Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1 | //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the interfaces that AArch64 uses to lower LLVM code into a |
| 11 | // selection DAG. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "aarch64-isel" |
| 16 | #include "AArch64.h" |
| 17 | #include "AArch64ISelLowering.h" |
| 18 | #include "AArch64MachineFunctionInfo.h" |
| 19 | #include "AArch64TargetMachine.h" |
| 20 | #include "AArch64TargetObjectFile.h" |
Tim Northover | 19254c4 | 2013-02-05 13:24:47 +0000 | [diff] [blame] | 21 | #include "Utils/AArch64BaseInfo.h" |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 22 | #include "llvm/CodeGen/Analysis.h" |
| 23 | #include "llvm/CodeGen/CallingConvLower.h" |
| 24 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 25 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 26 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 27 | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| 28 | #include "llvm/IR/CallingConv.h" |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) { |
| 33 | const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>(); |
| 34 | |
| 35 | if (Subtarget->isTargetLinux()) |
| 36 | return new AArch64LinuxTargetObjectFile(); |
| 37 | if (Subtarget->isTargetELF()) |
| 38 | return new TargetLoweringObjectFileELF(); |
| 39 | llvm_unreachable("unknown subtarget type"); |
| 40 | } |
| 41 | |
| 42 | |
| 43 | AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM) |
| 44 | : TargetLowering(TM, createTLOF(TM)), |
| 45 | Subtarget(&TM.getSubtarget<AArch64Subtarget>()), |
| 46 | RegInfo(TM.getRegisterInfo()), |
| 47 | Itins(TM.getInstrItineraryData()) { |
| 48 | |
| 49 | // SIMD compares set the entire lane's bits to 1 |
| 50 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| 51 | |
| 52 | // Scalar register <-> type mapping |
| 53 | addRegisterClass(MVT::i32, &AArch64::GPR32RegClass); |
| 54 | addRegisterClass(MVT::i64, &AArch64::GPR64RegClass); |
| 55 | addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); |
| 56 | addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); |
| 57 | addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); |
| 58 | addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); |
| 59 | |
| 60 | // And the vectors |
| 61 | addRegisterClass(MVT::v8i8, &AArch64::VPR64RegClass); |
| 62 | addRegisterClass(MVT::v4i16, &AArch64::VPR64RegClass); |
| 63 | addRegisterClass(MVT::v2i32, &AArch64::VPR64RegClass); |
| 64 | addRegisterClass(MVT::v2f32, &AArch64::VPR64RegClass); |
| 65 | addRegisterClass(MVT::v16i8, &AArch64::VPR128RegClass); |
| 66 | addRegisterClass(MVT::v8i16, &AArch64::VPR128RegClass); |
| 67 | addRegisterClass(MVT::v4i32, &AArch64::VPR128RegClass); |
| 68 | addRegisterClass(MVT::v4f32, &AArch64::VPR128RegClass); |
| 69 | addRegisterClass(MVT::v2f64, &AArch64::VPR128RegClass); |
| 70 | |
| 71 | computeRegisterProperties(); |
| 72 | |
| 73 | // Some atomic operations can be folded into load-acquire or store-release |
| 74 | // instructions on AArch64. It's marginally simpler to let LLVM expand |
| 75 | // everything out to a barrier and then recombine the (few) barriers we can. |
| 76 | setInsertFencesForAtomic(true); |
| 77 | setTargetDAGCombine(ISD::ATOMIC_FENCE); |
| 78 | setTargetDAGCombine(ISD::ATOMIC_STORE); |
| 79 | |
| 80 | // We combine OR nodes for bitfield and NEON BSL operations. |
| 81 | setTargetDAGCombine(ISD::OR); |
| 82 | |
| 83 | setTargetDAGCombine(ISD::AND); |
| 84 | setTargetDAGCombine(ISD::SRA); |
| 85 | |
| 86 | // AArch64 does not have i1 loads, or much of anything for i1 really. |
| 87 | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| 88 | setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); |
| 89 | setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); |
| 90 | |
| 91 | setStackPointerRegisterToSaveRestore(AArch64::XSP); |
| 92 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| 93 | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| 94 | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| 95 | |
| 96 | // We'll lower globals to wrappers for selection. |
| 97 | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| 98 | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| 99 | |
| 100 | // A64 instructions have the comparison predicate attached to the user of the |
| 101 | // result, but having a separate comparison is valuable for matching. |
| 102 | setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| 103 | setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| 104 | setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| 105 | setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| 106 | |
| 107 | setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| 108 | setOperationAction(ISD::SELECT, MVT::i64, Custom); |
| 109 | setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| 110 | setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| 111 | |
| 112 | setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| 113 | setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); |
| 114 | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| 115 | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| 116 | |
| 117 | setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| 118 | |
| 119 | setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| 120 | setOperationAction(ISD::SETCC, MVT::i64, Custom); |
| 121 | setOperationAction(ISD::SETCC, MVT::f32, Custom); |
| 122 | setOperationAction(ISD::SETCC, MVT::f64, Custom); |
| 123 | |
| 124 | setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| 125 | setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| 126 | setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| 127 | |
| 128 | setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| 129 | setOperationAction(ISD::VACOPY, MVT::Other, Custom); |
| 130 | setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| 131 | setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| 132 | |
| 133 | setOperationAction(ISD::BlockAddress, MVT::i64, Custom); |
| 134 | |
| 135 | setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| 136 | setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| 137 | |
| 138 | setOperationAction(ISD::UREM, MVT::i32, Expand); |
| 139 | setOperationAction(ISD::UREM, MVT::i64, Expand); |
| 140 | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| 141 | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| 142 | |
| 143 | setOperationAction(ISD::SREM, MVT::i32, Expand); |
| 144 | setOperationAction(ISD::SREM, MVT::i64, Expand); |
| 145 | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| 146 | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| 147 | |
| 148 | setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| 149 | setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
| 150 | |
| 151 | // Legal floating-point operations. |
| 152 | setOperationAction(ISD::FABS, MVT::f32, Legal); |
| 153 | setOperationAction(ISD::FABS, MVT::f64, Legal); |
| 154 | |
| 155 | setOperationAction(ISD::FCEIL, MVT::f32, Legal); |
| 156 | setOperationAction(ISD::FCEIL, MVT::f64, Legal); |
| 157 | |
| 158 | setOperationAction(ISD::FFLOOR, MVT::f32, Legal); |
| 159 | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
| 160 | |
| 161 | setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); |
| 162 | setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); |
| 163 | |
| 164 | setOperationAction(ISD::FNEG, MVT::f32, Legal); |
| 165 | setOperationAction(ISD::FNEG, MVT::f64, Legal); |
| 166 | |
| 167 | setOperationAction(ISD::FRINT, MVT::f32, Legal); |
| 168 | setOperationAction(ISD::FRINT, MVT::f64, Legal); |
| 169 | |
| 170 | setOperationAction(ISD::FSQRT, MVT::f32, Legal); |
| 171 | setOperationAction(ISD::FSQRT, MVT::f64, Legal); |
| 172 | |
| 173 | setOperationAction(ISD::FTRUNC, MVT::f32, Legal); |
| 174 | setOperationAction(ISD::FTRUNC, MVT::f64, Legal); |
| 175 | |
| 176 | setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| 177 | setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| 178 | setOperationAction(ISD::ConstantFP, MVT::f128, Legal); |
| 179 | |
| 180 | // Illegal floating-point operations. |
| 181 | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| 182 | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| 183 | |
| 184 | setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| 185 | setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| 186 | |
| 187 | setOperationAction(ISD::FEXP, MVT::f32, Expand); |
| 188 | setOperationAction(ISD::FEXP, MVT::f64, Expand); |
| 189 | |
| 190 | setOperationAction(ISD::FEXP2, MVT::f32, Expand); |
| 191 | setOperationAction(ISD::FEXP2, MVT::f64, Expand); |
| 192 | |
| 193 | setOperationAction(ISD::FLOG, MVT::f32, Expand); |
| 194 | setOperationAction(ISD::FLOG, MVT::f64, Expand); |
| 195 | |
| 196 | setOperationAction(ISD::FLOG2, MVT::f32, Expand); |
| 197 | setOperationAction(ISD::FLOG2, MVT::f64, Expand); |
| 198 | |
| 199 | setOperationAction(ISD::FLOG10, MVT::f32, Expand); |
| 200 | setOperationAction(ISD::FLOG10, MVT::f64, Expand); |
| 201 | |
| 202 | setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| 203 | setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| 204 | |
| 205 | setOperationAction(ISD::FPOWI, MVT::f32, Expand); |
| 206 | setOperationAction(ISD::FPOWI, MVT::f64, Expand); |
| 207 | |
| 208 | setOperationAction(ISD::FREM, MVT::f32, Expand); |
| 209 | setOperationAction(ISD::FREM, MVT::f64, Expand); |
| 210 | |
| 211 | setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| 212 | setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| 213 | |
| 214 | |
| 215 | // Virtually no operation on f128 is legal, but LLVM can't expand them when |
| 216 | // there's a valid register class, so we need custom operations in most cases. |
| 217 | setOperationAction(ISD::FABS, MVT::f128, Expand); |
| 218 | setOperationAction(ISD::FADD, MVT::f128, Custom); |
| 219 | setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); |
| 220 | setOperationAction(ISD::FCOS, MVT::f128, Expand); |
| 221 | setOperationAction(ISD::FDIV, MVT::f128, Custom); |
| 222 | setOperationAction(ISD::FMA, MVT::f128, Expand); |
| 223 | setOperationAction(ISD::FMUL, MVT::f128, Custom); |
| 224 | setOperationAction(ISD::FNEG, MVT::f128, Expand); |
| 225 | setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); |
| 226 | setOperationAction(ISD::FP_ROUND, MVT::f128, Expand); |
| 227 | setOperationAction(ISD::FPOW, MVT::f128, Expand); |
| 228 | setOperationAction(ISD::FREM, MVT::f128, Expand); |
| 229 | setOperationAction(ISD::FRINT, MVT::f128, Expand); |
| 230 | setOperationAction(ISD::FSIN, MVT::f128, Expand); |
| 231 | setOperationAction(ISD::FSQRT, MVT::f128, Expand); |
| 232 | setOperationAction(ISD::FSUB, MVT::f128, Custom); |
| 233 | setOperationAction(ISD::FTRUNC, MVT::f128, Expand); |
| 234 | setOperationAction(ISD::SETCC, MVT::f128, Custom); |
| 235 | setOperationAction(ISD::BR_CC, MVT::f128, Custom); |
| 236 | setOperationAction(ISD::SELECT, MVT::f128, Expand); |
| 237 | setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); |
| 238 | setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); |
| 239 | |
| 240 | // Lowering for many of the conversions is actually specified by the non-f128 |
| 241 | // type. The LowerXXX function will be trivial when f128 isn't involved. |
| 242 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| 243 | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| 244 | setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); |
| 245 | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| 246 | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| 247 | setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); |
| 248 | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| 249 | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| 250 | setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); |
| 251 | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| 252 | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| 253 | setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); |
| 254 | setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); |
| 255 | setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); |
| 256 | |
| 257 | // This prevents LLVM trying to compress double constants into a floating |
| 258 | // constant-pool entry and trying to load from there. It's of doubtful benefit |
| 259 | // for A64: we'd need LDR followed by FCVT, I believe. |
| 260 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); |
| 261 | setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| 262 | setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand); |
| 263 | |
| 264 | setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| 265 | setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| 266 | setTruncStoreAction(MVT::f128, MVT::f16, Expand); |
| 267 | setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| 268 | setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| 269 | setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| 270 | |
| 271 | setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| 272 | setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| 273 | |
| 274 | setExceptionPointerRegister(AArch64::X0); |
| 275 | setExceptionSelectorRegister(AArch64::X1); |
| 276 | } |
| 277 | |
| 278 | EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const { |
| 279 | // It's reasonably important that this value matches the "natural" legal |
| 280 | // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself |
| 281 | // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64). |
| 282 | if (!VT.isVector()) return MVT::i32; |
| 283 | return VT.changeVectorElementTypeToInteger(); |
| 284 | } |
| 285 | |
| 286 | static void getExclusiveOperation(unsigned Size, unsigned &ldrOpc, |
| 287 | unsigned &strOpc) { |
| 288 | switch (Size) { |
| 289 | default: llvm_unreachable("unsupported size for atomic binary op!"); |
| 290 | case 1: |
| 291 | ldrOpc = AArch64::LDXR_byte; |
| 292 | strOpc = AArch64::STXR_byte; |
| 293 | break; |
| 294 | case 2: |
| 295 | ldrOpc = AArch64::LDXR_hword; |
| 296 | strOpc = AArch64::STXR_hword; |
| 297 | break; |
| 298 | case 4: |
| 299 | ldrOpc = AArch64::LDXR_word; |
| 300 | strOpc = AArch64::STXR_word; |
| 301 | break; |
| 302 | case 8: |
| 303 | ldrOpc = AArch64::LDXR_dword; |
| 304 | strOpc = AArch64::STXR_dword; |
| 305 | break; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | MachineBasicBlock * |
| 310 | AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, |
| 311 | unsigned Size, |
| 312 | unsigned BinOpcode) const { |
| 313 | // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| 314 | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| 315 | |
| 316 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 317 | MachineFunction *MF = BB->getParent(); |
| 318 | MachineFunction::iterator It = BB; |
| 319 | ++It; |
| 320 | |
| 321 | unsigned dest = MI->getOperand(0).getReg(); |
| 322 | unsigned ptr = MI->getOperand(1).getReg(); |
| 323 | unsigned incr = MI->getOperand(2).getReg(); |
| 324 | DebugLoc dl = MI->getDebugLoc(); |
| 325 | |
| 326 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 327 | |
| 328 | unsigned ldrOpc, strOpc; |
| 329 | getExclusiveOperation(Size, ldrOpc, strOpc); |
| 330 | |
| 331 | MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 332 | MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 333 | MF->insert(It, loopMBB); |
| 334 | MF->insert(It, exitMBB); |
| 335 | |
| 336 | // Transfer the remainder of BB and its successor edges to exitMBB. |
| 337 | exitMBB->splice(exitMBB->begin(), BB, |
| 338 | llvm::next(MachineBasicBlock::iterator(MI)), |
| 339 | BB->end()); |
| 340 | exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| 341 | |
| 342 | const TargetRegisterClass *TRC |
| 343 | = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 344 | unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); |
| 345 | |
| 346 | // thisMBB: |
| 347 | // ... |
| 348 | // fallthrough --> loopMBB |
| 349 | BB->addSuccessor(loopMBB); |
| 350 | |
| 351 | // loopMBB: |
| 352 | // ldxr dest, ptr |
| 353 | // <binop> scratch, dest, incr |
| 354 | // stxr stxr_status, scratch, ptr |
| 355 | // cmp stxr_status, #0 |
