blob: 1616ec1f9821f1ba096753d2d5a0d4d22578f1c4 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000021#include "llvm/Intrinsics.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000031
Brian Gaeked0fde302003-11-11 22:41:34 +000032namespace llvm {
33
Chris Lattner333b2fa2002-12-13 10:09:43 +000034/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000035/// instruction at as well as a basic block. This is the version for when you
36/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000037inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000038 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000039 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000040 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000041 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000043 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000044 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
45}
46
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047/// BMI - A special BuildMI variant that takes an iterator to insert the
48/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000049inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000050 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000051 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000052 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000054 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 return MachineInstrBuilder(MI);
56}
57
Chris Lattner333b2fa2002-12-13 10:09:43 +000058
Chris Lattner72614082002-10-25 22:55:53 +000059namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000060 struct ISel : public FunctionPass, InstVisitor<ISel> {
61 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000062 MachineFunction *F; // The function we are compiling into
63 MachineBasicBlock *BB; // The current MBB we are compiling
64 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000065
Chris Lattner72614082002-10-25 22:55:53 +000066 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
67
Chris Lattner333b2fa2002-12-13 10:09:43 +000068 // MBBMap - Mapping between LLVM BB -> Machine BB
69 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
70
Chris Lattner3e130a22003-01-13 00:32:26 +000071 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000072
73 /// runOnFunction - Top level implementation of instruction selection for
74 /// the entire function.
75 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000076 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000077 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000078
Chris Lattner065faeb2002-12-28 20:24:02 +000079 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000080 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
81 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
82
Chris Lattner14aa7fe2002-12-16 22:54:46 +000083 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000084
Chris Lattnerdbd73722003-05-06 21:32:22 +000085 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000086 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000087
Chris Lattner333b2fa2002-12-13 10:09:43 +000088 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000089 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000090
91 // Select the PHI nodes
92 SelectPHINodes();
93
Chris Lattner72614082002-10-25 22:55:53 +000094 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000095 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000096 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +000097 // We always build a machine code representation for the function
98 return true;
Chris Lattner72614082002-10-25 22:55:53 +000099 }
100
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000101 virtual const char *getPassName() const {
102 return "X86 Simple Instruction Selection";
103 }
104
Chris Lattner72614082002-10-25 22:55:53 +0000105 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000106 /// block. This simply creates a new MachineBasicBlock to emit code into
107 /// and adds it to the current MachineFunction. Subsequent visit* for
108 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000109 ///
110 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000111 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000112 }
113
Chris Lattner065faeb2002-12-28 20:24:02 +0000114 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
115 /// from the stack into virtual registers.
116 ///
117 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118
119 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
120 /// because we have to generate our sources into the source basic blocks,
121 /// not the current one.
122 ///
123 void SelectPHINodes();
124
Chris Lattner72614082002-10-25 22:55:53 +0000125 // Visitation methods for various instructions. These methods simply emit
126 // fixed X86 code for each instruction.
127 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000128
129 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000130 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000131 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000132
133 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000134 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000135 unsigned Reg;
136 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000137 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
138 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000139 };
140 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000141 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000142 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000143 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000144
145 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000146 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000147 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
148 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000149 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000150 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000151 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000152 void doMultiplyConst(MachineBasicBlock *MBB,
153 MachineBasicBlock::iterator &MBBI,
154 unsigned DestReg, const Type *DestTy,
155 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000156 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000157
Chris Lattnerf01729e2002-11-02 20:54:46 +0000158 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
159 void visitRem(BinaryOperator &B) { visitDivRem(B); }
160 void visitDivRem(BinaryOperator &B);
161
Chris Lattnere2954c82002-11-02 20:04:26 +0000162 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000163 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
164 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
165 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000166
Chris Lattner6d40c192003-01-16 16:43:00 +0000167 // Comparison operators...
168 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000169 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
170 MachineBasicBlock *MBB,
171 MachineBasicBlock::iterator &MBBI);
172
Chris Lattner6fc3c522002-11-17 21:11:55 +0000173 // Memory Instructions
174 void visitLoadInst(LoadInst &I);
175 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000176 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000177 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000178 void visitMallocInst(MallocInst &I);
179 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000180
Chris Lattnere2954c82002-11-02 20:04:26 +0000181 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000182 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000183 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000184 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000185 void visitVANextInst(VANextInst &I);
186 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000187
188 void visitInstruction(Instruction &I) {
189 std::cerr << "Cannot instruction select: " << I;
190 abort();
191 }
192
Brian Gaeke95780cc2002-12-13 07:56:18 +0000193 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000194 ///
195 void promote32(unsigned targetReg, const ValueRecord &VR);
196
Chris Lattner3e130a22003-01-13 00:32:26 +0000197 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
198 /// constant expression GEP support.
199 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000200 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000201 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000202 User::op_iterator IdxEnd, unsigned TargetReg);
203
Chris Lattner548f61d2003-04-23 17:22:12 +0000204 /// emitCastOperation - Common code shared between visitCastInst and
205 /// constant expression cast support.
206 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
207 Value *Src, const Type *DestTy, unsigned TargetReg);
208
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000209 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
210 /// and constant expression support.
211 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
212 MachineBasicBlock::iterator &IP,
213 Value *Op0, Value *Op1,
214 unsigned OperatorClass, unsigned TargetReg);
215
Chris Lattnercadff442003-10-23 17:21:43 +0000216 void emitDivRemOperation(MachineBasicBlock *BB,
217 MachineBasicBlock::iterator &IP,
218 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
219 const Type *Ty, unsigned TargetReg);
220
Chris Lattner58c41fe2003-08-24 19:19:47 +0000221 /// emitSetCCOperation - Common code shared between visitSetCondInst and
222 /// constant expression support.
223 void emitSetCCOperation(MachineBasicBlock *BB,
224 MachineBasicBlock::iterator &IP,
225 Value *Op0, Value *Op1, unsigned Opcode,
226 unsigned TargetReg);
227
228
Chris Lattnerc5291f52002-10-27 21:16:59 +0000229 /// copyConstantToRegister - Output the instructions required to put the
230 /// specified constant into the specified register.
231 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000232 void copyConstantToRegister(MachineBasicBlock *MBB,
233 MachineBasicBlock::iterator &MBBI,
234 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000235
Chris Lattner3e130a22003-01-13 00:32:26 +0000236 /// makeAnotherReg - This method returns the next register number we haven't
237 /// yet used.
238 ///
239 /// Long values are handled somewhat specially. They are always allocated
240 /// as pairs of 32 bit integer values. The register number returned is the
241 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
242 /// of the long value.
243 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000244 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000245 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
246 "Current target doesn't have X86 reg info??");
247 const X86RegisterInfo *MRI =
248 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000249 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000250 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
251 // Create the lower part
252 F->getSSARegMap()->createVirtualRegister(RC);
253 // Create the upper part.
254 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000255 }
256
Chris Lattnerc0812d82002-12-13 06:56:29 +0000257 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000258 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000259 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000260 }
261
Chris Lattner72614082002-10-25 22:55:53 +0000262 /// getReg - This method turns an LLVM value into a register number. This
263 /// is guaranteed to produce the same register number for a particular value
264 /// every time it is queried.
