blob: 17dc686a4259c788a6c3e3d741ea2dba4d1d5ec8 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc050fd92009-07-13 20:50:19 +0000144 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000181 new (S) SCEVConstant(ID, V);
Dan Gohman1c343752009-06-27 21:21:31 +0000182 UniqueSCEVs.InsertNode(S, IP);
183 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000184}
Chris Lattner53e677a2004-04-02 20:23:17 +0000185
Dan Gohman0bba49c2009-07-07 17:06:11 +0000186const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000187 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000188}
189
Dan Gohman0bba49c2009-07-07 17:06:11 +0000190const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000191ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9adc0ab2009-07-14 23:09:55 +0000192 return getConstant(
Owen Andersoneed707b2009-07-24 23:12:02 +0000193 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000194}
195
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000196const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000197
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000198void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199 WriteAsOperand(OS, V, false);
200}
Chris Lattner53e677a2004-04-02 20:23:17 +0000201
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
203 unsigned SCEVTy, const SCEV *op, const Type *ty)
204 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000205
Dan Gohman84923602009-04-21 01:25:57 +0000206bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
207 return Op->dominates(BB, DT);
208}
209
Dan Gohman6e70e312009-09-27 15:26:03 +0000210bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
211 return Op->properlyDominates(BB, DT);
212}
213
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
215 const SCEV *op, const Type *ty)
216 : SCEVCastExpr(ID, scTruncate, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000217 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
218 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000220}
Chris Lattner53e677a2004-04-02 20:23:17 +0000221
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000222void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000224}
225
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
227 const SCEV *op, const Type *ty)
228 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000229 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
230 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000232}
233
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000234void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000235 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000236}
237
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
239 const SCEV *op, const Type *ty)
240 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000241 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000243 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000244}
245
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000246void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000247 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000248}
249
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000250void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000251 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
252 const char *OpStr = getOperationStr();
253 OS << "(" << *Operands[0];
254 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
255 OS << OpStr << *Operands[i];
256 OS << ")";
257}
258
Dan Gohmanecb403a2009-05-07 14:00:19 +0000259bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000260 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
261 if (!getOperand(i)->dominates(BB, DT))
262 return false;
263 }
264 return true;
265}
266
Dan Gohman6e70e312009-09-27 15:26:03 +0000267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
269 if (!getOperand(i)->properlyDominates(BB, DT))
270 return false;
271 }
272 return true;
273}
274
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000275bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
276 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
277}
278
Dan Gohman6e70e312009-09-27 15:26:03 +0000279bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
280 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
281}
282
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000283void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000284 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000285}
286
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000287const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000288 // In most cases the types of LHS and RHS will be the same, but in some
289 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
290 // depend on the type for correctness, but handling types carefully can
291 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
292 // a pointer type than the RHS, so use the RHS' type here.
293 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000294}
295
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000296bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000297 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000298 if (!QueryLoop)
299 return false;
300
301 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000302 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000303 return false;
304
305 // This recurrence is variant w.r.t. QueryLoop if any of its operands
306 // are variant.
307 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308 if (!getOperand(i)->isLoopInvariant(QueryLoop))
309 return false;
310
311 // Otherwise it's loop-invariant.
312 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000313}
314
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000315void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000316 OS << "{" << *Operands[0];
317 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
318 OS << ",+," << *Operands[i];
319 OS << "}<" << L->getHeader()->getName() + ">";
320}
Chris Lattner53e677a2004-04-02 20:23:17 +0000321
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000322void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
323 // LLVM struct fields don't have names, so just print the field number.
