blob: 2cf74c2824f1572f0bc9e3dc5a7de41d7be5ce05 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chandler Carruthc0470a82007-07-20 19:34:37 +0000194 <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
195 <ol>
196 <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
201 </ol>
202 </li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000203 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
204 <ol>
205 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
206 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
207 </ol>
208 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000209 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000211 <li><a href="#int_var_annotation">
212 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
213 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 </li>
215 </ol>
216 </li>
217</ol>
218
219<div class="doc_author">
220 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
221 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
222</div>
223
224<!-- *********************************************************************** -->
225<div class="doc_section"> <a name="abstract">Abstract </a></div>
226<!-- *********************************************************************** -->
227
228<div class="doc_text">
229<p>This document is a reference manual for the LLVM assembly language.
230LLVM is an SSA based representation that provides type safety,
231low-level operations, flexibility, and the capability of representing
232'all' high-level languages cleanly. It is the common code
233representation used throughout all phases of the LLVM compilation
234strategy.</p>
235</div>
236
237<!-- *********************************************************************** -->
238<div class="doc_section"> <a name="introduction">Introduction</a> </div>
239<!-- *********************************************************************** -->
240
241<div class="doc_text">
242
243<p>The LLVM code representation is designed to be used in three
244different forms: as an in-memory compiler IR, as an on-disk bitcode
245representation (suitable for fast loading by a Just-In-Time compiler),
246and as a human readable assembly language representation. This allows
247LLVM to provide a powerful intermediate representation for efficient
248compiler transformations and analysis, while providing a natural means
249to debug and visualize the transformations. The three different forms
250of LLVM are all equivalent. This document describes the human readable
251representation and notation.</p>
252
253<p>The LLVM representation aims to be light-weight and low-level
254while being expressive, typed, and extensible at the same time. It
255aims to be a "universal IR" of sorts, by being at a low enough level
256that high-level ideas may be cleanly mapped to it (similar to how
257microprocessors are "universal IR's", allowing many source languages to
258be mapped to them). By providing type information, LLVM can be used as
259the target of optimizations: for example, through pointer analysis, it
260can be proven that a C automatic variable is never accessed outside of
261the current function... allowing it to be promoted to a simple SSA
262value instead of a memory location.</p>
263
264</div>
265
266<!-- _______________________________________________________________________ -->
267<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
268
269<div class="doc_text">
270
271<p>It is important to note that this document describes 'well formed'
272LLVM assembly language. There is a difference between what the parser
273accepts and what is considered 'well formed'. For example, the
274following instruction is syntactically okay, but not well formed:</p>
275
276<div class="doc_code">
277<pre>
278%x = <a href="#i_add">add</a> i32 1, %x
279</pre>
280</div>
281
282<p>...because the definition of <tt>%x</tt> does not dominate all of
283its uses. The LLVM infrastructure provides a verification pass that may
284be used to verify that an LLVM module is well formed. This pass is
285automatically run by the parser after parsing input assembly and by
286the optimizer before it outputs bitcode. The violations pointed out
287by the verifier pass indicate bugs in transformation passes or input to
288the parser.</p>
289</div>
290
Reid Spencerb043f672007-07-20 19:59:11 +0000291<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292
293<!-- *********************************************************************** -->
294<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
295<!-- *********************************************************************** -->
296
297<div class="doc_text">
298
299<p>LLVM uses three different forms of identifiers, for different
300purposes:</p>
301
302<ol>
303 <li>Named values are represented as a string of characters with a '%' prefix.
304 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
305 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
306 Identifiers which require other characters in their names can be surrounded
307 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
308 in a name.</li>
309
310 <li>Unnamed values are represented as an unsigned numeric value with a '%'
311 prefix. For example, %12, %2, %44.</li>
312
313 <li>Constants, which are described in a <a href="#constants">section about
314 constants</a>, below.</li>
315</ol>
316
317<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
318don't need to worry about name clashes with reserved words, and the set of
319reserved words may be expanded in the future without penalty. Additionally,
320unnamed identifiers allow a compiler to quickly come up with a temporary
321variable without having to avoid symbol table conflicts.</p>
322
323<p>Reserved words in LLVM are very similar to reserved words in other
324languages. There are keywords for different opcodes
325('<tt><a href="#i_add">add</a></tt>',
326 '<tt><a href="#i_bitcast">bitcast</a></tt>',
327 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
328href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
329and others. These reserved words cannot conflict with variable names, because
330none of them start with a '%' character.</p>
331
332<p>Here is an example of LLVM code to multiply the integer variable
333'<tt>%X</tt>' by 8:</p>
334
335<p>The easy way:</p>
336
337<div class="doc_code">
338<pre>
339%result = <a href="#i_mul">mul</a> i32 %X, 8
340</pre>
341</div>
342
343<p>After strength reduction:</p>
344
345<div class="doc_code">
346<pre>
347%result = <a href="#i_shl">shl</a> i32 %X, i8 3
348</pre>
349</div>
350
351<p>And the hard way:</p>
352
353<div class="doc_code">
354<pre>
355<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
356<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
357%result = <a href="#i_add">add</a> i32 %1, %1
358</pre>
359</div>
360
361<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
362important lexical features of LLVM:</p>
363
364<ol>
365
366 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
367 line.</li>
368
369 <li>Unnamed temporaries are created when the result of a computation is not
370 assigned to a named value.</li>
371
372 <li>Unnamed temporaries are numbered sequentially</li>
373
374</ol>
375
376<p>...and it also shows a convention that we follow in this document. When
377demonstrating instructions, we will follow an instruction with a comment that
378defines the type and name of value produced. Comments are shown in italic
379text.</p>
380
381</div>
382
383<!-- *********************************************************************** -->
384<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
385<!-- *********************************************************************** -->
386
387<!-- ======================================================================= -->
388<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
389</div>
390
391<div class="doc_text">
392
393<p>LLVM programs are composed of "Module"s, each of which is a
394translation unit of the input programs. Each module consists of
395functions, global variables, and symbol table entries. Modules may be
396combined together with the LLVM linker, which merges function (and
397global variable) definitions, resolves forward declarations, and merges
398symbol table entries. Here is an example of the "hello world" module:</p>
399
400<div class="doc_code">
401<pre><i>; Declare the string constant as a global constant...</i>
402<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
403 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
404
405<i>; External declaration of the puts function</i>
406<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
407
408<i>; Definition of main function</i>
409define i32 @main() { <i>; i32()* </i>
410 <i>; Convert [13x i8 ]* to i8 *...</i>
411 %cast210 = <a
412 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
413
414 <i>; Call puts function to write out the string to stdout...</i>
415 <a
416 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
417 <a
418 href="#i_ret">ret</a> i32 0<br>}<br>
419</pre>
420</div>
421
422<p>This example is made up of a <a href="#globalvars">global variable</a>
423named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
424function, and a <a href="#functionstructure">function definition</a>
425for "<tt>main</tt>".</p>
426
427<p>In general, a module is made up of a list of global values,
428where both functions and global variables are global values. Global values are
429represented by a pointer to a memory location (in this case, a pointer to an
430array of char, and a pointer to a function), and have one of the following <a
431href="#linkage">linkage types</a>.</p>
432
433</div>
434
435<!-- ======================================================================= -->
436<div class="doc_subsection">
437 <a name="linkage">Linkage Types</a>
438</div>
439
440<div class="doc_text">
441
442<p>
443All Global Variables and Functions have one of the following types of linkage:
444</p>
445
446<dl>
447
448 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
449
450 <dd>Global values with internal linkage are only directly accessible by
451 objects in the current module. In particular, linking code into a module with
452 an internal global value may cause the internal to be renamed as necessary to
453 avoid collisions. Because the symbol is internal to the module, all
454 references can be updated. This corresponds to the notion of the
455 '<tt>static</tt>' keyword in C.
456 </dd>
457
458 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
459
460 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
461 the same name when linkage occurs. This is typically used to implement
462 inline functions, templates, or other code which must be generated in each
463 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
464 allowed to be discarded.
465 </dd>
466
467 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
468
469 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
470 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
471 used for globals that may be emitted in multiple translation units, but that
472 are not guaranteed to be emitted into every translation unit that uses them.
473 One example of this are common globals in C, such as "<tt>int X;</tt>" at
474 global scope.
475 </dd>
476
477 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
478
479 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
480 pointer to array type. When two global variables with appending linkage are
481 linked together, the two global arrays are appended together. This is the
482 LLVM, typesafe, equivalent of having the system linker append together
483 "sections" with identical names when .o files are linked.
484 </dd>
485
486 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
487 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
488 until linked, if not linked, the symbol becomes null instead of being an
489 undefined reference.
490 </dd>
491
492 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
493
494 <dd>If none of the above identifiers are used, the global is externally
495 visible, meaning that it participates in linkage and can be used to resolve
496 external symbol references.
497 </dd>
498</dl>
499
500 <p>
501 The next two types of linkage are targeted for Microsoft Windows platform
502 only. They are designed to support importing (exporting) symbols from (to)
503 DLLs.
504 </p>
505
506 <dl>
507 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
508
509 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
510 or variable via a global pointer to a pointer that is set up by the DLL
511 exporting the symbol. On Microsoft Windows targets, the pointer name is
512 formed by combining <code>_imp__</code> and the function or variable name.
513 </dd>
514
515 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
516
517 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
518 pointer to a pointer in a DLL, so that it can be referenced with the
519 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
520 name is formed by combining <code>_imp__</code> and the function or variable
521 name.
522 </dd>
523
524</dl>
525
526<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
527variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
528variable and was linked with this one, one of the two would be renamed,
529preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
530external (i.e., lacking any linkage declarations), they are accessible
531outside of the current module.</p>
532<p>It is illegal for a function <i>declaration</i>
533to have any linkage type other than "externally visible", <tt>dllimport</tt>,
534or <tt>extern_weak</tt>.</p>
535<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
536linkages.
537</div>
538
539<!-- ======================================================================= -->
540<div class="doc_subsection">
541 <a name="callingconv">Calling Conventions</a>
542</div>
543
544<div class="doc_text">
545
546<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
547and <a href="#i_invoke">invokes</a> can all have an optional calling convention
548specified for the call. The calling convention of any pair of dynamic
549caller/callee must match, or the behavior of the program is undefined. The
550following calling conventions are supported by LLVM, and more may be added in
551the future:</p>
552
553<dl>
554 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
555
556 <dd>This calling convention (the default if no other calling convention is
557 specified) matches the target C calling conventions. This calling convention
558 supports varargs function calls and tolerates some mismatch in the declared
559 prototype and implemented declaration of the function (as does normal C).
560 </dd>
561
562 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
563
564 <dd>This calling convention attempts to make calls as fast as possible
565 (e.g. by passing things in registers). This calling convention allows the
566 target to use whatever tricks it wants to produce fast code for the target,
567 without having to conform to an externally specified ABI. Implementations of
568 this convention should allow arbitrary tail call optimization to be supported.
569 This calling convention does not support varargs and requires the prototype of
570 all callees to exactly match the prototype of the function definition.
571 </dd>
572
573 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
574
575 <dd>This calling convention attempts to make code in the caller as efficient
576 as possible under the assumption that the call is not commonly executed. As
577 such, these calls often preserve all registers so that the call does not break
578 any live ranges in the caller side. This calling convention does not support
579 varargs and requires the prototype of all callees to exactly match the
580 prototype of the function definition.
581 </dd>
582
583 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
584
585 <dd>Any calling convention may be specified by number, allowing
586 target-specific calling conventions to be used. Target specific calling
587 conventions start at 64.
588 </dd>
589</dl>
590
591<p>More calling conventions can be added/defined on an as-needed basis, to
592support pascal conventions or any other well-known target-independent
593convention.</p>
594
595</div>
596
597<!-- ======================================================================= -->
598<div class="doc_subsection">
599 <a name="visibility">Visibility Styles</a>
600</div>
601
602<div class="doc_text">
603
604<p>
605All Global Variables and Functions have one of the following visibility styles:
606</p>
607
608<dl>
609 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
610
611 <dd>On ELF, default visibility means that the declaration is visible to other
612 modules and, in shared libraries, means that the declared entity may be
613 overridden. On Darwin, default visibility means that the declaration is
614 visible to other modules. Default visibility corresponds to "external
615 linkage" in the language.
616 </dd>
617
618 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
619
620 <dd>Two declarations of an object with hidden visibility refer to the same
621 object if they are in the same shared object. Usually, hidden visibility
622 indicates that the symbol will not be placed into the dynamic symbol table,
623 so no other module (executable or shared library) can reference it
624 directly.
625 </dd>
626
627 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
628
629 <dd>On ELF, protected visibility indicates that the symbol will be placed in
630 the dynamic symbol table, but that references within the defining module will
631 bind to the local symbol. That is, the symbol cannot be overridden by another
632 module.
633 </dd>
634</dl>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
640 <a name="globalvars">Global Variables</a>
641</div>
642
643<div class="doc_text">
644
645<p>Global variables define regions of memory allocated at compilation time
646instead of run-time. Global variables may optionally be initialized, may have
647an explicit section to be placed in, and may have an optional explicit alignment
648specified. A variable may be defined as "thread_local", which means that it
649will not be shared by threads (each thread will have a separated copy of the
650variable). A variable may be defined as a global "constant," which indicates
651that the contents of the variable will <b>never</b> be modified (enabling better
652optimization, allowing the global data to be placed in the read-only section of
653an executable, etc). Note that variables that need runtime initialization
654cannot be marked "constant" as there is a store to the variable.</p>
655
656<p>
657LLVM explicitly allows <em>declarations</em> of global variables to be marked
658constant, even if the final definition of the global is not. This capability
659can be used to enable slightly better optimization of the program, but requires
660the language definition to guarantee that optimizations based on the
661'constantness' are valid for the translation units that do not include the
662definition.
663</p>
664
665<p>As SSA values, global variables define pointer values that are in
666scope (i.e. they dominate) all basic blocks in the program. Global
667variables always define a pointer to their "content" type because they
668describe a region of memory, and all memory objects in LLVM are
669accessed through pointers.</p>
670
671<p>LLVM allows an explicit section to be specified for globals. If the target
672supports it, it will emit globals to the section specified.</p>
673
674<p>An explicit alignment may be specified for a global. If not present, or if
675the alignment is set to zero, the alignment of the global is set by the target
676to whatever it feels convenient. If an explicit alignment is specified, the
677global is forced to have at least that much alignment. All alignments must be
678a power of 2.</p>
679
680<p>For example, the following defines a global with an initializer, section,
681 and alignment:</p>
682
683<div class="doc_code">
684<pre>
685@G = constant float 1.0, section "foo", align 4
686</pre>
687</div>
688
689</div>
690
691
692<!-- ======================================================================= -->
693<div class="doc_subsection">
694 <a name="functionstructure">Functions</a>
695</div>
696
697<div class="doc_text">
698
699<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
700an optional <a href="#linkage">linkage type</a>, an optional
701<a href="#visibility">visibility style</a>, an optional
702<a href="#callingconv">calling convention</a>, a return type, an optional
703<a href="#paramattrs">parameter attribute</a> for the return type, a function
704name, a (possibly empty) argument list (each with optional
705<a href="#paramattrs">parameter attributes</a>), an optional section, an
706optional alignment, an opening curly brace, a list of basic blocks, and a
707closing curly brace.
708
709LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
710optional <a href="#linkage">linkage type</a>, an optional
711<a href="#visibility">visibility style</a>, an optional
712<a href="#callingconv">calling convention</a>, a return type, an optional
713<a href="#paramattrs">parameter attribute</a> for the return type, a function
714name, a possibly empty list of arguments, and an optional alignment.</p>
715
716<p>A function definition contains a list of basic blocks, forming the CFG for
717the function. Each basic block may optionally start with a label (giving the
718basic block a symbol table entry), contains a list of instructions, and ends
719with a <a href="#terminators">terminator</a> instruction (such as a branch or
720function return).</p>
721
722<p>The first basic block in a function is special in two ways: it is immediately
723executed on entrance to the function, and it is not allowed to have predecessor
724basic blocks (i.e. there can not be any branches to the entry block of a
725function). Because the block can have no predecessors, it also cannot have any
726<a href="#i_phi">PHI nodes</a>.</p>
727
728<p>LLVM allows an explicit section to be specified for functions. If the target
729supports it, it will emit functions to the section specified.</p>
730
731<p>An explicit alignment may be specified for a function. If not present, or if
732the alignment is set to zero, the alignment of the function is set by the target
733to whatever it feels convenient. If an explicit alignment is specified, the
734function is forced to have at least that much alignment. All alignments must be
735a power of 2.</p>
736
737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="aliasstructure">Aliases</a>
743</div>
744<div class="doc_text">
745 <p>Aliases act as "second name" for the aliasee value (which can be either
746 function or global variable or bitcast of global value). Aliases may have an
747 optional <a href="#linkage">linkage type</a>, and an
748 optional <a href="#visibility">visibility style</a>.</p>
749
750 <h5>Syntax:</h5>
751
752<div class="doc_code">
753<pre>
754@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
755</pre>
756</div>
757
758</div>
759
760
761
762<!-- ======================================================================= -->
763<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
764<div class="doc_text">
765 <p>The return type and each parameter of a function type may have a set of
766 <i>parameter attributes</i> associated with them. Parameter attributes are
767 used to communicate additional information about the result or parameters of
768 a function. Parameter attributes are considered to be part of the function
769 type so two functions types that differ only by the parameter attributes
770 are different function types.</p>
771
772 <p>Parameter attributes are simple keywords that follow the type specified. If
773 multiple parameter attributes are needed, they are space separated. For
774 example:</p>
775
776<div class="doc_code">
777<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000778%someFunc = i16 (i8 signext %someParam) zeroext
779%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000780</pre>
781</div>
782
783 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000784 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
785 the second). Also note that the attribute for the function result
786 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787
788 <p>Currently, only the following parameter attributes are defined:</p>
789 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000790 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 <dd>This indicates that the parameter should be zero extended just before
792 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000793 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000794 <dd>This indicates that the parameter should be sign extended just before
795 a call to this function.</dd>
796 <dt><tt>inreg</tt></dt>
797 <dd>This indicates that the parameter should be placed in register (if
798 possible) during assembling function call. Support for this attribute is
799 target-specific</dd>
800 <dt><tt>sret</tt></dt>
801 <dd>This indicates that the parameter specifies the address of a structure
802 that is the return value of the function in the source program.</dd>
803 <dt><tt>noalias</tt></dt>
804 <dd>This indicates that the parameter not alias any other object or any
805 other "noalias" objects during the function call.
