blob: 69a4d20d37fd436e304487d7047b5366acf41e63 [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000012#include "llvm/Function.h"
13#include "llvm/CodeGen/MachineFrameInfo.h"
14#include "llvm/CodeGen/MachineInstrBuilder.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000016#include "llvm/Support/CommandLine.h"
17#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000018#include "llvm/Support/ErrorHandling.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000019#include "llvm/Support/raw_ostream.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000020#include "llvm/Target/TargetInstrInfo.h"
David Greene2d4e6d32009-07-28 16:49:24 +000021#include "llvm/Target/TargetLowering.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000022#include "llvm/ADT/DepthFirstIterator.h"
23#include "llvm/ADT/Statistic.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000024#include <algorithm>
25using namespace llvm;
26
27STATISTIC(NumDSE , "Number of dead stores elided");
28STATISTIC(NumDSS , "Number of dead spill slots removed");
29STATISTIC(NumCommutes, "Number of instructions commuted");
30STATISTIC(NumDRM , "Number of re-materializable defs elided");
31STATISTIC(NumStores , "Number of stores added");
32STATISTIC(NumPSpills , "Number of physical register spills");
33STATISTIC(NumOmitted , "Number of reloads omited");
34STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
35STATISTIC(NumCopified, "Number of available reloads turned into copies");
36STATISTIC(NumReMats , "Number of re-materialization");
37STATISTIC(NumLoads , "Number of loads added");
38STATISTIC(NumReused , "Number of values reused");
39STATISTIC(NumDCE , "Number of copies elided");
40STATISTIC(NumSUnfold , "Number of stores unfolded");
41STATISTIC(NumModRefUnfold, "Number of modref unfolded");
42
43namespace {
Lang Hamesac276402009-06-04 18:45:36 +000044 enum RewriterName { local, trivial };
Lang Hames87e3bca2009-05-06 02:36:21 +000045}
46
47static cl::opt<RewriterName>
48RewriterOpt("rewriter",
Duncan Sands18619b22010-02-18 14:37:52 +000049 cl::desc("Rewriter to use (default=local)"),
Lang Hames87e3bca2009-05-06 02:36:21 +000050 cl::Prefix,
Lang Hamesac276402009-06-04 18:45:36 +000051 cl::values(clEnumVal(local, "local rewriter"),
Lang Hamesf41538d2009-06-02 16:53:25 +000052 clEnumVal(trivial, "trivial rewriter"),
Lang Hames87e3bca2009-05-06 02:36:21 +000053 clEnumValEnd),
54 cl::init(local));
55
Dan Gohman7db949d2009-08-07 01:32:21 +000056static cl::opt<bool>
David Greene2d4e6d32009-07-28 16:49:24 +000057ScheduleSpills("schedule-spills",
58 cl::desc("Schedule spill code"),
59 cl::init(false));
60
Lang Hames87e3bca2009-05-06 02:36:21 +000061VirtRegRewriter::~VirtRegRewriter() {}
62
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +000063/// substitutePhysReg - Replace virtual register in MachineOperand with a
64/// physical register. Do the right thing with the sub-register index.
Jakob Stoklund Olesend135f142010-02-13 02:06:10 +000065/// Note that operands may be added, so the MO reference is no longer valid.
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +000066static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
67 const TargetRegisterInfo &TRI) {
68 if (unsigned SubIdx = MO.getSubReg()) {
69 // Insert the physical subreg and reset the subreg field.
70 MO.setReg(TRI.getSubReg(Reg, SubIdx));
71 MO.setSubReg(0);
72
73 // Any def, dead, and kill flags apply to the full virtual register, so they
74 // also apply to the full physical register. Add imp-def/dead and imp-kill
75 // as needed.
76 MachineInstr &MI = *MO.getParent();
77 if (MO.isDef())
78 if (MO.isDead())
79 MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
80 else
81 MI.addRegisterDefined(Reg, &TRI);
82 else if (!MO.isUndef() &&
83 (MO.isKill() ||
84 MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
85 MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
86 } else {
87 MO.setReg(Reg);
88 }
89}
90
Dan Gohman7db949d2009-08-07 01:32:21 +000091namespace {
Lang Hames87e3bca2009-05-06 02:36:21 +000092
Lang Hamesf41538d2009-06-02 16:53:25 +000093/// This class is intended for use with the new spilling framework only. It
94/// rewrites vreg def/uses to use the assigned preg, but does not insert any
95/// spill code.
Nick Lewycky6726b6d2009-10-25 06:33:48 +000096struct TrivialRewriter : public VirtRegRewriter {
Lang Hamesf41538d2009-06-02 16:53:25 +000097
98 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
99 LiveIntervals* LIs) {
David Greene0ee52182010-01-05 01:25:52 +0000100 DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000101 DEBUG(dbgs() << "********** Function: "
Daniel Dunbarce63ffb2009-07-25 00:23:56 +0000102 << MF.getFunction()->getName() << '\n');
David Greene0ee52182010-01-05 01:25:52 +0000103 DEBUG(dbgs() << "**** Machine Instrs"
Chris Lattner6456d382009-08-23 03:20:44 +0000104 << "(NOTE! Does not include spills and reloads!) ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +0000105 DEBUG(MF.dump());
106
Lang Hamesf41538d2009-06-02 16:53:25 +0000107 MachineRegisterInfo *mri = &MF.getRegInfo();
Lang Hames38283e22009-11-18 20:31:20 +0000108 const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
Lang Hamesf41538d2009-06-02 16:53:25 +0000109
110 bool changed = false;
111
112 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
113 liItr != liEnd; ++liItr) {
114
Lang Hames38283e22009-11-18 20:31:20 +0000115 const LiveInterval *li = liItr->second;
116 unsigned reg = li->reg;
117
118 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
119 if (!li->empty())
120 mri->setPhysRegUsed(reg);
121 }
122 else {
123 if (!VRM.hasPhys(reg))
124 continue;
125 unsigned pReg = VRM.getPhys(reg);
126 mri->setPhysRegUsed(pReg);
Jakob Stoklund Olesend135f142010-02-13 02:06:10 +0000127 // Copy the register use-list before traversing it.
128 SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
129 for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
130 E = mri->reg_end(); I != E; ++I)
131 reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
132 for (unsigned N=0; N != reglist.size(); ++N)
133 substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
134 pReg, *tri);
135 changed |= !reglist.empty();
Lang Hamesf41538d2009-06-02 16:53:25 +0000136 }
Lang Hamesf41538d2009-06-02 16:53:25 +0000137 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000138
David Greene0ee52182010-01-05 01:25:52 +0000139 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +0000140 DEBUG(MF.dump());
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000141
Lang Hamesf41538d2009-06-02 16:53:25 +0000142 return changed;
143 }
144
145};
146
Dan Gohman7db949d2009-08-07 01:32:21 +0000147}
148
Lang Hames87e3bca2009-05-06 02:36:21 +0000149// ************************************************************************ //
150
Dan Gohman7db949d2009-08-07 01:32:21 +0000151namespace {
152
Lang Hames87e3bca2009-05-06 02:36:21 +0000153/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
154/// from top down, keep track of which spill slots or remat are available in
155/// each register.
156///
157/// Note that not all physregs are created equal here. In particular, some
158/// physregs are reloads that we are allowed to clobber or ignore at any time.
159/// Other physregs are values that the register allocated program is using
160/// that we cannot CHANGE, but we can read if we like. We keep track of this
161/// on a per-stack-slot / remat id basis as the low bit in the value of the
162/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
163/// this bit and addAvailable sets it if.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000164class AvailableSpills {
Lang Hames87e3bca2009-05-06 02:36:21 +0000165 const TargetRegisterInfo *TRI;
166 const TargetInstrInfo *TII;
167
168 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
169 // or remat'ed virtual register values that are still available, due to
170 // being loaded or stored to, but not invalidated yet.
171 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
172
173 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
174 // indicating which stack slot values are currently held by a physreg. This
175 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
176 // physreg is modified.
177 std::multimap<unsigned, int> PhysRegsAvailable;
178
179 void disallowClobberPhysRegOnly(unsigned PhysReg);
180
181 void ClobberPhysRegOnly(unsigned PhysReg);
182public:
183 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
184 : TRI(tri), TII(tii) {
185 }
186
187 /// clear - Reset the state.
188 void clear() {
189 SpillSlotsOrReMatsAvailable.clear();
190 PhysRegsAvailable.clear();
191 }
192
193 const TargetRegisterInfo *getRegInfo() const { return TRI; }
194
195 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
196 /// available in a physical register, return that PhysReg, otherwise
197 /// return 0.
198 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
199 std::map<int, unsigned>::const_iterator I =
200 SpillSlotsOrReMatsAvailable.find(Slot);
201 if (I != SpillSlotsOrReMatsAvailable.end()) {
202 return I->second >> 1; // Remove the CanClobber bit.
203 }
204 return 0;
205 }
206
207 /// addAvailable - Mark that the specified stack slot / remat is available
208 /// in the specified physreg. If CanClobber is true, the physreg can be
209 /// modified at any time without changing the semantics of the program.
210 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000211 // If this stack slot is thought to be available in some other physreg,
Lang Hames87e3bca2009-05-06 02:36:21 +0000212 // remove its record.
213 ModifyStackSlotOrReMat(SlotOrReMat);
214
215 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
216 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
217 (unsigned)CanClobber;
218
219 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
David Greene0ee52182010-01-05 01:25:52 +0000220 DEBUG(dbgs() << "Remembering RM#"
Chris Lattner6456d382009-08-23 03:20:44 +0000221 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +0000222 else
David Greene0ee52182010-01-05 01:25:52 +0000223 DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
224 DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000225 }
226
227 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
228 /// the value of the specified stackslot register if it desires. The
229 /// specified stack slot must be available in a physreg for this query to
230 /// make sense.
231 bool canClobberPhysRegForSS(int SlotOrReMat) const {
232 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
233 "Value not available!");
234 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
235 }
236
237 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
238 /// physical register where values for some stack slot(s) might be
239 /// available.
240 bool canClobberPhysReg(unsigned PhysReg) const {
241 std::multimap<unsigned, int>::const_iterator I =
242 PhysRegsAvailable.lower_bound(PhysReg);
243 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
244 int SlotOrReMat = I->second;
245 I++;
246 if (!canClobberPhysRegForSS(SlotOrReMat))
247 return false;
248 }
249 return true;
250 }
251
252 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
253 /// stackslot register. The register is still available but is no longer
254 /// allowed to be modifed.
255 void disallowClobberPhysReg(unsigned PhysReg);
256
257 /// ClobberPhysReg - This is called when the specified physreg changes
258 /// value. We use this to invalidate any info about stuff that lives in
259 /// it and any of its aliases.
260 void ClobberPhysReg(unsigned PhysReg);
261
262 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
263 /// slot changes. This removes information about which register the
264 /// previous value for this slot lives in (as the previous value is dead
265 /// now).
266 void ModifyStackSlotOrReMat(int SlotOrReMat);
267
268 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
269 /// into the specified MBB. Add available physical registers as potential
270 /// live-in's. If they are reused in the MBB, they will be added to the
271 /// live-in set to make register scavenger and post-allocation scheduler.
272 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
273 std::vector<MachineOperand*> &KillOps);
274};
275
Dan Gohman7db949d2009-08-07 01:32:21 +0000276}
277
Lang Hames87e3bca2009-05-06 02:36:21 +0000278// ************************************************************************ //
279
David Greene2d4e6d32009-07-28 16:49:24 +0000280// Given a location where a reload of a spilled register or a remat of
281// a constant is to be inserted, attempt to find a safe location to
282// insert the load at an earlier point in the basic-block, to hide
283// latency of the load and to avoid address-generation interlock
284// issues.
285static MachineBasicBlock::iterator
286ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
287 MachineBasicBlock::iterator const Begin,
288 unsigned PhysReg,
289 const TargetRegisterInfo *TRI,
290 bool DoReMat,
291 int SSorRMId,
292 const TargetInstrInfo *TII,
293 const MachineFunction &MF)
294{
295 if (!ScheduleSpills)
296 return InsertLoc;
297
298 // Spill backscheduling is of primary interest to addresses, so
299 // don't do anything if the register isn't in the register class
300 // used for pointers.
