. It returns a false if it cannot do a direct
1582/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1583/// needed.
1584static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1585 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1586 SelectionDAG &DAG) {
1587 X86CC = X86::COND_INVALID;
1588 if (!isFP) {
1589 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1590 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1591 // X > -1 -> X == 0, jump !sign.
1592 RHS = DAG.getConstant(0, RHS.getValueType());
1593 X86CC = X86::COND_NS;
1594 return true;
1595 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1596 // X < 0 -> X == 0, jump on sign.
1597 X86CC = X86::COND_S;
1598 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00001599 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1600 // X < 1 -> X <= 0
1601 RHS = DAG.getConstant(0, RHS.getValueType());
1602 X86CC = X86::COND_LE;
1603 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001604 }
1605 }
1606
1607 switch (SetCCOpcode) {
1608 default: break;
1609 case ISD::SETEQ: X86CC = X86::COND_E; break;
1610 case ISD::SETGT: X86CC = X86::COND_G; break;
1611 case ISD::SETGE: X86CC = X86::COND_GE; break;
1612 case ISD::SETLT: X86CC = X86::COND_L; break;
1613 case ISD::SETLE: X86CC = X86::COND_LE; break;
1614 case ISD::SETNE: X86CC = X86::COND_NE; break;
1615 case ISD::SETULT: X86CC = X86::COND_B; break;
1616 case ISD::SETUGT: X86CC = X86::COND_A; break;
1617 case ISD::SETULE: X86CC = X86::COND_BE; break;
1618 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1619 }
1620 } else {
1621 // On a floating point condition, the flags are set as follows:
1622 // ZF PF CF op
1623 // 0 | 0 | 0 | X > Y
1624 // 0 | 0 | 1 | X < Y
1625 // 1 | 0 | 0 | X == Y
1626 // 1 | 1 | 1 | unordered
1627 bool Flip = false;
1628 switch (SetCCOpcode) {
1629 default: break;
1630 case ISD::SETUEQ:
1631 case ISD::SETEQ: X86CC = X86::COND_E; break;
1632 case ISD::SETOLT: Flip = true; // Fallthrough
1633 case ISD::SETOGT:
1634 case ISD::SETGT: X86CC = X86::COND_A; break;
1635 case ISD::SETOLE: Flip = true; // Fallthrough
1636 case ISD::SETOGE:
1637 case ISD::SETGE: X86CC = X86::COND_AE; break;
1638 case ISD::SETUGT: Flip = true; // Fallthrough
1639 case ISD::SETULT:
1640 case ISD::SETLT: X86CC = X86::COND_B; break;
1641 case ISD::SETUGE: Flip = true; // Fallthrough
1642 case ISD::SETULE:
1643 case ISD::SETLE: X86CC = X86::COND_BE; break;
1644 case ISD::SETONE:
1645 case ISD::SETNE: X86CC = X86::COND_NE; break;
1646 case ISD::SETUO: X86CC = X86::COND_P; break;
1647 case ISD::SETO: X86CC = X86::COND_NP; break;
1648 }
1649 if (Flip)
1650 std::swap(LHS, RHS);
1651 }
1652
1653 return X86CC != X86::COND_INVALID;
1654}
1655
1656/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1657/// code. Current x86 isa includes the following FP cmov instructions:
1658/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1659static bool hasFPCMov(unsigned X86CC) {
1660 switch (X86CC) {
1661 default:
1662 return false;
1663 case X86::COND_B:
1664 case X86::COND_BE:
1665 case X86::COND_E:
1666 case X86::COND_P:
1667 case X86::COND_A:
1668 case X86::COND_AE:
1669 case X86::COND_NE:
1670 case X86::COND_NP:
1671 return true;
1672 }
1673}
1674
1675/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1676/// true if Op is undef or if its value falls within the specified range (L, H].
1677static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1678 if (Op.getOpcode() == ISD::UNDEF)
1679 return true;
1680
1681 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1682 return (Val >= Low && Val < Hi);
1683}
1684
1685/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1686/// true if Op is undef or if its value equal to the specified value.
1687static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1688 if (Op.getOpcode() == ISD::UNDEF)
1689 return true;
1690 return cast<ConstantSDNode>(Op)->getValue() == Val;
1691}
1692
1693/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1694/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1695bool X86::isPSHUFDMask(SDNode *N) {
1696 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1697
Dan Gohman7dc19012007-08-02 21:17:01 +00001698 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699 return false;
1700
1701 // Check if the value doesn't reference the second vector.
1702 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1703 SDOperand Arg = N->getOperand(i);
1704 if (Arg.getOpcode() == ISD::UNDEF) continue;
1705 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001706 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707 return false;
1708 }
1709
1710 return true;
1711}
1712
1713/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1714/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1715bool X86::isPSHUFHWMask(SDNode *N) {
1716 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1717
1718 if (N->getNumOperands() != 8)
1719 return false;
1720
1721 // Lower quadword copied in order.
1722 for (unsigned i = 0; i != 4; ++i) {
1723 SDOperand Arg = N->getOperand(i);
1724 if (Arg.getOpcode() == ISD::UNDEF) continue;
1725 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1726 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1727 return false;
1728 }
1729
1730 // Upper quadword shuffled.
1731 for (unsigned i = 4; i != 8; ++i) {
1732 SDOperand Arg = N->getOperand(i);
1733 if (Arg.getOpcode() == ISD::UNDEF) continue;
1734 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1735 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1736 if (Val < 4 || Val > 7)
1737 return false;
1738 }
1739
1740 return true;
1741}
1742
1743/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1744/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1745bool X86::isPSHUFLWMask(SDNode *N) {
1746 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1747
1748 if (N->getNumOperands() != 8)
1749 return false;
1750
1751 // Upper quadword copied in order.
1752 for (unsigned i = 4; i != 8; ++i)
1753 if (!isUndefOrEqual(N->getOperand(i), i))
1754 return false;
1755
1756 // Lower quadword shuffled.
1757 for (unsigned i = 0; i != 4; ++i)
1758 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1759 return false;
1760
1761 return true;
1762}
1763
1764/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1765/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1766static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1767 if (NumElems != 2 && NumElems != 4) return false;
1768
1769 unsigned Half = NumElems / 2;
1770 for (unsigned i = 0; i < Half; ++i)
1771 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1772 return false;
1773 for (unsigned i = Half; i < NumElems; ++i)
1774 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1775 return false;
1776
1777 return true;
1778}
1779
1780bool X86::isSHUFPMask(SDNode *N) {
1781 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1782 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1783}
1784
1785/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1786/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1787/// half elements to come from vector 1 (which would equal the dest.) and
1788/// the upper half to come from vector 2.
1789static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1790 if (NumOps != 2 && NumOps != 4) return false;
1791
1792 unsigned Half = NumOps / 2;
1793 for (unsigned i = 0; i < Half; ++i)
1794 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1795 return false;
1796 for (unsigned i = Half; i < NumOps; ++i)
1797 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1798 return false;
1799 return true;
1800}
1801
1802static bool isCommutedSHUFP(SDNode *N) {
1803 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1804 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1805}
1806
1807/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1808/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1809bool X86::isMOVHLPSMask(SDNode *N) {
1810 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1811
1812 if (N->getNumOperands() != 4)
1813 return false;
1814
1815 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1816 return isUndefOrEqual(N->getOperand(0), 6) &&
1817 isUndefOrEqual(N->getOperand(1), 7) &&
1818 isUndefOrEqual(N->getOperand(2), 2) &&
1819 isUndefOrEqual(N->getOperand(3), 3);
1820}
1821
1822/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1823/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1824/// <2, 3, 2, 3>
1825bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1826 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1827
1828 if (N->getNumOperands() != 4)
1829 return false;
1830
1831 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1832 return isUndefOrEqual(N->getOperand(0), 2) &&
1833 isUndefOrEqual(N->getOperand(1), 3) &&
1834 isUndefOrEqual(N->getOperand(2), 2) &&
1835 isUndefOrEqual(N->getOperand(3), 3);
1836}
1837
1838/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1839/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1840bool X86::isMOVLPMask(SDNode *N) {
1841 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1842
1843 unsigned NumElems = N->getNumOperands();
1844 if (NumElems != 2 && NumElems != 4)
1845 return false;
1846
1847 for (unsigned i = 0; i < NumElems/2; ++i)
1848 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1849 return false;
1850
1851 for (unsigned i = NumElems/2; i < NumElems; ++i)
1852 if (!isUndefOrEqual(N->getOperand(i), i))
1853 return false;
1854
1855 return true;
1856}
1857
1858/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1859/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1860/// and MOVLHPS.
1861bool X86::isMOVHPMask(SDNode *N) {
1862 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1863
1864 unsigned NumElems = N->getNumOperands();
1865 if (NumElems != 2 && NumElems != 4)
1866 return false;
1867
1868 for (unsigned i = 0; i < NumElems/2; ++i)
1869 if (!isUndefOrEqual(N->getOperand(i), i))
1870 return false;
1871
1872 for (unsigned i = 0; i < NumElems/2; ++i) {
1873 SDOperand Arg = N->getOperand(i + NumElems/2);
1874 if (!isUndefOrEqual(Arg, i + NumElems))
1875 return false;
1876 }
1877
1878 return true;
1879}
1880
1881/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1882/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1883bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1884 bool V2IsSplat = false) {
1885 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1886 return false;
1887
1888 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1889 SDOperand BitI = Elts[i];
1890 SDOperand BitI1 = Elts[i+1];
1891 if (!isUndefOrEqual(BitI, j))
1892 return false;
1893 if (V2IsSplat) {
1894 if (isUndefOrEqual(BitI1, NumElts))
1895 return false;
1896 } else {
1897 if (!isUndefOrEqual(BitI1, j + NumElts))
1898 return false;
1899 }
1900 }
1901
1902 return true;
1903}
1904
1905bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1906 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1907 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1908}
1909
1910/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1911/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1912bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1913 bool V2IsSplat = false) {
1914 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1915 return false;
1916
1917 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1918 SDOperand BitI = Elts[i];
1919 SDOperand BitI1 = Elts[i+1];
1920 if (!isUndefOrEqual(BitI, j + NumElts/2))
1921 return false;
1922 if (V2IsSplat) {
1923 if (isUndefOrEqual(BitI1, NumElts))
1924 return false;
1925 } else {
1926 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1927 return false;
1928 }
1929 }
1930
1931 return true;
1932}
1933
1934bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1935 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1936 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1937}
1938
1939/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1940/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1941/// <0, 0, 1, 1>
1942bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1943 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1944
1945 unsigned NumElems = N->getNumOperands();
1946 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1947 return false;
1948
1949 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1950 SDOperand BitI = N->getOperand(i);
1951 SDOperand BitI1 = N->getOperand(i+1);
1952
1953 if (!isUndefOrEqual(BitI, j))
1954 return false;
1955 if (!isUndefOrEqual(BitI1, j))
1956 return false;
1957 }
1958
1959 return true;
1960}
1961
1962/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1963/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1964/// <2, 2, 3, 3>
1965bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1966 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1967
1968 unsigned NumElems = N->getNumOperands();
1969 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1970 return false;
1971
1972 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1973 SDOperand BitI = N->getOperand(i);
1974 SDOperand BitI1 = N->getOperand(i + 1);
1975
1976 if (!isUndefOrEqual(BitI, j))
1977 return false;
1978 if (!isUndefOrEqual(BitI1, j))
1979 return false;
1980 }
1981
1982 return true;
1983}
1984
1985/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1986/// specifies a shuffle of elements that is suitable for input to MOVSS,
1987/// MOVSD, and MOVD, i.e. setting the lowest element.
1988static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1989 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1990 return false;
1991
1992 if (!isUndefOrEqual(Elts[0], NumElts))
1993 return false;
1994
1995 for (unsigned i = 1; i < NumElts; ++i) {
1996 if (!isUndefOrEqual(Elts[i], i))
1997 return false;
1998 }
1999
2000 return true;
2001}
2002
2003bool X86::isMOVLMask(SDNode *N) {
2004 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2005 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2006}
2007
2008/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2009/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2010/// element of vector 2 and the other elements to come from vector 1 in order.
2011static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2012 bool V2IsSplat = false,
2013 bool V2IsUndef = false) {
2014 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2015 return false;
2016
2017 if (!isUndefOrEqual(Ops[0], 0))
2018 return false;
2019
2020 for (unsigned i = 1; i < NumOps; ++i) {
2021 SDOperand Arg = Ops[i];
2022 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2023 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2024 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2025 return false;
2026 }
2027
2028 return true;
2029}
2030
2031static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2032 bool V2IsUndef = false) {
2033 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2034 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2035 V2IsSplat, V2IsUndef);
2036}
2037
2038/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2039/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2040bool X86::isMOVSHDUPMask(SDNode *N) {
2041 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2042
2043 if (N->getNumOperands() != 4)
2044 return false;
2045
2046 // Expect 1, 1, 3, 3
2047 for (unsigned i = 0; i < 2; ++i) {
2048 SDOperand Arg = N->getOperand(i);
2049 if (Arg.getOpcode() == ISD::UNDEF) continue;
2050 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2051 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2052 if (Val != 1) return false;
2053 }
2054
2055 bool HasHi = false;
2056 for (unsigned i = 2; i < 4; ++i) {
2057 SDOperand Arg = N->getOperand(i);
2058 if (Arg.getOpcode() == ISD::UNDEF) continue;
2059 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2060 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2061 if (Val != 3) return false;
2062 HasHi = true;
2063 }
2064
2065 // Don't use movshdup if it can be done with a shufps.