| 356 | // b.ne loopMBB |
| 357 | // fallthrough --> exitMBB |
| 358 | BB = loopMBB; |
| 359 | BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| 360 | if (BinOpcode) { |
| 361 | // All arithmetic operations we'll be creating are designed to take an extra |
| 362 | // shift or extend operand, which we can conveniently set to zero. |
| 363 | |
| 364 | // Operand order needs to go the other way for NAND. |
| 365 | if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl) |
| 366 | BuildMI(BB, dl, TII->get(BinOpcode), scratch) |
| 367 | .addReg(incr).addReg(dest).addImm(0); |
| 368 | else |
| 369 | BuildMI(BB, dl, TII->get(BinOpcode), scratch) |
| 370 | .addReg(dest).addReg(incr).addImm(0); |
| 371 | } |
| 372 | |
| 373 | // From the stxr, the register is GPR32; from the cmp it's GPR32wsp |
| 374 | unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| 375 | MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); |
| 376 | |
| 377 | BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr); |
| 378 | BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp)) |
| 379 | .addReg(stxr_status).addImm(0); |
| 380 | BuildMI(BB, dl, TII->get(AArch64::Bcc)) |
| 381 | .addImm(A64CC::NE).addMBB(loopMBB); |
| 382 | |
| 383 | BB->addSuccessor(loopMBB); |
| 384 | BB->addSuccessor(exitMBB); |
| 385 | |
| 386 | // exitMBB: |
| 387 | // ... |
| 388 | BB = exitMBB; |
| 389 | |
| 390 | MI->eraseFromParent(); // The instruction is gone now. |
| 391 | |
| 392 | return BB; |
| 393 | } |
| 394 | |
| 395 | MachineBasicBlock * |
| 396 | AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI, |
| 397 | MachineBasicBlock *BB, |
| 398 | unsigned Size, |
| 399 | unsigned CmpOp, |
| 400 | A64CC::CondCodes Cond) const { |
| 401 | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| 402 | |
| 403 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 404 | MachineFunction *MF = BB->getParent(); |
| 405 | MachineFunction::iterator It = BB; |
| 406 | ++It; |
| 407 | |
| 408 | unsigned dest = MI->getOperand(0).getReg(); |
| 409 | unsigned ptr = MI->getOperand(1).getReg(); |
| 410 | unsigned incr = MI->getOperand(2).getReg(); |
| 411 | unsigned oldval = dest; |
| 412 | DebugLoc dl = MI->getDebugLoc(); |
| 413 | |
| 414 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 415 | const TargetRegisterClass *TRC, *TRCsp; |
| 416 | if (Size == 8) { |
| 417 | TRC = &AArch64::GPR64RegClass; |
| 418 | TRCsp = &AArch64::GPR64xspRegClass; |
| 419 | } else { |
| 420 | TRC = &AArch64::GPR32RegClass; |
| 421 | TRCsp = &AArch64::GPR32wspRegClass; |
| 422 | } |
| 423 | |
| 424 | unsigned ldrOpc, strOpc; |
| 425 | getExclusiveOperation(Size, ldrOpc, strOpc); |
| 426 | |
| 427 | MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 428 | MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 429 | MF->insert(It, loopMBB); |
| 430 | MF->insert(It, exitMBB); |
| 431 | |
| 432 | // Transfer the remainder of BB and its successor edges to exitMBB. |
| 433 | exitMBB->splice(exitMBB->begin(), BB, |
| 434 | llvm::next(MachineBasicBlock::iterator(MI)), |
| 435 | BB->end()); |
| 436 | exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| 437 | |
| 438 | unsigned scratch = MRI.createVirtualRegister(TRC); |
| 439 | MRI.constrainRegClass(scratch, TRCsp); |
| 440 | |
| 441 | // thisMBB: |
| 442 | // ... |
| 443 | // fallthrough --> loopMBB |
| 444 | BB->addSuccessor(loopMBB); |
| 445 | |
| 446 | // loopMBB: |
| 447 | // ldxr dest, ptr |
| 448 | // cmp incr, dest (, sign extend if necessary) |
| 449 | // csel scratch, dest, incr, cond |
| 450 | // stxr stxr_status, scratch, ptr |
| 451 | // cmp stxr_status, #0 |
| 452 | // b.ne loopMBB |
| 453 | // fallthrough --> exitMBB |
| 454 | BB = loopMBB; |
| 455 | BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| 456 | |
| 457 | // Build compare and cmov instructions. |
| 458 | MRI.constrainRegClass(incr, TRCsp); |
| 459 | BuildMI(BB, dl, TII->get(CmpOp)) |
| 460 | .addReg(incr).addReg(oldval).addImm(0); |
| 461 | |
| 462 | BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc), |
| 463 | scratch) |
| 464 | .addReg(oldval).addReg(incr).addImm(Cond); |
| 465 | |
| 466 | unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| 467 | MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); |
| 468 | |
| 469 | BuildMI(BB, dl, TII->get(strOpc), stxr_status) |
| 470 | .addReg(scratch).addReg(ptr); |
| 471 | BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp)) |
| 472 | .addReg(stxr_status).addImm(0); |
| 473 | BuildMI(BB, dl, TII->get(AArch64::Bcc)) |
| 474 | .addImm(A64CC::NE).addMBB(loopMBB); |
| 475 | |
| 476 | BB->addSuccessor(loopMBB); |
| 477 | BB->addSuccessor(exitMBB); |
| 478 | |
| 479 | // exitMBB: |
| 480 | // ... |
| 481 | BB = exitMBB; |
| 482 | |
| 483 | MI->eraseFromParent(); // The instruction is gone now. |
| 484 | |
| 485 | return BB; |
| 486 | } |
| 487 | |
| 488 | MachineBasicBlock * |
| 489 | AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI, |
| 490 | MachineBasicBlock *BB, |
| 491 | unsigned Size) const { |
| 492 | unsigned dest = MI->getOperand(0).getReg(); |
| 493 | unsigned ptr = MI->getOperand(1).getReg(); |
| 494 | unsigned oldval = MI->getOperand(2).getReg(); |
| 495 | unsigned newval = MI->getOperand(3).getReg(); |
| 496 | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| 497 | DebugLoc dl = MI->getDebugLoc(); |
| 498 | |
| 499 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 500 | const TargetRegisterClass *TRCsp; |
| 501 | TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass; |
| 502 | |
| 503 | unsigned ldrOpc, strOpc; |
| 504 | getExclusiveOperation(Size, ldrOpc, strOpc); |
| 505 | |
| 506 | MachineFunction *MF = BB->getParent(); |
| 507 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 508 | MachineFunction::iterator It = BB; |
| 509 | ++It; // insert the new blocks after the current block |
| 510 | |
| 511 | MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 512 | MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 513 | MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 514 | MF->insert(It, loop1MBB); |
| 515 | MF->insert(It, loop2MBB); |
| 516 | MF->insert(It, exitMBB); |
| 517 | |
| 518 | // Transfer the remainder of BB and its successor edges to exitMBB. |
| 519 | exitMBB->splice(exitMBB->begin(), BB, |
| 520 | llvm::next(MachineBasicBlock::iterator(MI)), |
| 521 | BB->end()); |
| 522 | exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| 523 | |
| 524 | // thisMBB: |
| 525 | // ... |
| 526 | // fallthrough --> loop1MBB |
| 527 | BB->addSuccessor(loop1MBB); |
| 528 | |
| 529 | // loop1MBB: |
| 530 | // ldxr dest, [ptr] |
| 531 | // cmp dest, oldval |
| 532 | // b.ne exitMBB |
| 533 | BB = loop1MBB; |
| 534 | BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| 535 | |
| 536 | unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl; |
| 537 | MRI.constrainRegClass(dest, TRCsp); |
| 538 | BuildMI(BB, dl, TII->get(CmpOp)) |
| 539 | .addReg(dest).addReg(oldval).addImm(0); |
| 540 | BuildMI(BB, dl, TII->get(AArch64::Bcc)) |
| 541 | .addImm(A64CC::NE).addMBB(exitMBB); |
| 542 | BB->addSuccessor(loop2MBB); |
| 543 | BB->addSuccessor(exitMBB); |
| 544 | |
| 545 | // loop2MBB: |
| 546 | // strex stxr_status, newval, [ptr] |
| 547 | // cmp stxr_status, #0 |
| 548 | // b.ne loop1MBB |
| 549 | BB = loop2MBB; |
| 550 | unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| 551 | MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); |
| 552 | |
| 553 | BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr); |
| 554 | BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp)) |
| 555 | .addReg(stxr_status).addImm(0); |
| 556 | BuildMI(BB, dl, TII->get(AArch64::Bcc)) |
| 557 | .addImm(A64CC::NE).addMBB(loop1MBB); |
| 558 | BB->addSuccessor(loop1MBB); |
| 559 | BB->addSuccessor(exitMBB); |
| 560 | |
| 561 | // exitMBB: |
| 562 | // ... |
| 563 | BB = exitMBB; |
| 564 | |
| 565 | MI->eraseFromParent(); // The instruction is gone now. |
| 566 | |
| 567 | return BB; |
| 568 | } |
| 569 | |
| 570 | MachineBasicBlock * |
| 571 | AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, |
| 572 | MachineBasicBlock *MBB) const { |
| 573 | // We materialise the F128CSEL pseudo-instruction using conditional branches |
| 574 | // and loads, giving an instruciton sequence like: |
| 575 | // str q0, [sp] |
| 576 | // b.ne IfTrue |
| 577 | // b Finish |
| 578 | // IfTrue: |
| 579 | // str q1, [sp] |
| 580 | // Finish: |
| 581 | // ldr q0, [sp] |
| 582 | // |
| 583 | // Using virtual registers would probably not be beneficial since COPY |
| 584 | // instructions are expensive for f128 (there's no actual instruction to |
| 585 | // implement them). |
| 586 | // |
| 587 | // An alternative would be to do an integer-CSEL on some address. E.g.: |
| 588 | // mov x0, sp |
| 589 | // add x1, sp, #16 |
| 590 | // str q0, [x0] |
| 591 | // str q1, [x1] |
| 592 | // csel x0, x0, x1, ne |
| 593 | // ldr q0, [x0] |
| 594 | // |
| 595 | // It's unclear which approach is actually optimal. |
| 596 | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| 597 | MachineFunction *MF = MBB->getParent(); |
| 598 | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| 599 | DebugLoc DL = MI->getDebugLoc(); |
| 600 | MachineFunction::iterator It = MBB; |
| 601 | ++It; |
| 602 | |
| 603 | unsigned DestReg = MI->getOperand(0).getReg(); |
| 604 | unsigned IfTrueReg = MI->getOperand(1).getReg(); |
| 605 | unsigned IfFalseReg = MI->getOperand(2).getReg(); |
| 606 | unsigned CondCode = MI->getOperand(3).getImm(); |
| 607 | bool NZCVKilled = MI->getOperand(4).isKill(); |
| 608 | |
| 609 | MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 610 | MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 611 | MF->insert(It, TrueBB); |
| 612 | MF->insert(It, EndBB); |
| 613 | |
| 614 | // Transfer rest of current basic-block to EndBB |
| 615 | EndBB->splice(EndBB->begin(), MBB, |
| 616 | llvm::next(MachineBasicBlock::iterator(MI)), |
| 617 | MBB->end()); |
| 618 | EndBB->transferSuccessorsAndUpdatePHIs(MBB); |
| 619 | |
| 620 | // We need somewhere to store the f128 value needed. |
| 621 | int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16); |
| 622 | |
| 623 | // [... start of incoming MBB ...] |
| 624 | // str qIFFALSE, [sp] |
| 625 | // b.cc IfTrue |
| 626 | // b Done |
| 627 | BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR)) |
| 628 | .addReg(IfFalseReg) |
| 629 | .addFrameIndex(ScratchFI) |
| 630 | .addImm(0); |
| 631 | BuildMI(MBB, DL, TII->get(AArch64::Bcc)) |
| 632 | .addImm(CondCode) |
| 633 | .addMBB(TrueBB); |
| 634 | BuildMI(MBB, DL, TII->get(AArch64::Bimm)) |
| 635 | .addMBB(EndBB); |
| 636 | MBB->addSuccessor(TrueBB); |
| 637 | MBB->addSuccessor(EndBB); |
| 638 | |
| 639 | // IfTrue: |
| 640 | // str qIFTRUE, [sp] |
| 641 | BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR)) |
| 642 | .addReg(IfTrueReg) |
| 643 | .addFrameIndex(ScratchFI) |
| 644 | .addImm(0); |
| 645 | |
| 646 | // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the |
| 647 | // blocks. |
| 648 | TrueBB->addSuccessor(EndBB); |
| 649 | |
| 650 | // Done: |
| 651 | // ldr qDEST, [sp] |
| 652 | // [... rest of incoming MBB ...] |
| 653 | if (!NZCVKilled) |
| 654 | EndBB->addLiveIn(AArch64::NZCV); |
| 655 | MachineInstr *StartOfEnd = EndBB->begin(); |
| 656 | BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg) |
| 657 | .addFrameIndex(ScratchFI) |
| 658 | .addImm(0); |
| 659 | |
| 660 | MI->eraseFromParent(); |
| 661 | return EndBB; |
| 662 | } |
| 663 | |
| 664 | MachineBasicBlock * |
| 665 | AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| 666 | MachineBasicBlock *MBB) const { |
| 667 | switch (MI->getOpcode()) { |
| 668 | default: llvm_unreachable("Unhandled instruction with custom inserter"); |
| 669 | case AArch64::F128CSEL: |
| 670 | return EmitF128CSEL(MI, MBB); |
| 671 | case AArch64::ATOMIC_LOAD_ADD_I8: |
| 672 | return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl); |
| 673 | case AArch64::ATOMIC_LOAD_ADD_I16: |
| 674 | return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl); |
| 675 | case AArch64::ATOMIC_LOAD_ADD_I32: |
| 676 | return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl); |
| 677 | case AArch64::ATOMIC_LOAD_ADD_I64: |
| 678 | return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl); |
| 679 | |
| 680 | case AArch64::ATOMIC_LOAD_SUB_I8: |
| 681 | return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl); |
| 682 | case AArch64::ATOMIC_LOAD_SUB_I16: |
| 683 | return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl); |
| 684 | case AArch64::ATOMIC_LOAD_SUB_I32: |
| 685 | return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl); |
| 686 | case AArch64::ATOMIC_LOAD_SUB_I64: |
| 687 | return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl); |
| 688 | |
| 689 | case AArch64::ATOMIC_LOAD_AND_I8: |
| 690 | return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl); |
| 691 | case AArch64::ATOMIC_LOAD_AND_I16: |
| 692 | return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl); |
| 693 | case AArch64::ATOMIC_LOAD_AND_I32: |
| 694 | return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl); |
| 695 | case AArch64::ATOMIC_LOAD_AND_I64: |
| 696 | return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl); |
| 697 | |
| 698 | case AArch64::ATOMIC_LOAD_OR_I8: |
| 699 | return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl); |
| 700 | case AArch64::ATOMIC_LOAD_OR_I16: |
| 701 | return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl); |
| 702 | case AArch64::ATOMIC_LOAD_OR_I32: |
| 703 | return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl); |
| 704 | case AArch64::ATOMIC_LOAD_OR_I64: |
| 705 | return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl); |
| 706 | |
| 707 | case AArch64::ATOMIC_LOAD_XOR_I8: |
| 708 | return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl); |
| 709 | case AArch64::ATOMIC_LOAD_XOR_I16: |
| 710 | return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl); |
| 711 | case AArch64::ATOMIC_LOAD_XOR_I32: |
| 712 | return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl); |
| 713 | case AArch64::ATOMIC_LOAD_XOR_I64: |
| 714 | return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl); |
| 715 | |
| 716 | case AArch64::ATOMIC_LOAD_NAND_I8: |
| 717 | return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl); |
| 718 | case AArch64::ATOMIC_LOAD_NAND_I16: |
| 719 | return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl); |
| 720 | case AArch64::ATOMIC_LOAD_NAND_I32: |
| 721 | return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl); |
| 722 | case AArch64::ATOMIC_LOAD_NAND_I64: |
| 723 | return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl); |
| 724 | |
| 725 | case AArch64::ATOMIC_LOAD_MIN_I8: |
| 726 | return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT); |
| 727 | case AArch64::ATOMIC_LOAD_MIN_I16: |
| 728 | return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT); |
| 729 | case AArch64::ATOMIC_LOAD_MIN_I32: |
| 730 | return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT); |
| 731 | case AArch64::ATOMIC_LOAD_MIN_I64: |
| 732 | return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT); |
| 733 | |
| 734 | case AArch64::ATOMIC_LOAD_MAX_I8: |
| 735 | return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT); |
| 736 | case AArch64::ATOMIC_LOAD_MAX_I16: |
| 737 | return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT); |
| 738 | case AArch64::ATOMIC_LOAD_MAX_I32: |
| 739 | return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT); |
| 740 | case AArch64::ATOMIC_LOAD_MAX_I64: |
| 741 | return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT); |
| 742 | |
| 743 | case AArch64::ATOMIC_LOAD_UMIN_I8: |
| 744 | return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI); |
| 745 | case AArch64::ATOMIC_LOAD_UMIN_I16: |
| 746 | return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI); |
| 747 | case AArch64::ATOMIC_LOAD_UMIN_I32: |
| 748 | return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI); |
| 749 | case AArch64::ATOMIC_LOAD_UMIN_I64: |
| 750 | return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI); |
| 751 | |
| 752 | case AArch64::ATOMIC_LOAD_UMAX_I8: |
| 753 | return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO); |
| 754 | case AArch64::ATOMIC_LOAD_UMAX_I16: |