324 OS << "offsetof(" << *STy << ", " << FieldNo << ")";
325}
326
327void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
328 OS << "sizeof(" << *AllocTy << ")";
329}
330
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000331bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
332 // All non-instruction values are loop invariant. All instructions are loop
333 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000334 // Instructions are never considered invariant in the function body
335 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000337 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338 return true;
339}
Chris Lattner53e677a2004-04-02 20:23:17 +0000340
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000341bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
342 if (Instruction *I = dyn_cast<Instruction>(getValue()))
343 return DT->dominates(I->getParent(), BB);
344 return true;
345}
346
Dan Gohman6e70e312009-09-27 15:26:03 +0000347bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
348 if (Instruction *I = dyn_cast<Instruction>(getValue()))
349 return DT->properlyDominates(I->getParent(), BB);
350 return true;
351}
352
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353const Type *SCEVUnknown::getType() const {
354 return V->getType();
355}
Chris Lattner53e677a2004-04-02 20:23:17 +0000356
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000357void SCEVUnknown::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000358 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000359}
360
Chris Lattner8d741b82004-06-20 06:23:15 +0000361//===----------------------------------------------------------------------===//
362// SCEV Utilities
363//===----------------------------------------------------------------------===//
364
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000365static bool CompareTypes(const Type *A, const Type *B) {
366 if (A->getTypeID() != B->getTypeID())
367 return A->getTypeID() < B->getTypeID();
368 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
369 const IntegerType *BI = cast<IntegerType>(B);
370 return AI->getBitWidth() < BI->getBitWidth();
371 }
372 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
373 const PointerType *BI = cast<PointerType>(B);
374 return CompareTypes(AI->getElementType(), BI->getElementType());
375 }
376 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
377 const ArrayType *BI = cast<ArrayType>(B);
378 if (AI->getNumElements() != BI->getNumElements())
379 return AI->getNumElements() < BI->getNumElements();
380 return CompareTypes(AI->getElementType(), BI->getElementType());
381 }
382 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
383 const VectorType *BI = cast<VectorType>(B);
384 if (AI->getNumElements() != BI->getNumElements())
385 return AI->getNumElements() < BI->getNumElements();
386 return CompareTypes(AI->getElementType(), BI->getElementType());
387 }
388 if (const StructType *AI = dyn_cast<StructType>(A)) {
389 const StructType *BI = cast<StructType>(B);
390 if (AI->getNumElements() != BI->getNumElements())
391 return AI->getNumElements() < BI->getNumElements();
392 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
393 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
394 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
395 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
396 }
397 return false;
398}
399
Chris Lattner8d741b82004-06-20 06:23:15 +0000400namespace {
401 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
402 /// than the complexity of the RHS. This comparator is used to canonicalize
403 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000404 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000405 LoopInfo *LI;
406 public:
407 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
408
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000409 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000410 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
411 if (LHS == RHS)
412 return false;
413
Dan Gohman72861302009-05-07 14:39:04 +0000414 // Primarily, sort the SCEVs by their getSCEVType().
415 if (LHS->getSCEVType() != RHS->getSCEVType())
416 return LHS->getSCEVType() < RHS->getSCEVType();
417
418 // Aside from the getSCEVType() ordering, the particular ordering
419 // isn't very important except that it's beneficial to be consistent,
420 // so that (a + b) and (b + a) don't end up as different expressions.
421
422 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
423 // not as complete as it could be.
424 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
425 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
426
Dan Gohman5be18e82009-05-19 02:15:55 +0000427 // Order pointer values after integer values. This helps SCEVExpander
428 // form GEPs.
429 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
430 return false;
431 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
432 return true;
433
Dan Gohman72861302009-05-07 14:39:04 +0000434 // Compare getValueID values.
435 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
436 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
437
438 // Sort arguments by their position.
439 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
440 const Argument *RA = cast<Argument>(RU->getValue());
441 return LA->getArgNo() < RA->getArgNo();
442 }
443
444 // For instructions, compare their loop depth, and their opcode.
445 // This is pretty loose.
446 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
447 Instruction *RV = cast<Instruction>(RU->getValue());
448
449 // Compare loop depths.
450 if (LI->getLoopDepth(LV->getParent()) !=
451 LI->getLoopDepth(RV->getParent()))
452 return LI->getLoopDepth(LV->getParent()) <
453 LI->getLoopDepth(RV->getParent());
454
455 // Compare opcodes.
456 if (LV->getOpcode() != RV->getOpcode())
457 return LV->getOpcode() < RV->getOpcode();
458
459 // Compare the number of operands.
460 if (LV->getNumOperands() != RV->getNumOperands())
461 return LV->getNumOperands() < RV->getNumOperands();
462 }
463
464 return false;
465 }
466
Dan Gohman4dfad292009-06-14 22:51:25 +0000467 // Compare constant values.