806 <dt><tt>noreturn</tt></dt>
807 <dd>This function attribute indicates that the function never returns. This
808 indicates to LLVM that every call to this function should be treated as if
809 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
810 <dt><tt>nounwind</tt></dt>
811 <dd>This function attribute indicates that the function type does not use
812 the unwind instruction and does not allow stack unwinding to propagate
813 through it.</dd>
814 </dl>
815
816</div>
817
818<!-- ======================================================================= -->
819<div class="doc_subsection">
820 <a name="moduleasm">Module-Level Inline Assembly</a>
821</div>
822
823<div class="doc_text">
824<p>
825Modules may contain "module-level inline asm" blocks, which corresponds to the
826GCC "file scope inline asm" blocks. These blocks are internally concatenated by
827LLVM and treated as a single unit, but may be separated in the .ll file if
828desired. The syntax is very simple:
829</p>
830
831<div class="doc_code">
832<pre>
833module asm "inline asm code goes here"
834module asm "more can go here"
835</pre>
836</div>
837
838<p>The strings can contain any character by escaping non-printable characters.
839 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
840 for the number.
841</p>
842
843<p>
844 The inline asm code is simply printed to the machine code .s file when
845 assembly code is generated.
846</p>
847</div>
848
849<!-- ======================================================================= -->
850<div class="doc_subsection">
851 <a name="datalayout">Data Layout</a>
852</div>
853
854<div class="doc_text">
855<p>A module may specify a target specific data layout string that specifies how
856data is to be laid out in memory. The syntax for the data layout is simply:</p>
857<pre> target datalayout = "<i>layout specification</i>"</pre>
858<p>The <i>layout specification</i> consists of a list of specifications
859separated by the minus sign character ('-'). Each specification starts with a
860letter and may include other information after the letter to define some
861aspect of the data layout. The specifications accepted are as follows: </p>
862<dl>
863 <dt><tt>E</tt></dt>
864 <dd>Specifies that the target lays out data in big-endian form. That is, the
865 bits with the most significance have the lowest address location.</dd>
866 <dt><tt>e</tt></dt>
867 <dd>Specifies that hte target lays out data in little-endian form. That is,
868 the bits with the least significance have the lowest address location.</dd>
869 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
870 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
871 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
872 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
873 too.</dd>
874 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
875 <dd>This specifies the alignment for an integer type of a given bit
876 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
877 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
878 <dd>This specifies the alignment for a vector type of a given bit
879 <i>size</i>.</dd>
880 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
881 <dd>This specifies the alignment for a floating point type of a given bit
882 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
883 (double).</dd>
884 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
885 <dd>This specifies the alignment for an aggregate type of a given bit
886 <i>size</i>.</dd>
887</dl>
888<p>When constructing the data layout for a given target, LLVM starts with a
889default set of specifications which are then (possibly) overriden by the
890specifications in the <tt>datalayout</tt> keyword. The default specifications
891are given in this list:</p>
892<ul>
893 <li><tt>E</tt> - big endian</li>
894 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
895 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
896 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
897 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
898 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
899 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
900 alignment of 64-bits</li>
901 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
902 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
903 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
904 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
905 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
906</ul>
907<p>When llvm is determining the alignment for a given type, it uses the
908following rules:
909<ol>
910 <li>If the type sought is an exact match for one of the specifications, that
911 specification is used.</li>
912 <li>If no match is found, and the type sought is an integer type, then the
913 smallest integer type that is larger than the bitwidth of the sought type is
914 used. If none of the specifications are larger than the bitwidth then the the
915 largest integer type is used. For example, given the default specifications
916 above, the i7 type will use the alignment of i8 (next largest) while both
917 i65 and i256 will use the alignment of i64 (largest specified).</li>
918 <li>If no match is found, and the type sought is a vector type, then the
919 largest vector type that is smaller than the sought vector type will be used
920 as a fall back. This happens because <128 x double> can be implemented in
921 terms of 64 <2 x double>, for example.</li>
922</ol>
923</div>
924
925<!-- *********************************************************************** -->
926<div class="doc_section"> <a name="typesystem">Type System</a> </div>
927<!-- *********************************************************************** -->
928
929<div class="doc_text">
930
931<p>The LLVM type system is one of the most important features of the
932intermediate representation. Being typed enables a number of
933optimizations to be performed on the IR directly, without having to do
934extra analyses on the side before the transformation. A strong type
935system makes it easier to read the generated code and enables novel
936analyses and transformations that are not feasible to perform on normal
937three address code representations.</p>
938
939</div>
940
941<!-- ======================================================================= -->
942<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
943<div class="doc_text">
944<p>The primitive types are the fundamental building blocks of the LLVM
945system. The current set of primitive types is as follows:</p>
946
947<table class="layout">
948 <tr class="layout">
949 <td class="left">
950 <table>
951 <tbody>
952 <tr><th>Type</th><th>Description</th></tr>
953 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
954 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
955 </tbody>
956 </table>
957 </td>
958 <td class="right">
959 <table>
960 <tbody>
961 <tr><th>Type</th><th>Description</th></tr>
962 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
963 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
964 </tbody>
965 </table>
966 </td>
967 </tr>
968</table>
969</div>
970
971<!-- _______________________________________________________________________ -->
972<div class="doc_subsubsection"> <a name="t_classifications">Type
973Classifications</a> </div>
974<div class="doc_text">
975<p>These different primitive types fall into a few useful
976classifications:</p>
977
978<table border="1" cellspacing="0" cellpadding="4">
979 <tbody>
980 <tr><th>Classification</th><th>Types</th></tr>
981 <tr>
982 <td><a name="t_integer">integer</a></td>
983 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
984 </tr>
985 <tr>
986 <td><a name="t_floating">floating point</a></td>
987 <td><tt>float, double</tt></td>
988 </tr>
989 <tr>
990 <td><a name="t_firstclass">first class</a></td>
991 <td><tt>i1, ..., float, double, <br/>
992 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
993 </td>
994 </tr>
995 </tbody>
996</table>
997
998<p>The <a href="#t_firstclass">first class</a> types are perhaps the
999most important. Values of these types are the only ones which can be
1000produced by instructions, passed as arguments, or used as operands to
1001instructions. This means that all structures and arrays must be
1002manipulated either by pointer or by component.</p>
1003</div>
1004
1005<!-- ======================================================================= -->
1006<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1007
1008<div class="doc_text">
1009
1010<p>The real power in LLVM comes from the derived types in the system.
1011This is what allows a programmer to represent arrays, functions,
1012pointers, and other useful types. Note that these derived types may be
1013recursive: For example, it is possible to have a two dimensional array.</p>
1014
1015</div>
1016
1017<!-- _______________________________________________________________________ -->
1018<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1019
1020<div class="doc_text">
1021
1022<h5>Overview:</h5>
1023<p>The integer type is a very simple derived type that simply specifies an
1024arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10252^23-1 (about 8 million) can be specified.</p>
1026
1027<h5>Syntax:</h5>
1028
1029<pre>
1030 iN
1031</pre>
1032
1033<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1034value.</p>
1035
1036<h5>Examples:</h5>
1037<table class="layout">
1038 <tr class="layout">
1039 <td class="left">
1040 <tt>i1</tt><br/>
1041 <tt>i4</tt><br/>
1042 <tt>i8</tt><br/>
1043 <tt>i16</tt><br/>
1044 <tt>i32</tt><br/>
1045 <tt>i42</tt><br/>
1046 <tt>i64</tt><br/>
1047 <tt>i1942652</tt><br/>
1048 </td>
1049 <td class="left">
1050 A boolean integer of 1 bit<br/>
1051 A nibble sized integer of 4 bits.<br/>
1052 A byte sized integer of 8 bits.<br/>
1053 A half word sized integer of 16 bits.<br/>
1054 A word sized integer of 32 bits.<br/>
1055 An integer whose bit width is the answer. <br/>
1056 A double word sized integer of 64 bits.<br/>
1057 A really big integer of over 1 million bits.<br/>
1058 </td>
1059 </tr>
1060</table>
1061</div>
1062
1063<!-- _______________________________________________________________________ -->
1064<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1065
1066<div class="doc_text">
1067
1068<h5>Overview:</h5>
1069
1070<p>The array type is a very simple derived type that arranges elements
1071sequentially in memory. The array type requires a size (number of
1072elements) and an underlying data type.</p>
1073
1074<h5>Syntax:</h5>
1075
1076<pre>
1077 [&lt;# elements&gt; x &lt;elementtype&gt;]
1078</pre>
1079
1080<p>The number of elements is a constant integer value; elementtype may
1081be any type with a size.</p>
1082
1083<h5>Examples:</h5>
1084<table class="layout">
1085 <tr class="layout">
1086 <td class="left">
1087 <tt>[40 x i32 ]</tt><br/>
1088 <tt>[41 x i32 ]</tt><br/>
1089 <tt>[40 x i8]</tt><br/>
1090 </td>
1091 <td class="left">
1092 Array of 40 32-bit integer values.<br/>
1093 Array of 41 32-bit integer values.<br/>
1094 Array of 40 8-bit integer values.<br/>
1095 </td>
1096 </tr>
1097</table>
1098<p>Here are some examples of multidimensional arrays:</p>
1099<table class="layout">
1100 <tr class="layout">
1101 <td class="left">
1102 <tt>[3 x [4 x i32]]</tt><br/>
1103 <tt>[12 x [10 x float]]</tt><br/>
1104 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1105 </td>
1106 <td class="left">
1107 3x4 array of 32-bit integer values.<br/>
1108 12x10 array of single precision floating point values.<br/>
1109 2x3x4 array of 16-bit integer values.<br/>
1110 </td>
1111 </tr>
1112</table>
1113
1114<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1115length array. Normally, accesses past the end of an array are undefined in
1116LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1117As a special case, however, zero length arrays are recognized to be variable
1118length. This allows implementation of 'pascal style arrays' with the LLVM
1119type "{ i32, [0 x float]}", for example.</p>
1120
1121</div>
1122
1123<!-- _______________________________________________________________________ -->
1124<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1125<div class="doc_text">
1126<h5>Overview:</h5>
1127<p>The function type can be thought of as a function signature. It
1128consists of a return type and a list of formal parameter types.
1129Function types are usually used to build virtual function tables
1130(which are structures of pointers to functions), for indirect function
1131calls, and when defining a function.</p>
1132<p>
1133The return type of a function type cannot be an aggregate type.
1134</p>
1135<h5>Syntax:</h5>
1136<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1137<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1138specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1139which indicates that the function takes a variable number of arguments.
1140Variable argument functions can access their arguments with the <a
1141 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1142<h5>Examples:</h5>
1143<table class="layout">
1144 <tr class="layout">
1145 <td class="left"><tt>i32 (i32)</tt></td>
1146 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1147 </td>
1148 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001149 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001150 </tt></td>
1151 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1152 an <tt>i16</tt> that should be sign extended and a
1153 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1154 <tt>float</tt>.
1155 </td>
1156 </tr><tr class="layout">
1157 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1158 <td class="left">A vararg function that takes at least one
1159 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1160 which returns an integer. This is the signature for <tt>printf</tt> in
1161 LLVM.
1162 </td>
1163 </tr>
1164</table>
1165
1166</div>
1167<!-- _______________________________________________________________________ -->
1168<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1169<div class="doc_text">
1170<h5>Overview:</h5>
1171<p>The structure type is used to represent a collection of data members
1172together in memory. The packing of the field types is defined to match
1173the ABI of the underlying processor. The elements of a structure may
1174be any type that has a size.</p>
1175<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1176and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1177field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1178instruction.</p>
1179<h5>Syntax:</h5>
1180<pre> { &lt;type list&gt; }<br></pre>
1181<h5>Examples:</h5>
1182<table class="layout">
1183 <tr class="layout">
1184 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1185 <td class="left">A triple of three <tt>i32</tt> values</td>
1186 </tr><tr class="layout">
1187 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1188 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1189 second element is a <a href="#t_pointer">pointer</a> to a
1190 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1191 an <tt>i32</tt>.</td>
1192 </tr>
1193</table>
1194</div>
1195
1196<!-- _______________________________________________________________________ -->
1197<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1198</div>
1199<div class="doc_text">
1200<h5>Overview:</h5>
1201<p>The packed structure type is used to represent a collection of data members
1202together in memory. There is no padding between fields. Further, the alignment
1203of a packed structure is 1 byte. The elements of a packed structure may
1204be any type that has a size.</p>
1205<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1206and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1207field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1208instruction.</p>
1209<h5>Syntax:</h5>
1210<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1211<h5>Examples:</h5>
1212<table class="layout">
1213 <tr class="layout">
1214 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1215 <td class="left">A triple of three <tt>i32</tt> values</td>
1216 </tr><tr class="layout">
1217 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1218 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1219 second element is a <a href="#t_pointer">pointer</a> to a
1220 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1221 an <tt>i32</tt>.</td>
1222 </tr>
1223</table>
1224</div>
1225
1226<!-- _______________________________________________________________________ -->
1227<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1228<div class="doc_text">
1229<h5>Overview:</h5>
1230<p>As in many languages, the pointer type represents a pointer or
1231reference to another object, which must live in memory.</p>
1232<h5>Syntax:</h5>
1233<pre> &lt;type&gt; *<br></pre>
1234<h5>Examples:</h5>
1235<table class="layout">
1236 <tr class="layout">
1237 <td class="left">
1238 <tt>[4x i32]*</tt><br/>
1239 <tt>i32 (i32 *) *</tt><br/>
1240 </td>
1241 <td class="left">
1242 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1243 four <tt>i32</tt> values<br/>
1244 A <a href="#t_pointer">pointer</a> to a <a
1245 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1246 <tt>i32</tt>.<br/>
1247 </td>
1248 </tr>
1249</table>
1250</div>
1251
1252<!-- _______________________________________________________________________ -->
1253<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1254<div class="doc_text">
1255
1256<h5>Overview:</h5>
1257
1258<p>A vector type is a simple derived type that represents a vector
1259of elements. Vector types are used when multiple primitive data
1260are operated in parallel using a single instruction (SIMD).
1261A vector type requires a size (number of
1262elements) and an underlying primitive data type. Vectors must have a power
1263of two length (1, 2, 4, 8, 16 ...). Vector types are
1264considered <a href="#t_firstclass">first class</a>.</p>
1265
1266<h5>Syntax:</h5>
1267
1268<pre>
1269 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1270</pre>
1271
1272<p>The number of elements is a constant integer value; elementtype may
1273be any integer or floating point type.</p>
1274
1275<h5>Examples:</h5>
1276
1277<table class="layout">
1278 <tr class="layout">
1279 <td class="left">
1280 <tt>&lt;4 x i32&gt;</tt><br/>
1281 <tt>&lt;8 x float&gt;</tt><br/>
1282 <tt>&lt;2 x i64&gt;</tt><br/>
1283 </td>
1284 <td class="left">
1285 Vector of 4 32-bit integer values.<br/>
1286 Vector of 8 floating-point values.<br/>
1287 Vector of 2 64-bit integer values.<br/>
1288 </td>
1289 </tr>
1290</table>
1291</div>
1292
1293<!-- _______________________________________________________________________ -->
1294<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1295<div class="doc_text">
1296
1297<h5>Overview:</h5>
1298
1299<p>Opaque types are used to represent unknown types in the system. This
1300corresponds (for example) to the C notion of a foward declared structure type.
1301In LLVM, opaque types can eventually be resolved to any type (not just a
1302structure type).</p>
1303
1304<h5>Syntax:</h5>
1305
1306<pre>
1307 opaque
1308</pre>
1309
1310<h5>Examples:</h5>
1311
1312<table class="layout">
1313 <tr class="layout">
1314 <td class="left">
1315 <tt>opaque</tt>
1316 </td>
1317 <td class="left">
1318 An opaque type.<br/>
1319 </td>
1320 </tr>
1321</table>
1322</div>
1323
1324
1325<!-- *********************************************************************** -->
1326<div class="doc_section"> <a name="constants">Constants</a> </div>
1327<!-- *********************************************************************** -->
1328
1329<div class="doc_text">
1330
1331<p>LLVM has several different basic types of constants. This section describes
1332them all and their syntax.</p>
1333
1334</div>
1335
1336<!-- ======================================================================= -->
1337<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1338
1339<div class="doc_text">
1340
1341<dl>
1342 <dt><b>Boolean constants</b></dt>
1343
1344 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1345 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1346 </dd>
1347
1348 <dt><b>Integer constants</b></dt>
1349
1350 <dd>Standard integers (such as '4') are constants of the <a
1351 href="#t_integer">integer</a> type. Negative numbers may be used with
1352 integer types.