| 755 | return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO); |
| 756 | case AArch64::ATOMIC_LOAD_UMAX_I32: |
| 757 | return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO); |
| 758 | case AArch64::ATOMIC_LOAD_UMAX_I64: |
| 759 | return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO); |
| 760 | |
| 761 | case AArch64::ATOMIC_SWAP_I8: |
| 762 | return emitAtomicBinary(MI, MBB, 1, 0); |
| 763 | case AArch64::ATOMIC_SWAP_I16: |
| 764 | return emitAtomicBinary(MI, MBB, 2, 0); |
| 765 | case AArch64::ATOMIC_SWAP_I32: |
| 766 | return emitAtomicBinary(MI, MBB, 4, 0); |
| 767 | case AArch64::ATOMIC_SWAP_I64: |
| 768 | return emitAtomicBinary(MI, MBB, 8, 0); |
| 769 | |
| 770 | case AArch64::ATOMIC_CMP_SWAP_I8: |
| 771 | return emitAtomicCmpSwap(MI, MBB, 1); |
| 772 | case AArch64::ATOMIC_CMP_SWAP_I16: |
| 773 | return emitAtomicCmpSwap(MI, MBB, 2); |
| 774 | case AArch64::ATOMIC_CMP_SWAP_I32: |
| 775 | return emitAtomicCmpSwap(MI, MBB, 4); |
| 776 | case AArch64::ATOMIC_CMP_SWAP_I64: |
| 777 | return emitAtomicCmpSwap(MI, MBB, 8); |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | |
| 782 | const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 783 | switch (Opcode) { |
| 784 | case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC"; |
| 785 | case AArch64ISD::Call: return "AArch64ISD::Call"; |
| 786 | case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV"; |
| 787 | case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad"; |
| 788 | case AArch64ISD::BFI: return "AArch64ISD::BFI"; |
| 789 | case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; |
| 790 | case AArch64ISD::Ret: return "AArch64ISD::Ret"; |
| 791 | case AArch64ISD::SBFX: return "AArch64ISD::SBFX"; |
| 792 | case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC"; |
| 793 | case AArch64ISD::SETCC: return "AArch64ISD::SETCC"; |
| 794 | case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; |
| 795 | case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; |
| 796 | case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL"; |
| 797 | case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall"; |
| 798 | |
| 799 | default: return NULL; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | static const uint16_t AArch64FPRArgRegs[] = { |
| 804 | AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, |
| 805 | AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7 |
| 806 | }; |
| 807 | static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs); |
| 808 | |
| 809 | static const uint16_t AArch64ArgRegs[] = { |
| 810 | AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, |
| 811 | AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 |
| 812 | }; |
| 813 | static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs); |
| 814 | |
| 815 | static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 816 | CCValAssign::LocInfo LocInfo, |
| 817 | ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| 818 | // Mark all remaining general purpose registers as allocated. We don't |
| 819 | // backtrack: if (for example) an i128 gets put on the stack, no subsequent |
| 820 | // i64 will go in registers (C.11). |
| 821 | for (unsigned i = 0; i < NumArgRegs; ++i) |
| 822 | State.AllocateReg(AArch64ArgRegs[i]); |
| 823 | |
| 824 | return false; |
| 825 | } |
| 826 | |
| 827 | #include "AArch64GenCallingConv.inc" |
| 828 | |
| 829 | CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { |
| 830 | |
| 831 | switch(CC) { |
| 832 | default: llvm_unreachable("Unsupported calling convention"); |
| 833 | case CallingConv::Fast: |
| 834 | case CallingConv::C: |
| 835 | return CC_A64_APCS; |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | void |
| 840 | AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, |
| 841 | DebugLoc DL, SDValue &Chain) const { |
| 842 | MachineFunction &MF = DAG.getMachineFunction(); |
| 843 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 844 | AArch64MachineFunctionInfo *FuncInfo |
| 845 | = MF.getInfo<AArch64MachineFunctionInfo>(); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 846 | |
| 847 | SmallVector<SDValue, 8> MemOps; |
| 848 | |
| 849 | unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs, |
| 850 | NumArgRegs); |
| 851 | unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs, |
| 852 | NumFPRArgRegs); |
| 853 | |
| 854 | unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR); |
| 855 | int GPRIdx = 0; |
| 856 | if (GPRSaveSize != 0) { |
| 857 | GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); |
| 858 | |
| 859 | SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); |
| 860 | |
| 861 | for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) { |
| 862 | unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass); |
| 863 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); |
| 864 | SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, |
| 865 | MachinePointerInfo::getStack(i * 8), |
| 866 | false, false, 0); |
| 867 | MemOps.push_back(Store); |
| 868 | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, |
| 869 | DAG.getConstant(8, getPointerTy())); |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); |
| 874 | int FPRIdx = 0; |
| 875 | if (FPRSaveSize != 0) { |
| 876 | FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); |
| 877 | |
| 878 | SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); |
| 879 | |
| 880 | for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { |
| 881 | unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i], |
| 882 | &AArch64::FPR128RegClass); |
| 883 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); |
| 884 | SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, |
| 885 | MachinePointerInfo::getStack(i * 16), |
| 886 | false, false, 0); |
| 887 | MemOps.push_back(Store); |
| 888 | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, |
| 889 | DAG.getConstant(16, getPointerTy())); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true); |
| 894 | |
| 895 | FuncInfo->setVariadicStackIdx(StackIdx); |
| 896 | FuncInfo->setVariadicGPRIdx(GPRIdx); |
| 897 | FuncInfo->setVariadicGPRSize(GPRSaveSize); |
| 898 | FuncInfo->setVariadicFPRIdx(FPRIdx); |
| 899 | FuncInfo->setVariadicFPRSize(FPRSaveSize); |
| 900 | |
| 901 | if (!MemOps.empty()) { |
| 902 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], |
| 903 | MemOps.size()); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | |
| 908 | SDValue |
| 909 | AArch64TargetLowering::LowerFormalArguments(SDValue Chain, |
| 910 | CallingConv::ID CallConv, bool isVarArg, |
| 911 | const SmallVectorImpl<ISD::InputArg> &Ins, |
| 912 | DebugLoc dl, SelectionDAG &DAG, |
| 913 | SmallVectorImpl<SDValue> &InVals) const { |
| 914 | MachineFunction &MF = DAG.getMachineFunction(); |
| 915 | AArch64MachineFunctionInfo *FuncInfo |
| 916 | = MF.getInfo<AArch64MachineFunctionInfo>(); |
| 917 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 918 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| 919 | |
| 920 | SmallVector<CCValAssign, 16> ArgLocs; |
| 921 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| 922 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 923 | CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); |
| 924 | |
| 925 | SmallVector<SDValue, 16> ArgValues; |
| 926 | |
| 927 | SDValue ArgValue; |
| 928 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 929 | CCValAssign &VA = ArgLocs[i]; |
| 930 | ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| 931 | |
| 932 | if (Flags.isByVal()) { |
| 933 | // Byval is used for small structs and HFAs in the PCS, but the system |
| 934 | // should work in a non-compliant manner for larger structs. |
| 935 | EVT PtrTy = getPointerTy(); |
| 936 | int Size = Flags.getByValSize(); |
| 937 | unsigned NumRegs = (Size + 7) / 8; |
| 938 | |
| 939 | unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs, |
| 940 | VA.getLocMemOffset(), |
| 941 | false); |
| 942 | SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); |
| 943 | InVals.push_back(FrameIdxN); |
| 944 | |
| 945 | continue; |
| 946 | } else if (VA.isRegLoc()) { |
| 947 | MVT RegVT = VA.getLocVT(); |
| 948 | const TargetRegisterClass *RC = getRegClassFor(RegVT); |
| 949 | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| 950 | |
| 951 | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| 952 | } else { // VA.isRegLoc() |
| 953 | assert(VA.isMemLoc()); |
| 954 | |
| 955 | int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, |
| 956 | VA.getLocMemOffset(), true); |
| 957 | |
| 958 | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| 959 | ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, |
| 960 | MachinePointerInfo::getFixedStack(FI), |
| 961 | false, false, false, 0); |
| 962 | |
| 963 | |
| 964 | } |
| 965 | |
| 966 | switch (VA.getLocInfo()) { |
| 967 | default: llvm_unreachable("Unknown loc info!"); |
| 968 | case CCValAssign::Full: break; |
| 969 | case CCValAssign::BCvt: |
| 970 | ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue); |
| 971 | break; |
| 972 | case CCValAssign::SExt: |
| 973 | case CCValAssign::ZExt: |
| 974 | case CCValAssign::AExt: { |
| 975 | unsigned DestSize = VA.getValVT().getSizeInBits(); |
| 976 | unsigned DestSubReg; |
| 977 | |
| 978 | switch (DestSize) { |
| 979 | case 8: DestSubReg = AArch64::sub_8; break; |
| 980 | case 16: DestSubReg = AArch64::sub_16; break; |
| 981 | case 32: DestSubReg = AArch64::sub_32; break; |
| 982 | case 64: DestSubReg = AArch64::sub_64; break; |
| 983 | default: llvm_unreachable("Unexpected argument promotion"); |
| 984 | } |
| 985 | |
| 986 | ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, |
| 987 | VA.getValVT(), ArgValue, |
| 988 | DAG.getTargetConstant(DestSubReg, MVT::i32)), |
| 989 | 0); |
| 990 | break; |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | InVals.push_back(ArgValue); |
| 995 | } |
| 996 | |
| 997 | if (isVarArg) |
| 998 | SaveVarArgRegisters(CCInfo, DAG, dl, Chain); |
| 999 | |
| 1000 | unsigned StackArgSize = CCInfo.getNextStackOffset(); |
| 1001 | if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { |
| 1002 | // This is a non-standard ABI so by fiat I say we're allowed to make full |
| 1003 | // use of the stack area to be popped, which must be aligned to 16 bytes in |
| 1004 | // any case: |
| 1005 | StackArgSize = RoundUpToAlignment(StackArgSize, 16); |
| 1006 | |
| 1007 | // If we're expected to restore the stack (e.g. fastcc) then we'll be adding |
| 1008 | // a multiple of 16. |
| 1009 | FuncInfo->setArgumentStackToRestore(StackArgSize); |
| 1010 | |
| 1011 | // This realignment carries over to the available bytes below. Our own |
| 1012 | // callers will guarantee the space is free by giving an aligned value to |
| 1013 | // CALLSEQ_START. |
| 1014 | } |
| 1015 | // Even if we're not expected to free up the space, it's useful to know how |
| 1016 | // much is there while considering tail calls (because we can reuse it). |
| 1017 | FuncInfo->setBytesInStackArgArea(StackArgSize); |
| 1018 | |
| 1019 | return Chain; |
| 1020 | } |
| 1021 | |
| 1022 | SDValue |
| 1023 | AArch64TargetLowering::LowerReturn(SDValue Chain, |
| 1024 | CallingConv::ID CallConv, bool isVarArg, |
| 1025 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1026 | const SmallVectorImpl<SDValue> &OutVals, |
| 1027 | DebugLoc dl, SelectionDAG &DAG) const { |
| 1028 | // CCValAssign - represent the assignment of the return value to a location. |
| 1029 | SmallVector<CCValAssign, 16> RVLocs; |
| 1030 | |
| 1031 | // CCState - Info about the registers and stack slots. |
| 1032 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| 1033 | getTargetMachine(), RVLocs, *DAG.getContext()); |
| 1034 | |
| 1035 | // Analyze outgoing return values. |
| 1036 | CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv)); |
| 1037 | |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1038 | SDValue Flag; |
Jakob Stoklund Olesen | baa3c50 | 2013-02-05 18:21:49 +0000 | [diff] [blame] | 1039 | SmallVector<SDValue, 4> RetOps(1, Chain); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1040 | |
| 1041 | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 1042 | // PCS: "If the type, T, of the result of a function is such that |
| 1043 | // void func(T arg) would require that arg be passed as a value in a |
| 1044 | // register (or set of registers) according to the rules in 5.4, then the |
| 1045 | // result is returned in the same registers as would be used for such an |
| 1046 | // argument. |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1047 | // |
| 1048 | // Otherwise, the caller shall reserve a block of memory of sufficient |
| 1049 | // size and alignment to hold the result. The address of the memory block |
| 1050 | // shall be passed as an additional argument to the function in x8." |
| 1051 | // |
| 1052 | // This is implemented in two places. The register-return values are dealt |
| 1053 | // with here, more complex returns are passed as an sret parameter, which |
| 1054 | // means we don't have to worry about it during actual return. |
| 1055 | CCValAssign &VA = RVLocs[i]; |
| 1056 | assert(VA.isRegLoc() && "Only register-returns should be created by PCS"); |
| 1057 | |
| 1058 | |
| 1059 | SDValue Arg = OutVals[i]; |
| 1060 | |
| 1061 | // There's no convenient note in the ABI about this as there is for normal |
| 1062 | // arguments, but it says return values are passed in the same registers as |
| 1063 | // an argument would be. I believe that includes the comments about |
| 1064 | // unspecified higher bits, putting the burden of widening on the *caller* |
| 1065 | // for return values. |
| 1066 | switch (VA.getLocInfo()) { |
| 1067 | default: llvm_unreachable("Unknown loc info"); |
| 1068 | case CCValAssign::Full: break; |
| 1069 | case CCValAssign::SExt: |
| 1070 | case CCValAssign::ZExt: |
| 1071 | case CCValAssign::AExt: |
| 1072 | // Floating-point values should only be extended when they're going into |
| 1073 | // memory, which can't happen here so an integer extend is acceptable. |
| 1074 | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| 1075 | break; |
| 1076 | case CCValAssign::BCvt: |
| 1077 | Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| 1078 | break; |
| 1079 | } |
| 1080 | |
| 1081 | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| 1082 | Flag = Chain.getValue(1); |
Jakob Stoklund Olesen | baa3c50 | 2013-02-05 18:21:49 +0000 | [diff] [blame] | 1083 | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1084 | } |
| 1085 | |
Jakob Stoklund Olesen | baa3c50 | 2013-02-05 18:21:49 +0000 | [diff] [blame] | 1086 | RetOps[0] = Chain; // Update chain. |
| 1087 | |
| 1088 | // Add the flag if we have it. |
| 1089 | if (Flag.getNode()) |
| 1090 | RetOps.push_back(Flag); |
| 1091 | |
| 1092 | return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, |
| 1093 | &RetOps[0], RetOps.size()); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1094 | } |
| 1095 | |
| 1096 | SDValue |
| 1097 | AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, |
| 1098 | SmallVectorImpl<SDValue> &InVals) const { |
| 1099 | SelectionDAG &DAG = CLI.DAG; |
| 1100 | DebugLoc &dl = CLI.DL; |
| 1101 | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| 1102 | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| 1103 | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| 1104 | SDValue Chain = CLI.Chain; |
| 1105 | SDValue Callee = CLI.Callee; |
| 1106 | bool &IsTailCall = CLI.IsTailCall; |
| 1107 | CallingConv::ID CallConv = CLI.CallConv; |
| 1108 | bool IsVarArg = CLI.IsVarArg; |
| 1109 | |
| 1110 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1111 | AArch64MachineFunctionInfo *FuncInfo |
| 1112 | = MF.getInfo<AArch64MachineFunctionInfo>(); |
| 1113 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| 1114 | bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet(); |
| 1115 | bool IsSibCall = false; |
| 1116 | |
| 1117 | if (IsTailCall) { |
| 1118 | IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| 1119 | IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), |
| 1120 | Outs, OutVals, Ins, DAG); |
| 1121 | |
| 1122 | // A sibling call is one where we're under the usual C ABI and not planning |
| 1123 | // to change that but can still do a tail call: |