265 ///
266 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000267 unsigned getReg(Value *V) {
268 // Just append to the end of the current bb.
269 MachineBasicBlock::iterator It = BB->end();
270 return getReg(V, BB, It);
271 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000272 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000273 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000274 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000275 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000276 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000277 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000278 }
Chris Lattner72614082002-10-25 22:55:53 +0000279
Chris Lattner6f8fd252002-10-27 21:23:43 +0000280 // If this operand is a constant, emit the code to copy the constant into
281 // the register here...
282 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000283 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000284 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000285 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000286 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
287 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000288 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000289 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000290 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000291
Chris Lattner72614082002-10-25 22:55:53 +0000292 return Reg;
293 }
Chris Lattner72614082002-10-25 22:55:53 +0000294 };
295}
296
Chris Lattner43189d12002-11-17 20:07:45 +0000297/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
298/// Representation.
299///
300enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000301 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000302};
303
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000304/// getClass - Turn a primitive type into a "class" number which is based on the
305/// size of the type, and whether or not it is floating point.
306///
Chris Lattner43189d12002-11-17 20:07:45 +0000307static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000308 switch (Ty->getPrimitiveID()) {
309 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000310 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000311 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000312 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000313 case Type::IntTyID:
314 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000315 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000316
Chris Lattner94af4142002-12-25 05:13:53 +0000317 case Type::FloatTyID:
318 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000319
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000320 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000321 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000322 default:
323 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000324 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000325 }
326}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000327
Chris Lattner6b993cc2002-12-15 08:02:15 +0000328// getClassB - Just like getClass, but treat boolean values as bytes.
329static inline TypeClass getClassB(const Type *Ty) {
330 if (Ty == Type::BoolTy) return cByte;
331 return getClass(Ty);
332}
333
Chris Lattner06925362002-11-17 21:56:38 +0000334
Chris Lattnerc5291f52002-10-27 21:16:59 +0000335/// copyConstantToRegister - Output the instructions required to put the
336/// specified constant into the specified register.
337///
Chris Lattner8a307e82002-12-16 19:32:50 +0000338void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
339 MachineBasicBlock::iterator &IP,
340 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000341 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000342 unsigned Class = 0;
343 switch (CE->getOpcode()) {
344 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000345 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000346 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000347 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000348 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000349 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000350 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000351
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000352 case Instruction::Xor: ++Class; // FALL THROUGH
353 case Instruction::Or: ++Class; // FALL THROUGH
354 case Instruction::And: ++Class; // FALL THROUGH
355 case Instruction::Sub: ++Class; // FALL THROUGH
356 case Instruction::Add:
357 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
358 Class, R);
359 return;
360
Chris Lattnercadff442003-10-23 17:21:43 +0000361 case Instruction::Mul: {
362 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
363 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
364 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
365 return;
366 }
367 case Instruction::Div:
368 case Instruction::Rem: {
369 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
370 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
371 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
372 CE->getOpcode() == Instruction::Div,
373 CE->getType(), R);
374 return;
375 }
376
Chris Lattner58c41fe2003-08-24 19:19:47 +0000377 case Instruction::SetNE:
378 case Instruction::SetEQ:
379 case Instruction::SetLT:
380 case Instruction::SetGT:
381 case Instruction::SetLE:
382 case Instruction::SetGE:
383 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
384 CE->getOpcode(), R);
385 return;
386
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000387 default:
388 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000389 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000390 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000391 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000392
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000393 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000394 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000395
396 if (Class == cLong) {
397 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000398 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000399 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
400 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
401 return;
402 }
403
Chris Lattner94af4142002-12-25 05:13:53 +0000404 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000405
406 static const unsigned IntegralOpcodeTab[] = {
407 X86::MOVir8, X86::MOVir16, X86::MOVir32
408 };
409
Chris Lattner6b993cc2002-12-15 08:02:15 +0000410 if (C->getType() == Type::BoolTy) {
411 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000412 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000413 ConstantInt *CI = cast<ConstantInt>(C);
414 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000415 }
Chris Lattner94af4142002-12-25 05:13:53 +0000416 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
417 double Value = CFP->getValue();
418 if (Value == +0.0)
419 BMI(MBB, IP, X86::FLD0, 0, R);
420 else if (Value == +1.0)
421 BMI(MBB, IP, X86::FLD1, 0, R);
422 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000423 // Otherwise we need to spill the constant to memory...
424 MachineConstantPool *CP = F->getConstantPool();
425 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000426 const Type *Ty = CFP->getType();
427
428 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
429 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
430 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000431 }
432
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000433 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000434 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000435 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000436 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000437 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000438 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000439 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000440 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000441 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000442 }
443}
444
Chris Lattner065faeb2002-12-28 20:24:02 +0000445/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
446/// the stack into virtual registers.
447///
448void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
449 // Emit instructions to load the arguments... On entry to a function on the
450 // X86, the stack frame looks like this:
451 //
452 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000453 // [ESP + 4] -- first argument (leftmost lexically)
454 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000455 // ...
456 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000457 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000458 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000459
460 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
461 unsigned Reg = getReg(*I);
462
Chris Lattner065faeb2002-12-28 20:24:02 +0000463 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000464 switch (getClassB(I->getType())) {
465 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000466 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000467 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
468 break;
469 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000470 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000471 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
472 break;
473 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000474 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000475 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
476 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000477 case cLong:
478 FI = MFI->CreateFixedObject(8, ArgOffset);
479 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
480 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
481 ArgOffset += 4; // longs require 4 additional bytes
482 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000483 case cFP:
484 unsigned Opcode;
485 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000486 Opcode = X86::FLDr32;
487 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000488 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000489 Opcode = X86::FLDr64;
490 FI = MFI->CreateFixedObject(8, ArgOffset);
491 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000492 }
493 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
494 break;
495 default:
496 assert(0 && "Unhandled argument type!");
497 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000498 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000499 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000500
501 // If the function takes variable number of arguments, add a frame offset for
502 // the start of the first vararg value... this is used to expand
503 // llvm.va_start.
504 if (Fn.getFunctionType()->isVarArg())
505 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000506}
507
508
Chris Lattner333b2fa2002-12-13 10:09:43 +0000509/// SelectPHINodes - Insert machine code to generate phis. This is tricky
510/// because we have to generate our sources into the source basic blocks, not
511/// the current one.
512///
513void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000514 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000515 const Function &LF = *F->getFunction(); // The LLVM function...
516 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
517 const BasicBlock *BB = I;
518 MachineBasicBlock *MBB = MBBMap[I];
519
520 // Loop over all of the PHI nodes in the LLVM basic block...
521 unsigned NumPHIs = 0;
522 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000523 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000524
Chris Lattner333b2fa2002-12-13 10:09:43 +0000525 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000526 unsigned PHIReg = getReg(*PN);
527 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
528 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
529
530 MachineInstr *LongPhiMI = 0;
531 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000532 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
533 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000534 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000535
Chris Lattnera6e73f12003-05-12 14:22:21 +0000536 // PHIValues - Map of blocks to incoming virtual registers. We use this
537 // so that we only initialize one incoming value for a particular block,
538 // even if the block has multiple entries in the PHI node.
