blob: dccf285a38d9a2d899cf84c11270e5669508849c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000037#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41 : TargetLowering(TM) {
42 Subtarget = &TM.getSubtarget<X86Subtarget>();
43 X86ScalarSSE = Subtarget->hasSSE2();
44 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
45
46 RegInfo = TM.getRegisterInfo();
47
48 // Set up the TargetLowering object.
49
50 // X86 is weird, it always uses i8 for shift amounts and setcc results.
51 setShiftAmountType(MVT::i8);
52 setSetCCResultType(MVT::i8);
53 setSetCCResultContents(ZeroOrOneSetCCResult);
54 setSchedulingPreference(SchedulingForRegPressure);
55 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
56 setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58 if (Subtarget->isTargetDarwin()) {
59 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60 setUseUnderscoreSetJmp(false);
61 setUseUnderscoreLongJmp(false);
62 } else if (Subtarget->isTargetMingw()) {
63 // MS runtime is weird: it exports _setjmp, but longjmp!
64 setUseUnderscoreSetJmp(true);
65 setUseUnderscoreLongJmp(false);
66 } else {
67 setUseUnderscoreSetJmp(true);
68 setUseUnderscoreLongJmp(true);
69 }
70
71 // Set up the register classes.
72 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
73 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
74 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
75 if (Subtarget->is64Bit())
76 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
77
78 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
79
80 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
81 // operation.
82 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
83 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
84 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
85
86 if (Subtarget->is64Bit()) {
87 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
89 } else {
90 if (X86ScalarSSE)
91 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
92 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
93 else
94 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
95 }
96
97 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
98 // this operation.
99 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
100 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
101 // SSE has no i16 to fp conversion, only i32
Dale Johannesen2fc20782007-09-14 22:26:36 +0000102 if (X86ScalarSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000104 // f32 and f64 cases are Legal, f80 case is not
105 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
106 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
108 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
109 }
110
Dale Johannesen958b08b2007-09-19 23:55:34 +0000111 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
112 // are Legal, f80 is custom lowered.
113 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
114 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115
116 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
117 // this operation.
118 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
119 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
120
121 if (X86ScalarSSE) {
122 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000123 // f32 and f64 cases are Legal, f80 case is not
124 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000125 } else {
126 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
127 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
128 }
129
130 // Handle FP_TO_UINT by promoting the destination to a larger signed
131 // conversion.
132 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
133 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
134 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
135
136 if (Subtarget->is64Bit()) {
137 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
139 } else {
140 if (X86ScalarSSE && !Subtarget->hasSSE3())
141 // Expand FP_TO_UINT into a select.
142 // FIXME: We would like to use a Custom expander here eventually to do
143 // the optimal thing for SSE vs. the default expansion in the legalizer.
144 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
145 else
146 // With SSE3 we can use fisttpll to convert to a signed i64.
147 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
148 }
149
150 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
151 if (!X86ScalarSSE) {
152 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
153 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
154 }
155
156 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
157 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
158 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
159 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
160 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
161 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000162 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
166 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
167 setOperationAction(ISD::FREM , MVT::f64 , Expand);
168
169 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
170 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
171 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
172 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
173 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
174 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
175 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
176 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
177 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
178 if (Subtarget->is64Bit()) {
179 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
180 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
181 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
182 }
183
184 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
185 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
186
187 // These should be promoted to a larger select which is supported.
188 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
189 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
190 // X86 wants to expand cmov itself.
191 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
192 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
193 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
194 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000195 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
197 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
198 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
199 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
200 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000201 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000202 if (Subtarget->is64Bit()) {
203 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
204 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
205 }
206 // X86 ret instruction may pop stack.
207 setOperationAction(ISD::RET , MVT::Other, Custom);
208 if (!Subtarget->is64Bit())
209 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
210
211 // Darwin ABI issue.
212 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
213 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
214 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
215 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
216 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
217 if (Subtarget->is64Bit()) {
218 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
219 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
220 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
221 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
222 }
223 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
224 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
225 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
226 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
227 // X86 wants to expand memset / memcpy itself.
228 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
229 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
230
231 // We don't have line number support yet.
232 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
233 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234 // FIXME - use subtarget debug flags
235 if (!Subtarget->isTargetDarwin() &&
236 !Subtarget->isTargetELF() &&
237 !Subtarget->isTargetCygMing())
238 setOperationAction(ISD::LABEL, MVT::Other, Expand);
239
240 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
241 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
242 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
243 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
244 if (Subtarget->is64Bit()) {
245 // FIXME: Verify
246 setExceptionPointerRegister(X86::RAX);
247 setExceptionSelectorRegister(X86::RDX);
248 } else {
249 setExceptionPointerRegister(X86::EAX);
250 setExceptionSelectorRegister(X86::EDX);
251 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000252 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253
Duncan Sands7407a9f2007-09-11 14:10:23 +0000254 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000255
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000256 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
257 setOperationAction(ISD::VASTART , MVT::Other, Custom);
258 setOperationAction(ISD::VAARG , MVT::Other, Expand);
259 setOperationAction(ISD::VAEND , MVT::Other, Expand);
260 if (Subtarget->is64Bit())
261 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
262 else
263 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
264
265 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
266 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
267 if (Subtarget->is64Bit())
268 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
269 if (Subtarget->isTargetCygMing())
270 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
271 else
272 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
273
274 if (X86ScalarSSE) {
275 // Set up the FP register classes.
276 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
277 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
278
279 // Use ANDPD to simulate FABS.
280 setOperationAction(ISD::FABS , MVT::f64, Custom);
281 setOperationAction(ISD::FABS , MVT::f32, Custom);
282
283 // Use XORP to simulate FNEG.
284 setOperationAction(ISD::FNEG , MVT::f64, Custom);
285 setOperationAction(ISD::FNEG , MVT::f32, Custom);
286
287 // Use ANDPD and ORPD to simulate FCOPYSIGN.
288 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
289 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
290
291 // We don't support sin/cos/fmod
292 setOperationAction(ISD::FSIN , MVT::f64, Expand);
293 setOperationAction(ISD::FCOS , MVT::f64, Expand);
294 setOperationAction(ISD::FREM , MVT::f64, Expand);
295 setOperationAction(ISD::FSIN , MVT::f32, Expand);
296 setOperationAction(ISD::FCOS , MVT::f32, Expand);
297 setOperationAction(ISD::FREM , MVT::f32, Expand);
298
299 // Expand FP immediates into loads from the stack, except for the special
300 // cases we handle.
301 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
302 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000303 addLegalFPImmediate(APFloat(+0.0)); // xorps / xorpd
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000304
305 // Conversions to long double (in X87) go through memory.
306 setConvertAction(MVT::f32, MVT::f80, Expand);
307 setConvertAction(MVT::f64, MVT::f80, Expand);
308
309 // Conversions from long double (in X87) go through memory.
310 setConvertAction(MVT::f80, MVT::f32, Expand);
311 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000312 } else {
313 // Set up the FP register classes.
314 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
315 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
316
317 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
318 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
319 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
320 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000321
322 // Floating truncations need to go through memory.
323 setConvertAction(MVT::f80, MVT::f32, Expand);
324 setConvertAction(MVT::f64, MVT::f32, Expand);
325 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326
327 if (!UnsafeFPMath) {
328 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
329 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
330 }
331
332 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
333 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000334 addLegalFPImmediate(APFloat(+0.0)); // FLD0
335 addLegalFPImmediate(APFloat(+1.0)); // FLD1
336 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
337 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 }
339
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000340 // Long double always uses X87.
341 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000342 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
343 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
344 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000345
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346 // First set operation action for all vector types to expand. Then we
347 // will selectively turn on ones that can be effectively codegen'd.
348 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
349 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
350 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
351 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
352 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
353 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
354 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
355 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
356 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
357 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
358 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
359 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
360 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
361 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
362 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
363 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
364 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
365 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
366 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
367 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
368 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
369 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
370 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
371 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
372 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
373 }
374
375 if (Subtarget->hasMMX()) {
376 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
377 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
378 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
379 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
380
381 // FIXME: add MMX packed arithmetics
382
383 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
384 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
385 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
386 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
387
388 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
389 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
390 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
391
392 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
393 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
394
395 setOperationAction(ISD::AND, MVT::v8i8, Promote);
396 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
397 setOperationAction(ISD::AND, MVT::v4i16, Promote);
398 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
399 setOperationAction(ISD::AND, MVT::v2i32, Promote);
400 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
401 setOperationAction(ISD::AND, MVT::v1i64, Legal);
402
403 setOperationAction(ISD::OR, MVT::v8i8, Promote);
404 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
405 setOperationAction(ISD::OR, MVT::v4i16, Promote);
406 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
407 setOperationAction(ISD::OR, MVT::v2i32, Promote);
408 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
409 setOperationAction(ISD::OR, MVT::v1i64, Legal);
410
411 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
412 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
413 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
414 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
415 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
416 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
417 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
418
419 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
420 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
421 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
422 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
423 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
424 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
425 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
426
427 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
428 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
429 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
430 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
431
432 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
433 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
434 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
435 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
436
437 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
438 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
439 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
440 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
441 }
442
443 if (Subtarget->hasSSE1()) {
444 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
445
446 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
447 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
448 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
449 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
450 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
451 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000452 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
453 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
454 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
455 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
456 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
457 }
458
459 if (Subtarget->hasSSE2()) {
460 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
461 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
462 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
463 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
464 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
465
466 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
467 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
468 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
469 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
470 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
471 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
472 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
473 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
474 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
475 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
476 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
477 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
478 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
479 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
480 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000481
482 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
483 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
484 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
485 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
486 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
487 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
488
489 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
490 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
491 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
492 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
493 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
494 }
495 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
496 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
497 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
498 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
499 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
500 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
501
502 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
503 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
504 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
505 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
506 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
507 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
508 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
509 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
510 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
511 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
512 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
513 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
514 }
515
516 // Custom lower v2i64 and v2f64 selects.
517 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
518 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
519 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
520 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
521 }
522
523 // We want to custom lower some of our intrinsics.
524 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
525
526 // We have target-specific dag combine patterns for the following nodes:
527 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
528 setTargetDAGCombine(ISD::SELECT);
529
530 computeRegisterProperties();
531
532 // FIXME: These should be based on subtarget info. Plus, the values should
533 // be smaller when we are in optimizing for size mode.
534 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
535 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
536 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
537 allowUnalignedMemoryAccesses = true; // x86 supports it!
538}
539
540
541//===----------------------------------------------------------------------===//
542// Return Value Calling Convention Implementation
543//===----------------------------------------------------------------------===//
544
545#include "X86GenCallingConv.inc"
546
547/// LowerRET - Lower an ISD::RET node.
548SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
549 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
550
551 SmallVector<CCValAssign, 16> RVLocs;
552 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
553 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
554 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
555 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
556
557
558 // If this is the first return lowered for this function, add the regs to the
559 // liveout set for the function.
560 if (DAG.getMachineFunction().liveout_empty()) {
561 for (unsigned i = 0; i != RVLocs.size(); ++i)
562 if (RVLocs[i].isRegLoc())
563 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
564 }
565
566 SDOperand Chain = Op.getOperand(0);
567 SDOperand Flag;
568
569 // Copy the result values into the output registers.
570 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
571 RVLocs[0].getLocReg() != X86::ST0) {
572 for (unsigned i = 0; i != RVLocs.size(); ++i) {
573 CCValAssign &VA = RVLocs[i];
574 assert(VA.isRegLoc() && "Can only return in registers!");
575 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
576 Flag);
577 Flag = Chain.getValue(1);
578 }
579 } else {
580 // We need to handle a destination of ST0 specially, because it isn't really
581 // a register.
582 SDOperand Value = Op.getOperand(1);
583
584 // If this is an FP return with ScalarSSE, we need to move the value from
585 // an XMM register onto the fp-stack.
586 if (X86ScalarSSE) {
587 SDOperand MemLoc;
588
589 // If this is a load into a scalarsse value, don't store the loaded value
590 // back to the stack, only to reload it: just replace the scalar-sse load.
591 if (ISD::isNON_EXTLoad(Value.Val) &&
592 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
593 Chain = Value.getOperand(0);
594 MemLoc = Value.getOperand(1);
595 } else {
596 // Spill the value to memory and reload it into top of stack.
597 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
598 MachineFunction &MF = DAG.getMachineFunction();
599 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
600 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
601 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
602 }
603 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
604 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
605 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
606 Chain = Value.getValue(1);
607 }
608
609 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
610 SDOperand Ops[] = { Chain, Value };
611 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
612 Flag = Chain.getValue(1);
613 }
614
615 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
616 if (Flag.Val)
617 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
618 else
619 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
620}
621
622
623/// LowerCallResult - Lower the result values of an ISD::CALL into the
624/// appropriate copies out of appropriate physical registers. This assumes that
625/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
626/// being lowered. The returns a SDNode with the same number of values as the
627/// ISD::CALL.
628SDNode *X86TargetLowering::
629LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
630 unsigned CallingConv, SelectionDAG &DAG) {
631
632 // Assign locations to each value returned by this call.
633 SmallVector<CCValAssign, 16> RVLocs;
634 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
635 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
636 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
637
638
639 SmallVector<SDOperand, 8> ResultVals;
640
641 // Copy all of the result registers out of their specified physreg.
642 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
643 for (unsigned i = 0; i != RVLocs.size(); ++i) {
644 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
645 RVLocs[i].getValVT(), InFlag).getValue(1);
646 InFlag = Chain.getValue(2);
647 ResultVals.push_back(Chain.getValue(0));
648 }
649 } else {
650 // Copies from the FP stack are special, as ST0 isn't a valid register
651 // before the fp stackifier runs.
652
653 // Copy ST0 into an RFP register with FP_GET_RESULT.
654 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
655 SDOperand GROps[] = { Chain, InFlag };
656 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
657 Chain = RetVal.getValue(1);
658 InFlag = RetVal.getValue(2);
659
660 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
661 // an XMM register.
662 if (X86ScalarSSE) {
663 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
664 // shouldn't be necessary except that RFP cannot be live across
665 // multiple blocks. When stackifier is fixed, they can be uncoupled.
666 MachineFunction &MF = DAG.getMachineFunction();
667 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
668 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
669 SDOperand Ops[] = {
670 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
671 };
672 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
673 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
674 Chain = RetVal.getValue(1);
675 }
676 ResultVals.push_back(RetVal);
677 }
678
679 // Merge everything together with a MERGE_VALUES node.
680 ResultVals.push_back(Chain);
681 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
682 &ResultVals[0], ResultVals.size()).Val;
683}
684
685
686//===----------------------------------------------------------------------===//
687// C & StdCall Calling Convention implementation
688//===----------------------------------------------------------------------===//
689// StdCall calling convention seems to be standard for many Windows' API
690// routines and around. It differs from C calling convention just a little:
691// callee should clean up the stack, not caller. Symbols should be also
692// decorated in some fancy way :) It doesn't support any vector arguments.
693
694/// AddLiveIn - This helper function adds the specified physical register to the
695/// MachineFunction as a live in value. It also creates a corresponding virtual
696/// register for it.
697static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
698 const TargetRegisterClass *RC) {
699 assert(RC->contains(PReg) && "Not the correct regclass!");
700 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
701 MF.addLiveIn(PReg, VReg);
702 return VReg;
703}
704
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000705SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
706 const CCValAssign &VA,
707 MachineFrameInfo *MFI,
708 SDOperand Root, unsigned i) {
709 // Create the nodes corresponding to a load from this parameter slot.
710 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
711 VA.getLocMemOffset());
712 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
713
714 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
715
716 if (Flags & ISD::ParamFlags::ByVal)
717 return FIN;
718 else
719 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
720}
721
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
723 bool isStdCall) {
724 unsigned NumArgs = Op.Val->getNumValues() - 1;
725 MachineFunction &MF = DAG.getMachineFunction();
726 MachineFrameInfo *MFI = MF.getFrameInfo();
727 SDOperand Root = Op.getOperand(0);
728 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
729
730 // Assign locations to all of the incoming arguments.
731 SmallVector<CCValAssign, 16> ArgLocs;
732 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
733 getTargetMachine(), ArgLocs);
734 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
735
736 SmallVector<SDOperand, 8> ArgValues;
737 unsigned LastVal = ~0U;
738 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
739 CCValAssign &VA = ArgLocs[i];
740 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
741 // places.
742 assert(VA.getValNo() != LastVal &&
743 "Don't support value assigned to multiple locs yet");
744 LastVal = VA.getValNo();
745
746 if (VA.isRegLoc()) {
747 MVT::ValueType RegVT = VA.getLocVT();
748 TargetRegisterClass *RC;
749 if (RegVT == MVT::i32)
750 RC = X86::GR32RegisterClass;
751 else {
752 assert(MVT::isVector(RegVT));
753 RC = X86::VR128RegisterClass;
754 }
755
756 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
757 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
758
759 // If this is an 8 or 16-bit value, it is really passed promoted to 32
760 // bits. Insert an assert[sz]ext to capture this, then truncate to the
761 // right size.
762 if (VA.getLocInfo() == CCValAssign::SExt)
763 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
764 DAG.getValueType(VA.getValVT()));
765 else if (VA.getLocInfo() == CCValAssign::ZExt)
766 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
767 DAG.getValueType(VA.getValVT()));
768
769 if (VA.getLocInfo() != CCValAssign::Full)
770 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
771
772 ArgValues.push_back(ArgValue);
773 } else {
774 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000775 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 }
777 }
778
779 unsigned StackSize = CCInfo.getNextStackOffset();
780
781 ArgValues.push_back(Root);
782
783 // If the function takes variable number of arguments, make a frame index for
784 // the start of the first vararg value... for expansion of llvm.va_start.
785 if (isVarArg)
786 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
787
788 if (isStdCall && !isVarArg) {
789 BytesToPopOnReturn = StackSize; // Callee pops everything..
790 BytesCallerReserves = 0;
791 } else {
792 BytesToPopOnReturn = 0; // Callee pops nothing.
793
794 // If this is an sret function, the return should pop the hidden pointer.
795 if (NumArgs &&
796 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
797 ISD::ParamFlags::StructReturn))
798 BytesToPopOnReturn = 4;
799
800 BytesCallerReserves = StackSize;
801 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000802
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000803 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804
Anton Korobeynikove844e472007-08-15 17:12:32 +0000805 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
806 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000807
808 // Return the new list of results.
809 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
810 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
811}
812
813SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
814 unsigned CC) {
815 SDOperand Chain = Op.getOperand(0);
816 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
817 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
818 SDOperand Callee = Op.getOperand(4);
819 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
820
821 // Analyze operands of the call, assigning locations to each operand.