| 1124 | if (!TailCallOpt && IsTailCall) |
| 1125 | IsSibCall = true; |
| 1126 | } |
| 1127 | |
| 1128 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1129 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), |
| 1130 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 1131 | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); |
| 1132 | |
| 1133 | // On AArch64 (and all other architectures I'm aware of) the most this has to |
| 1134 | // do is adjust the stack pointer. |
| 1135 | unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16); |
| 1136 | if (IsSibCall) { |
| 1137 | // Since we're not changing the ABI to make this a tail call, the memory |
| 1138 | // operands are already available in the caller's incoming argument space. |
| 1139 | NumBytes = 0; |
| 1140 | } |
| 1141 | |
| 1142 | // FPDiff is the byte offset of the call's argument area from the callee's. |
| 1143 | // Stores to callee stack arguments will be placed in FixedStackSlots offset |
| 1144 | // by this amount for a tail call. In a sibling call it must be 0 because the |
| 1145 | // caller will deallocate the entire stack and the callee still expects its |
| 1146 | // arguments to begin at SP+0. Completely unused for non-tail calls. |
| 1147 | int FPDiff = 0; |
| 1148 | |
| 1149 | if (IsTailCall && !IsSibCall) { |
| 1150 | unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); |
| 1151 | |
| 1152 | // FPDiff will be negative if this tail call requires more space than we |
| 1153 | // would automatically have in our incoming argument space. Positive if we |
| 1154 | // can actually shrink the stack. |
| 1155 | FPDiff = NumReusableBytes - NumBytes; |
| 1156 | |
| 1157 | // The stack pointer must be 16-byte aligned at all times it's used for a |
| 1158 | // memory operation, which in practice means at *all* times and in |
| 1159 | // particular across call boundaries. Therefore our own arguments started at |
| 1160 | // a 16-byte aligned SP and the delta applied for the tail call should |
| 1161 | // satisfy the same constraint. |
| 1162 | assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); |
| 1163 | } |
| 1164 | |
| 1165 | if (!IsSibCall) |
| 1166 | Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| 1167 | |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 1168 | SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP, |
| 1169 | getPointerTy()); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1170 | |
| 1171 | SmallVector<SDValue, 8> MemOpChains; |
| 1172 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| 1173 | |
| 1174 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 1175 | CCValAssign &VA = ArgLocs[i]; |
| 1176 | ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| 1177 | SDValue Arg = OutVals[i]; |
| 1178 | |
| 1179 | // Callee does the actual widening, so all extensions just use an implicit |
| 1180 | // definition of the rest of the Loc. Aesthetically, this would be nicer as |
| 1181 | // an ANY_EXTEND, but that isn't valid for floating-point types and this |
| 1182 | // alternative works on integer types too. |
| 1183 | switch (VA.getLocInfo()) { |
| 1184 | default: llvm_unreachable("Unknown loc info!"); |
| 1185 | case CCValAssign::Full: break; |
| 1186 | case CCValAssign::SExt: |
| 1187 | case CCValAssign::ZExt: |
| 1188 | case CCValAssign::AExt: { |
| 1189 | unsigned SrcSize = VA.getValVT().getSizeInBits(); |
| 1190 | unsigned SrcSubReg; |
| 1191 | |
| 1192 | switch (SrcSize) { |
| 1193 | case 8: SrcSubReg = AArch64::sub_8; break; |
| 1194 | case 16: SrcSubReg = AArch64::sub_16; break; |
| 1195 | case 32: SrcSubReg = AArch64::sub_32; break; |
| 1196 | case 64: SrcSubReg = AArch64::sub_64; break; |
| 1197 | default: llvm_unreachable("Unexpected argument promotion"); |
| 1198 | } |
| 1199 | |
| 1200 | Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, |
| 1201 | VA.getLocVT(), |
| 1202 | DAG.getUNDEF(VA.getLocVT()), |
| 1203 | Arg, |
| 1204 | DAG.getTargetConstant(SrcSubReg, MVT::i32)), |
| 1205 | 0); |
| 1206 | |
| 1207 | break; |
| 1208 | } |
| 1209 | case CCValAssign::BCvt: |
| 1210 | Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| 1211 | break; |
| 1212 | } |
| 1213 | |
| 1214 | if (VA.isRegLoc()) { |
| 1215 | // A normal register (sub-) argument. For now we just note it down because |
| 1216 | // we want to copy things into registers as late as possible to avoid |
| 1217 | // register-pressure (and possibly worse). |
| 1218 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| 1219 | continue; |
| 1220 | } |
| 1221 | |
| 1222 | assert(VA.isMemLoc() && "unexpected argument location"); |
| 1223 | |
| 1224 | SDValue DstAddr; |
| 1225 | MachinePointerInfo DstInfo; |
| 1226 | if (IsTailCall) { |
| 1227 | uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() : |
| 1228 | VA.getLocVT().getSizeInBits(); |
| 1229 | OpSize = (OpSize + 7) / 8; |
| 1230 | int32_t Offset = VA.getLocMemOffset() + FPDiff; |
| 1231 | int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); |
| 1232 | |
| 1233 | DstAddr = DAG.getFrameIndex(FI, getPointerTy()); |
| 1234 | DstInfo = MachinePointerInfo::getFixedStack(FI); |
| 1235 | |
| 1236 | // Make sure any stack arguments overlapping with where we're storing are |
| 1237 | // loaded before this eventual operation. Otherwise they'll be clobbered. |
| 1238 | Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); |
| 1239 | } else { |
| 1240 | SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()); |
| 1241 | |
| 1242 | DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| 1243 | DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset()); |
| 1244 | } |
| 1245 | |
| 1246 | if (Flags.isByVal()) { |
| 1247 | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64); |
| 1248 | SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode, |
| 1249 | Flags.getByValAlign(), |
| 1250 | /*isVolatile = */ false, |
| 1251 | /*alwaysInline = */ false, |
| 1252 | DstInfo, MachinePointerInfo(0)); |
| 1253 | MemOpChains.push_back(Cpy); |
| 1254 | } else { |
| 1255 | // Normal stack argument, put it where it's needed. |
| 1256 | SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo, |
| 1257 | false, false, 0); |
| 1258 | MemOpChains.push_back(Store); |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | // The loads and stores generated above shouldn't clash with each |
| 1263 | // other. Combining them with this TokenFactor notes that fact for the rest of |
| 1264 | // the backend. |
| 1265 | if (!MemOpChains.empty()) |
| 1266 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| 1267 | &MemOpChains[0], MemOpChains.size()); |
| 1268 | |
| 1269 | // Most of the rest of the instructions need to be glued together; we don't |
| 1270 | // want assignments to actual registers used by a call to be rearranged by a |
| 1271 | // well-meaning scheduler. |
| 1272 | SDValue InFlag; |
| 1273 | |
| 1274 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| 1275 | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| 1276 | RegsToPass[i].second, InFlag); |
| 1277 | InFlag = Chain.getValue(1); |
| 1278 | } |
| 1279 | |
| 1280 | // The linker is responsible for inserting veneers when necessary to put a |
| 1281 | // function call destination in range, so we don't need to bother with a |
| 1282 | // wrapper here. |
| 1283 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 1284 | const GlobalValue *GV = G->getGlobal(); |
| 1285 | Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy()); |
| 1286 | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| 1287 | const char *Sym = S->getSymbol(); |
| 1288 | Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| 1289 | } |
| 1290 | |
| 1291 | // We don't usually want to end the call-sequence here because we would tidy |
| 1292 | // the frame up *after* the call, however in the ABI-changing tail-call case |
| 1293 | // we've carefully laid out the parameters so that when sp is reset they'll be |
| 1294 | // in the correct location. |
| 1295 | if (IsTailCall && !IsSibCall) { |
| 1296 | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| 1297 | DAG.getIntPtrConstant(0, true), InFlag); |
| 1298 | InFlag = Chain.getValue(1); |
| 1299 | } |
| 1300 | |
| 1301 | // We produce the following DAG scheme for the actual call instruction: |
| 1302 | // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag? |
| 1303 | // |
| 1304 | // Most arguments aren't going to be used and just keep the values live as |
| 1305 | // far as LLVM is concerned. It's expected to be selected as simply "bl |
| 1306 | // callee" (for a direct, non-tail call). |
| 1307 | std::vector<SDValue> Ops; |
| 1308 | Ops.push_back(Chain); |
| 1309 | Ops.push_back(Callee); |
| 1310 | |
| 1311 | if (IsTailCall) { |
| 1312 | // Each tail call may have to adjust the stack by a different amount, so |
| 1313 | // this information must travel along with the operation for eventual |
| 1314 | // consumption by emitEpilogue. |
| 1315 | Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); |
| 1316 | } |
| 1317 | |
| 1318 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| 1319 | Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| 1320 | RegsToPass[i].second.getValueType())); |
| 1321 | |
| 1322 | |
| 1323 | // Add a register mask operand representing the call-preserved registers. This |
| 1324 | // is used later in codegen to constrain register-allocation. |
| 1325 | const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| 1326 | const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); |
| 1327 | assert(Mask && "Missing call preserved mask for calling convention"); |
| 1328 | Ops.push_back(DAG.getRegisterMask(Mask)); |
| 1329 | |
| 1330 | // If we needed glue, put it in as the last argument. |
| 1331 | if (InFlag.getNode()) |
| 1332 | Ops.push_back(InFlag); |
| 1333 | |
| 1334 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| 1335 | |
| 1336 | if (IsTailCall) { |
| 1337 | return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); |
| 1338 | } |
| 1339 | |
| 1340 | Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size()); |
| 1341 | InFlag = Chain.getValue(1); |
| 1342 | |
| 1343 | // Now we can reclaim the stack, just as well do it before working out where |
| 1344 | // our return value is. |
| 1345 | if (!IsSibCall) { |
| 1346 | uint64_t CalleePopBytes |
| 1347 | = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0; |
| 1348 | |
| 1349 | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| 1350 | DAG.getIntPtrConstant(CalleePopBytes, true), |
| 1351 | InFlag); |
| 1352 | InFlag = Chain.getValue(1); |
| 1353 | } |
| 1354 | |
| 1355 | return LowerCallResult(Chain, InFlag, CallConv, |
| 1356 | IsVarArg, Ins, dl, DAG, InVals); |
| 1357 | } |
| 1358 | |
| 1359 | SDValue |
| 1360 | AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| 1361 | CallingConv::ID CallConv, bool IsVarArg, |
| 1362 | const SmallVectorImpl<ISD::InputArg> &Ins, |
| 1363 | DebugLoc dl, SelectionDAG &DAG, |
| 1364 | SmallVectorImpl<SDValue> &InVals) const { |
| 1365 | // Assign locations to each value returned by this call. |
| 1366 | SmallVector<CCValAssign, 16> RVLocs; |
| 1367 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), |
| 1368 | getTargetMachine(), RVLocs, *DAG.getContext()); |
| 1369 | CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv)); |
| 1370 | |
| 1371 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| 1372 | CCValAssign VA = RVLocs[i]; |
| 1373 | |
| 1374 | // Return values that are too big to fit into registers should use an sret |
| 1375 | // pointer, so this can be a lot simpler than the main argument code. |
| 1376 | assert(VA.isRegLoc() && "Memory locations not expected for call return"); |
| 1377 | |
| 1378 | SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), |
| 1379 | InFlag); |
| 1380 | Chain = Val.getValue(1); |
| 1381 | InFlag = Val.getValue(2); |
| 1382 | |
| 1383 | switch (VA.getLocInfo()) { |
| 1384 | default: llvm_unreachable("Unknown loc info!"); |
| 1385 | case CCValAssign::Full: break; |
| 1386 | case CCValAssign::BCvt: |
| 1387 | Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); |
| 1388 | break; |
| 1389 | case CCValAssign::ZExt: |
| 1390 | case CCValAssign::SExt: |
| 1391 | case CCValAssign::AExt: |
| 1392 | // Floating-point arguments only get extended/truncated if they're going |
| 1393 | // in memory, so using the integer operation is acceptable here. |
| 1394 | Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| 1395 | break; |
| 1396 | } |
| 1397 | |
| 1398 | InVals.push_back(Val); |
| 1399 | } |
| 1400 | |
| 1401 | return Chain; |
| 1402 | } |
| 1403 | |
| 1404 | bool |
| 1405 | AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| 1406 | CallingConv::ID CalleeCC, |
| 1407 | bool IsVarArg, |
| 1408 | bool IsCalleeStructRet, |
| 1409 | bool IsCallerStructRet, |
| 1410 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1411 | const SmallVectorImpl<SDValue> &OutVals, |
| 1412 | const SmallVectorImpl<ISD::InputArg> &Ins, |
| 1413 | SelectionDAG& DAG) const { |
| 1414 | |
| 1415 | // For CallingConv::C this function knows whether the ABI needs |
| 1416 | // changing. That's not true for other conventions so they will have to opt in |
| 1417 | // manually. |
| 1418 | if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) |
| 1419 | return false; |
| 1420 | |
| 1421 | const MachineFunction &MF = DAG.getMachineFunction(); |
| 1422 | const Function *CallerF = MF.getFunction(); |
| 1423 | CallingConv::ID CallerCC = CallerF->getCallingConv(); |
| 1424 | bool CCMatch = CallerCC == CalleeCC; |
| 1425 | |
| 1426 | // Byval parameters hand the function a pointer directly into the stack area |
| 1427 | // we want to reuse during a tail call. Working around this *is* possible (see |
| 1428 | // X86) but less efficient and uglier in LowerCall. |
| 1429 | for (Function::const_arg_iterator i = CallerF->arg_begin(), |
| 1430 | e = CallerF->arg_end(); i != e; ++i) |
| 1431 | if (i->hasByValAttr()) |
| 1432 | return false; |
| 1433 | |
| 1434 | if (getTargetMachine().Options.GuaranteedTailCallOpt) { |
| 1435 | if (IsTailCallConvention(CalleeCC) && CCMatch) |
| 1436 | return true; |
| 1437 | return false; |
| 1438 | } |
| 1439 | |
| 1440 | // Now we search for cases where we can use a tail call without changing the |
| 1441 | // ABI. Sibcall is used in some places (particularly gcc) to refer to this |
| 1442 | // concept. |
| 1443 | |
| 1444 | // I want anyone implementing a new calling convention to think long and hard |
| 1445 | // about this assert. |
| 1446 | assert((!IsVarArg || CalleeCC == CallingConv::C) |
| 1447 | && "Unexpected variadic calling convention"); |
| 1448 | |
| 1449 | if (IsVarArg && !Outs.empty()) { |
| 1450 | // At least two cases here: if caller is fastcc then we can't have any |
| 1451 | // memory arguments (we'd be expected to clean up the stack afterwards). If |
| 1452 | // caller is C then we could potentially use its argument area. |
| 1453 | |
| 1454 | // FIXME: for now we take the most conservative of these in both cases: |
| 1455 | // disallow all variadic memory operands. |
| 1456 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1457 | CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), |
| 1458 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 1459 | |
| 1460 | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); |
| 1461 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) |
| 1462 | if (!ArgLocs[i].isRegLoc()) |
| 1463 | return false; |
| 1464 | } |
| 1465 | |
| 1466 | // If the calling conventions do not match, then we'd better make sure the |
| 1467 | // results are returned in the same way as what the caller expects. |
| 1468 | if (!CCMatch) { |
| 1469 | SmallVector<CCValAssign, 16> RVLocs1; |
| 1470 | CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), |
| 1471 | getTargetMachine(), RVLocs1, *DAG.getContext()); |
| 1472 | CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC)); |
| 1473 | |
| 1474 | SmallVector<CCValAssign, 16> RVLocs2; |
| 1475 | CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), |
| 1476 | getTargetMachine(), RVLocs2, *DAG.getContext()); |
| 1477 | CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC)); |
| 1478 | |
| 1479 | if (RVLocs1.size() != RVLocs2.size()) |
| 1480 | return false; |
| 1481 | for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { |
| 1482 | if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) |
| 1483 | return false; |
| 1484 | if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) |
| 1485 | return false; |
| 1486 | if (RVLocs1[i].isRegLoc()) { |
| 1487 | if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) |
| 1488 | return false; |
| 1489 | } else { |
| 1490 | if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) |
| 1491 | return false; |
| 1492 | } |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | // Nothing more to check if the callee is taking no arguments |
| 1497 | if (Outs.empty()) |
| 1498 | return true; |
| 1499 | |
| 1500 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1501 | CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), |
| 1502 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 1503 | |
| 1504 | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); |
| 1505 | |
| 1506 | const AArch64MachineFunctionInfo *FuncInfo |
| 1507 | = MF.getInfo<AArch64MachineFunctionInfo>(); |
| 1508 | |
| 1509 | // If the stack arguments for this call would fit into our own save area then |
| 1510 | // the call can be made tail. |
| 1511 | return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); |
| 1512 | } |
| 1513 | |
| 1514 | bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, |
| 1515 | bool TailCallOpt) const { |
| 1516 | return CallCC == CallingConv::Fast && TailCallOpt; |
| 1517 | } |
| 1518 | |
| 1519 | bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { |
| 1520 | return CallCC == CallingConv::Fast; |
| 1521 | } |
| 1522 | |
| 1523 | SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, |
| 1524 | SelectionDAG &DAG, |
| 1525 | MachineFrameInfo *MFI, |
| 1526 | int ClobberedFI) const { |
| 1527 | SmallVector<SDValue, 8> ArgChains; |
| 1528 | int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); |
| 1529 | int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; |
| 1530 | |
| 1531 | // Include the original chain at the beginning of the list. When this is |
| 1532 | // used by target LowerCall hooks, this helps legalize find the |
| 1533 | // CALLSEQ_BEGIN node. |
| 1534 | ArgChains.push_back(Chain); |
| 1535 | |
| 1536 | // Add a chain value for each stack argument corresponding |
| 1537 | for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), |
| 1538 | UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) |
| 1539 | if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) |
| 1540 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) |
| 1541 | if (FI->getIndex() < 0) { |
| 1542 | int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); |
| 1543 | int64_t InLastByte = InFirstByte; |
| 1544 | InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; |
| 1545 | |
| 1546 | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| 1547 | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| 1548 | ArgChains.push_back(SDValue(L, 1)); |
| 1549 | } |
| 1550 | |
| 1551 | // Build a tokenfactor for all the chains. |
| 1552 | return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other, |
| 1553 | &ArgChains[0], ArgChains.size()); |
| 1554 | } |
| 1555 | |
| 1556 | static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) { |
| 1557 | switch (CC) { |
| 1558 | case ISD::SETEQ: return A64CC::EQ; |
| 1559 | case ISD::SETGT: return A64CC::GT; |
| 1560 | case ISD::SETGE: return A64CC::GE; |
| 1561 | case ISD::SETLT: return A64CC::LT; |
| 1562 | case ISD::SETLE: return A64CC::LE; |
| 1563 | case ISD::SETNE: return A64CC::NE; |
| 1564 | case ISD::SETUGT: return A64CC::HI; |
| 1565 | case ISD::SETUGE: return A64CC::HS; |
| 1566 | case ISD::SETULT: return A64CC::LO; |
| 1567 | case ISD::SETULE: return A64CC::LS; |
| 1568 | default: llvm_unreachable("Unexpected condition code"); |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const { |
| 1573 | // icmp is implemented using adds/subs immediate, which take an unsigned |
| 1574 | // 12-bit immediate, optionally shifted left by 12 bits. |
| 1575 | |
| 1576 | // Symmetric by using adds/subs |
| 1577 | if (Val < 0) |
| 1578 | Val = -Val; |
| 1579 | |
| 1580 | return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0; |
| 1581 | } |
| 1582 | |
| 1583 | SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS, |
| 1584 | ISD::CondCode CC, SDValue &A64cc, |
| 1585 | SelectionDAG &DAG, DebugLoc &dl) const { |
| 1586 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| 1587 | int64_t C = 0; |
| 1588 | EVT VT = RHSC->getValueType(0); |
| 1589 | bool knownInvalid = false; |
| 1590 | |
| 1591 | // I'm not convinced the rest of LLVM handles these edge cases properly, but |
| 1592 | // we can at least get it right. |
| 1593 | if (isSignedIntSetCC(CC)) { |
| 1594 | C = RHSC->getSExtValue(); |
| 1595 | } else if (RHSC->getZExtValue() > INT64_MAX) { |
| 1596 | // A 64-bit constant not representable by a signed 64-bit integer is far |
| 1597 | // too big to fit into a SUBS immediate anyway. |
| 1598 | knownInvalid = true; |
| 1599 | } else { |
| 1600 | C = RHSC->getZExtValue(); |
| 1601 | } |
| 1602 | |
| 1603 | if (!knownInvalid && !isLegalICmpImmediate(C)) { |
| 1604 | // Constant does not fit, try adjusting it by one? |
| 1605 | switch (CC) { |
| 1606 | default: break; |
| 1607 | case ISD::SETLT: |
| 1608 | case ISD::SETGE: |
| 1609 | if (isLegalICmpImmediate(C-1)) { |
| 1610 | CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| 1611 | RHS = DAG.getConstant(C-1, VT); |
| 1612 | } |
| 1613 | break; |
| 1614 | case ISD::SETULT: |
| 1615 | case ISD::SETUGE: |
| 1616 | if (isLegalICmpImmediate(C-1)) { |
| 1617 | CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| 1618 | RHS = DAG.getConstant(C-1, VT); |
| 1619 | } |
| 1620 | break; |
| 1621 | case ISD::SETLE: |
| 1622 | case ISD::SETGT: |
| 1623 | if (isLegalICmpImmediate(C+1)) { |
| 1624 | CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| 1625 | RHS = DAG.getConstant(C+1, VT); |
| 1626 | } |
| 1627 | break; |
| 1628 | case ISD::SETULE: |
| 1629 | case ISD::SETUGT: |
| 1630 | if (isLegalICmpImmediate(C+1)) { |
| 1631 | CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| 1632 | RHS = DAG.getConstant(C+1, VT); |
| 1633 | } |
| 1634 | break; |
| 1635 | } |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | A64CC::CondCodes CondCode = IntCCToA64CC(CC); |
| 1640 | A64cc = DAG.getConstant(CondCode, MVT::i32); |
| 1641 | return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| 1642 | DAG.getCondCode(CC)); |
| 1643 | } |
| 1644 | |
| 1645 | static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC, |
| 1646 | A64CC::CondCodes &Alternative) { |
| 1647 | A64CC::CondCodes CondCode = A64CC::Invalid; |
| 1648 | Alternative = A64CC::Invalid; |
| 1649 | |
| 1650 | switch (CC) { |
| 1651 | default: llvm_unreachable("Unknown FP condition!"); |
| 1652 | case ISD::SETEQ: |
| 1653 | case ISD::SETOEQ: CondCode = A64CC::EQ; break; |
| 1654 | case ISD::SETGT: |
| 1655 | case ISD::SETOGT: CondCode = A64CC::GT; break; |
| 1656 | case ISD::SETGE: |
| 1657 | case ISD::SETOGE: CondCode = A64CC::GE; break; |
| 1658 | case ISD::SETOLT: CondCode = A64CC::MI; break; |
| 1659 | case ISD::SETOLE: CondCode = A64CC::LS; break; |
| 1660 | case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break; |
| 1661 | case ISD::SETO: CondCode = A64CC::VC; break; |
| 1662 | case ISD::SETUO: CondCode = A64CC::VS; break; |
| 1663 | case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break; |
| 1664 | case ISD::SETUGT: CondCode = A64CC::HI; break; |
| 1665 | case ISD::SETUGE: CondCode = A64CC::PL; break; |
| 1666 | case ISD::SETLT: |
| 1667 | case ISD::SETULT: CondCode = A64CC::LT; break; |
| 1668 | case ISD::SETLE: |
| 1669 | case ISD::SETULE: CondCode = A64CC::LE; break; |
| 1670 | case ISD::SETNE: |
| 1671 | case ISD::SETUNE: CondCode = A64CC::NE; break; |
| 1672 | } |
| 1673 | return CondCode; |
| 1674 | } |
| 1675 | |
| 1676 | SDValue |
| 1677 | AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { |
| 1678 | DebugLoc DL = Op.getDebugLoc(); |
| 1679 | EVT PtrVT = getPointerTy(); |
| 1680 | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| 1681 | |
| 1682 | assert(getTargetMachine().getCodeModel() == CodeModel::Small |
| 1683 | && "Only small code model supported at the moment"); |
| 1684 | |
| 1685 | // The most efficient code is PC-relative anyway for the small memory model, |
| 1686 | // so we don't need to worry about relocation model. |
| 1687 | return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
| 1688 | DAG.getTargetBlockAddress(BA, PtrVT, 0, |
| 1689 | AArch64II::MO_NO_FLAG), |
| 1690 | DAG.getTargetBlockAddress(BA, PtrVT, 0, |
| 1691 | AArch64II::MO_LO12), |
| 1692 | DAG.getConstant(/*Alignment=*/ 4, MVT::i32)); |
| 1693 | } |
| 1694 | |
| 1695 | |
| 1696 | // (BRCOND chain, val, dest) |
| 1697 | SDValue |
| 1698 | AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| 1699 | DebugLoc dl = Op.getDebugLoc(); |
| 1700 | SDValue Chain = Op.getOperand(0); |
| 1701 | SDValue TheBit = Op.getOperand(1); |
| 1702 | SDValue DestBB = Op.getOperand(2); |
| 1703 | |
| 1704 | // AArch64 BooleanContents is the default UndefinedBooleanContent, which means |
| 1705 | // that as the consumer we are responsible for ignoring rubbish in higher |
| 1706 | // bits. |
| 1707 | TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, |
| 1708 | DAG.getConstant(1, MVT::i32)); |
| 1709 | |
| 1710 | SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, |
| 1711 | DAG.getConstant(0, TheBit.getValueType()), |
| 1712 | DAG.getCondCode(ISD::SETNE)); |
| 1713 | |
| 1714 | return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain, |
| 1715 | A64CMP, DAG.getConstant(A64CC::NE, MVT::i32), |
| 1716 | DestBB); |
| 1717 | } |
| 1718 | |
| 1719 | // (BR_CC chain, condcode, lhs, rhs, dest) |
| 1720 | SDValue |
| 1721 | AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| 1722 | DebugLoc dl = Op.getDebugLoc(); |
| 1723 | SDValue Chain = Op.getOperand(0); |
| 1724 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| 1725 | SDValue LHS = Op.getOperand(2); |
| 1726 | SDValue RHS = Op.getOperand(3); |
| 1727 | SDValue DestBB = Op.getOperand(4); |
| 1728 | |
| 1729 | if (LHS.getValueType() == MVT::f128) { |
| 1730 | // f128 comparisons are lowered to runtime calls by a routine which sets |
| 1731 | // LHS, RHS and CC appropriately for the rest of this function to continue. |
| 1732 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| 1733 | |
| 1734 | // If softenSetCCOperands returned a scalar, we need to compare the result |
| 1735 | // against zero to select between true and false values. |
| 1736 | if (RHS.getNode() == 0) { |
| 1737 | RHS = DAG.getConstant(0, LHS.getValueType()); |
| 1738 | CC = ISD::SETNE; |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | if (LHS.getValueType().isInteger()) { |
| 1743 | SDValue A64cc; |
| 1744 | |
| 1745 | // Integers are handled in a separate function because the combinations of |
| 1746 | // immediates and tests can get hairy and we may want to fiddle things. |
| 1747 | SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); |
| 1748 | |
| 1749 | return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, |
| 1750 | Chain, CmpOp, A64cc, DestBB); |
| 1751 | } |
| 1752 | |
| 1753 | // Note that some LLVM floating-point CondCodes can't be lowered to a single |
| 1754 | // conditional branch, hence FPCCToA64CC can set a second test, where either |
| 1755 | // passing is sufficient. |
| 1756 | A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; |
| 1757 | CondCode = FPCCToA64CC(CC, Alternative); |
| 1758 | SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); |
| 1759 | SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| 1760 | DAG.getCondCode(CC)); |
| 1761 | SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, |
| 1762 | Chain, SetCC, A64cc, DestBB); |
| 1763 | |
| 1764 | if (Alternative != A64CC::Invalid) { |
| 1765 | A64cc = DAG.getConstant(Alternative, MVT::i32); |
| 1766 | A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, |
| 1767 | A64BR_CC, SetCC, A64cc, DestBB); |
| 1768 | |
| 1769 | } |
| 1770 | |
| 1771 | return A64BR_CC; |
| 1772 | } |
| 1773 | |
| 1774 | SDValue |
| 1775 | AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG, |
| 1776 | RTLIB::Libcall Call) const { |
| 1777 | ArgListTy Args; |
| 1778 | ArgListEntry Entry; |
| 1779 | for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { |
| 1780 | EVT ArgVT = Op.getOperand(i).getValueType(); |
| 1781 | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| 1782 | Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy; |
| 1783 | Entry.isSExt = false; |
| 1784 | Entry.isZExt = false; |
| 1785 | Args.push_back(Entry); |
| 1786 | } |
| 1787 | SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy()); |
| 1788 | |
| 1789 | Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); |
| 1790 | |
| 1791 | // By default, the input chain to this libcall is the entry node of the |
| 1792 | // function. If the libcall is going to be emitted as a tail call then |
| 1793 | // isUsedByReturnOnly will change it to the right chain if the return |
| 1794 | // node which is being folded has a non-entry input chain. |
| 1795 | SDValue InChain = DAG.getEntryNode(); |
| 1796 | |
| 1797 | // isTailCall may be true since the callee does not reference caller stack |
| 1798 | // frame. Check if it's in the right position. |
| 1799 | SDValue TCChain = InChain; |
| 1800 | bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain); |
| 1801 | if (isTailCall) |
| 1802 | InChain = TCChain; |
| 1803 | |
| 1804 | TargetLowering:: |
| 1805 | CallLoweringInfo CLI(InChain, RetTy, false, false, false, false, |
| 1806 | 0, getLibcallCallingConv(Call), isTailCall, |
| 1807 | /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, |
| 1808 | Callee, Args, DAG, Op->getDebugLoc()); |
| 1809 | std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| 1810 | |
| 1811 | if (!CallInfo.second.getNode()) |
| 1812 | // It's a tailcall, return the chain (which is the DAG root). |
| 1813 | return DAG.getRoot(); |
| 1814 | |
| 1815 | return CallInfo.first; |
| 1816 | } |
| 1817 | |
| 1818 | SDValue |
| 1819 | AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { |
| 1820 | if (Op.getOperand(0).getValueType() != MVT::f128) { |
| 1821 | // It's legal except when f128 is involved |
| 1822 | return Op; |
| 1823 | } |
| 1824 | |
| 1825 | RTLIB::Libcall LC; |
| 1826 | LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1827 | |
| 1828 | SDValue SrcVal = Op.getOperand(0); |
| 1829 | return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, |
| 1830 | /*isSigned*/ false, Op.getDebugLoc()); |
| 1831 | } |
| 1832 | |
| 1833 | SDValue |
| 1834 | AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { |
| 1835 | assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); |
| 1836 | |
| 1837 | RTLIB::Libcall LC; |
| 1838 | LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1839 | |
| 1840 | return LowerF128ToCall(Op, DAG, LC); |
| 1841 | } |
| 1842 | |
| 1843 | SDValue |
| 1844 | AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, |
| 1845 | bool IsSigned) const { |
| 1846 | if (Op.getOperand(0).getValueType() != MVT::f128) { |
| 1847 | // It's legal except when f128 is involved |
| 1848 | return Op; |
| 1849 | } |
| 1850 | |
| 1851 | RTLIB::Libcall LC; |
| 1852 | if (IsSigned) |
| 1853 | LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1854 | else |
| 1855 | LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1856 | |
| 1857 | return LowerF128ToCall(Op, DAG, LC); |
| 1858 | } |
| 1859 | |
| 1860 | SDValue |
| 1861 | AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op, |
| 1862 | SelectionDAG &DAG) const { |
| 1863 | // TableGen doesn't have easy access to the CodeModel or RelocationModel, so |
| 1864 | // we make that distinction here. |
| 1865 | |
Tim Northover | 8a06229 | 2013-02-06 16:43:33 +0000 | [diff] [blame] | 1866 | // We support the small memory model for now. |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1867 | assert(getTargetMachine().getCodeModel() == CodeModel::Small); |
| 1868 | |
| 1869 | EVT PtrVT = getPointerTy(); |
| 1870 | DebugLoc dl = Op.getDebugLoc(); |
| 1871 | const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); |
| 1872 | const GlobalValue *GV = GN->getGlobal(); |