539 //
540 std::map<MachineBasicBlock*, unsigned> PHIValues;
541
Chris Lattner333b2fa2002-12-13 10:09:43 +0000542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
543 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000544 unsigned ValReg;
545 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
546 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000547
Chris Lattnera6e73f12003-05-12 14:22:21 +0000548 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
549 // We already inserted an initialization of the register for this
550 // predecessor. Recycle it.
551 ValReg = EntryIt->second;
552
553 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000554 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000555 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000556 Value *Val = PN->getIncomingValue(i);
557
558 // If this is a constant or GlobalValue, we may have to insert code
559 // into the basic block to compute it into a virtual register.
560 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
561 // Because we don't want to clobber any values which might be in
562 // physical registers with the computation of this constant (which
563 // might be arbitrarily complex if it is a constant expression),
564 // just insert the computation at the top of the basic block.
565 MachineBasicBlock::iterator PI = PredMBB->begin();
566
567 // Skip over any PHI nodes though!
568 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
569 ++PI;
570
571 ValReg = getReg(Val, PredMBB, PI);
572 } else {
573 ValReg = getReg(Val);
574 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000575
576 // Remember that we inserted a value for this PHI for this predecessor
577 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
578 }
579
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000580 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000581 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000582 if (LongPhiMI) {
583 LongPhiMI->addRegOperand(ValReg+1);
584 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
585 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000586 }
587 }
588 }
589}
590
Chris Lattner6d40c192003-01-16 16:43:00 +0000591// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
592// the conditional branch instruction which is the only user of the cc
593// instruction. This is the case if the conditional branch is the only user of
594// the setcc, and if the setcc is in the same basic block as the conditional
595// branch. We also don't handle long arguments below, so we reject them here as
596// well.
597//
598static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
599 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000600 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000601 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
602 const Type *Ty = SCI->getOperand(0)->getType();
603 if (Ty != Type::LongTy && Ty != Type::ULongTy)
604 return SCI;
605 }
606 return 0;
607}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000608
Chris Lattner6d40c192003-01-16 16:43:00 +0000609// Return a fixed numbering for setcc instructions which does not depend on the
610// order of the opcodes.
611//
612static unsigned getSetCCNumber(unsigned Opcode) {
613 switch(Opcode) {
614 default: assert(0 && "Unknown setcc instruction!");
615 case Instruction::SetEQ: return 0;
616 case Instruction::SetNE: return 1;
617 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000618 case Instruction::SetGE: return 3;
619 case Instruction::SetGT: return 4;
620 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000621 }
622}
Chris Lattner06925362002-11-17 21:56:38 +0000623
Chris Lattner6d40c192003-01-16 16:43:00 +0000624// LLVM -> X86 signed X86 unsigned
625// ----- ---------- ------------
626// seteq -> sete sete
627// setne -> setne setne
628// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000629// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000630// setgt -> setg seta
631// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000632// ----
633// sets // Used by comparison with 0 optimization
634// setns
635static const unsigned SetCCOpcodeTab[2][8] = {
636 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
637 0, 0 },
638 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
639 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000640};
641
Chris Lattnerb2acc512003-10-19 21:09:10 +0000642// EmitComparison - This function emits a comparison of the two operands,
643// returning the extended setcc code to use.
644unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
645 MachineBasicBlock *MBB,
646 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000647 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000648 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000649 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000650 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000651
652 // Special case handling of: cmp R, i
653 if (Class == cByte || Class == cShort || Class == cInt)
654 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000655 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
656
Chris Lattner333864d2003-06-05 19:30:30 +0000657 // Mask off any upper bits of the constant, if there are any...
658 Op1v &= (1ULL << (8 << Class)) - 1;
659
Chris Lattnerb2acc512003-10-19 21:09:10 +0000660 // If this is a comparison against zero, emit more efficient code. We
661 // can't handle unsigned comparisons against zero unless they are == or
662 // !=. These should have been strength reduced already anyway.
663 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
664 static const unsigned TESTTab[] = {
665 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
666 };
667 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
668
669 if (OpNum == 2) return 6; // Map jl -> js
670 if (OpNum == 3) return 7; // Map jg -> jns
671 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000672 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000673
674 static const unsigned CMPTab[] = {
675 X86::CMPri8, X86::CMPri16, X86::CMPri32
676 };
677
678 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
679 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000680 }
681
Chris Lattner58c41fe2003-08-24 19:19:47 +0000682 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000683 switch (Class) {
684 default: assert(0 && "Unknown type class!");
685 // Emit: cmp <var1>, <var2> (do the comparison). We can
686 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
687 // 32-bit.
688 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000689 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000690 break;
691 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000692 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000693 break;
694 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000695 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000696 break;
697 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000698 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
699 BMI(MBB, IP, X86::FNSTSWr8, 0);
700 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000701 break;
702
703 case cLong:
704 if (OpNum < 2) { // seteq, setne
705 unsigned LoTmp = makeAnotherReg(Type::IntTy);
706 unsigned HiTmp = makeAnotherReg(Type::IntTy);
707 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000708 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
709 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
710 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000711 break; // Allow the sete or setne to be generated from flags set by OR
712 } else {
713 // Emit a sequence of code which compares the high and low parts once
714 // each, then uses a conditional move to handle the overflow case. For
715 // example, a setlt for long would generate code like this:
716 //
717 // AL = lo(op1) < lo(op2) // Signedness depends on operands
718 // BL = hi(op1) < hi(op2) // Always unsigned comparison
719 // dest = hi(op1) == hi(op2) ? AL : BL;
720 //
721
Chris Lattner6d40c192003-01-16 16:43:00 +0000722 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000723 // classes! Until then, hardcode registers so that we can deal with their
724 // aliases (because we don't have conditional byte moves).
725 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000726 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
727 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
728 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000729 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000730 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
731 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
732 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000733 // NOTE: visitSetCondInst knows that the value is dumped into the BL
734 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000735 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000736 }
737 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000738 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000739}
Chris Lattner3e130a22003-01-13 00:32:26 +0000740
Chris Lattner6d40c192003-01-16 16:43:00 +0000741
742/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
743/// register, then move it to wherever the result should be.
744///
745void ISel::visitSetCondInst(SetCondInst &I) {
746 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
747
Chris Lattner6d40c192003-01-16 16:43:00 +0000748 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000749 MachineBasicBlock::iterator MII = BB->end();
750 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
751 DestReg);
752}
Chris Lattner6d40c192003-01-16 16:43:00 +0000753
Chris Lattner58c41fe2003-08-24 19:19:47 +0000754/// emitSetCCOperation - Common code shared between visitSetCondInst and
755/// constant expression support.
756void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
757 MachineBasicBlock::iterator &IP,
758 Value *Op0, Value *Op1, unsigned Opcode,
759 unsigned TargetReg) {
760 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000761 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000762
Chris Lattnerb2acc512003-10-19 21:09:10 +0000763 const Type *CompTy = Op0->getType();
764 unsigned CompClass = getClassB(CompTy);
765 bool isSigned = CompTy->isSigned() && CompClass != cFP;
766
767 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000768 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000769 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000770 } else {
771 // Handle long comparisons by copying the value which is already in BL into
772 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000773 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000774 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000775}
Chris Lattner51b49a92002-11-02 19:45:49 +0000776
Chris Lattner58c41fe2003-08-24 19:19:47 +0000777
778
779
Brian Gaekec2505982002-11-30 11:57:28 +0000780/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
781/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000782void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
783 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000784
785 // Make sure we have the register number for this value...