1353 </dd>
1354
1355 <dt><b>Floating point constants</b></dt>
1356
1357 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1358 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1359 notation (see below). Floating point constants must have a <a
1360 href="#t_floating">floating point</a> type. </dd>
1361
1362 <dt><b>Null pointer constants</b></dt>
1363
1364 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1365 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1366
1367</dl>
1368
1369<p>The one non-intuitive notation for constants is the optional hexadecimal form
1370of floating point constants. For example, the form '<tt>double
13710x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13724.5e+15</tt>'. The only time hexadecimal floating point constants are required
1373(and the only time that they are generated by the disassembler) is when a
1374floating point constant must be emitted but it cannot be represented as a
1375decimal floating point number. For example, NaN's, infinities, and other
1376special values are represented in their IEEE hexadecimal format so that
1377assembly and disassembly do not cause any bits to change in the constants.</p>
1378
1379</div>
1380
1381<!-- ======================================================================= -->
1382<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1383</div>
1384
1385<div class="doc_text">
1386<p>Aggregate constants arise from aggregation of simple constants
1387and smaller aggregate constants.</p>
1388
1389<dl>
1390 <dt><b>Structure constants</b></dt>
1391
1392 <dd>Structure constants are represented with notation similar to structure
1393 type definitions (a comma separated list of elements, surrounded by braces
1394 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1395 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1396 must have <a href="#t_struct">structure type</a>, and the number and
1397 types of elements must match those specified by the type.
1398 </dd>
1399
1400 <dt><b>Array constants</b></dt>
1401
1402 <dd>Array constants are represented with notation similar to array type
1403 definitions (a comma separated list of elements, surrounded by square brackets
1404 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1405 constants must have <a href="#t_array">array type</a>, and the number and
1406 types of elements must match those specified by the type.
1407 </dd>
1408
1409 <dt><b>Vector constants</b></dt>
1410
1411 <dd>Vector constants are represented with notation similar to vector type
1412 definitions (a comma separated list of elements, surrounded by
1413 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1414 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1415 href="#t_vector">vector type</a>, and the number and types of elements must
1416 match those specified by the type.
1417 </dd>
1418
1419 <dt><b>Zero initialization</b></dt>
1420
1421 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1422 value to zero of <em>any</em> type, including scalar and aggregate types.
1423 This is often used to avoid having to print large zero initializers (e.g. for
1424 large arrays) and is always exactly equivalent to using explicit zero
1425 initializers.
1426 </dd>
1427</dl>
1428
1429</div>
1430
1431<!-- ======================================================================= -->
1432<div class="doc_subsection">
1433 <a name="globalconstants">Global Variable and Function Addresses</a>
1434</div>
1435
1436<div class="doc_text">
1437
1438<p>The addresses of <a href="#globalvars">global variables</a> and <a
1439href="#functionstructure">functions</a> are always implicitly valid (link-time)
1440constants. These constants are explicitly referenced when the <a
1441href="#identifiers">identifier for the global</a> is used and always have <a
1442href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1443file:</p>
1444
1445<div class="doc_code">
1446<pre>
1447@X = global i32 17
1448@Y = global i32 42
1449@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1450</pre>
1451</div>
1452
1453</div>
1454
1455<!-- ======================================================================= -->
1456<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1457<div class="doc_text">
1458 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1459 no specific value. Undefined values may be of any type and be used anywhere
1460 a constant is permitted.</p>
1461
1462 <p>Undefined values indicate to the compiler that the program is well defined
1463 no matter what value is used, giving the compiler more freedom to optimize.
1464 </p>
1465</div>
1466
1467<!-- ======================================================================= -->
1468<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1469</div>
1470
1471<div class="doc_text">
1472
1473<p>Constant expressions are used to allow expressions involving other constants
1474to be used as constants. Constant expressions may be of any <a
1475href="#t_firstclass">first class</a> type and may involve any LLVM operation
1476that does not have side effects (e.g. load and call are not supported). The
1477following is the syntax for constant expressions:</p>
1478
1479<dl>
1480 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1481 <dd>Truncate a constant to another type. The bit size of CST must be larger
1482 than the bit size of TYPE. Both types must be integers.</dd>
1483
1484 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1485 <dd>Zero extend a constant to another type. The bit size of CST must be
1486 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1487
1488 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1489 <dd>Sign extend a constant to another type. The bit size of CST must be
1490 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1491
1492 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1493 <dd>Truncate a floating point constant to another floating point type. The
1494 size of CST must be larger than the size of TYPE. Both types must be
1495 floating point.</dd>
1496
1497 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1498 <dd>Floating point extend a constant to another type. The size of CST must be
1499 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1500
1501 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1502 <dd>Convert a floating point constant to the corresponding unsigned integer
1503 constant. TYPE must be an integer type. CST must be floating point. If the
1504 value won't fit in the integer type, the results are undefined.</dd>
1505
1506 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1507 <dd>Convert a floating point constant to the corresponding signed integer
1508 constant. TYPE must be an integer type. CST must be floating point. If the
1509 value won't fit in the integer type, the results are undefined.</dd>
1510
1511 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1512 <dd>Convert an unsigned integer constant to the corresponding floating point
1513 constant. TYPE must be floating point. CST must be of integer type. If the
1514 value won't fit in the floating point type, the results are undefined.</dd>
1515
1516 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1517 <dd>Convert a signed integer constant to the corresponding floating point
1518 constant. TYPE must be floating point. CST must be of integer type. If the
1519 value won't fit in the floating point type, the results are undefined.</dd>
1520
1521 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1522 <dd>Convert a pointer typed constant to the corresponding integer constant
1523 TYPE must be an integer type. CST must be of pointer type. The CST value is
1524 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1525
1526 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1527 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1528 pointer type. CST must be of integer type. The CST value is zero extended,
1529 truncated, or unchanged to make it fit in a pointer size. This one is
1530 <i>really</i> dangerous!</dd>
1531
1532 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1533 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1534 identical (same number of bits). The conversion is done as if the CST value
1535 was stored to memory and read back as TYPE. In other words, no bits change
1536 with this operator, just the type. This can be used for conversion of
1537 vector types to any other type, as long as they have the same bit width. For
1538 pointers it is only valid to cast to another pointer type.
1539 </dd>
1540
1541 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1542
1543 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1544 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1545 instruction, the index list may have zero or more indexes, which are required
1546 to make sense for the type of "CSTPTR".</dd>
1547
1548 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1549
1550 <dd>Perform the <a href="#i_select">select operation</a> on
1551 constants.</dd>
1552
1553 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1554 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1555
1556 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1557 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1558
1559 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1560
1561 <dd>Perform the <a href="#i_extractelement">extractelement
1562 operation</a> on constants.
1563
1564 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1565
1566 <dd>Perform the <a href="#i_insertelement">insertelement
1567 operation</a> on constants.</dd>
1568
1569
1570 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1571
1572 <dd>Perform the <a href="#i_shufflevector">shufflevector
1573 operation</a> on constants.</dd>
1574
1575 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1576
1577 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1578 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1579 binary</a> operations. The constraints on operands are the same as those for
1580 the corresponding instruction (e.g. no bitwise operations on floating point
1581 values are allowed).</dd>
1582</dl>
1583</div>
1584
1585<!-- *********************************************************************** -->
1586<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1587<!-- *********************************************************************** -->
1588
1589<!-- ======================================================================= -->
1590<div class="doc_subsection">
1591<a name="inlineasm">Inline Assembler Expressions</a>
1592</div>
1593
1594<div class="doc_text">
1595
1596<p>
1597LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1598Module-Level Inline Assembly</a>) through the use of a special value. This
1599value represents the inline assembler as a string (containing the instructions
1600to emit), a list of operand constraints (stored as a string), and a flag that
1601indicates whether or not the inline asm expression has side effects. An example
1602inline assembler expression is:
1603</p>
1604
1605<div class="doc_code">
1606<pre>
1607i32 (i32) asm "bswap $0", "=r,r"
1608</pre>
1609</div>
1610
1611<p>
1612Inline assembler expressions may <b>only</b> be used as the callee operand of
1613a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1614</p>
1615
1616<div class="doc_code">
1617<pre>
1618%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1619</pre>
1620</div>
1621
1622<p>
1623Inline asms with side effects not visible in the constraint list must be marked
1624as having side effects. This is done through the use of the
1625'<tt>sideeffect</tt>' keyword, like so:
1626</p>
1627
1628<div class="doc_code">
1629<pre>
1630call void asm sideeffect "eieio", ""()
1631</pre>
1632</div>
1633
1634<p>TODO: The format of the asm and constraints string still need to be
1635documented here. Constraints on what can be done (e.g. duplication, moving, etc
1636need to be documented).
1637</p>
1638
1639</div>
1640
1641<!-- *********************************************************************** -->
1642<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1643<!-- *********************************************************************** -->
1644
1645<div class="doc_text">
1646
1647<p>The LLVM instruction set consists of several different
1648classifications of instructions: <a href="#terminators">terminator
1649instructions</a>, <a href="#binaryops">binary instructions</a>,
1650<a href="#bitwiseops">bitwise binary instructions</a>, <a
1651 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1652instructions</a>.</p>
1653
1654</div>
1655
1656<!-- ======================================================================= -->
1657<div class="doc_subsection"> <a name="terminators">Terminator
1658Instructions</a> </div>
1659
1660<div class="doc_text">
1661
1662<p>As mentioned <a href="#functionstructure">previously</a>, every
1663basic block in a program ends with a "Terminator" instruction, which
1664indicates which block should be executed after the current block is
1665finished. These terminator instructions typically yield a '<tt>void</tt>'
1666value: they produce control flow, not values (the one exception being
1667the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1668<p>There are six different terminator instructions: the '<a
1669 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1670instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1671the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1672 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1673 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1674
1675</div>
1676
1677<!-- _______________________________________________________________________ -->
1678<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1679Instruction</a> </div>
1680<div class="doc_text">
1681<h5>Syntax:</h5>
1682<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1683 ret void <i>; Return from void function</i>
1684</pre>
1685<h5>Overview:</h5>
1686<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1687value) from a function back to the caller.</p>
1688<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1689returns a value and then causes control flow, and one that just causes
1690control flow to occur.</p>
1691<h5>Arguments:</h5>
1692<p>The '<tt>ret</tt>' instruction may return any '<a
1693 href="#t_firstclass">first class</a>' type. Notice that a function is
1694not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1695instruction inside of the function that returns a value that does not
1696match the return type of the function.</p>
1697<h5>Semantics:</h5>
1698<p>When the '<tt>ret</tt>' instruction is executed, control flow
1699returns back to the calling function's context. If the caller is a "<a
1700 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1701the instruction after the call. If the caller was an "<a
1702 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1703at the beginning of the "normal" destination block. If the instruction
1704returns a value, that value shall set the call or invoke instruction's
1705return value.</p>
1706<h5>Example:</h5>
1707<pre> ret i32 5 <i>; Return an integer value of 5</i>
1708 ret void <i>; Return from a void function</i>
1709</pre>
1710</div>
1711<!-- _______________________________________________________________________ -->
1712<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1713<div class="doc_text">
1714<h5>Syntax:</h5>
1715<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1716</pre>
1717<h5>Overview:</h5>
1718<p>The '<tt>br</tt>' instruction is used to cause control flow to
1719transfer to a different basic block in the current function. There are
1720two forms of this instruction, corresponding to a conditional branch
1721and an unconditional branch.</p>
1722<h5>Arguments:</h5>
1723<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1724single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1725unconditional form of the '<tt>br</tt>' instruction takes a single
1726'<tt>label</tt>' value as a target.</p>
1727<h5>Semantics:</h5>
1728<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1729argument is evaluated. If the value is <tt>true</tt>, control flows
1730to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1731control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1732<h5>Example:</h5>
1733<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1734 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1735</div>
1736<!-- _______________________________________________________________________ -->
1737<div class="doc_subsubsection">
1738 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1739</div>
1740
1741<div class="doc_text">
1742<h5>Syntax:</h5>
1743
1744<pre>
1745 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1746</pre>
1747
1748<h5>Overview:</h5>
1749
1750<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1751several different places. It is a generalization of the '<tt>br</tt>'
1752instruction, allowing a branch to occur to one of many possible
1753destinations.</p>
1754
1755
1756<h5>Arguments:</h5>
1757
1758<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1759comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1760an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1761table is not allowed to contain duplicate constant entries.</p>
1762
1763<h5>Semantics:</h5>
1764
1765<p>The <tt>switch</tt> instruction specifies a table of values and
1766destinations. When the '<tt>switch</tt>' instruction is executed, this
1767table is searched for the given value. If the value is found, control flow is
1768transfered to the corresponding destination; otherwise, control flow is
1769transfered to the default destination.</p>
1770
1771<h5>Implementation:</h5>
1772
1773<p>Depending on properties of the target machine and the particular
1774<tt>switch</tt> instruction, this instruction may be code generated in different
1775ways. For example, it could be generated as a series of chained conditional
1776branches or with a lookup table.</p>
1777
1778<h5>Example:</h5>
1779
1780<pre>
1781 <i>; Emulate a conditional br instruction</i>
1782 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1783 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1784
1785 <i>; Emulate an unconditional br instruction</i>
1786 switch i32 0, label %dest [ ]
1787
1788 <i>; Implement a jump table:</i>
1789 switch i32 %val, label %otherwise [ i32 0, label %onzero
1790 i32 1, label %onone
1791 i32 2, label %ontwo ]
1792</pre>
1793</div>
1794
1795<!-- _______________________________________________________________________ -->
1796<div class="doc_subsubsection">
1797 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1798</div>
1799
1800<div class="doc_text">
1801
1802<h5>Syntax:</h5>
1803
1804<pre>
1805 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1806 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1807</pre>
1808
1809<h5>Overview:</h5>
1810
1811<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1812function, with the possibility of control flow transfer to either the
1813'<tt>normal</tt>' label or the
1814'<tt>exception</tt>' label. If the callee function returns with the
1815"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1816"normal" label. If the callee (or any indirect callees) returns with the "<a
1817href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1818continued at the dynamically nearest "exception" label.</p>
1819
1820<h5>Arguments:</h5>
1821
1822<p>This instruction requires several arguments:</p>
1823
1824<ol>
1825 <li>
1826 The optional "cconv" marker indicates which <a href="#callingconv">calling
1827 convention</a> the call should use. If none is specified, the call defaults
1828 to using C calling conventions.
1829 </li>
1830 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1831 function value being invoked. In most cases, this is a direct function
1832 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1833 an arbitrary pointer to function value.
1834 </li>
1835
1836 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1837 function to be invoked. </li>
1838
1839 <li>'<tt>function args</tt>': argument list whose types match the function
1840 signature argument types. If the function signature indicates the function
1841 accepts a variable number of arguments, the extra arguments can be
1842 specified. </li>
1843
1844 <li>'<tt>normal label</tt>': the label reached when the called function
1845 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1846
1847 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1848 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1849
1850</ol>
1851
1852<h5>Semantics:</h5>
1853
1854<p>This instruction is designed to operate as a standard '<tt><a
1855href="#i_call">call</a></tt>' instruction in most regards. The primary
1856difference is that it establishes an association with a label, which is used by
1857the runtime library to unwind the stack.</p>
1858
1859<p>This instruction is used in languages with destructors to ensure that proper
1860cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1861exception. Additionally, this is important for implementation of
1862'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1863
1864<h5>Example:</h5>
1865<pre>
1866 %retval = invoke i32 %Test(i32 15) to label %Continue
1867 unwind label %TestCleanup <i>; {i32}:retval set</i>
1868 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1869 unwind label %TestCleanup <i>; {i32}:retval set</i>
1870</pre>
1871</div>
1872
1873
1874<!-- _______________________________________________________________________ -->
1875
1876<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1877Instruction</a> </div>
1878
1879<div class="doc_text">
1880
1881<h5>Syntax:</h5>
1882<pre>
1883 unwind
1884</pre>
1885
1886<h5>Overview:</h5>
1887
1888<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1889at the first callee in the dynamic call stack which used an <a
1890href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1891primarily used to implement exception handling.</p>
1892
1893<h5>Semantics:</h5>
1894
1895<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1896immediately halt. The dynamic call stack is then searched for the first <a
1897href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1898execution continues at the "exceptional" destination block specified by the
1899<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1900dynamic call chain, undefined behavior results.</p>
1901</div>
1902
1903<!-- _______________________________________________________________________ -->
1904
1905<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1906Instruction</a> </div>
1907
1908<div class="doc_text">
1909
1910<h5>Syntax:</h5>
1911<pre>
1912 unreachable
1913</pre>
1914
1915<h5>Overview:</h5>
1916
1917<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1918instruction is used to inform the optimizer that a particular portion of the
1919code is not reachable. This can be used to indicate that the code after a
1920no-return function cannot be reached, and other facts.</p>
1921
1922<h5>Semantics:</h5>
1923
1924<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1925</div>
1926
1927
1928
1929<!-- ======================================================================= -->
1930<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1931<div class="doc_text">
1932<p>Binary operators are used to do most of the computation in a
1933program. They require two operands, execute an operation on them, and
1934produce a single value. The operands might represent
1935multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1936The result value of a binary operator is not
1937necessarily the same type as its operands.</p>
1938<p>There are several different binary operators:</p>
1939</div>
1940<!-- _______________________________________________________________________ -->
1941<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1942Instruction</a> </div>
1943<div class="doc_text">
1944<h5>Syntax:</h5>
1945<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1946</pre>
1947<h5>Overview:</h5>
1948<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1949<h5>Arguments:</h5>
1950<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1951 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1952 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1953Both arguments must have identical types.</p>
1954<h5>Semantics:</h5>
1955<p>The value produced is the integer or floating point sum of the two
1956operands.</p>
1957<h5>Example:</h5>
1958<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1959</pre>
1960</div>
1961<!-- _______________________________________________________________________ -->
1962<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1963Instruction</a> </div>
1964<div class="doc_text">
1965<h5>Syntax:</h5>
1966<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1967</pre>
1968<h5>Overview:</h5>
1969<p>The '<tt>sub</tt>' instruction returns the difference of its two
1970operands.</p>
1971<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1972instruction present in most other intermediate representations.</p>
1973<h5>Arguments:</h5>
1974<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1975 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1976values.