468 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
469 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000470 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
471 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000472 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
473 }
474
475 // Compare addrec loop depths.
476 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
477 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
478 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
479 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
480 }
Dan Gohman72861302009-05-07 14:39:04 +0000481
482 // Lexicographically compare n-ary expressions.
483 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
484 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
485 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
486 if (i >= RC->getNumOperands())
487 return false;
488 if (operator()(LC->getOperand(i), RC->getOperand(i)))
489 return true;
490 if (operator()(RC->getOperand(i), LC->getOperand(i)))
491 return false;
492 }
493 return LC->getNumOperands() < RC->getNumOperands();
494 }
495
Dan Gohmana6b35e22009-05-07 19:23:21 +0000496 // Lexicographically compare udiv expressions.
497 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
498 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
499 if (operator()(LC->getLHS(), RC->getLHS()))
500 return true;
501 if (operator()(RC->getLHS(), LC->getLHS()))
502 return false;
503 if (operator()(LC->getRHS(), RC->getRHS()))
504 return true;
505 if (operator()(RC->getRHS(), LC->getRHS()))
506 return false;
507 return false;
508 }
509
Dan Gohman72861302009-05-07 14:39:04 +0000510 // Compare cast expressions by operand.
511 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
512 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
513 return operator()(LC->getOperand(), RC->getOperand());
514 }
515
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000516 // Compare offsetof expressions.
517 if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
518 const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
519 if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
520 CompareTypes(RA->getStructType(), LA->getStructType()))
521 return CompareTypes(LA->getStructType(), RA->getStructType());
522 return LA->getFieldNo() < RA->getFieldNo();
523 }
524
525 // Compare sizeof expressions by the allocation type.
526 if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
527 const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
528 return CompareTypes(LA->getAllocType(), RA->getAllocType());
529 }
530
Torok Edwinc23197a2009-07-14 16:55:14 +0000531 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000532 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000533 }
534 };
535}
536
537/// GroupByComplexity - Given a list of SCEV objects, order them by their
538/// complexity, and group objects of the same complexity together by value.
539/// When this routine is finished, we know that any duplicates in the vector are
540/// consecutive and that complexity is monotonically increasing.
541///
542/// Note that we go take special precautions to ensure that we get determinstic
543/// results from this routine. In other words, we don't want the results of
544/// this to depend on where the addresses of various SCEV objects happened to
545/// land in memory.
546///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000547static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000548 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000549 if (Ops.size() < 2) return; // Noop
550 if (Ops.size() == 2) {
551 // This is the common case, which also happens to be trivially simple.
552 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000553 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000554 std::swap(Ops[0], Ops[1]);
555 return;
556 }
557
558 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000559 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000560
561 // Now that we are sorted by complexity, group elements of the same
562 // complexity. Note that this is, at worst, N^2, but the vector is likely to
563 // be extremely short in practice. Note that we take this approach because we
564 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000565 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000566 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000567 unsigned Complexity = S->getSCEVType();
568
569 // If there are any objects of the same complexity and same value as this
570 // one, group them.
571 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
572 if (Ops[j] == S) { // Found a duplicate.
573 // Move it to immediately after i'th element.
574 std::swap(Ops[i+1], Ops[j]);
575 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000576 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000577 }
578 }
579 }
580}
581
Chris Lattner53e677a2004-04-02 20:23:17 +0000582
Chris Lattner53e677a2004-04-02 20:23:17 +0000583
584//===----------------------------------------------------------------------===//
585// Simple SCEV method implementations
586//===----------------------------------------------------------------------===//
587
Eli Friedmanb42a6262008-08-04 23:49:06 +0000588/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000589/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000590static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000591 ScalarEvolution &SE,
592 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000593 // Handle the simplest case efficiently.