786 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
787
Chris Lattner3e130a22003-01-13 00:32:26 +0000788 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000789 case cByte:
790 // Extend value into target register (8->32)
791 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000792 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000793 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000794 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000795 break;
796 case cShort:
797 // Extend value into target register (16->32)
798 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000799 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000800 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000801 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000802 break;
803 case cInt:
804 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000805 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000806 break;
807 default:
808 assert(0 && "Unpromotable operand class in promote32");
809 }
Brian Gaekec2505982002-11-30 11:57:28 +0000810}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000811
Chris Lattner72614082002-10-25 22:55:53 +0000812/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
813/// we have the following possibilities:
814///
815/// ret void: No return value, simply emit a 'ret' instruction
816/// ret sbyte, ubyte : Extend value into EAX and return
817/// ret short, ushort: Extend value into EAX and return
818/// ret int, uint : Move value into EAX and return
819/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000820/// ret long, ulong : Move value into EAX/EDX and return
821/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000822///
Chris Lattner3e130a22003-01-13 00:32:26 +0000823void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000824 if (I.getNumOperands() == 0) {
825 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
826 return;
827 }
828
829 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000830 unsigned RetReg = getReg(RetVal);
831 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000832 case cByte: // integral return values: extend or move into EAX and return
833 case cShort:
834 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000835 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000836 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000837 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000838 break;
839 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000840 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000841 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000842 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000843 break;
844 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000845 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
846 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000847 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000848 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
849 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000850 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000851 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000852 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000853 }
Chris Lattner43189d12002-11-17 20:07:45 +0000854 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000855 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000856}
857
Chris Lattner55f6fab2003-01-16 18:07:23 +0000858// getBlockAfter - Return the basic block which occurs lexically after the
859// specified one.
860static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
861 Function::iterator I = BB; ++I; // Get iterator to next block
862 return I != BB->getParent()->end() ? &*I : 0;
863}
864
Chris Lattner51b49a92002-11-02 19:45:49 +0000865/// visitBranchInst - Handle conditional and unconditional branches here. Note
866/// that since code layout is frozen at this point, that if we are trying to
867/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000868/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000869///
Chris Lattner94af4142002-12-25 05:13:53 +0000870void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000871 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
872
873 if (!BI.isConditional()) { // Unconditional branch?
874 if (BI.getSuccessor(0) != NextBB)
875 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000876 return;
877 }
878
879 // See if we can fold the setcc into the branch itself...
880 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
881 if (SCI == 0) {
882 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
883 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000884 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000885 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000886 if (BI.getSuccessor(1) == NextBB) {
887 if (BI.getSuccessor(0) != NextBB)
888 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
889 } else {
890 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
891
892 if (BI.getSuccessor(0) != NextBB)
893 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
894 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000895 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000896 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000897
898 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000899 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000900 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000901
902 const Type *CompTy = SCI->getOperand(0)->getType();
903 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000904
Chris Lattnerb2acc512003-10-19 21:09:10 +0000905
Chris Lattner6d40c192003-01-16 16:43:00 +0000906 // LLVM -> X86 signed X86 unsigned
907 // ----- ---------- ------------
908 // seteq -> je je
909 // setne -> jne jne
910 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000911 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000912 // setgt -> jg ja
913 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000914 // ----
915 // js // Used by comparison with 0 optimization
916 // jns
917
918 static const unsigned OpcodeTab[2][8] = {
919 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
920 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
921 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000922 };
923
Chris Lattner55f6fab2003-01-16 18:07:23 +0000924 if (BI.getSuccessor(0) != NextBB) {
925 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
926 if (BI.getSuccessor(1) != NextBB)
927 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
928 } else {
929 // Change to the inverse condition...
930 if (BI.getSuccessor(1) != NextBB) {
931 OpNum ^= 1;
932 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
933 }
934 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000935}
936
Chris Lattner3e130a22003-01-13 00:32:26 +0000937
938/// doCall - This emits an abstract call instruction, setting up the arguments
939/// and the return value as appropriate. For the actual function call itself,
940/// it inserts the specified CallMI instruction into the stream.
941///
942void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000943 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000944
Chris Lattner065faeb2002-12-28 20:24:02 +0000945 // Count how many bytes are to be pushed on the stack...
946 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000947
Chris Lattner3e130a22003-01-13 00:32:26 +0000948 if (!Args.empty()) {
949 for (unsigned i = 0, e = Args.size(); i != e; ++i)
950 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000951 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000952 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000953 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000954 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000955 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000956 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
957 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000958 default: assert(0 && "Unknown class!");
959 }
960
961 // Adjust the stack pointer for the new arguments...
962 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
963
964 // Arguments go on the stack in reverse order, as specified by the ABI.
965 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000966 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000967 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000968 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000969 case cByte:
970 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000971 // Promote arg to 32 bits wide into a temporary register...
972 unsigned R = makeAnotherReg(Type::UIntTy);
973 promote32(R, Args[i]);
974 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
975 X86::ESP, ArgOffset).addReg(R);
976 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000977 }
978 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000979 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
980 X86::ESP, ArgOffset).addReg(ArgReg);
981 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000982 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000983 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
984 X86::ESP, ArgOffset).addReg(ArgReg);
985 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
986 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
987 ArgOffset += 4; // 8 byte entry, not 4.
988 break;
989
Chris Lattner065faeb2002-12-28 20:24:02 +0000990 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000991 if (Args[i].Ty == Type::FloatTy) {
992 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
993 X86::ESP, ArgOffset).addReg(ArgReg);
994 } else {
995 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
996 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
997 X86::ESP, ArgOffset).addReg(ArgReg);
998 ArgOffset += 4; // 8 byte entry, not 4.
999 }
1000 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001001
Chris Lattner3e130a22003-01-13 00:32:26 +00001002 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001003 }
1004 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001005 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001006 } else {
1007 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001008 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001009
Chris Lattner3e130a22003-01-13 00:32:26 +00001010 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001011
Chris Lattner065faeb2002-12-28 20:24:02 +00001012 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001013
1014 // If there is a return value, scavenge the result from the location the call
1015 // leaves it in...
1016 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001017 if (Ret.Ty != Type::VoidTy) {
1018 unsigned DestClass = getClassB(Ret.Ty);
1019 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001020 case cByte:
1021 case cShort:
1022 case cInt: {
1023 // Integral results are in %eax, or the appropriate portion
1024 // thereof.
1025 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001026 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001027 };
1028 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001029 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001030 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001031 }
Chris Lattner94af4142002-12-25 05:13:53 +00001032 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001033 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001034 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001035 case cLong: // Long values are left in EDX:EAX
1036 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1037 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1038 break;
1039 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001040 }
Chris Lattnera3243642002-12-04 23:45:28 +00001041 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001042}
Chris Lattner2df035b2002-11-02 19:27:56 +00001043
Chris Lattner3e130a22003-01-13 00:32:26 +00001044
1045/// visitCallInst - Push args on stack and do a procedure call instruction.