1977This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1978Both arguments must have identical types.</p>
1979<h5>Semantics:</h5>
1980<p>The value produced is the integer or floating point difference of
1981the two operands.</p>
1982<h5>Example:</h5>
1983<pre>
1984 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1985 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1986</pre>
1987</div>
1988<!-- _______________________________________________________________________ -->
1989<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1990Instruction</a> </div>
1991<div class="doc_text">
1992<h5>Syntax:</h5>
1993<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1994</pre>
1995<h5>Overview:</h5>
1996<p>The '<tt>mul</tt>' instruction returns the product of its two
1997operands.</p>
1998<h5>Arguments:</h5>
1999<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2000 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2001values.
2002This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2003Both arguments must have identical types.</p>
2004<h5>Semantics:</h5>
2005<p>The value produced is the integer or floating point product of the
2006two operands.</p>
2007<p>Because the operands are the same width, the result of an integer
2008multiplication is the same whether the operands should be deemed unsigned or
2009signed.</p>
2010<h5>Example:</h5>
2011<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2012</pre>
2013</div>
2014<!-- _______________________________________________________________________ -->
2015<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2016</a></div>
2017<div class="doc_text">
2018<h5>Syntax:</h5>
2019<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2020</pre>
2021<h5>Overview:</h5>
2022<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2023operands.</p>
2024<h5>Arguments:</h5>
2025<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2026<a href="#t_integer">integer</a> values. Both arguments must have identical
2027types. This instruction can also take <a href="#t_vector">vector</a> versions
2028of the values in which case the elements must be integers.</p>
2029<h5>Semantics:</h5>
2030<p>The value produced is the unsigned integer quotient of the two operands. This
2031instruction always performs an unsigned division operation, regardless of
2032whether the arguments are unsigned or not.</p>
2033<h5>Example:</h5>
2034<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2035</pre>
2036</div>
2037<!-- _______________________________________________________________________ -->
2038<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2039</a> </div>
2040<div class="doc_text">
2041<h5>Syntax:</h5>
2042<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2043</pre>
2044<h5>Overview:</h5>
2045<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2046operands.</p>
2047<h5>Arguments:</h5>
2048<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2049<a href="#t_integer">integer</a> values. Both arguments must have identical
2050types. This instruction can also take <a href="#t_vector">vector</a> versions
2051of the values in which case the elements must be integers.</p>
2052<h5>Semantics:</h5>
2053<p>The value produced is the signed integer quotient of the two operands. This
2054instruction always performs a signed division operation, regardless of whether
2055the arguments are signed or not.</p>
2056<h5>Example:</h5>
2057<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2058</pre>
2059</div>
2060<!-- _______________________________________________________________________ -->
2061<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2062Instruction</a> </div>
2063<div class="doc_text">
2064<h5>Syntax:</h5>
2065<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2066</pre>
2067<h5>Overview:</h5>
2068<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2069operands.</p>
2070<h5>Arguments:</h5>
2071<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2072<a href="#t_floating">floating point</a> values. Both arguments must have
2073identical types. This instruction can also take <a href="#t_vector">vector</a>
2074versions of floating point values.</p>
2075<h5>Semantics:</h5>
2076<p>The value produced is the floating point quotient of the two operands.</p>
2077<h5>Example:</h5>
2078<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2079</pre>
2080</div>
2081<!-- _______________________________________________________________________ -->
2082<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2083</div>
2084<div class="doc_text">
2085<h5>Syntax:</h5>
2086<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2087</pre>
2088<h5>Overview:</h5>
2089<p>The '<tt>urem</tt>' instruction returns the remainder from the
2090unsigned division of its two arguments.</p>
2091<h5>Arguments:</h5>
2092<p>The two arguments to the '<tt>urem</tt>' instruction must be
2093<a href="#t_integer">integer</a> values. Both arguments must have identical
2094types.</p>
2095<h5>Semantics:</h5>
2096<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2097This instruction always performs an unsigned division to get the remainder,
2098regardless of whether the arguments are unsigned or not.</p>
2099<h5>Example:</h5>
2100<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2101</pre>
2102
2103</div>
2104<!-- _______________________________________________________________________ -->
2105<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2106Instruction</a> </div>
2107<div class="doc_text">
2108<h5>Syntax:</h5>
2109<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2110</pre>
2111<h5>Overview:</h5>
2112<p>The '<tt>srem</tt>' instruction returns the remainder from the
2113signed division of its two operands.</p>
2114<h5>Arguments:</h5>
2115<p>The two arguments to the '<tt>srem</tt>' instruction must be
2116<a href="#t_integer">integer</a> values. Both arguments must have identical
2117types.</p>
2118<h5>Semantics:</h5>
2119<p>This instruction returns the <i>remainder</i> of a division (where the result
2120has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2121operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2122a value. For more information about the difference, see <a
2123 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2124Math Forum</a>. For a table of how this is implemented in various languages,
2125please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2126Wikipedia: modulo operation</a>.</p>
2127<h5>Example:</h5>
2128<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2129</pre>
2130
2131</div>
2132<!-- _______________________________________________________________________ -->
2133<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2134Instruction</a> </div>
2135<div class="doc_text">
2136<h5>Syntax:</h5>
2137<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2138</pre>
2139<h5>Overview:</h5>
2140<p>The '<tt>frem</tt>' instruction returns the remainder from the
2141division of its two operands.</p>
2142<h5>Arguments:</h5>
2143<p>The two arguments to the '<tt>frem</tt>' instruction must be
2144<a href="#t_floating">floating point</a> values. Both arguments must have
2145identical types.</p>
2146<h5>Semantics:</h5>
2147<p>This instruction returns the <i>remainder</i> of a division.</p>
2148<h5>Example:</h5>
2149<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2150</pre>
2151</div>
2152
2153<!-- ======================================================================= -->
2154<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2155Operations</a> </div>
2156<div class="doc_text">
2157<p>Bitwise binary operators are used to do various forms of
2158bit-twiddling in a program. They are generally very efficient
2159instructions and can commonly be strength reduced from other
2160instructions. They require two operands, execute an operation on them,
2161and produce a single value. The resulting value of the bitwise binary
2162operators is always the same type as its first operand.</p>
2163</div>
2164
2165<!-- _______________________________________________________________________ -->
2166<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2167Instruction</a> </div>
2168<div class="doc_text">
2169<h5>Syntax:</h5>
2170<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2171</pre>
2172<h5>Overview:</h5>
2173<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2174the left a specified number of bits.</p>
2175<h5>Arguments:</h5>
2176<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2177 href="#t_integer">integer</a> type.</p>
2178<h5>Semantics:</h5>
2179<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2180<h5>Example:</h5><pre>
2181 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2182 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2183 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2184</pre>
2185</div>
2186<!-- _______________________________________________________________________ -->
2187<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2188Instruction</a> </div>
2189<div class="doc_text">
2190<h5>Syntax:</h5>
2191<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2192</pre>
2193
2194<h5>Overview:</h5>
2195<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2196operand shifted to the right a specified number of bits with zero fill.</p>
2197
2198<h5>Arguments:</h5>
2199<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2200<a href="#t_integer">integer</a> type.</p>
2201
2202<h5>Semantics:</h5>
2203<p>This instruction always performs a logical shift right operation. The most
2204significant bits of the result will be filled with zero bits after the
2205shift.</p>
2206
2207<h5>Example:</h5>
2208<pre>
2209 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2210 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2211 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2212 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2213</pre>
2214</div>
2215
2216<!-- _______________________________________________________________________ -->
2217<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2218Instruction</a> </div>
2219<div class="doc_text">
2220
2221<h5>Syntax:</h5>
2222<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2223</pre>
2224
2225<h5>Overview:</h5>
2226<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2227operand shifted to the right a specified number of bits with sign extension.</p>
2228
2229<h5>Arguments:</h5>
2230<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2231<a href="#t_integer">integer</a> type.</p>
2232
2233<h5>Semantics:</h5>
2234<p>This instruction always performs an arithmetic shift right operation,
2235The most significant bits of the result will be filled with the sign bit
2236of <tt>var1</tt>.</p>
2237
2238<h5>Example:</h5>
2239<pre>
2240 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2241 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2242 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2243 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2244</pre>
2245</div>
2246
2247<!-- _______________________________________________________________________ -->
2248<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2249Instruction</a> </div>
2250<div class="doc_text">
2251<h5>Syntax:</h5>
2252<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2253</pre>
2254<h5>Overview:</h5>
2255<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2256its two operands.</p>
2257<h5>Arguments:</h5>
2258<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2259 href="#t_integer">integer</a> values. Both arguments must have
2260identical types.</p>
2261<h5>Semantics:</h5>
2262<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2263<p> </p>
2264<div style="align: center">
2265<table border="1" cellspacing="0" cellpadding="4">
2266 <tbody>
2267 <tr>
2268 <td>In0</td>
2269 <td>In1</td>
2270 <td>Out</td>
2271 </tr>
2272 <tr>
2273 <td>0</td>
2274 <td>0</td>
2275 <td>0</td>
2276 </tr>
2277 <tr>
2278 <td>0</td>
2279 <td>1</td>
2280 <td>0</td>
2281 </tr>
2282 <tr>
2283 <td>1</td>
2284 <td>0</td>
2285 <td>0</td>
2286 </tr>
2287 <tr>
2288 <td>1</td>
2289 <td>1</td>
2290 <td>1</td>
2291 </tr>
2292 </tbody>
2293</table>
2294</div>
2295<h5>Example:</h5>
2296<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2297 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2298 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2299</pre>
2300</div>
2301<!-- _______________________________________________________________________ -->
2302<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2303<div class="doc_text">
2304<h5>Syntax:</h5>
2305<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2306</pre>
2307<h5>Overview:</h5>
2308<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2309or of its two operands.</p>
2310<h5>Arguments:</h5>
2311<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2312 href="#t_integer">integer</a> values. Both arguments must have
2313identical types.</p>
2314<h5>Semantics:</h5>
2315<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2316<p> </p>
2317<div style="align: center">
2318<table border="1" cellspacing="0" cellpadding="4">
2319 <tbody>
2320 <tr>
2321 <td>In0</td>
2322 <td>In1</td>
2323 <td>Out</td>
2324 </tr>
2325 <tr>
2326 <td>0</td>
2327 <td>0</td>
2328 <td>0</td>
2329 </tr>
2330 <tr>
2331 <td>0</td>
2332 <td>1</td>
2333 <td>1</td>
2334 </tr>
2335 <tr>
2336 <td>1</td>
2337 <td>0</td>
2338 <td>1</td>
2339 </tr>
2340 <tr>
2341 <td>1</td>
2342 <td>1</td>
2343 <td>1</td>
2344 </tr>
2345 </tbody>
2346</table>
2347</div>
2348<h5>Example:</h5>
2349<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2350 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2351 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2352</pre>
2353</div>
2354<!-- _______________________________________________________________________ -->
2355<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2356Instruction</a> </div>
2357<div class="doc_text">
2358<h5>Syntax:</h5>
2359<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2360</pre>
2361<h5>Overview:</h5>
2362<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2363or of its two operands. The <tt>xor</tt> is used to implement the
2364"one's complement" operation, which is the "~" operator in C.</p>
2365<h5>Arguments:</h5>
2366<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2367 href="#t_integer">integer</a> values. Both arguments must have
2368identical types.</p>
2369<h5>Semantics:</h5>
2370<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2371<p> </p>
2372<div style="align: center">
2373<table border="1" cellspacing="0" cellpadding="4">
2374 <tbody>
2375 <tr>
2376 <td>In0</td>
2377 <td>In1</td>
2378 <td>Out</td>
2379 </tr>
2380 <tr>
2381 <td>0</td>
2382 <td>0</td>
2383 <td>0</td>
2384 </tr>
2385 <tr>
2386 <td>0</td>
2387 <td>1</td>
2388 <td>1</td>
2389 </tr>
2390 <tr>
2391 <td>1</td>
2392 <td>0</td>
2393 <td>1</td>
2394 </tr>
2395 <tr>
2396 <td>1</td>
2397 <td>1</td>
2398 <td>0</td>
2399 </tr>
2400 </tbody>
2401</table>
2402</div>
2403<p> </p>
2404<h5>Example:</h5>
2405<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2406 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2407 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2408 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2409</pre>
2410</div>
2411
2412<!-- ======================================================================= -->
2413<div class="doc_subsection">
2414 <a name="vectorops">Vector Operations</a>
2415</div>
2416
2417<div class="doc_text">
2418
2419<p>LLVM supports several instructions to represent vector operations in a
2420target-independent manner. These instructions cover the element-access and
2421vector-specific operations needed to process vectors effectively. While LLVM
2422does directly support these vector operations, many sophisticated algorithms
2423will want to use target-specific intrinsics to take full advantage of a specific
2424target.</p>
2425
2426</div>
2427
2428<!-- _______________________________________________________________________ -->
2429<div class="doc_subsubsection">
2430 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2431</div>
2432
2433<div class="doc_text">
2434
2435<h5>Syntax:</h5>
2436
2437<pre>
2438 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2439</pre>
2440
2441<h5>Overview:</h5>
2442
2443<p>
2444The '<tt>extractelement</tt>' instruction extracts a single scalar
2445element from a vector at a specified index.
2446</p>
2447
2448
2449<h5>Arguments:</h5>
2450
2451<p>
2452The first operand of an '<tt>extractelement</tt>' instruction is a
2453value of <a href="#t_vector">vector</a> type. The second operand is
2454an index indicating the position from which to extract the element.
2455The index may be a variable.</p>
2456
2457<h5>Semantics:</h5>
2458
2459<p>
2460The result is a scalar of the same type as the element type of
2461<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2462<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2463results are undefined.
2464</p>
2465
2466<h5>Example:</h5>
2467
2468<pre>
2469 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2470</pre>
2471</div>
2472
2473
2474<!-- _______________________________________________________________________ -->
2475<div class="doc_subsubsection">
2476 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2477</div>
2478
2479<div class="doc_text">
2480
2481<h5>Syntax:</h5>
2482
2483<pre>
2484 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2485</pre>
2486
2487<h5>Overview:</h5>
2488
2489<p>
2490The '<tt>insertelement</tt>' instruction inserts a scalar
2491element into a vector at a specified index.
2492</p>
2493
2494
2495<h5>Arguments:</h5>
2496
2497<p>
2498The first operand of an '<tt>insertelement</tt>' instruction is a
2499value of <a href="#t_vector">vector</a> type. The second operand is a
2500scalar value whose type must equal the element type of the first
2501operand. The third operand is an index indicating the position at
2502which to insert the value. The index may be a variable.</p>
2503
2504<h5>Semantics:</h5>
2505
2506<p>
2507The result is a vector of the same type as <tt>val</tt>. Its
2508element values are those of <tt>val</tt> except at position
2509<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2510exceeds the length of <tt>val</tt>, the results are undefined.
2511</p>
2512
2513<h5>Example:</h5>
2514
2515<pre>
2516 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2517</pre>
2518</div>
2519
2520<!-- _______________________________________________________________________ -->
2521<div class="doc_subsubsection">
2522 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2523</div>
2524
2525<div class="doc_text">
2526
2527<h5>Syntax:</h5>
2528
2529<pre>
2530 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2531</pre>
2532
2533<h5>Overview:</h5>
2534
2535<p>
2536The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2537from two input vectors, returning a vector of the same type.
2538</p>
2539
2540<h5>Arguments:</h5>
2541
2542<p>
2543The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2544with types that match each other and types that match the result of the
2545instruction. The third argument is a shuffle mask, which has the same number
2546of elements as the other vector type, but whose element type is always 'i32'.
2547</p>
2548
2549<p>
2550The shuffle mask operand is required to be a constant vector with either
2551constant integer or undef values.
2552</p>
2553
2554<h5>Semantics:</h5>
2555
2556<p>
2557The elements of the two input vectors are numbered from left to right across
2558both of the vectors. The shuffle mask operand specifies, for each element of
2559the result vector, which element of the two input registers the result element
2560gets. The element selector may be undef (meaning "don't care") and the second
2561operand may be undef if performing a shuffle from only one vector.