822 SmallVector<CCValAssign, 16> ArgLocs;
823 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
824 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
825
826 // Get a count of how many bytes are to be pushed on the stack.
827 unsigned NumBytes = CCInfo.getNextStackOffset();
828
829 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
830
831 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
832 SmallVector<SDOperand, 8> MemOpChains;
833
834 SDOperand StackPtr;
835
836 // Walk the register/memloc assignments, inserting copies/loads.
837 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
838 CCValAssign &VA = ArgLocs[i];
839 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
840
841 // Promote the value if needed.
842 switch (VA.getLocInfo()) {
843 default: assert(0 && "Unknown loc info!");
844 case CCValAssign::Full: break;
845 case CCValAssign::SExt:
846 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
847 break;
848 case CCValAssign::ZExt:
849 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
850 break;
851 case CCValAssign::AExt:
852 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
853 break;
854 }
855
856 if (VA.isRegLoc()) {
857 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
858 } else {
859 assert(VA.isMemLoc());
860 if (StackPtr.Val == 0)
861 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
862 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
863 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
864 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
865 }
866 }
867
868 // If the first argument is an sret pointer, remember it.
869 bool isSRet = NumOps &&
870 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
871 ISD::ParamFlags::StructReturn);
872
873 if (!MemOpChains.empty())
874 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
875 &MemOpChains[0], MemOpChains.size());
876
877 // Build a sequence of copy-to-reg nodes chained together with token chain
878 // and flag operands which copy the outgoing args into registers.
879 SDOperand InFlag;
880 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
881 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
882 InFlag);
883 InFlag = Chain.getValue(1);
884 }
885
886 // ELF / PIC requires GOT in the EBX register before function calls via PLT
887 // GOT pointer.
888 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
889 Subtarget->isPICStyleGOT()) {
890 Chain = DAG.getCopyToReg(Chain, X86::EBX,
891 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
892 InFlag);
893 InFlag = Chain.getValue(1);
894 }
895
896 // If the callee is a GlobalAddress node (quite common, every direct call is)
897 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
898 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
899 // We should use extra load for direct calls to dllimported functions in
900 // non-JIT mode.
901 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
902 getTargetMachine(), true))
903 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
904 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
905 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
906
907 // Returns a chain & a flag for retval copy to use.
908 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
909 SmallVector<SDOperand, 8> Ops;
910 Ops.push_back(Chain);
911 Ops.push_back(Callee);
912
913 // Add argument registers to the end of the list so that they are known live
914 // into the call.
915 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
916 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
917 RegsToPass[i].second.getValueType()));
918
919 // Add an implicit use GOT pointer in EBX.
920 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
921 Subtarget->isPICStyleGOT())
922 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
923
924 if (InFlag.Val)
925 Ops.push_back(InFlag);
926
927 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
928 NodeTys, &Ops[0], Ops.size());
929 InFlag = Chain.getValue(1);
930
931 // Create the CALLSEQ_END node.
932 unsigned NumBytesForCalleeToPush = 0;
933
934 if (CC == CallingConv::X86_StdCall) {
935 if (isVarArg)
936 NumBytesForCalleeToPush = isSRet ? 4 : 0;
937 else
938 NumBytesForCalleeToPush = NumBytes;
939 } else {
940 // If this is is a call to a struct-return function, the callee
941 // pops the hidden struct pointer, so we have to push it back.
942 // This is common for Darwin/X86, Linux & Mingw32 targets.
943 NumBytesForCalleeToPush = isSRet ? 4 : 0;
944 }
945
946 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
947 Ops.clear();
948 Ops.push_back(Chain);
949 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
950 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
951 Ops.push_back(InFlag);
952 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
953 InFlag = Chain.getValue(1);
954
955 // Handle result values, copying them out of physregs into vregs that we
956 // return.
957 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
958}
959
960
961//===----------------------------------------------------------------------===//
962// FastCall Calling Convention implementation
963//===----------------------------------------------------------------------===//
964//
965// The X86 'fastcall' calling convention passes up to two integer arguments in
966// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
967// and requires that the callee pop its arguments off the stack (allowing proper
968// tail calls), and has the same return value conventions as C calling convs.
969//
970// This calling convention always arranges for the callee pop value to be 8n+4
971// bytes, which is needed for tail recursion elimination and stack alignment
972// reasons.
973SDOperand
974X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
975 MachineFunction &MF = DAG.getMachineFunction();
976 MachineFrameInfo *MFI = MF.getFrameInfo();
977 SDOperand Root = Op.getOperand(0);
978 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
979
980 // Assign locations to all of the incoming arguments.
981 SmallVector<CCValAssign, 16> ArgLocs;
982 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
983 getTargetMachine(), ArgLocs);
984 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
985
986 SmallVector<SDOperand, 8> ArgValues;
987 unsigned LastVal = ~0U;
988 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
989 CCValAssign &VA = ArgLocs[i];
990 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
991 // places.
992 assert(VA.getValNo() != LastVal &&
993 "Don't support value assigned to multiple locs yet");
994 LastVal = VA.getValNo();
995
996 if (VA.isRegLoc()) {
997 MVT::ValueType RegVT = VA.getLocVT();
998 TargetRegisterClass *RC;
999 if (RegVT == MVT::i32)
1000 RC = X86::GR32RegisterClass;
1001 else {
1002 assert(MVT::isVector(RegVT));
1003 RC = X86::VR128RegisterClass;
1004 }
1005
1006 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1007 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1008
1009 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1010 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1011 // right size.
1012 if (VA.getLocInfo() == CCValAssign::SExt)
1013 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1014 DAG.getValueType(VA.getValVT()));
1015 else if (VA.getLocInfo() == CCValAssign::ZExt)
1016 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1017 DAG.getValueType(VA.getValVT()));
1018
1019 if (VA.getLocInfo() != CCValAssign::Full)
1020 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1021
1022 ArgValues.push_back(ArgValue);
1023 } else {
1024 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001025 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 }
1027 }
1028
1029 ArgValues.push_back(Root);
1030
1031 unsigned StackSize = CCInfo.getNextStackOffset();
1032
1033 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1034 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1035 // arguments and the arguments after the retaddr has been pushed are aligned.
1036 if ((StackSize & 7) == 0)
1037 StackSize += 4;
1038 }
1039
1040 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1041 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1043 BytesCallerReserves = 0;
1044
Anton Korobeynikove844e472007-08-15 17:12:32 +00001045 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1046 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047
1048 // Return the new list of results.
1049 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1050 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1051}
1052
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001053SDOperand
1054X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1055 const SDOperand &StackPtr,
1056 const CCValAssign &VA,
1057 SDOperand Chain,
1058 SDOperand Arg) {
1059 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1060 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1061 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1062 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1063 if (Flags & ISD::ParamFlags::ByVal) {
1064 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1065 ISD::ParamFlags::ByValAlignOffs);
1066
1067 assert (Align >= 8);
1068 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1069 ISD::ParamFlags::ByValSizeOffs;
1070
1071 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1072 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1073
1074 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1075 AlignNode);
1076 } else {
1077 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1078 }
1079}
1080
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001081SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1082 unsigned CC) {
1083 SDOperand Chain = Op.getOperand(0);
1084 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1085 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1086 SDOperand Callee = Op.getOperand(4);
1087
1088 // Analyze operands of the call, assigning locations to each operand.
1089 SmallVector<CCValAssign, 16> ArgLocs;
1090 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1091 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1092
1093 // Get a count of how many bytes are to be pushed on the stack.
1094 unsigned NumBytes = CCInfo.getNextStackOffset();
1095
1096 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1097 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1098 // arguments and the arguments after the retaddr has been pushed are aligned.
1099 if ((NumBytes & 7) == 0)
1100 NumBytes += 4;
1101 }
1102
1103 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1104
1105 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1106 SmallVector<SDOperand, 8> MemOpChains;
1107
1108 SDOperand StackPtr;
1109
1110 // Walk the register/memloc assignments, inserting copies/loads.
1111 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1112 CCValAssign &VA = ArgLocs[i];
1113 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1114
1115 // Promote the value if needed.
1116 switch (VA.getLocInfo()) {
1117 default: assert(0 && "Unknown loc info!");
1118 case CCValAssign::Full: break;
1119 case CCValAssign::SExt:
1120 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1121 break;
1122 case CCValAssign::ZExt:
1123 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1124 break;
1125 case CCValAssign::AExt:
1126 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1127 break;
1128 }
1129
1130 if (VA.isRegLoc()) {
1131 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1132 } else {
1133 assert(VA.isMemLoc());
1134 if (StackPtr.Val == 0)
1135 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1136 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1137 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1138 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1139 }
1140 }
1141
1142 if (!MemOpChains.empty())
1143 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1144 &MemOpChains[0], MemOpChains.size());
1145
1146 // Build a sequence of copy-to-reg nodes chained together with token chain
1147 // and flag operands which copy the outgoing args into registers.
1148 SDOperand InFlag;
1149 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1150 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1151 InFlag);
1152 InFlag = Chain.getValue(1);
1153 }
1154
1155 // If the callee is a GlobalAddress node (quite common, every direct call is)
1156 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1157 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1158 // We should use extra load for direct calls to dllimported functions in
1159 // non-JIT mode.
1160 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1161 getTargetMachine(), true))
1162 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1163 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1164 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1165
1166 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1167 // GOT pointer.
1168 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1169 Subtarget->isPICStyleGOT()) {
1170 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1171 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1172 InFlag);
1173 InFlag = Chain.getValue(1);
1174 }
1175
1176 // Returns a chain & a flag for retval copy to use.
1177 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1178 SmallVector<SDOperand, 8> Ops;
1179 Ops.push_back(Chain);
1180 Ops.push_back(Callee);
1181
1182 // Add argument registers to the end of the list so that they are known live
1183 // into the call.
1184 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1185 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1186 RegsToPass[i].second.getValueType()));
1187
1188 // Add an implicit use GOT pointer in EBX.
1189 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1190 Subtarget->isPICStyleGOT())
1191 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1192
1193 if (InFlag.Val)
1194 Ops.push_back(InFlag);
1195
1196 // FIXME: Do not generate X86ISD::TAILCALL for now.
1197 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1198 NodeTys, &Ops[0], Ops.size());
1199 InFlag = Chain.getValue(1);
1200
1201 // Returns a flag for retval copy to use.
1202 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1203 Ops.clear();
1204 Ops.push_back(Chain);
1205 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1206 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1207 Ops.push_back(InFlag);
1208 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1209 InFlag = Chain.getValue(1);
1210
1211 // Handle result values, copying them out of physregs into vregs that we
1212 // return.
1213 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1214}
1215
1216
1217//===----------------------------------------------------------------------===//
1218// X86-64 C Calling Convention implementation
1219//===----------------------------------------------------------------------===//
1220
1221SDOperand
1222X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1223 MachineFunction &MF = DAG.getMachineFunction();
1224 MachineFrameInfo *MFI = MF.getFrameInfo();
1225 SDOperand Root = Op.getOperand(0);
1226 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1227
1228 static const unsigned GPR64ArgRegs[] = {
1229 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1230 };
1231 static const unsigned XMMArgRegs[] = {
1232 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1233 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1234 };
1235
1236
1237 // Assign locations to all of the incoming arguments.
1238 SmallVector<CCValAssign, 16> ArgLocs;
1239 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1240 getTargetMachine(), ArgLocs);
1241 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1242
1243 SmallVector<SDOperand, 8> ArgValues;
1244 unsigned LastVal = ~0U;
1245 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1246 CCValAssign &VA = ArgLocs[i];
1247 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1248 // places.
1249 assert(VA.getValNo() != LastVal &&
1250 "Don't support value assigned to multiple locs yet");
1251 LastVal = VA.getValNo();
1252
1253 if (VA.isRegLoc()) {
1254 MVT::ValueType RegVT = VA.getLocVT();
1255 TargetRegisterClass *RC;
1256 if (RegVT == MVT::i32)
1257 RC = X86::GR32RegisterClass;
1258 else if (RegVT == MVT::i64)
1259 RC = X86::GR64RegisterClass;
1260 else if (RegVT == MVT::f32)
1261 RC = X86::FR32RegisterClass;
1262 else if (RegVT == MVT::f64)
1263 RC = X86::FR64RegisterClass;
1264 else {
1265 assert(MVT::isVector(RegVT));
1266 if (MVT::getSizeInBits(RegVT) == 64) {
1267 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1268 RegVT = MVT::i64;
1269 } else
1270 RC = X86::VR128RegisterClass;
1271 }
1272
1273 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1274 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1275
1276 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1277 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1278 // right size.
1279 if (VA.getLocInfo() == CCValAssign::SExt)
1280 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1281 DAG.getValueType(VA.getValVT()));
1282 else if (VA.getLocInfo() == CCValAssign::ZExt)
1283 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1284 DAG.getValueType(VA.getValVT()));
1285
1286 if (VA.getLocInfo() != CCValAssign::Full)
1287 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1288
1289 // Handle MMX values passed in GPRs.
1290 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1291 MVT::getSizeInBits(RegVT) == 64)
1292 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1293
1294 ArgValues.push_back(ArgValue);
1295 } else {
1296 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001297 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298 }
1299 }
1300
1301 unsigned StackSize = CCInfo.getNextStackOffset();
1302
1303 // If the function takes variable number of arguments, make a frame index for
1304 // the start of the first vararg value... for expansion of llvm.va_start.
1305 if (isVarArg) {
1306 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1307 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1308
1309 // For X86-64, if there are vararg parameters that are passed via
1310 // registers, then we must store them to their spots on the stack so they
1311 // may be loaded by deferencing the result of va_next.
1312 VarArgsGPOffset = NumIntRegs * 8;
1313 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1314 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1315 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1316
1317 // Store the integer parameter registers.
1318 SmallVector<SDOperand, 8> MemOps;
1319 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1320 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1321 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1322 for (; NumIntRegs != 6; ++NumIntRegs) {
1323 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1324 X86::GR64RegisterClass);
1325 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1326 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1327 MemOps.push_back(Store);
1328 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1329 DAG.getConstant(8, getPointerTy()));
1330 }
1331
1332 // Now store the XMM (fp + vector) parameter registers.
1333 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1334 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1335 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1336 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1337 X86::VR128RegisterClass);
1338 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1339 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1340 MemOps.push_back(Store);
1341 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1342 DAG.getConstant(16, getPointerTy()));
1343 }
1344 if (!MemOps.empty())
1345 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1346 &MemOps[0], MemOps.size());
1347 }
1348
1349 ArgValues.push_back(Root);
1350
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001351 BytesToPopOnReturn = 0; // Callee pops nothing.
1352 BytesCallerReserves = StackSize;
1353
Anton Korobeynikove844e472007-08-15 17:12:32 +00001354 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1355 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001357 // Return the new list of results.
1358 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1359 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1360}
1361
1362SDOperand
1363X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1364 unsigned CC) {
1365 SDOperand Chain = Op.getOperand(0);
1366 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1367 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1368 SDOperand Callee = Op.getOperand(4);
1369
1370 // Analyze operands of the call, assigning locations to each operand.
1371 SmallVector<CCValAssign, 16> ArgLocs;
1372 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1373 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1374
1375 // Get a count of how many bytes are to be pushed on the stack.
1376 unsigned NumBytes = CCInfo.getNextStackOffset();
1377 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1378
1379 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1380 SmallVector<SDOperand, 8> MemOpChains;
1381
1382 SDOperand StackPtr;
1383
1384 // Walk the register/memloc assignments, inserting copies/loads.
1385 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1386 CCValAssign &VA = ArgLocs[i];
1387 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1388
1389 // Promote the value if needed.
1390 switch (VA.getLocInfo()) {
1391 default: assert(0 && "Unknown loc info!");
1392 case CCValAssign::Full: break;
1393 case CCValAssign::SExt:
1394 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1395 break;
1396 case CCValAssign::ZExt:
1397 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1398 break;
1399 case CCValAssign::AExt:
1400 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1401 break;
1402 }
1403
1404 if (VA.isRegLoc()) {
1405 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1406 } else {
1407 assert(VA.isMemLoc());
1408 if (StackPtr.Val == 0)
1409 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001410
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001411 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1412 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001413 }
1414 }
1415
1416 if (!MemOpChains.empty())
1417 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1418 &MemOpChains[0], MemOpChains.size());
1419
1420 // Build a sequence of copy-to-reg nodes chained together with token chain
1421 // and flag operands which copy the outgoing args into registers.
1422 SDOperand InFlag;
1423 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1424 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1425 InFlag);
1426 InFlag = Chain.getValue(1);
1427 }
1428
1429 if (isVarArg) {
1430 // From AMD64 ABI document:
1431 // For calls that may call functions that use varargs or stdargs
1432 // (prototype-less calls or calls to functions containing ellipsis (...) in
1433 // the declaration) %al is used as hidden argument to specify the number
1434 // of SSE registers used. The contents of %al do not need to match exactly
1435 // the number of registers, but must be an ubound on the number of SSE
1436 // registers used and is in the range 0 - 8 inclusive.
1437
1438 // Count the number of XMM registers allocated.
1439 static const unsigned XMMArgRegs[] = {
1440 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1441 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1442 };
1443 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1444
1445 Chain = DAG.getCopyToReg(Chain, X86::AL,
1446 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1447 InFlag = Chain.getValue(1);
1448 }
1449
1450 // If the callee is a GlobalAddress node (quite common, every direct call is)
1451 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1452 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1453 // We should use extra load for direct calls to dllimported functions in
1454 // non-JIT mode.
1455 if (getTargetMachine().getCodeModel() != CodeModel::Large
1456 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1457 getTargetMachine(), true))
1458 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1459 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1460 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1461 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1462
1463 // Returns a chain & a flag for retval copy to use.
1464 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1465 SmallVector<SDOperand, 8> Ops;
1466 Ops.push_back(Chain);
1467 Ops.push_back(Callee);
1468
1469 // Add argument registers to the end of the list so that they are known live
1470 // into the call.
1471 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1472 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1473 RegsToPass[i].second.getValueType()));
1474
1475 if (InFlag.Val)
1476 Ops.push_back(InFlag);
1477
1478 // FIXME: Do not generate X86ISD::TAILCALL for now.
1479 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1480 NodeTys, &Ops[0], Ops.size());
1481 InFlag = Chain.getValue(1);
1482
1483 // Returns a flag for retval copy to use.