2066 return HasHi;
2067}
2068
2069/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2070/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2071bool X86::isMOVSLDUPMask(SDNode *N) {
2072 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2073
2074 if (N->getNumOperands() != 4)
2075 return false;
2076
2077 // Expect 0, 0, 2, 2
2078 for (unsigned i = 0; i < 2; ++i) {
2079 SDOperand Arg = N->getOperand(i);
2080 if (Arg.getOpcode() == ISD::UNDEF) continue;
2081 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2082 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2083 if (Val != 0) return false;
2084 }
2085
2086 bool HasHi = false;
2087 for (unsigned i = 2; i < 4; ++i) {
2088 SDOperand Arg = N->getOperand(i);
2089 if (Arg.getOpcode() == ISD::UNDEF) continue;
2090 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2091 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2092 if (Val != 2) return false;
2093 HasHi = true;
2094 }
2095
2096 // Don't use movshdup if it can be done with a shufps.
2097 return HasHi;
2098}
2099
2100/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2101/// specifies a identity operation on the LHS or RHS.
2102static bool isIdentityMask(SDNode *N, bool RHS = false) {
2103 unsigned NumElems = N->getNumOperands();
2104 for (unsigned i = 0; i < NumElems; ++i)
2105 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2106 return false;
2107 return true;
2108}
2109
2110/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2111/// a splat of a single element.
2112static bool isSplatMask(SDNode *N) {
2113 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2114
2115 // This is a splat operation if each element of the permute is the same, and
2116 // if the value doesn't reference the second vector.
2117 unsigned NumElems = N->getNumOperands();
2118 SDOperand ElementBase;
2119 unsigned i = 0;
2120 for (; i != NumElems; ++i) {
2121 SDOperand Elt = N->getOperand(i);
2122 if (isa<ConstantSDNode>(Elt)) {
2123 ElementBase = Elt;
2124 break;
2125 }
2126 }
2127
2128 if (!ElementBase.Val)
2129 return false;
2130
2131 for (; i != NumElems; ++i) {
2132 SDOperand Arg = N->getOperand(i);
2133 if (Arg.getOpcode() == ISD::UNDEF) continue;
2134 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2135 if (Arg != ElementBase) return false;
2136 }
2137
2138 // Make sure it is a splat of the first vector operand.
2139 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2140}
2141
2142/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2143/// a splat of a single element and it's a 2 or 4 element mask.
2144bool X86::isSplatMask(SDNode *N) {
2145 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2146
2147 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2148 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2149 return false;
2150 return ::isSplatMask(N);
2151}
2152
2153/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2154/// specifies a splat of zero element.
2155bool X86::isSplatLoMask(SDNode *N) {
2156 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2157
2158 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2159 if (!isUndefOrEqual(N->getOperand(i), 0))
2160 return false;
2161 return true;
2162}
2163
2164/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2165/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2166/// instructions.
2167unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2168 unsigned NumOperands = N->getNumOperands();
2169 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2170 unsigned Mask = 0;
2171 for (unsigned i = 0; i < NumOperands; ++i) {
2172 unsigned Val = 0;
2173 SDOperand Arg = N->getOperand(NumOperands-i-1);
2174 if (Arg.getOpcode() != ISD::UNDEF)
2175 Val = cast<ConstantSDNode>(Arg)->getValue();
2176 if (Val >= NumOperands) Val -= NumOperands;
2177 Mask |= Val;
2178 if (i != NumOperands - 1)
2179 Mask <<= Shift;
2180 }
2181
2182 return Mask;
2183}
2184
2185/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2186/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2187/// instructions.
2188unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2189 unsigned Mask = 0;
2190 // 8 nodes, but we only care about the last 4.
2191 for (unsigned i = 7; i >= 4; --i) {
2192 unsigned Val = 0;
2193 SDOperand Arg = N->getOperand(i);
2194 if (Arg.getOpcode() != ISD::UNDEF)
2195 Val = cast<ConstantSDNode>(Arg)->getValue();
2196 Mask |= (Val - 4);
2197 if (i != 4)
2198 Mask <<= 2;
2199 }
2200
2201 return Mask;
2202}
2203
2204/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2205/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2206/// instructions.
2207unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2208 unsigned Mask = 0;
2209 // 8 nodes, but we only care about the first 4.
2210 for (int i = 3; i >= 0; --i) {
2211 unsigned Val = 0;
2212 SDOperand Arg = N->getOperand(i);
2213 if (Arg.getOpcode() != ISD::UNDEF)
2214 Val = cast<ConstantSDNode>(Arg)->getValue();
2215 Mask |= Val;
2216 if (i != 0)
2217 Mask <<= 2;
2218 }
2219
2220 return Mask;
2221}
2222
2223/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2224/// specifies a 8 element shuffle that can be broken into a pair of
2225/// PSHUFHW and PSHUFLW.
2226static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2227 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2228
2229 if (N->getNumOperands() != 8)
2230 return false;
2231
2232 // Lower quadword shuffled.
2233 for (unsigned i = 0; i != 4; ++i) {
2234 SDOperand Arg = N->getOperand(i);
2235 if (Arg.getOpcode() == ISD::UNDEF) continue;
2236 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2237 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2238 if (Val > 4)
2239 return false;
2240 }
2241
2242 // Upper quadword shuffled.
2243 for (unsigned i = 4; i != 8; ++i) {
2244 SDOperand Arg = N->getOperand(i);
2245 if (Arg.getOpcode() == ISD::UNDEF) continue;
2246 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2247 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2248 if (Val < 4 || Val > 7)
2249 return false;
2250 }
2251
2252 return true;
2253}
2254
2255/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2256/// values in ther permute mask.
2257static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2258 SDOperand &V2, SDOperand &Mask,
2259 SelectionDAG &DAG) {
2260 MVT::ValueType VT = Op.getValueType();
2261 MVT::ValueType MaskVT = Mask.getValueType();
2262 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2263 unsigned NumElems = Mask.getNumOperands();
2264 SmallVector<SDOperand, 8> MaskVec;
2265
2266 for (unsigned i = 0; i != NumElems; ++i) {
2267 SDOperand Arg = Mask.getOperand(i);
2268 if (Arg.getOpcode() == ISD::UNDEF) {
2269 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2270 continue;
2271 }
2272 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2273 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2274 if (Val < NumElems)
2275 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2276 else
2277 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2278 }
2279
2280 std::swap(V1, V2);
2281 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2282 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2283}
2284
2285/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2286/// match movhlps. The lower half elements should come from upper half of
2287/// V1 (and in order), and the upper half elements should come from the upper
2288/// half of V2 (and in order).
2289static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2290 unsigned NumElems = Mask->getNumOperands();
2291 if (NumElems != 4)
2292 return false;
2293 for (unsigned i = 0, e = 2; i != e; ++i)
2294 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2295 return false;
2296 for (unsigned i = 2; i != 4; ++i)
2297 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2298 return false;
2299 return true;
2300}
2301
2302/// isScalarLoadToVector - Returns true if the node is a scalar load that
2303/// is promoted to a vector.
2304static inline bool isScalarLoadToVector(SDNode *N) {
2305 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2306 N = N->getOperand(0).Val;
2307 return ISD::isNON_EXTLoad(N);
2308 }
2309 return false;
2310}
2311
2312/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2313/// match movlp{s|d}. The lower half elements should come from lower half of
2314/// V1 (and in order), and the upper half elements should come from the upper
2315/// half of V2 (and in order). And since V1 will become the source of the
2316/// MOVLP, it must be either a vector load or a scalar load to vector.
2317static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2318 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2319 return false;
2320 // Is V2 is a vector load, don't do this transformation. We will try to use
2321 // load folding shufps op.
2322 if (ISD::isNON_EXTLoad(V2))
2323 return false;
2324
2325 unsigned NumElems = Mask->getNumOperands();
2326 if (NumElems != 2 && NumElems != 4)
2327 return false;
2328 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2329 if (!isUndefOrEqual(Mask->getOperand(i), i))
2330 return false;
2331 for (unsigned i = NumElems/2; i != NumElems; ++i)
2332 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2333 return false;
2334 return true;
2335}
2336
2337/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2338/// all the same.
2339static bool isSplatVector(SDNode *N) {
2340 if (N->getOpcode() != ISD::BUILD_VECTOR)
2341 return false;
2342
2343 SDOperand SplatValue = N->getOperand(0);
2344 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2345 if (N->getOperand(i) != SplatValue)
2346 return false;
2347 return true;
2348}
2349
2350/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2351/// to an undef.
2352static bool isUndefShuffle(SDNode *N) {
2353 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2354 return false;
2355
2356 SDOperand V1 = N->getOperand(0);
2357 SDOperand V2 = N->getOperand(1);
2358 SDOperand Mask = N->getOperand(2);
2359 unsigned NumElems = Mask.getNumOperands();
2360 for (unsigned i = 0; i != NumElems; ++i) {
2361 SDOperand Arg = Mask.getOperand(i);
2362 if (Arg.getOpcode() != ISD::UNDEF) {
2363 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2364 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2365 return false;
2366 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2367 return false;
2368 }
2369 }
2370 return true;
2371}
2372
2373/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2374/// constant +0.0.
2375static inline bool isZeroNode(SDOperand Elt) {
2376 return ((isa<ConstantSDNode>(Elt) &&
2377 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2378 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002379 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002380}
2381
2382/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2383/// to an zero vector.
2384static bool isZeroShuffle(SDNode *N) {
2385 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2386 return false;
2387
2388 SDOperand V1 = N->getOperand(0);
2389 SDOperand V2 = N->getOperand(1);
2390 SDOperand Mask = N->getOperand(2);
2391 unsigned NumElems = Mask.getNumOperands();
2392 for (unsigned i = 0; i != NumElems; ++i) {
2393 SDOperand Arg = Mask.getOperand(i);
2394 if (Arg.getOpcode() != ISD::UNDEF) {
2395 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2396 if (Idx < NumElems) {
2397 unsigned Opc = V1.Val->getOpcode();
2398 if (Opc == ISD::UNDEF)
2399 continue;
2400 if (Opc != ISD::BUILD_VECTOR ||
2401 !isZeroNode(V1.Val->getOperand(Idx)))
2402 return false;
2403 } else if (Idx >= NumElems) {
2404 unsigned Opc = V2.Val->getOpcode();
2405 if (Opc == ISD::UNDEF)
2406 continue;
2407 if (Opc != ISD::BUILD_VECTOR ||
2408 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2409 return false;
2410 }
2411 }
2412 }
2413 return true;
2414}
2415
2416/// getZeroVector - Returns a vector of specified type with all zero elements.
2417///
2418static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2419 assert(MVT::isVector(VT) && "Expected a vector type");
2420 unsigned NumElems = MVT::getVectorNumElements(VT);
2421 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2422 bool isFP = MVT::isFloatingPoint(EVT);
2423 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2424 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2425 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2426}
2427
2428/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2429/// that point to V2 points to its first element.
2430static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2431 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2432
2433 bool Changed = false;
2434 SmallVector<SDOperand, 8> MaskVec;
2435 unsigned NumElems = Mask.getNumOperands();
2436 for (unsigned i = 0; i != NumElems; ++i) {
2437 SDOperand Arg = Mask.getOperand(i);
2438 if (Arg.getOpcode() != ISD::UNDEF) {
2439 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2440 if (Val > NumElems) {
2441 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2442 Changed = true;
2443 }
2444 }
2445 MaskVec.push_back(Arg);
2446 }
2447
2448 if (Changed)
2449 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2450 &MaskVec[0], MaskVec.size());
2451 return Mask;
2452}
2453
2454/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2455/// operation of specified width.
2456static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2457 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2458 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2459
2460 SmallVector<SDOperand, 8> MaskVec;
2461 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2462 for (unsigned i = 1; i != NumElems; ++i)
2463 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2464 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2465}
2466
2467/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2468/// of specified width.
2469static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2470 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2471 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2472 SmallVector<SDOperand, 8> MaskVec;
2473 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2474 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2475 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2476 }
2477 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2478}
2479
2480/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2481/// of specified width.
2482static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2483 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2484 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2485 unsigned Half = NumElems/2;
2486 SmallVector<SDOperand, 8> MaskVec;
2487 for (unsigned i = 0; i != Half; ++i) {
2488 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2489 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2490 }
2491 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2492}
2493
2494/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2495///
2496static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2497 SDOperand V1 = Op.getOperand(0);
2498 SDOperand Mask = Op.getOperand(2);
2499 MVT::ValueType VT = Op.getValueType();
2500 unsigned NumElems = Mask.getNumOperands();
2501 Mask = getUnpacklMask(NumElems, DAG);
2502 while (NumElems != 4) {
2503 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2504 NumElems >>= 1;
2505 }
2506 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2507
2508 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2509 Mask = getZeroVector(MaskVT, DAG);
2510 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2511 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2512 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2513}
2514
2515/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2516/// vector of zero or undef vector.
