blob: ba73f49f883aa149fcb143f7f2fc5cec393d839e [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000029
Brian Gaeked0fde302003-11-11 22:41:34 +000030using namespace llvm;
31
Owen Anderson43dbe052008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengffe2eb02008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000045}
46
Evan Chengaa3c1412006-05-30 21:45:53 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000049 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmand9ced092008-08-08 18:30:21 +0000241 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000242 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
243 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
244 { X86::IDIV16r, X86::IDIV16m, 1 },
245 { X86::IDIV32r, X86::IDIV32m, 1 },
246 { X86::IDIV64r, X86::IDIV64m, 1 },
247 { X86::IDIV8r, X86::IDIV8m, 1 },
248 { X86::IMUL16r, X86::IMUL16m, 1 },
249 { X86::IMUL32r, X86::IMUL32m, 1 },
250 { X86::IMUL64r, X86::IMUL64m, 1 },
251 { X86::IMUL8r, X86::IMUL8m, 1 },
252 { X86::JMP32r, X86::JMP32m, 1 },
253 { X86::JMP64r, X86::JMP64m, 1 },
254 { X86::MOV16ri, X86::MOV16mi, 0 },
255 { X86::MOV16rr, X86::MOV16mr, 0 },
256 { X86::MOV16to16_, X86::MOV16_mr, 0 },
257 { X86::MOV32ri, X86::MOV32mi, 0 },
258 { X86::MOV32rr, X86::MOV32mr, 0 },
259 { X86::MOV32to32_, X86::MOV32_mr, 0 },
260 { X86::MOV64ri32, X86::MOV64mi32, 0 },
261 { X86::MOV64rr, X86::MOV64mr, 0 },
262 { X86::MOV8ri, X86::MOV8mi, 0 },
263 { X86::MOV8rr, X86::MOV8mr, 0 },
264 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
265 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
266 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
269 { X86::MOVSDrr, X86::MOVSDmr, 0 },
270 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
272 { X86::MOVSSrr, X86::MOVSSmr, 0 },
273 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
274 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
275 { X86::MUL16r, X86::MUL16m, 1 },
276 { X86::MUL32r, X86::MUL32m, 1 },
277 { X86::MUL64r, X86::MUL64m, 1 },
278 { X86::MUL8r, X86::MUL8m, 1 },
279 { X86::SETAEr, X86::SETAEm, 0 },
280 { X86::SETAr, X86::SETAm, 0 },
281 { X86::SETBEr, X86::SETBEm, 0 },
282 { X86::SETBr, X86::SETBm, 0 },
283 { X86::SETEr, X86::SETEm, 0 },
284 { X86::SETGEr, X86::SETGEm, 0 },
285 { X86::SETGr, X86::SETGm, 0 },
286 { X86::SETLEr, X86::SETLEm, 0 },
287 { X86::SETLr, X86::SETLm, 0 },
288 { X86::SETNEr, X86::SETNEm, 0 },
289 { X86::SETNPr, X86::SETNPm, 0 },
290 { X86::SETNSr, X86::SETNSm, 0 },
291 { X86::SETPr, X86::SETPm, 0 },
292 { X86::SETSr, X86::SETSm, 0 },
293 { X86::TAILJMPr, X86::TAILJMPm, 1 },
294 { X86::TEST16ri, X86::TEST16mi, 1 },
295 { X86::TEST32ri, X86::TEST32mi, 1 },
296 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000297 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000298 };
299
300 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
301 unsigned RegOp = OpTbl0[i][0];
302 unsigned MemOp = OpTbl0[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000303 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
304 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000305 assert(false && "Duplicated entries?");
306 unsigned FoldedLoad = OpTbl0[i][2];
307 // Index 0, folded load or store.
308 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
309 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
310 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000311 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000312 AmbEntries.push_back(MemOp);
313 }
314
315 static const unsigned OpTbl1[][2] = {
316 { X86::CMP16rr, X86::CMP16rm },
317 { X86::CMP32rr, X86::CMP32rm },
318 { X86::CMP64rr, X86::CMP64rm },
319 { X86::CMP8rr, X86::CMP8rm },
320 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
321 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
322 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
323 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
324 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
325 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
326 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
327 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
328 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
329 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
330 { X86::FsMOVAPDrr, X86::MOVSDrm },
331 { X86::FsMOVAPSrr, X86::MOVSSrm },
332 { X86::IMUL16rri, X86::IMUL16rmi },
333 { X86::IMUL16rri8, X86::IMUL16rmi8 },
334 { X86::IMUL32rri, X86::IMUL32rmi },
335 { X86::IMUL32rri8, X86::IMUL32rmi8 },
336 { X86::IMUL64rri32, X86::IMUL64rmi32 },
337 { X86::IMUL64rri8, X86::IMUL64rmi8 },
338 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
339 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
340 { X86::Int_COMISDrr, X86::Int_COMISDrm },
341 { X86::Int_COMISSrr, X86::Int_COMISSrm },
342 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
343 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
344 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
345 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
346 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
347 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
348 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
349 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
350 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
351 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
352 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
353 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
354 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
355 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
356 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
357 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
358 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
359 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
360 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
361 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
362 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
363 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
364 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
365 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
366 { X86::MOV16rr, X86::MOV16rm },
367 { X86::MOV16to16_, X86::MOV16_rm },
368 { X86::MOV32rr, X86::MOV32rm },
369 { X86::MOV32to32_, X86::MOV32_rm },
370 { X86::MOV64rr, X86::MOV64rm },
371 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
372 { X86::MOV64toSDrr, X86::MOV64toSDrm },
373 { X86::MOV8rr, X86::MOV8rm },
374 { X86::MOVAPDrr, X86::MOVAPDrm },
375 { X86::MOVAPSrr, X86::MOVAPSrm },
376 { X86::MOVDDUPrr, X86::MOVDDUPrm },
377 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
378 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
379 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
380 { X86::MOVSDrr, X86::MOVSDrm },
381 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
382 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
383 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
384 { X86::MOVSSrr, X86::MOVSSrm },
385 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
386 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
387 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
388 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
389 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
390 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
391 { X86::MOVUPDrr, X86::MOVUPDrm },
392 { X86::MOVUPSrr, X86::MOVUPSrm },
393 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
394 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
395 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
396 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
397 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
398 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
399 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohmane3d92062008-08-07 02:54:50 +0000400 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000401 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
402 { X86::PSHUFDri, X86::PSHUFDmi },
403 { X86::PSHUFHWri, X86::PSHUFHWmi },
404 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000405 { X86::RCPPSr, X86::RCPPSm },
406 { X86::RCPPSr_Int, X86::RCPPSm_Int },
407 { X86::RSQRTPSr, X86::RSQRTPSm },
408 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
409 { X86::RSQRTSSr, X86::RSQRTSSm },
410 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
411 { X86::SQRTPDr, X86::SQRTPDm },
412 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
413 { X86::SQRTPSr, X86::SQRTPSm },
414 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
415 { X86::SQRTSDr, X86::SQRTSDm },
416 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
417 { X86::SQRTSSr, X86::SQRTSSm },
418 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
419 { X86::TEST16rr, X86::TEST16rm },
420 { X86::TEST32rr, X86::TEST32rm },
421 { X86::TEST64rr, X86::TEST64rm },
422 { X86::TEST8rr, X86::TEST8rm },
423 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
424 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000425 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000426 };
427
428 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
429 unsigned RegOp = OpTbl1[i][0];
430 unsigned MemOp = OpTbl1[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000431 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
432 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000433 assert(false && "Duplicated entries?");
434 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
435 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
436 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000437 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000438 AmbEntries.push_back(MemOp);
439 }
440
441 static const unsigned OpTbl2[][2] = {
442 { X86::ADC32rr, X86::ADC32rm },
443 { X86::ADC64rr, X86::ADC64rm },
444 { X86::ADD16rr, X86::ADD16rm },
445 { X86::ADD32rr, X86::ADD32rm },
446 { X86::ADD64rr, X86::ADD64rm },
447 { X86::ADD8rr, X86::ADD8rm },
448 { X86::ADDPDrr, X86::ADDPDrm },
449 { X86::ADDPSrr, X86::ADDPSrm },
450 { X86::ADDSDrr, X86::ADDSDrm },
451 { X86::ADDSSrr, X86::ADDSSrm },
452 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
453 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
454 { X86::AND16rr, X86::AND16rm },
455 { X86::AND32rr, X86::AND32rm },
456 { X86::AND64rr, X86::AND64rm },
457 { X86::AND8rr, X86::AND8rm },
458 { X86::ANDNPDrr, X86::ANDNPDrm },
459 { X86::ANDNPSrr, X86::ANDNPSrm },
460 { X86::ANDPDrr, X86::ANDPDrm },
461 { X86::ANDPSrr, X86::ANDPSrm },
462 { X86::CMOVA16rr, X86::CMOVA16rm },
463 { X86::CMOVA32rr, X86::CMOVA32rm },
464 { X86::CMOVA64rr, X86::CMOVA64rm },
465 { X86::CMOVAE16rr, X86::CMOVAE16rm },
466 { X86::CMOVAE32rr, X86::CMOVAE32rm },
467 { X86::CMOVAE64rr, X86::CMOVAE64rm },
468 { X86::CMOVB16rr, X86::CMOVB16rm },
469 { X86::CMOVB32rr, X86::CMOVB32rm },
470 { X86::CMOVB64rr, X86::CMOVB64rm },
471 { X86::CMOVBE16rr, X86::CMOVBE16rm },
472 { X86::CMOVBE32rr, X86::CMOVBE32rm },
473 { X86::CMOVBE64rr, X86::CMOVBE64rm },
474 { X86::CMOVE16rr, X86::CMOVE16rm },
475 { X86::CMOVE32rr, X86::CMOVE32rm },
476 { X86::CMOVE64rr, X86::CMOVE64rm },
477 { X86::CMOVG16rr, X86::CMOVG16rm },
478 { X86::CMOVG32rr, X86::CMOVG32rm },
479 { X86::CMOVG64rr, X86::CMOVG64rm },
480 { X86::CMOVGE16rr, X86::CMOVGE16rm },
481 { X86::CMOVGE32rr, X86::CMOVGE32rm },
482 { X86::CMOVGE64rr, X86::CMOVGE64rm },
483 { X86::CMOVL16rr, X86::CMOVL16rm },
484 { X86::CMOVL32rr, X86::CMOVL32rm },
485 { X86::CMOVL64rr, X86::CMOVL64rm },
486 { X86::CMOVLE16rr, X86::CMOVLE16rm },
487 { X86::CMOVLE32rr, X86::CMOVLE32rm },
488 { X86::CMOVLE64rr, X86::CMOVLE64rm },
489 { X86::CMOVNE16rr, X86::CMOVNE16rm },
490 { X86::CMOVNE32rr, X86::CMOVNE32rm },
491 { X86::CMOVNE64rr, X86::CMOVNE64rm },
492 { X86::CMOVNP16rr, X86::CMOVNP16rm },
493 { X86::CMOVNP32rr, X86::CMOVNP32rm },
494 { X86::CMOVNP64rr, X86::CMOVNP64rm },
495 { X86::CMOVNS16rr, X86::CMOVNS16rm },
496 { X86::CMOVNS32rr, X86::CMOVNS32rm },
497 { X86::CMOVNS64rr, X86::CMOVNS64rm },
498 { X86::CMOVP16rr, X86::CMOVP16rm },
499 { X86::CMOVP32rr, X86::CMOVP32rm },
500 { X86::CMOVP64rr, X86::CMOVP64rm },
501 { X86::CMOVS16rr, X86::CMOVS16rm },
502 { X86::CMOVS32rr, X86::CMOVS32rm },
503 { X86::CMOVS64rr, X86::CMOVS64rm },
504 { X86::CMPPDrri, X86::CMPPDrmi },
505 { X86::CMPPSrri, X86::CMPPSrmi },
506 { X86::CMPSDrr, X86::CMPSDrm },
507 { X86::CMPSSrr, X86::CMPSSrm },
508 { X86::DIVPDrr, X86::DIVPDrm },
509 { X86::DIVPSrr, X86::DIVPSrm },
510 { X86::DIVSDrr, X86::DIVSDrm },
511 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng082f1162008-05-02 17:01:01 +0000512 { X86::FsANDNPDrr, X86::FsANDNPDrm },
513 { X86::FsANDNPSrr, X86::FsANDNPSrm },
514 { X86::FsANDPDrr, X86::FsANDPDrm },
515 { X86::FsANDPSrr, X86::FsANDPSrm },
516 { X86::FsORPDrr, X86::FsORPDrm },
517 { X86::FsORPSrr, X86::FsORPSrm },
518 { X86::FsXORPDrr, X86::FsXORPDrm },
519 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson43dbe052008-01-07 01:35:02 +0000520 { X86::HADDPDrr, X86::HADDPDrm },
521 { X86::HADDPSrr, X86::HADDPSrm },
522 { X86::HSUBPDrr, X86::HSUBPDrm },
523 { X86::HSUBPSrr, X86::HSUBPSrm },
524 { X86::IMUL16rr, X86::IMUL16rm },
525 { X86::IMUL32rr, X86::IMUL32rm },
526 { X86::IMUL64rr, X86::IMUL64rm },
527 { X86::MAXPDrr, X86::MAXPDrm },
528 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
529 { X86::MAXPSrr, X86::MAXPSrm },
530 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
531 { X86::MAXSDrr, X86::MAXSDrm },
532 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
533 { X86::MAXSSrr, X86::MAXSSrm },
534 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
535 { X86::MINPDrr, X86::MINPDrm },
536 { X86::MINPDrr_Int, X86::MINPDrm_Int },