1484 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1485 Ops.clear();
1486 Ops.push_back(Chain);
1487 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1488 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1489 Ops.push_back(InFlag);
1490 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1491 InFlag = Chain.getValue(1);
1492
1493 // Handle result values, copying them out of physregs into vregs that we
1494 // return.
1495 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1496}
1497
1498
1499//===----------------------------------------------------------------------===//
1500// Other Lowering Hooks
1501//===----------------------------------------------------------------------===//
1502
1503
1504SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001505 MachineFunction &MF = DAG.getMachineFunction();
1506 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1507 int ReturnAddrIndex = FuncInfo->getRAIndex();
1508
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001509 if (ReturnAddrIndex == 0) {
1510 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001511 if (Subtarget->is64Bit())
1512 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1513 else
1514 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001515
1516 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001517 }
1518
1519 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1520}
1521
1522
1523
1524/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1525/// specific condition code. It returns a false if it cannot do a direct
1526/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1527/// needed.
1528static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1529 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1530 SelectionDAG &DAG) {
1531 X86CC = X86::COND_INVALID;
1532 if (!isFP) {
1533 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1534 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1535 // X > -1 -> X == 0, jump !sign.
1536 RHS = DAG.getConstant(0, RHS.getValueType());
1537 X86CC = X86::COND_NS;
1538 return true;
1539 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1540 // X < 0 -> X == 0, jump on sign.
1541 X86CC = X86::COND_S;
1542 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00001543 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1544 // X < 1 -> X <= 0
1545 RHS = DAG.getConstant(0, RHS.getValueType());
1546 X86CC = X86::COND_LE;
1547 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001548 }
1549 }
1550
1551 switch (SetCCOpcode) {
1552 default: break;
1553 case ISD::SETEQ: X86CC = X86::COND_E; break;
1554 case ISD::SETGT: X86CC = X86::COND_G; break;
1555 case ISD::SETGE: X86CC = X86::COND_GE; break;
1556 case ISD::SETLT: X86CC = X86::COND_L; break;
1557 case ISD::SETLE: X86CC = X86::COND_LE; break;
1558 case ISD::SETNE: X86CC = X86::COND_NE; break;
1559 case ISD::SETULT: X86CC = X86::COND_B; break;
1560 case ISD::SETUGT: X86CC = X86::COND_A; break;
1561 case ISD::SETULE: X86CC = X86::COND_BE; break;
1562 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1563 }
1564 } else {
1565 // On a floating point condition, the flags are set as follows:
1566 // ZF PF CF op
1567 // 0 | 0 | 0 | X > Y
1568 // 0 | 0 | 1 | X < Y
1569 // 1 | 0 | 0 | X == Y
1570 // 1 | 1 | 1 | unordered
1571 bool Flip = false;
1572 switch (SetCCOpcode) {
1573 default: break;
1574 case ISD::SETUEQ:
1575 case ISD::SETEQ: X86CC = X86::COND_E; break;
1576 case ISD::SETOLT: Flip = true; // Fallthrough
1577 case ISD::SETOGT:
1578 case ISD::SETGT: X86CC = X86::COND_A; break;
1579 case ISD::SETOLE: Flip = true; // Fallthrough
1580 case ISD::SETOGE:
1581 case ISD::SETGE: X86CC = X86::COND_AE; break;
1582 case ISD::SETUGT: Flip = true; // Fallthrough
1583 case ISD::SETULT:
1584 case ISD::SETLT: X86CC = X86::COND_B; break;
1585 case ISD::SETUGE: Flip = true; // Fallthrough
1586 case ISD::SETULE:
1587 case ISD::SETLE: X86CC = X86::COND_BE; break;
1588 case ISD::SETONE:
1589 case ISD::SETNE: X86CC = X86::COND_NE; break;
1590 case ISD::SETUO: X86CC = X86::COND_P; break;
1591 case ISD::SETO: X86CC = X86::COND_NP; break;
1592 }
1593 if (Flip)
1594 std::swap(LHS, RHS);
1595 }
1596
1597 return X86CC != X86::COND_INVALID;
1598}
1599
1600/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1601/// code. Current x86 isa includes the following FP cmov instructions:
1602/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1603static bool hasFPCMov(unsigned X86CC) {
1604 switch (X86CC) {
1605 default:
1606 return false;
1607 case X86::COND_B:
1608 case X86::COND_BE:
1609 case X86::COND_E:
1610 case X86::COND_P:
1611 case X86::COND_A:
1612 case X86::COND_AE:
1613 case X86::COND_NE:
1614 case X86::COND_NP:
1615 return true;
1616 }
1617}
1618
1619/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1620/// true if Op is undef or if its value falls within the specified range (L, H].
1621static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1622 if (Op.getOpcode() == ISD::UNDEF)
1623 return true;
1624
1625 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1626 return (Val >= Low && Val < Hi);
1627}
1628
1629/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1630/// true if Op is undef or if its value equal to the specified value.
1631static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1632 if (Op.getOpcode() == ISD::UNDEF)
1633 return true;
1634 return cast<ConstantSDNode>(Op)->getValue() == Val;
1635}
1636
1637/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1638/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1639bool X86::isPSHUFDMask(SDNode *N) {
1640 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1641
Dan Gohman7dc19012007-08-02 21:17:01 +00001642 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001643 return false;
1644
1645 // Check if the value doesn't reference the second vector.
1646 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1647 SDOperand Arg = N->getOperand(i);
1648 if (Arg.getOpcode() == ISD::UNDEF) continue;
1649 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001650 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001651 return false;
1652 }
1653
1654 return true;
1655}
1656
1657/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1658/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1659bool X86::isPSHUFHWMask(SDNode *N) {
1660 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1661
1662 if (N->getNumOperands() != 8)
1663 return false;
1664
1665 // Lower quadword copied in order.
1666 for (unsigned i = 0; i != 4; ++i) {
1667 SDOperand Arg = N->getOperand(i);
1668 if (Arg.getOpcode() == ISD::UNDEF) continue;
1669 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1670 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1671 return false;
1672 }
1673
1674 // Upper quadword shuffled.
1675 for (unsigned i = 4; i != 8; ++i) {
1676 SDOperand Arg = N->getOperand(i);
1677 if (Arg.getOpcode() == ISD::UNDEF) continue;
1678 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1679 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1680 if (Val < 4 || Val > 7)
1681 return false;
1682 }
1683
1684 return true;
1685}
1686
1687/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1688/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1689bool X86::isPSHUFLWMask(SDNode *N) {
1690 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1691
1692 if (N->getNumOperands() != 8)
1693 return false;
1694
1695 // Upper quadword copied in order.
1696 for (unsigned i = 4; i != 8; ++i)
1697 if (!isUndefOrEqual(N->getOperand(i), i))
1698 return false;
1699
1700 // Lower quadword shuffled.
1701 for (unsigned i = 0; i != 4; ++i)
1702 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1703 return false;
1704
1705 return true;
1706}
1707
1708/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1709/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1710static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1711 if (NumElems != 2 && NumElems != 4) return false;
1712
1713 unsigned Half = NumElems / 2;
1714 for (unsigned i = 0; i < Half; ++i)
1715 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1716 return false;
1717 for (unsigned i = Half; i < NumElems; ++i)
1718 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1719 return false;
1720
1721 return true;
1722}
1723
1724bool X86::isSHUFPMask(SDNode *N) {
1725 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1726 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1727}
1728
1729/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1730/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1731/// half elements to come from vector 1 (which would equal the dest.) and
1732/// the upper half to come from vector 2.
1733static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1734 if (NumOps != 2 && NumOps != 4) return false;
1735
1736 unsigned Half = NumOps / 2;
1737 for (unsigned i = 0; i < Half; ++i)
1738 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1739 return false;
1740 for (unsigned i = Half; i < NumOps; ++i)
1741 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1742 return false;
1743 return true;
1744}
1745
1746static bool isCommutedSHUFP(SDNode *N) {
1747 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1748 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1749}
1750
1751/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1752/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1753bool X86::isMOVHLPSMask(SDNode *N) {
1754 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1755
1756 if (N->getNumOperands() != 4)
1757 return false;
1758
1759 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1760 return isUndefOrEqual(N->getOperand(0), 6) &&
1761 isUndefOrEqual(N->getOperand(1), 7) &&
1762 isUndefOrEqual(N->getOperand(2), 2) &&
1763 isUndefOrEqual(N->getOperand(3), 3);
1764}
1765
1766/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1767/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1768/// <2, 3, 2, 3>
1769bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1770 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1771
1772 if (N->getNumOperands() != 4)
1773 return false;
1774
1775 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1776 return isUndefOrEqual(N->getOperand(0), 2) &&
1777 isUndefOrEqual(N->getOperand(1), 3) &&
1778 isUndefOrEqual(N->getOperand(2), 2) &&
1779 isUndefOrEqual(N->getOperand(3), 3);
1780}
1781
1782/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1783/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1784bool X86::isMOVLPMask(SDNode *N) {
1785 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1786
1787 unsigned NumElems = N->getNumOperands();
1788 if (NumElems != 2 && NumElems != 4)
1789 return false;
1790
1791 for (unsigned i = 0; i < NumElems/2; ++i)
1792 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1793 return false;
1794
1795 for (unsigned i = NumElems/2; i < NumElems; ++i)
1796 if (!isUndefOrEqual(N->getOperand(i), i))
1797 return false;
1798
1799 return true;
1800}
1801
1802/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1803/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1804/// and MOVLHPS.
1805bool X86::isMOVHPMask(SDNode *N) {
1806 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1807
1808 unsigned NumElems = N->getNumOperands();
1809 if (NumElems != 2 && NumElems != 4)
1810 return false;
1811
1812 for (unsigned i = 0; i < NumElems/2; ++i)
1813 if (!isUndefOrEqual(N->getOperand(i), i))
1814 return false;
1815
1816 for (unsigned i = 0; i < NumElems/2; ++i) {
1817 SDOperand Arg = N->getOperand(i + NumElems/2);
1818 if (!isUndefOrEqual(Arg, i + NumElems))
1819 return false;
1820 }
1821
1822 return true;
1823}
1824
1825/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1826/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1827bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1828 bool V2IsSplat = false) {
1829 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1830 return false;
1831
1832 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1833 SDOperand BitI = Elts[i];
1834 SDOperand BitI1 = Elts[i+1];
1835 if (!isUndefOrEqual(BitI, j))
1836 return false;
1837 if (V2IsSplat) {
1838 if (isUndefOrEqual(BitI1, NumElts))
1839 return false;
1840 } else {
1841 if (!isUndefOrEqual(BitI1, j + NumElts))
1842 return false;
1843 }
1844 }
1845
1846 return true;
1847}
1848
1849bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1850 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1851 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1852}
1853
1854/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1855/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1856bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1857 bool V2IsSplat = false) {
1858 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1859 return false;
1860
1861 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1862 SDOperand BitI = Elts[i];
1863 SDOperand BitI1 = Elts[i+1];
1864 if (!isUndefOrEqual(BitI, j + NumElts/2))
1865 return false;
1866 if (V2IsSplat) {
1867 if (isUndefOrEqual(BitI1, NumElts))
1868 return false;
1869 } else {
1870 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1871 return false;
1872 }
1873 }
1874
1875 return true;
1876}
1877
1878bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1879 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1880 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1881}
1882
1883/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1884/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1885/// <0, 0, 1, 1>
1886bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1887 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1888
1889 unsigned NumElems = N->getNumOperands();
1890 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1891 return false;
1892
1893 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1894 SDOperand BitI = N->getOperand(i);
1895 SDOperand BitI1 = N->getOperand(i+1);
1896
1897 if (!isUndefOrEqual(BitI, j))
1898 return false;
1899 if (!isUndefOrEqual(BitI1, j))
1900 return false;
1901 }
1902
1903 return true;
1904}
1905
1906/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1907/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1908/// <2, 2, 3, 3>
1909bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1910 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1911
1912 unsigned NumElems = N->getNumOperands();
1913 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1914 return false;
1915
1916 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1917 SDOperand BitI = N->getOperand(i);
1918 SDOperand BitI1 = N->getOperand(i + 1);
1919
1920 if (!isUndefOrEqual(BitI, j))
1921 return false;
1922 if (!isUndefOrEqual(BitI1, j))
1923 return false;
1924 }
1925
1926 return true;
1927}
1928
1929/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1930/// specifies a shuffle of elements that is suitable for input to MOVSS,
1931/// MOVSD, and MOVD, i.e. setting the lowest element.
1932static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1933 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1934 return false;
1935
1936 if (!isUndefOrEqual(Elts[0], NumElts))
1937 return false;
1938
1939 for (unsigned i = 1; i < NumElts; ++i) {
1940 if (!isUndefOrEqual(Elts[i], i))
1941 return false;
1942 }
1943
1944 return true;
1945}
1946
1947bool X86::isMOVLMask(SDNode *N) {
1948 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1949 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1950}
1951
1952/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1953/// of what x86 movss want. X86 movs requires the lowest element to be lowest
1954/// element of vector 2 and the other elements to come from vector 1 in order.
1955static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1956 bool V2IsSplat = false,
1957 bool V2IsUndef = false) {
1958 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1959 return false;
1960
1961 if (!isUndefOrEqual(Ops[0], 0))
1962 return false;
1963
1964 for (unsigned i = 1; i < NumOps; ++i) {
1965 SDOperand Arg = Ops[i];
1966 if (!(isUndefOrEqual(Arg, i+NumOps) ||
1967 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1968 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1969 return false;
1970 }
1971
1972 return true;
1973}
1974
1975static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1976 bool V2IsUndef = false) {
1977 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1978 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1979 V2IsSplat, V2IsUndef);
1980}
1981
1982/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1983/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1984bool X86::isMOVSHDUPMask(SDNode *N) {
1985 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1986
1987 if (N->getNumOperands() != 4)
1988 return false;
1989
1990 // Expect 1, 1, 3, 3
1991 for (unsigned i = 0; i < 2; ++i) {
1992 SDOperand Arg = N->getOperand(i);
1993 if (Arg.getOpcode() == ISD::UNDEF) continue;
1994 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1995 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1996 if (Val != 1) return false;
1997 }
1998
1999 bool HasHi = false;
2000 for (unsigned i = 2; i < 4; ++i) {
2001 SDOperand Arg = N->getOperand(i);
2002 if (Arg.getOpcode() == ISD::UNDEF) continue;
2003 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2004 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2005 if (Val != 3) return false;
2006 HasHi = true;
2007 }
2008
2009 // Don't use movshdup if it can be done with a shufps.
2010 return HasHi;
2011}
2012
2013/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2014/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2015bool X86::isMOVSLDUPMask(SDNode *N) {
2016 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2017
2018 if (N->getNumOperands() != 4)
2019 return false;
2020
2021 // Expect 0, 0, 2, 2
2022 for (unsigned i = 0; i < 2; ++i) {
2023 SDOperand Arg = N->getOperand(i);
2024 if (Arg.getOpcode() == ISD::UNDEF) continue;
2025 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2026 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2027 if (Val != 0) return false;
2028 }
2029
2030 bool HasHi = false;
2031 for (unsigned i = 2; i < 4; ++i) {
2032 SDOperand Arg = N->getOperand(i);
2033 if (Arg.getOpcode() == ISD::UNDEF) continue;
2034 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2035 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2036 if (Val != 2) return false;
2037 HasHi = true;
2038 }
2039
2040 // Don't use movshdup if it can be done with a shufps.
2041 return HasHi;
2042}
2043
2044/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2045/// specifies a identity operation on the LHS or RHS.
2046static bool isIdentityMask(SDNode *N, bool RHS = false) {
2047 unsigned NumElems = N->getNumOperands();
2048 for (unsigned i = 0; i < NumElems; ++i)
2049 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2050 return false;
2051 return true;
2052}
2053
2054/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2055/// a splat of a single element.
2056static bool isSplatMask(SDNode *N) {
2057 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2058
2059 // This is a splat operation if each element of the permute is the same, and
2060 // if the value doesn't reference the second vector.
2061 unsigned NumElems = N->getNumOperands();
2062 SDOperand ElementBase;
2063 unsigned i = 0;
2064 for (; i != NumElems; ++i) {
2065 SDOperand Elt = N->getOperand(i);
2066 if (isa<ConstantSDNode>(Elt)) {
2067 ElementBase = Elt;
2068 break;
2069 }
2070 }
2071
2072 if (!ElementBase.Val)
2073 return false;
2074
2075 for (; i != NumElems; ++i) {
2076 SDOperand Arg = N->getOperand(i);
2077 if (Arg.getOpcode() == ISD::UNDEF) continue;
2078 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2079 if (Arg != ElementBase) return false;
2080 }
2081
2082 // Make sure it is a splat of the first vector operand.
2083 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2084}
2085
2086/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2087/// a splat of a single element and it's a 2 or 4 element mask.
2088bool X86::isSplatMask(SDNode *N) {
2089 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2090
2091 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2092 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2093 return false;
2094 return ::isSplatMask(N);
2095}
2096
2097/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2098/// specifies a splat of zero element.
2099bool X86::isSplatLoMask(SDNode *N) {
2100 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2101
2102 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2103 if (!isUndefOrEqual(N->getOperand(i), 0))
2104 return false;
2105 return true;
2106}
2107
2108/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2109/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2110/// instructions.
2111unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2112 unsigned NumOperands = N->getNumOperands();
2113 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2114 unsigned Mask = 0;
2115 for (unsigned i = 0; i < NumOperands; ++i) {
2116 unsigned Val = 0;
2117 SDOperand Arg = N->getOperand(NumOperands-i-1);
2118 if (Arg.getOpcode() != ISD::UNDEF)
2119 Val = cast<ConstantSDNode>(Arg)->getValue();
2120 if (Val >= NumOperands) Val -= NumOperands;
2121 Mask |= Val;
2122 if (i != NumOperands - 1)
2123 Mask <<= Shift;
2124 }
2125
2126 return Mask;
2127}
2128
2129/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2130/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2131/// instructions.
2132unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2133 unsigned Mask = 0;
2134 // 8 nodes, but we only care about the last 4.
2135 for (unsigned i = 7; i >= 4; --i) {
2136 unsigned Val = 0;
2137 SDOperand Arg = N->getOperand(i);
2138 if (Arg.getOpcode() != ISD::UNDEF)
2139 Val = cast<ConstantSDNode>(Arg)->getValue();
2140 Mask |= (Val - 4);
2141 if (i != 4)
2142 Mask <<= 2;
2143 }
2144
2145 return Mask;
2146}
2147
2148/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2149/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2150/// instructions.