594 if (K == 1)
595 return SE.getTruncateOrZeroExtend(It, ResultTy);
596
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000597 // We are using the following formula for BC(It, K):
598 //
599 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
600 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000601 // Suppose, W is the bitwidth of the return value. We must be prepared for
602 // overflow. Hence, we must assure that the result of our computation is
603 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
604 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000605 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000606 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000607 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000608 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
609 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000610 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000611 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000612 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000613 // This formula is trivially equivalent to the previous formula. However,
614 // this formula can be implemented much more efficiently. The trick is that
615 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
616 // arithmetic. To do exact division in modular arithmetic, all we have
617 // to do is multiply by the inverse. Therefore, this step can be done at
618 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000619 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000620 // The next issue is how to safely do the division by 2^T. The way this
621 // is done is by doing the multiplication step at a width of at least W + T
622 // bits. This way, the bottom W+T bits of the product are accurate. Then,
623 // when we perform the division by 2^T (which is equivalent to a right shift
624 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
625 // truncated out after the division by 2^T.
626 //
627 // In comparison to just directly using the first formula, this technique
628 // is much more efficient; using the first formula requires W * K bits,
629 // but this formula less than W + K bits. Also, the first formula requires
630 // a division step, whereas this formula only requires multiplies and shifts.
631 //
632 // It doesn't matter whether the subtraction step is done in the calculation
633 // width or the input iteration count's width; if the subtraction overflows,
634 // the result must be zero anyway. We prefer here to do it in the width of
635 // the induction variable because it helps a lot for certain cases; CodeGen
636 // isn't smart enough to ignore the overflow, which leads to much less
637 // efficient code if the width of the subtraction is wider than the native
638 // register width.
639 //
640 // (It's possible to not widen at all by pulling out factors of 2 before
641 // the multiplication; for example, K=2 can be calculated as
642 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
643 // extra arithmetic, so it's not an obvious win, and it gets
644 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000645
Eli Friedmanb42a6262008-08-04 23:49:06 +0000646 // Protection from insane SCEVs; this bound is conservative,
647 // but it probably doesn't matter.
648 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000649 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000650
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000651 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000652
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Calculate K! / 2^T and T; we divide out the factors of two before
654 // multiplying for calculating K! / 2^T to avoid overflow.
655 // Other overflow doesn't matter because we only care about the bottom
656 // W bits of the result.
657 APInt OddFactorial(W, 1);
658 unsigned T = 1;
659 for (unsigned i = 3; i <= K; ++i) {
660 APInt Mult(W, i);
661 unsigned TwoFactors = Mult.countTrailingZeros();
662 T += TwoFactors;
663 Mult = Mult.lshr(TwoFactors);
664 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000665 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000666
Eli Friedmanb42a6262008-08-04 23:49:06 +0000667 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000668 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669
670 // Calcuate 2^T, at width T+W.
671 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
672
673 // Calculate the multiplicative inverse of K! / 2^T;
674 // this multiplication factor will perform the exact division by
675 // K! / 2^T.
676 APInt Mod = APInt::getSignedMinValue(W+1);
677 APInt MultiplyFactor = OddFactorial.zext(W+1);
678 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
679 MultiplyFactor = MultiplyFactor.trunc(W);
680
681 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000682 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
683 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000684 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000685 for (unsigned i = 1; i != K; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000686 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000687 Dividend = SE.getMulExpr(Dividend,
688 SE.getTruncateOrZeroExtend(S, CalculationTy));
689 }
690
691 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000692 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693
694 // Truncate the result, and divide by K! / 2^T.
695
696 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
697 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000698}
699
Chris Lattner53e677a2004-04-02 20:23:17 +0000700/// evaluateAtIteration - Return the value of this chain of recurrences at
701/// the specified iteration number. We can evaluate this recurrence by
702/// multiplying each element in the chain by the binomial coefficient
703/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
704///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000706///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000707/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000708///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000709const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000710 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000711 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000712 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713 // The computation is correct in the face of overflow provided that the
714 // multiplication is performed _after_ the evaluation of the binomial
715 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000716 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000717 if (isa<SCEVCouldNotCompute>(Coeff))
718 return Coeff;
719
720 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000721 }
722 return Result;
723}
724
Chris Lattner53e677a2004-04-02 20:23:17 +0000725//===----------------------------------------------------------------------===//
726// SCEV Expression folder implementations
727//===----------------------------------------------------------------------===//
728
Dan Gohman0bba49c2009-07-07 17:06:11 +0000729const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000730 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000731 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000732 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000733 assert(isSCEVable(Ty) &&
734 "This is not a conversion to a SCEVable type!");
735 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000736
Dan Gohmanc050fd92009-07-13 20:50:19 +0000737 FoldingSetNodeID ID;
738 ID.AddInteger(scTruncate);
739 ID.AddPointer(Op);
740 ID.AddPointer(Ty);
741 void *IP = 0;
742 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
743
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000744 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000745 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000746 return getConstant(
747 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000748
Dan Gohman20900ca2009-04-22 16:20:48 +0000749 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000750 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000751 return getTruncateExpr(ST->getOperand(), Ty);
752
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000753 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000754 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000755 return getTruncateOrSignExtend(SS->getOperand(), Ty);
756
757 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000758 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000759 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
760
Dan Gohman6864db62009-06-18 16:24:47 +0000761 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000762 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000763 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000764 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000765 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
766 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000767 }
768
Dan Gohmanc050fd92009-07-13 20:50:19 +0000769 // The cast wasn't folded; create an explicit cast node.