2562</p>
2563
2564<h5>Example:</h5>
2565
2566<pre>
2567 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2568 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2569 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2570 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2571</pre>
2572</div>
2573
2574
2575<!-- ======================================================================= -->
2576<div class="doc_subsection">
2577 <a name="memoryops">Memory Access and Addressing Operations</a>
2578</div>
2579
2580<div class="doc_text">
2581
2582<p>A key design point of an SSA-based representation is how it
2583represents memory. In LLVM, no memory locations are in SSA form, which
2584makes things very simple. This section describes how to read, write,
2585allocate, and free memory in LLVM.</p>
2586
2587</div>
2588
2589<!-- _______________________________________________________________________ -->
2590<div class="doc_subsubsection">
2591 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2592</div>
2593
2594<div class="doc_text">
2595
2596<h5>Syntax:</h5>
2597
2598<pre>
2599 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2600</pre>
2601
2602<h5>Overview:</h5>
2603
2604<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2605heap and returns a pointer to it.</p>
2606
2607<h5>Arguments:</h5>
2608
2609<p>The '<tt>malloc</tt>' instruction allocates
2610<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2611bytes of memory from the operating system and returns a pointer of the
2612appropriate type to the program. If "NumElements" is specified, it is the
2613number of elements allocated. If an alignment is specified, the value result
2614of the allocation is guaranteed to be aligned to at least that boundary. If
2615not specified, or if zero, the target can choose to align the allocation on any
2616convenient boundary.</p>
2617
2618<p>'<tt>type</tt>' must be a sized type.</p>
2619
2620<h5>Semantics:</h5>
2621
2622<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2623a pointer is returned.</p>
2624
2625<h5>Example:</h5>
2626
2627<pre>
2628 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2629
2630 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2631 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2632 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2633 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2634 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2635</pre>
2636</div>
2637
2638<!-- _______________________________________________________________________ -->
2639<div class="doc_subsubsection">
2640 <a name="i_free">'<tt>free</tt>' Instruction</a>
2641</div>
2642
2643<div class="doc_text">
2644
2645<h5>Syntax:</h5>
2646
2647<pre>
2648 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2649</pre>
2650
2651<h5>Overview:</h5>
2652
2653<p>The '<tt>free</tt>' instruction returns memory back to the unused
2654memory heap to be reallocated in the future.</p>
2655
2656<h5>Arguments:</h5>
2657
2658<p>'<tt>value</tt>' shall be a pointer value that points to a value
2659that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2660instruction.</p>
2661
2662<h5>Semantics:</h5>
2663
2664<p>Access to the memory pointed to by the pointer is no longer defined
2665after this instruction executes.</p>
2666
2667<h5>Example:</h5>
2668
2669<pre>
2670 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2671 free [4 x i8]* %array
2672</pre>
2673</div>
2674
2675<!-- _______________________________________________________________________ -->
2676<div class="doc_subsubsection">
2677 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2678</div>
2679
2680<div class="doc_text">
2681
2682<h5>Syntax:</h5>
2683
2684<pre>
2685 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2686</pre>
2687
2688<h5>Overview:</h5>
2689
2690<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2691currently executing function, to be automatically released when this function
2692returns to its caller.</p>
2693
2694<h5>Arguments:</h5>
2695
2696<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2697bytes of memory on the runtime stack, returning a pointer of the
2698appropriate type to the program. If "NumElements" is specified, it is the
2699number of elements allocated. If an alignment is specified, the value result
2700of the allocation is guaranteed to be aligned to at least that boundary. If
2701not specified, or if zero, the target can choose to align the allocation on any
2702convenient boundary.</p>
2703
2704<p>'<tt>type</tt>' may be any sized type.</p>
2705
2706<h5>Semantics:</h5>
2707
2708<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2709memory is automatically released when the function returns. The '<tt>alloca</tt>'
2710instruction is commonly used to represent automatic variables that must
2711have an address available. When the function returns (either with the <tt><a
2712 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2713instructions), the memory is reclaimed.</p>
2714
2715<h5>Example:</h5>
2716
2717<pre>
2718 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2719 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2720 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2721 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2722</pre>
2723</div>
2724
2725<!-- _______________________________________________________________________ -->
2726<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2727Instruction</a> </div>
2728<div class="doc_text">
2729<h5>Syntax:</h5>
2730<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2731<h5>Overview:</h5>
2732<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2733<h5>Arguments:</h5>
2734<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2735address from which to load. The pointer must point to a <a
2736 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2737marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2738the number or order of execution of this <tt>load</tt> with other
2739volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2740instructions. </p>
2741<h5>Semantics:</h5>
2742<p>The location of memory pointed to is loaded.</p>
2743<h5>Examples:</h5>
2744<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2745 <a
2746 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2747 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2748</pre>
2749</div>
2750<!-- _______________________________________________________________________ -->
2751<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2752Instruction</a> </div>
2753<div class="doc_text">
2754<h5>Syntax:</h5>
2755<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2756 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2757</pre>
2758<h5>Overview:</h5>
2759<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2760<h5>Arguments:</h5>
2761<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2762to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2763operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2764operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2765optimizer is not allowed to modify the number or order of execution of
2766this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2767 href="#i_store">store</a></tt> instructions.</p>
2768<h5>Semantics:</h5>
2769<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2770at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2771<h5>Example:</h5>
2772<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2773 <a
2774 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2775 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2776</pre>
2777</div>
2778
2779<!-- _______________________________________________________________________ -->
2780<div class="doc_subsubsection">
2781 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2782</div>
2783
2784<div class="doc_text">
2785<h5>Syntax:</h5>
2786<pre>
2787 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2788</pre>
2789
2790<h5>Overview:</h5>
2791
2792<p>
2793The '<tt>getelementptr</tt>' instruction is used to get the address of a
2794subelement of an aggregate data structure.</p>
2795
2796<h5>Arguments:</h5>
2797
2798<p>This instruction takes a list of integer operands that indicate what
2799elements of the aggregate object to index to. The actual types of the arguments
2800provided depend on the type of the first pointer argument. The
2801'<tt>getelementptr</tt>' instruction is used to index down through the type
2802levels of a structure or to a specific index in an array. When indexing into a
2803structure, only <tt>i32</tt> integer constants are allowed. When indexing
2804into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2805be sign extended to 64-bit values.</p>
2806
2807<p>For example, let's consider a C code fragment and how it gets
2808compiled to LLVM:</p>
2809
2810<div class="doc_code">
2811<pre>
2812struct RT {
2813 char A;
2814 int B[10][20];
2815 char C;
2816};
2817struct ST {
2818 int X;
2819 double Y;
2820 struct RT Z;
2821};
2822
2823int *foo(struct ST *s) {
2824 return &amp;s[1].Z.B[5][13];
2825}
2826</pre>
2827</div>
2828
2829<p>The LLVM code generated by the GCC frontend is:</p>
2830
2831<div class="doc_code">
2832<pre>
2833%RT = type { i8 , [10 x [20 x i32]], i8 }
2834%ST = type { i32, double, %RT }
2835
2836define i32* %foo(%ST* %s) {
2837entry:
2838 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2839 ret i32* %reg
2840}
2841</pre>
2842</div>
2843
2844<h5>Semantics:</h5>
2845
2846<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2847on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2848and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2849<a href="#t_integer">integer</a> type but the value will always be sign extended
2850to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2851<b>constants</b>.</p>
2852
2853<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2854type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2855}</tt>' type, a structure. The second index indexes into the third element of
2856the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2857i8 }</tt>' type, another structure. The third index indexes into the second
2858element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2859array. The two dimensions of the array are subscripted into, yielding an
2860'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2861to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2862
2863<p>Note that it is perfectly legal to index partially through a
2864structure, returning a pointer to an inner element. Because of this,
2865the LLVM code for the given testcase is equivalent to:</p>
2866
2867<pre>
2868 define i32* %foo(%ST* %s) {
2869 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2870 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2871 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2872 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2873 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2874 ret i32* %t5
2875 }
2876</pre>
2877
2878<p>Note that it is undefined to access an array out of bounds: array and
2879pointer indexes must always be within the defined bounds of the array type.
2880The one exception for this rules is zero length arrays. These arrays are
2881defined to be accessible as variable length arrays, which requires access
2882beyond the zero'th element.</p>
2883
2884<p>The getelementptr instruction is often confusing. For some more insight
2885into how it works, see <a href="GetElementPtr.html">the getelementptr
2886FAQ</a>.</p>
2887
2888<h5>Example:</h5>
2889
2890<pre>
2891 <i>; yields [12 x i8]*:aptr</i>
2892 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2893</pre>
2894</div>
2895
2896<!-- ======================================================================= -->
2897<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2898</div>
2899<div class="doc_text">
2900<p>The instructions in this category are the conversion instructions (casting)
2901which all take a single operand and a type. They perform various bit conversions
2902on the operand.</p>
2903</div>
2904
2905<!-- _______________________________________________________________________ -->
2906<div class="doc_subsubsection">
2907 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2908</div>
2909<div class="doc_text">
2910
2911<h5>Syntax:</h5>
2912<pre>
2913 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2914</pre>
2915
2916<h5>Overview:</h5>
2917<p>
2918The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2919</p>
2920
2921<h5>Arguments:</h5>
2922<p>
2923The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2924be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2925and type of the result, which must be an <a href="#t_integer">integer</a>
2926type. The bit size of <tt>value</tt> must be larger than the bit size of
2927<tt>ty2</tt>. Equal sized types are not allowed.</p>
2928
2929<h5>Semantics:</h5>
2930<p>
2931The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2932and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2933larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2934It will always truncate bits.</p>
2935
2936<h5>Example:</h5>
2937<pre>
2938 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2939 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2940 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2941</pre>
2942</div>
2943
2944<!-- _______________________________________________________________________ -->
2945<div class="doc_subsubsection">
2946 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2947</div>
2948<div class="doc_text">
2949
2950<h5>Syntax:</h5>
2951<pre>
2952 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2953</pre>
2954
2955<h5>Overview:</h5>
2956<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2957<tt>ty2</tt>.</p>
2958
2959
2960<h5>Arguments:</h5>
2961<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2962<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2963also be of <a href="#t_integer">integer</a> type. The bit size of the
2964<tt>value</tt> must be smaller than the bit size of the destination type,
2965<tt>ty2</tt>.</p>
2966
2967<h5>Semantics:</h5>
2968<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2969bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2970
2971<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2972
2973<h5>Example:</h5>
2974<pre>
2975 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2976 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2977</pre>
2978</div>
2979
2980<!-- _______________________________________________________________________ -->
2981<div class="doc_subsubsection">
2982 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2983</div>
2984<div class="doc_text">
2985
2986<h5>Syntax:</h5>
2987<pre>
2988 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2989</pre>
2990
2991<h5>Overview:</h5>
2992<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2993
2994<h5>Arguments:</h5>
2995<p>
2996The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2997<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2998also be of <a href="#t_integer">integer</a> type. The bit size of the
2999<tt>value</tt> must be smaller than the bit size of the destination type,
3000<tt>ty2</tt>.</p>
3001
3002<h5>Semantics:</h5>
3003<p>
3004The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3005bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3006the type <tt>ty2</tt>.</p>
3007
3008<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3009
3010<h5>Example:</h5>
3011<pre>
3012 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3013 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3014</pre>
3015</div>
3016
3017<!-- _______________________________________________________________________ -->
3018<div class="doc_subsubsection">
3019 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3020</div>
3021
3022<div class="doc_text">
3023
3024<h5>Syntax:</h5>
3025
3026<pre>
3027 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3028</pre>
3029
3030<h5>Overview:</h5>
3031<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3032<tt>ty2</tt>.</p>
3033
3034
3035<h5>Arguments:</h5>
3036<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3037 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3038cast it to. The size of <tt>value</tt> must be larger than the size of
3039<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3040<i>no-op cast</i>.</p>
3041
3042<h5>Semantics:</h5>
3043<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3044<a href="#t_floating">floating point</a> type to a smaller
3045<a href="#t_floating">floating point</a> type. If the value cannot fit within
3046the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3047
3048<h5>Example:</h5>
3049<pre>
3050 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3051 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3052</pre>
3053</div>
3054
3055<!-- _______________________________________________________________________ -->
3056<div class="doc_subsubsection">
3057 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3058</div>
3059<div class="doc_text">
3060
3061<h5>Syntax:</h5>
3062<pre>
3063 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3064</pre>
3065
3066<h5>Overview:</h5>
3067<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3068floating point value.</p>
3069
3070<h5>Arguments:</h5>
3071<p>The '<tt>fpext</tt>' instruction takes a
3072<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3073and a <a href="#t_floating">floating point</a> type to cast it to. The source
3074type must be smaller than the destination type.</p>
3075
3076<h5>Semantics:</h5>
3077<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3078<a href="#t_floating">floating point</a> type to a larger
3079<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3080used to make a <i>no-op cast</i> because it always changes bits. Use
3081<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3082
3083<h5>Example:</h5>
3084<pre>
3085 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3086 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3087</pre>
3088</div>
3089
3090<!-- _______________________________________________________________________ -->
3091<div class="doc_subsubsection">
3092 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3093</div>
3094<div class="doc_text">
3095
3096<h5>Syntax:</h5>
3097<pre>
3098 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3099</pre>
3100
3101<h5>Overview:</h5>
3102<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
3103unsigned integer equivalent of type <tt>ty2</tt>.
3104</p>
3105
3106<h5>Arguments:</h5>
3107<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
3108<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3109must be an <a href="#t_integer">integer</a> type.</p>
3110
3111<h5>Semantics:</h5>
3112<p> The '<tt>fp2uint</tt>' instruction converts its
3113<a href="#t_floating">floating point</a> operand into the nearest (rounding
3114towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3115the results are undefined.</p>
3116
3117<p>When converting to i1, the conversion is done as a comparison against
3118zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3119If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3120
3121<h5>Example:</h5>
3122<pre>
3123 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
3124 %Y = fp2uint float 1.0E+300 to i1 <i>; yields i1:true</i>
3125 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
3126</pre>
3127</div>
3128
3129<!-- _______________________________________________________________________ -->
3130<div class="doc_subsubsection">
3131 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3132</div>
3133<div class="doc_text">
3134
3135<h5>Syntax:</h5>
3136<pre>
3137 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3138</pre>
3139
3140<h5>Overview:</h5>
3141<p>The '<tt>fptosi</tt>' instruction converts
3142<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3143</p>
3144
3145
3146<h5>Arguments:</h5>
3147<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3148<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3149must also be an <a href="#t_integer">integer</a> type.</p>
3150
3151<h5>Semantics:</h5>
3152<p>The '<tt>fptosi</tt>' instruction converts its
3153<a href="#t_floating">floating point</a> operand into the nearest (rounding
3154towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3155the results are undefined.</p>
3156
3157<p>When converting to i1, the conversion is done as a comparison against
3158zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3159If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3160
3161<h5>Example:</h5>
3162<pre>
3163 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3164 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
3165 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3166</pre>
3167</div>
3168
3169<!-- _______________________________________________________________________ -->
3170<div class="doc_subsubsection">
3171 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3172</div>
3173<div class="doc_text">
3174
3175<h5>Syntax:</h5>
3176<pre>
3177 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3178</pre>
3179
3180<h5>Overview:</h5>
3181<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3182integer and converts that value to the <tt>ty2</tt> type.</p>
3183
3184
3185<h5>Arguments:</h5>
3186<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3187<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3188be a <a href="#t_floating">floating point</a> type.</p>
3189
3190<h5>Semantics:</h5>
3191<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3192integer quantity and converts it to the corresponding floating point value. If
3193the value cannot fit in the floating point value, the results are undefined.</p>
3194
3195
3196<h5>Example:</h5>
3197<pre>
3198 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3199 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3200</pre>
3201</div>
3202
3203<!-- _______________________________________________________________________ -->
3204<div class="doc_subsubsection">
3205 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3206</div>
3207<div class="doc_text">
3208
3209<h5>Syntax:</h5>
3210<pre>
3211 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3212</pre>
3213
3214<h5>Overview:</h5>
3215<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3216integer and converts that value to the <tt>ty2</tt> type.</p>
3217
3218<h5>Arguments:</h5>
3219<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3220<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3221a <a href="#t_floating">floating point</a> type.</p>
3222
3223<h5>Semantics:</h5>
3224<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3225integer quantity and converts it to the corresponding floating point value. If
3226the value cannot fit in the floating point value, the results are undefined.</p>
3227
3228<h5>Example:</h5>
3229<pre>
3230 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3231 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3232</pre>
3233</div>
3234
3235<!-- _______________________________________________________________________ -->
3236<div class="doc_subsubsection">
3237 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3238</div>
3239<div class="doc_text">
3240
3241<h5>Syntax:</h5>
3242<pre>
3243 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3244</pre>
3245
3246<h5>Overview:</h5>
3247<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3248the integer type <tt>ty2</tt>.</p>
3249
3250<h5>Arguments:</h5>
3251<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3252must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3253<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3254
3255<h5>Semantics:</h5>
3256<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3257<tt>ty2</tt> by interpreting the pointer value as an integer and either
3258truncating or zero extending that value to the size of the integer type. If
3259<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3260<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3261are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3262change.</p>
3263
3264<h5>Example:</h5>
3265<pre>
3266 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3267 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3268</pre>
3269</div>
3270
3271<!-- _______________________________________________________________________ -->
3272<div class="doc_subsubsection">
3273 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3274</div>
3275<div class="doc_text">
3276
3277<h5>Syntax:</h5>
3278<pre>
3279 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3280</pre>
3281
3282<h5>Overview:</h5>
3283<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3284a pointer type, <tt>ty2</tt>.</p>
3285
3286<h5>Arguments:</h5>
3287<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3288value to cast, and a type to cast it to, which must be a
3289<a href="#t_pointer">pointer</a> type.