2151unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2152 unsigned Mask = 0;
2153 // 8 nodes, but we only care about the first 4.
2154 for (int i = 3; i >= 0; --i) {
2155 unsigned Val = 0;
2156 SDOperand Arg = N->getOperand(i);
2157 if (Arg.getOpcode() != ISD::UNDEF)
2158 Val = cast<ConstantSDNode>(Arg)->getValue();
2159 Mask |= Val;
2160 if (i != 0)
2161 Mask <<= 2;
2162 }
2163
2164 return Mask;
2165}
2166
2167/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2168/// specifies a 8 element shuffle that can be broken into a pair of
2169/// PSHUFHW and PSHUFLW.
2170static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2171 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2172
2173 if (N->getNumOperands() != 8)
2174 return false;
2175
2176 // Lower quadword shuffled.
2177 for (unsigned i = 0; i != 4; ++i) {
2178 SDOperand Arg = N->getOperand(i);
2179 if (Arg.getOpcode() == ISD::UNDEF) continue;
2180 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2181 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2182 if (Val > 4)
2183 return false;
2184 }
2185
2186 // Upper quadword shuffled.
2187 for (unsigned i = 4; i != 8; ++i) {
2188 SDOperand Arg = N->getOperand(i);
2189 if (Arg.getOpcode() == ISD::UNDEF) continue;
2190 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2191 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2192 if (Val < 4 || Val > 7)
2193 return false;
2194 }
2195
2196 return true;
2197}
2198
2199/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2200/// values in ther permute mask.
2201static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2202 SDOperand &V2, SDOperand &Mask,
2203 SelectionDAG &DAG) {
2204 MVT::ValueType VT = Op.getValueType();
2205 MVT::ValueType MaskVT = Mask.getValueType();
2206 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2207 unsigned NumElems = Mask.getNumOperands();
2208 SmallVector<SDOperand, 8> MaskVec;
2209
2210 for (unsigned i = 0; i != NumElems; ++i) {
2211 SDOperand Arg = Mask.getOperand(i);
2212 if (Arg.getOpcode() == ISD::UNDEF) {
2213 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2214 continue;
2215 }
2216 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2217 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2218 if (Val < NumElems)
2219 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2220 else
2221 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2222 }
2223
2224 std::swap(V1, V2);
2225 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2226 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2227}
2228
2229/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2230/// match movhlps. The lower half elements should come from upper half of
2231/// V1 (and in order), and the upper half elements should come from the upper
2232/// half of V2 (and in order).
2233static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2234 unsigned NumElems = Mask->getNumOperands();
2235 if (NumElems != 4)
2236 return false;
2237 for (unsigned i = 0, e = 2; i != e; ++i)
2238 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2239 return false;
2240 for (unsigned i = 2; i != 4; ++i)
2241 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2242 return false;
2243 return true;
2244}
2245
2246/// isScalarLoadToVector - Returns true if the node is a scalar load that
2247/// is promoted to a vector.
2248static inline bool isScalarLoadToVector(SDNode *N) {
2249 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2250 N = N->getOperand(0).Val;
2251 return ISD::isNON_EXTLoad(N);
2252 }
2253 return false;
2254}
2255
2256/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2257/// match movlp{s|d}. The lower half elements should come from lower half of
2258/// V1 (and in order), and the upper half elements should come from the upper
2259/// half of V2 (and in order). And since V1 will become the source of the
2260/// MOVLP, it must be either a vector load or a scalar load to vector.
2261static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2262 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2263 return false;
2264 // Is V2 is a vector load, don't do this transformation. We will try to use
2265 // load folding shufps op.
2266 if (ISD::isNON_EXTLoad(V2))
2267 return false;
2268
2269 unsigned NumElems = Mask->getNumOperands();
2270 if (NumElems != 2 && NumElems != 4)
2271 return false;
2272 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2273 if (!isUndefOrEqual(Mask->getOperand(i), i))
2274 return false;
2275 for (unsigned i = NumElems/2; i != NumElems; ++i)
2276 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2277 return false;
2278 return true;
2279}
2280
2281/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2282/// all the same.
2283static bool isSplatVector(SDNode *N) {
2284 if (N->getOpcode() != ISD::BUILD_VECTOR)
2285 return false;
2286
2287 SDOperand SplatValue = N->getOperand(0);
2288 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2289 if (N->getOperand(i) != SplatValue)
2290 return false;
2291 return true;
2292}
2293
2294/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2295/// to an undef.
2296static bool isUndefShuffle(SDNode *N) {
2297 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2298 return false;
2299
2300 SDOperand V1 = N->getOperand(0);
2301 SDOperand V2 = N->getOperand(1);
2302 SDOperand Mask = N->getOperand(2);
2303 unsigned NumElems = Mask.getNumOperands();
2304 for (unsigned i = 0; i != NumElems; ++i) {
2305 SDOperand Arg = Mask.getOperand(i);
2306 if (Arg.getOpcode() != ISD::UNDEF) {
2307 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2308 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2309 return false;
2310 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2311 return false;
2312 }
2313 }
2314 return true;
2315}
2316
2317/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2318/// constant +0.0.
2319static inline bool isZeroNode(SDOperand Elt) {
2320 return ((isa<ConstantSDNode>(Elt) &&
2321 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2322 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002323 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002324}
2325
2326/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2327/// to an zero vector.
2328static bool isZeroShuffle(SDNode *N) {
2329 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2330 return false;
2331
2332 SDOperand V1 = N->getOperand(0);
2333 SDOperand V2 = N->getOperand(1);
2334 SDOperand Mask = N->getOperand(2);
2335 unsigned NumElems = Mask.getNumOperands();
2336 for (unsigned i = 0; i != NumElems; ++i) {
2337 SDOperand Arg = Mask.getOperand(i);
2338 if (Arg.getOpcode() != ISD::UNDEF) {
2339 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2340 if (Idx < NumElems) {
2341 unsigned Opc = V1.Val->getOpcode();
2342 if (Opc == ISD::UNDEF)
2343 continue;
2344 if (Opc != ISD::BUILD_VECTOR ||
2345 !isZeroNode(V1.Val->getOperand(Idx)))
2346 return false;
2347 } else if (Idx >= NumElems) {
2348 unsigned Opc = V2.Val->getOpcode();
2349 if (Opc == ISD::UNDEF)
2350 continue;
2351 if (Opc != ISD::BUILD_VECTOR ||
2352 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2353 return false;
2354 }
2355 }
2356 }
2357 return true;
2358}
2359
2360/// getZeroVector - Returns a vector of specified type with all zero elements.
2361///
2362static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2363 assert(MVT::isVector(VT) && "Expected a vector type");
2364 unsigned NumElems = MVT::getVectorNumElements(VT);
2365 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2366 bool isFP = MVT::isFloatingPoint(EVT);
2367 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2368 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2369 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2370}
2371
2372/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2373/// that point to V2 points to its first element.
2374static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2375 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2376
2377 bool Changed = false;
2378 SmallVector<SDOperand, 8> MaskVec;
2379 unsigned NumElems = Mask.getNumOperands();
2380 for (unsigned i = 0; i != NumElems; ++i) {
2381 SDOperand Arg = Mask.getOperand(i);
2382 if (Arg.getOpcode() != ISD::UNDEF) {
2383 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2384 if (Val > NumElems) {
2385 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2386 Changed = true;
2387 }
2388 }
2389 MaskVec.push_back(Arg);
2390 }
2391
2392 if (Changed)
2393 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2394 &MaskVec[0], MaskVec.size());
2395 return Mask;
2396}
2397
2398/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2399/// operation of specified width.
2400static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2401 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2402 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2403
2404 SmallVector<SDOperand, 8> MaskVec;
2405 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2406 for (unsigned i = 1; i != NumElems; ++i)
2407 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2408 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2409}
2410
2411/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2412/// of specified width.
2413static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2414 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2415 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2416 SmallVector<SDOperand, 8> MaskVec;
2417 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2418 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2419 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2420 }
2421 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2422}
2423
2424/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2425/// of specified width.
2426static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2427 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2428 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2429 unsigned Half = NumElems/2;
2430 SmallVector<SDOperand, 8> MaskVec;
2431 for (unsigned i = 0; i != Half; ++i) {
2432 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2433 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2434 }
2435 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2436}
2437
2438/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2439///
2440static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2441 SDOperand V1 = Op.getOperand(0);
2442 SDOperand Mask = Op.getOperand(2);
2443 MVT::ValueType VT = Op.getValueType();
2444 unsigned NumElems = Mask.getNumOperands();
2445 Mask = getUnpacklMask(NumElems, DAG);
2446 while (NumElems != 4) {
2447 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2448 NumElems >>= 1;
2449 }
2450 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2451
2452 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2453 Mask = getZeroVector(MaskVT, DAG);
2454 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2455 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2456 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2457}
2458
2459/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2460/// vector of zero or undef vector.
2461static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2462 unsigned NumElems, unsigned Idx,
2463 bool isZero, SelectionDAG &DAG) {
2464 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2465 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2466 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2467 SDOperand Zero = DAG.getConstant(0, EVT);
2468 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2469 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2470 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2471 &MaskVec[0], MaskVec.size());
2472 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2473}
2474
2475/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2476///
2477static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2478 unsigned NumNonZero, unsigned NumZero,
2479 SelectionDAG &DAG, TargetLowering &TLI) {
2480 if (NumNonZero > 8)
2481 return SDOperand();
2482
2483 SDOperand V(0, 0);
2484 bool First = true;
2485 for (unsigned i = 0; i < 16; ++i) {
2486 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2487 if (ThisIsNonZero && First) {
2488 if (NumZero)
2489 V = getZeroVector(MVT::v8i16, DAG);
2490 else
2491 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2492 First = false;
2493 }
2494
2495 if ((i & 1) != 0) {
2496 SDOperand ThisElt(0, 0), LastElt(0, 0);
2497 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2498 if (LastIsNonZero) {
2499 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2500 }
2501 if (ThisIsNonZero) {
2502 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2503 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2504 ThisElt, DAG.getConstant(8, MVT::i8));
2505 if (LastIsNonZero)
2506 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2507 } else
2508 ThisElt = LastElt;
2509
2510 if (ThisElt.Val)
2511 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2512 DAG.getConstant(i/2, TLI.getPointerTy()));
2513 }
2514 }
2515
2516 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2517}
2518
2519/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2520///
2521static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2522 unsigned NumNonZero, unsigned NumZero,
2523 SelectionDAG &DAG, TargetLowering &TLI) {
2524 if (NumNonZero > 4)
2525 return SDOperand();
2526
2527 SDOperand V(0, 0);
2528 bool First = true;
2529 for (unsigned i = 0; i < 8; ++i) {
2530 bool isNonZero = (NonZeros & (1 << i)) != 0;
2531 if (isNonZero) {
2532 if (First) {
2533 if (NumZero)
2534 V = getZeroVector(MVT::v8i16, DAG);
2535 else
2536 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2537 First = false;
2538 }
2539 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2540 DAG.getConstant(i, TLI.getPointerTy()));
2541 }
2542 }
2543
2544 return V;
2545}
2546
2547SDOperand
2548X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2549 // All zero's are handled with pxor.
2550 if (ISD::isBuildVectorAllZeros(Op.Val))
2551 return Op;
2552
2553 // All one's are handled with pcmpeqd.
2554 if (ISD::isBuildVectorAllOnes(Op.Val))
2555 return Op;
2556
2557 MVT::ValueType VT = Op.getValueType();
2558 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2559 unsigned EVTBits = MVT::getSizeInBits(EVT);
2560
2561 unsigned NumElems = Op.getNumOperands();
2562 unsigned NumZero = 0;
2563 unsigned NumNonZero = 0;
2564 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00002565 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002566 std::set<SDOperand> Values;
2567 for (unsigned i = 0; i < NumElems; ++i) {
2568 SDOperand Elt = Op.getOperand(i);
2569 if (Elt.getOpcode() != ISD::UNDEF) {
2570 Values.insert(Elt);
2571 if (isZeroNode(Elt))
2572 NumZero++;
2573 else {
2574 NonZeros |= (1 << i);
2575 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00002576 if (Elt.getOpcode() == ISD::Constant ||
2577 Elt.getOpcode() == ISD::ConstantFP)
2578 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002579 }
2580 }
2581 }
2582
2583 if (NumNonZero == 0) {
2584 if (NumZero == 0)
2585 // All undef vector. Return an UNDEF.
2586 return DAG.getNode(ISD::UNDEF, VT);
2587 else
2588 // A mix of zero and undef. Return a zero vector.
2589 return getZeroVector(VT, DAG);
2590 }
2591
2592 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2593 if (Values.size() == 1)
2594 return SDOperand();
2595
2596 // Special case for single non-zero element.
2597 if (NumNonZero == 1) {
2598 unsigned Idx = CountTrailingZeros_32(NonZeros);
2599 SDOperand Item = Op.getOperand(Idx);
2600 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2601 if (Idx == 0)
2602 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2603 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2604 NumZero > 0, DAG);
2605
2606 if (EVTBits == 32) {
2607 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2608 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2609 DAG);
2610 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2611 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2612 SmallVector<SDOperand, 8> MaskVec;
2613 for (unsigned i = 0; i < NumElems; i++)
2614 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2615 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2616 &MaskVec[0], MaskVec.size());
2617 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2618 DAG.getNode(ISD::UNDEF, VT), Mask);
2619 }
2620 }
2621
Dan Gohman21463242007-07-24 22:55:08 +00002622 // A vector full of immediates; various special cases are already
2623 // handled, so this is best done with a single constant-pool load.
2624 if (NumNonZero == NumNonZeroImms)
2625 return SDOperand();
2626
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002627 // Let legalizer expand 2-wide build_vectors.
2628 if (EVTBits == 64)
2629 return SDOperand();
2630
2631 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2632 if (EVTBits == 8 && NumElems == 16) {
2633 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2634 *this);
2635 if (V.Val) return V;
2636 }
2637
2638 if (EVTBits == 16 && NumElems == 8) {
2639 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2640 *this);
2641 if (V.Val) return V;
2642 }
2643
2644 // If element VT is == 32 bits, turn it into a number of shuffles.
2645 SmallVector<SDOperand, 8> V;
2646 V.resize(NumElems);
2647 if (NumElems == 4 && NumZero > 0) {
2648 for (unsigned i = 0; i < 4; ++i) {
2649 bool isZero = !(NonZeros & (1 << i));
2650 if (isZero)
2651 V[i] = getZeroVector(VT, DAG);
2652 else
2653 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2654 }
2655
2656 for (unsigned i = 0; i < 2; ++i) {
2657 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2658 default: break;
2659 case 0:
2660 V[i] = V[i*2]; // Must be a zero vector.
2661 break;
2662 case 1:
2663 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2664 getMOVLMask(NumElems, DAG));
2665 break;
2666 case 2:
2667 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2668 getMOVLMask(NumElems, DAG));
2669 break;
2670 case 3:
2671 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2672 getUnpacklMask(NumElems, DAG));
2673 break;
2674 }
2675 }
2676
2677 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2678 // clears the upper bits.
2679 // FIXME: we can do the same for v4f32 case when we know both parts of
2680 // the lower half come from scalar_to_vector (loadf32). We should do
2681 // that in post legalizer dag combiner with target specific hooks.
2682 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2683 return V[0];
2684 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2685 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2686 SmallVector<SDOperand, 8> MaskVec;
2687 bool Reverse = (NonZeros & 0x3) == 2;
2688 for (unsigned i = 0; i < 2; ++i)
2689 if (Reverse)
2690 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2691 else
2692 MaskVec.push_back(DAG.getConstant(i, EVT));
2693 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2694 for (unsigned i = 0; i < 2; ++i)
2695 if (Reverse)
2696 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2697 else
2698 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2699 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2700 &MaskVec[0], MaskVec.size());
2701 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2702 }
2703
2704 if (Values.size() > 2) {
2705 // Expand into a number of unpckl*.
2706 // e.g. for v4f32
2707 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2708 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2709 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2710 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2711 for (unsigned i = 0; i < NumElems; ++i)
2712 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2713 NumElems >>= 1;
2714 while (NumElems != 0) {
2715 for (unsigned i = 0; i < NumElems; ++i)
2716 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2717 UnpckMask);
2718 NumElems >>= 1;
2719 }
2720 return V[0];
2721 }
2722
2723 return SDOperand();
2724}
2725
2726SDOperand
2727X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2728 SDOperand V1 = Op.getOperand(0);
2729 SDOperand V2 = Op.getOperand(1);
2730 SDOperand PermMask = Op.getOperand(2);
2731 MVT::ValueType VT = Op.getValueType();
2732 unsigned NumElems = PermMask.getNumOperands();
2733 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2734 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2735 bool V1IsSplat = false;
2736 bool V2IsSplat = false;
2737
2738 if (isUndefShuffle(Op.Val))
2739 return DAG.getNode(ISD::UNDEF, VT);
2740
2741 if (isZeroShuffle(Op.Val))
2742 return getZeroVector(VT, DAG);
2743
2744 if (isIdentityMask(PermMask.Val))
2745 return V1;
2746 else if (isIdentityMask(PermMask.Val, true))
2747 return V2;
2748
2749 if (isSplatMask(PermMask.Val)) {
2750 if (NumElems <= 4) return Op;
2751 // Promote it to a v4i32 splat.
2752 return PromoteSplat(Op, DAG);
2753 }
2754
2755 if (X86::isMOVLMask(PermMask.Val))
2756 return (V1IsUndef) ? V2 : Op;
2757
2758 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2759 X86::isMOVSLDUPMask(PermMask.Val) ||
2760 X86::isMOVHLPSMask(PermMask.Val) ||
2761 X86::isMOVHPMask(PermMask.Val) ||
2762 X86::isMOVLPMask(PermMask.Val))
2763 return Op;
2764
2765 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2766 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2767 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2768
2769 bool Commuted = false;
2770 V1IsSplat = isSplatVector(V1.Val);
2771 V2IsSplat = isSplatVector(V2.Val);
2772 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2773 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2774 std::swap(V1IsSplat, V2IsSplat);
2775 std::swap(V1IsUndef, V2IsUndef);
2776 Commuted = true;
2777 }
2778
2779 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2780 if (V2IsUndef) return V1;
2781 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2782 if (V2IsSplat) {
2783 // V2 is a splat, so the mask may be malformed. That is, it may point
2784 // to any V2 element. The instruction selectior won't like this. Get
2785 // a corrected mask and commute to form a proper MOVS{S|D}.