770 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000771 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
772 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000773 new (S) SCEVTruncateExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000774 UniqueSCEVs.InsertNode(S, IP);
775 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Dan Gohman0bba49c2009-07-07 17:06:11 +0000778const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000779 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000780 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000781 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000782 assert(isSCEVable(Ty) &&
783 "This is not a conversion to a SCEVable type!");
784 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000785
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000786 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000787 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000788 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000789 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
790 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000791 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000792 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000793
Dan Gohman20900ca2009-04-22 16:20:48 +0000794 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000795 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000796 return getZeroExtendExpr(SZ->getOperand(), Ty);
797
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000798 // Before doing any expensive analysis, check to see if we've already
799 // computed a SCEV for this Op and Ty.
800 FoldingSetNodeID ID;
801 ID.AddInteger(scZeroExtend);
802 ID.AddPointer(Op);
803 ID.AddPointer(Ty);
804 void *IP = 0;
805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
Dan Gohman01ecca22009-04-27 20:16:15 +0000807 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000808 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000809 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000810 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000812 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000813 const SCEV *Start = AR->getStart();
814 const SCEV *Step = AR->getStepRecurrence(*this);
815 unsigned BitWidth = getTypeSizeInBits(AR->getType());
816 const Loop *L = AR->getLoop();
817
Dan Gohmaneb490a72009-07-25 01:22:26 +0000818 // If we have special knowledge that this addrec won't overflow,
819 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000820 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000821 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
822 getZeroExtendExpr(Step, Ty),
823 L);
824
Dan Gohman01ecca22009-04-27 20:16:15 +0000825 // Check whether the backedge-taken count is SCEVCouldNotCompute.
826 // Note that this serves two purposes: It filters out loops that are
827 // simply not analyzable, and it covers the case where this code is
828 // being called from within backedge-taken count analysis, such that
829 // attempting to ask for the backedge-taken count would likely result
830 // in infinite recursion. In the later case, the analysis code will
831 // cope with a conservative value, and it will take care to purge
832 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000833 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000834 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000835 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000836 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000837
838 // Check whether the backedge-taken count can be losslessly casted to
839 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000840 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000841 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000842 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000843 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
844 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000845 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000846 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000847 const SCEV *ZMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000848 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000849 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman0bba49c2009-07-07 17:06:11 +0000850 const SCEV *Add = getAddExpr(Start, ZMul);
851 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000852 getAddExpr(getZeroExtendExpr(Start, WideTy),
853 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
854 getZeroExtendExpr(Step, WideTy)));
855 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000856 // Return the expression with the addrec on the outside.
857 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
858 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000859 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000860
861 // Similar to above, only this time treat the step value as signed.
862 // This covers loops that count down.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000863 const SCEV *SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000864 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000865 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000866 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000867 OperandExtendedAdd =
868 getAddExpr(getZeroExtendExpr(Start, WideTy),
869 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
870 getSignExtendExpr(Step, WideTy)));
871 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000872 // Return the expression with the addrec on the outside.
873 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
874 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000875 L);
876 }
877
878 // If the backedge is guarded by a comparison with the pre-inc value
879 // the addrec is safe. Also, if the entry is guarded by a comparison
880 // with the start value and the backedge is guarded by a comparison
881 // with the post-inc value, the addrec is safe.