3290
3291<h5>Semantics:</h5>
3292<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3293<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3294the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3295size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3296the size of a pointer then a zero extension is done. If they are the same size,
3297nothing is done (<i>no-op cast</i>).</p>
3298
3299<h5>Example:</h5>
3300<pre>
3301 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3302 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3303 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3304</pre>
3305</div>
3306
3307<!-- _______________________________________________________________________ -->
3308<div class="doc_subsubsection">
3309 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3310</div>
3311<div class="doc_text">
3312
3313<h5>Syntax:</h5>
3314<pre>
3315 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3316</pre>
3317
3318<h5>Overview:</h5>
3319<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3320<tt>ty2</tt> without changing any bits.</p>
3321
3322<h5>Arguments:</h5>
3323<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3324a first class value, and a type to cast it to, which must also be a <a
3325 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3326and the destination type, <tt>ty2</tt>, must be identical. If the source
3327type is a pointer, the destination type must also be a pointer.</p>
3328
3329<h5>Semantics:</h5>
3330<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3331<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3332this conversion. The conversion is done as if the <tt>value</tt> had been
3333stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3334converted to other pointer types with this instruction. To convert pointers to
3335other types, use the <a href="#i_inttoptr">inttoptr</a> or
3336<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3337
3338<h5>Example:</h5>
3339<pre>
3340 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3341 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3342 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3343</pre>
3344</div>
3345
3346<!-- ======================================================================= -->
3347<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3348<div class="doc_text">
3349<p>The instructions in this category are the "miscellaneous"
3350instructions, which defy better classification.</p>
3351</div>
3352
3353<!-- _______________________________________________________________________ -->
3354<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3355</div>
3356<div class="doc_text">
3357<h5>Syntax:</h5>
3358<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3359</pre>
3360<h5>Overview:</h5>
3361<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3362of its two integer operands.</p>
3363<h5>Arguments:</h5>
3364<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3365the condition code indicating the kind of comparison to perform. It is not
3366a value, just a keyword. The possible condition code are:
3367<ol>
3368 <li><tt>eq</tt>: equal</li>
3369 <li><tt>ne</tt>: not equal </li>
3370 <li><tt>ugt</tt>: unsigned greater than</li>
3371 <li><tt>uge</tt>: unsigned greater or equal</li>
3372 <li><tt>ult</tt>: unsigned less than</li>
3373 <li><tt>ule</tt>: unsigned less or equal</li>
3374 <li><tt>sgt</tt>: signed greater than</li>
3375 <li><tt>sge</tt>: signed greater or equal</li>
3376 <li><tt>slt</tt>: signed less than</li>
3377 <li><tt>sle</tt>: signed less or equal</li>
3378</ol>
3379<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3380<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3381<h5>Semantics:</h5>
3382<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3383the condition code given as <tt>cond</tt>. The comparison performed always
3384yields a <a href="#t_primitive">i1</a> result, as follows:
3385<ol>
3386 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3387 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3388 </li>
3389 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3390 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3391 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3392 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3393 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3394 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3395 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3396 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3397 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3398 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3399 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3400 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3401 <li><tt>sge</tt>: interprets the operands as signed values and yields
3402 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3403 <li><tt>slt</tt>: interprets the operands as signed values and yields
3404 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3405 <li><tt>sle</tt>: interprets the operands as signed values and yields
3406 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3407</ol>
3408<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3409values are compared as if they were integers.</p>
3410
3411<h5>Example:</h5>
3412<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3413 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3414 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3415 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3416 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3417 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3418</pre>
3419</div>
3420
3421<!-- _______________________________________________________________________ -->
3422<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3423</div>
3424<div class="doc_text">
3425<h5>Syntax:</h5>
3426<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3427</pre>
3428<h5>Overview:</h5>
3429<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3430of its floating point operands.</p>
3431<h5>Arguments:</h5>
3432<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3433the condition code indicating the kind of comparison to perform. It is not
3434a value, just a keyword. The possible condition code are:
3435<ol>
3436 <li><tt>false</tt>: no comparison, always returns false</li>
3437 <li><tt>oeq</tt>: ordered and equal</li>
3438 <li><tt>ogt</tt>: ordered and greater than </li>
3439 <li><tt>oge</tt>: ordered and greater than or equal</li>
3440 <li><tt>olt</tt>: ordered and less than </li>
3441 <li><tt>ole</tt>: ordered and less than or equal</li>
3442 <li><tt>one</tt>: ordered and not equal</li>
3443 <li><tt>ord</tt>: ordered (no nans)</li>
3444 <li><tt>ueq</tt>: unordered or equal</li>
3445 <li><tt>ugt</tt>: unordered or greater than </li>
3446 <li><tt>uge</tt>: unordered or greater than or equal</li>
3447 <li><tt>ult</tt>: unordered or less than </li>
3448 <li><tt>ule</tt>: unordered or less than or equal</li>
3449 <li><tt>une</tt>: unordered or not equal</li>
3450 <li><tt>uno</tt>: unordered (either nans)</li>
3451 <li><tt>true</tt>: no comparison, always returns true</li>
3452</ol>
3453<p><i>Ordered</i> means that neither operand is a QNAN while
3454<i>unordered</i> means that either operand may be a QNAN.</p>
3455<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3456<a href="#t_floating">floating point</a> typed. They must have identical
3457types.</p>
3458<h5>Semantics:</h5>
3459<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3460the condition code given as <tt>cond</tt>. The comparison performed always
3461yields a <a href="#t_primitive">i1</a> result, as follows:
3462<ol>
3463 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3464 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3465 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3466 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3467 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3468 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3469 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3470 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3471 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3472 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3473 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3474 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3475 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3476 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3477 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3478 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3479 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3480 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3481 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3482 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3483 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3484 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3485 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3486 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3487 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3488 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3489 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3490 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3491</ol>
3492
3493<h5>Example:</h5>
3494<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3495 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3496 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3497 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3498</pre>
3499</div>
3500
3501<!-- _______________________________________________________________________ -->
3502<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3503Instruction</a> </div>
3504<div class="doc_text">
3505<h5>Syntax:</h5>
3506<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3507<h5>Overview:</h5>
3508<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3509the SSA graph representing the function.</p>
3510<h5>Arguments:</h5>
3511<p>The type of the incoming values is specified with the first type
3512field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3513as arguments, with one pair for each predecessor basic block of the
3514current block. Only values of <a href="#t_firstclass">first class</a>
3515type may be used as the value arguments to the PHI node. Only labels
3516may be used as the label arguments.</p>
3517<p>There must be no non-phi instructions between the start of a basic
3518block and the PHI instructions: i.e. PHI instructions must be first in
3519a basic block.</p>
3520<h5>Semantics:</h5>
3521<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3522specified by the pair corresponding to the predecessor basic block that executed
3523just prior to the current block.</p>
3524<h5>Example:</h5>
3525<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3526</div>
3527
3528<!-- _______________________________________________________________________ -->
3529<div class="doc_subsubsection">
3530 <a name="i_select">'<tt>select</tt>' Instruction</a>
3531</div>
3532
3533<div class="doc_text">
3534
3535<h5>Syntax:</h5>
3536
3537<pre>
3538 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3539</pre>
3540
3541<h5>Overview:</h5>
3542
3543<p>
3544The '<tt>select</tt>' instruction is used to choose one value based on a
3545condition, without branching.
3546</p>
3547
3548
3549<h5>Arguments:</h5>
3550
3551<p>
3552The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3553</p>
3554
3555<h5>Semantics:</h5>
3556
3557<p>
3558If the boolean condition evaluates to true, the instruction returns the first
3559value argument; otherwise, it returns the second value argument.
3560</p>
3561
3562<h5>Example:</h5>
3563
3564<pre>
3565 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3566</pre>
3567</div>
3568
3569
3570<!-- _______________________________________________________________________ -->
3571<div class="doc_subsubsection">
3572 <a name="i_call">'<tt>call</tt>' Instruction</a>
3573</div>
3574
3575<div class="doc_text">
3576
3577<h5>Syntax:</h5>
3578<pre>
3579 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
3580</pre>
3581
3582<h5>Overview:</h5>
3583
3584<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3585
3586<h5>Arguments:</h5>
3587
3588<p>This instruction requires several arguments:</p>
3589
3590<ol>
3591 <li>
3592 <p>The optional "tail" marker indicates whether the callee function accesses
3593 any allocas or varargs in the caller. If the "tail" marker is present, the
3594 function call is eligible for tail call optimization. Note that calls may
3595 be marked "tail" even if they do not occur before a <a
3596 href="#i_ret"><tt>ret</tt></a> instruction.
3597 </li>
3598 <li>
3599 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3600 convention</a> the call should use. If none is specified, the call defaults
3601 to using C calling conventions.
3602 </li>
3603 <li>
3604 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3605 being invoked. The argument types must match the types implied by this
3606 signature. This type can be omitted if the function is not varargs and
3607 if the function type does not return a pointer to a function.</p>
3608 </li>
3609 <li>
3610 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3611 be invoked. In most cases, this is a direct function invocation, but
3612 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3613 to function value.</p>
3614 </li>
3615 <li>
3616 <p>'<tt>function args</tt>': argument list whose types match the
3617 function signature argument types. All arguments must be of
3618 <a href="#t_firstclass">first class</a> type. If the function signature
3619 indicates the function accepts a variable number of arguments, the extra
3620 arguments can be specified.</p>
3621 </li>
3622</ol>
3623
3624<h5>Semantics:</h5>
3625
3626<p>The '<tt>call</tt>' instruction is used to cause control flow to
3627transfer to a specified function, with its incoming arguments bound to
3628the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3629instruction in the called function, control flow continues with the
3630instruction after the function call, and the return value of the
3631function is bound to the result argument. This is a simpler case of
3632the <a href="#i_invoke">invoke</a> instruction.</p>
3633
3634<h5>Example:</h5>
3635
3636<pre>
3637 %retval = call i32 %test(i32 %argc)
3638 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3639 %X = tail call i32 %foo()
3640 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
3641</pre>
3642
3643</div>
3644
3645<!-- _______________________________________________________________________ -->
3646<div class="doc_subsubsection">
3647 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3648</div>
3649
3650<div class="doc_text">
3651
3652<h5>Syntax:</h5>
3653
3654<pre>
3655 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3656</pre>
3657
3658<h5>Overview:</h5>
3659
3660<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3661the "variable argument" area of a function call. It is used to implement the
3662<tt>va_arg</tt> macro in C.</p>
3663
3664<h5>Arguments:</h5>
3665
3666<p>This instruction takes a <tt>va_list*</tt> value and the type of
3667the argument. It returns a value of the specified argument type and
3668increments the <tt>va_list</tt> to point to the next argument. The
3669actual type of <tt>va_list</tt> is target specific.</p>
3670
3671<h5>Semantics:</h5>
3672
3673<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3674type from the specified <tt>va_list</tt> and causes the
3675<tt>va_list</tt> to point to the next argument. For more information,
3676see the variable argument handling <a href="#int_varargs">Intrinsic
3677Functions</a>.</p>
3678
3679<p>It is legal for this instruction to be called in a function which does not
3680take a variable number of arguments, for example, the <tt>vfprintf</tt>
3681function.</p>
3682
3683<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3684href="#intrinsics">intrinsic function</a> because it takes a type as an
3685argument.</p>
3686
3687<h5>Example:</h5>
3688
3689<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3690
3691</div>
3692
3693<!-- *********************************************************************** -->
3694<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3695<!-- *********************************************************************** -->
3696
3697<div class="doc_text">
3698
3699<p>LLVM supports the notion of an "intrinsic function". These functions have
3700well known names and semantics and are required to follow certain restrictions.
3701Overall, these intrinsics represent an extension mechanism for the LLVM
3702language that does not require changing all of the transformations in LLVM when
3703adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3704
3705<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3706prefix is reserved in LLVM for intrinsic names; thus, function names may not
3707begin with this prefix. Intrinsic functions must always be external functions:
3708you cannot define the body of intrinsic functions. Intrinsic functions may
3709only be used in call or invoke instructions: it is illegal to take the address
3710of an intrinsic function. Additionally, because intrinsic functions are part
3711of the LLVM language, it is required if any are added that they be documented
3712here.</p>
3713
3714<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3715a family of functions that perform the same operation but on different data
3716types. This is most frequent with the integer types. Since LLVM can represent
3717over 8 million different integer types, there is a way to declare an intrinsic
3718that can be overloaded based on its arguments. Such an intrinsic will have the
3719names of its argument types encoded into its function name, each
3720preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
3721integer of any width. This leads to a family of functions such as
3722<tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
3723</p>
3724
3725
3726<p>To learn how to add an intrinsic function, please see the
3727<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3728</p>
3729
3730</div>
3731
3732<!-- ======================================================================= -->
3733<div class="doc_subsection">
3734 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3735</div>
3736
3737<div class="doc_text">
3738
3739<p>Variable argument support is defined in LLVM with the <a
3740 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3741intrinsic functions. These functions are related to the similarly
3742named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3743
3744<p>All of these functions operate on arguments that use a
3745target-specific value type "<tt>va_list</tt>". The LLVM assembly
3746language reference manual does not define what this type is, so all
3747transformations should be prepared to handle these functions regardless of
3748the type used.</p>
3749
3750<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3751instruction and the variable argument handling intrinsic functions are
3752used.</p>
3753
3754<div class="doc_code">
3755<pre>
3756define i32 @test(i32 %X, ...) {
3757 ; Initialize variable argument processing
3758 %ap = alloca i8*
3759 %ap2 = bitcast i8** %ap to i8*
3760 call void @llvm.va_start(i8* %ap2)
3761
3762 ; Read a single integer argument
3763 %tmp = va_arg i8** %ap, i32
3764
3765 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3766 %aq = alloca i8*
3767 %aq2 = bitcast i8** %aq to i8*
3768 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3769 call void @llvm.va_end(i8* %aq2)
3770
3771 ; Stop processing of arguments.
3772 call void @llvm.va_end(i8* %ap2)
3773 ret i32 %tmp
3774}
3775
3776declare void @llvm.va_start(i8*)
3777declare void @llvm.va_copy(i8*, i8*)
3778declare void @llvm.va_end(i8*)
3779</pre>
3780</div>
3781
3782</div>
3783
3784<!-- _______________________________________________________________________ -->
3785<div class="doc_subsubsection">
3786 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3787</div>
3788
3789
3790<div class="doc_text">
3791<h5>Syntax:</h5>
3792<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3793<h5>Overview:</h5>
3794<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3795<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3796href="#i_va_arg">va_arg</a></tt>.</p>
3797
3798<h5>Arguments:</h5>
3799
3800<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3801
3802<h5>Semantics:</h5>
3803
3804<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3805macro available in C. In a target-dependent way, it initializes the
3806<tt>va_list</tt> element to which the argument points, so that the next call to
3807<tt>va_arg</tt> will produce the first variable argument passed to the function.
3808Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3809last argument of the function as the compiler can figure that out.</p>
3810
3811</div>
3812
3813<!-- _______________________________________________________________________ -->
3814<div class="doc_subsubsection">
3815 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3816</div>
3817
3818<div class="doc_text">
3819<h5>Syntax:</h5>
3820<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3821<h5>Overview:</h5>
3822
3823<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3824which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3825or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3826
3827<h5>Arguments:</h5>
3828
3829<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3830
3831<h5>Semantics:</h5>
3832
3833<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3834macro available in C. In a target-dependent way, it destroys the
3835<tt>va_list</tt> element to which the argument points. Calls to <a
3836href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3837<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3838<tt>llvm.va_end</tt>.</p>
3839
3840</div>
3841
3842<!-- _______________________________________________________________________ -->
3843<div class="doc_subsubsection">
3844 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3845</div>
3846
3847<div class="doc_text">
3848
3849<h5>Syntax:</h5>
3850
3851<pre>
3852 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3853</pre>
3854
3855<h5>Overview:</h5>
3856
3857<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3858from the source argument list to the destination argument list.</p>
3859
3860<h5>Arguments:</h5>
3861
3862<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3863The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3864
3865
3866<h5>Semantics:</h5>
3867
3868<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3869macro available in C. In a target-dependent way, it copies the source
3870<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3871intrinsic is necessary because the <tt><a href="#int_va_start">
3872llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3873example, memory allocation.</p>
3874
3875</div>
3876
3877<!-- ======================================================================= -->
3878<div class="doc_subsection">
3879 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3880</div>
3881
3882<div class="doc_text">
3883
3884<p>
3885LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3886Collection</a> requires the implementation and generation of these intrinsics.
3887These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3888stack</a>, as well as garbage collector implementations that require <a
3889href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3890Front-ends for type-safe garbage collected languages should generate these
3891intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3892href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3893</p>
3894</div>
3895
3896<!-- _______________________________________________________________________ -->
3897<div class="doc_subsubsection">
3898 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3899</div>
3900
3901<div class="doc_text">
3902
3903<h5>Syntax:</h5>
3904
3905<pre>
3906 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
3907</pre>
3908
3909<h5>Overview:</h5>
3910
3911<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3912the code generator, and allows some metadata to be associated with it.</p>
3913
3914<h5>Arguments:</h5>
3915
3916<p>The first argument specifies the address of a stack object that contains the
3917root pointer. The second pointer (which must be either a constant or a global
3918value address) contains the meta-data to be associated with the root.</p>
3919
3920<h5>Semantics:</h5>
3921
3922<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3923location. At compile-time, the code generator generates information to allow
3924the runtime to find the pointer at GC safe points.
3925</p>
3926
3927</div>
3928
3929
3930<!-- _______________________________________________________________________ -->
3931<div class="doc_subsubsection">
3932 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3933</div>
3934
3935<div class="doc_text">
3936
3937<h5>Syntax:</h5>
3938
3939<pre>
3940 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
3941</pre>
3942
3943<h5>Overview:</h5>
3944
3945<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3946locations, allowing garbage collector implementations that require read
3947barriers.</p>
3948
3949<h5>Arguments:</h5>
3950
3951<p>The second argument is the address to read from, which should be an address
3952allocated from the garbage collector. The first object is a pointer to the
3953start of the referenced object, if needed by the language runtime (otherwise
3954null).</p>
3955
3956<h5>Semantics:</h5>
3957
3958<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3959instruction, but may be replaced with substantially more complex code by the
3960garbage collector runtime, as needed.</p>
3961
3962</div>
3963
3964
3965<!-- _______________________________________________________________________ -->
3966<div class="doc_subsubsection">
3967 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3968</div>
3969
3970<div class="doc_text">
3971
3972<h5>Syntax:</h5>
3973
3974<pre>
3975 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
3976</pre>
3977
3978<h5>Overview:</h5>
3979
3980<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3981locations, allowing garbage collector implementations that require write
3982barriers (such as generational or reference counting collectors).</p>
3983
3984<h5>Arguments:</h5>
3985
3986<p>The first argument is the reference to store, the second is the start of the
3987object to store it to, and the third is the address of the field of Obj to
3988store to. If the runtime does not require a pointer to the object, Obj may be
3989null.</p>
3990
3991<h5>Semantics:</h5>
3992
3993<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3994instruction, but may be replaced with substantially more complex code by the
3995garbage collector runtime, as needed.</p>
3996
3997</div>
3998
3999
4000
4001<!-- ======================================================================= -->
4002<div class="doc_subsection">
4003 <a name="int_codegen">Code Generator Intrinsics</a>
4004</div>
4005
4006<div class="doc_text">
4007<p>
4008These intrinsics are provided by LLVM to expose special features that may only
4009be implemented with code generator support.