2786 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2787 if (NewMask.Val != PermMask.Val)
2788 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2789 }
2790 return Op;
2791 }
2792
2793 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2794 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2795 X86::isUNPCKLMask(PermMask.Val) ||
2796 X86::isUNPCKHMask(PermMask.Val))
2797 return Op;
2798
2799 if (V2IsSplat) {
2800 // Normalize mask so all entries that point to V2 points to its first
2801 // element then try to match unpck{h|l} again. If match, return a
2802 // new vector_shuffle with the corrected mask.
2803 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2804 if (NewMask.Val != PermMask.Val) {
2805 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2806 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2807 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2808 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2809 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2810 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2811 }
2812 }
2813 }
2814
2815 // Normalize the node to match x86 shuffle ops if needed
2816 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2817 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2818
2819 if (Commuted) {
2820 // Commute is back and try unpck* again.
2821 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2822 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2823 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2824 X86::isUNPCKLMask(PermMask.Val) ||
2825 X86::isUNPCKHMask(PermMask.Val))
2826 return Op;
2827 }
2828
2829 // If VT is integer, try PSHUF* first, then SHUFP*.
2830 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00002831 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2832 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2833 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2834 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002835 X86::isPSHUFHWMask(PermMask.Val) ||
2836 X86::isPSHUFLWMask(PermMask.Val)) {
2837 if (V2.getOpcode() != ISD::UNDEF)
2838 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2839 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2840 return Op;
2841 }
2842
2843 if (X86::isSHUFPMask(PermMask.Val) &&
2844 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2845 return Op;
2846
2847 // Handle v8i16 shuffle high / low shuffle node pair.
2848 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2849 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2850 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2851 SmallVector<SDOperand, 8> MaskVec;
2852 for (unsigned i = 0; i != 4; ++i)
2853 MaskVec.push_back(PermMask.getOperand(i));
2854 for (unsigned i = 4; i != 8; ++i)
2855 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2856 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2857 &MaskVec[0], MaskVec.size());
2858 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2859 MaskVec.clear();
2860 for (unsigned i = 0; i != 4; ++i)
2861 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2862 for (unsigned i = 4; i != 8; ++i)
2863 MaskVec.push_back(PermMask.getOperand(i));
2864 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2865 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2866 }
2867 } else {
2868 // Floating point cases in the other order.
2869 if (X86::isSHUFPMask(PermMask.Val))
2870 return Op;
2871 if (X86::isPSHUFDMask(PermMask.Val) ||
2872 X86::isPSHUFHWMask(PermMask.Val) ||
2873 X86::isPSHUFLWMask(PermMask.Val)) {
2874 if (V2.getOpcode() != ISD::UNDEF)
2875 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2876 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2877 return Op;
2878 }
2879 }
2880
2881 if (NumElems == 4 &&
2882 // Don't do this for MMX.
2883 MVT::getSizeInBits(VT) != 64) {
2884 MVT::ValueType MaskVT = PermMask.getValueType();
2885 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2886 SmallVector<std::pair<int, int>, 8> Locs;
2887 Locs.reserve(NumElems);
2888 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2889 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2890 unsigned NumHi = 0;
2891 unsigned NumLo = 0;
2892 // If no more than two elements come from either vector. This can be
2893 // implemented with two shuffles. First shuffle gather the elements.
2894 // The second shuffle, which takes the first shuffle as both of its
2895 // vector operands, put the elements into the right order.
2896 for (unsigned i = 0; i != NumElems; ++i) {
2897 SDOperand Elt = PermMask.getOperand(i);
2898 if (Elt.getOpcode() == ISD::UNDEF) {
2899 Locs[i] = std::make_pair(-1, -1);
2900 } else {
2901 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2902 if (Val < NumElems) {
2903 Locs[i] = std::make_pair(0, NumLo);
2904 Mask1[NumLo] = Elt;
2905 NumLo++;
2906 } else {
2907 Locs[i] = std::make_pair(1, NumHi);
2908 if (2+NumHi < NumElems)
2909 Mask1[2+NumHi] = Elt;
2910 NumHi++;
2911 }
2912 }
2913 }
2914 if (NumLo <= 2 && NumHi <= 2) {
2915 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2916 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2917 &Mask1[0], Mask1.size()));
2918 for (unsigned i = 0; i != NumElems; ++i) {
2919 if (Locs[i].first == -1)
2920 continue;
2921 else {
2922 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2923 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2924 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2925 }
2926 }
2927
2928 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2929 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2930 &Mask2[0], Mask2.size()));
2931 }
2932
2933 // Break it into (shuffle shuffle_hi, shuffle_lo).
2934 Locs.clear();
2935 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2936 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2937 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2938 unsigned MaskIdx = 0;
2939 unsigned LoIdx = 0;
2940 unsigned HiIdx = NumElems/2;
2941 for (unsigned i = 0; i != NumElems; ++i) {
2942 if (i == NumElems/2) {
2943 MaskPtr = &HiMask;
2944 MaskIdx = 1;
2945 LoIdx = 0;
2946 HiIdx = NumElems/2;
2947 }
2948 SDOperand Elt = PermMask.getOperand(i);
2949 if (Elt.getOpcode() == ISD::UNDEF) {
2950 Locs[i] = std::make_pair(-1, -1);
2951 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2952 Locs[i] = std::make_pair(MaskIdx, LoIdx);
2953 (*MaskPtr)[LoIdx] = Elt;
2954 LoIdx++;
2955 } else {
2956 Locs[i] = std::make_pair(MaskIdx, HiIdx);
2957 (*MaskPtr)[HiIdx] = Elt;
2958 HiIdx++;
2959 }
2960 }
2961
2962 SDOperand LoShuffle =
2963 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2964 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2965 &LoMask[0], LoMask.size()));
2966 SDOperand HiShuffle =
2967 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2968 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2969 &HiMask[0], HiMask.size()));
2970 SmallVector<SDOperand, 8> MaskOps;
2971 for (unsigned i = 0; i != NumElems; ++i) {
2972 if (Locs[i].first == -1) {
2973 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2974 } else {
2975 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2976 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2977 }
2978 }
2979 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2980 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2981 &MaskOps[0], MaskOps.size()));
2982 }
2983
2984 return SDOperand();
2985}
2986
2987SDOperand
2988X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2989 if (!isa<ConstantSDNode>(Op.getOperand(1)))
2990 return SDOperand();
2991
2992 MVT::ValueType VT = Op.getValueType();
2993 // TODO: handle v16i8.
2994 if (MVT::getSizeInBits(VT) == 16) {
2995 // Transform it so it match pextrw which produces a 32-bit result.
2996 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2997 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2998 Op.getOperand(0), Op.getOperand(1));
2999 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3000 DAG.getValueType(VT));
3001 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3002 } else if (MVT::getSizeInBits(VT) == 32) {
3003 SDOperand Vec = Op.getOperand(0);
3004 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3005 if (Idx == 0)
3006 return Op;
3007 // SHUFPS the element to the lowest double word, then movss.
3008 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3009 SmallVector<SDOperand, 8> IdxVec;
3010 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3011 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3012 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3013 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3014 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3015 &IdxVec[0], IdxVec.size());
3016 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3017 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3018 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3019 DAG.getConstant(0, getPointerTy()));
3020 } else if (MVT::getSizeInBits(VT) == 64) {
3021 SDOperand Vec = Op.getOperand(0);
3022 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3023 if (Idx == 0)
3024 return Op;
3025
3026 // UNPCKHPD the element to the lowest double word, then movsd.
3027 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3028 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3029 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3030 SmallVector<SDOperand, 8> IdxVec;
3031 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3032 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3033 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3034 &IdxVec[0], IdxVec.size());
3035 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3036 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3037 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3038 DAG.getConstant(0, getPointerTy()));
3039 }
3040
3041 return SDOperand();
3042}
3043
3044SDOperand
3045X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3046 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3047 // as its second argument.
3048 MVT::ValueType VT = Op.getValueType();
3049 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3050 SDOperand N0 = Op.getOperand(0);
3051 SDOperand N1 = Op.getOperand(1);
3052 SDOperand N2 = Op.getOperand(2);
3053 if (MVT::getSizeInBits(BaseVT) == 16) {
3054 if (N1.getValueType() != MVT::i32)
3055 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3056 if (N2.getValueType() != MVT::i32)
3057 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3058 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3059 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3060 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3061 if (Idx == 0) {
3062 // Use a movss.
3063 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3064 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3065 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3066 SmallVector<SDOperand, 8> MaskVec;
3067 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3068 for (unsigned i = 1; i <= 3; ++i)
3069 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3070 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3071 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3072 &MaskVec[0], MaskVec.size()));
3073 } else {
3074 // Use two pinsrw instructions to insert a 32 bit value.
3075 Idx <<= 1;
3076 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003077 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3078 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3079 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3080 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003081 }
3082 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3083 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3084 DAG.getConstant(Idx, getPointerTy()));
3085 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3086 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3087 DAG.getConstant(Idx+1, getPointerTy()));
3088 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3089 }
3090 }
3091
3092 return SDOperand();
3093}
3094
3095SDOperand
3096X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3097 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3098 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3099}
3100
3101// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3102// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3103// one of the above mentioned nodes. It has to be wrapped because otherwise
3104// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3105// be used to form addressing mode. These wrapped nodes will be selected
3106// into MOV32ri.
3107SDOperand
3108X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3109 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3110 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3111 getPointerTy(),
3112 CP->getAlignment());
3113 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3114 // With PIC, the address is actually $g + Offset.
3115 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3116 !Subtarget->isPICStyleRIPRel()) {
3117 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3118 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3119 Result);
3120 }
3121
3122 return Result;
3123}
3124
3125SDOperand
3126X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3127 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3128 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3129 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3130 // With PIC, the address is actually $g + Offset.
3131 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3132 !Subtarget->isPICStyleRIPRel()) {
3133 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3134 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3135 Result);
3136 }
3137
3138 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3139 // load the value at address GV, not the value of GV itself. This means that
3140 // the GlobalAddress must be in the base or index register of the address, not
3141 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3142 // The same applies for external symbols during PIC codegen
3143 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3144 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3145
3146 return Result;
3147}
3148
3149// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3150static SDOperand
3151LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3152 const MVT::ValueType PtrVT) {
3153 SDOperand InFlag;
3154 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3155 DAG.getNode(X86ISD::GlobalBaseReg,
3156 PtrVT), InFlag);
3157 InFlag = Chain.getValue(1);
3158
3159 // emit leal symbol@TLSGD(,%ebx,1), %eax
3160 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3161 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3162 GA->getValueType(0),
3163 GA->getOffset());
3164 SDOperand Ops[] = { Chain, TGA, InFlag };
3165 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3166 InFlag = Result.getValue(2);
3167 Chain = Result.getValue(1);
3168
3169 // call ___tls_get_addr. This function receives its argument in
3170 // the register EAX.
3171 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3172 InFlag = Chain.getValue(1);
3173
3174 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3175 SDOperand Ops1[] = { Chain,
3176 DAG.getTargetExternalSymbol("___tls_get_addr",
3177 PtrVT),
3178 DAG.getRegister(X86::EAX, PtrVT),
3179 DAG.getRegister(X86::EBX, PtrVT),
3180 InFlag };
3181 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3182 InFlag = Chain.getValue(1);
3183
3184 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3185}
3186
3187// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3188// "local exec" model.
3189static SDOperand
3190LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3191 const MVT::ValueType PtrVT) {
3192 // Get the Thread Pointer
3193 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3194 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3195 // exec)
3196 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3197 GA->getValueType(0),
3198 GA->getOffset());
3199 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3200
3201 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3202 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3203
3204 // The address of the thread local variable is the add of the thread
3205 // pointer with the offset of the variable.
3206 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3207}
3208
3209SDOperand
3210X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3211 // TODO: implement the "local dynamic" model
3212 // TODO: implement the "initial exec"model for pic executables
3213 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3214 "TLS not implemented for non-ELF and 64-bit targets");
3215 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3216 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3217 // otherwise use the "Local Exec"TLS Model
3218 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3219 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3220 else
3221 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3222}
3223
3224SDOperand
3225X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3226 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3227 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3228 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3229 // With PIC, the address is actually $g + Offset.
3230 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3231 !Subtarget->isPICStyleRIPRel()) {
3232 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3233 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3234 Result);
3235 }
3236
3237 return Result;
3238}
3239
3240SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3241 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3242 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3243 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3244 // With PIC, the address is actually $g + Offset.
3245 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3246 !Subtarget->isPICStyleRIPRel()) {
3247 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3248 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3249 Result);
3250 }
3251
3252 return Result;
3253}
3254
3255SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3256 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3257 "Not an i64 shift!");
3258 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3259 SDOperand ShOpLo = Op.getOperand(0);
3260 SDOperand ShOpHi = Op.getOperand(1);
3261 SDOperand ShAmt = Op.getOperand(2);
3262 SDOperand Tmp1 = isSRA ?
3263 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3264 DAG.getConstant(0, MVT::i32);
3265
3266 SDOperand Tmp2, Tmp3;
3267 if (Op.getOpcode() == ISD::SHL_PARTS) {
3268 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3269 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3270 } else {
3271 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3272 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3273 }
3274
3275 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3276 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3277 DAG.getConstant(32, MVT::i8));
3278 SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3279 SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3280
3281 SDOperand Hi, Lo;
3282 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3283
3284 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3285 SmallVector<SDOperand, 4> Ops;
3286 if (Op.getOpcode() == ISD::SHL_PARTS) {
3287 Ops.push_back(Tmp2);
3288 Ops.push_back(Tmp3);
3289 Ops.push_back(CC);
3290 Ops.push_back(InFlag);
3291 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3292 InFlag = Hi.getValue(1);
3293
3294 Ops.clear();
3295 Ops.push_back(Tmp3);
3296 Ops.push_back(Tmp1);
3297 Ops.push_back(CC);
3298 Ops.push_back(InFlag);
3299 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3300 } else {
3301 Ops.push_back(Tmp2);
3302 Ops.push_back(Tmp3);
3303 Ops.push_back(CC);
3304 Ops.push_back(InFlag);
3305 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3306 InFlag = Lo.getValue(1);
3307
3308 Ops.clear();
3309 Ops.push_back(Tmp3);
3310 Ops.push_back(Tmp1);
3311 Ops.push_back(CC);
3312 Ops.push_back(InFlag);
3313 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3314 }
3315
3316 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3317 Ops.clear();
3318 Ops.push_back(Lo);
3319 Ops.push_back(Hi);
3320 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3321}
3322
3323SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3324 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3325 Op.getOperand(0).getValueType() >= MVT::i16 &&
3326 "Unknown SINT_TO_FP to lower!");
3327
3328 SDOperand Result;
3329 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3330 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3331 MachineFunction &MF = DAG.getMachineFunction();
3332 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3333 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3334 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3335 StackSlot, NULL, 0);
3336
Dale Johannesen2fc20782007-09-14 22:26:36 +00003337 // These are really Legal; caller falls through into that case.
3338 if (SrcVT==MVT::i32 && Op.getValueType() != MVT::f80 && X86ScalarSSE)
3339 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003340 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3341 Subtarget->is64Bit())
3342 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003343
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003344 // Build the FILD
3345 SDVTList Tys;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003346 bool useSSE = X86ScalarSSE && Op.getValueType() != MVT::f80;
3347 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003348 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3349 else
3350 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3351 SmallVector<SDOperand, 8> Ops;
3352 Ops.push_back(Chain);
3353 Ops.push_back(StackSlot);
3354 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003355 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003356 Tys, &Ops[0], Ops.size());
3357
Dale Johannesen2fc20782007-09-14 22:26:36 +00003358 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359 Chain = Result.getValue(1);
3360 SDOperand InFlag = Result.getValue(2);
3361
3362 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3363 // shouldn't be necessary except that RFP cannot be live across
3364 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3365 MachineFunction &MF = DAG.getMachineFunction();
3366 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3367 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3368 Tys = DAG.getVTList(MVT::Other);
3369 SmallVector<SDOperand, 8> Ops;
3370 Ops.push_back(Chain);
3371 Ops.push_back(Result);
3372 Ops.push_back(StackSlot);
3373 Ops.push_back(DAG.getValueType(Op.getValueType()));
3374 Ops.push_back(InFlag);
3375 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3376 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3377 }
3378
3379 return Result;
3380}
3381
3382SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3383 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3384 "Unknown FP_TO_SINT to lower!");
3385 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3386 // stack slot.
Dale Johannesen2fc20782007-09-14 22:26:36 +00003387 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003388 MachineFunction &MF = DAG.getMachineFunction();
3389 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3390 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3391 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3392
Dale Johannesen2fc20782007-09-14 22:26:36 +00003393 // These are really Legal.
3394 if (Op.getValueType() == MVT::i32 && X86ScalarSSE &&
3395 Op.getOperand(0).getValueType() != MVT::f80)
3396 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003397 if (Subtarget->is64Bit() &&
3398 Op.getValueType() == MVT::i64 &&
3399 Op.getOperand(0).getValueType() != MVT::f80)
3400 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003401
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003402 unsigned Opc;
3403 switch (Op.getValueType()) {
3404 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3405 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3406 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3407 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3408 }
3409
3410 SDOperand Chain = DAG.getEntryNode();
3411 SDOperand Value = Op.getOperand(0);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003412 if (X86ScalarSSE && Op.getOperand(0).getValueType() != MVT::f80) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003413 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3414 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3415 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3416 SDOperand Ops[] = {
3417 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3418 };
3419 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3420 Chain = Value.getValue(1);
3421 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3422 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3423 }
3424
3425 // Build the FP_TO_INT*_IN_MEM
3426 SDOperand Ops[] = { Chain, Value, StackSlot };
3427 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3428
3429 // Load the result.