537 { X86::MINPSrr, X86::MINPSrm },
538 { X86::MINPSrr_Int, X86::MINPSrm_Int },
539 { X86::MINSDrr, X86::MINSDrm },
540 { X86::MINSDrr_Int, X86::MINSDrm_Int },
541 { X86::MINSSrr, X86::MINSSrm },
542 { X86::MINSSrr_Int, X86::MINSSrm_Int },
543 { X86::MULPDrr, X86::MULPDrm },
544 { X86::MULPSrr, X86::MULPSrm },
545 { X86::MULSDrr, X86::MULSDrm },
546 { X86::MULSSrr, X86::MULSSrm },
547 { X86::OR16rr, X86::OR16rm },
548 { X86::OR32rr, X86::OR32rm },
549 { X86::OR64rr, X86::OR64rm },
550 { X86::OR8rr, X86::OR8rm },
551 { X86::ORPDrr, X86::ORPDrm },
552 { X86::ORPSrr, X86::ORPSrm },
553 { X86::PACKSSDWrr, X86::PACKSSDWrm },
554 { X86::PACKSSWBrr, X86::PACKSSWBrm },
555 { X86::PACKUSWBrr, X86::PACKUSWBrm },
556 { X86::PADDBrr, X86::PADDBrm },
557 { X86::PADDDrr, X86::PADDDrm },
558 { X86::PADDQrr, X86::PADDQrm },
559 { X86::PADDSBrr, X86::PADDSBrm },
560 { X86::PADDSWrr, X86::PADDSWrm },
561 { X86::PADDWrr, X86::PADDWrm },
562 { X86::PANDNrr, X86::PANDNrm },
563 { X86::PANDrr, X86::PANDrm },
564 { X86::PAVGBrr, X86::PAVGBrm },
565 { X86::PAVGWrr, X86::PAVGWrm },
566 { X86::PCMPEQBrr, X86::PCMPEQBrm },
567 { X86::PCMPEQDrr, X86::PCMPEQDrm },
568 { X86::PCMPEQWrr, X86::PCMPEQWrm },
569 { X86::PCMPGTBrr, X86::PCMPGTBrm },
570 { X86::PCMPGTDrr, X86::PCMPGTDrm },
571 { X86::PCMPGTWrr, X86::PCMPGTWrm },
572 { X86::PINSRWrri, X86::PINSRWrmi },
573 { X86::PMADDWDrr, X86::PMADDWDrm },
574 { X86::PMAXSWrr, X86::PMAXSWrm },
575 { X86::PMAXUBrr, X86::PMAXUBrm },
576 { X86::PMINSWrr, X86::PMINSWrm },
577 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohman0b924dc2008-05-23 17:49:40 +0000578 { X86::PMULDQrr, X86::PMULDQrm },
579 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson43dbe052008-01-07 01:35:02 +0000580 { X86::PMULHUWrr, X86::PMULHUWrm },
581 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohman0b924dc2008-05-23 17:49:40 +0000582 { X86::PMULLDrr, X86::PMULLDrm },
583 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson43dbe052008-01-07 01:35:02 +0000584 { X86::PMULLWrr, X86::PMULLWrm },
585 { X86::PMULUDQrr, X86::PMULUDQrm },
586 { X86::PORrr, X86::PORrm },
587 { X86::PSADBWrr, X86::PSADBWrm },
588 { X86::PSLLDrr, X86::PSLLDrm },
589 { X86::PSLLQrr, X86::PSLLQrm },
590 { X86::PSLLWrr, X86::PSLLWrm },
591 { X86::PSRADrr, X86::PSRADrm },
592 { X86::PSRAWrr, X86::PSRAWrm },
593 { X86::PSRLDrr, X86::PSRLDrm },
594 { X86::PSRLQrr, X86::PSRLQrm },
595 { X86::PSRLWrr, X86::PSRLWrm },
596 { X86::PSUBBrr, X86::PSUBBrm },
597 { X86::PSUBDrr, X86::PSUBDrm },
598 { X86::PSUBSBrr, X86::PSUBSBrm },
599 { X86::PSUBSWrr, X86::PSUBSWrm },
600 { X86::PSUBWrr, X86::PSUBWrm },
601 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
602 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
603 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
604 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
605 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
606 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
607 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
608 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
609 { X86::PXORrr, X86::PXORrm },
610 { X86::SBB32rr, X86::SBB32rm },
611 { X86::SBB64rr, X86::SBB64rm },
612 { X86::SHUFPDrri, X86::SHUFPDrmi },
613 { X86::SHUFPSrri, X86::SHUFPSrmi },
614 { X86::SUB16rr, X86::SUB16rm },
615 { X86::SUB32rr, X86::SUB32rm },
616 { X86::SUB64rr, X86::SUB64rm },
617 { X86::SUB8rr, X86::SUB8rm },
618 { X86::SUBPDrr, X86::SUBPDrm },
619 { X86::SUBPSrr, X86::SUBPSrm },
620 { X86::SUBSDrr, X86::SUBSDrm },
621 { X86::SUBSSrr, X86::SUBSSrm },
622 // FIXME: TEST*rr -> swapped operand of TEST*mr.
623 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
624 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
625 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
626 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
627 { X86::XOR16rr, X86::XOR16rm },
628 { X86::XOR32rr, X86::XOR32rm },
629 { X86::XOR64rr, X86::XOR64rm },
630 { X86::XOR8rr, X86::XOR8rm },
631 { X86::XORPDrr, X86::XORPDrm },
632 { X86::XORPSrr, X86::XORPSrm }
633 };
634
635 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636 unsigned RegOp = OpTbl2[i][0];
637 unsigned MemOp = OpTbl2[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000638 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
639 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000640 assert(false && "Duplicated entries?");
641 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
642 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000643 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000644 AmbEntries.push_back(MemOp);
645 }
646
647 // Remove ambiguous entries.
648 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000649}
650
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000651bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
652 unsigned& sourceReg,
653 unsigned& destReg) const {
Chris Lattner07f7cc32008-03-11 19:28:17 +0000654 switch (MI.getOpcode()) {
655 default:
656 return false;
657 case X86::MOV8rr:
658 case X86::MOV16rr:
659 case X86::MOV32rr:
660 case X86::MOV64rr:
661 case X86::MOV16to16_:
662 case X86::MOV32to32_:
Chris Lattner07f7cc32008-03-11 19:28:17 +0000663 case X86::MOVSSrr:
664 case X86::MOVSDrr:
Chris Lattner1d386772008-03-11 19:30:09 +0000665
666 // FP Stack register class copies
667 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
668 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
669 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
670
Chris Lattner07f7cc32008-03-11 19:28:17 +0000671 case X86::FsMOVAPSrr:
672 case X86::FsMOVAPDrr:
673 case X86::MOVAPSrr:
674 case X86::MOVAPDrr:
675 case X86::MOVSS2PSrr:
676 case X86::MOVSD2PDrr:
677 case X86::MOVPS2SSrr:
678 case X86::MOVPD2SDrr:
679 case X86::MMX_MOVD64rr:
680 case X86::MMX_MOVQ64rr:
681 assert(MI.getNumOperands() >= 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +0000682 MI.getOperand(0).isReg() &&
683 MI.getOperand(1).isReg() &&
Chris Lattner07f7cc32008-03-11 19:28:17 +0000684 "invalid register-register move instruction");
685 sourceReg = MI.getOperand(1).getReg();
686 destReg = MI.getOperand(0).getReg();
687 return true;
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000688 }
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000689}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000690
Dan Gohmancbad42c2008-11-18 19:49:32 +0000691unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +0000692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8rm:
696 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000697 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000698 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000699 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000700 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000701 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000702 case X86::MOVSSrm:
703 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000704 case X86::MOVAPSrm:
705 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000706 case X86::MMX_MOVD64rm:
707 case X86::MMX_MOVQ64rm:
Dan Gohmand735b802008-10-03 15:45:36 +0000708 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
709 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000710 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000711 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000712 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000713 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000714 return MI->getOperand(0).getReg();
715 }
716 break;
717 }
718 return 0;
719}
720
Dan Gohmancbad42c2008-11-18 19:49:32 +0000721unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +0000722 int &FrameIndex) const {
723 switch (MI->getOpcode()) {
724 default: break;
725 case X86::MOV8mr:
726 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000727 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000728 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000729 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000730 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000731 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000732 case X86::MOVSSmr:
733 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000734 case X86::MOVAPSmr:
735 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000736 case X86::MMX_MOVD64mr:
737 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000738 case X86::MMX_MOVNTQmr:
Dan Gohmand735b802008-10-03 15:45:36 +0000739 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
740 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000741 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000742 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000743 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000744 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000745 return MI->getOperand(4).getReg();
746 }
747 break;
748 }
749 return 0;
750}
751
752
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000753/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
754/// X86::MOVPC32r.
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000755static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000756 bool isPICBase = false;
757 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
758 E = MRI.def_end(); I != E; ++I) {
759 MachineInstr *DefMI = I.getOperand().getParent();
760 if (DefMI->getOpcode() != X86::MOVPC32r)
761 return false;
762 assert(!isPICBase && "More than one PIC base?");
763 isPICBase = true;
764 }
765 return isPICBase;
766}
Evan Cheng9d15abe2008-03-31 07:54:19 +0000767
768/// isGVStub - Return true if the GV requires an extra load to get the
769/// real address.
770static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
771 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
772}
Evan Chenge771ebd2008-03-27 01:41:09 +0000773
Bill Wendling9f8fea32008-05-12 20:54:26 +0000774bool
775X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000776 switch (MI->getOpcode()) {
777 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +0000778 case X86::MOV8rm:
779 case X86::MOV16rm:
780 case X86::MOV16_rm:
781 case X86::MOV32rm:
782 case X86::MOV32_rm:
783 case X86::MOV64rm:
784 case X86::LD_Fp64m:
785 case X86::MOVSSrm:
786 case X86::MOVSDrm:
787 case X86::MOVAPSrm:
788 case X86::MOVAPDrm:
789 case X86::MMX_MOVD64rm:
790 case X86::MMX_MOVQ64rm: {
791 // Loads from constant pools are trivially rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +0000792 if (MI->getOperand(1).isReg() &&
793 MI->getOperand(2).isImm() &&
794 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
795 (MI->getOperand(4).isCPI() ||
796 (MI->getOperand(4).isGlobal() &&
Evan Cheng9d15abe2008-03-31 07:54:19 +0000797 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000798 unsigned BaseReg = MI->getOperand(1).getReg();
799 if (BaseReg == 0)
800 return true;
801 // Allow re-materialization of PIC load.
Dan Gohmand735b802008-10-03 15:45:36 +0000802 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengffe2eb02008-04-01 23:26:12 +0000803 return false;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000804 const MachineFunction &MF = *MI->getParent()->getParent();
805 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge771ebd2008-03-27 01:41:09 +0000806 bool isPICBase = false;
807 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
808 E = MRI.def_end(); I != E; ++I) {
809 MachineInstr *DefMI = I.getOperand().getParent();
810 if (DefMI->getOpcode() != X86::MOVPC32r)
811 return false;
812 assert(!isPICBase && "More than one PIC base?");
813 isPICBase = true;
814 }
815 return isPICBase;
816 }
817 return false;
Evan Chengd8850a52008-02-22 09:25:47 +0000818 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000819
820 case X86::LEA32r:
821 case X86::LEA64r: {
Dan Gohmand735b802008-10-03 15:45:36 +0000822 if (MI->getOperand(2).isImm() &&
823 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
824 !MI->getOperand(4).isReg()) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000825 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +0000826 if (!MI->getOperand(1).isReg())
Dan Gohman83ccd142008-09-26 21:30:20 +0000827 return true;
Evan Chenge771ebd2008-03-27 01:41:09 +0000828 unsigned BaseReg = MI->getOperand(1).getReg();
829 if (BaseReg == 0)
830 return true;
831 // Allow re-materialization of lea PICBase + x.
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000832 const MachineFunction &MF = *MI->getParent()->getParent();
833 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000834 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +0000835 }
836 return false;
837 }
Dan Gohmanc101e952007-06-14 20:50:44 +0000838 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000839
Dan Gohmand45eddd2007-06-26 00:48:07 +0000840 // All other instructions marked M_REMATERIALIZABLE are always trivially
841 // rematerializable.
842 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000843}
844
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000845/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
846/// would clobber the EFLAGS condition register. Note the result may be
847/// conservative. If it cannot definitely determine the safety after visiting
848/// two instructions it assumes it's not safe.
849static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
850 MachineBasicBlock::iterator I) {
Dan Gohman3afda6e2008-10-21 03:24:31 +0000851 // It's always safe to clobber EFLAGS at the end of a block.
852 if (I == MBB.end())
853 return true;
854
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000855 // For compile time consideration, if we are not able to determine the
856 // safety after visiting 2 instructions, we will assume it's not safe.