| 1873 | unsigned Alignment = GV->getAlignment(); |
Tim Northover | 8a06229 | 2013-02-06 16:43:33 +0000 | [diff] [blame] | 1874 | Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| 1875 | |
| 1876 | if (GV->isWeakForLinker() && RelocM == Reloc::Static) { |
| 1877 | // Weak symbols can't use ADRP/ADD pair since they should evaluate to |
| 1878 | // zero when undefined. In PIC mode the GOT can take care of this, but in |
| 1879 | // absolute mode we use a constant pool load. |
| 1880 | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| 1881 | DAG.getConstantPool(GV, GN->getValueType(0)), |
| 1882 | MachinePointerInfo::getConstantPool(), |
| 1883 | /*isVolatile=*/ false, /*isNonTemporal=*/ true, |
| 1884 | /*isInvariant=*/ true, 8); |
| 1885 | } |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1886 | |
| 1887 | if (Alignment == 0) { |
| 1888 | const PointerType *GVPtrTy = cast<PointerType>(GV->getType()); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 1889 | if (GVPtrTy->getElementType()->isSized()) { |
| 1890 | Alignment |
| 1891 | = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType()); |
| 1892 | } else { |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1893 | // Be conservative if we can't guess, not that it really matters: |
| 1894 | // functions and labels aren't valid for loads, and the methods used to |
| 1895 | // actually calculate an address work with any alignment. |
| 1896 | Alignment = 1; |
| 1897 | } |
| 1898 | } |
| 1899 | |
| 1900 | unsigned char HiFixup, LoFixup; |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1901 | bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM); |
| 1902 | |
| 1903 | if (UseGOT) { |
| 1904 | HiFixup = AArch64II::MO_GOT; |
| 1905 | LoFixup = AArch64II::MO_GOT_LO12; |
| 1906 | Alignment = 8; |
| 1907 | } else { |
| 1908 | HiFixup = AArch64II::MO_NO_FLAG; |
| 1909 | LoFixup = AArch64II::MO_LO12; |
| 1910 | } |
| 1911 | |
| 1912 | // AArch64's small model demands the following sequence: |
| 1913 | // ADRP x0, somewhere |
| 1914 | // ADD x0, x0, #:lo12:somewhere ; (or LDR directly). |
| 1915 | SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, |
| 1916 | DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| 1917 | HiFixup), |
| 1918 | DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| 1919 | LoFixup), |
| 1920 | DAG.getConstant(Alignment, MVT::i32)); |
| 1921 | |
| 1922 | if (UseGOT) { |
| 1923 | GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(), |
| 1924 | GlobalRef); |
| 1925 | } |
| 1926 | |
| 1927 | if (GN->getOffset() != 0) |
| 1928 | return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef, |
| 1929 | DAG.getConstant(GN->getOffset(), PtrVT)); |
| 1930 | |
| 1931 | return GlobalRef; |
| 1932 | } |
| 1933 | |
| 1934 | SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr, |
| 1935 | SDValue DescAddr, |
| 1936 | DebugLoc DL, |
| 1937 | SelectionDAG &DAG) const { |
| 1938 | EVT PtrVT = getPointerTy(); |
| 1939 | |
| 1940 | // The function we need to call is simply the first entry in the GOT for this |
| 1941 | // descriptor, load it in preparation. |
| 1942 | SDValue Func, Chain; |
| 1943 | Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), |
| 1944 | DescAddr); |
| 1945 | |
| 1946 | // The function takes only one argument: the address of the descriptor itself |
| 1947 | // in X0. |
| 1948 | SDValue Glue; |
| 1949 | Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); |
| 1950 | Glue = Chain.getValue(1); |
| 1951 | |
| 1952 | // Finally, there's a special calling-convention which means that the lookup |
| 1953 | // must preserve all registers (except X0, obviously). |
| 1954 | const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| 1955 | const AArch64RegisterInfo *A64RI |
| 1956 | = static_cast<const AArch64RegisterInfo *>(TRI); |
| 1957 | const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask(); |
| 1958 | |
| 1959 | // We're now ready to populate the argument list, as with a normal call: |
| 1960 | std::vector<SDValue> Ops; |
| 1961 | Ops.push_back(Chain); |
| 1962 | Ops.push_back(Func); |
| 1963 | Ops.push_back(SymAddr); |
| 1964 | Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); |
| 1965 | Ops.push_back(DAG.getRegisterMask(Mask)); |
| 1966 | Ops.push_back(Glue); |
| 1967 | |
| 1968 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 1969 | Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0], |
| 1970 | Ops.size()); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 1971 | Glue = Chain.getValue(1); |
| 1972 | |
| 1973 | // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it |
| 1974 | // back to the generic handling code. |
| 1975 | return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); |
| 1976 | } |
| 1977 | |
| 1978 | SDValue |
| 1979 | AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| 1980 | SelectionDAG &DAG) const { |
| 1981 | assert(Subtarget->isTargetELF() && |
| 1982 | "TLS not implemented for non-ELF targets"); |
| 1983 | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| 1984 | |
| 1985 | TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); |
| 1986 | |
| 1987 | SDValue TPOff; |
| 1988 | EVT PtrVT = getPointerTy(); |
| 1989 | DebugLoc DL = Op.getDebugLoc(); |
| 1990 | const GlobalValue *GV = GA->getGlobal(); |
| 1991 | |
| 1992 | SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); |
| 1993 | |
| 1994 | if (Model == TLSModel::InitialExec) { |
| 1995 | TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
| 1996 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| 1997 | AArch64II::MO_GOTTPREL), |
| 1998 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| 1999 | AArch64II::MO_GOTTPREL_LO12), |
| 2000 | DAG.getConstant(8, MVT::i32)); |
| 2001 | TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), |
| 2002 | TPOff); |
| 2003 | } else if (Model == TLSModel::LocalExec) { |
| 2004 | SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| 2005 | AArch64II::MO_TPREL_G1); |
| 2006 | SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| 2007 | AArch64II::MO_TPREL_G0_NC); |
| 2008 | |
| 2009 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, |
| 2010 | DAG.getTargetConstant(0, MVT::i32)), 0); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2011 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, |
| 2012 | TPOff, LoVar, |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2013 | DAG.getTargetConstant(0, MVT::i32)), 0); |
| 2014 | } else if (Model == TLSModel::GeneralDynamic) { |
| 2015 | // Accesses used in this sequence go via the TLS descriptor which lives in |
| 2016 | // the GOT. Prepare an address we can use to handle this. |
| 2017 | SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| 2018 | AArch64II::MO_TLSDESC); |
| 2019 | SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| 2020 | AArch64II::MO_TLSDESC_LO12); |
| 2021 | SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2022 | HiDesc, LoDesc, |
| 2023 | DAG.getConstant(8, MVT::i32)); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2024 | SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0); |
| 2025 | |
| 2026 | TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); |
| 2027 | } else if (Model == TLSModel::LocalDynamic) { |
| 2028 | // Local-dynamic accesses proceed in two phases. A general-dynamic TLS |
| 2029 | // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate |
| 2030 | // the beginning of the module's TLS region, followed by a DTPREL offset |
| 2031 | // calculation. |
| 2032 | |
| 2033 | // These accesses will need deduplicating if there's more than one. |
| 2034 | AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction() |
| 2035 | .getInfo<AArch64MachineFunctionInfo>(); |
| 2036 | MFI->incNumLocalDynamicTLSAccesses(); |
| 2037 | |
| 2038 | |
| 2039 | // Get the location of _TLS_MODULE_BASE_: |
| 2040 | SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, |
| 2041 | AArch64II::MO_TLSDESC); |
| 2042 | SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, |
| 2043 | AArch64II::MO_TLSDESC_LO12); |
| 2044 | SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2045 | HiDesc, LoDesc, |
| 2046 | DAG.getConstant(8, MVT::i32)); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2047 | SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT); |
| 2048 | |
| 2049 | ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); |
| 2050 | |
| 2051 | // Get the variable's offset from _TLS_MODULE_BASE_ |
| 2052 | SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| 2053 | AArch64II::MO_DTPREL_G1); |
| 2054 | SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| 2055 | AArch64II::MO_DTPREL_G0_NC); |
| 2056 | |
| 2057 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, |
| 2058 | DAG.getTargetConstant(0, MVT::i32)), 0); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2059 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, |
| 2060 | TPOff, LoVar, |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2061 | DAG.getTargetConstant(0, MVT::i32)), 0); |
| 2062 | } else |
| 2063 | llvm_unreachable("Unsupported TLS access model"); |
| 2064 | |
| 2065 | |
| 2066 | return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); |
| 2067 | } |
| 2068 | |
| 2069 | SDValue |
| 2070 | AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, |
| 2071 | bool IsSigned) const { |
| 2072 | if (Op.getValueType() != MVT::f128) { |
| 2073 | // Legal for everything except f128. |
| 2074 | return Op; |
| 2075 | } |
| 2076 | |
| 2077 | RTLIB::Libcall LC; |
| 2078 | if (IsSigned) |
| 2079 | LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 2080 | else |
| 2081 | LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 2082 | |
| 2083 | return LowerF128ToCall(Op, DAG, LC); |
| 2084 | } |
| 2085 | |
| 2086 | |
| 2087 | SDValue |
| 2088 | AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| 2089 | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| 2090 | DebugLoc dl = JT->getDebugLoc(); |
| 2091 | |
| 2092 | // When compiling PIC, jump tables get put in the code section so a static |
| 2093 | // relocation-style is acceptable for both cases. |
| 2094 | return DAG.getNode(AArch64ISD::WrapperSmall, dl, getPointerTy(), |
| 2095 | DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()), |
| 2096 | DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), |
| 2097 | AArch64II::MO_LO12), |
| 2098 | DAG.getConstant(1, MVT::i32)); |
| 2099 | } |
| 2100 | |
| 2101 | // (SELECT_CC lhs, rhs, iftrue, iffalse, condcode) |
| 2102 | SDValue |
| 2103 | AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| 2104 | DebugLoc dl = Op.getDebugLoc(); |
| 2105 | SDValue LHS = Op.getOperand(0); |
| 2106 | SDValue RHS = Op.getOperand(1); |
| 2107 | SDValue IfTrue = Op.getOperand(2); |
| 2108 | SDValue IfFalse = Op.getOperand(3); |
| 2109 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| 2110 | |
| 2111 | if (LHS.getValueType() == MVT::f128) { |
| 2112 | // f128 comparisons are lowered to libcalls, but slot in nicely here |
| 2113 | // afterwards. |
| 2114 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| 2115 | |
| 2116 | // If softenSetCCOperands returned a scalar, we need to compare the result |
| 2117 | // against zero to select between true and false values. |
| 2118 | if (RHS.getNode() == 0) { |
| 2119 | RHS = DAG.getConstant(0, LHS.getValueType()); |
| 2120 | CC = ISD::SETNE; |
| 2121 | } |
| 2122 | } |
| 2123 | |
| 2124 | if (LHS.getValueType().isInteger()) { |
| 2125 | SDValue A64cc; |
| 2126 | |
| 2127 | // Integers are handled in a separate function because the combinations of |
| 2128 | // immediates and tests can get hairy and we may want to fiddle things. |
| 2129 | SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); |
| 2130 | |
| 2131 | return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), |
| 2132 | CmpOp, IfTrue, IfFalse, A64cc); |
| 2133 | } |
| 2134 | |
| 2135 | // Note that some LLVM floating-point CondCodes can't be lowered to a single |
| 2136 | // conditional branch, hence FPCCToA64CC can set a second test, where either |
| 2137 | // passing is sufficient. |
| 2138 | A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; |
| 2139 | CondCode = FPCCToA64CC(CC, Alternative); |
| 2140 | SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); |
| 2141 | SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| 2142 | DAG.getCondCode(CC)); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2143 | SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, |
| 2144 | Op.getValueType(), |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2145 | SetCC, IfTrue, IfFalse, A64cc); |
| 2146 | |
| 2147 | if (Alternative != A64CC::Invalid) { |
| 2148 | A64cc = DAG.getConstant(Alternative, MVT::i32); |
| 2149 | A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), |
| 2150 | SetCC, IfTrue, A64SELECT_CC, A64cc); |
| 2151 | |
| 2152 | } |
| 2153 | |
| 2154 | return A64SELECT_CC; |
| 2155 | } |
| 2156 | |
| 2157 | // (SELECT testbit, iftrue, iffalse) |
| 2158 | SDValue |
| 2159 | AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| 2160 | DebugLoc dl = Op.getDebugLoc(); |
| 2161 | SDValue TheBit = Op.getOperand(0); |
| 2162 | SDValue IfTrue = Op.getOperand(1); |
| 2163 | SDValue IfFalse = Op.getOperand(2); |
| 2164 | |
| 2165 | // AArch64 BooleanContents is the default UndefinedBooleanContent, which means |
| 2166 | // that as the consumer we are responsible for ignoring rubbish in higher |
| 2167 | // bits. |
| 2168 | TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, |
| 2169 | DAG.getConstant(1, MVT::i32)); |
| 2170 | SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, |
| 2171 | DAG.getConstant(0, TheBit.getValueType()), |
| 2172 | DAG.getCondCode(ISD::SETNE)); |
| 2173 | |
| 2174 | return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), |
| 2175 | A64CMP, IfTrue, IfFalse, |
| 2176 | DAG.getConstant(A64CC::NE, MVT::i32)); |
| 2177 | } |
| 2178 | |
| 2179 | // (SETCC lhs, rhs, condcode) |
| 2180 | SDValue |
| 2181 | AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| 2182 | DebugLoc dl = Op.getDebugLoc(); |
| 2183 | SDValue LHS = Op.getOperand(0); |
| 2184 | SDValue RHS = Op.getOperand(1); |
| 2185 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| 2186 | EVT VT = Op.getValueType(); |
| 2187 | |
| 2188 | if (LHS.getValueType() == MVT::f128) { |
| 2189 | // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS |
| 2190 | // for the rest of the function (some i32 or i64 values). |
| 2191 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| 2192 | |
| 2193 | // If softenSetCCOperands returned a scalar, use it. |
| 2194 | if (RHS.getNode() == 0) { |
| 2195 | assert(LHS.getValueType() == Op.getValueType() && |
| 2196 | "Unexpected setcc expansion!"); |
| 2197 | return LHS; |
| 2198 | } |
| 2199 | } |
| 2200 | |
| 2201 | if (LHS.getValueType().isInteger()) { |
| 2202 | SDValue A64cc; |
| 2203 | |
| 2204 | // Integers are handled in a separate function because the combinations of |
| 2205 | // immediates and tests can get hairy and we may want to fiddle things. |
| 2206 | SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); |
| 2207 | |
| 2208 | return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, |
| 2209 | CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT), |
| 2210 | A64cc); |
| 2211 | } |
| 2212 | |
| 2213 | // Note that some LLVM floating-point CondCodes can't be lowered to a single |
| 2214 | // conditional branch, hence FPCCToA64CC can set a second test, where either |
| 2215 | // passing is sufficient. |
| 2216 | A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; |
| 2217 | CondCode = FPCCToA64CC(CC, Alternative); |
| 2218 | SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); |
| 2219 | SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| 2220 | DAG.getCondCode(CC)); |
| 2221 | SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, |
| 2222 | CmpOp, DAG.getConstant(1, VT), |
| 2223 | DAG.getConstant(0, VT), A64cc); |
| 2224 | |
| 2225 | if (Alternative != A64CC::Invalid) { |
| 2226 | A64cc = DAG.getConstant(Alternative, MVT::i32); |
| 2227 | A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, |
| 2228 | DAG.getConstant(1, VT), A64SELECT_CC, A64cc); |
| 2229 | } |
| 2230 | |
| 2231 | return A64SELECT_CC; |
| 2232 | } |
| 2233 | |
| 2234 | SDValue |