3430 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3431}
3432
3433SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3434 MVT::ValueType VT = Op.getValueType();
3435 MVT::ValueType EltVT = VT;
3436 if (MVT::isVector(VT))
3437 EltVT = MVT::getVectorElementType(VT);
3438 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3439 std::vector<Constant*> CV;
3440 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003441 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003442 CV.push_back(C);
3443 CV.push_back(C);
3444 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003445 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003446 CV.push_back(C);
3447 CV.push_back(C);
3448 CV.push_back(C);
3449 CV.push_back(C);
3450 }
Dan Gohman11821702007-07-27 17:16:43 +00003451 Constant *C = ConstantVector::get(CV);
3452 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3453 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3454 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003455 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3456}
3457
3458SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3459 MVT::ValueType VT = Op.getValueType();
3460 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003461 unsigned EltNum = 1;
3462 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003463 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003464 EltNum = MVT::getVectorNumElements(VT);
3465 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003466 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3467 std::vector<Constant*> CV;
3468 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003469 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003470 CV.push_back(C);
3471 CV.push_back(C);
3472 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003473 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003474 CV.push_back(C);
3475 CV.push_back(C);
3476 CV.push_back(C);
3477 CV.push_back(C);
3478 }
Dan Gohman11821702007-07-27 17:16:43 +00003479 Constant *C = ConstantVector::get(CV);
3480 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3481 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3482 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00003483 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00003484 return DAG.getNode(ISD::BIT_CONVERT, VT,
3485 DAG.getNode(ISD::XOR, MVT::v2i64,
3486 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3487 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3488 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00003489 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3490 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003491}
3492
3493SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3494 SDOperand Op0 = Op.getOperand(0);
3495 SDOperand Op1 = Op.getOperand(1);
3496 MVT::ValueType VT = Op.getValueType();
3497 MVT::ValueType SrcVT = Op1.getValueType();
3498 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3499
3500 // If second operand is smaller, extend it first.
3501 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3502 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3503 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00003504 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003505 }
3506
3507 // First get the sign bit of second operand.
3508 std::vector<Constant*> CV;
3509 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003510 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3511 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003512 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003513 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3514 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3515 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3516 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003517 }
Dan Gohman11821702007-07-27 17:16:43 +00003518 Constant *C = ConstantVector::get(CV);
3519 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3520 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3521 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003522 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3523
3524 // Shift sign bit right or left if the two operands have different types.
3525 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3526 // Op0 is MVT::f32, Op1 is MVT::f64.
3527 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3528 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3529 DAG.getConstant(32, MVT::i32));
3530 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3531 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3532 DAG.getConstant(0, getPointerTy()));
3533 }
3534
3535 // Clear first operand sign bit.
3536 CV.clear();
3537 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003538 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3539 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003540 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003541 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3542 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3543 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3544 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003545 }
Dan Gohman11821702007-07-27 17:16:43 +00003546 C = ConstantVector::get(CV);
3547 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3548 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3549 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003550 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3551
3552 // Or the value with the sign bit.
3553 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3554}
3555
3556SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3557 SDOperand Chain) {
3558 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3559 SDOperand Cond;
3560 SDOperand Op0 = Op.getOperand(0);
3561 SDOperand Op1 = Op.getOperand(1);
3562 SDOperand CC = Op.getOperand(2);
3563 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3564 const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3565 const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3566 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3567 unsigned X86CC;
3568
3569 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3570 Op0, Op1, DAG)) {
3571 SDOperand Ops1[] = { Chain, Op0, Op1 };
3572 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3573 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3574 return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3575 }
3576
3577 assert(isFP && "Illegal integer SetCC!");
3578
3579 SDOperand COps[] = { Chain, Op0, Op1 };
3580 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3581
3582 switch (SetCCOpcode) {
3583 default: assert(false && "Illegal floating point SetCC!");
3584 case ISD::SETOEQ: { // !PF & ZF
3585 SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3586 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3587 SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3588 Tmp1.getValue(1) };
3589 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3590 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3591 }
3592 case ISD::SETUNE: { // PF | !ZF
3593 SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3594 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3595 SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3596 Tmp1.getValue(1) };
3597 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3598 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3599 }
3600 }
3601}
3602
3603SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3604 bool addTest = true;
3605 SDOperand Chain = DAG.getEntryNode();
3606 SDOperand Cond = Op.getOperand(0);
3607 SDOperand CC;
3608 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3609
3610 if (Cond.getOpcode() == ISD::SETCC)
3611 Cond = LowerSETCC(Cond, DAG, Chain);
3612
3613 if (Cond.getOpcode() == X86ISD::SETCC) {
3614 CC = Cond.getOperand(0);
3615
3616 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3617 // (since flag operand cannot be shared). Use it as the condition setting
3618 // operand in place of the X86ISD::SETCC.
3619 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3620 // to use a test instead of duplicating the X86ISD::CMP (for register
3621 // pressure reason)?
3622 SDOperand Cmp = Cond.getOperand(1);
3623 unsigned Opc = Cmp.getOpcode();
3624 bool IllegalFPCMov = !X86ScalarSSE &&
3625 MVT::isFloatingPoint(Op.getValueType()) &&
3626 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3627 if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3628 !IllegalFPCMov) {
3629 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3630 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3631 addTest = false;
3632 }
3633 }
3634
3635 if (addTest) {
3636 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3637 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3638 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3639 }
3640
3641 VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3642 SmallVector<SDOperand, 4> Ops;
3643 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3644 // condition is true.
3645 Ops.push_back(Op.getOperand(2));
3646 Ops.push_back(Op.getOperand(1));
3647 Ops.push_back(CC);
3648 Ops.push_back(Cond.getValue(1));
3649 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3650}
3651
3652SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3653 bool addTest = true;
3654 SDOperand Chain = Op.getOperand(0);
3655 SDOperand Cond = Op.getOperand(1);
3656 SDOperand Dest = Op.getOperand(2);
3657 SDOperand CC;
3658 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3659
3660 if (Cond.getOpcode() == ISD::SETCC)
3661 Cond = LowerSETCC(Cond, DAG, Chain);
3662
3663 if (Cond.getOpcode() == X86ISD::SETCC) {
3664 CC = Cond.getOperand(0);
3665
3666 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3667 // (since flag operand cannot be shared). Use it as the condition setting
3668 // operand in place of the X86ISD::SETCC.
3669 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3670 // to use a test instead of duplicating the X86ISD::CMP (for register
3671 // pressure reason)?
3672 SDOperand Cmp = Cond.getOperand(1);
3673 unsigned Opc = Cmp.getOpcode();
3674 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3675 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3676 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3677 addTest = false;
3678 }
3679 }
3680
3681 if (addTest) {
3682 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3683 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3684 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3685 }
3686 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3687 Cond, Op.getOperand(2), CC, Cond.getValue(1));
3688}
3689
3690SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3691 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3692
3693 if (Subtarget->is64Bit())
3694 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3695 else
3696 switch (CallingConv) {
3697 default:
3698 assert(0 && "Unsupported calling convention");
3699 case CallingConv::Fast:
3700 // TODO: Implement fastcc
3701 // Falls through
3702 case CallingConv::C:
3703 case CallingConv::X86_StdCall:
3704 return LowerCCCCallTo(Op, DAG, CallingConv);
3705 case CallingConv::X86_FastCall:
3706 return LowerFastCCCallTo(Op, DAG, CallingConv);
3707 }
3708}
3709
3710
3711// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3712// Calls to _alloca is needed to probe the stack when allocating more than 4k
3713// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3714// that the guard pages used by the OS virtual memory manager are allocated in
3715// correct sequence.
3716SDOperand
3717X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3718 SelectionDAG &DAG) {
3719 assert(Subtarget->isTargetCygMing() &&
3720 "This should be used only on Cygwin/Mingw targets");
3721
3722 // Get the inputs.
3723 SDOperand Chain = Op.getOperand(0);
3724 SDOperand Size = Op.getOperand(1);
3725 // FIXME: Ensure alignment here
3726
3727 SDOperand Flag;
3728
3729 MVT::ValueType IntPtr = getPointerTy();
3730 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3731
3732 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3733 Flag = Chain.getValue(1);
3734
3735 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3736 SDOperand Ops[] = { Chain,
3737 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3738 DAG.getRegister(X86::EAX, IntPtr),
3739 Flag };
3740 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3741 Flag = Chain.getValue(1);
3742
3743 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3744
3745 std::vector<MVT::ValueType> Tys;
3746 Tys.push_back(SPTy);
3747 Tys.push_back(MVT::Other);
3748 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3749 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3750}
3751
3752SDOperand
3753X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3754 MachineFunction &MF = DAG.getMachineFunction();
3755 const Function* Fn = MF.getFunction();
3756 if (Fn->hasExternalLinkage() &&
3757 Subtarget->isTargetCygMing() &&
3758 Fn->getName() == "main")
3759 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3760
3761 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3762 if (Subtarget->is64Bit())
3763 return LowerX86_64CCCArguments(Op, DAG);
3764 else
3765 switch(CC) {
3766 default:
3767 assert(0 && "Unsupported calling convention");
3768 case CallingConv::Fast:
3769 // TODO: implement fastcc.
3770
3771 // Falls through
3772 case CallingConv::C:
3773 return LowerCCCArguments(Op, DAG);
3774 case CallingConv::X86_StdCall:
3775 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3776 return LowerCCCArguments(Op, DAG, true);
3777 case CallingConv::X86_FastCall:
3778 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3779 return LowerFastCCArguments(Op, DAG);
3780 }
3781}
3782
3783SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3784 SDOperand InFlag(0, 0);
3785 SDOperand Chain = Op.getOperand(0);
3786 unsigned Align =
3787 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3788 if (Align == 0) Align = 1;
3789
3790 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003791 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003792 // The libc version is likely to be faster for these cases. It can use the
3793 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003795 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003796 MVT::ValueType IntPtr = getPointerTy();
3797 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3798 TargetLowering::ArgListTy Args;
3799 TargetLowering::ArgListEntry Entry;
3800 Entry.Node = Op.getOperand(1);
3801 Entry.Ty = IntPtrTy;
3802 Args.push_back(Entry);
3803 // Extend the unsigned i8 argument to be an int value for the call.
3804 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3805 Entry.Ty = IntPtrTy;
3806 Args.push_back(Entry);
3807 Entry.Node = Op.getOperand(3);
3808 Args.push_back(Entry);
3809 std::pair<SDOperand,SDOperand> CallResult =
3810 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3811 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3812 return CallResult.second;
3813 }
3814
3815 MVT::ValueType AVT;
3816 SDOperand Count;
3817 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3818 unsigned BytesLeft = 0;
3819 bool TwoRepStos = false;
3820 if (ValC) {
3821 unsigned ValReg;
3822 uint64_t Val = ValC->getValue() & 255;
3823
3824 // If the value is a constant, then we can potentially use larger sets.
3825 switch (Align & 3) {
3826 case 2: // WORD aligned
3827 AVT = MVT::i16;
3828 ValReg = X86::AX;
3829 Val = (Val << 8) | Val;
3830 break;
3831 case 0: // DWORD aligned
3832 AVT = MVT::i32;
3833 ValReg = X86::EAX;
3834 Val = (Val << 8) | Val;
3835 Val = (Val << 16) | Val;
3836 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3837 AVT = MVT::i64;
3838 ValReg = X86::RAX;
3839 Val = (Val << 32) | Val;
3840 }
3841 break;
3842 default: // Byte aligned
3843 AVT = MVT::i8;
3844 ValReg = X86::AL;
3845 Count = Op.getOperand(3);
3846 break;
3847 }
3848
3849 if (AVT > MVT::i8) {
3850 if (I) {
3851 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3852 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3853 BytesLeft = I->getValue() % UBytes;
3854 } else {
3855 assert(AVT >= MVT::i32 &&
3856 "Do not use rep;stos if not at least DWORD aligned");
3857 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3858 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3859 TwoRepStos = true;
3860 }
3861 }
3862
3863 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3864 InFlag);
3865 InFlag = Chain.getValue(1);
3866 } else {
3867 AVT = MVT::i8;
3868 Count = Op.getOperand(3);
3869 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3870 InFlag = Chain.getValue(1);
3871 }
3872
3873 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3874 Count, InFlag);
3875 InFlag = Chain.getValue(1);
3876 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3877 Op.getOperand(1), InFlag);
3878 InFlag = Chain.getValue(1);
3879
3880 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3881 SmallVector<SDOperand, 8> Ops;
3882 Ops.push_back(Chain);
3883 Ops.push_back(DAG.getValueType(AVT));
3884 Ops.push_back(InFlag);
3885 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3886
3887 if (TwoRepStos) {
3888 InFlag = Chain.getValue(1);
3889 Count = Op.getOperand(3);
3890 MVT::ValueType CVT = Count.getValueType();
3891 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3892 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3893 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3894 Left, InFlag);
3895 InFlag = Chain.getValue(1);
3896 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3897 Ops.clear();
3898 Ops.push_back(Chain);
3899 Ops.push_back(DAG.getValueType(MVT::i8));
3900 Ops.push_back(InFlag);
3901 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3902 } else if (BytesLeft) {
3903 // Issue stores for the last 1 - 7 bytes.
3904 SDOperand Value;
3905 unsigned Val = ValC->getValue() & 255;
3906 unsigned Offset = I->getValue() - BytesLeft;
3907 SDOperand DstAddr = Op.getOperand(1);
3908 MVT::ValueType AddrVT = DstAddr.getValueType();
3909 if (BytesLeft >= 4) {
3910 Val = (Val << 8) | Val;
3911 Val = (Val << 16) | Val;
3912 Value = DAG.getConstant(Val, MVT::i32);
3913 Chain = DAG.getStore(Chain, Value,
3914 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3915 DAG.getConstant(Offset, AddrVT)),
3916 NULL, 0);
3917 BytesLeft -= 4;
3918 Offset += 4;
3919 }
3920 if (BytesLeft >= 2) {
3921 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3922 Chain = DAG.getStore(Chain, Value,
3923 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3924 DAG.getConstant(Offset, AddrVT)),
3925 NULL, 0);
3926 BytesLeft -= 2;
3927 Offset += 2;
3928 }
3929 if (BytesLeft == 1) {
3930 Value = DAG.getConstant(Val, MVT::i8);
3931 Chain = DAG.getStore(Chain, Value,
3932 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3933 DAG.getConstant(Offset, AddrVT)),
3934 NULL, 0);
3935 }
3936 }
3937
3938 return Chain;
3939}
3940
3941SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3942 SDOperand Chain = Op.getOperand(0);
3943 unsigned Align =
3944 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3945 if (Align == 0) Align = 1;
3946
3947 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003948 // If not DWORD aligned or size is more than the threshold, call memcpy.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003949 // The libc version is likely to be faster for these cases. It can use the
3950 // address value and run time information about the CPU.
3951 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003952 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003953 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003954 MVT::ValueType IntPtr = getPointerTy();
3955 TargetLowering::ArgListTy Args;
3956 TargetLowering::ArgListEntry Entry;
3957 Entry.Ty = getTargetData()->getIntPtrType();
3958 Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3959 Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3960 Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3961 std::pair<SDOperand,SDOperand> CallResult =
3962 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3963 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3964 return CallResult.second;
3965 }
3966
3967 MVT::ValueType AVT;
3968 SDOperand Count;
3969 unsigned BytesLeft = 0;
3970 bool TwoRepMovs = false;
3971 switch (Align & 3) {
3972 case 2: // WORD aligned
3973 AVT = MVT::i16;
3974 break;
3975 case 0: // DWORD aligned
3976 AVT = MVT::i32;
3977 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
3978 AVT = MVT::i64;
3979 break;
3980 default: // Byte aligned
3981 AVT = MVT::i8;
3982 Count = Op.getOperand(3);
3983 break;
3984 }
3985
3986 if (AVT > MVT::i8) {
3987 if (I) {
3988 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3989 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3990 BytesLeft = I->getValue() % UBytes;
3991 } else {
3992 assert(AVT >= MVT::i32 &&
3993 "Do not use rep;movs if not at least DWORD aligned");
3994 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3995 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3996 TwoRepMovs = true;
3997 }
3998 }
3999
4000 SDOperand InFlag(0, 0);
4001 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4002 Count, InFlag);
4003 InFlag = Chain.getValue(1);
4004 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4005 Op.getOperand(1), InFlag);
4006 InFlag = Chain.getValue(1);
4007 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4008 Op.getOperand(2), InFlag);
4009 InFlag = Chain.getValue(1);
4010
4011 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4012 SmallVector<SDOperand, 8> Ops;
4013 Ops.push_back(Chain);
4014 Ops.push_back(DAG.getValueType(AVT));
4015 Ops.push_back(InFlag);
4016 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4017
4018 if (TwoRepMovs) {
4019 InFlag = Chain.getValue(1);
4020 Count = Op.getOperand(3);
4021 MVT::ValueType CVT = Count.getValueType();
4022 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4023 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4024 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4025 Left, InFlag);
4026 InFlag = Chain.getValue(1);
4027 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4028 Ops.clear();
4029 Ops.push_back(Chain);
4030 Ops.push_back(DAG.getValueType(MVT::i8));
4031 Ops.push_back(InFlag);
4032 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4033 } else if (BytesLeft) {
4034 // Issue loads and stores for the last 1 - 7 bytes.
4035 unsigned Offset = I->getValue() - BytesLeft;
4036 SDOperand DstAddr = Op.getOperand(1);
4037 MVT::ValueType DstVT = DstAddr.getValueType();
4038 SDOperand SrcAddr = Op.getOperand(2);
4039 MVT::ValueType SrcVT = SrcAddr.getValueType();
4040 SDOperand Value;
4041 if (BytesLeft >= 4) {
4042 Value = DAG.getLoad(MVT::i32, Chain,
4043 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4044 DAG.getConstant(Offset, SrcVT)),
4045 NULL, 0);
4046 Chain = Value.getValue(1);
4047 Chain = DAG.getStore(Chain, Value,
4048 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4049 DAG.getConstant(Offset, DstVT)),
4050 NULL, 0);
4051 BytesLeft -= 4;
4052 Offset += 4;
4053 }
4054 if (BytesLeft >= 2) {
4055 Value = DAG.getLoad(MVT::i16, Chain,
4056 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4057 DAG.getConstant(Offset, SrcVT)),
4058 NULL, 0);
4059 Chain = Value.getValue(1);
4060 Chain = DAG.getStore(Chain, Value,
4061 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4062 DAG.getConstant(Offset, DstVT)),
4063 NULL, 0);
4064 BytesLeft -= 2;
4065 Offset += 2;
4066 }
4067
4068 if (BytesLeft == 1) {
4069 Value = DAG.getLoad(MVT::i8, Chain,
4070 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4071 DAG.getConstant(Offset, SrcVT)),
4072 NULL, 0);
4073 Chain = Value.getValue(1);
4074 Chain = DAG.getStore(Chain, Value,
4075 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4076 DAG.getConstant(Offset, DstVT)),
4077 NULL, 0);
4078 }
4079 }
4080
4081 return Chain;
4082}
4083
4084SDOperand
4085X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4086 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4087 SDOperand TheOp = Op.getOperand(0);
4088 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4089 if (Subtarget->is64Bit()) {
4090 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4091 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4092 MVT::i64, Copy1.getValue(2));
4093 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4094 DAG.getConstant(32, MVT::i8));
4095 SDOperand Ops[] = {
4096 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4097 };
4098
4099 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4100 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4101 }
4102
4103 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4104 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4105 MVT::i32, Copy1.getValue(2));
4106 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4107 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4108 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4109}
4110
4111SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4112 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4113
4114 if (!Subtarget->is64Bit()) {
4115 // vastart just stores the address of the VarArgsFrameIndex slot into the
4116 // memory location argument.