882 if (isKnownPositive(Step)) {
883 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
884 getUnsignedRange(Step).getUnsignedMax());
885 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
886 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
887 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
888 AR->getPostIncExpr(*this), N)))
889 // Return the expression with the addrec on the outside.
890 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
891 getZeroExtendExpr(Step, Ty),
892 L);
893 } else if (isKnownNegative(Step)) {
894 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
895 getSignedRange(Step).getSignedMin());
896 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
897 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
898 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
899 AR->getPostIncExpr(*this), N)))
900 // Return the expression with the addrec on the outside.
901 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
902 getSignExtendExpr(Step, Ty),
903 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000904 }
905 }
906 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000907
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000908 // The cast wasn't folded; create an explicit cast node.
909 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000910 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
911 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000912 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000913 UniqueSCEVs.InsertNode(S, IP);
914 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000915}
916
Dan Gohman0bba49c2009-07-07 17:06:11 +0000917const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000918 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000919 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000920 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000921 assert(isSCEVable(Ty) &&
922 "This is not a conversion to a SCEVable type!");
923 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000924
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000925 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000926 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000927 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000928 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
929 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000930 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000931 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000932
Dan Gohman20900ca2009-04-22 16:20:48 +0000933 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000934 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000935 return getSignExtendExpr(SS->getOperand(), Ty);
936
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000937 // Before doing any expensive analysis, check to see if we've already
938 // computed a SCEV for this Op and Ty.
939 FoldingSetNodeID ID;
940 ID.AddInteger(scSignExtend);
941 ID.AddPointer(Op);
942 ID.AddPointer(Ty);
943 void *IP = 0;
944 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
945
Dan Gohman01ecca22009-04-27 20:16:15 +0000946 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000947 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000948 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000949 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000950 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000951 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000952 const SCEV *Start = AR->getStart();
953 const SCEV *Step = AR->getStepRecurrence(*this);
954 unsigned BitWidth = getTypeSizeInBits(AR->getType());
955 const Loop *L = AR->getLoop();
956
Dan Gohmaneb490a72009-07-25 01:22:26 +0000957 // If we have special knowledge that this addrec won't overflow,
958 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000959 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000960 return getAddRecExpr(getSignExtendExpr(Start, Ty),
961 getSignExtendExpr(Step, Ty),
962 L);
963
Dan Gohman01ecca22009-04-27 20:16:15 +0000964 // Check whether the backedge-taken count is SCEVCouldNotCompute.
965 // Note that this serves two purposes: It filters out loops that are
966 // simply not analyzable, and it covers the case where this code is
967 // being called from within backedge-taken count analysis, such that
968 // attempting to ask for the backedge-taken count would likely result
969 // in infinite recursion. In the later case, the analysis code will
970 // cope with a conservative value, and it will take care to purge
971 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000972 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000973 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000974 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000975 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000976
977 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000978 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000979 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000980 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000981 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000982 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
983 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000984 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000985 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000986 const SCEV *SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000987 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000988 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman0bba49c2009-07-07 17:06:11 +0000989 const SCEV *Add = getAddExpr(Start, SMul);
990 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000991 getAddExpr(getSignExtendExpr(Start, WideTy),
992 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
993 getSignExtendExpr(Step, WideTy)));
994 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000995 // Return the expression with the addrec on the outside.
996 return getAddRecExpr(getSignExtendExpr(Start, Ty),
997 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000998 L);
Dan Gohman850f7912009-07-16 17:34:36 +0000999
1000 // Similar to above, only this time treat the step value as unsigned.
1001 // This covers loops that count up with an unsigned step.
1002 const SCEV *UMul =
1003 getMulExpr(CastedMaxBECount,
1004 getTruncateOrZeroExtend(Step, Start->getType()));
1005 Add = getAddExpr(Start, UMul);
1006 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001007 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001008 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1009 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001010 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001011 // Return the expression with the addrec on the outside.
1012 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1013 getZeroExtendExpr(Step, Ty),
1014 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 }
1016
1017 // If the backedge is guarded by a comparison with the pre-inc value
1018 // the addrec is safe. Also, if the entry is guarded by a comparison
1019 // with the start value and the backedge is guarded by a comparison
1020 // with the post-inc value, the addrec is safe.