857 for (unsigned i = 0; i < 2; ++i) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000858 bool SeenDef = false;
859 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
860 MachineOperand &MO = I->getOperand(j);
Dan Gohmand735b802008-10-03 15:45:36 +0000861 if (!MO.isReg())
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000862 continue;
863 if (MO.getReg() == X86::EFLAGS) {
864 if (MO.isUse())
865 return false;
866 SeenDef = true;
867 }
868 }
869
870 if (SeenDef)
871 // This instruction defines EFLAGS, no need to look any further.
872 return true;
873 ++I;
Dan Gohman3afda6e2008-10-21 03:24:31 +0000874
875 // If we make it to the end of the block, it's safe to clobber EFLAGS.
876 if (I == MBB.end())
877 return true;
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000878 }
879
880 // Conservative answer.
881 return false;
882}
883
Evan Chengca1267c2008-03-31 20:40:39 +0000884void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
885 MachineBasicBlock::iterator I,
886 unsigned DestReg,
887 const MachineInstr *Orig) const {
Dan Gohmand735b802008-10-03 15:45:36 +0000888 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng03eb3882008-04-16 23:44:44 +0000889 ? Orig->getOperand(0).getSubReg() : 0;
890 bool ChangeSubIdx = SubIdx != 0;
891 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
892 DestReg = RI.getSubReg(DestReg, SubIdx);
893 SubIdx = 0;
894 }
895
Evan Chengca1267c2008-03-31 20:40:39 +0000896 // MOV32r0 etc. are implemented with xor which clobbers condition code.
897 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000898 bool Emitted = false;
Evan Chengca1267c2008-03-31 20:40:39 +0000899 switch (Orig->getOpcode()) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000900 default: break;
Evan Chengca1267c2008-03-31 20:40:39 +0000901 case X86::MOV8r0:
Evan Chengca1267c2008-03-31 20:40:39 +0000902 case X86::MOV16r0:
Evan Chengca1267c2008-03-31 20:40:39 +0000903 case X86::MOV32r0:
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000904 case X86::MOV64r0: {
905 if (!isSafeToClobberEFLAGS(MBB, I)) {
906 unsigned Opc = 0;
907 switch (Orig->getOpcode()) {
908 default: break;
909 case X86::MOV8r0: Opc = X86::MOV8ri; break;
910 case X86::MOV16r0: Opc = X86::MOV16ri; break;
911 case X86::MOV32r0: Opc = X86::MOV32ri; break;
912 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
913 }
914 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
915 Emitted = true;
916 }
Evan Chengca1267c2008-03-31 20:40:39 +0000917 break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000918 }
919 }
920
921 if (!Emitted) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000922 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chengca1267c2008-03-31 20:40:39 +0000923 MI->getOperand(0).setReg(DestReg);
924 MBB.insert(I, MI);
Evan Chengca1267c2008-03-31 20:40:39 +0000925 }
Evan Cheng03eb3882008-04-16 23:44:44 +0000926
927 if (ChangeSubIdx) {
928 MachineInstr *NewMI = prior(I);
929 NewMI->getOperand(0).setSubReg(SubIdx);
930 }
Evan Chengca1267c2008-03-31 20:40:39 +0000931}
932
Chris Lattnera22edc82008-01-10 23:08:24 +0000933/// isInvariantLoad - Return true if the specified instruction (which is marked
934/// mayLoad) is loading from a location whose value is invariant across the
935/// function. For example, loading a value from the constant pool or from
936/// from the argument area of a function if it does not change. This should
937/// only return true of *all* loads the instruction does are invariant (if it
938/// does multiple loads).
Dan Gohmancbad42c2008-11-18 19:49:32 +0000939bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000940 // This code cares about loads from three cases: constant pool entries,
941 // invariant argument slots, and global stubs. In order to handle these cases
942 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner144ad582008-01-12 00:53:16 +0000943 // operand and base our analysis on it. This is safe because the address of
Chris Lattner828bb6c2008-01-12 00:35:08 +0000944 // none of these three cases is ever used as anything other than a load base
945 // and X86 doesn't have any instructions that load from multiple places.
946
947 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
948 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnera22edc82008-01-10 23:08:24 +0000949 // Loads from constant pools are trivially invariant.
Dan Gohmand735b802008-10-03 15:45:36 +0000950 if (MO.isCPI())
Chris Lattner3b5a2212008-01-05 05:28:30 +0000951 return true;
Evan Cheng9d15abe2008-03-31 07:54:19 +0000952
Dan Gohmand735b802008-10-03 15:45:36 +0000953 if (MO.isGlobal())
Evan Cheng9d15abe2008-03-31 07:54:19 +0000954 return isGVStub(MO.getGlobal(), TM);
Chris Lattner828bb6c2008-01-12 00:35:08 +0000955
956 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmand735b802008-10-03 15:45:36 +0000957 if (MO.isFI()) {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000958 const MachineFrameInfo &MFI =
959 *MI->getParent()->getParent()->getFrameInfo();
960 int Idx = MO.getIndex();
Chris Lattner87943902008-01-10 04:16:31 +0000961 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
962 }
Bill Wendling627c00b2007-12-17 23:07:56 +0000963 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000964
Chris Lattnera22edc82008-01-10 23:08:24 +0000965 // All other instances of these instructions are presumed to have other
966 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000967 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000968}
969
Evan Cheng3f411c72007-10-05 08:04:01 +0000970/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
971/// is not marked dead.
972static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000973 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
974 MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000975 if (MO.isReg() && MO.isDef() &&
Evan Cheng3f411c72007-10-05 08:04:01 +0000976 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
977 return true;
978 }
979 }
980 return false;
981}
982
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000983/// convertToThreeAddress - This method must be implemented by targets that
984/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
985/// may be able to convert a two-address instruction into a true
986/// three-address instruction on demand. This allows the X86 target (for
987/// example) to convert ADD and SHL instructions into LEA instructions if they
988/// would require register copies due to two-addressness.
989///
990/// This method returns a null pointer if the transformation cannot be
991/// performed, otherwise it returns the new instruction.
992///
Evan Cheng258ff672006-12-01 21:52:41 +0000993MachineInstr *
994X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
995 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000996 LiveVariables *LV) const {
Evan Cheng258ff672006-12-01 21:52:41 +0000997 MachineInstr *MI = MBBI;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000998 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000999 // All instructions input are two-addr instructions. Get the known operands.
1000 unsigned Dest = MI->getOperand(0).getReg();
1001 unsigned Src = MI->getOperand(1).getReg();
Evan Cheng9f1c8312008-07-03 09:09:37 +00001002 bool isDead = MI->getOperand(0).isDead();
1003 bool isKill = MI->getOperand(1).isKill();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001004
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001005 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +00001006 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001007 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +00001008 bool DisableLEA16 = true;
1009
Evan Cheng559dc462007-10-05 20:34:26 +00001010 unsigned MIOpc = MI->getOpcode();
1011 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +00001012 case X86::SHUFPSrri: {
1013 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001014 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1015
Evan Chengaa3c1412006-05-30 21:45:53 +00001016 unsigned B = MI->getOperand(1).getReg();
1017 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001018 if (B != C) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001019 unsigned A = MI->getOperand(0).getReg();
1020 unsigned M = MI->getOperand(3).getImm();
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001021 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001022 .addReg(B, false, false, isKill).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001023 break;
1024 }
Chris Lattner995f5502007-03-28 18:12:31 +00001025 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001026 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +00001027 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1028 // the flags produced by a shift yet, so this is safe.
Chris Lattner995f5502007-03-28 18:12:31 +00001029 unsigned ShAmt = MI->getOperand(2).getImm();
1030 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001031
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001032 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001033 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Chris Lattner995f5502007-03-28 18:12:31 +00001034 break;
1035 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001036 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001037 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001038 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1039 // the flags produced by a shift yet, so this is safe.
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001040 unsigned ShAmt = MI->getOperand(2).getImm();
1041 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001042
Chris Lattnerf2177b82007-03-28 00:58:40 +00001043 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1044 X86::LEA64_32r : X86::LEA32r;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001045 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001046 .addReg(0).addImm(1 << ShAmt)
1047 .addReg(Src, false, false, isKill).addImm(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001048 break;
1049 }
1050 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001051 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +00001052 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1053 // the flags produced by a shift yet, so this is safe.
Evan Cheng61d9c862007-09-06 00:14:41 +00001054 unsigned ShAmt = MI->getOperand(2).getImm();
1055 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001056
Christopher Lambb8133712007-08-10 21:18:25 +00001057 if (DisableLEA16) {
1058 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +00001059 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +00001060 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1061 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +00001062 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1063 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Cheng4499e492008-03-10 19:31:26 +00001064
Christopher Lamb1bc10082008-03-11 10:27:36 +00001065 // Build and insert into an implicit UNDEF value. This is OK because
1066 // well be shifting and then extracting the lower 16-bits.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001067 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1068 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001069 .addReg(leaInReg).addReg(Src, false, false, isKill)
1070 .addImm(X86::SUBREG_16BIT);
Christopher Lambc9298232008-03-16 03:12:01 +00001071
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001072 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001073 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lambb8133712007-08-10 21:18:25 +00001074
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001075 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001076 .addReg(Dest, true, false, false, isDead)
1077 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonf660c172008-07-02 23:41:07 +00001078 if (LV) {
Evan Cheng9f1c8312008-07-03 09:09:37 +00001079 // Update live variables
1080 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1081 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1082 if (isKill)
1083 LV->replaceKillInstruction(Src, MI, InsMI);
1084 if (isDead)
1085 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonf660c172008-07-02 23:41:07 +00001086 }
Evan Cheng9f1c8312008-07-03 09:09:37 +00001087 return ExtMI;
Christopher Lambb8133712007-08-10 21:18:25 +00001088 } else {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001089 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001090 .addReg(0).addImm(1 << ShAmt)
1091 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lambb8133712007-08-10 21:18:25 +00001092 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001093 break;
Evan Chengccba76b2006-05-30 20:26:50 +00001094 }
Evan Cheng559dc462007-10-05 20:34:26 +00001095 default: {
1096 // The following opcodes also sets the condition code register(s). Only
1097 // convert them to equivalent lea if the condition code register def's
1098 // are dead!
1099 if (hasLiveCondCodeDef(MI))
1100 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +00001101
Evan Chengb76143c2007-10-09 07:14:53 +00001102 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +00001103 switch (MIOpc) {
1104 default: return 0;
1105 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +00001106 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001107 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001108 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1109 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001110 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001111 .addReg(Dest, true, false, false, isDead),
1112 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001113 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001114 }
Evan Cheng559dc462007-10-05 20:34:26 +00001115 case X86::INC16r:
1116 case X86::INC64_16r:
1117 if (DisableLEA16) return 0;
1118 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001119 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001120 .addReg(Dest, true, false, false, isDead),
1121 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001122 break;
1123 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +00001124 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001125 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001126 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1127 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001128 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001129 .addReg(Dest, true, false, false, isDead),
1130 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001131 break;
1132 }
1133 case X86::DEC16r:
1134 case X86::DEC64_16r:
1135 if (DisableLEA16) return 0;
1136 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001137 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001138 .addReg(Dest, true, false, false, isDead),
1139 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001140 break;
1141 case X86::ADD64rr:
1142 case X86::ADD32rr: {
1143 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001144 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1145 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng9f1c8312008-07-03 09:09:37 +00001146 unsigned Src2 = MI->getOperand(2).getReg();
1147 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001148 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001149 .addReg(Dest, true, false, false, isDead),
1150 Src, isKill, Src2, isKill2);
1151 if (LV && isKill2)
1152 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001153 break;
1154 }
Evan Cheng9f1c8312008-07-03 09:09:37 +00001155 case X86::ADD16rr: {
Evan Cheng559dc462007-10-05 20:34:26 +00001156 if (DisableLEA16) return 0;
1157 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng9f1c8312008-07-03 09:09:37 +00001158 unsigned Src2 = MI->getOperand(2).getReg();
1159 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001160 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001161 .addReg(Dest, true, false, false, isDead),
1162 Src, isKill, Src2, isKill2);
1163 if (LV && isKill2)
1164 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001165 break;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001166 }
Evan Cheng559dc462007-10-05 20:34:26 +00001167 case X86::ADD64ri32:
1168 case X86::ADD64ri8:
1169 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmand735b802008-10-03 15:45:36 +00001170 if (MI->getOperand(2).isImm())
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001171 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001172 .addReg(Dest, true, false, false, isDead),
1173 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001174 break;
1175 case X86::ADD32ri:
1176 case X86::ADD32ri8:
1177 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmand735b802008-10-03 15:45:36 +00001178 if (MI->getOperand(2).isImm()) {
Evan Chengb76143c2007-10-09 07:14:53 +00001179 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001180 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001181 .addReg(Dest, true, false, false, isDead),
1182 Src, isKill, MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001183 }
Evan Cheng559dc462007-10-05 20:34:26 +00001184 break;
1185 case X86::ADD16ri:
1186 case X86::ADD16ri8:
1187 if (DisableLEA16) return 0;
1188 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmand735b802008-10-03 15:45:36 +00001189 if (MI->getOperand(2).isImm())
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001190 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001191 .addReg(Dest, true, false, false, isDead),
1192 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001193 break;
1194 case X86::SHL16ri:
1195 if (DisableLEA16) return 0;
1196 case X86::SHL32ri:
1197 case X86::SHL64ri: {
Dan Gohmand735b802008-10-03 15:45:36 +00001198 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng559dc462007-10-05 20:34:26 +00001199 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001200 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001201 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1202 X86AddressMode AM;
1203 AM.Scale = 1 << ShAmt;
1204 AM.IndexReg = Src;
1205 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001206 : (MIOpc == X86::SHL32ri
1207 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001208 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001209 .addReg(Dest, true, false, false, isDead), AM);
1210 if (isKill)
1211 NewMI->getOperand(3).setIsKill(true);
Evan Cheng559dc462007-10-05 20:34:26 +00001212 }
1213 break;
1214 }
1215 }
1216 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001217 }
1218
Evan Cheng15246732008-02-07 08:29:53 +00001219 if (!NewMI) return 0;
1220
Evan Cheng9f1c8312008-07-03 09:09:37 +00001221 if (LV) { // Update live variables
1222 if (isKill)
1223 LV->replaceKillInstruction(Src, MI, NewMI);
1224 if (isDead)
1225 LV->replaceKillInstruction(Dest, MI, NewMI);
1226 }
1227
Evan Cheng559dc462007-10-05 20:34:26 +00001228 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001229 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001230}
1231
Chris Lattner41e431b2005-01-19 07:11:01 +00001232/// commuteInstruction - We have a few instructions that must be hacked on to
1233/// commute them.