4117 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4118 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4119 SV->getOffset());
4120 }
4121
4122 // __va_list_tag:
4123 // gp_offset (0 - 6 * 8)
4124 // fp_offset (48 - 48 + 8 * 16)
4125 // overflow_arg_area (point to parameters coming in memory).
4126 // reg_save_area
4127 SmallVector<SDOperand, 8> MemOps;
4128 SDOperand FIN = Op.getOperand(1);
4129 // Store gp_offset
4130 SDOperand Store = DAG.getStore(Op.getOperand(0),
4131 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4132 FIN, SV->getValue(), SV->getOffset());
4133 MemOps.push_back(Store);
4134
4135 // Store fp_offset
4136 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4137 DAG.getConstant(4, getPointerTy()));
4138 Store = DAG.getStore(Op.getOperand(0),
4139 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4140 FIN, SV->getValue(), SV->getOffset());
4141 MemOps.push_back(Store);
4142
4143 // Store ptr to overflow_arg_area
4144 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4145 DAG.getConstant(4, getPointerTy()));
4146 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4147 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4148 SV->getOffset());
4149 MemOps.push_back(Store);
4150
4151 // Store ptr to reg_save_area.
4152 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4153 DAG.getConstant(8, getPointerTy()));
4154 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4155 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4156 SV->getOffset());
4157 MemOps.push_back(Store);
4158 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4159}
4160
4161SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4162 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4163 SDOperand Chain = Op.getOperand(0);
4164 SDOperand DstPtr = Op.getOperand(1);
4165 SDOperand SrcPtr = Op.getOperand(2);
4166 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4167 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4168
4169 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4170 SrcSV->getValue(), SrcSV->getOffset());
4171 Chain = SrcPtr.getValue(1);
4172 for (unsigned i = 0; i < 3; ++i) {
4173 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4174 SrcSV->getValue(), SrcSV->getOffset());
4175 Chain = Val.getValue(1);
4176 Chain = DAG.getStore(Chain, Val, DstPtr,
4177 DstSV->getValue(), DstSV->getOffset());
4178 if (i == 2)
4179 break;
4180 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4181 DAG.getConstant(8, getPointerTy()));
4182 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4183 DAG.getConstant(8, getPointerTy()));
4184 }
4185 return Chain;
4186}
4187
4188SDOperand
4189X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4190 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4191 switch (IntNo) {
4192 default: return SDOperand(); // Don't custom lower most intrinsics.
4193 // Comparison intrinsics.
4194 case Intrinsic::x86_sse_comieq_ss:
4195 case Intrinsic::x86_sse_comilt_ss:
4196 case Intrinsic::x86_sse_comile_ss:
4197 case Intrinsic::x86_sse_comigt_ss:
4198 case Intrinsic::x86_sse_comige_ss:
4199 case Intrinsic::x86_sse_comineq_ss:
4200 case Intrinsic::x86_sse_ucomieq_ss:
4201 case Intrinsic::x86_sse_ucomilt_ss:
4202 case Intrinsic::x86_sse_ucomile_ss:
4203 case Intrinsic::x86_sse_ucomigt_ss:
4204 case Intrinsic::x86_sse_ucomige_ss:
4205 case Intrinsic::x86_sse_ucomineq_ss:
4206 case Intrinsic::x86_sse2_comieq_sd:
4207 case Intrinsic::x86_sse2_comilt_sd:
4208 case Intrinsic::x86_sse2_comile_sd:
4209 case Intrinsic::x86_sse2_comigt_sd:
4210 case Intrinsic::x86_sse2_comige_sd:
4211 case Intrinsic::x86_sse2_comineq_sd:
4212 case Intrinsic::x86_sse2_ucomieq_sd:
4213 case Intrinsic::x86_sse2_ucomilt_sd:
4214 case Intrinsic::x86_sse2_ucomile_sd:
4215 case Intrinsic::x86_sse2_ucomigt_sd:
4216 case Intrinsic::x86_sse2_ucomige_sd:
4217 case Intrinsic::x86_sse2_ucomineq_sd: {
4218 unsigned Opc = 0;
4219 ISD::CondCode CC = ISD::SETCC_INVALID;
4220 switch (IntNo) {
4221 default: break;
4222 case Intrinsic::x86_sse_comieq_ss:
4223 case Intrinsic::x86_sse2_comieq_sd:
4224 Opc = X86ISD::COMI;
4225 CC = ISD::SETEQ;
4226 break;
4227 case Intrinsic::x86_sse_comilt_ss:
4228 case Intrinsic::x86_sse2_comilt_sd:
4229 Opc = X86ISD::COMI;
4230 CC = ISD::SETLT;
4231 break;
4232 case Intrinsic::x86_sse_comile_ss:
4233 case Intrinsic::x86_sse2_comile_sd:
4234 Opc = X86ISD::COMI;
4235 CC = ISD::SETLE;
4236 break;
4237 case Intrinsic::x86_sse_comigt_ss:
4238 case Intrinsic::x86_sse2_comigt_sd:
4239 Opc = X86ISD::COMI;
4240 CC = ISD::SETGT;
4241 break;
4242 case Intrinsic::x86_sse_comige_ss:
4243 case Intrinsic::x86_sse2_comige_sd:
4244 Opc = X86ISD::COMI;
4245 CC = ISD::SETGE;
4246 break;
4247 case Intrinsic::x86_sse_comineq_ss:
4248 case Intrinsic::x86_sse2_comineq_sd:
4249 Opc = X86ISD::COMI;
4250 CC = ISD::SETNE;
4251 break;
4252 case Intrinsic::x86_sse_ucomieq_ss:
4253 case Intrinsic::x86_sse2_ucomieq_sd:
4254 Opc = X86ISD::UCOMI;
4255 CC = ISD::SETEQ;
4256 break;
4257 case Intrinsic::x86_sse_ucomilt_ss:
4258 case Intrinsic::x86_sse2_ucomilt_sd:
4259 Opc = X86ISD::UCOMI;
4260 CC = ISD::SETLT;
4261 break;
4262 case Intrinsic::x86_sse_ucomile_ss:
4263 case Intrinsic::x86_sse2_ucomile_sd:
4264 Opc = X86ISD::UCOMI;
4265 CC = ISD::SETLE;
4266 break;
4267 case Intrinsic::x86_sse_ucomigt_ss:
4268 case Intrinsic::x86_sse2_ucomigt_sd:
4269 Opc = X86ISD::UCOMI;
4270 CC = ISD::SETGT;
4271 break;
4272 case Intrinsic::x86_sse_ucomige_ss:
4273 case Intrinsic::x86_sse2_ucomige_sd:
4274 Opc = X86ISD::UCOMI;
4275 CC = ISD::SETGE;
4276 break;
4277 case Intrinsic::x86_sse_ucomineq_ss:
4278 case Intrinsic::x86_sse2_ucomineq_sd:
4279 Opc = X86ISD::UCOMI;
4280 CC = ISD::SETNE;
4281 break;
4282 }
4283
4284 unsigned X86CC;
4285 SDOperand LHS = Op.getOperand(1);
4286 SDOperand RHS = Op.getOperand(2);
4287 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4288
4289 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4290 SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4291 SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4292 VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4293 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4294 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4295 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4296 }
4297 }
4298}
4299
4300SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4301 // Depths > 0 not supported yet!
4302 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4303 return SDOperand();
4304
4305 // Just load the return address
4306 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4307 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4308}
4309
4310SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4311 // Depths > 0 not supported yet!
4312 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4313 return SDOperand();
4314
4315 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4316 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4317 DAG.getConstant(4, getPointerTy()));
4318}
4319
4320SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4321 SelectionDAG &DAG) {
4322 // Is not yet supported on x86-64
4323 if (Subtarget->is64Bit())
4324 return SDOperand();
4325
4326 return DAG.getConstant(8, getPointerTy());
4327}
4328
4329SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4330{
4331 assert(!Subtarget->is64Bit() &&
4332 "Lowering of eh_return builtin is not supported yet on x86-64");
4333
4334 MachineFunction &MF = DAG.getMachineFunction();
4335 SDOperand Chain = Op.getOperand(0);
4336 SDOperand Offset = Op.getOperand(1);
4337 SDOperand Handler = Op.getOperand(2);
4338
4339 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4340 getPointerTy());
4341
4342 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4343 DAG.getConstant(-4UL, getPointerTy()));
4344 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4345 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4346 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4347 MF.addLiveOut(X86::ECX);
4348
4349 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4350 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4351}
4352
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004353SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4354 SelectionDAG &DAG) {
4355 SDOperand Root = Op.getOperand(0);
4356 SDOperand Trmp = Op.getOperand(1); // trampoline
4357 SDOperand FPtr = Op.getOperand(2); // nested function
4358 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4359
4360 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4361
4362 if (Subtarget->is64Bit()) {
4363 return SDOperand(); // not yet supported
4364 } else {
4365 Function *Func = (Function *)
4366 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4367 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004368 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004369
4370 switch (CC) {
4371 default:
4372 assert(0 && "Unsupported calling convention");
4373 case CallingConv::C:
4374 case CallingConv::Fast:
4375 case CallingConv::X86_StdCall: {
4376 // Pass 'nest' parameter in ECX.
4377 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004378 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004379
4380 // Check that ECX wasn't needed by an 'inreg' parameter.
4381 const FunctionType *FTy = Func->getFunctionType();
4382 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4383
4384 if (Attrs && !Func->isVarArg()) {
4385 unsigned InRegCount = 0;
4386 unsigned Idx = 1;
4387
4388 for (FunctionType::param_iterator I = FTy->param_begin(),
4389 E = FTy->param_end(); I != E; ++I, ++Idx)
4390 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4391 // FIXME: should only count parameters that are lowered to integers.
4392 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4393
4394 if (InRegCount > 2) {
4395 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4396 abort();
4397 }
4398 }
4399 break;
4400 }
4401 case CallingConv::X86_FastCall:
4402 // Pass 'nest' parameter in EAX.
4403 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004404 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004405 break;
4406 }
4407
Duncan Sands466eadd2007-08-29 19:01:20 +00004408 const X86InstrInfo *TII =
4409 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4410
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004411 SDOperand OutChains[4];
4412 SDOperand Addr, Disp;
4413
4414 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4415 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4416
Duncan Sands466eadd2007-08-29 19:01:20 +00004417 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4418 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4419 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004420 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4421
4422 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4423 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4424 TrmpSV->getOffset() + 1, false, 1);
4425
Duncan Sands466eadd2007-08-29 19:01:20 +00004426 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004427 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4428 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4429 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4430
4431 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4432 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4433 TrmpSV->getOffset() + 6, false, 1);
4434
Duncan Sands7407a9f2007-09-11 14:10:23 +00004435 SDOperand Ops[] =
4436 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4437 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004438 }
4439}
4440
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004441/// LowerOperation - Provide custom lowering hooks for some operations.
4442///
4443SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4444 switch (Op.getOpcode()) {
4445 default: assert(0 && "Should not custom lower this!");
4446 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4447 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4448 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4449 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4450 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4451 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4452 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4453 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4454 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4455 case ISD::SHL_PARTS:
4456 case ISD::SRA_PARTS:
4457 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4458 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4459 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4460 case ISD::FABS: return LowerFABS(Op, DAG);
4461 case ISD::FNEG: return LowerFNEG(Op, DAG);
4462 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
4463 case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode());
4464 case ISD::SELECT: return LowerSELECT(Op, DAG);
4465 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4466 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4467 case ISD::CALL: return LowerCALL(Op, DAG);
4468 case ISD::RET: return LowerRET(Op, DAG);
4469 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4470 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4471 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4472 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4473 case ISD::VASTART: return LowerVASTART(Op, DAG);
4474 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4475 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4476 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4477 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4478 case ISD::FRAME_TO_ARGS_OFFSET:
4479 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4480 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4481 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004482 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004483 }
4484 return SDOperand();
4485}
4486
4487const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4488 switch (Opcode) {
4489 default: return NULL;
4490 case X86ISD::SHLD: return "X86ISD::SHLD";
4491 case X86ISD::SHRD: return "X86ISD::SHRD";
4492 case X86ISD::FAND: return "X86ISD::FAND";
4493 case X86ISD::FOR: return "X86ISD::FOR";
4494 case X86ISD::FXOR: return "X86ISD::FXOR";
4495 case X86ISD::FSRL: return "X86ISD::FSRL";
4496 case X86ISD::FILD: return "X86ISD::FILD";
4497 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4498 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4499 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4500 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4501 case X86ISD::FLD: return "X86ISD::FLD";
4502 case X86ISD::FST: return "X86ISD::FST";
4503 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4504 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4505 case X86ISD::CALL: return "X86ISD::CALL";
4506 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4507 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4508 case X86ISD::CMP: return "X86ISD::CMP";
4509 case X86ISD::COMI: return "X86ISD::COMI";
4510 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4511 case X86ISD::SETCC: return "X86ISD::SETCC";
4512 case X86ISD::CMOV: return "X86ISD::CMOV";
4513 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4514 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4515 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4516 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004517 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4518 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4519 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4520 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4521 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4522 case X86ISD::FMAX: return "X86ISD::FMAX";
4523 case X86ISD::FMIN: return "X86ISD::FMIN";
4524 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4525 case X86ISD::FRCP: return "X86ISD::FRCP";
4526 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4527 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4528 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
4529 }
4530}
4531
4532// isLegalAddressingMode - Return true if the addressing mode represented
4533// by AM is legal for this target, for a load/store of the specified type.
4534bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4535 const Type *Ty) const {
4536 // X86 supports extremely general addressing modes.
4537
4538 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4539 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4540 return false;
4541
4542 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004543 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004544 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4545 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004546
4547 // X86-64 only supports addr of globals in small code model.
4548 if (Subtarget->is64Bit()) {
4549 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4550 return false;
4551 // If lower 4G is not available, then we must use rip-relative addressing.
4552 if (AM.BaseOffs || AM.Scale > 1)
4553 return false;
4554 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004555 }
4556
4557 switch (AM.Scale) {
4558 case 0:
4559 case 1:
4560 case 2:
4561 case 4:
4562 case 8:
4563 // These scales always work.
4564 break;
4565 case 3:
4566 case 5:
4567 case 9:
4568 // These scales are formed with basereg+scalereg. Only accept if there is
4569 // no basereg yet.
4570 if (AM.HasBaseReg)
4571 return false;
4572 break;
4573 default: // Other stuff never works.
4574 return false;
4575 }
4576
4577 return true;
4578}
4579
4580
4581/// isShuffleMaskLegal - Targets can use this to indicate that they only
4582/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4583/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4584/// are assumed to be legal.
4585bool
4586X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4587 // Only do shuffles on 128-bit vector types for now.
4588 if (MVT::getSizeInBits(VT) == 64) return false;
4589 return (Mask.Val->getNumOperands() <= 4 ||
4590 isIdentityMask(Mask.Val) ||
4591 isIdentityMask(Mask.Val, true) ||
4592 isSplatMask(Mask.Val) ||
4593 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4594 X86::isUNPCKLMask(Mask.Val) ||
4595 X86::isUNPCKHMask(Mask.Val) ||
4596 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4597 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4598}
4599
4600bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4601 MVT::ValueType EVT,
4602 SelectionDAG &DAG) const {
4603 unsigned NumElts = BVOps.size();
4604 // Only do shuffles on 128-bit vector types for now.
4605 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4606 if (NumElts == 2) return true;
4607 if (NumElts == 4) {
4608 return (isMOVLMask(&BVOps[0], 4) ||
4609 isCommutedMOVL(&BVOps[0], 4, true) ||
4610 isSHUFPMask(&BVOps[0], 4) ||
4611 isCommutedSHUFP(&BVOps[0], 4));
4612 }
4613 return false;
4614}
4615
4616//===----------------------------------------------------------------------===//
4617// X86 Scheduler Hooks
4618//===----------------------------------------------------------------------===//
4619
4620MachineBasicBlock *
4621X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4622 MachineBasicBlock *BB) {
4623 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4624 switch (MI->getOpcode()) {
4625 default: assert(false && "Unexpected instr type to insert");
4626 case X86::CMOV_FR32:
4627 case X86::CMOV_FR64:
4628 case X86::CMOV_V4F32:
4629 case X86::CMOV_V2F64:
4630 case X86::CMOV_V2I64: {
4631 // To "insert" a SELECT_CC instruction, we actually have to insert the
4632 // diamond control-flow pattern. The incoming instruction knows the
4633 // destination vreg to set, the condition code register to branch on, the
4634 // true/false values to select between, and a branch opcode to use.
4635 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4636 ilist<MachineBasicBlock>::iterator It = BB;
4637 ++It;
4638
4639 // thisMBB:
4640 // ...
4641 // TrueVal = ...
4642 // cmpTY ccX, r1, r2
4643 // bCC copy1MBB
4644 // fallthrough --> copy0MBB
4645 MachineBasicBlock *thisMBB = BB;
4646 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4647 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4648 unsigned Opc =
4649 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4650 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4651 MachineFunction *F = BB->getParent();
4652 F->getBasicBlockList().insert(It, copy0MBB);
4653 F->getBasicBlockList().insert(It, sinkMBB);
4654 // Update machine-CFG edges by first adding all successors of the current
4655 // block to the new block which will contain the Phi node for the select.
4656 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4657 e = BB->succ_end(); i != e; ++i)
4658 sinkMBB->addSuccessor(*i);
4659 // Next, remove all successors of the current block, and add the true
4660 // and fallthrough blocks as its successors.
4661 while(!BB->succ_empty())
4662 BB->removeSuccessor(BB->succ_begin());
4663 BB->addSuccessor(copy0MBB);
4664 BB->addSuccessor(sinkMBB);
4665
4666 // copy0MBB:
4667 // %FalseValue = ...
4668 // # fallthrough to sinkMBB
4669 BB = copy0MBB;
4670
4671 // Update machine-CFG edges
4672 BB->addSuccessor(sinkMBB);
4673
4674 // sinkMBB:
4675 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4676 // ...
4677 BB = sinkMBB;
4678 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4679 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4680 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4681
4682 delete MI; // The pseudo instruction is gone now.