1046void ISel::visitCallInst(CallInst &CI) {
1047 MachineInstr *TheCall;
1048 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001049 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001050 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001051 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1052 return;
1053 }
1054
Chris Lattner3e130a22003-01-13 00:32:26 +00001055 // Emit a CALL instruction with PC-relative displacement.
1056 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1057 } else { // Emit an indirect call...
1058 unsigned Reg = getReg(CI.getCalledValue());
1059 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1060 }
1061
1062 std::vector<ValueRecord> Args;
1063 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001064 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001065
1066 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1067 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001068}
Chris Lattner3e130a22003-01-13 00:32:26 +00001069
Chris Lattneraeb54b82003-08-28 21:23:43 +00001070
Brian Gaeked0fde302003-11-11 22:41:34 +00001071void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001072 unsigned TmpReg1, TmpReg2;
1073 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001074 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001075 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001076 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001077 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001078 return;
1079
Brian Gaeked0fde302003-11-11 22:41:34 +00001080 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001081 TmpReg1 = getReg(CI);
1082 TmpReg2 = getReg(CI.getOperand(1));
1083 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001084 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001085 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001086
Brian Gaeked0fde302003-11-11 22:41:34 +00001087 case Intrinsic::longjmp:
1088 case Intrinsic::siglongjmp:
Chris Lattneraeb54b82003-08-28 21:23:43 +00001089 BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +00001090 return;
1091
Brian Gaeked0fde302003-11-11 22:41:34 +00001092 case Intrinsic::setjmp:
1093 case Intrinsic::sigsetjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +00001094 // Setjmp always returns zero...
1095 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001096 return;
Chris Lattnereca195e2003-05-08 19:44:13 +00001097 default: assert(0 && "Unknown intrinsic for X86!");
1098 }
1099}
1100
1101
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001102/// visitSimpleBinary - Implement simple binary operators for integral types...
1103/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1104/// Xor.
1105void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1106 unsigned DestReg = getReg(B);
1107 MachineBasicBlock::iterator MI = BB->end();
1108 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1109 OperatorClass, DestReg);
1110}
Chris Lattner3e130a22003-01-13 00:32:26 +00001111
Chris Lattnerb2acc512003-10-19 21:09:10 +00001112/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1113/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1114/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001115///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001116/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1117/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001118///
1119void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001120 MachineBasicBlock::iterator &IP,
1121 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001122 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001123 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001124
1125 // sub 0, X -> neg X
1126 if (OperatorClass == 1 && Class != cLong)
1127 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1128 if (CI->isNullValue()) {
1129 unsigned op1Reg = getReg(Op1, MBB, IP);
1130 switch (Class) {
1131 default: assert(0 && "Unknown class for this function!");
1132 case cByte:
1133 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1134 return;
1135 case cShort:
1136 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1137 return;
1138 case cInt:
1139 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1140 return;
1141 }
1142 }
1143
Chris Lattner35333e12003-06-05 18:28:55 +00001144 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1145 static const unsigned OpcodeTab[][4] = {
1146 // Arithmetic operators
1147 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1148 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1149
1150 // Bitwise operators
1151 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1152 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1153 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001154 };
Chris Lattner35333e12003-06-05 18:28:55 +00001155
1156 bool isLong = false;
1157 if (Class == cLong) {
1158 isLong = true;
1159 Class = cInt; // Bottom 32 bits are handled just like ints
1160 }
1161
1162 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1163 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001164 unsigned Op0r = getReg(Op0, MBB, IP);
1165 unsigned Op1r = getReg(Op1, MBB, IP);
1166 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001167
1168 if (isLong) { // Handle the upper 32 bits of long values...
1169 static const unsigned TopTab[] = {
1170 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1171 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001172 BMI(MBB, IP, TopTab[OperatorClass], 2,
1173 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001174 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001175 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001176 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001177
1178 // Special case: op Reg, <const>
1179 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1180 unsigned Op0r = getReg(Op0, MBB, IP);
1181
1182 // xor X, -1 -> not X
1183 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1184 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1185 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1186 return;
1187 }
1188
1189 // add X, -1 -> dec X
1190 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1191 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1192 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1193 return;
1194 }
1195
1196 // add X, 1 -> inc X
1197 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1198 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1199 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1200 return;
1201 }
1202
1203 static const unsigned OpcodeTab[][3] = {
1204 // Arithmetic operators
1205 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1206 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1207
1208 // Bitwise operators
1209 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1210 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1211 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1212 };
1213
1214 assert(Class < 3 && "General code handles 64-bit integer types!");
1215 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1216 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1217
1218 // Mask off any upper bits of the constant, if there are any...
1219 Op1v &= (1ULL << (8 << Class)) - 1;
1220 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001221}
1222
Chris Lattner3e130a22003-01-13 00:32:26 +00001223/// doMultiply - Emit appropriate instructions to multiply together the
1224/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1225/// result should be given as DestTy.
1226///
Chris Lattner8a307e82002-12-16 19:32:50 +00001227void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001228 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001229 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001230 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001231 switch (Class) {
1232 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001233 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001234 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001235 case cInt:
1236 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001237 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001238 .addReg(op0Reg).addReg(op1Reg);
1239 return;
1240 case cByte:
1241 // Must use the MUL instruction, which forces use of AL...
1242 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1243 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1244 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1245 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001246 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001247 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001248 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001249}
1250
Chris Lattnerb2acc512003-10-19 21:09:10 +00001251// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1252// returns zero when the input is not exactly a power of two.
1253static unsigned ExactLog2(unsigned Val) {
1254 if (Val == 0) return 0;
1255 unsigned Count = 0;
1256 while (Val != 1) {
1257 if (Val & 1) return 0;
1258 Val >>= 1;
1259 ++Count;
1260 }
1261 return Count+1;
1262}
1263
1264void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1265 MachineBasicBlock::iterator &IP,
1266 unsigned DestReg, const Type *DestTy,
1267 unsigned op0Reg, unsigned ConstRHS) {
1268 unsigned Class = getClass(DestTy);
1269
1270 // If the element size is exactly a power of 2, use a shift to get it.
1271 if (unsigned Shift = ExactLog2(ConstRHS)) {
1272 switch (Class) {
1273 default: assert(0 && "Unknown class for this function!");
1274 case cByte:
1275 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1276 return;
1277 case cShort:
1278 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1279 return;
1280 case cInt:
1281 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1282 return;
1283 }
1284 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001285
1286 if (Class == cShort) {
1287 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1288 return;
1289 } else if (Class == cInt) {
1290 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1291 return;
1292 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001293
1294 // Most general case, emit a normal multiply...
1295 static const unsigned MOVirTab[] = {
1296 X86::MOVir8, X86::MOVir16, X86::MOVir32
1297 };
1298
1299 unsigned TmpReg = makeAnotherReg(DestTy);
1300 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1301
1302 // Emit a MUL to multiply the register holding the index by
1303 // elementSize, putting the result in OffsetReg.
1304 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1305}
1306
Chris Lattnerca9671d2002-11-02 20:28:58 +00001307/// visitMul - Multiplies are not simple binary operators because they must deal
1308/// with the EAX register explicitly.
1309///
1310void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001311 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001312 unsigned DestReg = getReg(I);
1313
1314 // Simple scalar multiply?