4010</p>
4011
4012</div>
4013
4014<!-- _______________________________________________________________________ -->
4015<div class="doc_subsubsection">
4016 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4017</div>
4018
4019<div class="doc_text">
4020
4021<h5>Syntax:</h5>
4022<pre>
4023 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4024</pre>
4025
4026<h5>Overview:</h5>
4027
4028<p>
4029The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4030target-specific value indicating the return address of the current function
4031or one of its callers.
4032</p>
4033
4034<h5>Arguments:</h5>
4035
4036<p>
4037The argument to this intrinsic indicates which function to return the address
4038for. Zero indicates the calling function, one indicates its caller, etc. The
4039argument is <b>required</b> to be a constant integer value.
4040</p>
4041
4042<h5>Semantics:</h5>
4043
4044<p>
4045The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4046the return address of the specified call frame, or zero if it cannot be
4047identified. The value returned by this intrinsic is likely to be incorrect or 0
4048for arguments other than zero, so it should only be used for debugging purposes.
4049</p>
4050
4051<p>
4052Note that calling this intrinsic does not prevent function inlining or other
4053aggressive transformations, so the value returned may not be that of the obvious
4054source-language caller.
4055</p>
4056</div>
4057
4058
4059<!-- _______________________________________________________________________ -->
4060<div class="doc_subsubsection">
4061 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4062</div>
4063
4064<div class="doc_text">
4065
4066<h5>Syntax:</h5>
4067<pre>
4068 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
4069</pre>
4070
4071<h5>Overview:</h5>
4072
4073<p>
4074The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4075target-specific frame pointer value for the specified stack frame.
4076</p>
4077
4078<h5>Arguments:</h5>
4079
4080<p>
4081The argument to this intrinsic indicates which function to return the frame
4082pointer for. Zero indicates the calling function, one indicates its caller,
4083etc. The argument is <b>required</b> to be a constant integer value.
4084</p>
4085
4086<h5>Semantics:</h5>
4087
4088<p>
4089The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4090the frame address of the specified call frame, or zero if it cannot be
4091identified. The value returned by this intrinsic is likely to be incorrect or 0
4092for arguments other than zero, so it should only be used for debugging purposes.
4093</p>
4094
4095<p>
4096Note that calling this intrinsic does not prevent function inlining or other
4097aggressive transformations, so the value returned may not be that of the obvious
4098source-language caller.
4099</p>
4100</div>
4101
4102<!-- _______________________________________________________________________ -->
4103<div class="doc_subsubsection">
4104 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4105</div>
4106
4107<div class="doc_text">
4108
4109<h5>Syntax:</h5>
4110<pre>
4111 declare i8 *@llvm.stacksave()
4112</pre>
4113
4114<h5>Overview:</h5>
4115
4116<p>
4117The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4118the function stack, for use with <a href="#int_stackrestore">
4119<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4120features like scoped automatic variable sized arrays in C99.
4121</p>
4122
4123<h5>Semantics:</h5>
4124
4125<p>
4126This intrinsic returns a opaque pointer value that can be passed to <a
4127href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4128<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4129<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4130state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4131practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4132that were allocated after the <tt>llvm.stacksave</tt> was executed.
4133</p>
4134
4135</div>
4136
4137<!-- _______________________________________________________________________ -->
4138<div class="doc_subsubsection">
4139 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4140</div>
4141
4142<div class="doc_text">
4143
4144<h5>Syntax:</h5>
4145<pre>
4146 declare void @llvm.stackrestore(i8 * %ptr)
4147</pre>
4148
4149<h5>Overview:</h5>
4150
4151<p>
4152The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4153the function stack to the state it was in when the corresponding <a
4154href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4155useful for implementing language features like scoped automatic variable sized
4156arrays in C99.
4157</p>
4158
4159<h5>Semantics:</h5>
4160
4161<p>
4162See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4163</p>
4164
4165</div>
4166
4167
4168<!-- _______________________________________________________________________ -->
4169<div class="doc_subsubsection">
4170 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4171</div>
4172
4173<div class="doc_text">
4174
4175<h5>Syntax:</h5>
4176<pre>
4177 declare void @llvm.prefetch(i8 * &lt;address&gt;,
4178 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4179</pre>
4180
4181<h5>Overview:</h5>
4182
4183
4184<p>
4185The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4186a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4187no
4188effect on the behavior of the program but can change its performance
4189characteristics.
4190</p>
4191
4192<h5>Arguments:</h5>
4193
4194<p>
4195<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4196determining if the fetch should be for a read (0) or write (1), and
4197<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4198locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4199<tt>locality</tt> arguments must be constant integers.
4200</p>
4201
4202<h5>Semantics:</h5>
4203
4204<p>
4205This intrinsic does not modify the behavior of the program. In particular,
4206prefetches cannot trap and do not produce a value. On targets that support this
4207intrinsic, the prefetch can provide hints to the processor cache for better
4208performance.
4209</p>
4210
4211</div>
4212
4213<!-- _______________________________________________________________________ -->
4214<div class="doc_subsubsection">
4215 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4216</div>
4217
4218<div class="doc_text">
4219
4220<h5>Syntax:</h5>
4221<pre>
4222 declare void @llvm.pcmarker( i32 &lt;id&gt; )
4223</pre>
4224
4225<h5>Overview:</h5>
4226
4227
4228<p>
4229The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4230(PC) in a region of
4231code to simulators and other tools. The method is target specific, but it is
4232expected that the marker will use exported symbols to transmit the PC of the marker.
4233The marker makes no guarantees that it will remain with any specific instruction
4234after optimizations. It is possible that the presence of a marker will inhibit
4235optimizations. The intended use is to be inserted after optimizations to allow
4236correlations of simulation runs.
4237</p>
4238
4239<h5>Arguments:</h5>
4240
4241<p>
4242<tt>id</tt> is a numerical id identifying the marker.
4243</p>
4244
4245<h5>Semantics:</h5>
4246
4247<p>
4248This intrinsic does not modify the behavior of the program. Backends that do not
4249support this intrinisic may ignore it.
4250</p>
4251
4252</div>
4253
4254<!-- _______________________________________________________________________ -->
4255<div class="doc_subsubsection">
4256 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4257</div>
4258
4259<div class="doc_text">
4260
4261<h5>Syntax:</h5>
4262<pre>
4263 declare i64 @llvm.readcyclecounter( )
4264</pre>
4265
4266<h5>Overview:</h5>
4267
4268
4269<p>
4270The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4271counter register (or similar low latency, high accuracy clocks) on those targets
4272that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4273As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4274should only be used for small timings.
4275</p>
4276
4277<h5>Semantics:</h5>
4278
4279<p>
4280When directly supported, reading the cycle counter should not modify any memory.
4281Implementations are allowed to either return a application specific value or a
4282system wide value. On backends without support, this is lowered to a constant 0.
4283</p>
4284
4285</div>
4286
4287<!-- ======================================================================= -->
4288<div class="doc_subsection">
4289 <a name="int_libc">Standard C Library Intrinsics</a>
4290</div>
4291
4292<div class="doc_text">
4293<p>
4294LLVM provides intrinsics for a few important standard C library functions.
4295These intrinsics allow source-language front-ends to pass information about the
4296alignment of the pointer arguments to the code generator, providing opportunity
4297for more efficient code generation.
4298</p>
4299
4300</div>
4301
4302<!-- _______________________________________________________________________ -->
4303<div class="doc_subsubsection">
4304 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4305</div>
4306
4307<div class="doc_text">
4308
4309<h5>Syntax:</h5>
4310<pre>
4311 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4312 i32 &lt;len&gt;, i32 &lt;align&gt;)
4313 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4314 i64 &lt;len&gt;, i32 &lt;align&gt;)
4315</pre>
4316
4317<h5>Overview:</h5>
4318
4319<p>
4320The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4321location to the destination location.
4322</p>
4323
4324<p>
4325Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4326intrinsics do not return a value, and takes an extra alignment argument.
4327</p>
4328
4329<h5>Arguments:</h5>
4330
4331<p>
4332The first argument is a pointer to the destination, the second is a pointer to
4333the source. The third argument is an integer argument
4334specifying the number of bytes to copy, and the fourth argument is the alignment
4335of the source and destination locations.
4336</p>
4337
4338<p>
4339If the call to this intrinisic has an alignment value that is not 0 or 1, then
4340the caller guarantees that both the source and destination pointers are aligned
4341to that boundary.
4342</p>
4343
4344<h5>Semantics:</h5>
4345
4346<p>
4347The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4348location to the destination location, which are not allowed to overlap. It
4349copies "len" bytes of memory over. If the argument is known to be aligned to
4350some boundary, this can be specified as the fourth argument, otherwise it should
4351be set to 0 or 1.
4352</p>
4353</div>
4354
4355
4356<!-- _______________________________________________________________________ -->
4357<div class="doc_subsubsection">
4358 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4359</div>
4360
4361<div class="doc_text">
4362
4363<h5>Syntax:</h5>
4364<pre>
4365 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4366 i32 &lt;len&gt;, i32 &lt;align&gt;)
4367 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4368 i64 &lt;len&gt;, i32 &lt;align&gt;)
4369</pre>
4370
4371<h5>Overview:</h5>
4372
4373<p>
4374The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4375location to the destination location. It is similar to the
4376'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4377</p>
4378
4379<p>
4380Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4381intrinsics do not return a value, and takes an extra alignment argument.
4382</p>
4383
4384<h5>Arguments:</h5>
4385
4386<p>
4387The first argument is a pointer to the destination, the second is a pointer to
4388the source. The third argument is an integer argument
4389specifying the number of bytes to copy, and the fourth argument is the alignment
4390of the source and destination locations.
4391</p>
4392
4393<p>
4394If the call to this intrinisic has an alignment value that is not 0 or 1, then
4395the caller guarantees that the source and destination pointers are aligned to
4396that boundary.
4397</p>
4398
4399<h5>Semantics:</h5>
4400
4401<p>
4402The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4403location to the destination location, which may overlap. It
4404copies "len" bytes of memory over. If the argument is known to be aligned to
4405some boundary, this can be specified as the fourth argument, otherwise it should
4406be set to 0 or 1.
4407</p>
4408</div>
4409
4410
4411<!-- _______________________________________________________________________ -->
4412<div class="doc_subsubsection">
4413 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4414</div>
4415
4416<div class="doc_text">
4417
4418<h5>Syntax:</h5>
4419<pre>
4420 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4421 i32 &lt;len&gt;, i32 &lt;align&gt;)
4422 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4423 i64 &lt;len&gt;, i32 &lt;align&gt;)
4424</pre>
4425
4426<h5>Overview:</h5>
4427
4428<p>
4429The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4430byte value.
4431</p>
4432
4433<p>
4434Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4435does not return a value, and takes an extra alignment argument.
4436</p>
4437
4438<h5>Arguments:</h5>
4439
4440<p>
4441The first argument is a pointer to the destination to fill, the second is the
4442byte value to fill it with, the third argument is an integer
4443argument specifying the number of bytes to fill, and the fourth argument is the
4444known alignment of destination location.
4445</p>
4446
4447<p>
4448If the call to this intrinisic has an alignment value that is not 0 or 1, then
4449the caller guarantees that the destination pointer is aligned to that boundary.
4450</p>
4451
4452<h5>Semantics:</h5>
4453
4454<p>
4455The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4456the
4457destination location. If the argument is known to be aligned to some boundary,
4458this can be specified as the fourth argument, otherwise it should be set to 0 or
44591.
4460</p>
4461</div>
4462
4463
4464<!-- _______________________________________________________________________ -->
4465<div class="doc_subsubsection">
4466 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4467</div>
4468
4469<div class="doc_text">
4470
4471<h5>Syntax:</h5>
4472<pre>
4473 declare float @llvm.sqrt.f32(float %Val)
4474 declare double @llvm.sqrt.f64(double %Val)
4475</pre>
4476
4477<h5>Overview:</h5>
4478
4479<p>
4480The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4481returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4482<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4483negative numbers (which allows for better optimization).
4484</p>
4485
4486<h5>Arguments:</h5>
4487
4488<p>
4489The argument and return value are floating point numbers of the same type.
4490</p>
4491
4492<h5>Semantics:</h5>
4493
4494<p>
4495This function returns the sqrt of the specified operand if it is a nonnegative
4496floating point number.
4497</p>
4498</div>
4499
4500<!-- _______________________________________________________________________ -->
4501<div class="doc_subsubsection">
4502 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4503</div>
4504
4505<div class="doc_text">
4506
4507<h5>Syntax:</h5>
4508<pre>
4509 declare float @llvm.powi.f32(float %Val, i32 %power)
4510 declare double @llvm.powi.f64(double %Val, i32 %power)
4511</pre>
4512
4513<h5>Overview:</h5>
4514
4515<p>
4516The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4517specified (positive or negative) power. The order of evaluation of
4518multiplications is not defined.
4519</p>
4520
4521<h5>Arguments:</h5>
4522
4523<p>
4524The second argument is an integer power, and the first is a value to raise to
4525that power.
4526</p>
4527
4528<h5>Semantics:</h5>
4529
4530<p>
4531This function returns the first value raised to the second power with an
4532unspecified sequence of rounding operations.</p>
4533</div>
4534
4535
4536<!-- ======================================================================= -->
4537<div class="doc_subsection">
4538 <a name="int_manip">Bit Manipulation Intrinsics</a>
4539</div>
4540
4541<div class="doc_text">
4542<p>
4543LLVM provides intrinsics for a few important bit manipulation operations.
4544These allow efficient code generation for some algorithms.
4545</p>
4546
4547</div>
4548
4549<!-- _______________________________________________________________________ -->
4550<div class="doc_subsubsection">
4551 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4552</div>
4553
4554<div class="doc_text">
4555
4556<h5>Syntax:</h5>
4557<p>This is an overloaded intrinsic function. You can use bswap on any integer
4558type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
4559that includes the type for the result and the operand.
4560<pre>
4561 declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
4562 declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
4563 declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
4564</pre>
4565
4566<h5>Overview:</h5>
4567
4568<p>
4569The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4570values with an even number of bytes (positive multiple of 16 bits). These are
4571useful for performing operations on data that is not in the target's native
4572byte order.
4573</p>
4574
4575<h5>Semantics:</h5>
4576
4577<p>
4578The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high
4579and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4580intrinsic returns an i32 value that has the four bytes of the input i32
4581swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4582i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48.i48</tt>,
4583<tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
4584additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4585</p>
4586
4587</div>
4588
4589<!-- _______________________________________________________________________ -->
4590<div class="doc_subsubsection">
4591 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4592</div>
4593
4594<div class="doc_text">
4595
4596<h5>Syntax:</h5>
4597<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4598width. Not all targets support all bit widths however.
4599<pre>
4600 declare i32 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4601 declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
4602 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4603 declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
4604 declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
4605</pre>
4606
4607<h5>Overview:</h5>
4608
4609<p>
4610The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4611value.
4612</p>
4613
4614<h5>Arguments:</h5>
4615
4616<p>
4617The only argument is the value to be counted. The argument may be of any
4618integer type. The return type must match the argument type.
4619</p>
4620
4621<h5>Semantics:</h5>
4622
4623<p>
4624The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4625</p>
4626</div>
4627
4628<!-- _______________________________________________________________________ -->
4629<div class="doc_subsubsection">
4630 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4631</div>
4632
4633<div class="doc_text">
4634
4635<h5>Syntax:</h5>
4636<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4637integer bit width. Not all targets support all bit widths however.
4638<pre>
4639 declare i32 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4640 declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
4641 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4642 declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
4643 declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
4644</pre>
4645
4646<h5>Overview:</h5>
4647
4648<p>
4649The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4650leading zeros in a variable.
4651</p>
4652
4653<h5>Arguments:</h5>
4654
4655<p>
4656The only argument is the value to be counted. The argument may be of any
4657integer type. The return type must match the argument type.
4658</p>
4659
4660<h5>Semantics:</h5>
4661
4662<p>
4663The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4664in a variable. If the src == 0 then the result is the size in bits of the type
4665of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4666</p>
4667</div>
4668
4669
4670
4671<!-- _______________________________________________________________________ -->
4672<div class="doc_subsubsection">
4673 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4674</div>
4675
4676<div class="doc_text">
4677
4678<h5>Syntax:</h5>
4679<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4680integer bit width. Not all targets support all bit widths however.
4681<pre>
4682 declare i32 @llvm.cttz.i8 (i8 &lt;src&gt;)
4683 declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
4684 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4685 declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
4686 declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
4687</pre>
4688
4689<h5>Overview:</h5>
4690
4691<p>
4692The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4693trailing zeros.
4694</p>
4695
4696<h5>Arguments:</h5>
4697
4698<p>
4699The only argument is the value to be counted. The argument may be of any
4700integer type. The return type must match the argument type.