301
302 const TargetLowering *TL = MF.getTarget().getTargetLowering();
303
304 if (!TL->isTypeLegal(TL->getPointerTy()))
305 // Believe it or not, this is true on PIC16.
306 return InsertLoc;
307
308 const TargetRegisterClass *ptrRegClass =
309 TL->getRegClassFor(TL->getPointerTy());
310 if (!ptrRegClass->contains(PhysReg))
311 return InsertLoc;
312
313 // Scan upwards through the preceding instructions. If an instruction doesn't
314 // reference the stack slot or the register we're loading, we can
315 // backschedule the reload up past it.
316 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
317 while (NewInsertLoc != Begin) {
318 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
319 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
320 MachineOperand &Op = Prev->getOperand(i);
321 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
322 goto stop;
323 }
324 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
325 Prev->findRegisterDefOperand(PhysReg))
326 goto stop;
327 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
328 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
329 Prev->findRegisterDefOperand(*Alias))
330 goto stop;
331 NewInsertLoc = Prev;
332 }
333stop:;
334
335 // If we made it to the beginning of the block, turn around and move back
336 // down just past any existing reloads. They're likely to be reloads/remats
337 // for instructions earlier than what our current reload/remat is for, so
338 // they should be scheduled earlier.
339 if (NewInsertLoc == Begin) {
340 int FrameIdx;
341 while (InsertLoc != NewInsertLoc &&
342 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
343 TII->isTriviallyReMaterializable(NewInsertLoc)))
344 ++NewInsertLoc;
345 }
346
347 return NewInsertLoc;
348}
Dan Gohman7db949d2009-08-07 01:32:21 +0000349
350namespace {
351
Lang Hames87e3bca2009-05-06 02:36:21 +0000352// ReusedOp - For each reused operand, we keep track of a bit of information,
353// in case we need to rollback upon processing a new operand. See comments
354// below.
355struct ReusedOp {
356 // The MachineInstr operand that reused an available value.
357 unsigned Operand;
358
359 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
360 unsigned StackSlotOrReMat;
361
362 // PhysRegReused - The physical register the value was available in.
363 unsigned PhysRegReused;
364
365 // AssignedPhysReg - The physreg that was assigned for use by the reload.
366 unsigned AssignedPhysReg;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000367
Lang Hames87e3bca2009-05-06 02:36:21 +0000368 // VirtReg - The virtual register itself.
369 unsigned VirtReg;
370
371 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
372 unsigned vreg)
373 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
374 AssignedPhysReg(apr), VirtReg(vreg) {}
375};
376
377/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
378/// is reused instead of reloaded.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000379class ReuseInfo {
Lang Hames87e3bca2009-05-06 02:36:21 +0000380 MachineInstr &MI;
381 std::vector<ReusedOp> Reuses;
382 BitVector PhysRegsClobbered;
383public:
384 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
385 PhysRegsClobbered.resize(tri->getNumRegs());
386 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000387
Lang Hames87e3bca2009-05-06 02:36:21 +0000388 bool hasReuses() const {
389 return !Reuses.empty();
390 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000391
Lang Hames87e3bca2009-05-06 02:36:21 +0000392 /// addReuse - If we choose to reuse a virtual register that is already
393 /// available instead of reloading it, remember that we did so.
394 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
395 unsigned PhysRegReused, unsigned AssignedPhysReg,
396 unsigned VirtReg) {
397 // If the reload is to the assigned register anyway, no undo will be
398 // required.
399 if (PhysRegReused == AssignedPhysReg) return;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000400
Lang Hames87e3bca2009-05-06 02:36:21 +0000401 // Otherwise, remember this.
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000402 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
Lang Hames87e3bca2009-05-06 02:36:21 +0000403 AssignedPhysReg, VirtReg));
404 }
405
406 void markClobbered(unsigned PhysReg) {
407 PhysRegsClobbered.set(PhysReg);
408 }
409
410 bool isClobbered(unsigned PhysReg) const {
411 return PhysRegsClobbered.test(PhysReg);
412 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000413
Lang Hames87e3bca2009-05-06 02:36:21 +0000414 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
415 /// is some other operand that is using the specified register, either pick
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000416 /// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000417 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
418 MachineFunction &MF, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000419 AvailableSpills &Spills,
420 std::vector<MachineInstr*> &MaybeDeadStores,
421 SmallSet<unsigned, 8> &Rejected,
422 BitVector &RegKills,
423 std::vector<MachineOperand*> &KillOps,
424 VirtRegMap &VRM);
425
426 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
427 /// 'Rejected' set to remember which registers have been considered and
428 /// rejected for the reload. This avoids infinite looping in case like
429 /// this:
430 /// t1 := op t2, t3
431 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
432 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
433 /// t1 <- desires r1
434 /// sees r1 is taken by t2, tries t2's reload register r0
435 /// sees r0 is taken by t3, tries t3's reload register r1
436 /// sees r1 is taken by t2, tries t2's reload register r0 ...
Evan Cheng5d885022009-07-21 09:15:00 +0000437 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000438 AvailableSpills &Spills,
439 std::vector<MachineInstr*> &MaybeDeadStores,
440 BitVector &RegKills,
441 std::vector<MachineOperand*> &KillOps,
442 VirtRegMap &VRM) {
443 SmallSet<unsigned, 8> Rejected;
Evan Cheng5d885022009-07-21 09:15:00 +0000444 MachineFunction &MF = *MI->getParent()->getParent();
445 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
446 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
447 Rejected, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +0000448 }
449};
450
Dan Gohman7db949d2009-08-07 01:32:21 +0000451}
Lang Hames87e3bca2009-05-06 02:36:21 +0000452
453// ****************** //
454// Utility Functions //
455// ****************** //
456
Lang Hames87e3bca2009-05-06 02:36:21 +0000457/// findSinglePredSuccessor - Return via reference a vector of machine basic
458/// blocks each of which is a successor of the specified BB and has no other
459/// predecessor.
460static void findSinglePredSuccessor(MachineBasicBlock *MBB,
461 SmallVectorImpl<MachineBasicBlock *> &Succs) {
462 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
463 SE = MBB->succ_end(); SI != SE; ++SI) {
464 MachineBasicBlock *SuccMBB = *SI;
465 if (SuccMBB->pred_size() == 1)
466 Succs.push_back(SuccMBB);
467 }
468}
469
Evan Cheng427a6b62009-05-15 06:48:19 +0000470/// InvalidateKill - Invalidate register kill information for a specific
471/// register. This also unsets the kills marker on the last kill operand.
472static void InvalidateKill(unsigned Reg,
473 const TargetRegisterInfo* TRI,
474 BitVector &RegKills,
475 std::vector<MachineOperand*> &KillOps) {
476 if (RegKills[Reg]) {
477 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000478 // KillOps[Reg] might be a def of a super-register.
479 unsigned KReg = KillOps[Reg]->getReg();
480 KillOps[KReg] = NULL;
481 RegKills.reset(KReg);
482 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
Evan Cheng427a6b62009-05-15 06:48:19 +0000483 if (RegKills[*SR]) {
484 KillOps[*SR]->setIsKill(false);
485 KillOps[*SR] = NULL;
486 RegKills.reset(*SR);
487 }
488 }
489 }
490}
491
Lang Hames87e3bca2009-05-06 02:36:21 +0000492/// InvalidateKills - MI is going to be deleted. If any of its operands are
493/// marked kill, then invalidate the information.
Evan Cheng427a6b62009-05-15 06:48:19 +0000494static void InvalidateKills(MachineInstr &MI,
495 const TargetRegisterInfo* TRI,
496 BitVector &RegKills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000497 std::vector<MachineOperand*> &KillOps,
498 SmallVector<unsigned, 2> *KillRegs = NULL) {
499 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
500 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000501 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000502 continue;
503 unsigned Reg = MO.getReg();
504 if (TargetRegisterInfo::isVirtualRegister(Reg))
505 continue;
506 if (KillRegs)
507 KillRegs->push_back(Reg);
508 assert(Reg < KillOps.size());
509 if (KillOps[Reg] == &MO) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000510 KillOps[Reg] = NULL;
Evan Cheng427a6b62009-05-15 06:48:19 +0000511 RegKills.reset(Reg);
512 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
513 if (RegKills[*SR]) {
514 KillOps[*SR] = NULL;
515 RegKills.reset(*SR);
516 }
517 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000518 }
519 }
520}
521
522/// InvalidateRegDef - If the def operand of the specified def MI is now dead
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000523/// (since its spill instruction is removed), mark it isDead. Also checks if
Lang Hames87e3bca2009-05-06 02:36:21 +0000524/// the def MI has other definition operands that are not dead. Returns it by
525/// reference.
526static bool InvalidateRegDef(MachineBasicBlock::iterator I,
527 MachineInstr &NewDef, unsigned Reg,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000528 bool &HasLiveDef,
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000529 const TargetRegisterInfo *TRI) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000530 // Due to remat, it's possible this reg isn't being reused. That is,
531 // the def of this reg (by prev MI) is now dead.
532 MachineInstr *DefMI = I;
533 MachineOperand *DefOp = NULL;
534 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
535 MachineOperand &MO = DefMI->getOperand(i);
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000536 if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
Evan Cheng4784f1f2009-06-30 08:49:04 +0000537 continue;
538 if (MO.getReg() == Reg)
539 DefOp = &MO;
540 else if (!MO.isDead())
541 HasLiveDef = true;
Lang Hames87e3bca2009-05-06 02:36:21 +0000542 }
543 if (!DefOp)
544 return false;
545
546 bool FoundUse = false, Done = false;
547 MachineBasicBlock::iterator E = &NewDef;
548 ++I; ++E;
549 for (; !Done && I != E; ++I) {
550 MachineInstr *NMI = I;
551 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
552 MachineOperand &MO = NMI->getOperand(j);
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000553 if (!MO.isReg() || MO.getReg() == 0 ||
554 (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
Lang Hames87e3bca2009-05-06 02:36:21 +0000555 continue;
556 if (MO.isUse())
557 FoundUse = true;
558 Done = true; // Stop after scanning all the operands of this MI.
559 }
560 }
561 if (!FoundUse) {
562 // Def is dead!
563 DefOp->setIsDead();
564 return true;
565 }
566 return false;
567}
568
569/// UpdateKills - Track and update kill info. If a MI reads a register that is
570/// marked kill, then it must be due to register reuse. Transfer the kill info
571/// over.
Evan Cheng427a6b62009-05-15 06:48:19 +0000572static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
573 BitVector &RegKills,
574 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000575 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
576 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000577 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000578 continue;
579 unsigned Reg = MO.getReg();
580 if (Reg == 0)
581 continue;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000582
Lang Hames87e3bca2009-05-06 02:36:21 +0000583 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
584 // That can't be right. Register is killed but not re-defined and it's
585 // being reused. Let's fix that.
586 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000587 // KillOps[Reg] might be a def of a super-register.
588 unsigned KReg = KillOps[Reg]->getReg();
589 KillOps[KReg] = NULL;
590 RegKills.reset(KReg);
591
592 // Must be a def of a super-register. Its other sub-regsters are no
593 // longer killed as well.
594 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
595 KillOps[*SR] = NULL;
596 RegKills.reset(*SR);
597 }
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000598 } else {
599 // Check for subreg kills as well.
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000600 // d4 =
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000601 // store d4, fi#0
602 // ...
603 // = s8<kill>
604 // ...