| 2235 | AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { |
| 2236 | const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| 2237 | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| 2238 | |
| 2239 | // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes |
| 2240 | // rather than just 8. |
| 2241 | return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(), |
| 2242 | Op.getOperand(1), Op.getOperand(2), |
| 2243 | DAG.getConstant(32, MVT::i32), 8, false, false, |
| 2244 | MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); |
| 2245 | } |
| 2246 | |
| 2247 | SDValue |
| 2248 | AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| 2249 | // The layout of the va_list struct is specified in the AArch64 Procedure Call |
| 2250 | // Standard, section B.3. |
| 2251 | MachineFunction &MF = DAG.getMachineFunction(); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2252 | AArch64MachineFunctionInfo *FuncInfo |
| 2253 | = MF.getInfo<AArch64MachineFunctionInfo>(); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2254 | DebugLoc DL = Op.getDebugLoc(); |
| 2255 | |
| 2256 | SDValue Chain = Op.getOperand(0); |
| 2257 | SDValue VAList = Op.getOperand(1); |
| 2258 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| 2259 | SmallVector<SDValue, 4> MemOps; |
| 2260 | |
| 2261 | // void *__stack at offset 0 |
| 2262 | SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(), |
| 2263 | getPointerTy()); |
| 2264 | MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, |
| 2265 | MachinePointerInfo(SV), false, false, 0)); |
| 2266 | |
| 2267 | // void *__gr_top at offset 8 |
| 2268 | int GPRSize = FuncInfo->getVariadicGPRSize(); |
| 2269 | if (GPRSize > 0) { |
| 2270 | SDValue GRTop, GRTopAddr; |
| 2271 | |
| 2272 | GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 2273 | DAG.getConstant(8, getPointerTy())); |
| 2274 | |
| 2275 | GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy()); |
| 2276 | GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, |
| 2277 | DAG.getConstant(GPRSize, getPointerTy())); |
| 2278 | |
| 2279 | MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, |
| 2280 | MachinePointerInfo(SV, 8), |
| 2281 | false, false, 0)); |
| 2282 | } |
| 2283 | |
| 2284 | // void *__vr_top at offset 16 |
| 2285 | int FPRSize = FuncInfo->getVariadicFPRSize(); |
| 2286 | if (FPRSize > 0) { |
| 2287 | SDValue VRTop, VRTopAddr; |
| 2288 | VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 2289 | DAG.getConstant(16, getPointerTy())); |
| 2290 | |
| 2291 | VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy()); |
| 2292 | VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, |
| 2293 | DAG.getConstant(FPRSize, getPointerTy())); |
| 2294 | |
| 2295 | MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, |
| 2296 | MachinePointerInfo(SV, 16), |
| 2297 | false, false, 0)); |
| 2298 | } |
| 2299 | |
| 2300 | // int __gr_offs at offset 24 |
| 2301 | SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 2302 | DAG.getConstant(24, getPointerTy())); |
| 2303 | MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), |
| 2304 | GROffsAddr, MachinePointerInfo(SV, 24), |
| 2305 | false, false, 0)); |
| 2306 | |
| 2307 | // int __vr_offs at offset 28 |
| 2308 | SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 2309 | DAG.getConstant(28, getPointerTy())); |
| 2310 | MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), |
| 2311 | VROffsAddr, MachinePointerInfo(SV, 28), |
| 2312 | false, false, 0)); |
| 2313 | |
| 2314 | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], |
| 2315 | MemOps.size()); |
| 2316 | } |
| 2317 | |
| 2318 | SDValue |
| 2319 | AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| 2320 | switch (Op.getOpcode()) { |
| 2321 | default: llvm_unreachable("Don't know how to custom lower this!"); |
| 2322 | case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128); |
| 2323 | case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128); |
| 2324 | case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128); |
| 2325 | case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128); |
| 2326 | case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true); |
| 2327 | case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false); |
| 2328 | case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true); |
| 2329 | case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false); |
| 2330 | case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); |
| 2331 | case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); |
| 2332 | |
| 2333 | case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| 2334 | case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| 2335 | case ISD::BR_CC: return LowerBR_CC(Op, DAG); |
| 2336 | case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG); |
| 2337 | case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| 2338 | case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| 2339 | case ISD::SELECT: return LowerSELECT(Op, DAG); |
| 2340 | case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| 2341 | case ISD::SETCC: return LowerSETCC(Op, DAG); |
| 2342 | case ISD::VACOPY: return LowerVACOPY(Op, DAG); |
| 2343 | case ISD::VASTART: return LowerVASTART(Op, DAG); |
| 2344 | } |
| 2345 | |
| 2346 | return SDValue(); |
| 2347 | } |
| 2348 | |
| 2349 | static SDValue PerformANDCombine(SDNode *N, |
| 2350 | TargetLowering::DAGCombinerInfo &DCI) { |
| 2351 | |
| 2352 | SelectionDAG &DAG = DCI.DAG; |
| 2353 | DebugLoc DL = N->getDebugLoc(); |
| 2354 | EVT VT = N->getValueType(0); |
| 2355 | |
| 2356 | // We're looking for an SRA/SHL pair which form an SBFX. |
| 2357 | |
| 2358 | if (VT != MVT::i32 && VT != MVT::i64) |
| 2359 | return SDValue(); |
| 2360 | |
| 2361 | if (!isa<ConstantSDNode>(N->getOperand(1))) |
| 2362 | return SDValue(); |
| 2363 | |
| 2364 | uint64_t TruncMask = N->getConstantOperandVal(1); |
| 2365 | if (!isMask_64(TruncMask)) |
| 2366 | return SDValue(); |
| 2367 | |
| 2368 | uint64_t Width = CountPopulation_64(TruncMask); |
| 2369 | SDValue Shift = N->getOperand(0); |
| 2370 | |
| 2371 | if (Shift.getOpcode() != ISD::SRL) |
| 2372 | return SDValue(); |
| 2373 | |
| 2374 | if (!isa<ConstantSDNode>(Shift->getOperand(1))) |
| 2375 | return SDValue(); |
| 2376 | uint64_t LSB = Shift->getConstantOperandVal(1); |
| 2377 | |
| 2378 | if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) |
| 2379 | return SDValue(); |
| 2380 | |
| 2381 | return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0), |
| 2382 | DAG.getConstant(LSB, MVT::i64), |
| 2383 | DAG.getConstant(LSB + Width - 1, MVT::i64)); |
| 2384 | } |
| 2385 | |
| 2386 | static SDValue PerformATOMIC_FENCECombine(SDNode *FenceNode, |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2387 | TargetLowering::DAGCombinerInfo &DCI) { |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2388 | // An atomic operation followed by an acquiring atomic fence can be reduced to |
| 2389 | // an acquiring load. The atomic operation provides a convenient pointer to |
| 2390 | // load from. If the original operation was a load anyway we can actually |
| 2391 | // combine the two operations into an acquiring load. |
| 2392 | SelectionDAG &DAG = DCI.DAG; |
| 2393 | SDValue AtomicOp = FenceNode->getOperand(0); |
| 2394 | AtomicSDNode *AtomicNode = dyn_cast<AtomicSDNode>(AtomicOp); |
| 2395 | |
| 2396 | // A fence on its own can't be optimised |
| 2397 | if (!AtomicNode) |
| 2398 | return SDValue(); |
| 2399 | |
Tim Northover | a693205 | 2013-02-05 16:40:06 +0000 | [diff] [blame] | 2400 | AtomicOrdering FenceOrder |
| 2401 | = static_cast<AtomicOrdering>(FenceNode->getConstantOperandVal(1)); |
| 2402 | SynchronizationScope FenceScope |
| 2403 | = static_cast<SynchronizationScope>(FenceNode->getConstantOperandVal(2)); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2404 | |
| 2405 | if (FenceOrder != Acquire || FenceScope != AtomicNode->getSynchScope()) |
| 2406 | return SDValue(); |
| 2407 | |
| 2408 | // If the original operation was an ATOMIC_LOAD then we'll be replacing it, so |
| 2409 | // the chain we use should be its input, otherwise we'll put our store after |
| 2410 | // it so we use its output chain. |
| 2411 | SDValue Chain = AtomicNode->getOpcode() == ISD::ATOMIC_LOAD ? |
| 2412 | AtomicNode->getChain() : AtomicOp; |
| 2413 | |
| 2414 | // We have an acquire fence with a handy atomic operation nearby, we can |
| 2415 | // convert the fence into a load-acquire, discarding the result. |
| 2416 | DebugLoc DL = FenceNode->getDebugLoc(); |
| 2417 | SDValue Op = DAG.getAtomic(ISD::ATOMIC_LOAD, DL, AtomicNode->getMemoryVT(), |
| 2418 | AtomicNode->getValueType(0), |
| 2419 | Chain, // Chain |
| 2420 | AtomicOp.getOperand(1), // Pointer |
| 2421 | AtomicNode->getMemOperand(), Acquire, |
Tim Northover | a693205 | 2013-02-05 16:40:06 +0000 | [diff] [blame] | 2422 | FenceScope); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2423 | |
| 2424 | if (AtomicNode->getOpcode() == ISD::ATOMIC_LOAD) |
| 2425 | DAG.ReplaceAllUsesWith(AtomicNode, Op.getNode()); |
| 2426 | |
| 2427 | return Op.getValue(1); |
| 2428 | } |
| 2429 | |
| 2430 | static SDValue PerformATOMIC_STORECombine(SDNode *N, |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2431 | TargetLowering::DAGCombinerInfo &DCI) { |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2432 | // A releasing atomic fence followed by an atomic store can be combined into a |
| 2433 | // single store operation. |
| 2434 | SelectionDAG &DAG = DCI.DAG; |
| 2435 | AtomicSDNode *AtomicNode = cast<AtomicSDNode>(N); |
| 2436 | SDValue FenceOp = AtomicNode->getOperand(0); |
| 2437 | |
| 2438 | if (FenceOp.getOpcode() != ISD::ATOMIC_FENCE) |
| 2439 | return SDValue(); |
| 2440 | |
Tim Northover | a693205 | 2013-02-05 16:40:06 +0000 | [diff] [blame] | 2441 | AtomicOrdering FenceOrder |
| 2442 | = static_cast<AtomicOrdering>(FenceOp->getConstantOperandVal(1)); |
| 2443 | SynchronizationScope FenceScope |
| 2444 | = static_cast<SynchronizationScope>(FenceOp->getConstantOperandVal(2)); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2445 | |
| 2446 | if (FenceOrder != Release || FenceScope != AtomicNode->getSynchScope()) |
| 2447 | return SDValue(); |
| 2448 | |
| 2449 | DebugLoc DL = AtomicNode->getDebugLoc(); |
| 2450 | return DAG.getAtomic(ISD::ATOMIC_STORE, DL, AtomicNode->getMemoryVT(), |
| 2451 | FenceOp.getOperand(0), // Chain |
| 2452 | AtomicNode->getOperand(1), // Pointer |
| 2453 | AtomicNode->getOperand(2), // Value |
| 2454 | AtomicNode->getMemOperand(), Release, |
Tim Northover | a693205 | 2013-02-05 16:40:06 +0000 | [diff] [blame] | 2455 | FenceScope); |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2456 | } |
| 2457 | |
| 2458 | /// For a true bitfield insert, the bits getting into that contiguous mask |
| 2459 | /// should come from the low part of an existing value: they must be formed from |
| 2460 | /// a compatible SHL operation (unless they're already low). This function |
| 2461 | /// checks that condition and returns the least-significant bit that's |
| 2462 | /// intended. If the operation not a field preparation, -1 is returned. |
| 2463 | static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT, |
| 2464 | SDValue &MaskedVal, uint64_t Mask) { |
| 2465 | if (!isShiftedMask_64(Mask)) |
| 2466 | return -1; |
| 2467 | |
| 2468 | // Now we need to alter MaskedVal so that it is an appropriate input for a BFI |
| 2469 | // instruction. BFI will do a left-shift by LSB before applying the mask we've |
| 2470 | // spotted, so in general we should pre-emptively "undo" that by making sure |
| 2471 | // the incoming bits have had a right-shift applied to them. |
| 2472 | // |
| 2473 | // This right shift, however, will combine with existing left/right shifts. In |
| 2474 | // the simplest case of a completely straight bitfield operation, it will be |
| 2475 | // expected to completely cancel out with an existing SHL. More complicated |
| 2476 | // cases (e.g. bitfield to bitfield copy) may still need a real shift before |
| 2477 | // the BFI. |
| 2478 | |
| 2479 | uint64_t LSB = CountTrailingZeros_64(Mask); |
| 2480 | int64_t ShiftRightRequired = LSB; |
| 2481 | if (MaskedVal.getOpcode() == ISD::SHL && |
| 2482 | isa<ConstantSDNode>(MaskedVal.getOperand(1))) { |
| 2483 | ShiftRightRequired -= MaskedVal.getConstantOperandVal(1); |
| 2484 | MaskedVal = MaskedVal.getOperand(0); |
| 2485 | } else if (MaskedVal.getOpcode() == ISD::SRL && |
| 2486 | isa<ConstantSDNode>(MaskedVal.getOperand(1))) { |
| 2487 | ShiftRightRequired += MaskedVal.getConstantOperandVal(1); |
| 2488 | MaskedVal = MaskedVal.getOperand(0); |
| 2489 | } |
| 2490 | |
| 2491 | if (ShiftRightRequired > 0) |
| 2492 | MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal, |
| 2493 | DAG.getConstant(ShiftRightRequired, MVT::i64)); |
| 2494 | else if (ShiftRightRequired < 0) { |
| 2495 | // We could actually end up with a residual left shift, for example with |
| 2496 | // "struc.bitfield = val << 1". |
| 2497 | MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal, |
| 2498 | DAG.getConstant(-ShiftRightRequired, MVT::i64)); |
| 2499 | } |
| 2500 | |
| 2501 | return LSB; |
| 2502 | } |
| 2503 | |
| 2504 | /// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by |
| 2505 | /// a mask and an extension. Returns true if a BFI was found and provides |
| 2506 | /// information on its surroundings. |
| 2507 | static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask, |
| 2508 | bool &Extended) { |
| 2509 | Extended = false; |
| 2510 | if (N.getOpcode() == ISD::ZERO_EXTEND) { |
| 2511 | Extended = true; |
| 2512 | N = N.getOperand(0); |
| 2513 | } |
| 2514 | |
| 2515 | if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) { |
| 2516 | Mask = N->getConstantOperandVal(1); |
| 2517 | N = N.getOperand(0); |
| 2518 | } else { |
| 2519 | // Mask is the whole width. |
| 2520 | Mask = (1ULL << N.getValueType().getSizeInBits()) - 1; |
| 2521 | } |
| 2522 | |
| 2523 | if (N.getOpcode() == AArch64ISD::BFI) { |
| 2524 | BFI = N; |
| 2525 | return true; |
| 2526 | } |
| 2527 | |
| 2528 | return false; |
| 2529 | } |
| 2530 | |
| 2531 | /// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which |
| 2532 | /// is roughly equivalent to (and (BFI ...), mask). This form is used because it |
| 2533 | /// can often be further combined with a larger mask. Ultimately, we want mask |
| 2534 | /// to be 2^32-1 or 2^64-1 so the AND can be skipped. |
| 2535 | static SDValue tryCombineToBFI(SDNode *N, |
| 2536 | TargetLowering::DAGCombinerInfo &DCI, |
| 2537 | const AArch64Subtarget *Subtarget) { |
| 2538 | SelectionDAG &DAG = DCI.DAG; |
| 2539 | DebugLoc DL = N->getDebugLoc(); |
| 2540 | EVT VT = N->getValueType(0); |
| 2541 | |
| 2542 | assert(N->getOpcode() == ISD::OR && "Unexpected root"); |
| 2543 | |
| 2544 | // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or |
| 2545 | // abandon the effort. |
| 2546 | SDValue LHS = N->getOperand(0); |
| 2547 | if (LHS.getOpcode() != ISD::AND) |
| 2548 | return SDValue(); |
| 2549 | |
| 2550 | uint64_t LHSMask; |
| 2551 | if (isa<ConstantSDNode>(LHS.getOperand(1))) |
| 2552 | LHSMask = LHS->getConstantOperandVal(1); |
| 2553 | else |
| 2554 | return SDValue(); |
| 2555 | |
| 2556 | // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask |
| 2557 | // is or abandon the effort. |
| 2558 | SDValue RHS = N->getOperand(1); |
| 2559 | if (RHS.getOpcode() != ISD::AND) |
| 2560 | return SDValue(); |
| 2561 | |
| 2562 | uint64_t RHSMask; |
| 2563 | if (isa<ConstantSDNode>(RHS.getOperand(1))) |
| 2564 | RHSMask = RHS->getConstantOperandVal(1); |
| 2565 | else |
| 2566 | return SDValue(); |
| 2567 | |
| 2568 | // Can't do anything if the masks are incompatible. |
| 2569 | if (LHSMask & RHSMask) |
| 2570 | return SDValue(); |
| 2571 | |
| 2572 | // Now we need one of the masks to be a contiguous field. Without loss of |
| 2573 | // generality that should be the RHS one. |
| 2574 | SDValue Bitfield = LHS.getOperand(0); |
| 2575 | if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) { |
| 2576 | // We know that LHS is a candidate new value, and RHS isn't already a better |
| 2577 | // one. |
| 2578 | std::swap(LHS, RHS); |
| 2579 | std::swap(LHSMask, RHSMask); |
| 2580 | } |
| 2581 | |