2517static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2518 unsigned NumElems, unsigned Idx,
2519 bool isZero, SelectionDAG &DAG) {
2520 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2521 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2522 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2523 SDOperand Zero = DAG.getConstant(0, EVT);
2524 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2525 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2526 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2527 &MaskVec[0], MaskVec.size());
2528 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2529}
2530
2531/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2532///
2533static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2534 unsigned NumNonZero, unsigned NumZero,
2535 SelectionDAG &DAG, TargetLowering &TLI) {
2536 if (NumNonZero > 8)
2537 return SDOperand();
2538
2539 SDOperand V(0, 0);
2540 bool First = true;
2541 for (unsigned i = 0; i < 16; ++i) {
2542 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2543 if (ThisIsNonZero && First) {
2544 if (NumZero)
2545 V = getZeroVector(MVT::v8i16, DAG);
2546 else
2547 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2548 First = false;
2549 }
2550
2551 if ((i & 1) != 0) {
2552 SDOperand ThisElt(0, 0), LastElt(0, 0);
2553 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2554 if (LastIsNonZero) {
2555 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2556 }
2557 if (ThisIsNonZero) {
2558 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2559 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2560 ThisElt, DAG.getConstant(8, MVT::i8));
2561 if (LastIsNonZero)
2562 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2563 } else
2564 ThisElt = LastElt;
2565
2566 if (ThisElt.Val)
2567 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2568 DAG.getConstant(i/2, TLI.getPointerTy()));
2569 }
2570 }
2571
2572 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2573}
2574
2575/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2576///
2577static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2578 unsigned NumNonZero, unsigned NumZero,
2579 SelectionDAG &DAG, TargetLowering &TLI) {
2580 if (NumNonZero > 4)
2581 return SDOperand();
2582
2583 SDOperand V(0, 0);
2584 bool First = true;
2585 for (unsigned i = 0; i < 8; ++i) {
2586 bool isNonZero = (NonZeros & (1 << i)) != 0;
2587 if (isNonZero) {
2588 if (First) {
2589 if (NumZero)
2590 V = getZeroVector(MVT::v8i16, DAG);
2591 else
2592 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2593 First = false;
2594 }
2595 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2596 DAG.getConstant(i, TLI.getPointerTy()));
2597 }
2598 }
2599
2600 return V;
2601}
2602
2603SDOperand
2604X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2605 // All zero's are handled with pxor.
2606 if (ISD::isBuildVectorAllZeros(Op.Val))
2607 return Op;
2608
2609 // All one's are handled with pcmpeqd.
2610 if (ISD::isBuildVectorAllOnes(Op.Val))
2611 return Op;
2612
2613 MVT::ValueType VT = Op.getValueType();
2614 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2615 unsigned EVTBits = MVT::getSizeInBits(EVT);
2616
2617 unsigned NumElems = Op.getNumOperands();
2618 unsigned NumZero = 0;
2619 unsigned NumNonZero = 0;
2620 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00002621 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002622 std::set<SDOperand> Values;
2623 for (unsigned i = 0; i < NumElems; ++i) {
2624 SDOperand Elt = Op.getOperand(i);
2625 if (Elt.getOpcode() != ISD::UNDEF) {
2626 Values.insert(Elt);
2627 if (isZeroNode(Elt))
2628 NumZero++;
2629 else {
2630 NonZeros |= (1 << i);
2631 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00002632 if (Elt.getOpcode() == ISD::Constant ||
2633 Elt.getOpcode() == ISD::ConstantFP)
2634 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002635 }
2636 }
2637 }
2638
2639 if (NumNonZero == 0) {
2640 if (NumZero == 0)
2641 // All undef vector. Return an UNDEF.
2642 return DAG.getNode(ISD::UNDEF, VT);
2643 else
2644 // A mix of zero and undef. Return a zero vector.
2645 return getZeroVector(VT, DAG);
2646 }
2647
2648 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2649 if (Values.size() == 1)
2650 return SDOperand();
2651
2652 // Special case for single non-zero element.
2653 if (NumNonZero == 1) {
2654 unsigned Idx = CountTrailingZeros_32(NonZeros);
2655 SDOperand Item = Op.getOperand(Idx);
2656 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2657 if (Idx == 0)
2658 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2659 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2660 NumZero > 0, DAG);
2661
2662 if (EVTBits == 32) {
2663 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2664 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2665 DAG);
2666 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2667 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2668 SmallVector<SDOperand, 8> MaskVec;
2669 for (unsigned i = 0; i < NumElems; i++)
2670 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2671 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2672 &MaskVec[0], MaskVec.size());
2673 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2674 DAG.getNode(ISD::UNDEF, VT), Mask);
2675 }
2676 }
2677
Dan Gohman21463242007-07-24 22:55:08 +00002678 // A vector full of immediates; various special cases are already
2679 // handled, so this is best done with a single constant-pool load.
2680 if (NumNonZero == NumNonZeroImms)
2681 return SDOperand();
2682
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002683 // Let legalizer expand 2-wide build_vectors.
2684 if (EVTBits == 64)
2685 return SDOperand();
2686
2687 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2688 if (EVTBits == 8 && NumElems == 16) {
2689 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2690 *this);
2691 if (V.Val) return V;
2692 }
2693
2694 if (EVTBits == 16 && NumElems == 8) {
2695 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2696 *this);
2697 if (V.Val) return V;
2698 }
2699
2700 // If element VT is == 32 bits, turn it into a number of shuffles.
2701 SmallVector<SDOperand, 8> V;
2702 V.resize(NumElems);
2703 if (NumElems == 4 && NumZero > 0) {
2704 for (unsigned i = 0; i < 4; ++i) {
2705 bool isZero = !(NonZeros & (1 << i));
2706 if (isZero)
2707 V[i] = getZeroVector(VT, DAG);
2708 else
2709 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2710 }
2711
2712 for (unsigned i = 0; i < 2; ++i) {
2713 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2714 default: break;
2715 case 0:
2716 V[i] = V[i*2]; // Must be a zero vector.
2717 break;
2718 case 1:
2719 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2720 getMOVLMask(NumElems, DAG));
2721 break;
2722 case 2:
2723 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2724 getMOVLMask(NumElems, DAG));
2725 break;
2726 case 3:
2727 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2728 getUnpacklMask(NumElems, DAG));
2729 break;
2730 }
2731 }
2732
2733 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2734 // clears the upper bits.
2735 // FIXME: we can do the same for v4f32 case when we know both parts of
2736 // the lower half come from scalar_to_vector (loadf32). We should do
2737 // that in post legalizer dag combiner with target specific hooks.
2738 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2739 return V[0];
2740 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2741 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2742 SmallVector<SDOperand, 8> MaskVec;
2743 bool Reverse = (NonZeros & 0x3) == 2;
2744 for (unsigned i = 0; i < 2; ++i)
2745 if (Reverse)
2746 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2747 else
2748 MaskVec.push_back(DAG.getConstant(i, EVT));
2749 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2750 for (unsigned i = 0; i < 2; ++i)
2751 if (Reverse)
2752 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2753 else
2754 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2755 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2756 &MaskVec[0], MaskVec.size());
2757 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2758 }
2759
2760 if (Values.size() > 2) {
2761 // Expand into a number of unpckl*.
2762 // e.g. for v4f32
2763 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2764 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2765 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2766 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2767 for (unsigned i = 0; i < NumElems; ++i)
2768 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2769 NumElems >>= 1;
2770 while (NumElems != 0) {
2771 for (unsigned i = 0; i < NumElems; ++i)
2772 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2773 UnpckMask);
2774 NumElems >>= 1;
2775 }
2776 return V[0];
2777 }
2778
2779 return SDOperand();
2780}
2781
2782SDOperand
2783X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2784 SDOperand V1 = Op.getOperand(0);
2785 SDOperand V2 = Op.getOperand(1);
2786 SDOperand PermMask = Op.getOperand(2);
2787 MVT::ValueType VT = Op.getValueType();
2788 unsigned NumElems = PermMask.getNumOperands();
2789 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2790 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2791 bool V1IsSplat = false;
2792 bool V2IsSplat = false;
2793
2794 if (isUndefShuffle(Op.Val))
2795 return DAG.getNode(ISD::UNDEF, VT);
2796
2797 if (isZeroShuffle(Op.Val))
2798 return getZeroVector(VT, DAG);
2799
2800 if (isIdentityMask(PermMask.Val))
2801 return V1;
2802 else if (isIdentityMask(PermMask.Val, true))
2803 return V2;
2804
2805 if (isSplatMask(PermMask.Val)) {
2806 if (NumElems <= 4) return Op;
2807 // Promote it to a v4i32 splat.
2808 return PromoteSplat(Op, DAG);
2809 }
2810
2811 if (X86::isMOVLMask(PermMask.Val))
2812 return (V1IsUndef) ? V2 : Op;
2813
2814 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2815 X86::isMOVSLDUPMask(PermMask.Val) ||
2816 X86::isMOVHLPSMask(PermMask.Val) ||
2817 X86::isMOVHPMask(PermMask.Val) ||
2818 X86::isMOVLPMask(PermMask.Val))
2819 return Op;
2820
2821 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2822 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2823 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2824
2825 bool Commuted = false;
2826 V1IsSplat = isSplatVector(V1.Val);
2827 V2IsSplat = isSplatVector(V2.Val);
2828 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2829 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2830 std::swap(V1IsSplat, V2IsSplat);
2831 std::swap(V1IsUndef, V2IsUndef);
2832 Commuted = true;
2833 }
2834
2835 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2836 if (V2IsUndef) return V1;
2837 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2838 if (V2IsSplat) {
2839 // V2 is a splat, so the mask may be malformed. That is, it may point
2840 // to any V2 element. The instruction selectior won't like this. Get
2841 // a corrected mask and commute to form a proper MOVS{S|D}.
2842 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2843 if (NewMask.Val != PermMask.Val)
2844 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2845 }
2846 return Op;
2847 }
2848
2849 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2850 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2851 X86::isUNPCKLMask(PermMask.Val) ||
2852 X86::isUNPCKHMask(PermMask.Val))
2853 return Op;
2854
2855 if (V2IsSplat) {
2856 // Normalize mask so all entries that point to V2 points to its first
2857 // element then try to match unpck{h|l} again. If match, return a
2858 // new vector_shuffle with the corrected mask.
2859 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2860 if (NewMask.Val != PermMask.Val) {
2861 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2862 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2863 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2864 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2865 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2866 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2867 }
2868 }
2869 }
2870
2871 // Normalize the node to match x86 shuffle ops if needed
2872 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2873 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2874
2875 if (Commuted) {
2876 // Commute is back and try unpck* again.
2877 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2878 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2879 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2880 X86::isUNPCKLMask(PermMask.Val) ||
2881 X86::isUNPCKHMask(PermMask.Val))
2882 return Op;
2883 }
2884
2885 // If VT is integer, try PSHUF* first, then SHUFP*.
2886 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00002887 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2888 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2889 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2890 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002891 X86::isPSHUFHWMask(PermMask.Val) ||
2892 X86::isPSHUFLWMask(PermMask.Val)) {
2893 if (V2.getOpcode() != ISD::UNDEF)
2894 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2895 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2896 return Op;
2897 }
2898
2899 if (X86::isSHUFPMask(PermMask.Val) &&
2900 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2901 return Op;
2902
2903 // Handle v8i16 shuffle high / low shuffle node pair.
2904 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2905 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2906 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2907 SmallVector<SDOperand, 8> MaskVec;
2908 for (unsigned i = 0; i != 4; ++i)
2909 MaskVec.push_back(PermMask.getOperand(i));
2910 for (unsigned i = 4; i != 8; ++i)
2911 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2912 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2913 &MaskVec[0], MaskVec.size());
2914 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2915 MaskVec.clear();
2916 for (unsigned i = 0; i != 4; ++i)
2917 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2918 for (unsigned i = 4; i != 8; ++i)
2919 MaskVec.push_back(PermMask.getOperand(i));
2920 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2921 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2922 }
2923 } else {
2924 // Floating point cases in the other order.
2925 if (X86::isSHUFPMask(PermMask.Val))
2926 return Op;
2927 if (X86::isPSHUFDMask(PermMask.Val) ||
2928 X86::isPSHUFHWMask(PermMask.Val) ||
2929 X86::isPSHUFLWMask(PermMask.Val)) {
2930 if (V2.getOpcode() != ISD::UNDEF)
2931 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2932 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2933 return Op;
2934 }
2935 }
2936
2937 if (NumElems == 4 &&
2938 // Don't do this for MMX.
2939 MVT::getSizeInBits(VT) != 64) {
2940 MVT::ValueType MaskVT = PermMask.getValueType();
2941 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2942 SmallVector<std::pair<int, int>, 8> Locs;
2943 Locs.reserve(NumElems);
2944 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2945 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2946 unsigned NumHi = 0;
2947 unsigned NumLo = 0;
2948 // If no more than two elements come from either vector. This can be
2949 // implemented with two shuffles. First shuffle gather the elements.
2950 // The second shuffle, which takes the first shuffle as both of its
2951 // vector operands, put the elements into the right order.
2952 for (unsigned i = 0; i != NumElems; ++i) {
2953 SDOperand Elt = PermMask.getOperand(i);
2954 if (Elt.getOpcode() == ISD::UNDEF) {
2955 Locs[i] = std::make_pair(-1, -1);
2956 } else {
2957 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2958 if (Val < NumElems) {
2959 Locs[i] = std::make_pair(0, NumLo);
2960 Mask1[NumLo] = Elt;
2961 NumLo++;
2962 } else {
2963 Locs[i] = std::make_pair(1, NumHi);
2964 if (2+NumHi < NumElems)
2965 Mask1[2+NumHi] = Elt;
2966 NumHi++;
2967 }
2968 }
2969 }
2970 if (NumLo <= 2 && NumHi <= 2) {
2971 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2972 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2973 &Mask1[0], Mask1.size()));
2974 for (unsigned i = 0; i != NumElems; ++i) {
2975 if (Locs[i].first == -1)
2976 continue;
2977 else {
2978 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2979 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2980 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2981 }
2982 }
2983
2984 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2985 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2986 &Mask2[0], Mask2.size()));
2987 }
2988
2989 // Break it into (shuffle shuffle_hi, shuffle_lo).