605 // = d4 <avoiding reload>
606 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
607 unsigned SReg = *SR;
608 if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
609 KillOps[SReg]->setIsKill(false);
610 unsigned KReg = KillOps[SReg]->getReg();
611 KillOps[KReg] = NULL;
612 RegKills.reset(KReg);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000613
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000614 for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
615 KillOps[*SSR] = NULL;
616 RegKills.reset(*SSR);
617 }
618 }
619 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000620 }
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000621
Lang Hames87e3bca2009-05-06 02:36:21 +0000622 if (MO.isKill()) {
623 RegKills.set(Reg);
624 KillOps[Reg] = &MO;
Evan Cheng427a6b62009-05-15 06:48:19 +0000625 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
626 RegKills.set(*SR);
627 KillOps[*SR] = &MO;
628 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000629 }
630 }
631
632 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
633 const MachineOperand &MO = MI.getOperand(i);
Evan Chengd57cdd52009-11-14 02:55:43 +0000634 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000635 continue;
636 unsigned Reg = MO.getReg();
637 RegKills.reset(Reg);
638 KillOps[Reg] = NULL;
639 // It also defines (or partially define) aliases.
Evan Cheng427a6b62009-05-15 06:48:19 +0000640 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
641 RegKills.reset(*SR);
642 KillOps[*SR] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000643 }
Evan Cheng1f6a3c82009-11-13 23:16:41 +0000644 for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
645 RegKills.reset(*SR);
646 KillOps[*SR] = NULL;
647 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000648 }
649}
650
651/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
652///
653static void ReMaterialize(MachineBasicBlock &MBB,
654 MachineBasicBlock::iterator &MII,
655 unsigned DestReg, unsigned Reg,
656 const TargetInstrInfo *TII,
657 const TargetRegisterInfo *TRI,
658 VirtRegMap &VRM) {
Evan Cheng5f159922009-07-16 20:15:00 +0000659 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
Daniel Dunbar24cd3c42009-07-16 22:08:25 +0000660#ifndef NDEBUG
Evan Cheng5f159922009-07-16 20:15:00 +0000661 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
Evan Chengc1b46f92009-07-17 00:32:06 +0000662 assert(TID.getNumDefs() == 1 &&
Evan Cheng5f159922009-07-16 20:15:00 +0000663 "Don't know how to remat instructions that define > 1 values!");
664#endif
665 TII->reMaterialize(MBB, MII, DestReg,
Evan Chengd57cdd52009-11-14 02:55:43 +0000666 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI, TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000667 MachineInstr *NewMI = prior(MII);
668 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
669 MachineOperand &MO = NewMI->getOperand(i);
670 if (!MO.isReg() || MO.getReg() == 0)
671 continue;
672 unsigned VirtReg = MO.getReg();
673 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
674 continue;
675 assert(MO.isUse());
Lang Hames87e3bca2009-05-06 02:36:21 +0000676 unsigned Phys = VRM.getPhys(VirtReg);
Evan Cheng427c3ba2009-10-25 07:51:47 +0000677 assert(Phys && "Virtual register is not assigned a register?");
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +0000678 substitutePhysReg(MO, Phys, *TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000679 }
680 ++NumReMats;
681}
682
683/// findSuperReg - Find the SubReg's super-register of given register class
684/// where its SubIdx sub-register is SubReg.
685static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
686 unsigned SubIdx, const TargetRegisterInfo *TRI) {
687 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
688 I != E; ++I) {
689 unsigned Reg = *I;
690 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
691 return Reg;
692 }
693 return 0;
694}
695
696// ******************************** //
697// Available Spills Implementation //
698// ******************************** //
699
700/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
701/// stackslot register. The register is still available but is no longer
702/// allowed to be modifed.
703void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
704 std::multimap<unsigned, int>::iterator I =
705 PhysRegsAvailable.lower_bound(PhysReg);
706 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
707 int SlotOrReMat = I->second;
708 I++;
709 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
710 "Bidirectional map mismatch!");
711 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
David Greene0ee52182010-01-05 01:25:52 +0000712 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
Chris Lattner6456d382009-08-23 03:20:44 +0000713 << " copied, it is available for use but can no longer be modified\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000714 }
715}
716
717/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
718/// stackslot register and its aliases. The register and its aliases may
719/// still available but is no longer allowed to be modifed.
720void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
721 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
722 disallowClobberPhysRegOnly(*AS);
723 disallowClobberPhysRegOnly(PhysReg);
724}
725
726/// ClobberPhysRegOnly - This is called when the specified physreg changes
727/// value. We use this to invalidate any info about stuff we thing lives in it.
728void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
729 std::multimap<unsigned, int>::iterator I =
730 PhysRegsAvailable.lower_bound(PhysReg);
731 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
732 int SlotOrReMat = I->second;
733 PhysRegsAvailable.erase(I++);
734 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
735 "Bidirectional map mismatch!");
736 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
David Greene0ee52182010-01-05 01:25:52 +0000737 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
Chris Lattner6456d382009-08-23 03:20:44 +0000738 << " clobbered, invalidating ");
Lang Hames87e3bca2009-05-06 02:36:21 +0000739 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
David Greene0ee52182010-01-05 01:25:52 +0000740 DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000741 else
David Greene0ee52182010-01-05 01:25:52 +0000742 DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000743 }
744}
745
746/// ClobberPhysReg - This is called when the specified physreg changes
747/// value. We use this to invalidate any info about stuff we thing lives in
748/// it and any of its aliases.
749void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
750 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
751 ClobberPhysRegOnly(*AS);
752 ClobberPhysRegOnly(PhysReg);
753}
754
755/// AddAvailableRegsToLiveIn - Availability information is being kept coming
756/// into the specified MBB. Add available physical registers as potential
757/// live-in's. If they are reused in the MBB, they will be added to the
758/// live-in set to make register scavenger and post-allocation scheduler.
759void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
760 BitVector &RegKills,
761 std::vector<MachineOperand*> &KillOps) {
762 std::set<unsigned> NotAvailable;
763 for (std::multimap<unsigned, int>::iterator
764 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
765 I != E; ++I) {
766 unsigned Reg = I->first;
767 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
768 // FIXME: A temporary workaround. We can't reuse available value if it's
769 // not safe to move the def of the virtual register's class. e.g.
770 // X86::RFP* register classes. Do not add it as a live-in.
771 if (!TII->isSafeToMoveRegClassDefs(RC))
772 // This is no longer available.
773 NotAvailable.insert(Reg);
774 else {
775 MBB.addLiveIn(Reg);
Evan Cheng427a6b62009-05-15 06:48:19 +0000776 InvalidateKill(Reg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000777 }
778
779 // Skip over the same register.
Chris Lattner7896c9f2009-12-03 00:50:42 +0000780 std::multimap<unsigned, int>::iterator NI = llvm::next(I);
Lang Hames87e3bca2009-05-06 02:36:21 +0000781 while (NI != E && NI->first == Reg) {
782 ++I;
783 ++NI;
784 }
785 }
786
787 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
788 E = NotAvailable.end(); I != E; ++I) {
789 ClobberPhysReg(*I);
790 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
791 *SubRegs; ++SubRegs)
792 ClobberPhysReg(*SubRegs);
793 }
794}
795
796/// ModifyStackSlotOrReMat - This method is called when the value in a stack
797/// slot changes. This removes information about which register the previous
798/// value for this slot lives in (as the previous value is dead now).
799void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
800 std::map<int, unsigned>::iterator It =
801 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
802 if (It == SpillSlotsOrReMatsAvailable.end()) return;
803 unsigned Reg = It->second >> 1;
804 SpillSlotsOrReMatsAvailable.erase(It);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000805
Lang Hames87e3bca2009-05-06 02:36:21 +0000806 // This register may hold the value of multiple stack slots, only remove this
807 // stack slot from the set of values the register contains.
808 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
809 for (; ; ++I) {
810 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
811 "Map inverse broken!");
812 if (I->second == SlotOrReMat) break;
813 }
814 PhysRegsAvailable.erase(I);
815}
816
817// ************************** //
818// Reuse Info Implementation //
819// ************************** //
820
821/// GetRegForReload - We are about to emit a reload into PhysReg. If there
822/// is some other operand that is using the specified register, either pick
823/// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000824unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
825 unsigned PhysReg,
826 MachineFunction &MF,
827 MachineInstr *MI, AvailableSpills &Spills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000828 std::vector<MachineInstr*> &MaybeDeadStores,
829 SmallSet<unsigned, 8> &Rejected,
830 BitVector &RegKills,
831 std::vector<MachineOperand*> &KillOps,
832 VirtRegMap &VRM) {
Evan Cheng5d885022009-07-21 09:15:00 +0000833 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
834 const TargetRegisterInfo *TRI = Spills.getRegInfo();
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000835
Lang Hames87e3bca2009-05-06 02:36:21 +0000836 if (Reuses.empty()) return PhysReg; // This is most often empty.
837
838 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
839 ReusedOp &Op = Reuses[ro];
840 // If we find some other reuse that was supposed to use this register
841 // exactly for its reload, we can change this reload to use ITS reload
842 // register. That is, unless its reload register has already been
843 // considered and subsequently rejected because it has also been reused
844 // by another operand.
845 if (Op.PhysRegReused == PhysReg &&
Evan Cheng5d885022009-07-21 09:15:00 +0000846 Rejected.count(Op.AssignedPhysReg) == 0 &&
847 RC->contains(Op.AssignedPhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000848 // Yup, use the reload register that we didn't use before.
849 unsigned NewReg = Op.AssignedPhysReg;
850 Rejected.insert(PhysReg);
Evan Cheng5d885022009-07-21 09:15:00 +0000851 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
Lang Hames87e3bca2009-05-06 02:36:21 +0000852 RegKills, KillOps, VRM);
853 } else {
854 // Otherwise, we might also have a problem if a previously reused
Evan Cheng5d885022009-07-21 09:15:00 +0000855 // value aliases the new register. If so, codegen the previous reload
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000856 // and use this one.
Lang Hames87e3bca2009-05-06 02:36:21 +0000857 unsigned PRRU = Op.PhysRegReused;
Lang Hames3f2f3f52009-09-03 02:52:02 +0000858 if (TRI->regsOverlap(PRRU, PhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000859 // Okay, we found out that an alias of a reused register
860 // was used. This isn't good because it means we have
861 // to undo a previous reuse.
862 MachineBasicBlock *MBB = MI->getParent();
863 const TargetRegisterClass *AliasRC =
864 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
865
866 // Copy Op out of the vector and remove it, we're going to insert an
867 // explicit load for it.
868 ReusedOp NewOp = Op;
869 Reuses.erase(Reuses.begin()+ro);
870
Jakob Stoklund Olesen46ff9692009-08-23 13:01:45 +0000871 // MI may be using only a sub-register of PhysRegUsed.
872 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
873 unsigned SubIdx = 0;
874 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
875 "A reuse cannot be a virtual register");
876 if (PRRU != RealPhysRegUsed) {
877 // What was the sub-register index?
Evan Chengfae3e922009-11-14 03:42:17 +0000878 SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
879 assert(SubIdx &&
Jakob Stoklund Olesen46ff9692009-08-23 13:01:45 +0000880 "Operand physreg is not a sub-register of PhysRegUsed");
881 }
882
Lang Hames87e3bca2009-05-06 02:36:21 +0000883 // Ok, we're going to try to reload the assigned physreg into the
884 // slot that we were supposed to in the first place. However, that
885 // register could hold a reuse. Check to see if it conflicts or
886 // would prefer us to use a different register.
Evan Cheng5d885022009-07-21 09:15:00 +0000887 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
888 MF, MI, Spills, MaybeDeadStores,
889 Rejected, RegKills, KillOps, VRM);
David Greene2d4e6d32009-07-28 16:49:24 +0000890
891 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
892 int SSorRMId = DoReMat
893 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
894
895 // Back-schedule reloads and remats.
896 MachineBasicBlock::iterator InsertLoc =
897 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
898 DoReMat, SSorRMId, TII, MF);
899
900 if (DoReMat) {
901 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
902 TRI, VRM);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000903 } else {
David Greene2d4e6d32009-07-28 16:49:24 +0000904 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
Lang Hames87e3bca2009-05-06 02:36:21 +0000905 NewOp.StackSlotOrReMat, AliasRC);
David Greene2d4e6d32009-07-28 16:49:24 +0000906 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +0000907 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
908 // Any stores to this stack slot are not dead anymore.