1234///
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001235MachineInstr *
1236X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner41e431b2005-01-19 07:11:01 +00001237 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001238 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1239 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001240 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001241 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1242 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1243 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001244 unsigned Opc;
1245 unsigned Size;
1246 switch (MI->getOpcode()) {
1247 default: assert(0 && "Unreachable!");
1248 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1249 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1250 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1251 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001252 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1253 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001254 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001255 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman74feef22008-10-17 01:23:35 +00001256 if (NewMI) {
1257 MachineFunction &MF = *MI->getParent()->getParent();
1258 MI = MF.CloneMachineInstr(MI);
1259 NewMI = false;
Evan Chenga4d16a12008-02-13 02:46:49 +00001260 }
Dan Gohman74feef22008-10-17 01:23:35 +00001261 MI->setDesc(get(Opc));
1262 MI->getOperand(3).setImm(Size-Amt);
1263 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001264 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001265 case X86::CMOVB16rr:
1266 case X86::CMOVB32rr:
1267 case X86::CMOVB64rr:
1268 case X86::CMOVAE16rr:
1269 case X86::CMOVAE32rr:
1270 case X86::CMOVAE64rr:
1271 case X86::CMOVE16rr:
1272 case X86::CMOVE32rr:
1273 case X86::CMOVE64rr:
1274 case X86::CMOVNE16rr:
1275 case X86::CMOVNE32rr:
1276 case X86::CMOVNE64rr:
1277 case X86::CMOVBE16rr:
1278 case X86::CMOVBE32rr:
1279 case X86::CMOVBE64rr:
1280 case X86::CMOVA16rr:
1281 case X86::CMOVA32rr:
1282 case X86::CMOVA64rr:
1283 case X86::CMOVL16rr:
1284 case X86::CMOVL32rr:
1285 case X86::CMOVL64rr:
1286 case X86::CMOVGE16rr:
1287 case X86::CMOVGE32rr:
1288 case X86::CMOVGE64rr:
1289 case X86::CMOVLE16rr:
1290 case X86::CMOVLE32rr:
1291 case X86::CMOVLE64rr:
1292 case X86::CMOVG16rr:
1293 case X86::CMOVG32rr:
1294 case X86::CMOVG64rr:
1295 case X86::CMOVS16rr:
1296 case X86::CMOVS32rr:
1297 case X86::CMOVS64rr:
1298 case X86::CMOVNS16rr:
1299 case X86::CMOVNS32rr:
1300 case X86::CMOVNS64rr:
1301 case X86::CMOVP16rr:
1302 case X86::CMOVP32rr:
1303 case X86::CMOVP64rr:
1304 case X86::CMOVNP16rr:
1305 case X86::CMOVNP32rr:
1306 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001307 unsigned Opc = 0;
1308 switch (MI->getOpcode()) {
1309 default: break;
1310 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1311 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1312 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1313 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1314 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1315 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1316 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1317 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1318 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1319 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1320 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1321 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1322 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1323 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1324 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1325 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1326 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1327 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1328 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1329 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1330 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1331 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1332 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1333 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1334 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1335 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1336 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1337 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1338 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1339 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1340 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1341 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1342 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1343 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1344 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1345 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1346 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1347 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1348 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1349 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1350 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1351 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1352 }
Dan Gohman74feef22008-10-17 01:23:35 +00001353 if (NewMI) {
1354 MachineFunction &MF = *MI->getParent()->getParent();
1355 MI = MF.CloneMachineInstr(MI);
1356 NewMI = false;
1357 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00001358 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001359 // Fallthrough intended.
1360 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001361 default:
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001362 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001363 }
1364}
1365
Chris Lattner7fbe9722006-10-20 17:42:20 +00001366static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1367 switch (BrOpc) {
1368 default: return X86::COND_INVALID;
1369 case X86::JE: return X86::COND_E;
1370 case X86::JNE: return X86::COND_NE;
1371 case X86::JL: return X86::COND_L;
1372 case X86::JLE: return X86::COND_LE;
1373 case X86::JG: return X86::COND_G;
1374 case X86::JGE: return X86::COND_GE;
1375 case X86::JB: return X86::COND_B;
1376 case X86::JBE: return X86::COND_BE;
1377 case X86::JA: return X86::COND_A;
1378 case X86::JAE: return X86::COND_AE;
1379 case X86::JS: return X86::COND_S;
1380 case X86::JNS: return X86::COND_NS;
1381 case X86::JP: return X86::COND_P;
1382 case X86::JNP: return X86::COND_NP;
1383 case X86::JO: return X86::COND_O;
1384 case X86::JNO: return X86::COND_NO;
Bill Wendling3fafd932008-11-26 22:37:40 +00001385 case X86::JC: return X86::COND_C;
1386 case X86::JNC: return X86::COND_NC;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001387 }
1388}
1389
1390unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1391 switch (CC) {
1392 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001393 case X86::COND_E: return X86::JE;
1394 case X86::COND_NE: return X86::JNE;
1395 case X86::COND_L: return X86::JL;
1396 case X86::COND_LE: return X86::JLE;
1397 case X86::COND_G: return X86::JG;
1398 case X86::COND_GE: return X86::JGE;
1399 case X86::COND_B: return X86::JB;
1400 case X86::COND_BE: return X86::JBE;
1401 case X86::COND_A: return X86::JA;
1402 case X86::COND_AE: return X86::JAE;
1403 case X86::COND_S: return X86::JS;
1404 case X86::COND_NS: return X86::JNS;
1405 case X86::COND_P: return X86::JP;
1406 case X86::COND_NP: return X86::JNP;
1407 case X86::COND_O: return X86::JO;
1408 case X86::COND_NO: return X86::JNO;
Bill Wendling3fafd932008-11-26 22:37:40 +00001409 case X86::COND_C: return X86::JC;
1410 case X86::COND_NC: return X86::JNC;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001411 }
1412}
1413
Chris Lattner9cd68752006-10-21 05:52:40 +00001414/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1415/// e.g. turning COND_E to COND_NE.
1416X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1417 switch (CC) {
1418 default: assert(0 && "Illegal condition code!");
1419 case X86::COND_E: return X86::COND_NE;
1420 case X86::COND_NE: return X86::COND_E;
1421 case X86::COND_L: return X86::COND_GE;
1422 case X86::COND_LE: return X86::COND_G;
1423 case X86::COND_G: return X86::COND_LE;
1424 case X86::COND_GE: return X86::COND_L;
1425 case X86::COND_B: return X86::COND_AE;
1426 case X86::COND_BE: return X86::COND_A;
1427 case X86::COND_A: return X86::COND_BE;
1428 case X86::COND_AE: return X86::COND_B;
1429 case X86::COND_S: return X86::COND_NS;
1430 case X86::COND_NS: return X86::COND_S;
1431 case X86::COND_P: return X86::COND_NP;
1432 case X86::COND_NP: return X86::COND_P;
1433 case X86::COND_O: return X86::COND_NO;
1434 case X86::COND_NO: return X86::COND_O;
Bill Wendling3fafd932008-11-26 22:37:40 +00001435 case X86::COND_C: return X86::COND_NC;
1436 case X86::COND_NC: return X86::COND_C;
Chris Lattner9cd68752006-10-21 05:52:40 +00001437 }
1438}
1439
Dale Johannesen318093b2007-06-14 22:03:45 +00001440bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001441 const TargetInstrDesc &TID = MI->getDesc();
1442 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001443
1444 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001445 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001446 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001447 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001448 return true;
1449 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001450}
Chris Lattner9cd68752006-10-21 05:52:40 +00001451
Evan Cheng85dce6c2007-07-26 17:32:14 +00001452// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1453static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1454 const X86InstrInfo &TII) {
1455 if (MI->getOpcode() == X86::FP_REG_KILL)
1456 return false;
1457 return TII.isUnpredicatedTerminator(MI);
1458}
1459
Chris Lattner7fbe9722006-10-20 17:42:20 +00001460bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1461 MachineBasicBlock *&TBB,
1462 MachineBasicBlock *&FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +00001463 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman279c22e2008-10-21 03:29:32 +00001464 // Start from the bottom of the block and work up, examining the
1465 // terminator instructions.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001466 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00001467 while (I != MBB.begin()) {
1468 --I;
1469 // Working from the bottom, when we see a non-terminator
1470 // instruction, we're done.
1471 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1472 break;
1473 // A terminator that isn't a branch can't easily be handled
1474 // by this analysis.
1475 if (!I->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001476 return true;
Dan Gohman279c22e2008-10-21 03:29:32 +00001477 // Handle unconditional branches.
1478 if (I->getOpcode() == X86::JMP) {
1479 // If the block has any instructions after a JMP, delete them.
1480 while (next(I) != MBB.end())
1481 next(I)->eraseFromParent();
1482 Cond.clear();
1483 FBB = 0;
1484 // Delete the JMP if it's equivalent to a fall-through.
1485 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1486 TBB = 0;
1487 I->eraseFromParent();
1488 I = MBB.end();
1489 continue;
1490 }
1491 // TBB is used to indicate the unconditinal destination.
1492 TBB = I->getOperand(0).getMBB();
1493 continue;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001494 }
Dan Gohman279c22e2008-10-21 03:29:32 +00001495 // Handle conditional branches.
1496 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Chris Lattner7fbe9722006-10-20 17:42:20 +00001497 if (BranchCode == X86::COND_INVALID)
1498 return true; // Can't handle indirect branch.
Dan Gohman279c22e2008-10-21 03:29:32 +00001499 // Working from the bottom, handle the first conditional branch.
1500 if (Cond.empty()) {
1501 FBB = TBB;
1502 TBB = I->getOperand(0).getMBB();
1503 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1504 continue;
1505 }
1506 // Handle subsequent conditional branches. Only handle the case
1507 // where all conditional branches branch to the same destination
1508 // and their condition opcodes fit one of the special
1509 // multi-branch idioms.
1510 assert(Cond.size() == 1);
1511 assert(TBB);
1512 // Only handle the case where all conditional branches branch to
1513 // the same destination.
1514 if (TBB != I->getOperand(0).getMBB())
1515 return true;
1516 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1517 // If the conditions are the same, we can leave them alone.
1518 if (OldBranchCode == BranchCode)
1519 continue;
1520 // If they differ, see if they fit one of the known patterns.
1521 // Theoretically we could handle more patterns here, but
1522 // we shouldn't expect to see them if instruction selection
1523 // has done a reasonable job.
1524 if ((OldBranchCode == X86::COND_NP &&
1525 BranchCode == X86::COND_E) ||
1526 (OldBranchCode == X86::COND_E &&
1527 BranchCode == X86::COND_NP))
1528 BranchCode = X86::COND_NP_OR_E;
1529 else if ((OldBranchCode == X86::COND_P &&
1530 BranchCode == X86::COND_NE) ||
1531 (OldBranchCode == X86::COND_NE &&
1532 BranchCode == X86::COND_P))
1533 BranchCode = X86::COND_NE_OR_P;
1534 else
1535 return true;
1536 // Update the MachineOperand.
1537 Cond[0].setImm(BranchCode);
Chris Lattner6ce64432006-10-30 22:27:23 +00001538 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001539
Dan Gohman279c22e2008-10-21 03:29:32 +00001540 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001541}
1542
Evan Cheng6ae36262007-05-18 00:18:17 +00001543unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001544 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00001545 unsigned Count = 0;
1546
1547 while (I != MBB.begin()) {
1548 --I;
1549 if (I->getOpcode() != X86::JMP &&
1550 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1551 break;
1552 // Remove the branch.