1315 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001316 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1317 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1318 MachineBasicBlock::iterator MBBI = BB->end();
1319 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1320 } else {
1321 unsigned Op1Reg = getReg(I.getOperand(1));
1322 MachineBasicBlock::iterator MBBI = BB->end();
1323 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1324 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001325 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001326 unsigned Op1Reg = getReg(I.getOperand(1));
1327
Chris Lattner3e130a22003-01-13 00:32:26 +00001328 // Long value. We have to do things the hard way...
1329 // Multiply the two low parts... capturing carry into EDX
1330 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1331 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1332
1333 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1334 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1335 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1336
1337 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001338 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001339 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001340
1341 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1342 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001343 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001344
1345 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001346 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001347 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001348
1349 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001350 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001351 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001352}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001353
Chris Lattner06925362002-11-17 21:56:38 +00001354
Chris Lattnerf01729e2002-11-02 20:54:46 +00001355/// visitDivRem - Handle division and remainder instructions... these
1356/// instruction both require the same instructions to be generated, they just
1357/// select the result from a different register. Note that both of these
1358/// instructions work differently for signed and unsigned operands.
1359///
1360void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001361 unsigned Op0Reg = getReg(I.getOperand(0));
1362 unsigned Op1Reg = getReg(I.getOperand(1));
1363 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001364
Chris Lattnercadff442003-10-23 17:21:43 +00001365 MachineBasicBlock::iterator IP = BB->end();
1366 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1367 I.getType(), ResultReg);
1368}
1369
1370void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1371 MachineBasicBlock::iterator &IP,
1372 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1373 const Type *Ty, unsigned ResultReg) {
1374 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001375 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001376 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001377 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001378 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001379 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001380 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001381 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001382 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001383 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1384 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001385 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1386 }
Chris Lattner94af4142002-12-25 05:13:53 +00001387 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001388 case cLong: {
1389 static const char *FnName[] =
1390 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1391
Chris Lattnercadff442003-10-23 17:21:43 +00001392 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001393 MachineInstr *TheCall =
1394 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1395
1396 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001397 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1398 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001399 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1400 return;
1401 }
1402 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001403 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001404 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001405 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001406
1407 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1408 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001409 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001410 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1411 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1412
1413 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001414 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1415 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001416 };
1417
Chris Lattnercadff442003-10-23 17:21:43 +00001418 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001419 unsigned Reg = Regs[Class];
1420 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001421
1422 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001423 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001424
1425 if (isSigned) {
1426 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001427 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001428 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1429 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001430 } else {
1431 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
Chris Lattner62b767b2003-11-18 17:47:05 +00001432 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001433 }
1434
Chris Lattner06925362002-11-17 21:56:38 +00001435 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001436 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001437
Chris Lattnerf01729e2002-11-02 20:54:46 +00001438 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001439 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001440
Chris Lattnerf01729e2002-11-02 20:54:46 +00001441 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001442 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001443}
Chris Lattnere2954c82002-11-02 20:04:26 +00001444
Chris Lattner06925362002-11-17 21:56:38 +00001445
Brian Gaekea1719c92002-10-31 23:03:59 +00001446/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1447/// for constant immediate shift values, and for constant immediate
1448/// shift values equal to 1. Even the general case is sort of special,
1449/// because the shift amount has to be in CL, not just any old register.
1450///
Chris Lattner3e130a22003-01-13 00:32:26 +00001451void ISel::visitShiftInst(ShiftInst &I) {
1452 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001453 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001454 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001455 bool isSigned = I.getType()->isSigned();
1456 unsigned Class = getClass(I.getType());
1457
1458 static const unsigned ConstantOperand[][4] = {
1459 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1460 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1461 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1462 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1463 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001464
Chris Lattner3e130a22003-01-13 00:32:26 +00001465 static const unsigned NonConstantOperand[][4] = {
1466 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1467 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1468 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1469 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1470 };
Chris Lattner796df732002-11-02 00:44:25 +00001471
Chris Lattner3e130a22003-01-13 00:32:26 +00001472 // Longs, as usual, are handled specially...
1473 if (Class == cLong) {
1474 // If we have a constant shift, we can generate much more efficient code
1475 // than otherwise...
1476 //
1477 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1478 unsigned Amount = CUI->getValue();
1479 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001480 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1481 if (isLeftShift) {
1482 BuildMI(BB, Opc[3], 3,
1483 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1484 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1485 } else {
1486 BuildMI(BB, Opc[3], 3,
1487 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1488 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1489 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001490 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001491 Amount -= 32;
1492 if (isLeftShift) {
1493 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1494 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1495 } else {
1496 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1497 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1498 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1499 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001500 }
1501 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001502 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1503
1504 if (!isLeftShift && isSigned) {
1505 // If this is a SHR of a Long, then we need to do funny sign extension
1506 // stuff. TmpReg gets the value to use as the high-part if we are
1507 // shifting more than 32 bits.
1508 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1509 } else {
1510 // Other shifts use a fixed zero value if the shift is more than 32
1511 // bits.
1512 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1513 }
1514
1515 // Initialize CL with the shift amount...
1516 unsigned ShiftAmount = getReg(I.getOperand(1));
1517 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1518
1519 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1520 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1521 if (isLeftShift) {
1522 // TmpReg2 = shld inHi, inLo
1523 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1524 // TmpReg3 = shl inLo, CL
1525 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1526
1527 // Set the flags to indicate whether the shift was by more than 32 bits.
1528 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1529
1530 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1531 BuildMI(BB, X86::CMOVNErr32, 2,
1532 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1533 // DestLo = (>32) ? TmpReg : TmpReg3;
1534 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1535 } else {
1536 // TmpReg2 = shrd inLo, inHi
1537 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1538 // TmpReg3 = s[ah]r inHi, CL
1539 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1540 .addReg(SrcReg+1);
1541
1542 // Set the flags to indicate whether the shift was by more than 32 bits.
1543 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1544
1545 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1546 BuildMI(BB, X86::CMOVNErr32, 2,
1547 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1548
1549 // DestHi = (>32) ? TmpReg : TmpReg3;
1550 BuildMI(BB, X86::CMOVNErr32, 2,
1551 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1552 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001553 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001554 return;
1555 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001556
Chris Lattner3e130a22003-01-13 00:32:26 +00001557 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1558 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1559 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001560
Chris Lattner3e130a22003-01-13 00:32:26 +00001561 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1562 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1563 } else { // The shift amount is non-constant.
1564 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001565
Chris Lattner3e130a22003-01-13 00:32:26 +00001566 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1567 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1568 }
1569}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001570
Chris Lattner3e130a22003-01-13 00:32:26 +00001571
Chris Lattner6fc3c522002-11-17 21:11:55 +00001572/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001573/// instruction. The load and store instructions are the only place where we
1574/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001575///
1576void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001577 unsigned SrcAddrReg = getReg(I.getOperand(0));
1578 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001579
Brian Gaekebfedb912003-07-17 21:30:06 +00001580 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001581
1582 if (Class == cLong) {
1583 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1584 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001585 return;
1586 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001587
Chris Lattner6ac1d712003-10-20 04:48:06 +00001588 static const unsigned Opcodes[] = {
1589 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001590 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001591 unsigned Opcode = Opcodes[Class];
1592 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1593 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001594}
1595
Chris Lattner6fc3c522002-11-17 21:11:55 +00001596/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1597/// instruction.