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000909 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000910 ++NumLoads;
911 }
912 Spills.ClobberPhysReg(NewPhysReg);
913 Spills.ClobberPhysReg(NewOp.PhysRegReused);
914
Evan Cheng427c3ba2009-10-25 07:51:47 +0000915 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
Lang Hames87e3bca2009-05-06 02:36:21 +0000916 MI->getOperand(NewOp.Operand).setReg(RReg);
917 MI->getOperand(NewOp.Operand).setSubReg(0);
918
919 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
David Greene2d4e6d32009-07-28 16:49:24 +0000920 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
David Greene0ee52182010-01-05 01:25:52 +0000921 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000922
David Greene0ee52182010-01-05 01:25:52 +0000923 DEBUG(dbgs() << "Reuse undone!\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000924 --NumReused;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000925
Lang Hames87e3bca2009-05-06 02:36:21 +0000926 // Finally, PhysReg is now available, go ahead and use it.
927 return PhysReg;
928 }
929 }
930 }
931 return PhysReg;
932}
933
934// ************************************************************************ //
935
936/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
937/// stack slot mod/ref. It also checks if it's possible to unfold the
938/// instruction by having it define a specified physical register instead.
939static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
940 const TargetInstrInfo *TII,
941 const TargetRegisterInfo *TRI,
942 VirtRegMap &VRM) {
943 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
944 return false;
945
946 bool Found = false;
947 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
948 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
949 unsigned VirtReg = I->second.first;
950 VirtRegMap::ModRef MR = I->second.second;
951 if (MR & VirtRegMap::isModRef)
952 if (VRM.getStackSlot(VirtReg) == SS) {
953 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
954 break;
955 }
956 }
957 if (!Found)
958 return false;
959
960 // Does the instruction uses a register that overlaps the scratch register?
961 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
962 MachineOperand &MO = MI.getOperand(i);
963 if (!MO.isReg() || MO.getReg() == 0)
964 continue;
965 unsigned Reg = MO.getReg();
966 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
967 if (!VRM.hasPhys(Reg))
968 continue;
969 Reg = VRM.getPhys(Reg);
970 }
971 if (TRI->regsOverlap(PhysReg, Reg))
972 return false;
973 }
974 return true;
975}
976
977/// FindFreeRegister - Find a free register of a given register class by looking
978/// at (at most) the last two machine instructions.
979static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
980 MachineBasicBlock &MBB,
981 const TargetRegisterClass *RC,
982 const TargetRegisterInfo *TRI,
983 BitVector &AllocatableRegs) {
984 BitVector Defs(TRI->getNumRegs());
985 BitVector Uses(TRI->getNumRegs());
986 SmallVector<unsigned, 4> LocalUses;
987 SmallVector<unsigned, 4> Kills;
988
989 // Take a look at 2 instructions at most.
990 for (unsigned Count = 0; Count < 2; ++Count) {
991 if (MII == MBB.begin())
992 break;
993 MachineInstr *PrevMI = prior(MII);
994 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
995 MachineOperand &MO = PrevMI->getOperand(i);
996 if (!MO.isReg() || MO.getReg() == 0)
997 continue;
998 unsigned Reg = MO.getReg();
999 if (MO.isDef()) {
1000 Defs.set(Reg);
1001 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1002 Defs.set(*AS);
1003 } else {
1004 LocalUses.push_back(Reg);
1005 if (MO.isKill() && AllocatableRegs[Reg])
1006 Kills.push_back(Reg);
1007 }
1008 }
1009
1010 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
1011 unsigned Kill = Kills[i];
1012 if (!Defs[Kill] && !Uses[Kill] &&
1013 TRI->getPhysicalRegisterRegClass(Kill) == RC)
1014 return Kill;
1015 }
1016 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
1017 unsigned Reg = LocalUses[i];
1018 Uses.set(Reg);
1019 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1020 Uses.set(*AS);
1021 }
1022
1023 MII = PrevMI;
1024 }
1025
1026 return 0;
1027}
1028
1029static
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +00001030void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
1031 const TargetRegisterInfo &TRI) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001032 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1033 MachineOperand &MO = MI->getOperand(i);
1034 if (MO.isReg() && MO.getReg() == VirtReg)
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +00001035 substitutePhysReg(MO, PhysReg, TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001036 }
1037}
1038
Evan Chengeca24fb2009-05-12 23:07:00 +00001039namespace {
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001040
1041struct RefSorter {
1042 bool operator()(const std::pair<MachineInstr*, int> &A,
1043 const std::pair<MachineInstr*, int> &B) {
1044 return A.second < B.second;
1045 }
1046};
Lang Hames87e3bca2009-05-06 02:36:21 +00001047
1048// ***************************** //
1049// Local Spiller Implementation //
1050// ***************************** //
1051
Nick Lewycky6726b6d2009-10-25 06:33:48 +00001052class LocalRewriter : public VirtRegRewriter {
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001053 MachineRegisterInfo *MRI;
Lang Hames87e3bca2009-05-06 02:36:21 +00001054 const TargetRegisterInfo *TRI;
1055 const TargetInstrInfo *TII;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001056 VirtRegMap *VRM;
Lang Hames87e3bca2009-05-06 02:36:21 +00001057 BitVector AllocatableRegs;
1058 DenseMap<MachineInstr*, unsigned> DistanceMap;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001059
1060 MachineBasicBlock *MBB; // Basic block currently being processed.
1061
Lang Hames87e3bca2009-05-06 02:36:21 +00001062public:
1063
1064 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001065 LiveIntervals* LIs);
Lang Hames87e3bca2009-05-06 02:36:21 +00001066
1067private:
1068
Lang Hames87e3bca2009-05-06 02:36:21 +00001069 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
Lang Hames87e3bca2009-05-06 02:36:21 +00001070 MachineBasicBlock::iterator &MII,
1071 std::vector<MachineInstr*> &MaybeDeadStores,
1072 AvailableSpills &Spills,
1073 BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001074 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001075
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001076 bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
Lang Hames87e3bca2009-05-06 02:36:21 +00001077 std::vector<MachineInstr*> &MaybeDeadStores,
1078 AvailableSpills &Spills,
1079 BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001080 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001081
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001082 bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
Lang Hames87e3bca2009-05-06 02:36:21 +00001083 unsigned VirtReg, unsigned SrcReg, int SS,
1084 AvailableSpills &Spills,
1085 BitVector &RegKills,
1086 std::vector<MachineOperand*> &KillOps,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001087 const TargetRegisterInfo *TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001088
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001089 void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
Lang Hames87e3bca2009-05-06 02:36:21 +00001090 int Idx, unsigned PhysReg, int StackSlot,
1091 const TargetRegisterClass *RC,
1092 bool isAvailable, MachineInstr *&LastStore,
1093 AvailableSpills &Spills,
1094 SmallSet<MachineInstr*, 4> &ReMatDefs,
1095 BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001096 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001097
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001098 void TransferDeadness(unsigned CurDist,
1099 unsigned Reg, BitVector &RegKills,
1100 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001101
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001102 void RewriteMBB(LiveIntervals *LIs,
1103 AvailableSpills &Spills, BitVector &RegKills,
1104 std::vector<MachineOperand*> &KillOps);
1105};
1106}
1107
1108bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
1109 LiveIntervals* LIs) {
1110 MRI = &MF.getRegInfo();
1111 TRI = MF.getTarget().getRegisterInfo();
1112 TII = MF.getTarget().getInstrInfo();
1113 VRM = &vrm;
1114 AllocatableRegs = TRI->getAllocatableSet(MF);
1115 DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
1116 << MF.getFunction()->getName() << "':\n");
1117 DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
1118 " reloads!) ****\n");
1119 DEBUG(MF.dump());
1120
1121 // Spills - Keep track of which spilled values are available in physregs
1122 // so that we can choose to reuse the physregs instead of emitting
1123 // reloads. This is usually refreshed per basic block.
1124 AvailableSpills Spills(TRI, TII);
1125
1126 // Keep track of kill information.
1127 BitVector RegKills(TRI->getNumRegs());
1128 std::vector<MachineOperand*> KillOps;
1129 KillOps.resize(TRI->getNumRegs(), NULL);
1130
1131 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1132 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1133 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1134
1135 // Traverse the basic blocks depth first.
1136 MachineBasicBlock *Entry = MF.begin();
1137 SmallPtrSet<MachineBasicBlock*,16> Visited;
1138 for (df_ext_iterator<MachineBasicBlock*,
1139 SmallPtrSet<MachineBasicBlock*,16> >
1140 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1141 DFI != E; ++DFI) {
1142 MBB = *DFI;
1143 if (!EarlyVisited.count(MBB))
1144 RewriteMBB(LIs, Spills, RegKills, KillOps);
1145
1146 // If this MBB is the only predecessor of a successor. Keep the
1147 // availability information and visit it next.
1148 do {
1149 // Keep visiting single predecessor successor as long as possible.
1150 SinglePredSuccs.clear();
1151 findSinglePredSuccessor(MBB, SinglePredSuccs);
1152 if (SinglePredSuccs.empty())
1153 MBB = 0;
1154 else {
1155 // FIXME: More than one successors, each of which has MBB has
1156 // the only predecessor.
1157 MBB = SinglePredSuccs[0];
1158 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1159 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1160 RewriteMBB(LIs, Spills, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001161 }
1162 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001163 } while (MBB);
Lang Hames87e3bca2009-05-06 02:36:21 +00001164
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001165 // Clear the availability info.
1166 Spills.clear();
Lang Hames87e3bca2009-05-06 02:36:21 +00001167 }
1168
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001169 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
1170 DEBUG(MF.dump());
1171
1172 // Mark unused spill slots.
1173 MachineFrameInfo *MFI = MF.getFrameInfo();
1174 int SS = VRM->getLowSpillSlot();
1175 if (SS != VirtRegMap::NO_STACK_SLOT)
1176 for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS)
1177 if (!VRM->isSpillSlotUsed(SS)) {
1178 MFI->RemoveStackObject(SS);
1179 ++NumDSS;
1180 }
1181
1182 return true;
1183}
1184
1185/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1186/// a scratch register is available.
1187/// xorq %r12<kill>, %r13
1188/// addq %rax, -184(%rbp)
1189/// addq %r13, -184(%rbp)
1190/// ==>
1191/// xorq %r12<kill>, %r13
1192/// movq -184(%rbp), %r12
1193/// addq %rax, %r12
1194/// addq %r13, %r12
1195/// movq %r12, -184(%rbp)
1196bool LocalRewriter::
1197OptimizeByUnfold2(unsigned VirtReg, int SS,
1198 MachineBasicBlock::iterator &MII,
1199 std::vector<MachineInstr*> &MaybeDeadStores,
1200 AvailableSpills &Spills,
1201 BitVector &RegKills,
1202 std::vector<MachineOperand*> &KillOps) {
1203
1204 MachineBasicBlock::iterator NextMII = llvm::next(MII);
1205 if (NextMII == MBB->end())
1206 return false;
1207
1208 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1209 return false;
1210
1211 // Now let's see if the last couple of instructions happens to have freed up
1212 // a register.
1213 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1214 unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
1215 if (!PhysReg)
1216 return false;
1217
1218 MachineFunction &MF = *MBB->getParent();
1219 TRI = MF.getTarget().getRegisterInfo();
1220 MachineInstr &MI = *MII;
1221 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
1222 return false;
1223
1224 // If the next instruction also folds the same SS modref and can be unfoled,
1225 // then it's worthwhile to issue a load from SS into the free register and
1226 // then unfold these instructions.
1227 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
1228 return false;
1229
1230 // Back-schedule reloads and remats.
1231 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
1232
1233 // Load from SS to the spare physical register.
1234 TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC);
1235 // This invalidates Phys.
1236 Spills.ClobberPhysReg(PhysReg);
1237 // Remember it's available.
1238 Spills.addAvailable(SS, PhysReg);
1239 MaybeDeadStores[SS] = NULL;
1240
1241 // Unfold current MI.