| 2582 | // We've done our best to put the right operands in the right places, all we |
| 2583 | // can do now is check whether a BFI exists. |
| 2584 | Bitfield = RHS.getOperand(0); |
| 2585 | int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask); |
| 2586 | if (LSB == -1) |
| 2587 | return SDValue(); |
| 2588 | |
| 2589 | uint32_t Width = CountPopulation_64(RHSMask); |
| 2590 | assert(Width && "Expected non-zero bitfield width"); |
| 2591 | |
| 2592 | SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, |
| 2593 | LHS.getOperand(0), Bitfield, |
| 2594 | DAG.getConstant(LSB, MVT::i64), |
| 2595 | DAG.getConstant(Width, MVT::i64)); |
| 2596 | |
| 2597 | // Mask is trivial |
| 2598 | if ((LHSMask | RHSMask) == (1ULL << VT.getSizeInBits()) - 1) |
| 2599 | return BFI; |
| 2600 | |
| 2601 | return DAG.getNode(ISD::AND, DL, VT, BFI, |
| 2602 | DAG.getConstant(LHSMask | RHSMask, VT)); |
| 2603 | } |
| 2604 | |
| 2605 | /// Search for the bitwise combining (with careful masks) of a MaskedBFI and its |
| 2606 | /// original input. This is surprisingly common because SROA splits things up |
| 2607 | /// into i8 chunks, so the originally detected MaskedBFI may actually only act |
| 2608 | /// on the low (say) byte of a word. This is then orred into the rest of the |
| 2609 | /// word afterwards. |
| 2610 | /// |
| 2611 | /// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)). |
| 2612 | /// |
| 2613 | /// If MASK1 and MASK2 are compatible, we can fold the whole thing into the |
| 2614 | /// MaskedBFI. We can also deal with a certain amount of extend/truncate being |
| 2615 | /// involved. |
| 2616 | static SDValue tryCombineToLargerBFI(SDNode *N, |
| 2617 | TargetLowering::DAGCombinerInfo &DCI, |
| 2618 | const AArch64Subtarget *Subtarget) { |
| 2619 | SelectionDAG &DAG = DCI.DAG; |
| 2620 | DebugLoc DL = N->getDebugLoc(); |
| 2621 | EVT VT = N->getValueType(0); |
| 2622 | |
| 2623 | // First job is to hunt for a MaskedBFI on either the left or right. Swap |
| 2624 | // operands if it's actually on the right. |
| 2625 | SDValue BFI; |
| 2626 | SDValue PossExtraMask; |
| 2627 | uint64_t ExistingMask = 0; |
| 2628 | bool Extended = false; |
| 2629 | if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended)) |
| 2630 | PossExtraMask = N->getOperand(1); |
| 2631 | else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended)) |
| 2632 | PossExtraMask = N->getOperand(0); |
| 2633 | else |
| 2634 | return SDValue(); |
| 2635 | |
| 2636 | // We can only combine a BFI with another compatible mask. |
| 2637 | if (PossExtraMask.getOpcode() != ISD::AND || |
| 2638 | !isa<ConstantSDNode>(PossExtraMask.getOperand(1))) |
| 2639 | return SDValue(); |
| 2640 | |
| 2641 | uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1); |
| 2642 | |
| 2643 | // Masks must be compatible. |
| 2644 | if (ExtraMask & ExistingMask) |
| 2645 | return SDValue(); |
| 2646 | |
| 2647 | SDValue OldBFIVal = BFI.getOperand(0); |
| 2648 | SDValue NewBFIVal = BFI.getOperand(1); |
| 2649 | if (Extended) { |
| 2650 | // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be |
| 2651 | // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments |
| 2652 | // need to be made compatible. |
| 2653 | assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32 |
| 2654 | && "Invalid types for BFI"); |
| 2655 | OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal); |
| 2656 | NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal); |
| 2657 | } |
| 2658 | |
| 2659 | // We need the MaskedBFI to be combined with a mask of the *same* value. |
| 2660 | if (PossExtraMask.getOperand(0) != OldBFIVal) |
| 2661 | return SDValue(); |
| 2662 | |
| 2663 | BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, |
| 2664 | OldBFIVal, NewBFIVal, |
| 2665 | BFI.getOperand(2), BFI.getOperand(3)); |
| 2666 | |
| 2667 | // If the masking is trivial, we don't need to create it. |
| 2668 | if ((ExtraMask | ExistingMask) == (1ULL << VT.getSizeInBits()) - 1) |
| 2669 | return BFI; |
| 2670 | |
| 2671 | return DAG.getNode(ISD::AND, DL, VT, BFI, |
| 2672 | DAG.getConstant(ExtraMask | ExistingMask, VT)); |
| 2673 | } |
| 2674 | |
| 2675 | /// An EXTR instruction is made up of two shifts, ORed together. This helper |
| 2676 | /// searches for and classifies those shifts. |
| 2677 | static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, |
| 2678 | bool &FromHi) { |
| 2679 | if (N.getOpcode() == ISD::SHL) |
| 2680 | FromHi = false; |
| 2681 | else if (N.getOpcode() == ISD::SRL) |
| 2682 | FromHi = true; |
| 2683 | else |
| 2684 | return false; |
| 2685 | |
| 2686 | if (!isa<ConstantSDNode>(N.getOperand(1))) |
| 2687 | return false; |
| 2688 | |
| 2689 | ShiftAmount = N->getConstantOperandVal(1); |
| 2690 | Src = N->getOperand(0); |
| 2691 | return true; |
| 2692 | } |
| 2693 | |
Joel Jones | 612779e | 2013-02-10 23:56:30 +0000 | [diff] [blame^] | 2694 | /// EXTR instruction extracts a contiguous chunk of bits from two existing |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2695 | /// registers viewed as a high/low pair. This function looks for the pattern: |
| 2696 | /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an |
| 2697 | /// EXTR. Can't quite be done in TableGen because the two immediates aren't |
| 2698 | /// independent. |
| 2699 | static SDValue tryCombineToEXTR(SDNode *N, |
| 2700 | TargetLowering::DAGCombinerInfo &DCI) { |
| 2701 | SelectionDAG &DAG = DCI.DAG; |
| 2702 | DebugLoc DL = N->getDebugLoc(); |
| 2703 | EVT VT = N->getValueType(0); |
| 2704 | |
| 2705 | assert(N->getOpcode() == ISD::OR && "Unexpected root"); |
| 2706 | |
| 2707 | if (VT != MVT::i32 && VT != MVT::i64) |
| 2708 | return SDValue(); |
| 2709 | |
| 2710 | SDValue LHS; |
| 2711 | uint32_t ShiftLHS = 0; |
| 2712 | bool LHSFromHi = 0; |
| 2713 | if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) |
| 2714 | return SDValue(); |
| 2715 | |
| 2716 | SDValue RHS; |
| 2717 | uint32_t ShiftRHS = 0; |
| 2718 | bool RHSFromHi = 0; |
| 2719 | if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) |
| 2720 | return SDValue(); |
| 2721 | |
| 2722 | // If they're both trying to come from the high part of the register, they're |
| 2723 | // not really an EXTR. |
| 2724 | if (LHSFromHi == RHSFromHi) |
| 2725 | return SDValue(); |
| 2726 | |
| 2727 | if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) |
| 2728 | return SDValue(); |
| 2729 | |
| 2730 | if (LHSFromHi) { |
| 2731 | std::swap(LHS, RHS); |
| 2732 | std::swap(ShiftLHS, ShiftRHS); |
| 2733 | } |
| 2734 | |
| 2735 | return DAG.getNode(AArch64ISD::EXTR, DL, VT, |
| 2736 | LHS, RHS, |
| 2737 | DAG.getConstant(ShiftRHS, MVT::i64)); |
| 2738 | } |
| 2739 | |
| 2740 | /// Target-specific dag combine xforms for ISD::OR |
| 2741 | static SDValue PerformORCombine(SDNode *N, |
| 2742 | TargetLowering::DAGCombinerInfo &DCI, |
| 2743 | const AArch64Subtarget *Subtarget) { |
| 2744 | |
| 2745 | SelectionDAG &DAG = DCI.DAG; |
| 2746 | EVT VT = N->getValueType(0); |
| 2747 | |
| 2748 | if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| 2749 | return SDValue(); |
| 2750 | |
| 2751 | // Attempt to recognise bitfield-insert operations. |
| 2752 | SDValue Res = tryCombineToBFI(N, DCI, Subtarget); |
| 2753 | if (Res.getNode()) |
| 2754 | return Res; |
| 2755 | |
| 2756 | // Attempt to combine an existing MaskedBFI operation into one with a larger |
| 2757 | // mask. |
| 2758 | Res = tryCombineToLargerBFI(N, DCI, Subtarget); |
| 2759 | if (Res.getNode()) |
| 2760 | return Res; |
| 2761 | |
| 2762 | Res = tryCombineToEXTR(N, DCI); |
| 2763 | if (Res.getNode()) |
| 2764 | return Res; |
| 2765 | |
| 2766 | return SDValue(); |
| 2767 | } |
| 2768 | |
| 2769 | /// Target-specific dag combine xforms for ISD::SRA |
| 2770 | static SDValue PerformSRACombine(SDNode *N, |
| 2771 | TargetLowering::DAGCombinerInfo &DCI) { |
| 2772 | |
| 2773 | SelectionDAG &DAG = DCI.DAG; |
| 2774 | DebugLoc DL = N->getDebugLoc(); |
| 2775 | EVT VT = N->getValueType(0); |
| 2776 | |
| 2777 | // We're looking for an SRA/SHL pair which form an SBFX. |
| 2778 | |
| 2779 | if (VT != MVT::i32 && VT != MVT::i64) |
| 2780 | return SDValue(); |
| 2781 | |
| 2782 | if (!isa<ConstantSDNode>(N->getOperand(1))) |
| 2783 | return SDValue(); |
| 2784 | |
| 2785 | uint64_t ExtraSignBits = N->getConstantOperandVal(1); |
| 2786 | SDValue Shift = N->getOperand(0); |
| 2787 | |
| 2788 | if (Shift.getOpcode() != ISD::SHL) |
| 2789 | return SDValue(); |
| 2790 | |
| 2791 | if (!isa<ConstantSDNode>(Shift->getOperand(1))) |
| 2792 | return SDValue(); |
| 2793 | |
| 2794 | uint64_t BitsOnLeft = Shift->getConstantOperandVal(1); |
| 2795 | uint64_t Width = VT.getSizeInBits() - ExtraSignBits; |
| 2796 | uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft; |
| 2797 | |
| 2798 | if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) |
| 2799 | return SDValue(); |
| 2800 | |
| 2801 | return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0), |
| 2802 | DAG.getConstant(LSB, MVT::i64), |
| 2803 | DAG.getConstant(LSB + Width - 1, MVT::i64)); |
| 2804 | } |
| 2805 | |
| 2806 | |
| 2807 | SDValue |
| 2808 | AArch64TargetLowering::PerformDAGCombine(SDNode *N, |
| 2809 | DAGCombinerInfo &DCI) const { |
| 2810 | switch (N->getOpcode()) { |
| 2811 | default: break; |
| 2812 | case ISD::AND: return PerformANDCombine(N, DCI); |
| 2813 | case ISD::ATOMIC_FENCE: return PerformATOMIC_FENCECombine(N, DCI); |
| 2814 | case ISD::ATOMIC_STORE: return PerformATOMIC_STORECombine(N, DCI); |
| 2815 | case ISD::OR: return PerformORCombine(N, DCI, Subtarget); |
| 2816 | case ISD::SRA: return PerformSRACombine(N, DCI); |
| 2817 | } |
| 2818 | return SDValue(); |
| 2819 | } |
| 2820 | |
| 2821 | AArch64TargetLowering::ConstraintType |
| 2822 | AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { |
| 2823 | if (Constraint.size() == 1) { |
| 2824 | switch (Constraint[0]) { |
| 2825 | default: break; |
| 2826 | case 'w': // An FP/SIMD vector register |
| 2827 | return C_RegisterClass; |
| 2828 | case 'I': // Constant that can be used with an ADD instruction |
| 2829 | case 'J': // Constant that can be used with a SUB instruction |
| 2830 | case 'K': // Constant that can be used with a 32-bit logical instruction |
| 2831 | case 'L': // Constant that can be used with a 64-bit logical instruction |
| 2832 | case 'M': // Constant that can be used as a 32-bit MOV immediate |
| 2833 | case 'N': // Constant that can be used as a 64-bit MOV immediate |
| 2834 | case 'Y': // Floating point constant zero |
| 2835 | case 'Z': // Integer constant zero |
| 2836 | return C_Other; |
| 2837 | case 'Q': // A memory reference with base register and no offset |
| 2838 | return C_Memory; |
| 2839 | case 'S': // A symbolic address |
| 2840 | return C_Other; |
| 2841 | } |
| 2842 | } |
| 2843 | |
| 2844 | // FIXME: Ump, Utf, Usa, Ush |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2845 | // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes, |
| 2846 | // whatever they may be |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2847 | // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be |
| 2848 | // Usa: An absolute symbolic address |
| 2849 | // Ush: The high part (bits 32:12) of a pc-relative symbolic address |
| 2850 | assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa" |
| 2851 | && Constraint != "Ush" && "Unimplemented constraints"); |
| 2852 | |
| 2853 | return TargetLowering::getConstraintType(Constraint); |
| 2854 | } |
| 2855 | |
| 2856 | TargetLowering::ConstraintWeight |
| 2857 | AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info, |
| 2858 | const char *Constraint) const { |
| 2859 | |
| 2860 | llvm_unreachable("Constraint weight unimplemented"); |
| 2861 | } |
| 2862 | |
| 2863 | void |
| 2864 | AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| 2865 | std::string &Constraint, |
| 2866 | std::vector<SDValue> &Ops, |
| 2867 | SelectionDAG &DAG) const { |
| 2868 | SDValue Result(0, 0); |
| 2869 | |
| 2870 | // Only length 1 constraints are C_Other. |
| 2871 | if (Constraint.size() != 1) return; |
| 2872 | |
| 2873 | // Only C_Other constraints get lowered like this. That means constants for us |
| 2874 | // so return early if there's no hope the constraint can be lowered. |
| 2875 | |
| 2876 | switch(Constraint[0]) { |
| 2877 | default: break; |
| 2878 | case 'I': case 'J': case 'K': case 'L': |
| 2879 | case 'M': case 'N': case 'Z': { |
| 2880 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| 2881 | if (!C) |
| 2882 | return; |
| 2883 | |
| 2884 | uint64_t CVal = C->getZExtValue(); |
| 2885 | uint32_t Bits; |
| 2886 | |
| 2887 | switch (Constraint[0]) { |
| 2888 | default: |
| 2889 | // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J' |
| 2890 | // is a peculiarly useless SUB constraint. |
| 2891 | llvm_unreachable("Unimplemented C_Other constraint"); |
| 2892 | case 'I': |
| 2893 | if (CVal <= 0xfff) |
| 2894 | break; |
| 2895 | return; |
| 2896 | case 'K': |
| 2897 | if (A64Imms::isLogicalImm(32, CVal, Bits)) |
| 2898 | break; |
| 2899 | return; |
| 2900 | case 'L': |
| 2901 | if (A64Imms::isLogicalImm(64, CVal, Bits)) |
| 2902 | break; |
| 2903 | return; |
| 2904 | case 'Z': |
| 2905 | if (CVal == 0) |
| 2906 | break; |
| 2907 | return; |
| 2908 | } |
| 2909 | |
| 2910 | Result = DAG.getTargetConstant(CVal, Op.getValueType()); |
| 2911 | break; |
| 2912 | } |
| 2913 | case 'S': { |
| 2914 | // An absolute symbolic address or label reference. |
| 2915 | if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
| 2916 | Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(), |
| 2917 | GA->getValueType(0)); |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2918 | } else if (const BlockAddressSDNode *BA |
| 2919 | = dyn_cast<BlockAddressSDNode>(Op)) { |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2920 | Result = DAG.getTargetBlockAddress(BA->getBlockAddress(), |
| 2921 | BA->getValueType(0)); |
| 2922 | } else if (const ExternalSymbolSDNode *ES |
| 2923 | = dyn_cast<ExternalSymbolSDNode>(Op)) { |
| 2924 | Result = DAG.getTargetExternalSymbol(ES->getSymbol(), |
| 2925 | ES->getValueType(0)); |
| 2926 | } else |
| 2927 | return; |
| 2928 | break; |
| 2929 | } |
| 2930 | case 'Y': |
| 2931 | if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| 2932 | if (CFP->isExactlyValue(0.0)) { |
| 2933 | Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0)); |
| 2934 | break; |
| 2935 | } |
| 2936 | } |
| 2937 | return; |
| 2938 | } |
| 2939 | |
| 2940 | if (Result.getNode()) { |
| 2941 | Ops.push_back(Result); |
| 2942 | return; |
| 2943 | } |
| 2944 | |
| 2945 | // It's an unknown constraint for us. Let generic code have a go. |
| 2946 | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 2947 | } |
| 2948 | |
| 2949 | std::pair<unsigned, const TargetRegisterClass*> |
Tim Northover | dfe076a | 2013-02-05 13:24:56 +0000 | [diff] [blame] | 2950 | AArch64TargetLowering::getRegForInlineAsmConstraint( |
| 2951 | const std::string &Constraint, |
| 2952 | EVT VT) const { |
Tim Northover | 72062f5 | 2013-01-31 12:12:40 +0000 | [diff] [blame] | 2953 | if (Constraint.size() == 1) { |
| 2954 | switch (Constraint[0]) { |
| 2955 | case 'r': |
| 2956 | if (VT.getSizeInBits() <= 32) |
| 2957 | return std::make_pair(0U, &AArch64::GPR32RegClass); |
| 2958 | else if (VT == MVT::i64) |
| 2959 | return std::make_pair(0U, &AArch64::GPR64RegClass); |
| 2960 | break; |
| 2961 | case 'w': |
| 2962 | if (VT == MVT::f16) |
| 2963 | return std::make_pair(0U, &AArch64::FPR16RegClass); |
| 2964 | else if (VT == MVT::f32) |
| 2965 | return std::make_pair(0U, &AArch64::FPR32RegClass); |
| 2966 | else if (VT == MVT::f64) |
| 2967 | return std::make_pair(0U, &AArch64::FPR64RegClass); |
| 2968 | else if (VT.getSizeInBits() == 64) |
| 2969 | return std::make_pair(0U, &AArch64::VPR64RegClass); |
| 2970 | else if (VT == MVT::f128) |
| 2971 | return std::make_pair(0U, &AArch64::FPR128RegClass); |
| 2972 | else if (VT.getSizeInBits() == 128) |
| 2973 | return std::make_pair(0U, &AArch64::VPR128RegClass); |
| 2974 | break; |
| 2975 | } |
| 2976 | } |
| 2977 | |
| 2978 | // Use the default implementation in TargetLowering to convert the register |
| 2979 | // constraint into a member of a register class. |
| 2980 | return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| 2981 | } |