4683 return BB;
4684 }
4685
4686 case X86::FP32_TO_INT16_IN_MEM:
4687 case X86::FP32_TO_INT32_IN_MEM:
4688 case X86::FP32_TO_INT64_IN_MEM:
4689 case X86::FP64_TO_INT16_IN_MEM:
4690 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004691 case X86::FP64_TO_INT64_IN_MEM:
4692 case X86::FP80_TO_INT16_IN_MEM:
4693 case X86::FP80_TO_INT32_IN_MEM:
4694 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004695 // Change the floating point control register to use "round towards zero"
4696 // mode when truncating to an integer value.
4697 MachineFunction *F = BB->getParent();
4698 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4699 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4700
4701 // Load the old value of the high byte of the control word...
4702 unsigned OldCW =
4703 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4704 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4705
4706 // Set the high part to be round to zero...
4707 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4708 .addImm(0xC7F);
4709
4710 // Reload the modified control word now...
4711 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4712
4713 // Restore the memory image of control word to original value
4714 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4715 .addReg(OldCW);
4716
4717 // Get the X86 opcode to use.
4718 unsigned Opc;
4719 switch (MI->getOpcode()) {
4720 default: assert(0 && "illegal opcode!");
4721 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4722 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4723 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4724 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4725 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4726 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004727 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4728 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4729 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004730 }
4731
4732 X86AddressMode AM;
4733 MachineOperand &Op = MI->getOperand(0);
4734 if (Op.isRegister()) {
4735 AM.BaseType = X86AddressMode::RegBase;
4736 AM.Base.Reg = Op.getReg();
4737 } else {
4738 AM.BaseType = X86AddressMode::FrameIndexBase;
4739 AM.Base.FrameIndex = Op.getFrameIndex();
4740 }
4741 Op = MI->getOperand(1);
4742 if (Op.isImmediate())
4743 AM.Scale = Op.getImm();
4744 Op = MI->getOperand(2);
4745 if (Op.isImmediate())
4746 AM.IndexReg = Op.getImm();
4747 Op = MI->getOperand(3);
4748 if (Op.isGlobalAddress()) {
4749 AM.GV = Op.getGlobal();
4750 } else {
4751 AM.Disp = Op.getImm();
4752 }
4753 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4754 .addReg(MI->getOperand(4).getReg());
4755
4756 // Reload the original control word now.
4757 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4758
4759 delete MI; // The pseudo instruction is gone now.
4760 return BB;
4761 }
4762 }
4763}
4764
4765//===----------------------------------------------------------------------===//
4766// X86 Optimization Hooks
4767//===----------------------------------------------------------------------===//
4768
4769void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4770 uint64_t Mask,
4771 uint64_t &KnownZero,
4772 uint64_t &KnownOne,
4773 const SelectionDAG &DAG,
4774 unsigned Depth) const {
4775 unsigned Opc = Op.getOpcode();
4776 assert((Opc >= ISD::BUILTIN_OP_END ||
4777 Opc == ISD::INTRINSIC_WO_CHAIN ||
4778 Opc == ISD::INTRINSIC_W_CHAIN ||
4779 Opc == ISD::INTRINSIC_VOID) &&
4780 "Should use MaskedValueIsZero if you don't know whether Op"
4781 " is a target node!");
4782
4783 KnownZero = KnownOne = 0; // Don't know anything.
4784 switch (Opc) {
4785 default: break;
4786 case X86ISD::SETCC:
4787 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4788 break;
4789 }
4790}
4791
4792/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4793/// element of the result of the vector shuffle.
4794static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4795 MVT::ValueType VT = N->getValueType(0);
4796 SDOperand PermMask = N->getOperand(2);
4797 unsigned NumElems = PermMask.getNumOperands();
4798 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4799 i %= NumElems;
4800 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4801 return (i == 0)
4802 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4803 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4804 SDOperand Idx = PermMask.getOperand(i);
4805 if (Idx.getOpcode() == ISD::UNDEF)
4806 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4807 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4808 }
4809 return SDOperand();
4810}
4811
4812/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4813/// node is a GlobalAddress + an offset.
4814static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4815 unsigned Opc = N->getOpcode();
4816 if (Opc == X86ISD::Wrapper) {
4817 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4818 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4819 return true;
4820 }
4821 } else if (Opc == ISD::ADD) {
4822 SDOperand N1 = N->getOperand(0);
4823 SDOperand N2 = N->getOperand(1);
4824 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4825 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4826 if (V) {
4827 Offset += V->getSignExtended();
4828 return true;
4829 }
4830 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4831 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4832 if (V) {
4833 Offset += V->getSignExtended();
4834 return true;
4835 }
4836 }
4837 }
4838 return false;
4839}
4840
4841/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4842/// + Dist * Size.
4843static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4844 MachineFrameInfo *MFI) {
4845 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4846 return false;
4847
4848 SDOperand Loc = N->getOperand(1);
4849 SDOperand BaseLoc = Base->getOperand(1);
4850 if (Loc.getOpcode() == ISD::FrameIndex) {
4851 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4852 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00004853 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
4854 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004855 int FS = MFI->getObjectSize(FI);
4856 int BFS = MFI->getObjectSize(BFI);
4857 if (FS != BFS || FS != Size) return false;
4858 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4859 } else {
4860 GlobalValue *GV1 = NULL;
4861 GlobalValue *GV2 = NULL;
4862 int64_t Offset1 = 0;
4863 int64_t Offset2 = 0;
4864 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4865 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4866 if (isGA1 && isGA2 && GV1 == GV2)
4867 return Offset1 == (Offset2 + Dist*Size);
4868 }
4869
4870 return false;
4871}
4872
4873static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4874 const X86Subtarget *Subtarget) {
4875 GlobalValue *GV;
4876 int64_t Offset;
4877 if (isGAPlusOffset(Base, GV, Offset))
4878 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4879 else {
4880 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00004881 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004882 if (BFI < 0)
4883 // Fixed objects do not specify alignment, however the offsets are known.
4884 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4885 (MFI->getObjectOffset(BFI) % 16) == 0);
4886 else
4887 return MFI->getObjectAlignment(BFI) >= 16;
4888 }
4889 return false;
4890}
4891
4892
4893/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4894/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4895/// if the load addresses are consecutive, non-overlapping, and in the right
4896/// order.
4897static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4898 const X86Subtarget *Subtarget) {
4899 MachineFunction &MF = DAG.getMachineFunction();
4900 MachineFrameInfo *MFI = MF.getFrameInfo();
4901 MVT::ValueType VT = N->getValueType(0);
4902 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4903 SDOperand PermMask = N->getOperand(2);
4904 int NumElems = (int)PermMask.getNumOperands();
4905 SDNode *Base = NULL;
4906 for (int i = 0; i < NumElems; ++i) {
4907 SDOperand Idx = PermMask.getOperand(i);
4908 if (Idx.getOpcode() == ISD::UNDEF) {
4909 if (!Base) return SDOperand();
4910 } else {
4911 SDOperand Arg =
4912 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4913 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4914 return SDOperand();
4915 if (!Base)
4916 Base = Arg.Val;
4917 else if (!isConsecutiveLoad(Arg.Val, Base,
4918 i, MVT::getSizeInBits(EVT)/8,MFI))
4919 return SDOperand();
4920 }
4921 }
4922
4923 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00004924 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004925 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004926 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00004927 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004928 } else {
Dan Gohman11821702007-07-27 17:16:43 +00004929 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4930 LD->getSrcValueOffset(), LD->isVolatile(),
4931 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004932 }
4933}
4934
4935/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4936static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4937 const X86Subtarget *Subtarget) {
4938 SDOperand Cond = N->getOperand(0);
4939
4940 // If we have SSE[12] support, try to form min/max nodes.
4941 if (Subtarget->hasSSE2() &&
4942 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4943 if (Cond.getOpcode() == ISD::SETCC) {
4944 // Get the LHS/RHS of the select.
4945 SDOperand LHS = N->getOperand(1);
4946 SDOperand RHS = N->getOperand(2);
4947 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4948
4949 unsigned Opcode = 0;
4950 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4951 switch (CC) {
4952 default: break;
4953 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4954 case ISD::SETULE:
4955 case ISD::SETLE:
4956 if (!UnsafeFPMath) break;
4957 // FALL THROUGH.
4958 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
4959 case ISD::SETLT:
4960 Opcode = X86ISD::FMIN;
4961 break;
4962
4963 case ISD::SETOGT: // (X > Y) ? X : Y -> max
4964 case ISD::SETUGT:
4965 case ISD::SETGT:
4966 if (!UnsafeFPMath) break;
4967 // FALL THROUGH.
4968 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
4969 case ISD::SETGE:
4970 Opcode = X86ISD::FMAX;
4971 break;
4972 }
4973 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4974 switch (CC) {
4975 default: break;
4976 case ISD::SETOGT: // (X > Y) ? Y : X -> min
4977 case ISD::SETUGT:
4978 case ISD::SETGT:
4979 if (!UnsafeFPMath) break;
4980 // FALL THROUGH.
4981 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
4982 case ISD::SETGE:
4983 Opcode = X86ISD::FMIN;
4984 break;
4985
4986 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
4987 case ISD::SETULE:
4988 case ISD::SETLE:
4989 if (!UnsafeFPMath) break;
4990 // FALL THROUGH.
4991 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
4992 case ISD::SETLT:
4993 Opcode = X86ISD::FMAX;
4994 break;
4995 }
4996 }
4997
4998 if (Opcode)
4999 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5000 }
5001
5002 }
5003
5004 return SDOperand();
5005}
5006
5007
5008SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5009 DAGCombinerInfo &DCI) const {
5010 SelectionDAG &DAG = DCI.DAG;
5011 switch (N->getOpcode()) {
5012 default: break;
5013 case ISD::VECTOR_SHUFFLE:
5014 return PerformShuffleCombine(N, DAG, Subtarget);
5015 case ISD::SELECT:
5016 return PerformSELECTCombine(N, DAG, Subtarget);
5017 }
5018
5019 return SDOperand();
5020}
5021
5022//===----------------------------------------------------------------------===//
5023// X86 Inline Assembly Support
5024//===----------------------------------------------------------------------===//
5025
5026/// getConstraintType - Given a constraint letter, return the type of
5027/// constraint it is for this target.
5028X86TargetLowering::ConstraintType
5029X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5030 if (Constraint.size() == 1) {
5031 switch (Constraint[0]) {
5032 case 'A':
5033 case 'r':
5034 case 'R':
5035 case 'l':
5036 case 'q':
5037 case 'Q':
5038 case 'x':
5039 case 'Y':
5040 return C_RegisterClass;
5041 default:
5042 break;
5043 }
5044 }
5045 return TargetLowering::getConstraintType(Constraint);
5046}
5047
Chris Lattnera531abc2007-08-25 00:47:38 +00005048/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5049/// vector. If it is invalid, don't add anything to Ops.
5050void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5051 char Constraint,
5052 std::vector<SDOperand>&Ops,
5053 SelectionDAG &DAG) {
5054 SDOperand Result(0, 0);
5055
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005056 switch (Constraint) {
5057 default: break;
5058 case 'I':
5059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005060 if (C->getValue() <= 31) {
5061 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5062 break;
5063 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005064 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005065 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005066 case 'N':
5067 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005068 if (C->getValue() <= 255) {
5069 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5070 break;
5071 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005072 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005073 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005074 case 'i': {
5075 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005076 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5077 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5078 break;
5079 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005080
5081 // If we are in non-pic codegen mode, we allow the address of a global (with
5082 // an optional displacement) to be used with 'i'.
5083 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5084 int64_t Offset = 0;
5085
5086 // Match either (GA) or (GA+C)
5087 if (GA) {
5088 Offset = GA->getOffset();
5089 } else if (Op.getOpcode() == ISD::ADD) {
5090 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5091 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5092 if (C && GA) {
5093 Offset = GA->getOffset()+C->getValue();
5094 } else {
5095 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5096 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5097 if (C && GA)
5098 Offset = GA->getOffset()+C->getValue();
5099 else
5100 C = 0, GA = 0;
5101 }
5102 }
5103
5104 if (GA) {
5105 // If addressing this global requires a load (e.g. in PIC mode), we can't
5106 // match.
5107 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5108 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005109 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005110
5111 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5112 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005113 Result = Op;
5114 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005115 }
5116
5117 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005118 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005119 }
5120 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005121
5122 if (Result.Val) {
5123 Ops.push_back(Result);
5124 return;
5125 }
5126 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005127}
5128
5129std::vector<unsigned> X86TargetLowering::
5130getRegClassForInlineAsmConstraint(const std::string &Constraint,
5131 MVT::ValueType VT) const {
5132 if (Constraint.size() == 1) {
5133 // FIXME: not handling fp-stack yet!
5134 switch (Constraint[0]) { // GCC X86 Constraint Letters
5135 default: break; // Unknown constraint letter
5136 case 'A': // EAX/EDX
5137 if (VT == MVT::i32 || VT == MVT::i64)
5138 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5139 break;
5140 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5141 case 'Q': // Q_REGS
5142 if (VT == MVT::i32)
5143 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5144 else if (VT == MVT::i16)
5145 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5146 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005147 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005148 break;
5149 }
5150 }
5151
5152 return std::vector<unsigned>();
5153}
5154
5155std::pair<unsigned, const TargetRegisterClass*>
5156X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5157 MVT::ValueType VT) const {
5158 // First, see if this is a constraint that directly corresponds to an LLVM
5159 // register class.
5160 if (Constraint.size() == 1) {
5161 // GCC Constraint Letters
5162 switch (Constraint[0]) {
5163 default: break;
5164 case 'r': // GENERAL_REGS
5165 case 'R': // LEGACY_REGS
5166 case 'l': // INDEX_REGS
5167 if (VT == MVT::i64 && Subtarget->is64Bit())
5168 return std::make_pair(0U, X86::GR64RegisterClass);
5169 if (VT == MVT::i32)
5170 return std::make_pair(0U, X86::GR32RegisterClass);
5171 else if (VT == MVT::i16)
5172 return std::make_pair(0U, X86::GR16RegisterClass);
5173 else if (VT == MVT::i8)
5174 return std::make_pair(0U, X86::GR8RegisterClass);
5175 break;
5176 case 'y': // MMX_REGS if MMX allowed.
5177 if (!Subtarget->hasMMX()) break;
5178 return std::make_pair(0U, X86::VR64RegisterClass);
5179 break;
5180 case 'Y': // SSE_REGS if SSE2 allowed
5181 if (!Subtarget->hasSSE2()) break;
5182 // FALL THROUGH.
5183 case 'x': // SSE_REGS if SSE1 allowed
5184 if (!Subtarget->hasSSE1()) break;
5185
5186 switch (VT) {
5187 default: break;
5188 // Scalar SSE types.
5189 case MVT::f32:
5190 case MVT::i32:
5191 return std::make_pair(0U, X86::FR32RegisterClass);
5192 case MVT::f64:
5193 case MVT::i64:
5194 return std::make_pair(0U, X86::FR64RegisterClass);
5195 // Vector types.
5196 case MVT::v16i8:
5197 case MVT::v8i16:
5198 case MVT::v4i32:
5199 case MVT::v2i64:
5200 case MVT::v4f32:
5201 case MVT::v2f64:
5202 return std::make_pair(0U, X86::VR128RegisterClass);
5203 }
5204 break;
5205 }
5206 }
5207
5208 // Use the default implementation in TargetLowering to convert the register
5209 // constraint into a member of a register class.
5210 std::pair<unsigned, const TargetRegisterClass*> Res;
5211 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5212
5213 // Not found as a standard register?
5214 if (Res.second == 0) {
5215 // GCC calls "st(0)" just plain "st".
5216 if (StringsEqualNoCase("{st}", Constraint)) {
5217 Res.first = X86::ST0;
5218 Res.second = X86::RSTRegisterClass;
5219 }
5220
5221 return Res;
5222 }
5223
5224 // Otherwise, check to see if this is a register class of the wrong value
5225 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5226 // turn into {ax},{dx}.
5227 if (Res.second->hasType(VT))
5228 return Res; // Correct type already, nothing to do.
5229
5230 // All of the single-register GCC register classes map their values onto
5231 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5232 // really want an 8-bit or 32-bit register, map to the appropriate register
5233 // class and return the appropriate register.
5234 if (Res.second != X86::GR16RegisterClass)
5235 return Res;
5236
5237 if (VT == MVT::i8) {
5238 unsigned DestReg = 0;
5239 switch (Res.first) {
5240 default: break;
5241 case X86::AX: DestReg = X86::AL; break;
5242 case X86::DX: DestReg = X86::DL; break;
5243 case X86::CX: DestReg = X86::CL; break;
5244 case X86::BX: DestReg = X86::BL; break;
5245 }
5246 if (DestReg) {
5247 Res.first = DestReg;
5248 Res.second = Res.second = X86::GR8RegisterClass;
5249 }
5250 } else if (VT == MVT::i32) {
5251 unsigned DestReg = 0;
5252 switch (Res.first) {
5253 default: break;
5254 case X86::AX: DestReg = X86::EAX; break;
5255 case X86::DX: DestReg = X86::EDX; break;
5256 case X86::CX: DestReg = X86::ECX; break;
5257 case X86::BX: DestReg = X86::EBX; break;
5258 case X86::SI: DestReg = X86::ESI; break;
5259 case X86::DI: DestReg = X86::EDI; break;
5260 case X86::BP: DestReg = X86::EBP; break;
5261 case X86::SP: DestReg = X86::ESP; break;
5262 }
5263 if (DestReg) {
5264 Res.first = DestReg;
5265 Res.second = Res.second = X86::GR32RegisterClass;
5266 }
5267 } else if (VT == MVT::i64) {
5268 unsigned DestReg = 0;
5269 switch (Res.first) {
5270 default: break;
5271 case X86::AX: DestReg = X86::RAX; break;
5272 case X86::DX: DestReg = X86::RDX; break;
5273 case X86::CX: DestReg = X86::RCX; break;
5274 case X86::BX: DestReg = X86::RBX; break;
5275 case X86::SI: DestReg = X86::RSI; break;
5276 case X86::DI: DestReg = X86::RDI; break;
5277 case X86::BP: DestReg = X86::RBP; break;
5278 case X86::SP: DestReg = X86::RSP; break;
5279 }
5280 if (DestReg) {
5281 Res.first = DestReg;
5282 Res.second = Res.second = X86::GR64RegisterClass;
5283 }
5284 }
5285
5286 return Res;
5287}