1242 SmallVector<MachineInstr*, 4> NewMIs;
1243 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1244 llvm_unreachable("Unable unfold the load / store folding instruction!");
1245 assert(NewMIs.size() == 1);
1246 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1247 VRM->transferRestorePts(&MI, NewMIs[0]);
1248 MII = MBB->insert(MII, NewMIs[0]);
1249 InvalidateKills(MI, TRI, RegKills, KillOps);
1250 VRM->RemoveMachineInstrFromMaps(&MI);
1251 MBB->erase(&MI);
1252 ++NumModRefUnfold;
1253
1254 // Unfold next instructions that fold the same SS.
1255 do {
1256 MachineInstr &NextMI = *NextMII;
1257 NextMII = llvm::next(NextMII);
1258 NewMIs.clear();
1259 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1260 llvm_unreachable("Unable unfold the load / store folding instruction!");
1261 assert(NewMIs.size() == 1);
1262 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1263 VRM->transferRestorePts(&NextMI, NewMIs[0]);
1264 MBB->insert(NextMII, NewMIs[0]);
1265 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1266 VRM->RemoveMachineInstrFromMaps(&NextMI);
1267 MBB->erase(&NextMI);
1268 ++NumModRefUnfold;
1269 if (NextMII == MBB->end())
1270 break;
1271 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
1272
1273 // Store the value back into SS.
1274 TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC);
1275 MachineInstr *StoreMI = prior(NextMII);
1276 VRM->addSpillSlotUse(SS, StoreMI);
1277 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1278
1279 return true;
1280}
1281
1282/// OptimizeByUnfold - Turn a store folding instruction into a load folding
1283/// instruction. e.g.
1284/// xorl %edi, %eax
1285/// movl %eax, -32(%ebp)
1286/// movl -36(%ebp), %eax
1287/// orl %eax, -32(%ebp)
1288/// ==>
1289/// xorl %edi, %eax
1290/// orl -36(%ebp), %eax
1291/// mov %eax, -32(%ebp)
1292/// This enables unfolding optimization for a subsequent instruction which will
1293/// also eliminate the newly introduced store instruction.
1294bool LocalRewriter::
1295OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1296 std::vector<MachineInstr*> &MaybeDeadStores,
1297 AvailableSpills &Spills,
1298 BitVector &RegKills,
1299 std::vector<MachineOperand*> &KillOps) {
1300 MachineFunction &MF = *MBB->getParent();
1301 MachineInstr &MI = *MII;
1302 unsigned UnfoldedOpc = 0;
1303 unsigned UnfoldPR = 0;
1304 unsigned UnfoldVR = 0;
1305 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1306 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1307 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
1308 // Only transform a MI that folds a single register.
1309 if (UnfoldedOpc)
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001310 return false;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001311 UnfoldVR = I->second.first;
1312 VirtRegMap::ModRef MR = I->second.second;
1313 // MI2VirtMap be can updated which invalidate the iterator.
1314 // Increment the iterator first.
1315 ++I;
1316 if (VRM->isAssignedReg(UnfoldVR))
1317 continue;
1318 // If this reference is not a use, any previous store is now dead.
1319 // Otherwise, the store to this stack slot is not dead anymore.
1320 FoldedSS = VRM->getStackSlot(UnfoldVR);
1321 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1322 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1323 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1324 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001325 continue;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001326 UnfoldPR = PhysReg;
1327 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1328 false, true);
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001329 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001330 }
1331
1332 if (!UnfoldedOpc) {
1333 if (!UnfoldVR)
1334 return false;
1335
1336 // Look for other unfolding opportunities.
1337 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
1338 RegKills, KillOps);
1339 }
1340
1341 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1342 MachineOperand &MO = MI.getOperand(i);
1343 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1344 continue;
1345 unsigned VirtReg = MO.getReg();
1346 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1347 continue;
1348 if (VRM->isAssignedReg(VirtReg)) {
1349 unsigned PhysReg = VRM->getPhys(VirtReg);
1350 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1351 return false;
1352 } else if (VRM->isReMaterialized(VirtReg))
1353 continue;
1354 int SS = VRM->getStackSlot(VirtReg);
1355 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1356 if (PhysReg) {
1357 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1358 return false;
1359 continue;
1360 }
1361 if (VRM->hasPhys(VirtReg)) {
1362 PhysReg = VRM->getPhys(VirtReg);
1363 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1364 continue;
1365 }
1366
1367 // Ok, we'll need to reload the value into a register which makes
1368 // it impossible to perform the store unfolding optimization later.
1369 // Let's see if it is possible to fold the load if the store is
1370 // unfolded. This allows us to perform the store unfolding
1371 // optimization.
1372 SmallVector<MachineInstr*, 4> NewMIs;
1373 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1374 assert(NewMIs.size() == 1);
1375 MachineInstr *NewMI = NewMIs.back();
1376 NewMIs.clear();
1377 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1378 assert(Idx != -1);
1379 SmallVector<unsigned, 1> Ops;
1380 Ops.push_back(Idx);
1381 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1382 if (FoldedMI) {
1383 VRM->addSpillSlotUse(SS, FoldedMI);
1384 if (!VRM->hasPhys(UnfoldVR))
1385 VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
1386 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1387 MII = MBB->insert(MII, FoldedMI);
1388 InvalidateKills(MI, TRI, RegKills, KillOps);
1389 VRM->RemoveMachineInstrFromMaps(&MI);
1390 MBB->erase(&MI);
1391 MF.DeleteMachineInstr(NewMI);
1392 return true;
1393 }
1394 MF.DeleteMachineInstr(NewMI);
1395 }
1396 }
1397
1398 return false;
1399}
1400
1401/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1402/// where SrcReg is r1 and it is tied to r0. Return true if after
1403/// commuting this instruction it will be r0 = op r2, r1.
1404static bool CommuteChangesDestination(MachineInstr *DefMI,
1405 const TargetInstrDesc &TID,
1406 unsigned SrcReg,
1407 const TargetInstrInfo *TII,
1408 unsigned &DstIdx) {
1409 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1410 return false;
1411 if (!DefMI->getOperand(1).isReg() ||
1412 DefMI->getOperand(1).getReg() != SrcReg)
1413 return false;
1414 unsigned DefIdx;
1415 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1416 return false;
1417 unsigned SrcIdx1, SrcIdx2;
1418 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1419 return false;
1420 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1421 DstIdx = 2;
1422 return true;
1423 }
1424 return false;
1425}
1426
1427/// CommuteToFoldReload -
1428/// Look for
1429/// r1 = load fi#1
1430/// r1 = op r1, r2<kill>
1431/// store r1, fi#1
1432///
1433/// If op is commutable and r2 is killed, then we can xform these to
1434/// r2 = op r2, fi#1
1435/// store r2, fi#1
1436bool LocalRewriter::
1437CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1438 unsigned VirtReg, unsigned SrcReg, int SS,
1439 AvailableSpills &Spills,
1440 BitVector &RegKills,
1441 std::vector<MachineOperand*> &KillOps,
1442 const TargetRegisterInfo *TRI) {
1443 if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
1444 return false;
1445
1446 MachineFunction &MF = *MBB->getParent();
1447 MachineInstr &MI = *MII;
1448 MachineBasicBlock::iterator DefMII = prior(MII);
1449 MachineInstr *DefMI = DefMII;
1450 const TargetInstrDesc &TID = DefMI->getDesc();
1451 unsigned NewDstIdx;
1452 if (DefMII != MBB->begin() &&
1453 TID.isCommutable() &&
1454 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1455 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1456 unsigned NewReg = NewDstMO.getReg();
1457 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1458 return false;
1459 MachineInstr *ReloadMI = prior(DefMII);
1460 int FrameIdx;
1461 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1462 if (DestReg != SrcReg || FrameIdx != SS)
1463 return false;
1464 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1465 if (UseIdx == -1)
1466 return false;
1467 unsigned DefIdx;
1468 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1469 return false;
1470 assert(DefMI->getOperand(DefIdx).isReg() &&
1471 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1472
1473 // Now commute def instruction.
1474 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1475 if (!CommutedMI)
1476 return false;
1477 SmallVector<unsigned, 1> Ops;
1478 Ops.push_back(NewDstIdx);
1479 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1480 // Not needed since foldMemoryOperand returns new MI.
1481 MF.DeleteMachineInstr(CommutedMI);
1482 if (!FoldedMI)
1483 return false;
1484
1485 VRM->addSpillSlotUse(SS, FoldedMI);
1486 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1487 // Insert new def MI and spill MI.
1488 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1489 TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC);
1490 MII = prior(MII);
1491 MachineInstr *StoreMI = MII;
1492 VRM->addSpillSlotUse(SS, StoreMI);
1493 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1494 MII = MBB->insert(MII, FoldedMI); // Update MII to backtrack.
1495
1496 // Delete all 3 old instructions.
1497 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1498 VRM->RemoveMachineInstrFromMaps(ReloadMI);
1499 MBB->erase(ReloadMI);
1500 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1501 VRM->RemoveMachineInstrFromMaps(DefMI);
1502 MBB->erase(DefMI);
1503 InvalidateKills(MI, TRI, RegKills, KillOps);
1504 VRM->RemoveMachineInstrFromMaps(&MI);
1505 MBB->erase(&MI);
1506
1507 // If NewReg was previously holding value of some SS, it's now clobbered.
1508 // This has to be done now because it's a physical register. When this
1509 // instruction is re-visited, it's ignored.
1510 Spills.ClobberPhysReg(NewReg);
1511
1512 ++NumCommutes;
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001513 return true;
1514 }
1515
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001516 return false;
1517}
Lang Hames87e3bca2009-05-06 02:36:21 +00001518
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001519/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1520/// the last store to the same slot is now dead. If so, remove the last store.
1521void LocalRewriter::
1522SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1523 int Idx, unsigned PhysReg, int StackSlot,
1524 const TargetRegisterClass *RC,
1525 bool isAvailable, MachineInstr *&LastStore,
1526 AvailableSpills &Spills,
1527 SmallSet<MachineInstr*, 4> &ReMatDefs,
1528 BitVector &RegKills,
1529 std::vector<MachineOperand*> &KillOps) {
Evan Chengeca24fb2009-05-12 23:07:00 +00001530
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001531 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1532 TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC);
1533 MachineInstr *StoreMI = prior(oldNextMII);
1534 VRM->addSpillSlotUse(StackSlot, StoreMI);
1535 DEBUG(dbgs() << "Store:\t" << *StoreMI);
Evan Chengeca24fb2009-05-12 23:07:00 +00001536
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001537 // If there is a dead store to this stack slot, nuke it now.
1538 if (LastStore) {
1539 DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
1540 ++NumDSE;
1541 SmallVector<unsigned, 2> KillRegs;
1542 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1543 MachineBasicBlock::iterator PrevMII = LastStore;
1544 bool CheckDef = PrevMII != MBB->begin();
1545 if (CheckDef)
1546 --PrevMII;
1547 VRM->RemoveMachineInstrFromMaps(LastStore);
1548 MBB->erase(LastStore);
1549 if (CheckDef) {
1550 // Look at defs of killed registers on the store. Mark the defs
1551 // as dead since the store has been deleted and they aren't
1552 // being reused.
1553 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1554 bool HasOtherDef = false;
1555 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
1556 MachineInstr *DeadDef = PrevMII;
1557 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1558 // FIXME: This assumes a remat def does not have side effects.
1559 VRM->RemoveMachineInstrFromMaps(DeadDef);
1560 MBB->erase(DeadDef);
1561 ++NumDRM;
1562 }
Evan Chengeca24fb2009-05-12 23:07:00 +00001563 }
Lang Hames87e3bca2009-05-06 02:36:21 +00001564 }
1565 }
1566 }
1567
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001568 // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
1569 // the last of multiple instructions is the actual store.
1570 LastStore = prior(oldNextMII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001571
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001572 // If the stack slot value was previously available in some other
1573 // register, change it now. Otherwise, make the register available,
1574 // in PhysReg.