2990 Locs.clear();
2991 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2992 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2993 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2994 unsigned MaskIdx = 0;
2995 unsigned LoIdx = 0;
2996 unsigned HiIdx = NumElems/2;
2997 for (unsigned i = 0; i != NumElems; ++i) {
2998 if (i == NumElems/2) {
2999 MaskPtr = &HiMask;
3000 MaskIdx = 1;
3001 LoIdx = 0;
3002 HiIdx = NumElems/2;
3003 }
3004 SDOperand Elt = PermMask.getOperand(i);
3005 if (Elt.getOpcode() == ISD::UNDEF) {
3006 Locs[i] = std::make_pair(-1, -1);
3007 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3008 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3009 (*MaskPtr)[LoIdx] = Elt;
3010 LoIdx++;
3011 } else {
3012 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3013 (*MaskPtr)[HiIdx] = Elt;
3014 HiIdx++;
3015 }
3016 }
3017
3018 SDOperand LoShuffle =
3019 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3020 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3021 &LoMask[0], LoMask.size()));
3022 SDOperand HiShuffle =
3023 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3024 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3025 &HiMask[0], HiMask.size()));
3026 SmallVector<SDOperand, 8> MaskOps;
3027 for (unsigned i = 0; i != NumElems; ++i) {
3028 if (Locs[i].first == -1) {
3029 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3030 } else {
3031 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3032 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3033 }
3034 }
3035 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3036 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3037 &MaskOps[0], MaskOps.size()));
3038 }
3039
3040 return SDOperand();
3041}
3042
3043SDOperand
3044X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3045 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3046 return SDOperand();
3047
3048 MVT::ValueType VT = Op.getValueType();
3049 // TODO: handle v16i8.
3050 if (MVT::getSizeInBits(VT) == 16) {
3051 // Transform it so it match pextrw which produces a 32-bit result.
3052 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3053 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3054 Op.getOperand(0), Op.getOperand(1));
3055 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3056 DAG.getValueType(VT));
3057 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3058 } else if (MVT::getSizeInBits(VT) == 32) {
3059 SDOperand Vec = Op.getOperand(0);
3060 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3061 if (Idx == 0)
3062 return Op;
3063 // SHUFPS the element to the lowest double word, then movss.
3064 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3065 SmallVector<SDOperand, 8> IdxVec;
3066 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3067 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3068 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3069 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3070 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3071 &IdxVec[0], IdxVec.size());
3072 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3073 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3074 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3075 DAG.getConstant(0, getPointerTy()));
3076 } else if (MVT::getSizeInBits(VT) == 64) {
3077 SDOperand Vec = Op.getOperand(0);
3078 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3079 if (Idx == 0)
3080 return Op;
3081
3082 // UNPCKHPD the element to the lowest double word, then movsd.
3083 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3084 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3085 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3086 SmallVector<SDOperand, 8> IdxVec;
3087 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3088 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3089 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3090 &IdxVec[0], IdxVec.size());
3091 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3092 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3093 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3094 DAG.getConstant(0, getPointerTy()));
3095 }
3096
3097 return SDOperand();
3098}
3099
3100SDOperand
3101X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3102 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3103 // as its second argument.
3104 MVT::ValueType VT = Op.getValueType();
3105 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3106 SDOperand N0 = Op.getOperand(0);
3107 SDOperand N1 = Op.getOperand(1);
3108 SDOperand N2 = Op.getOperand(2);
3109 if (MVT::getSizeInBits(BaseVT) == 16) {
3110 if (N1.getValueType() != MVT::i32)
3111 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3112 if (N2.getValueType() != MVT::i32)
3113 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3114 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3115 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3116 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3117 if (Idx == 0) {
3118 // Use a movss.
3119 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3120 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3121 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3122 SmallVector<SDOperand, 8> MaskVec;
3123 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3124 for (unsigned i = 1; i <= 3; ++i)
3125 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3126 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3127 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3128 &MaskVec[0], MaskVec.size()));
3129 } else {
3130 // Use two pinsrw instructions to insert a 32 bit value.
3131 Idx <<= 1;
3132 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003133 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3134 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3135 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3136 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003137 }
3138 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3139 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3140 DAG.getConstant(Idx, getPointerTy()));
3141 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3142 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3143 DAG.getConstant(Idx+1, getPointerTy()));
3144 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3145 }
3146 }
3147
3148 return SDOperand();
3149}
3150
3151SDOperand
3152X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3153 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3154 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3155}
3156
3157// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3158// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3159// one of the above mentioned nodes. It has to be wrapped because otherwise
3160// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3161// be used to form addressing mode. These wrapped nodes will be selected
3162// into MOV32ri.
3163SDOperand
3164X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3165 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3166 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3167 getPointerTy(),
3168 CP->getAlignment());
3169 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3170 // With PIC, the address is actually $g + Offset.
3171 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3172 !Subtarget->isPICStyleRIPRel()) {
3173 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3174 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3175 Result);
3176 }
3177
3178 return Result;
3179}
3180
3181SDOperand
3182X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3183 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3184 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3185 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3186 // With PIC, the address is actually $g + Offset.
3187 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3188 !Subtarget->isPICStyleRIPRel()) {
3189 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3190 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3191 Result);
3192 }
3193
3194 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3195 // load the value at address GV, not the value of GV itself. This means that
3196 // the GlobalAddress must be in the base or index register of the address, not
3197 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3198 // The same applies for external symbols during PIC codegen
3199 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3200 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3201
3202 return Result;
3203}
3204
3205// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3206static SDOperand
3207LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3208 const MVT::ValueType PtrVT) {
3209 SDOperand InFlag;
3210 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3211 DAG.getNode(X86ISD::GlobalBaseReg,
3212 PtrVT), InFlag);
3213 InFlag = Chain.getValue(1);
3214
3215 // emit leal symbol@TLSGD(,%ebx,1), %eax
3216 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3217 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3218 GA->getValueType(0),
3219 GA->getOffset());
3220 SDOperand Ops[] = { Chain, TGA, InFlag };
3221 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3222 InFlag = Result.getValue(2);
3223 Chain = Result.getValue(1);
3224
3225 // call ___tls_get_addr. This function receives its argument in
3226 // the register EAX.
3227 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3228 InFlag = Chain.getValue(1);
3229
3230 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3231 SDOperand Ops1[] = { Chain,
3232 DAG.getTargetExternalSymbol("___tls_get_addr",
3233 PtrVT),
3234 DAG.getRegister(X86::EAX, PtrVT),
3235 DAG.getRegister(X86::EBX, PtrVT),
3236 InFlag };
3237 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3238 InFlag = Chain.getValue(1);
3239
3240 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3241}
3242
3243// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3244// "local exec" model.
3245static SDOperand
3246LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3247 const MVT::ValueType PtrVT) {
3248 // Get the Thread Pointer
3249 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3250 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3251 // exec)
3252 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3253 GA->getValueType(0),
3254 GA->getOffset());
3255 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3256
3257 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3258 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3259
3260 // The address of the thread local variable is the add of the thread
3261 // pointer with the offset of the variable.
3262 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3263}
3264
3265SDOperand
3266X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3267 // TODO: implement the "local dynamic" model
3268 // TODO: implement the "initial exec"model for pic executables
3269 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3270 "TLS not implemented for non-ELF and 64-bit targets");
3271 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3272 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3273 // otherwise use the "Local Exec"TLS Model
3274 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3275 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3276 else
3277 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3278}
3279
3280SDOperand
3281X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3282 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3283 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3284 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3285 // With PIC, the address is actually $g + Offset.
3286 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3287 !Subtarget->isPICStyleRIPRel()) {
3288 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3289 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3290 Result);
3291 }
3292
3293 return Result;
3294}
3295
3296SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3297 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3298 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3299 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3300 // With PIC, the address is actually $g + Offset.
3301 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3302 !Subtarget->isPICStyleRIPRel()) {
3303 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3304 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3305 Result);
3306 }
3307
3308 return Result;
3309}
3310
3311SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3312 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3313 "Not an i64 shift!");
3314 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3315 SDOperand ShOpLo = Op.getOperand(0);
3316 SDOperand ShOpHi = Op.getOperand(1);
3317 SDOperand ShAmt = Op.getOperand(2);
3318 SDOperand Tmp1 = isSRA ?
3319 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3320 DAG.getConstant(0, MVT::i32);
3321
3322 SDOperand Tmp2, Tmp3;
3323 if (Op.getOpcode() == ISD::SHL_PARTS) {
3324 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3325 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3326 } else {
3327 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3328 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3329 }
3330
3331 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3332 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3333 DAG.getConstant(32, MVT::i8));
3334 SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3335 SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3336
3337 SDOperand Hi, Lo;
3338 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3339
3340 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3341 SmallVector<SDOperand, 4> Ops;
3342 if (Op.getOpcode() == ISD::SHL_PARTS) {
3343 Ops.push_back(Tmp2);
3344 Ops.push_back(Tmp3);
3345 Ops.push_back(CC);
3346 Ops.push_back(InFlag);
3347 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3348 InFlag = Hi.getValue(1);
3349
3350 Ops.clear();
3351 Ops.push_back(Tmp3);
3352 Ops.push_back(Tmp1);
3353 Ops.push_back(CC);
3354 Ops.push_back(InFlag);
3355 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3356 } else {
3357 Ops.push_back(Tmp2);
3358 Ops.push_back(Tmp3);
3359 Ops.push_back(CC);
3360 Ops.push_back(InFlag);
3361 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3362 InFlag = Lo.getValue(1);
3363
3364 Ops.clear();
3365 Ops.push_back(Tmp3);
3366 Ops.push_back(Tmp1);
3367 Ops.push_back(CC);
3368 Ops.push_back(InFlag);
3369 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3370 }
3371
3372 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3373 Ops.clear();
3374 Ops.push_back(Lo);
3375 Ops.push_back(Hi);
3376 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3377}
3378
3379SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3380 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3381 Op.getOperand(0).getValueType() >= MVT::i16 &&
3382 "Unknown SINT_TO_FP to lower!");
3383
3384 SDOperand Result;
3385 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3386 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3387 MachineFunction &MF = DAG.getMachineFunction();
3388 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3389 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3390 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3391 StackSlot, NULL, 0);
3392
Dale Johannesen2fc20782007-09-14 22:26:36 +00003393 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003394 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3395 return Result;
3396 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003397 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003398 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3399 Subtarget->is64Bit())
3400 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003401
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003402 // Build the FILD
3403 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003404 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3405 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003406 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003407 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3408 else
3409 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3410 SmallVector<SDOperand, 8> Ops;
3411 Ops.push_back(Chain);
3412 Ops.push_back(StackSlot);
3413 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003414 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003415 Tys, &Ops[0], Ops.size());
3416
Dale Johannesen2fc20782007-09-14 22:26:36 +00003417 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003418 Chain = Result.getValue(1);
3419 SDOperand InFlag = Result.getValue(2);
3420
3421 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3422 // shouldn't be necessary except that RFP cannot be live across
3423 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3424 MachineFunction &MF = DAG.getMachineFunction();
3425 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3426 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3427 Tys = DAG.getVTList(MVT::Other);
3428 SmallVector<SDOperand, 8> Ops;
3429 Ops.push_back(Chain);
3430 Ops.push_back(Result);
3431 Ops.push_back(StackSlot);
3432 Ops.push_back(DAG.getValueType(Op.getValueType()));
3433 Ops.push_back(InFlag);
3434 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3435 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3436 }
3437
3438 return Result;
3439}
3440
3441SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3442 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3443 "Unknown FP_TO_SINT to lower!");
3444 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3445 // stack slot.
Dale Johannesen2fc20782007-09-14 22:26:36 +00003446 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003447 MachineFunction &MF = DAG.getMachineFunction();
3448 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3449 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3450 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3451
Dale Johannesen2fc20782007-09-14 22:26:36 +00003452 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003453 if (Op.getValueType() == MVT::i32 &&
3454 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3455 return Result;
3456 if (Op.getValueType() == MVT::i32 &&
3457 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003458 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003459 if (Subtarget->is64Bit() &&
3460 Op.getValueType() == MVT::i64 &&
3461 Op.getOperand(0).getValueType() != MVT::f80)
3462 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003463
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003464 unsigned Opc;
3465 switch (Op.getValueType()) {
3466 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3467 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3468 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3469 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3470 }
3471
3472 SDOperand Chain = DAG.getEntryNode();
3473 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003474 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3475 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003476 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3477 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3478 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3479 SDOperand Ops[] = {
3480 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3481 };
3482 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3483 Chain = Value.getValue(1);
3484 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3485 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3486 }
3487
3488 // Build the FP_TO_INT*_IN_MEM
3489 SDOperand Ops[] = { Chain, Value, StackSlot };
3490 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3491
3492 // Load the result.
3493 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3494}
3495
3496SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3497 MVT::ValueType VT = Op.getValueType();
3498 MVT::ValueType EltVT = VT;
3499 if (MVT::isVector(VT))
3500 EltVT = MVT::getVectorElementType(VT);
3501 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3502 std::vector<Constant*> CV;
3503 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003504 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003505 CV.push_back(C);
3506 CV.push_back(C);
3507 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003508 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003509 CV.push_back(C);
3510 CV.push_back(C);
3511 CV.push_back(C);
3512 CV.push_back(C);
3513 }
Dan Gohman11821702007-07-27 17:16:43 +00003514 Constant *C = ConstantVector::get(CV);
3515 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3516 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3517 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003518 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3519}
3520
3521SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3522 MVT::ValueType VT = Op.getValueType();
3523 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003524 unsigned EltNum = 1;
3525 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003526 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003527 EltNum = MVT::getVectorNumElements(VT);
3528 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003529 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3530 std::vector<Constant*> CV;
3531 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003532 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003533 CV.push_back(C);
3534 CV.push_back(C);
3535 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003536 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003537 CV.push_back(C);
3538 CV.push_back(C);
3539 CV.push_back(C);
3540 CV.push_back(C);
3541 }
Dan Gohman11821702007-07-27 17:16:43 +00003542 Constant *C = ConstantVector::get(CV);
3543 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3544 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3545 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00003546 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00003547 return DAG.getNode(ISD::BIT_CONVERT, VT,
3548 DAG.getNode(ISD::XOR, MVT::v2i64,
3549 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3550 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3551 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00003552 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3553 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003554}
3555
3556SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3557 SDOperand Op0 = Op.getOperand(0);
3558 SDOperand Op1 = Op.getOperand(1);
3559 MVT::ValueType VT = Op.getValueType();
3560 MVT::ValueType SrcVT = Op1.getValueType();
3561 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3562
3563 // If second operand is smaller, extend it first.