1553 I->eraseFromParent();
1554 I = MBB.end();
1555 ++Count;
1556 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001557
Dan Gohman279c22e2008-10-21 03:29:32 +00001558 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001559}
1560
Owen Andersonf6372aa2008-01-01 21:11:32 +00001561static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001562 const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +00001563 if (MO.isReg())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001564 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001565 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmand735b802008-10-03 15:45:36 +00001566 else if (MO.isImm())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001567 MIB = MIB.addImm(MO.getImm());
Dan Gohmand735b802008-10-03 15:45:36 +00001568 else if (MO.isFI())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001569 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmand735b802008-10-03 15:45:36 +00001570 else if (MO.isGlobal())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001571 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmand735b802008-10-03 15:45:36 +00001572 else if (MO.isCPI())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001573 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmand735b802008-10-03 15:45:36 +00001574 else if (MO.isJTI())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001575 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmand735b802008-10-03 15:45:36 +00001576 else if (MO.isSymbol())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001577 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1578 else
1579 assert(0 && "Unknown operand for X86InstrAddOperand!");
1580
1581 return MIB;
1582}
1583
Evan Cheng6ae36262007-05-18 00:18:17 +00001584unsigned
1585X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1586 MachineBasicBlock *FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +00001587 const SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001588 // Shouldn't be a fall through.
1589 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001590 assert((Cond.size() == 1 || Cond.size() == 0) &&
1591 "X86 branch conditions have one component!");
1592
Dan Gohman279c22e2008-10-21 03:29:32 +00001593 if (Cond.empty()) {
1594 // Unconditional branch?
1595 assert(!FBB && "Unconditional branch with multiple successors!");
1596 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001597 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001598 }
Dan Gohman279c22e2008-10-21 03:29:32 +00001599
1600 // Conditional branch.
1601 unsigned Count = 0;
1602 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1603 switch (CC) {
1604 case X86::COND_NP_OR_E:
1605 // Synthesize NP_OR_E with two branches.
1606 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1607 ++Count;
1608 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1609 ++Count;
1610 break;
1611 case X86::COND_NE_OR_P:
1612 // Synthesize NE_OR_P with two branches.
1613 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1614 ++Count;
1615 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1616 ++Count;
1617 break;
1618 default: {
1619 unsigned Opc = GetCondBranchFromCond(CC);
1620 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1621 ++Count;
1622 }
1623 }
1624 if (FBB) {
1625 // Two-way Conditional branch. Insert the second branch.
1626 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1627 ++Count;
1628 }
1629 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001630}
1631
Owen Anderson940f83e2008-08-26 18:03:31 +00001632bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner5c927502008-03-09 08:46:19 +00001633 MachineBasicBlock::iterator MI,
1634 unsigned DestReg, unsigned SrcReg,
1635 const TargetRegisterClass *DestRC,
1636 const TargetRegisterClass *SrcRC) const {
Chris Lattner90b347d2008-03-09 07:58:04 +00001637 if (DestRC == SrcRC) {
1638 unsigned Opc;
1639 if (DestRC == &X86::GR64RegClass) {
1640 Opc = X86::MOV64rr;
1641 } else if (DestRC == &X86::GR32RegClass) {
1642 Opc = X86::MOV32rr;
1643 } else if (DestRC == &X86::GR16RegClass) {
1644 Opc = X86::MOV16rr;
1645 } else if (DestRC == &X86::GR8RegClass) {
1646 Opc = X86::MOV8rr;
1647 } else if (DestRC == &X86::GR32_RegClass) {
1648 Opc = X86::MOV32_rr;
1649 } else if (DestRC == &X86::GR16_RegClass) {
1650 Opc = X86::MOV16_rr;
1651 } else if (DestRC == &X86::RFP32RegClass) {
1652 Opc = X86::MOV_Fp3232;
1653 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1654 Opc = X86::MOV_Fp6464;
1655 } else if (DestRC == &X86::RFP80RegClass) {
1656 Opc = X86::MOV_Fp8080;
1657 } else if (DestRC == &X86::FR32RegClass) {
1658 Opc = X86::FsMOVAPSrr;
1659 } else if (DestRC == &X86::FR64RegClass) {
1660 Opc = X86::FsMOVAPDrr;
1661 } else if (DestRC == &X86::VR128RegClass) {
1662 Opc = X86::MOVAPSrr;
1663 } else if (DestRC == &X86::VR64RegClass) {
1664 Opc = X86::MMX_MOVQ64rr;
1665 } else {
Owen Anderson940f83e2008-08-26 18:03:31 +00001666 return false;
Owen Andersond10fd972007-12-31 06:32:00 +00001667 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001668 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001669 return true;
Owen Andersond10fd972007-12-31 06:32:00 +00001670 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001671
1672 // Moving EFLAGS to / from another register requires a push and a pop.
1673 if (SrcRC == &X86::CCRRegClass) {
Owen Andersona3177672008-08-26 18:50:40 +00001674 if (SrcReg != X86::EFLAGS)
1675 return false;
Chris Lattner90b347d2008-03-09 07:58:04 +00001676 if (DestRC == &X86::GR64RegClass) {
1677 BuildMI(MBB, MI, get(X86::PUSHFQ));
1678 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001679 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001680 } else if (DestRC == &X86::GR32RegClass) {
1681 BuildMI(MBB, MI, get(X86::PUSHFD));
1682 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001683 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001684 }
1685 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersona3177672008-08-26 18:50:40 +00001686 if (DestReg != X86::EFLAGS)
1687 return false;
Chris Lattner90b347d2008-03-09 07:58:04 +00001688 if (SrcRC == &X86::GR64RegClass) {
1689 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1690 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson940f83e2008-08-26 18:03:31 +00001691 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001692 } else if (SrcRC == &X86::GR32RegClass) {
1693 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1694 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson940f83e2008-08-26 18:03:31 +00001695 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001696 }
Owen Andersond10fd972007-12-31 06:32:00 +00001697 }
Chris Lattner5c927502008-03-09 08:46:19 +00001698
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001699 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner5c927502008-03-09 08:46:19 +00001700 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner24e0a542008-03-21 06:38:26 +00001701 // Copying from ST(0)/ST(1).
Owen Anderson940f83e2008-08-26 18:03:31 +00001702 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1703 // Can only copy from ST(0)/ST(1) right now
1704 return false;
Chris Lattner24e0a542008-03-21 06:38:26 +00001705 bool isST0 = SrcReg == X86::ST0;
Chris Lattner5c927502008-03-09 08:46:19 +00001706 unsigned Opc;
1707 if (DestRC == &X86::RFP32RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001708 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner5c927502008-03-09 08:46:19 +00001709 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001710 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner5c927502008-03-09 08:46:19 +00001711 else {
Owen Andersona3177672008-08-26 18:50:40 +00001712 if (DestRC != &X86::RFP80RegClass)
1713 return false;
Chris Lattner24e0a542008-03-21 06:38:26 +00001714 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner5c927502008-03-09 08:46:19 +00001715 }
1716 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001717 return true;
Chris Lattner5c927502008-03-09 08:46:19 +00001718 }
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001719
1720 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1721 if (DestRC == &X86::RSTRegClass) {
1722 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson940f83e2008-08-26 18:03:31 +00001723 if (DestReg != X86::ST0)
1724 // Can only copy to TOS right now
1725 return false;
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001726 unsigned Opc;
1727 if (SrcRC == &X86::RFP32RegClass)
1728 Opc = X86::FpSET_ST0_32;
1729 else if (SrcRC == &X86::RFP64RegClass)
1730 Opc = X86::FpSET_ST0_64;
1731 else {
Owen Andersona3177672008-08-26 18:50:40 +00001732 if (SrcRC != &X86::RFP80RegClass)
1733 return false;
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001734 Opc = X86::FpSET_ST0_80;
1735 }
1736 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001737 return true;
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001738 }
Chris Lattner5c927502008-03-09 08:46:19 +00001739
Owen Anderson940f83e2008-08-26 18:03:31 +00001740 // Not yet supported!
1741 return false;
Owen Andersond10fd972007-12-31 06:32:00 +00001742}
1743
Owen Andersonf6372aa2008-01-01 21:11:32 +00001744static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001745 bool isStackAligned) {
Owen Andersonf6372aa2008-01-01 21:11:32 +00001746 unsigned Opc = 0;
1747 if (RC == &X86::GR64RegClass) {
1748 Opc = X86::MOV64mr;
1749 } else if (RC == &X86::GR32RegClass) {
1750 Opc = X86::MOV32mr;
1751 } else if (RC == &X86::GR16RegClass) {
1752 Opc = X86::MOV16mr;
1753 } else if (RC == &X86::GR8RegClass) {
1754 Opc = X86::MOV8mr;
1755 } else if (RC == &X86::GR32_RegClass) {
1756 Opc = X86::MOV32_mr;
1757 } else if (RC == &X86::GR16_RegClass) {
1758 Opc = X86::MOV16_mr;
1759 } else if (RC == &X86::RFP80RegClass) {
1760 Opc = X86::ST_FpP80m; // pops
1761 } else if (RC == &X86::RFP64RegClass) {
1762 Opc = X86::ST_Fp64m;
1763 } else if (RC == &X86::RFP32RegClass) {
1764 Opc = X86::ST_Fp32m;
1765 } else if (RC == &X86::FR32RegClass) {
1766 Opc = X86::MOVSSmr;
1767 } else if (RC == &X86::FR64RegClass) {
1768 Opc = X86::MOVSDmr;
1769 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001770 // If stack is realigned we can use aligned stores.
1771 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Andersonf6372aa2008-01-01 21:11:32 +00001772 } else if (RC == &X86::VR64RegClass) {
1773 Opc = X86::MMX_MOVQ64mr;
1774 } else {
1775 assert(0 && "Unknown regclass");
1776 abort();
1777 }
1778
1779 return Opc;
1780}
1781
1782void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1783 MachineBasicBlock::iterator MI,
1784 unsigned SrcReg, bool isKill, int FrameIdx,
1785 const TargetRegisterClass *RC) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001786 const MachineFunction &MF = *MBB.getParent();
Evan Cheng41c08402008-07-21 06:34:17 +00001787 bool isAligned = (RI.getStackAlignment() >= 16) ||
1788 RI.needsStackRealignment(MF);
1789 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Andersonf6372aa2008-01-01 21:11:32 +00001790 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1791 .addReg(SrcReg, false, false, isKill);
1792}
1793
1794void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1795 bool isKill,
1796 SmallVectorImpl<MachineOperand> &Addr,
1797 const TargetRegisterClass *RC,
1798 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng41c08402008-07-21 06:34:17 +00001799 bool isAligned = (RI.getStackAlignment() >= 16) ||
1800 RI.needsStackRealignment(MF);
1801 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001802 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Andersonf6372aa2008-01-01 21:11:32 +00001803 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1804 MIB = X86InstrAddOperand(MIB, Addr[i]);
1805 MIB.addReg(SrcReg, false, false, isKill);
1806 NewMIs.push_back(MIB);
1807}
1808
1809static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001810 bool isStackAligned) {
Owen Andersonf6372aa2008-01-01 21:11:32 +00001811 unsigned Opc = 0;
1812 if (RC == &X86::GR64RegClass) {
1813 Opc = X86::MOV64rm;
1814 } else if (RC == &X86::GR32RegClass) {
1815 Opc = X86::MOV32rm;
1816 } else if (RC == &X86::GR16RegClass) {
1817 Opc = X86::MOV16rm;
1818 } else if (RC == &X86::GR8RegClass) {
1819 Opc = X86::MOV8rm;
1820 } else if (RC == &X86::GR32_RegClass) {
1821 Opc = X86::MOV32_rm;
1822 } else if (RC == &X86::GR16_RegClass) {
1823 Opc = X86::MOV16_rm;
1824 } else if (RC == &X86::RFP80RegClass) {
1825 Opc = X86::LD_Fp80m;
1826 } else if (RC == &X86::RFP64RegClass) {
1827 Opc = X86::LD_Fp64m;
1828 } else if (RC == &X86::RFP32RegClass) {
1829 Opc = X86::LD_Fp32m;
1830 } else if (RC == &X86::FR32RegClass) {
1831 Opc = X86::MOVSSrm;
1832 } else if (RC == &X86::FR64RegClass) {
1833 Opc = X86::MOVSDrm;
1834 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001835 // If stack is realigned we can use aligned loads.