4701</p>
4702
4703<h5>Semantics:</h5>
4704
4705<p>
4706The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4707in a variable. If the src == 0 then the result is the size in bits of the type
4708of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4709</p>
4710</div>
4711
4712<!-- _______________________________________________________________________ -->
4713<div class="doc_subsubsection">
4714 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4715</div>
4716
4717<div class="doc_text">
4718
4719<h5>Syntax:</h5>
4720<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4721on any integer bit width.
4722<pre>
4723 declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4724 declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
4725</pre>
4726
4727<h5>Overview:</h5>
4728<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4729range of bits from an integer value and returns them in the same bit width as
4730the original value.</p>
4731
4732<h5>Arguments:</h5>
4733<p>The first argument, <tt>%val</tt> and the result may be integer types of
4734any bit width but they must have the same bit width. The second and third
4735arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4736
4737<h5>Semantics:</h5>
4738<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4739of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4740<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4741operates in forward mode.</p>
4742<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4743right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4744only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4745<ol>
4746 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4747 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4748 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4749 to determine the number of bits to retain.</li>
4750 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4751 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4752</ol>
4753<p>In reverse mode, a similar computation is made except that the bits are
4754returned in the reverse order. So, for example, if <tt>X</tt> has the value
4755<tt>i16 0x0ACF (101011001111)</tt> and we apply
4756<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4757<tt>i16 0x0026 (000000100110)</tt>.</p>
4758</div>
4759
4760<div class="doc_subsubsection">
4761 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4762</div>
4763
4764<div class="doc_text">
4765
4766<h5>Syntax:</h5>
4767<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4768on any integer bit width.
4769<pre>
4770 declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4771 declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
4772</pre>
4773
4774<h5>Overview:</h5>
4775<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4776of bits in an integer value with another integer value. It returns the integer
4777with the replaced bits.</p>
4778
4779<h5>Arguments:</h5>
4780<p>The first argument, <tt>%val</tt> and the result may be integer types of
4781any bit width but they must have the same bit width. <tt>%val</tt> is the value
4782whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4783integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4784type since they specify only a bit index.</p>
4785
4786<h5>Semantics:</h5>
4787<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4788of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4789<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4790operates in forward mode.</p>
4791<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4792truncating it down to the size of the replacement area or zero extending it
4793up to that size.</p>
4794<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4795are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4796in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4797to the <tt>%hi</tt>th bit.
4798<p>In reverse mode, a similar computation is made except that the bits are
4799reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4800<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4801<h5>Examples:</h5>
4802<pre>
4803 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4804 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4805 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4806 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4807 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4808</pre>
4809</div>
4810
4811<!-- ======================================================================= -->
4812<div class="doc_subsection">
4813 <a name="int_debugger">Debugger Intrinsics</a>
4814</div>
4815
4816<div class="doc_text">
4817<p>
4818The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4819are described in the <a
4820href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4821Debugging</a> document.
4822</p>
4823</div>
4824
4825
4826<!-- ======================================================================= -->
4827<div class="doc_subsection">
4828 <a name="int_eh">Exception Handling Intrinsics</a>
4829</div>
4830
4831<div class="doc_text">
4832<p> The LLVM exception handling intrinsics (which all start with
4833<tt>llvm.eh.</tt> prefix), are described in the <a
4834href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4835Handling</a> document. </p>
4836</div>
4837
4838<!-- ======================================================================= -->
4839<div class="doc_subsection">
Chandler Carruthc0470a82007-07-20 19:34:37 +00004840 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
4841</div>
4842
4843<div class="doc_text">
4844<p>
4845 These intrinsic functions expand the "universal IR" of LLVM to represent
4846 hardware constructs for atomic operations and memory synchronization. This
4847 provides an interface to the hardware, not an interface to the programmer. It
4848 is aimed at a low enough level to allow any programming models or APIs which
4849 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004850 hardware behavior. Just as hardware provides a "universal IR" for source
Chandler Carruthc0470a82007-07-20 19:34:37 +00004851 languages, it also provides a starting point for developing a "universal"
4852 atomic operation and synchronization IR.
4853</p>
4854<p>
4855 These do <em>not</em> form an API such as high-level threading libraries,
4856 software transaction memory systems, atomic primitives, and intrinsic
Reid Spencerb043f672007-07-20 19:59:11 +00004857 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
Chandler Carruthc0470a82007-07-20 19:34:37 +00004858 application libraries. The hardware interface provided by LLVM should allow
4859 a clean implementation of all of these APIs and parallel programming models.
4860 No one model or paradigm should be selected above others unless the hardware
4861 itself ubiquitously does so.
4862</p>
4863</div>
4864
4865<!-- _______________________________________________________________________ -->
4866<div class="doc_subsubsection">
4867 <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
4868</div>
4869<div class="doc_text">
4870<h5>Syntax:</h5>
4871<p>
4872 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004873 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004874<pre>
4875declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
4876declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
4877declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
4878declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
4879</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004880<h5>Overview:</h5>
4881<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004882 This loads a value in memory and compares it to a given value. If they are
4883 equal, it stores a new value into the memory.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004884</p>
4885<h5>Arguments:</h5>
4886<p>
4887 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
4888 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
4889 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
4890 this integer type. While any bit width integer may be used, targets may only
4891 lower representations they support in hardware.
4892</p>
4893<h5>Semantics:</h5>
4894<p>
4895 This entire intrinsic must be executed atomically. It first loads the value
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004896 in memory pointed to by <tt>ptr</tt> and compares it with the value
4897 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
4898 loaded value is yielded in all cases. This provides the equivalent of an
4899 atomic compare-and-swap operation within the SSA framework.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004900</p>
4901<h5>Examples:</h5>
4902<pre>
4903%ptr = malloc i32
4904 store i32 4, %ptr
4905
4906%val1 = add i32 4, 4
4907%result1 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
4908 <i>; yields {i32}:result1 = 4</i>
4909%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4910%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4911
4912%val2 = add i32 1, 1
4913%result2 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
4914 <i>; yields {i32}:result2 = 8</i>
4915%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
4916%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
4917</pre>
4918</div>
4919
4920<!-- _______________________________________________________________________ -->
4921<div class="doc_subsubsection">
4922 <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
4923</div>
4924<div class="doc_text">
4925<h5>Syntax:</h5>
4926<p>
4927 This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004928 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004929<pre>
4930declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
4931declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
4932declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
4933declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
4934</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004935<h5>Overview:</h5>
4936<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004937 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
4938 the value from memory. It then stores the value in <tt>val</tt> in the memory
4939 at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004940</p>
4941<h5>Arguments:</h5>
4942<p>
4943 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
4944 <tt>val</tt> argument and the result must be integers of the same bit width.
4945 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
4946 integer type. The targets may only lower integer representations they
4947 support.
4948</p>
4949<h5>Semantics:</h5>
4950<p>
4951 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
4952 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
4953 equivalent of an atomic swap operation within the SSA framework.
4954</p>
4955<h5>Examples:</h5>
4956<pre>
4957%ptr = malloc i32
4958 store i32 4, %ptr
4959
4960%val1 = add i32 4, 4
4961%result1 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
4962 <i>; yields {i32}:result1 = 4</i>
4963%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4964%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4965
4966%val2 = add i32 1, 1
4967%result2 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
4968 <i>; yields {i32}:result2 = 8</i>
4969%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
4970%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
4971</pre>
4972 </div>
4973
4974<!-- _______________________________________________________________________ -->
4975<div class="doc_subsubsection">
4976 <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
4977</div>
4978<div class="doc_text">
4979<h5>Syntax:</h5>
4980<p>
4981 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004982 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004983<pre>
4984declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
4985declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
4986declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
4987declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
4988</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004989<h5>Overview:</h5>
4990<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004991 This intrinsic adds <tt>delta</tt> to the value stored in memory at
Chandler Carruthc0470a82007-07-20 19:34:37 +00004992 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
4993</p>
4994<h5>Arguments:</h5>
4995<p>
4996 The intrinsic takes two arguments, the first a pointer to an integer value
4997 and the second an integer value. The result is also an integer value. These
4998 integer types can have any bit width, but they must all have the same bit
4999 width. The targets may only lower integer representations they support.
5000</p>
5001<h5>Semantics:</h5>
5002<p>
5003 This intrinsic does a series of operations atomically. It first loads the
5004 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5005 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5006</p>
5007<h5>Examples:</h5>
5008<pre>
5009%ptr = malloc i32
5010 store i32 4, %ptr
5011%result1 = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
5012 <i>; yields {i32}:result1 = 4</i>
5013%result2 = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
5014 <i>; yields {i32}:result2 = 8</i>
5015%result3 = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
5016 <i>; yields {i32}:result3 = 10</i>
5017%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5018</pre>
5019</div>
5020
5021<!-- _______________________________________________________________________ -->
5022<div class="doc_subsubsection">
5023 <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
5024</div>
5025<div class="doc_text">
5026<h5>Syntax:</h5>
5027<p>
5028 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00005029 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005030<pre>
5031declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5032declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5033declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5034declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5035</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005036<h5>Overview:</h5>
5037<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00005038 This intrinsic subtracts <tt>delta</tt> from the value stored in memory at
5039 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00005040</p>
5041<h5>Arguments:</h5>
5042<p>
5043 The intrinsic takes two arguments, the first a pointer to an integer value
5044 and the second an integer value. The result is also an integer value. These
5045 integer types can have any bit width, but they must all have the same bit
5046 width. The targets may only lower integer representations they support.
5047</p>
5048<h5>Semantics:</h5>
5049<p>
5050 This intrinsic does a series of operations atomically. It first loads the
5051 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>,
5052 stores the result to <tt>ptr</tt>. It yields the original value stored
5053 at <tt>ptr</tt>.
5054</p>
5055<h5>Examples:</h5>
5056<pre>
5057%ptr = malloc i32
5058 store i32 32, %ptr
5059%result1 = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
5060 <i>; yields {i32}:result1 = 32</i>
5061%result2 = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
5062 <i>; yields {i32}:result2 = 28</i>
5063%result3 = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
5064 <i>; yields {i32}:result3 = 26</i>
5065%memval = load i32* %ptr <i>; yields {i32}:memval1 = 21</i>
5066</pre>
5067</div>
5068
5069<!-- _______________________________________________________________________ -->
5070<div class="doc_subsubsection">
5071 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5072</div>
5073<div class="doc_text">
5074<h5>Syntax:</h5>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005075<pre>
5076declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
5077</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005078<h5>Overview:</h5>
5079<p>
5080 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5081 specific pairs of memory access types.
5082</p>
5083<h5>Arguments:</h5>
5084<p>
5085 The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments.
5086 Each argument enables a specific barrier as listed below.
Reid Spencerc64165c2007-07-20 20:03:33 +00005087</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005088 <ul>
5089 <li><tt>ll</tt>: load-load barrier</li>
5090 <li><tt>ls</tt>: load-store barrier</li>
5091 <li><tt>sl</tt>: store-load barrier</li>
5092 <li><tt>ss</tt>: store-store barrier</li>
5093 </ul>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005094<h5>Semantics:</h5>
5095<p>
5096 This intrinsic causes the system to enforce some ordering constraints upon
5097 the loads and stores of the program. This barrier does not indicate
5098 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5099 which they occur. For any of the specified pairs of load and store operations
5100 (f.ex. load-load, or store-load), all of the first operations preceding the
5101 barrier will complete before any of the second operations succeeding the
5102 barrier begin. Specifically the semantics for each pairing is as follows:
Reid Spencerc64165c2007-07-20 20:03:33 +00005103</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005104 <ul>
5105 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5106 after the barrier begins.</li>
5107 <li><tt>ls</tt>: All loads before the barrier must complete before any
5108 store after the barrier begins.</li>
5109 <li><tt>ss</tt>: All stores before the barrier must complete before any
5110 store after the barrier begins.</li>
5111 <li><tt>sl</tt>: All stores before the barrier must complete before any
5112 load after the barrier begins.</li>
5113 </ul>
Reid Spencerc64165c2007-07-20 20:03:33 +00005114<p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005115 These semantics are applied with a logical "and" behavior when more than one
5116 is enabled in a single memory barrier intrinsic.
5117</p>
5118<h5>Example:</h5>
5119<pre>
5120%ptr = malloc i32
5121 store i32 4, %ptr
5122
5123%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5124 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5125 <i>; guarantee the above finishes</i>
5126 store i32 8, %ptr <i>; before this begins</i>
5127</pre>
5128</div>
5129
5130<!-- ======================================================================= -->
5131<div class="doc_subsection">
Duncan Sands38947cd2007-07-27 12:58:54 +00005132 <a name="int_trampoline">Trampoline Intrinsics</a>
5133</div>
5134
5135<div class="doc_text">
5136<p>
5137 These intrinsics make it possible to excise one parameter, marked with
5138 the <tt>nest</tt> attribute, from a function. The result is a callable
5139 function pointer lacking the nest parameter - the caller does not need
5140 to provide a value for it. Instead, the value to use is stored in
5141 advance in a "trampoline", a block of memory usually allocated
5142 on the stack, which also contains code to splice the nest value into the
5143 argument list. This is used to implement the GCC nested function address
5144 extension.
5145</p>
5146<p>
5147 For example, if the function is
5148 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
5149 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:
5150<pre>
5151 %tramp1 = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5152 %tramp = getelementptr [10 x i8]* %tramp1, i32 0, i32 0
5153 call void @llvm.init.trampoline( i8* %tramp, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5154 %adj = call i8* @llvm.adjust.trampoline( i8* %tramp )
5155 %fp = bitcast i8* %adj to i32 (i32, i32)*
5156</pre>
5157 The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
5158 <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
5159</p>
5160<p>
5161 Trampolines are currently only supported on the X86 architecture.
5162</p>
5163</div>
5164
5165<!-- _______________________________________________________________________ -->
5166<div class="doc_subsubsection">
5167 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5168</div>
5169<div class="doc_text">
5170<h5>Syntax:</h5>
5171<pre>
5172declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
5173</pre>
5174<h5>Overview:</h5>
5175<p>
5176 This initializes the memory pointed to by <tt>tramp</tt> as a trampoline.
5177</p>
5178<h5>Arguments:</h5>
5179<p>
5180 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5181 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5182 and sufficiently aligned block of memory; this memory is written to by the
5183 intrinsic. Currently LLVM provides no help in determining just how big and
5184 aligned the memory needs to be. The <tt>func</tt> argument must hold a
5185 function bitcast to an <tt>i8*</tt>.
5186</p>
5187<h5>Semantics:</h5>
5188<p>
5189 The block of memory pointed to by <tt>tramp</tt> is filled with target
5190 dependent code, turning it into a function.
5191 The new function's signature is the same as that of <tt>func</tt> with
5192 any arguments marked with the <tt>nest</tt> attribute removed. At most
5193 one such <tt>nest</tt> argument is allowed, and it must be of pointer
5194 type. Calling the new function is equivalent to calling <tt>func</tt>
5195 with the same argument list, but with <tt>nval</tt> used for the missing
5196 <tt>nest</tt> argument.
5197</p>
5198</div>
5199
5200<!-- _______________________________________________________________________ -->
5201<div class="doc_subsubsection">
5202 <a name="int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a>
5203</div>
5204<div class="doc_text">
5205<h5>Syntax:</h5>
5206<pre>
5207declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
5208</pre>
5209<h5>Overview:</h5>
5210<p>
5211 This intrinsic returns a function pointer suitable for executing
5212 the trampoline code pointed to by <tt>tramp</tt>.
5213</p>
5214<h5>Arguments:</h5>
5215<p>
5216 The <tt>llvm.adjust.trampoline</tt> takes one argument, a pointer to a
5217 trampoline initialized by the
5218 <a href="#int_it">'<tt>llvm.init.trampoline</tt>' intrinsic</a>.
5219</p>
5220<h5>Semantics:</h5>
5221<p>
5222 A function pointer that can be used to execute the trampoline code in
5223 <tt>tramp</tt> is returned. The returned value should be bitcast to an
5224 <a href="#int_trampoline">appropriate function pointer type</a>
5225 before being called.
5226</p>
5227</div>
5228
5229<!-- ======================================================================= -->
5230<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005231 <a name="int_general">General Intrinsics</a>
5232</div>
5233
5234<div class="doc_text">
5235<p> This class of intrinsics is designed to be generic and has
5236no specific purpose. </p>
5237</div>
5238
5239<!-- _______________________________________________________________________ -->
5240<div class="doc_subsubsection">
5241 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5242</div>
5243
5244<div class="doc_text">
5245
5246<h5>Syntax:</h5>
5247<pre>
5248 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5249</pre>
5250
5251<h5>Overview:</h5>
5252
5253<p>
5254The '<tt>llvm.var.annotation</tt>' intrinsic
5255</p>
5256
5257<h5>Arguments:</h5>
5258
5259<p>
5260The first argument is a pointer to a value, the second is a pointer to a
5261global string, the third is a pointer to a global string which is the source
5262file name, and the last argument is the line number.
5263</p>
5264
5265<h5>Semantics:</h5>
5266
5267<p>
5268This intrinsic allows annotation of local variables with arbitrary strings.
5269This can be useful for special purpose optimizations that want to look for these
5270 annotations. These have no other defined use, they are ignored by code
5271 generation and optimization.
5272</div>
5273
5274
5275<!-- *********************************************************************** -->
5276<hr>
5277<address>
5278 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5279 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5280 <a href="http://validator.w3.org/check/referer"><img
5281 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5282
5283 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5284 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5285 Last modified: $Date$
5286</address>
5287</body>
5288</html>