3564 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3565 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3566 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00003567 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003568 }
3569
3570 // First get the sign bit of second operand.
3571 std::vector<Constant*> CV;
3572 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003573 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3574 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003575 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003576 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3577 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3578 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3579 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003580 }
Dan Gohman11821702007-07-27 17:16:43 +00003581 Constant *C = ConstantVector::get(CV);
3582 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3583 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3584 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003585 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3586
3587 // Shift sign bit right or left if the two operands have different types.
3588 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3589 // Op0 is MVT::f32, Op1 is MVT::f64.
3590 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3591 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3592 DAG.getConstant(32, MVT::i32));
3593 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3594 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3595 DAG.getConstant(0, getPointerTy()));
3596 }
3597
3598 // Clear first operand sign bit.
3599 CV.clear();
3600 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003601 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3602 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003604 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3605 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3606 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3607 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003608 }
Dan Gohman11821702007-07-27 17:16:43 +00003609 C = ConstantVector::get(CV);
3610 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3611 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3612 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003613 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3614
3615 // Or the value with the sign bit.
3616 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3617}
3618
3619SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3620 SDOperand Chain) {
3621 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3622 SDOperand Cond;
3623 SDOperand Op0 = Op.getOperand(0);
3624 SDOperand Op1 = Op.getOperand(1);
3625 SDOperand CC = Op.getOperand(2);
3626 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3627 const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3628 const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3629 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3630 unsigned X86CC;
3631
3632 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3633 Op0, Op1, DAG)) {
3634 SDOperand Ops1[] = { Chain, Op0, Op1 };
3635 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3636 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3637 return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3638 }
3639
3640 assert(isFP && "Illegal integer SetCC!");
3641
3642 SDOperand COps[] = { Chain, Op0, Op1 };
3643 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3644
3645 switch (SetCCOpcode) {
3646 default: assert(false && "Illegal floating point SetCC!");
3647 case ISD::SETOEQ: { // !PF & ZF
3648 SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3649 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3650 SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3651 Tmp1.getValue(1) };
3652 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3653 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3654 }
3655 case ISD::SETUNE: { // PF | !ZF
3656 SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3657 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3658 SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3659 Tmp1.getValue(1) };
3660 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3661 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3662 }
3663 }
3664}
3665
3666SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3667 bool addTest = true;
3668 SDOperand Chain = DAG.getEntryNode();
3669 SDOperand Cond = Op.getOperand(0);
3670 SDOperand CC;
3671 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3672
3673 if (Cond.getOpcode() == ISD::SETCC)
3674 Cond = LowerSETCC(Cond, DAG, Chain);
3675
3676 if (Cond.getOpcode() == X86ISD::SETCC) {
3677 CC = Cond.getOperand(0);
3678
3679 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3680 // (since flag operand cannot be shared). Use it as the condition setting
3681 // operand in place of the X86ISD::SETCC.
3682 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3683 // to use a test instead of duplicating the X86ISD::CMP (for register
3684 // pressure reason)?
3685 SDOperand Cmp = Cond.getOperand(1);
3686 unsigned Opc = Cmp.getOpcode();
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003687 bool IllegalFPCMov =
3688 ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3689 (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003690 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3691 if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3692 !IllegalFPCMov) {
3693 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3694 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3695 addTest = false;
3696 }
3697 }
3698
3699 if (addTest) {
3700 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3701 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3702 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3703 }
3704
3705 VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3706 SmallVector<SDOperand, 4> Ops;
3707 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3708 // condition is true.
3709 Ops.push_back(Op.getOperand(2));
3710 Ops.push_back(Op.getOperand(1));
3711 Ops.push_back(CC);
3712 Ops.push_back(Cond.getValue(1));
3713 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3714}
3715
3716SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3717 bool addTest = true;
3718 SDOperand Chain = Op.getOperand(0);
3719 SDOperand Cond = Op.getOperand(1);
3720 SDOperand Dest = Op.getOperand(2);
3721 SDOperand CC;
3722 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3723
3724 if (Cond.getOpcode() == ISD::SETCC)
3725 Cond = LowerSETCC(Cond, DAG, Chain);
3726
3727 if (Cond.getOpcode() == X86ISD::SETCC) {
3728 CC = Cond.getOperand(0);
3729
3730 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3731 // (since flag operand cannot be shared). Use it as the condition setting
3732 // operand in place of the X86ISD::SETCC.
3733 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3734 // to use a test instead of duplicating the X86ISD::CMP (for register
3735 // pressure reason)?
3736 SDOperand Cmp = Cond.getOperand(1);
3737 unsigned Opc = Cmp.getOpcode();
3738 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3739 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3740 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3741 addTest = false;
3742 }
3743 }
3744
3745 if (addTest) {
3746 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3747 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3748 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3749 }
3750 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3751 Cond, Op.getOperand(2), CC, Cond.getValue(1));
3752}
3753
3754SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3755 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3756
3757 if (Subtarget->is64Bit())
3758 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3759 else
3760 switch (CallingConv) {
3761 default:
3762 assert(0 && "Unsupported calling convention");
3763 case CallingConv::Fast:
3764 // TODO: Implement fastcc
3765 // Falls through
3766 case CallingConv::C:
3767 case CallingConv::X86_StdCall:
3768 return LowerCCCCallTo(Op, DAG, CallingConv);
3769 case CallingConv::X86_FastCall:
3770 return LowerFastCCCallTo(Op, DAG, CallingConv);
3771 }
3772}
3773
3774
3775// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3776// Calls to _alloca is needed to probe the stack when allocating more than 4k
3777// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3778// that the guard pages used by the OS virtual memory manager are allocated in
3779// correct sequence.
3780SDOperand
3781X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3782 SelectionDAG &DAG) {
3783 assert(Subtarget->isTargetCygMing() &&
3784 "This should be used only on Cygwin/Mingw targets");
3785
3786 // Get the inputs.
3787 SDOperand Chain = Op.getOperand(0);
3788 SDOperand Size = Op.getOperand(1);
3789 // FIXME: Ensure alignment here
3790
3791 SDOperand Flag;
3792
3793 MVT::ValueType IntPtr = getPointerTy();
3794 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3795
3796 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3797 Flag = Chain.getValue(1);
3798
3799 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3800 SDOperand Ops[] = { Chain,
3801 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3802 DAG.getRegister(X86::EAX, IntPtr),
3803 Flag };
3804 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3805 Flag = Chain.getValue(1);
3806
3807 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3808
3809 std::vector<MVT::ValueType> Tys;
3810 Tys.push_back(SPTy);
3811 Tys.push_back(MVT::Other);
3812 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3813 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3814}
3815
3816SDOperand
3817X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3818 MachineFunction &MF = DAG.getMachineFunction();
3819 const Function* Fn = MF.getFunction();
3820 if (Fn->hasExternalLinkage() &&
3821 Subtarget->isTargetCygMing() &&
3822 Fn->getName() == "main")
3823 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3824
3825 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3826 if (Subtarget->is64Bit())
3827 return LowerX86_64CCCArguments(Op, DAG);
3828 else
3829 switch(CC) {
3830 default:
3831 assert(0 && "Unsupported calling convention");
3832 case CallingConv::Fast:
3833 // TODO: implement fastcc.
3834
3835 // Falls through
3836 case CallingConv::C:
3837 return LowerCCCArguments(Op, DAG);
3838 case CallingConv::X86_StdCall:
3839 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3840 return LowerCCCArguments(Op, DAG, true);
3841 case CallingConv::X86_FastCall:
3842 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3843 return LowerFastCCArguments(Op, DAG);
3844 }
3845}
3846
3847SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3848 SDOperand InFlag(0, 0);
3849 SDOperand Chain = Op.getOperand(0);
3850 unsigned Align =
3851 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3852 if (Align == 0) Align = 1;
3853
3854 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003855 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003856 // The libc version is likely to be faster for these cases. It can use the
3857 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003858 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003859 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003860 MVT::ValueType IntPtr = getPointerTy();
3861 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3862 TargetLowering::ArgListTy Args;
3863 TargetLowering::ArgListEntry Entry;
3864 Entry.Node = Op.getOperand(1);
3865 Entry.Ty = IntPtrTy;
3866 Args.push_back(Entry);
3867 // Extend the unsigned i8 argument to be an int value for the call.
3868 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3869 Entry.Ty = IntPtrTy;
3870 Args.push_back(Entry);
3871 Entry.Node = Op.getOperand(3);
3872 Args.push_back(Entry);
3873 std::pair<SDOperand,SDOperand> CallResult =
3874 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3875 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3876 return CallResult.second;
3877 }
3878
3879 MVT::ValueType AVT;
3880 SDOperand Count;
3881 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3882 unsigned BytesLeft = 0;
3883 bool TwoRepStos = false;
3884 if (ValC) {
3885 unsigned ValReg;
3886 uint64_t Val = ValC->getValue() & 255;
3887
3888 // If the value is a constant, then we can potentially use larger sets.
3889 switch (Align & 3) {
3890 case 2: // WORD aligned
3891 AVT = MVT::i16;
3892 ValReg = X86::AX;
3893 Val = (Val << 8) | Val;
3894 break;
3895 case 0: // DWORD aligned
3896 AVT = MVT::i32;
3897 ValReg = X86::EAX;
3898 Val = (Val << 8) | Val;
3899 Val = (Val << 16) | Val;
3900 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3901 AVT = MVT::i64;
3902 ValReg = X86::RAX;
3903 Val = (Val << 32) | Val;
3904 }
3905 break;
3906 default: // Byte aligned
3907 AVT = MVT::i8;
3908 ValReg = X86::AL;
3909 Count = Op.getOperand(3);
3910 break;
3911 }
3912
3913 if (AVT > MVT::i8) {
3914 if (I) {
3915 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3916 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3917 BytesLeft = I->getValue() % UBytes;
3918 } else {
3919 assert(AVT >= MVT::i32 &&
3920 "Do not use rep;stos if not at least DWORD aligned");
3921 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3922 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3923 TwoRepStos = true;
3924 }
3925 }
3926
3927 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3928 InFlag);
3929 InFlag = Chain.getValue(1);
3930 } else {
3931 AVT = MVT::i8;
3932 Count = Op.getOperand(3);
3933 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3934 InFlag = Chain.getValue(1);
3935 }
3936
3937 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3938 Count, InFlag);
3939 InFlag = Chain.getValue(1);
3940 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3941 Op.getOperand(1), InFlag);
3942 InFlag = Chain.getValue(1);
3943
3944 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3945 SmallVector<SDOperand, 8> Ops;
3946 Ops.push_back(Chain);
3947 Ops.push_back(DAG.getValueType(AVT));
3948 Ops.push_back(InFlag);
3949 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3950
3951 if (TwoRepStos) {
3952 InFlag = Chain.getValue(1);
3953 Count = Op.getOperand(3);
3954 MVT::ValueType CVT = Count.getValueType();
3955 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3956 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3957 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3958 Left, InFlag);
3959 InFlag = Chain.getValue(1);
3960 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3961 Ops.clear();
3962 Ops.push_back(Chain);
3963 Ops.push_back(DAG.getValueType(MVT::i8));
3964 Ops.push_back(InFlag);
3965 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3966 } else if (BytesLeft) {
3967 // Issue stores for the last 1 - 7 bytes.
3968 SDOperand Value;
3969 unsigned Val = ValC->getValue() & 255;
3970 unsigned Offset = I->getValue() - BytesLeft;
3971 SDOperand DstAddr = Op.getOperand(1);
3972 MVT::ValueType AddrVT = DstAddr.getValueType();
3973 if (BytesLeft >= 4) {
3974 Val = (Val << 8) | Val;
3975 Val = (Val << 16) | Val;
3976 Value = DAG.getConstant(Val, MVT::i32);
3977 Chain = DAG.getStore(Chain, Value,
3978 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3979 DAG.getConstant(Offset, AddrVT)),
3980 NULL, 0);
3981 BytesLeft -= 4;
3982 Offset += 4;
3983 }
3984 if (BytesLeft >= 2) {
3985 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3986 Chain = DAG.getStore(Chain, Value,
3987 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3988 DAG.getConstant(Offset, AddrVT)),
3989 NULL, 0);
3990 BytesLeft -= 2;
3991 Offset += 2;
3992 }
3993 if (BytesLeft == 1) {
3994 Value = DAG.getConstant(Val, MVT::i8);
3995 Chain = DAG.getStore(Chain, Value,
3996 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3997 DAG.getConstant(Offset, AddrVT)),
3998 NULL, 0);
3999 }
4000 }
4001
4002 return Chain;
4003}
4004
4005SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4006 SDOperand Chain = Op.getOperand(0);
4007 unsigned Align =
4008 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4009 if (Align == 0) Align = 1;
4010
4011 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004012 // If not DWORD aligned or size is more than the threshold, call memcpy.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004013 // The libc version is likely to be faster for these cases. It can use the
4014 // address value and run time information about the CPU.