1836 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Andersonf6372aa2008-01-01 21:11:32 +00001837 } else if (RC == &X86::VR64RegClass) {
1838 Opc = X86::MMX_MOVQ64rm;
1839 } else {
1840 assert(0 && "Unknown regclass");
1841 abort();
1842 }
1843
1844 return Opc;
1845}
1846
1847void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001848 MachineBasicBlock::iterator MI,
1849 unsigned DestReg, int FrameIdx,
1850 const TargetRegisterClass *RC) const{
1851 const MachineFunction &MF = *MBB.getParent();
Evan Cheng41c08402008-07-21 06:34:17 +00001852 bool isAligned = (RI.getStackAlignment() >= 16) ||
1853 RI.needsStackRealignment(MF);
1854 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Andersonf6372aa2008-01-01 21:11:32 +00001855 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1856}
1857
1858void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng9f1c8312008-07-03 09:09:37 +00001859 SmallVectorImpl<MachineOperand> &Addr,
1860 const TargetRegisterClass *RC,
Owen Andersonf6372aa2008-01-01 21:11:32 +00001861 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng41c08402008-07-21 06:34:17 +00001862 bool isAligned = (RI.getStackAlignment() >= 16) ||
1863 RI.needsStackRealignment(MF);
1864 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001865 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Andersonf6372aa2008-01-01 21:11:32 +00001866 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1867 MIB = X86InstrAddOperand(MIB, Addr[i]);
1868 NewMIs.push_back(MIB);
1869}
1870
Owen Andersond94b6a12008-01-04 23:57:37 +00001871bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikovc4e8bec2008-10-04 11:09:36 +00001872 MachineBasicBlock::iterator MI,
Owen Andersond94b6a12008-01-04 23:57:37 +00001873 const std::vector<CalleeSavedInfo> &CSI) const {
1874 if (CSI.empty())
1875 return false;
1876
Evan Chenga67f32a2008-09-26 19:14:21 +00001877 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovc4e8bec2008-10-04 11:09:36 +00001878 unsigned SlotSize = is64Bit ? 8 : 4;
1879
1880 MachineFunction &MF = *MBB.getParent();
1881 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1882 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1883
Owen Andersond94b6a12008-01-04 23:57:37 +00001884 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1885 for (unsigned i = CSI.size(); i != 0; --i) {
1886 unsigned Reg = CSI[i-1].getReg();
1887 // Add the callee-saved register as live-in. It's killed at the spill.
1888 MBB.addLiveIn(Reg);
Dan Gohman25a1b472008-11-26 06:39:12 +00001889 BuildMI(MBB, MI, get(Opc))
1890 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Andersond94b6a12008-01-04 23:57:37 +00001891 }
1892 return true;
1893}
1894
1895bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikovc4e8bec2008-10-04 11:09:36 +00001896 MachineBasicBlock::iterator MI,
Owen Andersond94b6a12008-01-04 23:57:37 +00001897 const std::vector<CalleeSavedInfo> &CSI) const {
1898 if (CSI.empty())
1899 return false;
1900
1901 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1902
1903 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1904 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1905 unsigned Reg = CSI[i].getReg();
1906 BuildMI(MBB, MI, get(Opc), Reg);
1907 }
1908 return true;
1909}
1910
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001911static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001912 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00001913 MachineInstr *MI, const TargetInstrInfo &TII) {
1914 // Create the base instruction with the memory operand as the first part.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001915 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00001916 MachineInstrBuilder MIB(NewMI);
1917 unsigned NumAddrOps = MOs.size();
1918 for (unsigned i = 0; i != NumAddrOps; ++i)
1919 MIB = X86InstrAddOperand(MIB, MOs[i]);
1920 if (NumAddrOps < 4) // FrameIndex only
1921 MIB.addImm(1).addReg(0).addImm(0);
1922
1923 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001924 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001925 for (unsigned i = 0; i != NumOps; ++i) {
1926 MachineOperand &MO = MI->getOperand(i+2);
1927 MIB = X86InstrAddOperand(MIB, MO);
1928 }
1929 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1930 MachineOperand &MO = MI->getOperand(i);
1931 MIB = X86InstrAddOperand(MIB, MO);
1932 }
1933 return MIB;
1934}
1935
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001936static MachineInstr *FuseInst(MachineFunction &MF,
1937 unsigned Opcode, unsigned OpNo,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001938 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00001939 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001940 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00001941 MachineInstrBuilder MIB(NewMI);
1942
1943 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1944 MachineOperand &MO = MI->getOperand(i);
1945 if (i == OpNo) {
Dan Gohmand735b802008-10-03 15:45:36 +00001946 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson43dbe052008-01-07 01:35:02 +00001947 unsigned NumAddrOps = MOs.size();
1948 for (unsigned i = 0; i != NumAddrOps; ++i)
1949 MIB = X86InstrAddOperand(MIB, MOs[i]);
1950 if (NumAddrOps < 4) // FrameIndex only
1951 MIB.addImm(1).addReg(0).addImm(0);
1952 } else {
1953 MIB = X86InstrAddOperand(MIB, MO);
1954 }
1955 }
1956 return MIB;
1957}
1958
1959static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001960 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00001961 MachineInstr *MI) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001962 MachineFunction &MF = *MI->getParent()->getParent();
1963 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson43dbe052008-01-07 01:35:02 +00001964
1965 unsigned NumAddrOps = MOs.size();
1966 for (unsigned i = 0; i != NumAddrOps; ++i)
1967 MIB = X86InstrAddOperand(MIB, MOs[i]);
1968 if (NumAddrOps < 4) // FrameIndex only
1969 MIB.addImm(1).addReg(0).addImm(0);
1970 return MIB.addImm(0);
1971}
1972
1973MachineInstr*
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001974X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1975 MachineInstr *MI, unsigned i,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001976 const SmallVector<MachineOperand,4> &MOs) const{
Owen Anderson43dbe052008-01-07 01:35:02 +00001977 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1978 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001979 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001980 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001981 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001982
1983 MachineInstr *NewMI = NULL;
1984 // Folding a memory location into the two-address part of a two-address
1985 // instruction is different than folding it other places. It requires
1986 // replacing the *two* registers with the memory location.
1987 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +00001988 MI->getOperand(0).isReg() &&
1989 MI->getOperand(1).isReg() &&
Owen Anderson43dbe052008-01-07 01:35:02 +00001990 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1991 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1992 isTwoAddrFold = true;
1993 } else if (i == 0) { // If operand 0
1994 if (MI->getOpcode() == X86::MOV16r0)
1995 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1996 else if (MI->getOpcode() == X86::MOV32r0)
1997 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1998 else if (MI->getOpcode() == X86::MOV64r0)
1999 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2000 else if (MI->getOpcode() == X86::MOV8r0)
2001 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Cheng9f1c8312008-07-03 09:09:37 +00002002 if (NewMI)
Owen Anderson43dbe052008-01-07 01:35:02 +00002003 return NewMI;
Owen Anderson43dbe052008-01-07 01:35:02 +00002004
2005 OpcodeTablePtr = &RegOp2MemOpTable0;
2006 } else if (i == 1) {
2007 OpcodeTablePtr = &RegOp2MemOpTable1;
2008 } else if (i == 2) {
2009 OpcodeTablePtr = &RegOp2MemOpTable2;
2010 }
2011
2012 // If table selected...
2013 if (OpcodeTablePtr) {
2014 // Find the Opcode to fuse
2015 DenseMap<unsigned*, unsigned>::iterator I =
2016 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2017 if (I != OpcodeTablePtr->end()) {
2018 if (isTwoAddrFold)
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002019 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00002020 else
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002021 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00002022 return NewMI;
2023 }
2024 }
2025
2026 // No fusion
2027 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00002028 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00002029 return NULL;
2030}
2031
2032
Evan Cheng5fd79d02008-02-08 21:20:40 +00002033MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2034 MachineInstr *MI,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002035 const SmallVectorImpl<unsigned> &Ops,
Owen Anderson43dbe052008-01-07 01:35:02 +00002036 int FrameIndex) const {
2037 // Check switch flag
2038 if (NoFusing) return NULL;
2039
Evan Cheng5fd79d02008-02-08 21:20:40 +00002040 const MachineFrameInfo *MFI = MF.getFrameInfo();
2041 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2042 // FIXME: Move alignment requirement into tables?
2043 if (Alignment < 16) {
2044 switch (MI->getOpcode()) {
2045 default: break;
2046 // Not always safe to fold movsd into these instructions since their load
2047 // folding variants expects the address to be 16 byte aligned.
2048 case X86::FsANDNPDrr:
2049 case X86::FsANDNPSrr:
2050 case X86::FsANDPDrr:
2051 case X86::FsANDPSrr:
2052 case X86::FsORPDrr:
2053 case X86::FsORPSrr:
2054 case X86::FsXORPDrr:
2055 case X86::FsXORPSrr:
2056 return NULL;
2057 }
2058 }
2059
Owen Anderson43dbe052008-01-07 01:35:02 +00002060 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2061 unsigned NewOpc = 0;
2062 switch (MI->getOpcode()) {
2063 default: return NULL;
2064 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2065 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2066 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2067 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2068 }
2069 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002070 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002071 MI->getOperand(1).ChangeToImmediate(0);
2072 } else if (Ops.size() != 1)
2073 return NULL;
2074
2075 SmallVector<MachineOperand,4> MOs;
2076 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002077 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson43dbe052008-01-07 01:35:02 +00002078}
2079
Evan Cheng5fd79d02008-02-08 21:20:40 +00002080MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2081 MachineInstr *MI,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002082 const SmallVectorImpl<unsigned> &Ops,
Chris Lattner269f0592008-01-09 00:37:18 +00002083 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00002084 // Check switch flag
2085 if (NoFusing) return NULL;
2086
Dan Gohmancddc11e2008-07-12 00:10:52 +00002087 // Determine the alignment of the load.
Evan Cheng5fd79d02008-02-08 21:20:40 +00002088 unsigned Alignment = 0;
Dan Gohmancddc11e2008-07-12 00:10:52 +00002089 if (LoadMI->hasOneMemOperand())
2090 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng5fd79d02008-02-08 21:20:40 +00002091
2092 // FIXME: Move alignment requirement into tables?
2093 if (Alignment < 16) {
2094 switch (MI->getOpcode()) {
2095 default: break;
2096 // Not always safe to fold movsd into these instructions since their load
2097 // folding variants expects the address to be 16 byte aligned.
2098 case X86::FsANDNPDrr:
2099 case X86::FsANDNPSrr:
2100 case X86::FsANDPDrr:
2101 case X86::FsANDPSrr:
2102 case X86::FsORPDrr:
2103 case X86::FsORPSrr:
2104 case X86::FsXORPDrr:
2105 case X86::FsXORPSrr:
2106 return NULL;
2107 }
2108 }
2109
Owen Anderson43dbe052008-01-07 01:35:02 +00002110 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2111 unsigned NewOpc = 0;
2112 switch (MI->getOpcode()) {
2113 default: return NULL;
2114 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2115 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2116 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2117 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2118 }
2119 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002120 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002121 MI->getOperand(1).ChangeToImmediate(0);
2122 } else if (Ops.size() != 1)
2123 return NULL;
2124
2125 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00002126 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002127 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2128 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002129 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson43dbe052008-01-07 01:35:02 +00002130}
2131
2132
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002133bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2134 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00002135 // Check switch flag
2136 if (NoFusing) return 0;
2137
2138 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2139 switch (MI->getOpcode()) {
2140 default: return false;
2141 case X86::TEST8rr:
2142 case X86::TEST16rr:
2143 case X86::TEST32rr:
2144 case X86::TEST64rr:
2145 return true;
2146 }
2147 }
2148
2149 if (Ops.size() != 1)
2150 return false;
2151
2152 unsigned OpNum = Ops[0];
2153 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00002154 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002155 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00002156 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00002157
2158 // Folding a memory location into the two-address part of a two-address
2159 // instruction is different than folding it other places. It requires
2160 // replacing the *two* registers with the memory location.
2161 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2162 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2163 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2164 } else if (OpNum == 0) { // If operand 0
2165 switch (Opc) {
2166 case X86::MOV16r0:
2167 case X86::MOV32r0:
2168 case X86::MOV64r0:
2169 case X86::MOV8r0:
2170 return true;
2171 default: break;
2172 }
2173 OpcodeTablePtr = &RegOp2MemOpTable0;
2174 } else if (OpNum == 1) {
2175 OpcodeTablePtr = &RegOp2MemOpTable1;
2176 } else if (OpNum == 2) {
2177 OpcodeTablePtr = &RegOp2MemOpTable2;
2178 }
2179
2180 if (OpcodeTablePtr) {
2181 // Find the Opcode to fuse
2182 DenseMap<unsigned*, unsigned>::iterator I =
2183 OpcodeTablePtr->find((unsigned*)Opc);
2184 if (I != OpcodeTablePtr->end())
2185 return true;
2186 }
2187 return false;
2188}
2189
2190bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2191 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2192 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2193 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2194 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2195 if (I == MemOp2RegOpTable.end())
2196 return false;
2197 unsigned Opc = I->second.first;
2198 unsigned Index = I->second.second & 0xf;
2199 bool FoldedLoad = I->second.second & (1 << 4);
2200 bool FoldedStore = I->second.second & (1 << 5);
2201 if (UnfoldLoad && !FoldedLoad)
2202 return false;
2203 UnfoldLoad &= FoldedLoad;
2204 if (UnfoldStore && !FoldedStore)
2205 return false;
2206 UnfoldStore &= FoldedStore;
2207
Chris Lattner749c6f62008-01-07 07:27:27 +00002208 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002209 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002210 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002211 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2212 SmallVector<MachineOperand,4> AddrOps;
2213 SmallVector<MachineOperand,2> BeforeOps;
2214 SmallVector<MachineOperand,2> AfterOps;
2215 SmallVector<MachineOperand,4> ImpOps;
2216 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2217 MachineOperand &Op = MI->getOperand(i);
2218 if (i >= Index && i < Index+4)
2219 AddrOps.push_back(Op);
Dan Gohmand735b802008-10-03 15:45:36 +00002220 else if (Op.isReg() && Op.isImplicit())
Owen Anderson43dbe052008-01-07 01:35:02 +00002221 ImpOps.push_back(Op);
2222 else if (i < Index)
2223 BeforeOps.push_back(Op);
2224 else if (i > Index)
2225 AfterOps.push_back(Op);
2226 }
2227
2228 // Emit the load instruction.