1575 Spills.ModifyStackSlotOrReMat(StackSlot);
1576 Spills.ClobberPhysReg(PhysReg);
1577 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1578 ++NumStores;
1579}
Lang Hames87e3bca2009-05-06 02:36:21 +00001580
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001581/// isSafeToDelete - Return true if this instruction doesn't produce any side
1582/// effect and all of its defs are dead.
1583static bool isSafeToDelete(MachineInstr &MI) {
1584 const TargetInstrDesc &TID = MI.getDesc();
1585 if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1586 TID.isCall() || TID.isBarrier() || TID.isReturn() ||
1587 TID.hasUnmodeledSideEffects())
1588 return false;
1589 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1590 MachineOperand &MO = MI.getOperand(i);
1591 if (!MO.isReg() || !MO.getReg())
1592 continue;
1593 if (MO.isDef() && !MO.isDead())
1594 return false;
1595 if (MO.isUse() && MO.isKill())
1596 // FIXME: We can't remove kill markers or else the scavenger will assert.
1597 // An alternative is to add a ADD pseudo instruction to replace kill
1598 // markers.
1599 return false;
1600 }
1601 return true;
1602}
Lang Hames87e3bca2009-05-06 02:36:21 +00001603
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001604/// TransferDeadness - A identity copy definition is dead and it's being
1605/// removed. Find the last def or use and mark it as dead / kill.
1606void LocalRewriter::
1607TransferDeadness(unsigned CurDist,
1608 unsigned Reg, BitVector &RegKills,
1609 std::vector<MachineOperand*> &KillOps) {
1610 SmallPtrSet<MachineInstr*, 4> Seens;
1611 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1612 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
1613 RE = MRI->reg_end(); RI != RE; ++RI) {
1614 MachineInstr *UDMI = &*RI;
1615 if (UDMI->getParent() != MBB)
1616 continue;
1617 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1618 if (DI == DistanceMap.end() || DI->second > CurDist)
1619 continue;
1620 if (Seens.insert(UDMI))
1621 Refs.push_back(std::make_pair(UDMI, DI->second));
1622 }
Lang Hames87e3bca2009-05-06 02:36:21 +00001623
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001624 if (Refs.empty())
1625 return;
1626 std::sort(Refs.begin(), Refs.end(), RefSorter());
Lang Hames87e3bca2009-05-06 02:36:21 +00001627
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001628 while (!Refs.empty()) {
1629 MachineInstr *LastUDMI = Refs.back().first;
1630 Refs.pop_back();
Lang Hames87e3bca2009-05-06 02:36:21 +00001631
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001632 MachineOperand *LastUD = NULL;
1633 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1634 MachineOperand &MO = LastUDMI->getOperand(i);
1635 if (!MO.isReg() || MO.getReg() != Reg)
1636 continue;
1637 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1638 LastUD = &MO;
1639 if (LastUDMI->isRegTiedToDefOperand(i))
1640 break;
1641 }
1642 if (LastUD->isDef()) {
1643 // If the instruction has no side effect, delete it and propagate
1644 // backward further. Otherwise, mark is dead and we are done.
1645 if (!isSafeToDelete(*LastUDMI)) {
1646 LastUD->setIsDead();
1647 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001648 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001649 VRM->RemoveMachineInstrFromMaps(LastUDMI);
1650 MBB->erase(LastUDMI);
1651 } else {
1652 LastUD->setIsKill();
1653 RegKills.set(Reg);
1654 KillOps[Reg] = LastUD;
1655 break;
1656 }
1657 }
1658}
Lang Hames87e3bca2009-05-06 02:36:21 +00001659
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001660/// rewriteMBB - Keep track of which spills are available even after the
1661/// register allocator is done with them. If possible, avid reloading vregs.
1662void
1663LocalRewriter::RewriteMBB(LiveIntervals *LIs,
1664 AvailableSpills &Spills, BitVector &RegKills,
1665 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001666
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001667 DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
1668 << MBB->getName() << "':\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001669
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001670 MachineFunction &MF = *MBB->getParent();
David Greene2d4e6d32009-07-28 16:49:24 +00001671
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001672 // MaybeDeadStores - When we need to write a value back into a stack slot,
1673 // keep track of the inserted store. If the stack slot value is never read
1674 // (because the value was used from some available register, for example), and
1675 // subsequently stored to, the original store is dead. This map keeps track
1676 // of inserted stores that are not used. If we see a subsequent store to the
1677 // same stack slot, the original store is deleted.
1678 std::vector<MachineInstr*> MaybeDeadStores;
1679 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
David Greene2d4e6d32009-07-28 16:49:24 +00001680
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001681 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1682 SmallSet<MachineInstr*, 4> ReMatDefs;
Lang Hames87e3bca2009-05-06 02:36:21 +00001683
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001684 // Clear kill info.
1685 SmallSet<unsigned, 2> KilledMIRegs;
1686 RegKills.reset();
1687 KillOps.clear();
1688 KillOps.resize(TRI->getNumRegs(), NULL);
Lang Hames87e3bca2009-05-06 02:36:21 +00001689
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001690 unsigned Dist = 0;
1691 DistanceMap.clear();
1692 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1693 MII != E; ) {
1694 MachineBasicBlock::iterator NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001695
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001696 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1697 bool Erased = false;
1698 bool BackTracked = false;
1699 if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
1700 NextMII = llvm::next(MII);
1701
1702 MachineInstr &MI = *MII;
1703
1704 if (VRM->hasEmergencySpills(&MI)) {
1705 // Spill physical register(s) in the rare case the allocator has run out
1706 // of registers to allocate.
1707 SmallSet<int, 4> UsedSS;
1708 std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(&MI);
1709 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1710 unsigned PhysReg = EmSpills[i];
1711 const TargetRegisterClass *RC =
1712 TRI->getPhysicalRegisterRegClass(PhysReg);
1713 assert(RC && "Unable to determine register class!");
1714 int SS = VRM->getEmergencySpillSlot(RC);
1715 if (UsedSS.count(SS))
1716 llvm_unreachable("Need to spill more than one physical registers!");
1717 UsedSS.insert(SS);
1718 TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC);
1719 MachineInstr *StoreMI = prior(MII);
1720 VRM->addSpillSlotUse(SS, StoreMI);
1721
1722 // Back-schedule reloads and remats.
1723 MachineBasicBlock::iterator InsertLoc =
1724 ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false,
1725 SS, TII, MF);
1726
1727 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC);
1728
1729 MachineInstr *LoadMI = prior(InsertLoc);
1730 VRM->addSpillSlotUse(SS, LoadMI);
1731 ++NumPSpills;
1732 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1733 }
1734 NextMII = llvm::next(MII);
1735 }
1736
1737 // Insert restores here if asked to.
1738 if (VRM->isRestorePt(&MI)) {
1739 std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(&MI);
1740 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1741 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1742 if (!VRM->getPreSplitReg(VirtReg))
1743 continue; // Split interval spilled again.
1744 unsigned Phys = VRM->getPhys(VirtReg);
1745 MRI->setPhysRegUsed(Phys);
1746
1747 // Check if the value being restored if available. If so, it must be
1748 // from a predecessor BB that fallthrough into this BB. We do not
1749 // expect:
1750 // BB1:
1751 // r1 = load fi#1
1752 // ...
1753 // = r1<kill>
1754 // ... # r1 not clobbered
1755 // ...
1756 // = load fi#1
1757 bool DoReMat = VRM->isReMaterialized(VirtReg);
1758 int SSorRMId = DoReMat
1759 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1760 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1761 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1762 if (InReg == Phys) {
1763 // If the value is already available in the expected register, save
1764 // a reload / remat.
1765 if (SSorRMId)
1766 DEBUG(dbgs() << "Reusing RM#"
1767 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1768 else
1769 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1770 DEBUG(dbgs() << " from physreg "
1771 << TRI->getName(InReg) << " for vreg"
1772 << VirtReg <<" instead of reloading into physreg "
1773 << TRI->getName(Phys) << '\n');
1774 ++NumOmitted;
1775 continue;
1776 } else if (InReg && InReg != Phys) {
1777 if (SSorRMId)
1778 DEBUG(dbgs() << "Reusing RM#"
1779 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1780 else
1781 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1782 DEBUG(dbgs() << " from physreg "
1783 << TRI->getName(InReg) << " for vreg"
1784 << VirtReg <<" by copying it into physreg "
1785 << TRI->getName(Phys) << '\n');
1786
1787 // If the reloaded / remat value is available in another register,
1788 // copy it to the desired register.
Lang Hames87e3bca2009-05-06 02:36:21 +00001789
David Greene2d4e6d32009-07-28 16:49:24 +00001790 // Back-schedule reloads and remats.
1791 MachineBasicBlock::iterator InsertLoc =
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001792 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat,
David Greene2d4e6d32009-07-28 16:49:24 +00001793 SSorRMId, TII, MF);
1794
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001795 TII->copyRegToReg(*MBB, InsertLoc, Phys, InReg, RC, RC);
Lang Hames87e3bca2009-05-06 02:36:21 +00001796
1797 // This invalidates Phys.
1798 Spills.ClobberPhysReg(Phys);
1799 // Remember it's available.
1800 Spills.addAvailable(SSorRMId, Phys);
1801
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001802 // Mark is killed.
David Greene2d4e6d32009-07-28 16:49:24 +00001803 MachineInstr *CopyMI = prior(InsertLoc);
Chris Lattner45282ae2010-02-10 01:23:18 +00001804 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001805 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1806 KillOpnd->setIsKill();
Evan Cheng427a6b62009-05-15 06:48:19 +00001807 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001808
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001809 DEBUG(dbgs() << '\t' << *CopyMI);
1810 ++NumCopified;
1811 continue;
1812 }
1813
1814 // Back-schedule reloads and remats.
1815 MachineBasicBlock::iterator InsertLoc =
1816 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat,
1817 SSorRMId, TII, MF);
1818
1819 if (VRM->isReMaterialized(VirtReg)) {
1820 ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
1821 } else {
1822 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1823 TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC);
1824 MachineInstr *LoadMI = prior(InsertLoc);
1825 VRM->addSpillSlotUse(SSorRMId, LoadMI);
1826 ++NumLoads;
1827 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1828 }
1829
1830 // This invalidates Phys.
1831 Spills.ClobberPhysReg(Phys);
1832 // Remember it's available.
1833 Spills.addAvailable(SSorRMId, Phys);
1834
1835 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1836 DEBUG(dbgs() << '\t' << *prior(MII));
1837 }
1838 }
1839
1840 // Insert spills here if asked to.
1841 if (VRM->isSpillPt(&MI)) {
1842 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1843 VRM->getSpillPtSpills(&MI);
1844 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1845 unsigned VirtReg = SpillRegs[i].first;
1846 bool isKill = SpillRegs[i].second;
1847 if (!VRM->getPreSplitReg(VirtReg))
1848 continue; // Split interval spilled again.
1849 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
1850 unsigned Phys = VRM->getPhys(VirtReg);
1851 int StackSlot = VRM->getStackSlot(VirtReg);
1852 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1853 TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
1854 RC);
1855 MachineInstr *StoreMI = prior(oldNextMII);
1856 VRM->addSpillSlotUse(StackSlot, StoreMI);
1857 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1858 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1859 }
1860 NextMII = llvm::next(MII);
1861 }
1862
1863 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1864 /// reuse.
1865 ReuseInfo ReusedOperands(MI, TRI);
1866 SmallVector<unsigned, 4> VirtUseOps;
1867 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1868 MachineOperand &MO = MI.getOperand(i);
1869 if (!MO.isReg() || MO.getReg() == 0)
1870 continue; // Ignore non-register operands.
1871
1872 unsigned VirtReg = MO.getReg();
1873 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1874 // Ignore physregs for spilling, but remember that it is used by this
1875 // function.
1876 MRI->setPhysRegUsed(VirtReg);
1877 continue;
1878 }
1879
1880 // We want to process implicit virtual register uses first.