4015 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004016 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004017 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004018 MVT::ValueType IntPtr = getPointerTy();
4019 TargetLowering::ArgListTy Args;
4020 TargetLowering::ArgListEntry Entry;
4021 Entry.Ty = getTargetData()->getIntPtrType();
4022 Entry.Node = Op.getOperand(1); Args.push_back(Entry);
4023 Entry.Node = Op.getOperand(2); Args.push_back(Entry);
4024 Entry.Node = Op.getOperand(3); Args.push_back(Entry);
4025 std::pair<SDOperand,SDOperand> CallResult =
4026 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4027 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4028 return CallResult.second;
4029 }
4030
4031 MVT::ValueType AVT;
4032 SDOperand Count;
4033 unsigned BytesLeft = 0;
4034 bool TwoRepMovs = false;
4035 switch (Align & 3) {
4036 case 2: // WORD aligned
4037 AVT = MVT::i16;
4038 break;
4039 case 0: // DWORD aligned
4040 AVT = MVT::i32;
4041 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4042 AVT = MVT::i64;
4043 break;
4044 default: // Byte aligned
4045 AVT = MVT::i8;
4046 Count = Op.getOperand(3);
4047 break;
4048 }
4049
4050 if (AVT > MVT::i8) {
4051 if (I) {
4052 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4053 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4054 BytesLeft = I->getValue() % UBytes;
4055 } else {
4056 assert(AVT >= MVT::i32 &&
4057 "Do not use rep;movs if not at least DWORD aligned");
4058 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4059 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4060 TwoRepMovs = true;
4061 }
4062 }
4063
4064 SDOperand InFlag(0, 0);
4065 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4066 Count, InFlag);
4067 InFlag = Chain.getValue(1);
4068 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4069 Op.getOperand(1), InFlag);
4070 InFlag = Chain.getValue(1);
4071 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4072 Op.getOperand(2), InFlag);
4073 InFlag = Chain.getValue(1);
4074
4075 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4076 SmallVector<SDOperand, 8> Ops;
4077 Ops.push_back(Chain);
4078 Ops.push_back(DAG.getValueType(AVT));
4079 Ops.push_back(InFlag);
4080 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4081
4082 if (TwoRepMovs) {
4083 InFlag = Chain.getValue(1);
4084 Count = Op.getOperand(3);
4085 MVT::ValueType CVT = Count.getValueType();
4086 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4087 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4088 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4089 Left, InFlag);
4090 InFlag = Chain.getValue(1);
4091 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4092 Ops.clear();
4093 Ops.push_back(Chain);
4094 Ops.push_back(DAG.getValueType(MVT::i8));
4095 Ops.push_back(InFlag);
4096 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4097 } else if (BytesLeft) {
4098 // Issue loads and stores for the last 1 - 7 bytes.
4099 unsigned Offset = I->getValue() - BytesLeft;
4100 SDOperand DstAddr = Op.getOperand(1);
4101 MVT::ValueType DstVT = DstAddr.getValueType();
4102 SDOperand SrcAddr = Op.getOperand(2);
4103 MVT::ValueType SrcVT = SrcAddr.getValueType();
4104 SDOperand Value;
4105 if (BytesLeft >= 4) {
4106 Value = DAG.getLoad(MVT::i32, Chain,
4107 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4108 DAG.getConstant(Offset, SrcVT)),
4109 NULL, 0);
4110 Chain = Value.getValue(1);
4111 Chain = DAG.getStore(Chain, Value,
4112 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4113 DAG.getConstant(Offset, DstVT)),
4114 NULL, 0);
4115 BytesLeft -= 4;
4116 Offset += 4;
4117 }
4118 if (BytesLeft >= 2) {
4119 Value = DAG.getLoad(MVT::i16, Chain,
4120 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4121 DAG.getConstant(Offset, SrcVT)),
4122 NULL, 0);
4123 Chain = Value.getValue(1);
4124 Chain = DAG.getStore(Chain, Value,
4125 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4126 DAG.getConstant(Offset, DstVT)),
4127 NULL, 0);
4128 BytesLeft -= 2;
4129 Offset += 2;
4130 }
4131
4132 if (BytesLeft == 1) {
4133 Value = DAG.getLoad(MVT::i8, Chain,
4134 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4135 DAG.getConstant(Offset, SrcVT)),
4136 NULL, 0);
4137 Chain = Value.getValue(1);
4138 Chain = DAG.getStore(Chain, Value,
4139 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4140 DAG.getConstant(Offset, DstVT)),
4141 NULL, 0);
4142 }
4143 }
4144
4145 return Chain;
4146}
4147
4148SDOperand
4149X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4150 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4151 SDOperand TheOp = Op.getOperand(0);
4152 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4153 if (Subtarget->is64Bit()) {
4154 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4155 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4156 MVT::i64, Copy1.getValue(2));
4157 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4158 DAG.getConstant(32, MVT::i8));
4159 SDOperand Ops[] = {
4160 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4161 };
4162
4163 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4164 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4165 }
4166
4167 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4168 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4169 MVT::i32, Copy1.getValue(2));
4170 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4171 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4172 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4173}
4174
4175SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4176 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4177
4178 if (!Subtarget->is64Bit()) {
4179 // vastart just stores the address of the VarArgsFrameIndex slot into the
4180 // memory location argument.
4181 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4182 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4183 SV->getOffset());
4184 }
4185
4186 // __va_list_tag:
4187 // gp_offset (0 - 6 * 8)
4188 // fp_offset (48 - 48 + 8 * 16)
4189 // overflow_arg_area (point to parameters coming in memory).
4190 // reg_save_area
4191 SmallVector<SDOperand, 8> MemOps;
4192 SDOperand FIN = Op.getOperand(1);
4193 // Store gp_offset
4194 SDOperand Store = DAG.getStore(Op.getOperand(0),
4195 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4196 FIN, SV->getValue(), SV->getOffset());
4197 MemOps.push_back(Store);
4198
4199 // Store fp_offset
4200 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4201 DAG.getConstant(4, getPointerTy()));
4202 Store = DAG.getStore(Op.getOperand(0),
4203 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4204 FIN, SV->getValue(), SV->getOffset());
4205 MemOps.push_back(Store);
4206
4207 // Store ptr to overflow_arg_area
4208 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4209 DAG.getConstant(4, getPointerTy()));
4210 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4211 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4212 SV->getOffset());
4213 MemOps.push_back(Store);
4214
4215 // Store ptr to reg_save_area.
4216 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4217 DAG.getConstant(8, getPointerTy()));
4218 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4219 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4220 SV->getOffset());
4221 MemOps.push_back(Store);
4222 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4223}
4224
4225SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4226 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4227 SDOperand Chain = Op.getOperand(0);
4228 SDOperand DstPtr = Op.getOperand(1);
4229 SDOperand SrcPtr = Op.getOperand(2);
4230 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4231 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4232
4233 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4234 SrcSV->getValue(), SrcSV->getOffset());
4235 Chain = SrcPtr.getValue(1);
4236 for (unsigned i = 0; i < 3; ++i) {
4237 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4238 SrcSV->getValue(), SrcSV->getOffset());
4239 Chain = Val.getValue(1);
4240 Chain = DAG.getStore(Chain, Val, DstPtr,
4241 DstSV->getValue(), DstSV->getOffset());
4242 if (i == 2)
4243 break;
4244 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4245 DAG.getConstant(8, getPointerTy()));
4246 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4247 DAG.getConstant(8, getPointerTy()));
4248 }
4249 return Chain;
4250}
4251
4252SDOperand
4253X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4254 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4255 switch (IntNo) {
4256 default: return SDOperand(); // Don't custom lower most intrinsics.
4257 // Comparison intrinsics.
4258 case Intrinsic::x86_sse_comieq_ss:
4259 case Intrinsic::x86_sse_comilt_ss:
4260 case Intrinsic::x86_sse_comile_ss:
4261 case Intrinsic::x86_sse_comigt_ss:
4262 case Intrinsic::x86_sse_comige_ss:
4263 case Intrinsic::x86_sse_comineq_ss:
4264 case Intrinsic::x86_sse_ucomieq_ss:
4265 case Intrinsic::x86_sse_ucomilt_ss:
4266 case Intrinsic::x86_sse_ucomile_ss:
4267 case Intrinsic::x86_sse_ucomigt_ss:
4268 case Intrinsic::x86_sse_ucomige_ss:
4269 case Intrinsic::x86_sse_ucomineq_ss:
4270 case Intrinsic::x86_sse2_comieq_sd:
4271 case Intrinsic::x86_sse2_comilt_sd:
4272 case Intrinsic::x86_sse2_comile_sd:
4273 case Intrinsic::x86_sse2_comigt_sd:
4274 case Intrinsic::x86_sse2_comige_sd:
4275 case Intrinsic::x86_sse2_comineq_sd:
4276 case Intrinsic::x86_sse2_ucomieq_sd:
4277 case Intrinsic::x86_sse2_ucomilt_sd:
4278 case Intrinsic::x86_sse2_ucomile_sd:
4279 case Intrinsic::x86_sse2_ucomigt_sd:
4280 case Intrinsic::x86_sse2_ucomige_sd:
4281 case Intrinsic::x86_sse2_ucomineq_sd: {
4282 unsigned Opc = 0;
4283 ISD::CondCode CC = ISD::SETCC_INVALID;
4284 switch (IntNo) {
4285 default: break;
4286 case Intrinsic::x86_sse_comieq_ss:
4287 case Intrinsic::x86_sse2_comieq_sd:
4288 Opc = X86ISD::COMI;
4289 CC = ISD::SETEQ;
4290 break;
4291 case Intrinsic::x86_sse_comilt_ss:
4292 case Intrinsic::x86_sse2_comilt_sd:
4293 Opc = X86ISD::COMI;
4294 CC = ISD::SETLT;
4295 break;
4296 case Intrinsic::x86_sse_comile_ss:
4297 case Intrinsic::x86_sse2_comile_sd:
4298 Opc = X86ISD::COMI;
4299 CC = ISD::SETLE;
4300 break;
4301 case Intrinsic::x86_sse_comigt_ss:
4302 case Intrinsic::x86_sse2_comigt_sd:
4303 Opc = X86ISD::COMI;
4304 CC = ISD::SETGT;
4305 break;
4306 case Intrinsic::x86_sse_comige_ss:
4307 case Intrinsic::x86_sse2_comige_sd:
4308 Opc = X86ISD::COMI;
4309 CC = ISD::SETGE;
4310 break;
4311 case Intrinsic::x86_sse_comineq_ss:
4312 case Intrinsic::x86_sse2_comineq_sd:
4313 Opc = X86ISD::COMI;
4314 CC = ISD::SETNE;
4315 break;
4316 case Intrinsic::x86_sse_ucomieq_ss:
4317 case Intrinsic::x86_sse2_ucomieq_sd:
4318 Opc = X86ISD::UCOMI;
4319 CC = ISD::SETEQ;
4320 break;
4321 case Intrinsic::x86_sse_ucomilt_ss:
4322 case Intrinsic::x86_sse2_ucomilt_sd:
4323 Opc = X86ISD::UCOMI;
4324 CC = ISD::SETLT;
4325 break;
4326 case Intrinsic::x86_sse_ucomile_ss:
4327 case Intrinsic::x86_sse2_ucomile_sd:
4328 Opc = X86ISD::UCOMI;
4329 CC = ISD::SETLE;
4330 break;
4331 case Intrinsic::x86_sse_ucomigt_ss:
4332 case Intrinsic::x86_sse2_ucomigt_sd:
4333 Opc = X86ISD::UCOMI;
4334 CC = ISD::SETGT;
4335 break;
4336 case Intrinsic::x86_sse_ucomige_ss:
4337 case Intrinsic::x86_sse2_ucomige_sd:
4338 Opc = X86ISD::UCOMI;
4339 CC = ISD::SETGE;
4340 break;
4341 case Intrinsic::x86_sse_ucomineq_ss:
4342 case Intrinsic::x86_sse2_ucomineq_sd:
4343 Opc = X86ISD::UCOMI;
4344 CC = ISD::SETNE;
4345 break;
4346 }
4347
4348 unsigned X86CC;
4349 SDOperand LHS = Op.getOperand(1);
4350 SDOperand RHS = Op.getOperand(2);
4351 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4352
4353 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4354 SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4355 SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4356 VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4357 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4358 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4359 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4360 }
4361 }
4362}
4363
4364SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4365 // Depths > 0 not supported yet!
4366 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4367 return SDOperand();
4368
4369 // Just load the return address
4370 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4371 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4372}
4373
4374SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4375 // Depths > 0 not supported yet!
4376 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4377 return SDOperand();
4378
4379 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4380 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4381 DAG.getConstant(4, getPointerTy()));
4382}
4383
4384SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4385 SelectionDAG &DAG) {
4386 // Is not yet supported on x86-64
4387 if (Subtarget->is64Bit())
4388 return SDOperand();
4389
4390 return DAG.getConstant(8, getPointerTy());
4391}
4392
4393SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4394{
4395 assert(!Subtarget->is64Bit() &&
4396 "Lowering of eh_return builtin is not supported yet on x86-64");
4397
4398 MachineFunction &MF = DAG.getMachineFunction();
4399 SDOperand Chain = Op.getOperand(0);
4400 SDOperand Offset = Op.getOperand(1);
4401 SDOperand Handler = Op.getOperand(2);
4402
4403 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4404 getPointerTy());
4405
4406 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4407 DAG.getConstant(-4UL, getPointerTy()));
4408 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4409 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4410 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4411 MF.addLiveOut(X86::ECX);
4412
4413 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4414 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4415}
4416
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004417SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4418 SelectionDAG &DAG) {
4419 SDOperand Root = Op.getOperand(0);
4420 SDOperand Trmp = Op.getOperand(1); // trampoline
4421 SDOperand FPtr = Op.getOperand(2); // nested function
4422 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4423
4424 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4425
4426 if (Subtarget->is64Bit()) {
4427 return SDOperand(); // not yet supported
4428 } else {
4429 Function *Func = (Function *)
4430 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4431 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004432 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004433
4434 switch (CC) {
4435 default:
4436 assert(0 && "Unsupported calling convention");
4437 case CallingConv::C:
4438 case CallingConv::Fast:
4439 case CallingConv::X86_StdCall: {
4440 // Pass 'nest' parameter in ECX.