2229 if (UnfoldLoad) {
2230 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2231 if (UnfoldStore) {
2232 // Address operands cannot be marked isKill.
2233 for (unsigned i = 1; i != 5; ++i) {
2234 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002235 if (MO.isReg())
Owen Anderson43dbe052008-01-07 01:35:02 +00002236 MO.setIsKill(false);
2237 }
2238 }
2239 }
2240
2241 // Emit the data processing instruction.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002242 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002243 MachineInstrBuilder MIB(DataMI);
2244
2245 if (FoldedStore)
2246 MIB.addReg(Reg, true);
2247 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2248 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2249 if (FoldedLoad)
2250 MIB.addReg(Reg);
2251 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2252 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2253 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2254 MachineOperand &MO = ImpOps[i];
2255 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2256 }
2257 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2258 unsigned NewOpc = 0;
2259 switch (DataMI->getOpcode()) {
2260 default: break;
2261 case X86::CMP64ri32:
2262 case X86::CMP32ri:
2263 case X86::CMP16ri:
2264 case X86::CMP8ri: {
2265 MachineOperand &MO0 = DataMI->getOperand(0);
2266 MachineOperand &MO1 = DataMI->getOperand(1);
2267 if (MO1.getImm() == 0) {
2268 switch (DataMI->getOpcode()) {
2269 default: break;
2270 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2271 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2272 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2273 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2274 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002275 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002276 MO1.ChangeToRegister(MO0.getReg(), false);
2277 }
2278 }
2279 }
2280 NewMIs.push_back(DataMI);
2281
2282 // Emit the store instruction.
2283 if (UnfoldStore) {
2284 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002285 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002286 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2287 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2288 }
2289
2290 return true;
2291}
2292
2293bool
2294X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2295 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmane8be6c62008-07-17 19:10:17 +00002296 if (!N->isMachineOpcode())
Owen Anderson43dbe052008-01-07 01:35:02 +00002297 return false;
2298
2299 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmane8be6c62008-07-17 19:10:17 +00002300 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00002301 if (I == MemOp2RegOpTable.end())
2302 return false;
2303 unsigned Opc = I->second.first;
2304 unsigned Index = I->second.second & 0xf;
2305 bool FoldedLoad = I->second.second & (1 << 4);
2306 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00002307 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002308 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002309 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002310 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman475871a2008-07-27 21:46:04 +00002311 std::vector<SDValue> AddrOps;
2312 std::vector<SDValue> BeforeOps;
2313 std::vector<SDValue> AfterOps;
Owen Anderson43dbe052008-01-07 01:35:02 +00002314 unsigned NumOps = N->getNumOperands();
2315 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman475871a2008-07-27 21:46:04 +00002316 SDValue Op = N->getOperand(i);
Owen Anderson43dbe052008-01-07 01:35:02 +00002317 if (i >= Index && i < Index+4)
2318 AddrOps.push_back(Op);
2319 else if (i < Index)
2320 BeforeOps.push_back(Op);
2321 else if (i > Index)
2322 AfterOps.push_back(Op);
2323 }
Dan Gohman475871a2008-07-27 21:46:04 +00002324 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson43dbe052008-01-07 01:35:02 +00002325 AddrOps.push_back(Chain);
2326
2327 // Emit the load instruction.
2328 SDNode *Load = 0;
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002329 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson43dbe052008-01-07 01:35:02 +00002330 if (FoldedLoad) {
Duncan Sands83ec4b62008-06-06 12:08:01 +00002331 MVT VT = *RC->vt_begin();
Evan Cheng41c08402008-07-21 06:34:17 +00002332 bool isAligned = (RI.getStackAlignment() >= 16) ||
2333 RI.needsStackRealignment(MF);
2334 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002335 VT, MVT::Other,
2336 &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00002337 NewNodes.push_back(Load);
2338 }
2339
2340 // Emit the data processing instruction.
Duncan Sands83ec4b62008-06-06 12:08:01 +00002341 std::vector<MVT> VTs;
Owen Anderson43dbe052008-01-07 01:35:02 +00002342 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002343 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002344 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002345 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002346 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2347 VTs.push_back(*DstRC->vt_begin());
2348 }
2349 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands83ec4b62008-06-06 12:08:01 +00002350 MVT VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002351 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002352 VTs.push_back(VT);
2353 }
2354 if (Load)
Dan Gohman475871a2008-07-27 21:46:04 +00002355 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00002356 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2357 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2358 NewNodes.push_back(NewNode);
2359
2360 // Emit the store instruction.
2361 if (FoldedStore) {
2362 AddrOps.pop_back();
Dan Gohman475871a2008-07-27 21:46:04 +00002363 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00002364 AddrOps.push_back(Chain);
Evan Cheng41c08402008-07-21 06:34:17 +00002365 bool isAligned = (RI.getStackAlignment() >= 16) ||
2366 RI.needsStackRealignment(MF);
2367 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2368 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00002369 NewNodes.push_back(Store);
2370 }
2371
2372 return true;
2373}
2374
2375unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2376 bool UnfoldLoad, bool UnfoldStore) const {
2377 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2378 MemOp2RegOpTable.find((unsigned*)Opc);
2379 if (I == MemOp2RegOpTable.end())
2380 return 0;
2381 bool FoldedLoad = I->second.second & (1 << 4);
2382 bool FoldedStore = I->second.second & (1 << 5);
2383 if (UnfoldLoad && !FoldedLoad)
2384 return 0;
2385 if (UnfoldStore && !FoldedStore)
2386 return 0;
2387 return I->second.first;
2388}
2389
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002390bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002391 if (MBB.empty()) return false;
2392
2393 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002394 case X86::TCRETURNri:
2395 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002396 case X86::RET: // Return.
2397 case X86::RETI:
2398 case X86::TAILJMPd:
2399 case X86::TAILJMPr:
2400 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002401 case X86::JMP: // Uncond branch.
2402 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002403 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002404 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002405 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002406 return true;
2407 default: return false;
2408 }
2409}
2410
Chris Lattner7fbe9722006-10-20 17:42:20 +00002411bool X86InstrInfo::
Owen Anderson44eb65c2008-08-14 22:49:33 +00002412ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002413 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Cheng97af60b2008-08-29 23:21:31 +00002414 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman279c22e2008-10-21 03:29:32 +00002415 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2416 return true;
Evan Cheng97af60b2008-08-29 23:21:31 +00002417 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner9cd68752006-10-21 05:52:40 +00002418 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002419}
2420
Evan Cheng23066282008-10-27 07:14:50 +00002421bool X86InstrInfo::
2422IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2423 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2424 // allow any loads of these registers before FpGet_ST0_80.
2425 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2426 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2427}
2428
Evan Cheng25ab6902006-09-08 06:48:29 +00002429const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2430 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2431 if (Subtarget->is64Bit())
2432 return &X86::GR64RegClass;
2433 else
2434 return &X86::GR32RegClass;
2435}
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002436
2437unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2438 switch (Desc->TSFlags & X86II::ImmMask) {
2439 case X86II::Imm8: return 1;
2440 case X86II::Imm16: return 2;
2441 case X86II::Imm32: return 4;
2442 case X86II::Imm64: return 8;
2443 default: assert(0 && "Immediate size not set!");
2444 return 0;
2445 }
2446}
2447
2448/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2449/// e.g. r8, xmm8, etc.
2450bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +00002451 if (!MO.isReg()) return false;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002452 switch (MO.getReg()) {
2453 default: break;
2454 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2455 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2456 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2457 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2458 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2459 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2460 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2461 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2462 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2463 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2464 return true;
2465 }
2466 return false;
2467}
2468
2469
2470/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2471/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2472/// size, and 3) use of X86-64 extended registers.
2473unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2474 unsigned REX = 0;
2475 const TargetInstrDesc &Desc = MI.getDesc();
2476
2477 // Pseudo instructions do not need REX prefix byte.
2478 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2479 return 0;
2480 if (Desc.TSFlags & X86II::REX_W)
2481 REX |= 1 << 3;
2482
2483 unsigned NumOps = Desc.getNumOperands();
2484 if (NumOps) {
2485 bool isTwoAddr = NumOps > 1 &&
2486 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2487
2488 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2489 unsigned i = isTwoAddr ? 1 : 0;
2490 for (unsigned e = NumOps; i != e; ++i) {
2491 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002492 if (MO.isReg()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002493 unsigned Reg = MO.getReg();
2494 if (isX86_64NonExtLowByteReg(Reg))
2495 REX |= 0x40;
2496 }
2497 }
2498
2499 switch (Desc.TSFlags & X86II::FormMask) {
2500 case X86II::MRMInitReg:
2501 if (isX86_64ExtendedReg(MI.getOperand(0)))
2502 REX |= (1 << 0) | (1 << 2);
2503 break;
2504 case X86II::MRMSrcReg: {
2505 if (isX86_64ExtendedReg(MI.getOperand(0)))
2506 REX |= 1 << 2;
2507 i = isTwoAddr ? 2 : 1;
2508 for (unsigned e = NumOps; i != e; ++i) {
2509 const MachineOperand& MO = MI.getOperand(i);
2510 if (isX86_64ExtendedReg(MO))
2511 REX |= 1 << 0;
2512 }
2513 break;
2514 }
2515 case X86II::MRMSrcMem: {
2516 if (isX86_64ExtendedReg(MI.getOperand(0)))
2517 REX |= 1 << 2;
2518 unsigned Bit = 0;
2519 i = isTwoAddr ? 2 : 1;
2520 for (; i != NumOps; ++i) {
2521 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002522 if (MO.isReg()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002523 if (isX86_64ExtendedReg(MO))
2524 REX |= 1 << Bit;
2525 Bit++;
2526 }
2527 }
2528 break;
2529 }
2530 case X86II::MRM0m: case X86II::MRM1m:
2531 case X86II::MRM2m: case X86II::MRM3m:
2532 case X86II::MRM4m: case X86II::MRM5m:
2533 case X86II::MRM6m: case X86II::MRM7m:
2534 case X86II::MRMDestMem: {
2535 unsigned e = isTwoAddr ? 5 : 4;
2536 i = isTwoAddr ? 1 : 0;
2537 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2538 REX |= 1 << 2;
2539 unsigned Bit = 0;
2540 for (; i != e; ++i) {
2541 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002542 if (MO.isReg()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002543 if (isX86_64ExtendedReg(MO))
2544 REX |= 1 << Bit;
2545 Bit++;
2546 }
2547 }
2548 break;
2549 }
2550 default: {
2551 if (isX86_64ExtendedReg(MI.getOperand(0)))
2552 REX |= 1 << 0;
2553 i = isTwoAddr ? 2 : 1;
2554 for (unsigned e = NumOps; i != e; ++i) {
2555 const MachineOperand& MO = MI.getOperand(i);
2556 if (isX86_64ExtendedReg(MO))
2557 REX |= 1 << 2;
2558 }
2559 break;
2560 }
2561 }
2562 }
2563 return REX;
2564}
2565
2566/// sizePCRelativeBlockAddress - This method returns the size of a PC
2567/// relative block address instruction
2568///
2569static unsigned sizePCRelativeBlockAddress() {
2570 return 4;
2571}
2572
2573/// sizeGlobalAddress - Give the size of the emission of this global address
2574///
2575static unsigned sizeGlobalAddress(bool dword) {
2576 return dword ? 8 : 4;
2577}
2578
2579/// sizeConstPoolAddress - Give the size of the emission of this constant
2580/// pool address
2581///
2582static unsigned sizeConstPoolAddress(bool dword) {
2583 return dword ? 8 : 4;
2584}
2585
2586/// sizeExternalSymbolAddress - Give the size of the emission of this external
2587/// symbol
2588///
2589static unsigned sizeExternalSymbolAddress(bool dword) {
2590 return dword ? 8 : 4;
2591}
2592
2593/// sizeJumpTableAddress - Give the size of the emission of this jump
2594/// table address
2595///
2596static unsigned sizeJumpTableAddress(bool dword) {
2597 return dword ? 8 : 4;
2598}
2599
2600static unsigned sizeConstant(unsigned Size) {
2601 return Size;
2602}
2603
2604static unsigned sizeRegModRMByte(){
2605 return 1;
2606}
2607
2608static unsigned sizeSIBByte(){
2609 return 1;
2610}
2611
2612static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2613 unsigned FinalSize = 0;
2614 // If this is a simple integer displacement that doesn't require a relocation.
2615 if (!RelocOp) {
2616 FinalSize += sizeConstant(4);
2617 return FinalSize;
2618 }
2619
2620 // Otherwise, this is something that requires a relocation.
Dan Gohmand735b802008-10-03 15:45:36 +00002621 if (RelocOp->isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002622 FinalSize += sizeGlobalAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002623 } else if (RelocOp->isCPI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002624 FinalSize += sizeConstPoolAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002625 } else if (RelocOp->isJTI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002626 FinalSize += sizeJumpTableAddress(false);
2627 } else {
2628 assert(0 && "Unknown value to relocate!");
2629 }
2630 return FinalSize;
2631}
2632
2633static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2634 bool IsPIC, bool Is64BitMode) {
2635 const MachineOperand &Op3 = MI.getOperand(Op+3);
2636 int DispVal = 0;
2637 const MachineOperand *DispForReloc = 0;
2638 unsigned FinalSize = 0;
2639
2640 // Figure out what sort of displacement we have to handle here.