1881 if (MO.isImplicit())
1882 // If the virtual register is implicitly defined, emit a implicit_def
1883 // before so scavenger knows it's "defined".
1884 // FIXME: This is a horrible hack done the by register allocator to
1885 // remat a definition with virtual register operand.
1886 VirtUseOps.insert(VirtUseOps.begin(), i);
1887 else
1888 VirtUseOps.push_back(i);
1889 }
1890
1891 // Process all of the spilled uses and all non spilled reg references.
1892 SmallVector<int, 2> PotentialDeadStoreSlots;
1893 KilledMIRegs.clear();
1894 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1895 unsigned i = VirtUseOps[j];
1896 unsigned VirtReg = MI.getOperand(i).getReg();
1897 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1898 "Not a virtual register?");
1899
1900 unsigned SubIdx = MI.getOperand(i).getSubReg();
1901 if (VRM->isAssignedReg(VirtReg)) {
1902 // This virtual register was assigned a physreg!
1903 unsigned Phys = VRM->getPhys(VirtReg);
1904 MRI->setPhysRegUsed(Phys);
1905 if (MI.getOperand(i).isDef())
1906 ReusedOperands.markClobbered(Phys);
1907 substitutePhysReg(MI.getOperand(i), Phys, *TRI);
1908 if (VRM->isImplicitlyDefined(VirtReg))
1909 // FIXME: Is this needed?
1910 BuildMI(*MBB, &MI, MI.getDebugLoc(),
1911 TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
1912 continue;
1913 }
1914
1915 // This virtual register is now known to be a spilled value.
1916 if (!MI.getOperand(i).isUse())
1917 continue; // Handle defs in the loop below (handle use&def here though)
1918
1919 bool AvoidReload = MI.getOperand(i).isUndef();
1920 // Check if it is defined by an implicit def. It should not be spilled.
1921 // Note, this is for correctness reason. e.g.
1922 // 8 %reg1024<def> = IMPLICIT_DEF
1923 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1924 // The live range [12, 14) are not part of the r1024 live interval since
1925 // it's defined by an implicit def. It will not conflicts with live
1926 // interval of r1025. Now suppose both registers are spilled, you can
1927 // easily see a situation where both registers are reloaded before
1928 // the INSERT_SUBREG and both target registers that would overlap.
1929 bool DoReMat = VRM->isReMaterialized(VirtReg);
1930 int SSorRMId = DoReMat
1931 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1932 int ReuseSlot = SSorRMId;
1933
1934 // Check to see if this stack slot is available.
1935 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1936
1937 // If this is a sub-register use, make sure the reuse register is in the
1938 // right register class. For example, for x86 not all of the 32-bit
1939 // registers have accessible sub-registers.
1940 // Similarly so for EXTRACT_SUBREG. Consider this:
1941 // EDI = op
1942 // MOV32_mr fi#1, EDI
1943 // ...
1944 // = EXTRACT_SUBREG fi#1
1945 // fi#1 is available in EDI, but it cannot be reused because it's not in
1946 // the right register file.
1947 if (PhysReg && !AvoidReload && (SubIdx || MI.isExtractSubreg())) {
1948 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1949 if (!RC->contains(PhysReg))
1950 PhysReg = 0;
1951 }
1952
1953 if (PhysReg && !AvoidReload) {
1954 // This spilled operand might be part of a two-address operand. If this
1955 // is the case, then changing it will necessarily require changing the
1956 // def part of the instruction as well. However, in some cases, we
1957 // aren't allowed to modify the reused register. If none of these cases
1958 // apply, reuse it.
1959 bool CanReuse = true;
1960 bool isTied = MI.isRegTiedToDefOperand(i);
1961 if (isTied) {
1962 // Okay, we have a two address operand. We can reuse this physreg as
1963 // long as we are allowed to clobber the value and there isn't an
1964 // earlier def that has already clobbered the physreg.
1965 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1966 Spills.canClobberPhysReg(PhysReg);
1967 }
1968
1969 if (CanReuse) {
1970 // If this stack slot value is already available, reuse it!
1971 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1972 DEBUG(dbgs() << "Reusing RM#"
1973 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
1974 else
1975 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
1976 DEBUG(dbgs() << " from physreg "
1977 << TRI->getName(PhysReg) << " for vreg"
1978 << VirtReg <<" instead of reloading into physreg "
1979 << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
1980 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
Lang Hames87e3bca2009-05-06 02:36:21 +00001981 MI.getOperand(i).setReg(RReg);
1982 MI.getOperand(i).setSubReg(0);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001983
1984 // The only technical detail we have is that we don't know that
1985 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1986 // later in the instruction. In particular, consider 'op V1, V2'.
1987 // If V1 is available in physreg R0, we would choose to reuse it
1988 // here, instead of reloading it into the register the allocator
1989 // indicated (say R1). However, V2 might have to be reloaded
1990 // later, and it might indicate that it needs to live in R0. When
1991 // this occurs, we need to have information available that
1992 // indicates it is safe to use R1 for the reload instead of R0.
1993 //
1994 // To further complicate matters, we might conflict with an alias,
1995 // or R0 and R1 might not be compatible with each other. In this
1996 // case, we actually insert a reload for V1 in R1, ensuring that
1997 // we can get at R0 or its alias.
1998 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1999 VRM->getPhys(VirtReg), VirtReg);
2000 if (isTied)
2001 // Only mark it clobbered if this is a use&def operand.
2002 ReusedOperands.markClobbered(PhysReg);
Lang Hames87e3bca2009-05-06 02:36:21 +00002003 ++NumReused;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002004
2005 if (MI.getOperand(i).isKill() &&
2006 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
2007
2008 // The store of this spilled value is potentially dead, but we
2009 // won't know for certain until we've confirmed that the re-use
2010 // above is valid, which means waiting until the other operands
2011 // are processed. For now we just track the spill slot, we'll
2012 // remove it after the other operands are processed if valid.
2013
2014 PotentialDeadStoreSlots.push_back(ReuseSlot);
2015 }
2016
2017 // Mark is isKill if it's there no other uses of the same virtual
2018 // register and it's not a two-address operand. IsKill will be
2019 // unset if reg is reused.
2020 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
2021 MI.getOperand(i).setIsKill();
2022 KilledMIRegs.insert(VirtReg);
2023 }
2024
Lang Hames87e3bca2009-05-06 02:36:21 +00002025 continue;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002026 } // CanReuse
2027
2028 // Otherwise we have a situation where we have a two-address instruction
2029 // whose mod/ref operand needs to be reloaded. This reload is already
2030 // available in some register "PhysReg", but if we used PhysReg as the
2031 // operand to our 2-addr instruction, the instruction would modify
2032 // PhysReg. This isn't cool if something later uses PhysReg and expects
2033 // to get its initial value.
2034 //
2035 // To avoid this problem, and to avoid doing a load right after a store,
2036 // we emit a copy from PhysReg into the designated register for this
2037 // operand.
2038 unsigned DesignatedReg = VRM->getPhys(VirtReg);
2039 assert(DesignatedReg && "Must map virtreg to physreg!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002040
2041 // Note that, if we reused a register for a previous operand, the
2042 // register we want to reload into might not actually be
2043 // available. If this occurs, use the register indicated by the
2044 // reuser.
2045 if (ReusedOperands.hasReuses())
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002046 DesignatedReg = ReusedOperands.
2047 GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
2048 MaybeDeadStores, RegKills, KillOps, *VRM);
David Greene2d4e6d32009-07-28 16:49:24 +00002049
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002050 // If the mapped designated register is actually the physreg we have
2051 // incoming, we don't need to inserted a dead copy.
2052 if (DesignatedReg == PhysReg) {
2053 // If this stack slot value is already available, reuse it!
2054 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2055 DEBUG(dbgs() << "Reusing RM#"
2056 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2057 else
2058 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2059 DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
2060 << " for vreg" << VirtReg
2061 << " instead of reloading into same physreg.\n");
2062 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2063 MI.getOperand(i).setReg(RReg);
2064 MI.getOperand(i).setSubReg(0);
2065 ReusedOperands.markClobbered(RReg);
2066 ++NumReused;
2067 continue;
Lang Hames87e3bca2009-05-06 02:36:21 +00002068 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002069
2070 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2071 MRI->setPhysRegUsed(DesignatedReg);
2072 ReusedOperands.markClobbered(DesignatedReg);
2073
2074 // Back-schedule reloads and remats.
2075 MachineBasicBlock::iterator InsertLoc =
2076 ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
2077 SSorRMId, TII, MF);
2078
2079 TII->copyRegToReg(*MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
2080
2081 MachineInstr *CopyMI = prior(InsertLoc);
2082 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2083 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
2084
2085 // This invalidates DesignatedReg.
2086 Spills.ClobberPhysReg(DesignatedReg);
2087
2088 Spills.addAvailable(ReuseSlot, DesignatedReg);
2089 unsigned RReg =
2090 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
Lang Hames87e3bca2009-05-06 02:36:21 +00002091 MI.getOperand(i).setReg(RReg);
2092 MI.getOperand(i).setSubReg(0);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002093 DEBUG(dbgs() << '\t' << *prior(MII));
2094 ++NumReused;
2095 continue;
2096 } // if (PhysReg)
Lang Hames87e3bca2009-05-06 02:36:21 +00002097
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002098 // Otherwise, reload it and remember that we have it.
2099 PhysReg = VRM->getPhys(VirtReg);
2100 assert(PhysReg && "Must map virtreg to physreg!");
2101
2102 // Note that, if we reused a register for a previous operand, the
2103 // register we want to reload into might not actually be
2104 // available. If this occurs, use the register indicated by the
2105 // reuser.
2106 if (ReusedOperands.hasReuses())
2107 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2108 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2109
2110 MRI->setPhysRegUsed(PhysReg);
2111 ReusedOperands.markClobbered(PhysReg);
2112 if (AvoidReload)
2113 ++NumAvoided;
2114 else {
2115 // Back-schedule reloads and remats.
2116 MachineBasicBlock::iterator InsertLoc =
2117 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat,
2118 SSorRMId, TII, MF);
2119
2120 if (DoReMat) {
2121 ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
2122 } else {
2123 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2124 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC);
2125 MachineInstr *LoadMI = prior(InsertLoc);
2126 VRM->addSpillSlotUse(SSorRMId, LoadMI);
2127 ++NumLoads;
2128 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
2129 }
2130 // This invalidates PhysReg.
2131 Spills.ClobberPhysReg(PhysReg);
2132
2133 // Any stores to this stack slot are not dead anymore.
2134 if (!DoReMat)
2135 MaybeDeadStores[SSorRMId] = NULL;
2136 Spills.addAvailable(SSorRMId, PhysReg);
2137 // Assumes this is the last use. IsKill will be unset if reg is reused
2138 // unless it's a two-address operand.
2139 if (!MI.isRegTiedToDefOperand(i) &&
2140 KilledMIRegs.count(VirtReg) == 0) {
2141 MI.getOperand(i).setIsKill();
2142 KilledMIRegs.insert(VirtReg);
2143 }
2144
2145 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2146 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
2147 }
2148 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2149 MI.getOperand(i).setReg(RReg);
2150 MI.getOperand(i).setSubReg(0);
2151 }
2152
2153 // Ok - now we can remove stores that have been confirmed dead.
2154 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2155 // This was the last use and the spilled value is still available
2156 // for reuse. That means the spill was unnecessary!
2157 int PDSSlot = PotentialDeadStoreSlots[j];
2158 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2159 if (DeadStore) {
2160 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2161 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2162 VRM->RemoveMachineInstrFromMaps(DeadStore);
2163 MBB->erase(DeadStore);
2164 MaybeDeadStores[PDSSlot] = NULL;
2165 ++NumDSE;
2166 }
2167 }
2168
2169
2170 DEBUG(dbgs() << '\t' << MI);
2171
2172
2173 // If we have folded references to memory operands, make sure we clear all
2174 // physical registers that may contain the value of the spilled virtual
2175 // register
2176 SmallSet<int, 2> FoldedSS;
2177 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
2178 unsigned VirtReg = I->second.first;
2179 VirtRegMap::ModRef MR = I->second.second;
2180 DEBUG(dbgs() << "Folded vreg: " << VirtReg << " MR: " << MR);
2181
2182 // MI2VirtMap be can updated which invalidate the iterator.