4441 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004442 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004443
4444 // Check that ECX wasn't needed by an 'inreg' parameter.
4445 const FunctionType *FTy = Func->getFunctionType();
4446 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4447
4448 if (Attrs && !Func->isVarArg()) {
4449 unsigned InRegCount = 0;
4450 unsigned Idx = 1;
4451
4452 for (FunctionType::param_iterator I = FTy->param_begin(),
4453 E = FTy->param_end(); I != E; ++I, ++Idx)
4454 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4455 // FIXME: should only count parameters that are lowered to integers.
4456 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4457
4458 if (InRegCount > 2) {
4459 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4460 abort();
4461 }
4462 }
4463 break;
4464 }
4465 case CallingConv::X86_FastCall:
4466 // Pass 'nest' parameter in EAX.
4467 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004468 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004469 break;
4470 }
4471
Duncan Sands466eadd2007-08-29 19:01:20 +00004472 const X86InstrInfo *TII =
4473 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4474
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004475 SDOperand OutChains[4];
4476 SDOperand Addr, Disp;
4477
4478 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4479 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4480
Duncan Sands466eadd2007-08-29 19:01:20 +00004481 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4482 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4483 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004484 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4485
4486 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4487 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4488 TrmpSV->getOffset() + 1, false, 1);
4489
Duncan Sands466eadd2007-08-29 19:01:20 +00004490 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004491 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4492 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4493 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4494
4495 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4496 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4497 TrmpSV->getOffset() + 6, false, 1);
4498
Duncan Sands7407a9f2007-09-11 14:10:23 +00004499 SDOperand Ops[] =
4500 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4501 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004502 }
4503}
4504
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004505/// LowerOperation - Provide custom lowering hooks for some operations.
4506///
4507SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4508 switch (Op.getOpcode()) {
4509 default: assert(0 && "Should not custom lower this!");
4510 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4511 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4512 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4513 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4514 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4515 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4516 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4517 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4518 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4519 case ISD::SHL_PARTS:
4520 case ISD::SRA_PARTS:
4521 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4522 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4523 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4524 case ISD::FABS: return LowerFABS(Op, DAG);
4525 case ISD::FNEG: return LowerFNEG(Op, DAG);
4526 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
4527 case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode());
4528 case ISD::SELECT: return LowerSELECT(Op, DAG);
4529 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4530 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4531 case ISD::CALL: return LowerCALL(Op, DAG);
4532 case ISD::RET: return LowerRET(Op, DAG);
4533 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4534 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4535 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4536 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4537 case ISD::VASTART: return LowerVASTART(Op, DAG);
4538 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4539 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4540 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4541 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4542 case ISD::FRAME_TO_ARGS_OFFSET:
4543 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4544 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4545 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004546 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004547 }
4548 return SDOperand();
4549}
4550
4551const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4552 switch (Opcode) {
4553 default: return NULL;
4554 case X86ISD::SHLD: return "X86ISD::SHLD";
4555 case X86ISD::SHRD: return "X86ISD::SHRD";
4556 case X86ISD::FAND: return "X86ISD::FAND";
4557 case X86ISD::FOR: return "X86ISD::FOR";
4558 case X86ISD::FXOR: return "X86ISD::FXOR";
4559 case X86ISD::FSRL: return "X86ISD::FSRL";
4560 case X86ISD::FILD: return "X86ISD::FILD";
4561 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4562 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4563 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4564 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4565 case X86ISD::FLD: return "X86ISD::FLD";
4566 case X86ISD::FST: return "X86ISD::FST";
4567 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4568 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4569 case X86ISD::CALL: return "X86ISD::CALL";
4570 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4571 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4572 case X86ISD::CMP: return "X86ISD::CMP";
4573 case X86ISD::COMI: return "X86ISD::COMI";
4574 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4575 case X86ISD::SETCC: return "X86ISD::SETCC";
4576 case X86ISD::CMOV: return "X86ISD::CMOV";
4577 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4578 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4579 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4580 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004581 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4582 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4583 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4584 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4585 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4586 case X86ISD::FMAX: return "X86ISD::FMAX";
4587 case X86ISD::FMIN: return "X86ISD::FMIN";
4588 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4589 case X86ISD::FRCP: return "X86ISD::FRCP";
4590 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4591 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4592 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
4593 }
4594}
4595
4596// isLegalAddressingMode - Return true if the addressing mode represented
4597// by AM is legal for this target, for a load/store of the specified type.
4598bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4599 const Type *Ty) const {
4600 // X86 supports extremely general addressing modes.
4601
4602 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4603 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4604 return false;
4605
4606 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004607 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004608 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4609 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004610
4611 // X86-64 only supports addr of globals in small code model.
4612 if (Subtarget->is64Bit()) {
4613 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4614 return false;
4615 // If lower 4G is not available, then we must use rip-relative addressing.
4616 if (AM.BaseOffs || AM.Scale > 1)
4617 return false;
4618 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004619 }
4620
4621 switch (AM.Scale) {
4622 case 0:
4623 case 1:
4624 case 2:
4625 case 4:
4626 case 8:
4627 // These scales always work.
4628 break;
4629 case 3:
4630 case 5:
4631 case 9:
4632 // These scales are formed with basereg+scalereg. Only accept if there is
4633 // no basereg yet.
4634 if (AM.HasBaseReg)
4635 return false;
4636 break;
4637 default: // Other stuff never works.
4638 return false;
4639 }
4640
4641 return true;
4642}
4643
4644
4645/// isShuffleMaskLegal - Targets can use this to indicate that they only
4646/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4647/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4648/// are assumed to be legal.
4649bool
4650X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4651 // Only do shuffles on 128-bit vector types for now.
4652 if (MVT::getSizeInBits(VT) == 64) return false;
4653 return (Mask.Val->getNumOperands() <= 4 ||
4654 isIdentityMask(Mask.Val) ||
4655 isIdentityMask(Mask.Val, true) ||
4656 isSplatMask(Mask.Val) ||
4657 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4658 X86::isUNPCKLMask(Mask.Val) ||
4659 X86::isUNPCKHMask(Mask.Val) ||
4660 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4661 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4662}
4663
4664bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4665 MVT::ValueType EVT,
4666 SelectionDAG &DAG) const {
4667 unsigned NumElts = BVOps.size();
4668 // Only do shuffles on 128-bit vector types for now.
4669 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4670 if (NumElts == 2) return true;
4671 if (NumElts == 4) {
4672 return (isMOVLMask(&BVOps[0], 4) ||
4673 isCommutedMOVL(&BVOps[0], 4, true) ||
4674 isSHUFPMask(&BVOps[0], 4) ||
4675 isCommutedSHUFP(&BVOps[0], 4));
4676 }
4677 return false;
4678}
4679
4680//===----------------------------------------------------------------------===//
4681// X86 Scheduler Hooks
4682//===----------------------------------------------------------------------===//
4683
4684MachineBasicBlock *
4685X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4686 MachineBasicBlock *BB) {
4687 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4688 switch (MI->getOpcode()) {
4689 default: assert(false && "Unexpected instr type to insert");
4690 case X86::CMOV_FR32:
4691 case X86::CMOV_FR64:
4692 case X86::CMOV_V4F32:
4693 case X86::CMOV_V2F64:
4694 case X86::CMOV_V2I64: {
4695 // To "insert" a SELECT_CC instruction, we actually have to insert the
4696 // diamond control-flow pattern. The incoming instruction knows the
4697 // destination vreg to set, the condition code register to branch on, the
4698 // true/false values to select between, and a branch opcode to use.
4699 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4700 ilist<MachineBasicBlock>::iterator It = BB;
4701 ++It;
4702
4703 // thisMBB:
4704 // ...
4705 // TrueVal = ...
4706 // cmpTY ccX, r1, r2
4707 // bCC copy1MBB
4708 // fallthrough --> copy0MBB
4709 MachineBasicBlock *thisMBB = BB;
4710 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4711 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4712 unsigned Opc =
4713 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4714 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4715 MachineFunction *F = BB->getParent();
4716 F->getBasicBlockList().insert(It, copy0MBB);
4717 F->getBasicBlockList().insert(It, sinkMBB);
4718 // Update machine-CFG edges by first adding all successors of the current
4719 // block to the new block which will contain the Phi node for the select.
4720 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4721 e = BB->succ_end(); i != e; ++i)
4722 sinkMBB->addSuccessor(*i);
4723 // Next, remove all successors of the current block, and add the true
4724 // and fallthrough blocks as its successors.
4725 while(!BB->succ_empty())
4726 BB->removeSuccessor(BB->succ_begin());
4727 BB->addSuccessor(copy0MBB);
4728 BB->addSuccessor(sinkMBB);
4729
4730 // copy0MBB:
4731 // %FalseValue = ...
4732 // # fallthrough to sinkMBB
4733 BB = copy0MBB;
4734
4735 // Update machine-CFG edges
4736 BB->addSuccessor(sinkMBB);
4737
4738 // sinkMBB:
4739 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4740 // ...
4741 BB = sinkMBB;
4742 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4743 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4744 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4745
4746 delete MI; // The pseudo instruction is gone now.
4747 return BB;
4748 }
4749
4750 case X86::FP32_TO_INT16_IN_MEM:
4751 case X86::FP32_TO_INT32_IN_MEM:
4752 case X86::FP32_TO_INT64_IN_MEM:
4753 case X86::FP64_TO_INT16_IN_MEM:
4754 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004755 case X86::FP64_TO_INT64_IN_MEM:
4756 case X86::FP80_TO_INT16_IN_MEM:
4757 case X86::FP80_TO_INT32_IN_MEM:
4758 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004759 // Change the floating point control register to use "round towards zero"
4760 // mode when truncating to an integer value.
4761 MachineFunction *F = BB->getParent();
4762 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4763 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4764
4765 // Load the old value of the high byte of the control word...
4766 unsigned OldCW =
4767 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4768 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4769
4770 // Set the high part to be round to zero...
4771 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4772 .addImm(0xC7F);
4773
4774 // Reload the modified control word now...
4775 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4776
4777 // Restore the memory image of control word to original value
4778 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4779 .addReg(OldCW);
4780
4781 // Get the X86 opcode to use.
4782 unsigned Opc;
4783 switch (MI->getOpcode()) {
4784 default: assert(0 && "illegal opcode!");
4785 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4786 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4787 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4788 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4789 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4790 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004791 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4792 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4793 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004794 }
4795
4796 X86AddressMode AM;
4797 MachineOperand &Op = MI->getOperand(0);
4798 if (Op.isRegister()) {
4799 AM.BaseType = X86AddressMode::RegBase;
4800 AM.Base.Reg = Op.getReg();
4801 } else {
4802 AM.BaseType = X86AddressMode::FrameIndexBase;
4803 AM.Base.FrameIndex = Op.getFrameIndex();
4804 }
4805 Op = MI->getOperand(1);
4806 if (Op.isImmediate())
4807 AM.Scale = Op.getImm();
4808 Op = MI->getOperand(2);
4809 if (Op.isImmediate())
4810 AM.IndexReg = Op.getImm();
4811 Op = MI->getOperand(3);
4812 if (Op.isGlobalAddress()) {
4813 AM.GV = Op.getGlobal();
4814 } else {
4815 AM.Disp = Op.getImm();
4816 }
4817 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4818 .addReg(MI->getOperand(4).getReg());
4819
4820 // Reload the original control word now.
4821 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4822
4823 delete MI; // The pseudo instruction is gone now.
4824 return BB;
4825 }
4826 }
4827}
4828
4829//===----------------------------------------------------------------------===//
4830// X86 Optimization Hooks
4831//===----------------------------------------------------------------------===//
4832
4833void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4834 uint64_t Mask,
4835 uint64_t &KnownZero,
4836 uint64_t &KnownOne,
4837 const SelectionDAG &DAG,
4838 unsigned Depth) const {
4839 unsigned Opc = Op.getOpcode();
4840 assert((Opc >= ISD::BUILTIN_OP_END ||
4841 Opc == ISD::INTRINSIC_WO_CHAIN ||
4842 Opc == ISD::INTRINSIC_W_CHAIN ||
4843 Opc == ISD::INTRINSIC_VOID) &&
4844 "Should use MaskedValueIsZero if you don't know whether Op"
4845 " is a target node!");
4846
4847 KnownZero = KnownOne = 0; // Don't know anything.
4848 switch (Opc) {
4849 default: break;
4850 case X86ISD::SETCC:
4851 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4852 break;
4853 }
4854}
4855
4856/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4857/// element of the result of the vector shuffle.
4858static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4859 MVT::ValueType VT = N->getValueType(0);
4860 SDOperand PermMask = N->getOperand(2);
4861 unsigned NumElems = PermMask.getNumOperands();
4862 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4863 i %= NumElems;
4864 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4865 return (i == 0)
4866 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4867 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4868 SDOperand Idx = PermMask.getOperand(i);
4869 if (Idx.getOpcode() == ISD::UNDEF)
4870 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4871 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4872 }
4873 return SDOperand();
4874}
4875
4876/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4877/// node is a GlobalAddress + an offset.
4878static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4879 unsigned Opc = N->getOpcode();
4880 if (Opc == X86ISD::Wrapper) {
4881 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4882 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4883 return true;
4884 }
4885 } else if (Opc == ISD::ADD) {
4886 SDOperand N1 = N->getOperand(0);
4887 SDOperand N2 = N->getOperand(1);
4888 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4889 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4890 if (V) {
4891 Offset += V->getSignExtended();
4892 return true;
4893 }
4894 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4895 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4896 if (V) {
4897 Offset += V->getSignExtended();
4898 return true;
4899 }
4900 }
4901 }
4902 return false;
4903}
4904
4905/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4906/// + Dist * Size.