Dan Gohmand735b802008-10-03 15:45:36 +00002641 if (Op3.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002642 DispForReloc = &Op3;
Dan Gohmand735b802008-10-03 15:45:36 +00002643 } else if (Op3.isCPI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002644 if (Is64BitMode || IsPIC) {
2645 DispForReloc = &Op3;
2646 } else {
2647 DispVal = 1;
2648 }
Dan Gohmand735b802008-10-03 15:45:36 +00002649 } else if (Op3.isJTI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002650 if (Is64BitMode || IsPIC) {
2651 DispForReloc = &Op3;
2652 } else {
2653 DispVal = 1;
2654 }
2655 } else {
2656 DispVal = 1;
2657 }
2658
2659 const MachineOperand &Base = MI.getOperand(Op);
2660 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2661
2662 unsigned BaseReg = Base.getReg();
2663
2664 // Is a SIB byte needed?
2665 if (IndexReg.getReg() == 0 &&
2666 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2667 if (BaseReg == 0) { // Just a displacement?
2668 // Emit special case [disp32] encoding
2669 ++FinalSize;
2670 FinalSize += getDisplacementFieldSize(DispForReloc);
2671 } else {
2672 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2673 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2674 // Emit simple indirect register encoding... [EAX] f.e.
2675 ++FinalSize;
2676 // Be pessimistic and assume it's a disp32, not a disp8
2677 } else {
2678 // Emit the most general non-SIB encoding: [REG+disp32]
2679 ++FinalSize;
2680 FinalSize += getDisplacementFieldSize(DispForReloc);
2681 }
2682 }
2683
2684 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2685 assert(IndexReg.getReg() != X86::ESP &&
2686 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2687
2688 bool ForceDisp32 = false;
2689 if (BaseReg == 0 || DispForReloc) {
2690 // Emit the normal disp32 encoding.
2691 ++FinalSize;
2692 ForceDisp32 = true;
2693 } else {
2694 ++FinalSize;
2695 }
2696
2697 FinalSize += sizeSIBByte();
2698
2699 // Do we need to output a displacement?
2700 if (DispVal != 0 || ForceDisp32) {
2701 FinalSize += getDisplacementFieldSize(DispForReloc);
2702 }
2703 }
2704 return FinalSize;
2705}
2706
2707
2708static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2709 const TargetInstrDesc *Desc,
2710 bool IsPIC, bool Is64BitMode) {
2711
2712 unsigned Opcode = Desc->Opcode;
2713 unsigned FinalSize = 0;
2714
2715 // Emit the lock opcode prefix as needed.
2716 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2717
Anton Korobeynikovd21a6302008-10-12 10:30:11 +00002718 // Emit segment overrid opcode prefix as needed.
2719 switch (Desc->TSFlags & X86II::SegOvrMask) {
2720 case X86II::FS:
2721 case X86II::GS:
2722 ++FinalSize;
2723 break;
2724 default: assert(0 && "Invalid segment!");
2725 case 0: break; // No segment override!
2726 }
2727
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002728 // Emit the repeat opcode prefix as needed.
2729 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2730
2731 // Emit the operand size opcode prefix as needed.
2732 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2733
2734 // Emit the address size opcode prefix as needed.
2735 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2736
2737 bool Need0FPrefix = false;
2738 switch (Desc->TSFlags & X86II::Op0Mask) {
2739 case X86II::TB: // Two-byte opcode prefix
2740 case X86II::T8: // 0F 38
2741 case X86II::TA: // 0F 3A
2742 Need0FPrefix = true;
2743 break;
2744 case X86II::REP: break; // already handled.
2745 case X86II::XS: // F3 0F
2746 ++FinalSize;
2747 Need0FPrefix = true;
2748 break;
2749 case X86II::XD: // F2 0F
2750 ++FinalSize;
2751 Need0FPrefix = true;
2752 break;
2753 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2754 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2755 ++FinalSize;
2756 break; // Two-byte opcode prefix
2757 default: assert(0 && "Invalid prefix!");
2758 case 0: break; // No prefix!
2759 }
2760
2761 if (Is64BitMode) {
2762 // REX prefix
2763 unsigned REX = X86InstrInfo::determineREX(MI);
2764 if (REX)
2765 ++FinalSize;
2766 }
2767
2768 // 0x0F escape code must be emitted just before the opcode.
2769 if (Need0FPrefix)
2770 ++FinalSize;
2771
2772 switch (Desc->TSFlags & X86II::Op0Mask) {
2773 case X86II::T8: // 0F 38
2774 ++FinalSize;
2775 break;
2776 case X86II::TA: // 0F 3A
2777 ++FinalSize;
2778 break;
2779 }
2780
2781 // If this is a two-address instruction, skip one of the register operands.
2782 unsigned NumOps = Desc->getNumOperands();
2783 unsigned CurOp = 0;
2784 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2785 CurOp++;
2786
2787 switch (Desc->TSFlags & X86II::FormMask) {
2788 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2789 case X86II::Pseudo:
2790 // Remember the current PC offset, this is the PIC relocation
2791 // base address.
2792 switch (Opcode) {
2793 default:
2794 break;
2795 case TargetInstrInfo::INLINEASM: {
2796 const MachineFunction *MF = MI.getParent()->getParent();
2797 const char *AsmStr = MI.getOperand(0).getSymbolName();
2798 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2799 FinalSize += AI->getInlineAsmLength(AsmStr);
2800 break;
2801 }
Dan Gohman44066042008-07-01 00:05:16 +00002802 case TargetInstrInfo::DBG_LABEL:
2803 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002804 break;
2805 case TargetInstrInfo::IMPLICIT_DEF:
2806 case TargetInstrInfo::DECLARE:
2807 case X86::DWARF_LOC:
2808 case X86::FP_REG_KILL:
2809 break;
2810 case X86::MOVPC32r: {
2811 // This emits the "call" portion of this pseudo instruction.
2812 ++FinalSize;
2813 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2814 break;
2815 }
Nicolas Geoffrayb74f3702008-10-25 15:22:06 +00002816 case X86::TLS_tp:
2817 case X86::TLS_gs_ri:
2818 FinalSize += 2;
2819 FinalSize += sizeGlobalAddress(false);
2820 break;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002821 }
2822 CurOp = NumOps;
2823 break;
2824 case X86II::RawFrm:
2825 ++FinalSize;
2826
2827 if (CurOp != NumOps) {
2828 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmand735b802008-10-03 15:45:36 +00002829 if (MO.isMBB()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002830 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmand735b802008-10-03 15:45:36 +00002831 } else if (MO.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002832 FinalSize += sizeGlobalAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002833 } else if (MO.isSymbol()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002834 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002835 } else if (MO.isImm()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002836 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2837 } else {
2838 assert(0 && "Unknown RawFrm operand!");
2839 }
2840 }
2841 break;
2842
2843 case X86II::AddRegFrm:
2844 ++FinalSize;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002845 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002846
2847 if (CurOp != NumOps) {
2848 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2849 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmand735b802008-10-03 15:45:36 +00002850 if (MO1.isImm())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002851 FinalSize += sizeConstant(Size);
2852 else {
2853 bool dword = false;
2854 if (Opcode == X86::MOV64ri)
2855 dword = true;
Dan Gohmand735b802008-10-03 15:45:36 +00002856 if (MO1.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002857 FinalSize += sizeGlobalAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002858 } else if (MO1.isSymbol())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002859 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002860 else if (MO1.isCPI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002861 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002862 else if (MO1.isJTI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002863 FinalSize += sizeJumpTableAddress(dword);
2864 }
2865 }
2866 break;
2867
2868 case X86II::MRMDestReg: {
2869 ++FinalSize;
2870 FinalSize += sizeRegModRMByte();
2871 CurOp += 2;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002872 if (CurOp != NumOps) {
2873 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002874 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002875 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002876 break;
2877 }
2878 case X86II::MRMDestMem: {
2879 ++FinalSize;
2880 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2881 CurOp += 5;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002882 if (CurOp != NumOps) {
2883 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002884 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002885 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002886 break;
2887 }
2888
2889 case X86II::MRMSrcReg:
2890 ++FinalSize;
2891 FinalSize += sizeRegModRMByte();
2892 CurOp += 2;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002893 if (CurOp != NumOps) {
2894 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002895 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002896 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002897 break;
2898
2899 case X86II::MRMSrcMem: {
2900
2901 ++FinalSize;
2902 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2903 CurOp += 5;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002904 if (CurOp != NumOps) {
2905 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002906 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002907 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002908 break;
2909 }
2910
2911 case X86II::MRM0r: case X86II::MRM1r:
2912 case X86II::MRM2r: case X86II::MRM3r:
2913 case X86II::MRM4r: case X86II::MRM5r:
2914 case X86II::MRM6r: case X86II::MRM7r:
2915 ++FinalSize;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002916 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002917 FinalSize += sizeRegModRMByte();
2918
2919 if (CurOp != NumOps) {
2920 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2921 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmand735b802008-10-03 15:45:36 +00002922 if (MO1.isImm())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002923 FinalSize += sizeConstant(Size);
2924 else {
2925 bool dword = false;
2926 if (Opcode == X86::MOV64ri32)
2927 dword = true;
Dan Gohmand735b802008-10-03 15:45:36 +00002928 if (MO1.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002929 FinalSize += sizeGlobalAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002930 } else if (MO1.isSymbol())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002931 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002932 else if (MO1.isCPI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002933 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002934 else if (MO1.isJTI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002935 FinalSize += sizeJumpTableAddress(dword);
2936 }
2937 }
2938 break;
2939
2940 case X86II::MRM0m: case X86II::MRM1m:
2941 case X86II::MRM2m: case X86II::MRM3m:
2942 case X86II::MRM4m: case X86II::MRM5m:
2943 case X86II::MRM6m: case X86II::MRM7m: {
2944
2945 ++FinalSize;
2946 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2947 CurOp += 4;
2948
2949 if (CurOp != NumOps) {
2950 const MachineOperand &MO = MI.getOperand(CurOp++);
2951 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmand735b802008-10-03 15:45:36 +00002952 if (MO.isImm())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002953 FinalSize += sizeConstant(Size);
2954 else {
2955 bool dword = false;
2956 if (Opcode == X86::MOV64mi32)
2957 dword = true;
Dan Gohmand735b802008-10-03 15:45:36 +00002958 if (MO.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002959 FinalSize += sizeGlobalAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002960 } else if (MO.isSymbol())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002961 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002962 else if (MO.isCPI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002963 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002964 else if (MO.isJTI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002965 FinalSize += sizeJumpTableAddress(dword);
2966 }
2967 }
2968 break;
2969 }
2970
2971 case X86II::MRMInitReg:
2972 ++FinalSize;
2973 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2974 FinalSize += sizeRegModRMByte();
2975 ++CurOp;
2976 break;
2977 }
2978
2979 if (!Desc->isVariadic() && CurOp != NumOps) {
2980 cerr << "Cannot determine size: ";
2981 MI.dump();
2982 cerr << '\n';
2983 abort();
2984 }
2985
2986
2987 return FinalSize;
2988}
2989
2990
2991unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2992 const TargetInstrDesc &Desc = MI->getDesc();
2993 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +00002994 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002995 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2996 if (Desc.getOpcode() == X86::MOVPC32r) {
2997 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2998 }
2999 return Size;
3000}
Dan Gohman8b746962008-09-23 18:22:58 +00003001
Dan Gohman57c3dac2008-09-30 00:58:23 +00003002/// getGlobalBaseReg - Return a virtual register initialized with the
3003/// the global base register value. Output instructions required to
3004/// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +00003005///
Dan Gohman57c3dac2008-09-30 00:58:23 +00003006unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3007 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3008 "X86-64 PIC uses RIP relative addressing");
3009
3010 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3011 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3012 if (GlobalBaseReg != 0)
3013 return GlobalBaseReg;
3014
Dan Gohman8b746962008-09-23 18:22:58 +00003015 // Insert the set of GlobalBaseReg into the first MBB of the function
3016 MachineBasicBlock &FirstMBB = MF->front();
3017 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3018 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3019 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3020
3021 const TargetInstrInfo *TII = TM.getInstrInfo();
3022 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3023 // only used in JIT code emission as displacement to pc.
3024 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3025
3026 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3027 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3028 if (TM.getRelocationModel() == Reloc::PIC_ &&
3029 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman57c3dac2008-09-30 00:58:23 +00003030 GlobalBaseReg =
Dan Gohman8b746962008-09-23 18:22:58 +00003031 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3032 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3033 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman57c3dac2008-09-30 00:58:23 +00003034 } else {
3035 GlobalBaseReg = PC;
Dan Gohman8b746962008-09-23 18:22:58 +00003036 }
3037
Dan Gohman57c3dac2008-09-30 00:58:23 +00003038 X86FI->setGlobalBaseReg(GlobalBaseReg);
3039 return GlobalBaseReg;
Dan Gohman8b746962008-09-23 18:22:58 +00003040}