2183 // Increment the iterator first.
2184 ++I;
2185 int SS = VRM->getStackSlot(VirtReg);
2186 if (SS == VirtRegMap::NO_STACK_SLOT)
2187 continue;
2188 FoldedSS.insert(SS);
2189 DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
2190
2191 // If this folded instruction is just a use, check to see if it's a
2192 // straight load from the virt reg slot.
2193 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2194 int FrameIdx;
2195 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2196 if (DestReg && FrameIdx == SS) {
2197 // If this spill slot is available, turn it into a copy (or nothing)
2198 // instead of leaving it as a load!
2199 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2200 DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
2201 if (DestReg != InReg) {
2202 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2203 TII->copyRegToReg(*MBB, &MI, DestReg, InReg, RC, RC);
2204 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2205 unsigned SubIdx = DefMO->getSubReg();
2206 // Revisit the copy so we make sure to notice the effects of the
2207 // operation on the destreg (either needing to RA it if it's
2208 // virtual or needing to clobber any values if it's physical).
2209 NextMII = &MI;
2210 --NextMII; // backtrack to the copy.
2211 NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2212 // Propagate the sub-register index over.
2213 if (SubIdx) {
2214 DefMO = NextMII->findRegisterDefOperand(DestReg);
2215 DefMO->setSubReg(SubIdx);
2216 }
2217
2218 // Mark is killed.
2219 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2220 KillOpnd->setIsKill();
2221
2222 BackTracked = true;
2223 } else {
2224 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2225 // Unset last kill since it's being reused.
2226 InvalidateKill(InReg, TRI, RegKills, KillOps);
2227 Spills.disallowClobberPhysReg(InReg);
2228 }
2229
2230 InvalidateKills(MI, TRI, RegKills, KillOps);
2231 VRM->RemoveMachineInstrFromMaps(&MI);
2232 MBB->erase(&MI);
2233 Erased = true;
2234 goto ProcessNextInst;
2235 }
2236 } else {
2237 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2238 SmallVector<MachineInstr*, 4> NewMIs;
2239 if (PhysReg &&
2240 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2241 MBB->insert(MII, NewMIs[0]);
2242 InvalidateKills(MI, TRI, RegKills, KillOps);
2243 VRM->RemoveMachineInstrFromMaps(&MI);
2244 MBB->erase(&MI);
2245 Erased = true;
2246 --NextMII; // backtrack to the unfolded instruction.
2247 BackTracked = true;
2248 goto ProcessNextInst;
2249 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002250 }
2251 }
2252
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002253 // If this reference is not a use, any previous store is now dead.
2254 // Otherwise, the store to this stack slot is not dead anymore.
2255 MachineInstr* DeadStore = MaybeDeadStores[SS];
2256 if (DeadStore) {
2257 bool isDead = !(MR & VirtRegMap::isRef);
2258 MachineInstr *NewStore = NULL;
2259 if (MR & VirtRegMap::isModRef) {
2260 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2261 SmallVector<MachineInstr*, 4> NewMIs;
2262 // We can reuse this physreg as long as we are allowed to clobber
2263 // the value and there isn't an earlier def that has already clobbered
2264 // the physreg.
2265 if (PhysReg &&
2266 !ReusedOperands.isClobbered(PhysReg) &&
2267 Spills.canClobberPhysReg(PhysReg) &&
2268 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2269 MachineOperand *KillOpnd =
2270 DeadStore->findRegisterUseOperand(PhysReg, true);
2271 // Note, if the store is storing a sub-register, it's possible the
2272 // super-register is needed below.
2273 if (KillOpnd && !KillOpnd->getSubReg() &&
2274 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2275 MBB->insert(MII, NewMIs[0]);
2276 NewStore = NewMIs[1];
2277 MBB->insert(MII, NewStore);
2278 VRM->addSpillSlotUse(SS, NewStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002279 InvalidateKills(MI, TRI, RegKills, KillOps);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002280 VRM->RemoveMachineInstrFromMaps(&MI);
2281 MBB->erase(&MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002282 Erased = true;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002283 --NextMII;
Lang Hames87e3bca2009-05-06 02:36:21 +00002284 --NextMII; // backtrack to the unfolded instruction.
2285 BackTracked = true;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002286 isDead = true;
2287 ++NumSUnfold;
2288 }
2289 }
2290 }
2291
2292 if (isDead) { // Previous store is dead.
2293 // If we get here, the store is dead, nuke it now.
2294 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2295 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2296 VRM->RemoveMachineInstrFromMaps(DeadStore);
2297 MBB->erase(DeadStore);
2298 if (!NewStore)
2299 ++NumDSE;
2300 }
2301
2302 MaybeDeadStores[SS] = NULL;
2303 if (NewStore) {
2304 // Treat this store as a spill merged into a copy. That makes the
2305 // stack slot value available.
2306 VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2307 goto ProcessNextInst;
2308 }
2309 }
2310
2311 // If the spill slot value is available, and this is a new definition of
2312 // the value, the value is not available anymore.
2313 if (MR & VirtRegMap::isMod) {
2314 // Notice that the value in this stack slot has been modified.
2315 Spills.ModifyStackSlotOrReMat(SS);
2316
2317 // If this is *just* a mod of the value, check to see if this is just a
2318 // store to the spill slot (i.e. the spill got merged into the copy). If
2319 // so, realize that the vreg is available now, and add the store to the
2320 // MaybeDeadStore info.
2321 int StackSlot;
2322 if (!(MR & VirtRegMap::isRef)) {
2323 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2324 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2325 "Src hasn't been allocated yet?");
2326
2327 if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
2328 Spills, RegKills, KillOps, TRI)) {
2329 NextMII = llvm::next(MII);
2330 BackTracked = true;
Lang Hames87e3bca2009-05-06 02:36:21 +00002331 goto ProcessNextInst;
2332 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002333
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002334 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2335 // this as a potentially dead store in case there is a subsequent
2336 // store into the stack slot without a read from it.
2337 MaybeDeadStores[StackSlot] = &MI;
Lang Hames87e3bca2009-05-06 02:36:21 +00002338
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002339 // If the stack slot value was previously available in some other
2340 // register, change it now. Otherwise, make the register
2341 // available in PhysReg.
2342 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
Lang Hames87e3bca2009-05-06 02:36:21 +00002343 }
2344 }
2345 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002346 }
2347
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002348 // Process all of the spilled defs.
2349 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2350 MachineOperand &MO = MI.getOperand(i);
2351 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2352 continue;
Lang Hames87e3bca2009-05-06 02:36:21 +00002353
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002354 unsigned VirtReg = MO.getReg();
2355 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2356 // Check to see if this is a noop copy. If so, eliminate the
2357 // instruction before considering the dest reg to be changed.
2358 // Also check if it's copying from an "undef", if so, we can't
2359 // eliminate this or else the undef marker is lost and it will
2360 // confuses the scavenger. This is extremely rare.
2361 unsigned Src, Dst, SrcSR, DstSR;
2362 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2363 !MI.findRegisterUseOperand(Src)->isUndef()) {
2364 ++NumDCE;
2365 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2366 SmallVector<unsigned, 2> KillRegs;
2367 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2368 if (MO.isDead() && !KillRegs.empty()) {
2369 // Source register or an implicit super/sub-register use is killed.
2370 assert(KillRegs[0] == Dst ||
2371 TRI->isSubRegister(KillRegs[0], Dst) ||
2372 TRI->isSuperRegister(KillRegs[0], Dst));
2373 // Last def is now dead.
2374 TransferDeadness(Dist, Src, RegKills, KillOps);
2375 }
2376 VRM->RemoveMachineInstrFromMaps(&MI);
2377 MBB->erase(&MI);
2378 Erased = true;
2379 Spills.disallowClobberPhysReg(VirtReg);
2380 goto ProcessNextInst;
2381 }
2382
2383 // If it's not a no-op copy, it clobbers the value in the destreg.
2384 Spills.ClobberPhysReg(VirtReg);
2385 ReusedOperands.markClobbered(VirtReg);
2386
2387 // Check to see if this instruction is a load from a stack slot into
2388 // a register. If so, this provides the stack slot value in the reg.
2389 int FrameIdx;
2390 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2391 assert(DestReg == VirtReg && "Unknown load situation!");
2392
2393 // If it is a folded reference, then it's not safe to clobber.
2394 bool Folded = FoldedSS.count(FrameIdx);
2395 // Otherwise, if it wasn't available, remember that it is now!
2396 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2397 goto ProcessNextInst;
2398 }
2399
2400 continue;
2401 }
2402
2403 unsigned SubIdx = MO.getSubReg();
2404 bool DoReMat = VRM->isReMaterialized(VirtReg);
2405 if (DoReMat)
2406 ReMatDefs.insert(&MI);
2407
2408 // The only vregs left are stack slot definitions.
2409 int StackSlot = VRM->getStackSlot(VirtReg);
2410 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2411
2412 // If this def is part of a two-address operand, make sure to execute
2413 // the store from the correct physical register.
2414 unsigned PhysReg;
2415 unsigned TiedOp;
2416 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2417 PhysReg = MI.getOperand(TiedOp).getReg();
2418 if (SubIdx) {
2419 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2420 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2421 "Can't find corresponding super-register!");
2422 PhysReg = SuperReg;
2423 }
2424 } else {
2425 PhysReg = VRM->getPhys(VirtReg);
2426 if (ReusedOperands.isClobbered(PhysReg)) {
2427 // Another def has taken the assigned physreg. It must have been a
2428 // use&def which got it due to reuse. Undo the reuse!
2429 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2430 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2431 }
2432 }
2433
2434 assert(PhysReg && "VR not assigned a physical register?");
2435 MRI->setPhysRegUsed(PhysReg);
2436 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2437 ReusedOperands.markClobbered(RReg);
2438 MI.getOperand(i).setReg(RReg);
2439 MI.getOperand(i).setSubReg(0);
2440
2441 if (!MO.isDead()) {
2442 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2443 SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
2444 LastStore, Spills, ReMatDefs, RegKills, KillOps);
2445 NextMII = llvm::next(MII);
2446
2447 // Check to see if this is a noop copy. If so, eliminate the
2448 // instruction before considering the dest reg to be changed.
2449 {
2450 unsigned Src, Dst, SrcSR, DstSR;
2451 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2452 ++NumDCE;
2453 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2454 InvalidateKills(MI, TRI, RegKills, KillOps);
2455 VRM->RemoveMachineInstrFromMaps(&MI);
2456 MBB->erase(&MI);
2457 Erased = true;
2458 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2459 goto ProcessNextInst;
2460 }
2461 }
2462 }
2463 }
2464 ProcessNextInst:
2465 // Delete dead instructions without side effects.
2466 if (!Erased && !BackTracked && isSafeToDelete(MI)) {
2467 InvalidateKills(MI, TRI, RegKills, KillOps);
2468 VRM->RemoveMachineInstrFromMaps(&MI);
2469 MBB->erase(&MI);
2470 Erased = true;
2471 }
2472 if (!Erased)
2473 DistanceMap.insert(std::make_pair(&MI, Dist++));
2474 if (!Erased && !BackTracked) {
2475 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2476 UpdateKills(*II, TRI, RegKills, KillOps);
2477 }
2478 MII = NextMII;
2479 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002480
Dan Gohman7db949d2009-08-07 01:32:21 +00002481}
2482
Lang Hames87e3bca2009-05-06 02:36:21 +00002483llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2484 switch (RewriterOpt) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002485 default: llvm_unreachable("Unreachable!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002486 case local:
2487 return new LocalRewriter();
Lang Hamesf41538d2009-06-02 16:53:25 +00002488 case trivial:
2489 return new TrivialRewriter();
Lang Hames87e3bca2009-05-06 02:36:21 +00002490 }
2491}