1598///
1599void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001600 unsigned ValReg = getReg(I.getOperand(0));
1601 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001602
1603 const Type *ValTy = I.getOperand(0)->getType();
1604 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001605
1606 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001607 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1608 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001609 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001610 }
1611
Chris Lattner6ac1d712003-10-20 04:48:06 +00001612 static const unsigned Opcodes[] = {
1613 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1614 };
1615 unsigned Opcode = Opcodes[Class];
1616 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1617 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001618}
1619
1620
Brian Gaekec11232a2002-11-26 10:43:30 +00001621/// visitCastInst - Here we have various kinds of copying with or without
1622/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001623void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001624 Value *Op = CI.getOperand(0);
1625 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1626 // of the case are GEP instructions, then the cast does not need to be
1627 // generated explicitly, it will be folded into the GEP.
1628 if (CI.getType() == Type::LongTy &&
1629 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1630 bool AllUsesAreGEPs = true;
1631 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1632 if (!isa<GetElementPtrInst>(*I)) {
1633 AllUsesAreGEPs = false;
1634 break;
1635 }
1636
1637 // No need to codegen this cast if all users are getelementptr instrs...
1638 if (AllUsesAreGEPs) return;
1639 }
1640
Chris Lattner548f61d2003-04-23 17:22:12 +00001641 unsigned DestReg = getReg(CI);
1642 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001643 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001644}
1645
1646/// emitCastOperation - Common code shared between visitCastInst and
1647/// constant expression cast support.
1648void ISel::emitCastOperation(MachineBasicBlock *BB,
1649 MachineBasicBlock::iterator &IP,
1650 Value *Src, const Type *DestTy,
1651 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001652 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001653 const Type *SrcTy = Src->getType();
1654 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001655 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001656
Chris Lattner3e130a22003-01-13 00:32:26 +00001657 // Implement casts to bool by using compare on the operand followed by set if
1658 // not zero on the result.
1659 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001660 switch (SrcClass) {
1661 case cByte:
1662 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1663 break;
1664 case cShort:
1665 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1666 break;
1667 case cInt:
1668 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1669 break;
1670 case cLong: {
1671 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1672 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1673 break;
1674 }
1675 case cFP:
1676 assert(0 && "FIXME: implement cast FP to bool");
1677 abort();
1678 }
1679
1680 // If the zero flag is not set, then the value is true, set the byte to
1681 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001682 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001683 return;
1684 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001685
1686 static const unsigned RegRegMove[] = {
1687 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1688 };
1689
1690 // Implement casts between values of the same type class (as determined by
1691 // getClass) by using a register-to-register move.
1692 if (SrcClass == DestClass) {
1693 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001694 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001695 } else if (SrcClass == cFP) {
1696 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001697 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1698 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001699 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001700 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1701 "Unknown cFP member!");
1702 // Truncate from double to float by storing to memory as short, then
1703 // reading it back.
1704 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001705 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001706 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1707 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001708 }
1709 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001710 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1711 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001712 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001713 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001714 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001715 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001716 return;
1717 }
1718
1719 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1720 // or zero extension, depending on whether the source type was signed.
1721 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1722 SrcClass < DestClass) {
1723 bool isLong = DestClass == cLong;
1724 if (isLong) DestClass = cInt;
1725
1726 static const unsigned Opc[][4] = {
1727 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1728 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1729 };
1730
1731 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001732 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1733 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001734
1735 if (isLong) { // Handle upper 32 bits as appropriate...
1736 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001737 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001738 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001739 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001740 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001741 return;
1742 }
1743
1744 // Special case long -> int ...
1745 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001746 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001747 return;
1748 }
1749
1750 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1751 // move out of AX or AL.
1752 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1753 && SrcClass > DestClass) {
1754 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001755 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1756 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001757 return;
1758 }
1759
1760 // Handle casts from integer to floating point now...
1761 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001762 // Promote the integer to a type supported by FLD. We do this because there
1763 // are no unsigned FLD instructions, so we must promote an unsigned value to
1764 // a larger signed value, then use FLD on the larger value.
1765 //
1766 const Type *PromoteType = 0;
1767 unsigned PromoteOpcode;
1768 switch (SrcTy->getPrimitiveID()) {
1769 case Type::BoolTyID:
1770 case Type::SByteTyID:
1771 // We don't have the facilities for directly loading byte sized data from
1772 // memory (even signed). Promote it to 16 bits.
1773 PromoteType = Type::ShortTy;
1774 PromoteOpcode = X86::MOVSXr16r8;
1775 break;
1776 case Type::UByteTyID:
1777 PromoteType = Type::ShortTy;
1778 PromoteOpcode = X86::MOVZXr16r8;
1779 break;
1780 case Type::UShortTyID:
1781 PromoteType = Type::IntTy;
1782 PromoteOpcode = X86::MOVZXr32r16;
1783 break;
1784 case Type::UIntTyID: {
1785 // Make a 64 bit temporary... and zero out the top of it...
1786 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1787 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1788 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1789 SrcTy = Type::LongTy;
1790 SrcClass = cLong;
1791 SrcReg = TmpReg;
1792 break;
1793 }
1794 case Type::ULongTyID:
1795 assert("FIXME: not implemented: cast ulong X to fp type!");
1796 default: // No promotion needed...
1797 break;
1798 }
1799
1800 if (PromoteType) {
1801 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001802 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1803 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001804 SrcTy = PromoteType;
1805 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001806 SrcReg = TmpReg;
1807 }
1808
1809 // Spill the integer to memory and reload it from there...
1810 int FrameIdx =
1811 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1812
1813 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001814 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1815 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001816 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001817 } else {
1818 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001819 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001820 }
1821
1822 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001823 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001824 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001825 return;
1826 }
1827
1828 // Handle casts from floating point to integer now...
1829 if (SrcClass == cFP) {
1830 // Change the floating point control register to use "round towards zero"
1831 // mode when truncating to an integer value.
1832 //
1833 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001834 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001835
1836 // Load the old value of the high byte of the control word...
1837 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001838 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001839
1840 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001841 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001842
1843 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001844 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001845
1846 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001847 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001848 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00001849
1850 // We don't have the facilities for directly storing byte sized data to
1851 // memory. Promote it to 16 bits. We also must promote unsigned values to
1852 // larger classes because we only have signed FP stores.
1853 unsigned StoreClass = DestClass;
1854 const Type *StoreTy = DestTy;
1855 if (StoreClass == cByte || DestTy->isUnsigned())
1856 switch (StoreClass) {
1857 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1858 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1859 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001860 // The following treatment of cLong may not be perfectly right,
1861 // but it survives chains of casts of the form
1862 // double->ulong->double.
1863 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001864 default: assert(0 && "Unknown store class!");
1865 }
1866
1867 // Spill the integer to memory and reload it from there...