4907static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4908 MachineFrameInfo *MFI) {
4909 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4910 return false;
4911
4912 SDOperand Loc = N->getOperand(1);
4913 SDOperand BaseLoc = Base->getOperand(1);
4914 if (Loc.getOpcode() == ISD::FrameIndex) {
4915 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4916 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00004917 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
4918 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004919 int FS = MFI->getObjectSize(FI);
4920 int BFS = MFI->getObjectSize(BFI);
4921 if (FS != BFS || FS != Size) return false;
4922 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4923 } else {
4924 GlobalValue *GV1 = NULL;
4925 GlobalValue *GV2 = NULL;
4926 int64_t Offset1 = 0;
4927 int64_t Offset2 = 0;
4928 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4929 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4930 if (isGA1 && isGA2 && GV1 == GV2)
4931 return Offset1 == (Offset2 + Dist*Size);
4932 }
4933
4934 return false;
4935}
4936
4937static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4938 const X86Subtarget *Subtarget) {
4939 GlobalValue *GV;
4940 int64_t Offset;
4941 if (isGAPlusOffset(Base, GV, Offset))
4942 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4943 else {
4944 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00004945 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004946 if (BFI < 0)
4947 // Fixed objects do not specify alignment, however the offsets are known.
4948 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4949 (MFI->getObjectOffset(BFI) % 16) == 0);
4950 else
4951 return MFI->getObjectAlignment(BFI) >= 16;
4952 }
4953 return false;
4954}
4955
4956
4957/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4958/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4959/// if the load addresses are consecutive, non-overlapping, and in the right
4960/// order.
4961static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4962 const X86Subtarget *Subtarget) {
4963 MachineFunction &MF = DAG.getMachineFunction();
4964 MachineFrameInfo *MFI = MF.getFrameInfo();
4965 MVT::ValueType VT = N->getValueType(0);
4966 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4967 SDOperand PermMask = N->getOperand(2);
4968 int NumElems = (int)PermMask.getNumOperands();
4969 SDNode *Base = NULL;
4970 for (int i = 0; i < NumElems; ++i) {
4971 SDOperand Idx = PermMask.getOperand(i);
4972 if (Idx.getOpcode() == ISD::UNDEF) {
4973 if (!Base) return SDOperand();
4974 } else {
4975 SDOperand Arg =
4976 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4977 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4978 return SDOperand();
4979 if (!Base)
4980 Base = Arg.Val;
4981 else if (!isConsecutiveLoad(Arg.Val, Base,
4982 i, MVT::getSizeInBits(EVT)/8,MFI))
4983 return SDOperand();
4984 }
4985 }
4986
4987 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00004988 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004989 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004990 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00004991 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004992 } else {
Dan Gohman11821702007-07-27 17:16:43 +00004993 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4994 LD->getSrcValueOffset(), LD->isVolatile(),
4995 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004996 }
4997}
4998
4999/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5000static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5001 const X86Subtarget *Subtarget) {
5002 SDOperand Cond = N->getOperand(0);
5003
5004 // If we have SSE[12] support, try to form min/max nodes.
5005 if (Subtarget->hasSSE2() &&
5006 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5007 if (Cond.getOpcode() == ISD::SETCC) {
5008 // Get the LHS/RHS of the select.
5009 SDOperand LHS = N->getOperand(1);
5010 SDOperand RHS = N->getOperand(2);
5011 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5012
5013 unsigned Opcode = 0;
5014 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5015 switch (CC) {
5016 default: break;
5017 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5018 case ISD::SETULE:
5019 case ISD::SETLE:
5020 if (!UnsafeFPMath) break;
5021 // FALL THROUGH.
5022 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5023 case ISD::SETLT:
5024 Opcode = X86ISD::FMIN;
5025 break;
5026
5027 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5028 case ISD::SETUGT:
5029 case ISD::SETGT:
5030 if (!UnsafeFPMath) break;
5031 // FALL THROUGH.
5032 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5033 case ISD::SETGE:
5034 Opcode = X86ISD::FMAX;
5035 break;
5036 }
5037 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5038 switch (CC) {
5039 default: break;
5040 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5041 case ISD::SETUGT:
5042 case ISD::SETGT:
5043 if (!UnsafeFPMath) break;
5044 // FALL THROUGH.
5045 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5046 case ISD::SETGE:
5047 Opcode = X86ISD::FMIN;
5048 break;
5049
5050 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5051 case ISD::SETULE:
5052 case ISD::SETLE:
5053 if (!UnsafeFPMath) break;
5054 // FALL THROUGH.
5055 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5056 case ISD::SETLT:
5057 Opcode = X86ISD::FMAX;
5058 break;
5059 }
5060 }
5061
5062 if (Opcode)
5063 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5064 }
5065
5066 }
5067
5068 return SDOperand();
5069}
5070
5071
5072SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5073 DAGCombinerInfo &DCI) const {
5074 SelectionDAG &DAG = DCI.DAG;
5075 switch (N->getOpcode()) {
5076 default: break;
5077 case ISD::VECTOR_SHUFFLE:
5078 return PerformShuffleCombine(N, DAG, Subtarget);
5079 case ISD::SELECT:
5080 return PerformSELECTCombine(N, DAG, Subtarget);
5081 }
5082
5083 return SDOperand();
5084}
5085
5086//===----------------------------------------------------------------------===//
5087// X86 Inline Assembly Support
5088//===----------------------------------------------------------------------===//
5089
5090/// getConstraintType - Given a constraint letter, return the type of
5091/// constraint it is for this target.
5092X86TargetLowering::ConstraintType
5093X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5094 if (Constraint.size() == 1) {
5095 switch (Constraint[0]) {
5096 case 'A':
5097 case 'r':
5098 case 'R':
5099 case 'l':
5100 case 'q':
5101 case 'Q':
5102 case 'x':
5103 case 'Y':
5104 return C_RegisterClass;
5105 default:
5106 break;
5107 }
5108 }
5109 return TargetLowering::getConstraintType(Constraint);
5110}
5111
Chris Lattnera531abc2007-08-25 00:47:38 +00005112/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5113/// vector. If it is invalid, don't add anything to Ops.
5114void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5115 char Constraint,
5116 std::vector<SDOperand>&Ops,
5117 SelectionDAG &DAG) {
5118 SDOperand Result(0, 0);
5119
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005120 switch (Constraint) {
5121 default: break;
5122 case 'I':
5123 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005124 if (C->getValue() <= 31) {
5125 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5126 break;
5127 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005128 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005129 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005130 case 'N':
5131 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005132 if (C->getValue() <= 255) {
5133 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5134 break;
5135 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005136 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005137 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005138 case 'i': {
5139 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005140 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5141 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5142 break;
5143 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005144
5145 // If we are in non-pic codegen mode, we allow the address of a global (with
5146 // an optional displacement) to be used with 'i'.
5147 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5148 int64_t Offset = 0;
5149
5150 // Match either (GA) or (GA+C)
5151 if (GA) {
5152 Offset = GA->getOffset();
5153 } else if (Op.getOpcode() == ISD::ADD) {
5154 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5155 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5156 if (C && GA) {
5157 Offset = GA->getOffset()+C->getValue();
5158 } else {
5159 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5160 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5161 if (C && GA)
5162 Offset = GA->getOffset()+C->getValue();
5163 else
5164 C = 0, GA = 0;
5165 }
5166 }
5167
5168 if (GA) {
5169 // If addressing this global requires a load (e.g. in PIC mode), we can't
5170 // match.
5171 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5172 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005173 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005174
5175 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5176 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005177 Result = Op;
5178 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005179 }
5180
5181 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005182 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005183 }
5184 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005185
5186 if (Result.Val) {
5187 Ops.push_back(Result);
5188 return;
5189 }
5190 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005191}
5192
5193std::vector<unsigned> X86TargetLowering::
5194getRegClassForInlineAsmConstraint(const std::string &Constraint,
5195 MVT::ValueType VT) const {
5196 if (Constraint.size() == 1) {
5197 // FIXME: not handling fp-stack yet!
5198 switch (Constraint[0]) { // GCC X86 Constraint Letters
5199 default: break; // Unknown constraint letter
5200 case 'A': // EAX/EDX
5201 if (VT == MVT::i32 || VT == MVT::i64)
5202 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5203 break;
5204 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5205 case 'Q': // Q_REGS
5206 if (VT == MVT::i32)
5207 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5208 else if (VT == MVT::i16)
5209 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5210 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005211 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005212 break;
5213 }
5214 }
5215
5216 return std::vector<unsigned>();
5217}
5218
5219std::pair<unsigned, const TargetRegisterClass*>
5220X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5221 MVT::ValueType VT) const {
5222 // First, see if this is a constraint that directly corresponds to an LLVM
5223 // register class.
5224 if (Constraint.size() == 1) {
5225 // GCC Constraint Letters
5226 switch (Constraint[0]) {
5227 default: break;
5228 case 'r': // GENERAL_REGS
5229 case 'R': // LEGACY_REGS
5230 case 'l': // INDEX_REGS
5231 if (VT == MVT::i64 && Subtarget->is64Bit())
5232 return std::make_pair(0U, X86::GR64RegisterClass);
5233 if (VT == MVT::i32)
5234 return std::make_pair(0U, X86::GR32RegisterClass);
5235 else if (VT == MVT::i16)
5236 return std::make_pair(0U, X86::GR16RegisterClass);
5237 else if (VT == MVT::i8)
5238 return std::make_pair(0U, X86::GR8RegisterClass);
5239 break;
5240 case 'y': // MMX_REGS if MMX allowed.
5241 if (!Subtarget->hasMMX()) break;
5242 return std::make_pair(0U, X86::VR64RegisterClass);
5243 break;
5244 case 'Y': // SSE_REGS if SSE2 allowed
5245 if (!Subtarget->hasSSE2()) break;
5246 // FALL THROUGH.
5247 case 'x': // SSE_REGS if SSE1 allowed
5248 if (!Subtarget->hasSSE1()) break;
5249
5250 switch (VT) {
5251 default: break;
5252 // Scalar SSE types.
5253 case MVT::f32:
5254 case MVT::i32:
5255 return std::make_pair(0U, X86::FR32RegisterClass);
5256 case MVT::f64:
5257 case MVT::i64:
5258 return std::make_pair(0U, X86::FR64RegisterClass);
5259 // Vector types.
5260 case MVT::v16i8:
5261 case MVT::v8i16:
5262 case MVT::v4i32:
5263 case MVT::v2i64:
5264 case MVT::v4f32:
5265 case MVT::v2f64:
5266 return std::make_pair(0U, X86::VR128RegisterClass);
5267 }
5268 break;
5269 }
5270 }
5271
5272 // Use the default implementation in TargetLowering to convert the register
5273 // constraint into a member of a register class.
5274 std::pair<unsigned, const TargetRegisterClass*> Res;
5275 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5276
5277 // Not found as a standard register?
5278 if (Res.second == 0) {
5279 // GCC calls "st(0)" just plain "st".
5280 if (StringsEqualNoCase("{st}", Constraint)) {
5281 Res.first = X86::ST0;
5282 Res.second = X86::RSTRegisterClass;
5283 }
5284
5285 return Res;
5286 }
5287
5288 // Otherwise, check to see if this is a register class of the wrong value
5289 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5290 // turn into {ax},{dx}.
5291 if (Res.second->hasType(VT))
5292 return Res; // Correct type already, nothing to do.
5293
5294 // All of the single-register GCC register classes map their values onto
5295 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5296 // really want an 8-bit or 32-bit register, map to the appropriate register
5297 // class and return the appropriate register.
5298 if (Res.second != X86::GR16RegisterClass)
5299 return Res;
5300
5301 if (VT == MVT::i8) {
5302 unsigned DestReg = 0;
5303 switch (Res.first) {
5304 default: break;
5305 case X86::AX: DestReg = X86::AL; break;
5306 case X86::DX: DestReg = X86::DL; break;
5307 case X86::CX: DestReg = X86::CL; break;
5308 case X86::BX: DestReg = X86::BL; break;
5309 }
5310 if (DestReg) {
5311 Res.first = DestReg;
5312 Res.second = Res.second = X86::GR8RegisterClass;
5313 }
5314 } else if (VT == MVT::i32) {
5315 unsigned DestReg = 0;
5316 switch (Res.first) {
5317 default: break;
5318 case X86::AX: DestReg = X86::EAX; break;
5319 case X86::DX: DestReg = X86::EDX; break;
5320 case X86::CX: DestReg = X86::ECX; break;
5321 case X86::BX: DestReg = X86::EBX; break;
5322 case X86::SI: DestReg = X86::ESI; break;
5323 case X86::DI: DestReg = X86::EDI; break;
5324 case X86::BP: DestReg = X86::EBP; break;
5325 case X86::SP: DestReg = X86::ESP; break;
5326 }
5327 if (DestReg) {
5328 Res.first = DestReg;
5329 Res.second = Res.second = X86::GR32RegisterClass;
5330 }
5331 } else if (VT == MVT::i64) {
5332 unsigned DestReg = 0;
5333 switch (Res.first) {
5334 default: break;
5335 case X86::AX: DestReg = X86::RAX; break;
5336 case X86::DX: DestReg = X86::RDX; break;
5337 case X86::CX: DestReg = X86::RCX; break;
5338 case X86::BX: DestReg = X86::RBX; break;
5339 case X86::SI: DestReg = X86::RSI; break;
5340 case X86::DI: DestReg = X86::RDI; break;
5341 case X86::BP: DestReg = X86::RBP; break;
5342 case X86::SP: DestReg = X86::RSP; break;
5343 }
5344 if (DestReg) {
5345 Res.first = DestReg;
5346 Res.second = Res.second = X86::GR64RegisterClass;
5347 }
5348 }
5349
5350 return Res;
5351}