1868 int FrameIdx =
1869 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1870
1871 static const unsigned Op1[] =
1872 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001873 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001874
1875 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001876 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1877 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001878 } else {
1879 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001880 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001881 }
1882
1883 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001884 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001885 return;
1886 }
1887
Brian Gaeked474e9c2002-12-06 10:49:33 +00001888 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001889 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001890 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001891}
Brian Gaekea1719c92002-10-31 23:03:59 +00001892
Chris Lattner73815062003-10-18 05:56:40 +00001893/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00001894///
Chris Lattner73815062003-10-18 05:56:40 +00001895void ISel::visitVANextInst(VANextInst &I) {
1896 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00001897 unsigned DestReg = getReg(I);
1898
Chris Lattnereca195e2003-05-08 19:44:13 +00001899 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00001900 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001901 default:
1902 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00001903 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001904 return;
1905 case Type::PointerTyID:
1906 case Type::UIntTyID:
1907 case Type::IntTyID:
1908 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00001909 break;
1910 case Type::ULongTyID:
1911 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00001912 case Type::DoubleTyID:
1913 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00001914 break;
1915 }
1916
1917 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00001918 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
1919}
Chris Lattnereca195e2003-05-08 19:44:13 +00001920
Chris Lattner73815062003-10-18 05:56:40 +00001921void ISel::visitVAArgInst(VAArgInst &I) {
1922 unsigned VAList = getReg(I.getOperand(0));
1923 unsigned DestReg = getReg(I);
1924
1925 switch (I.getType()->getPrimitiveID()) {
1926 default:
1927 std::cerr << I;
1928 assert(0 && "Error: bad type for va_next instruction!");
1929 return;
1930 case Type::PointerTyID:
1931 case Type::UIntTyID:
1932 case Type::IntTyID:
1933 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1934 break;
1935 case Type::ULongTyID:
1936 case Type::LongTyID:
1937 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1938 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1939 break;
1940 case Type::DoubleTyID:
1941 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1942 break;
1943 }
Chris Lattnereca195e2003-05-08 19:44:13 +00001944}
1945
1946
Chris Lattner3e130a22003-01-13 00:32:26 +00001947void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1948 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001949 MachineBasicBlock::iterator MI = BB->end();
1950 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001951 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001952}
1953
Brian Gaeke71794c02002-12-13 11:22:48 +00001954void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001955 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001956 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001957 User::op_iterator IdxEnd, unsigned TargetReg) {
1958 const TargetData &TD = TM.getTargetData();
1959 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001960 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001961
Brian Gaeke20244b72002-12-12 15:33:40 +00001962 // GEPs have zero or more indices; we must perform a struct access
1963 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001964 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1965 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001966 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001967 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001968 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001969 // It's a struct access. idx is the index into the structure,
1970 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001971 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1972 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001973 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00001974 // Use the TargetData structure to pick out what the layout of
1975 // the structure is in memory. Since the structure index must
1976 // be constant, we can get its value and use it to find the
1977 // right byte offset from the StructLayout class's list of
1978 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001979 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001980 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1981 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001982 NextReg = makeAnotherReg(Type::UIntTy);
1983 // Emit an ADD to add FieldOff to the basePtr.
1984 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00001985 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001986 // The next type is the member of the structure selected by the
1987 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001988 Ty = StTy->getElementTypes()[idxValue];
1989 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001990 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001991
Brian Gaeke20244b72002-12-12 15:33:40 +00001992 // idx is the index into the array. Unlike with structure
1993 // indices, we may not know its actual value at code-generation
1994 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001995 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1996
Chris Lattnerf5854472003-06-21 16:01:24 +00001997 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
1998 // operand on X86. Handle this case directly now...
1999 if (CastInst *CI = dyn_cast<CastInst>(idx))
2000 if (CI->getOperand(0)->getType() == Type::IntTy ||
2001 CI->getOperand(0)->getType() == Type::UIntTy)
2002 idx = CI->getOperand(0);
2003
Chris Lattner3e130a22003-01-13 00:32:26 +00002004 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002005 // must find the size of the pointed-to type (Not coincidentally, the next
2006 // type is the type of the elements in the array).
2007 Ty = SqTy->getElementType();
2008 unsigned elementSize = TD.getTypeSize(Ty);
2009
2010 // If idxReg is a constant, we don't need to perform the multiply!
2011 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002012 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002013 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002014 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002015 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002016 }
2017 } else if (elementSize == 1) {
2018 // If the element size is 1, we don't have to multiply, just add
2019 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002020 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002021 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002022 } else {
2023 unsigned idxReg = getReg(idx, MBB, IP);
2024 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002025
2026 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2027
Chris Lattner8a307e82002-12-16 19:32:50 +00002028 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002029 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002030 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002031 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002032 }
2033 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002034 // one, so we don't need to worry about BaseReg itself, anymore.
2035 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002036 }
2037 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002038 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002039 // put the answer. A 32-bit move should do it, because we are in
2040 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002041 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002042}
2043
2044
Chris Lattner065faeb2002-12-28 20:24:02 +00002045/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2046/// frame manager, otherwise do it the hard way.
2047///
2048void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002049 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002050 const Type *Ty = I.getAllocatedType();
2051 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2052
2053 // If this is a fixed size alloca in the entry block for the function,
2054 // statically stack allocate the space.
2055 //
2056 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2057 if (I.getParent() == I.getParent()->getParent()->begin()) {
2058 TySize *= CUI->getValue(); // Get total allocated size...
2059 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2060
2061 // Create a new stack object using the frame manager...
2062 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2063 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2064 return;
2065 }
2066 }
2067
2068 // Create a register to hold the temporary result of multiplying the type size
2069 // constant by the variable amount.
2070 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2071 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002072
2073 // TotalSizeReg = mul <numelements>, <TypeSize>
2074 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002075 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002076
2077 // AddedSize = add <TotalSizeReg>, 15
2078 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2079 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2080
2081 // AlignedSize = and <AddedSize>, ~15
2082 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2083 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2084
Brian Gaekee48ec012002-12-13 06:46:31 +00002085 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002086 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002087
Brian Gaekee48ec012002-12-13 06:46:31 +00002088 // Put a pointer to the space into the result register, by copying
2089 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002090 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2091
Misha Brukman48196b32003-05-03 02:18:17 +00002092 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002093 // object.
2094 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002095}
Chris Lattner3e130a22003-01-13 00:32:26 +00002096
2097/// visitMallocInst - Malloc instructions are code generated into direct calls
2098/// to the library malloc.
2099///
2100void ISel::visitMallocInst(MallocInst &I) {
2101 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2102 unsigned Arg;
2103
2104 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2105 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2106 } else {
2107 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002108 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002109 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002110 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002111 }
2112
2113 std::vector<ValueRecord> Args;
2114 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2115 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002116 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002117 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2118}
2119
2120
2121/// visitFreeInst - Free instructions are code gen'd to call the free libc
2122/// function.
2123///
2124void ISel::visitFreeInst(FreeInst &I) {
2125 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002126 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002127 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002128 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002129 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2130}
2131
Chris Lattnerd281de22003-07-26 23:49:58 +00002132/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002133/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002134/// generated code sucks but the implementation is nice and simple.
2135///
Brian Gaeke19df3872003-08-13 18:18:15 +00002136FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM) {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002137 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002138}
Brian Gaeked0fde302003-11-11 22:41:34 +00002139
2140} // End llvm namespace