1021 if (isKnownPositive(Step)) {
1022 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1023 getSignedRange(Step).getSignedMax());
1024 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1025 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1026 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1027 AR->getPostIncExpr(*this), N)))
1028 // Return the expression with the addrec on the outside.
1029 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1030 getSignExtendExpr(Step, Ty),
1031 L);
1032 } else if (isKnownNegative(Step)) {
1033 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1034 getSignedRange(Step).getSignedMin());
1035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1036 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1038 AR->getPostIncExpr(*this), N)))
1039 // Return the expression with the addrec on the outside.
1040 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1041 getSignExtendExpr(Step, Ty),
1042 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001043 }
1044 }
1045 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001046
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001047 // The cast wasn't folded; create an explicit cast node.
1048 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1050 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001051 new (S) SCEVSignExtendExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001052 UniqueSCEVs.InsertNode(S, IP);
1053 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001054}
1055
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001056/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1057/// unspecified bits out to the given type.
1058///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001059const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001060 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001061 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1062 "This is not an extending conversion!");
1063 assert(isSCEVable(Ty) &&
1064 "This is not a conversion to a SCEVable type!");
1065 Ty = getEffectiveSCEVType(Ty);
1066
1067 // Sign-extend negative constants.
1068 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1069 if (SC->getValue()->getValue().isNegative())
1070 return getSignExtendExpr(Op, Ty);
1071
1072 // Peel off a truncate cast.
1073 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001074 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001075 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1076 return getAnyExtendExpr(NewOp, Ty);
1077 return getTruncateOrNoop(NewOp, Ty);
1078 }
1079
1080 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001081 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001082 if (!isa<SCEVZeroExtendExpr>(ZExt))
1083 return ZExt;
1084
1085 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001086 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001087 if (!isa<SCEVSignExtendExpr>(SExt))
1088 return SExt;
1089
1090 // If the expression is obviously signed, use the sext cast value.
1091 if (isa<SCEVSMaxExpr>(Op))
1092 return SExt;
1093
1094 // Absent any other information, use the zext cast value.
1095 return ZExt;
1096}
1097
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001098/// CollectAddOperandsWithScales - Process the given Ops list, which is
1099/// a list of operands to be added under the given scale, update the given
1100/// map. This is a helper function for getAddRecExpr. As an example of
1101/// what it does, given a sequence of operands that would form an add
1102/// expression like this:
1103///
1104/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1105///
1106/// where A and B are constants, update the map with these values:
1107///
1108/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1109///
1110/// and add 13 + A*B*29 to AccumulatedConstant.
1111/// This will allow getAddRecExpr to produce this:
1112///
1113/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1114///
1115/// This form often exposes folding opportunities that are hidden in
1116/// the original operand list.
1117///
1118/// Return true iff it appears that any interesting folding opportunities
1119/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1120/// the common case where no interesting opportunities are present, and
1121/// is also used as a check to avoid infinite recursion.
1122///
1123static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001124CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1125 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001126 APInt &AccumulatedConstant,
Dan Gohman0bba49c2009-07-07 17:06:11 +00001127 const SmallVectorImpl<const SCEV *> &Ops,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001128 const APInt &Scale,
1129 ScalarEvolution &SE) {
1130 bool Interesting = false;
1131
1132 // Iterate over the add operands.
1133 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1134 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1135 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1136 APInt NewScale =
1137 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1138 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1139 // A multiplication of a constant with another add; recurse.
1140 Interesting |=
1141 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1142 cast<SCEVAddExpr>(Mul->getOperand(1))
1143 ->getOperands(),
1144 NewScale, SE);
1145 } else {
1146 // A multiplication of a constant with some other value. Update
1147 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001148 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1149 const SCEV *Key = SE.getMulExpr(MulOps);
1150 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001151 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001152 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001153 NewOps.push_back(Pair.first->first);
1154 } else {
1155 Pair.first->second += NewScale;
1156 // The map already had an entry for this value, which may indicate
1157 // a folding opportunity.
1158 Interesting = true;
1159 }
1160 }
1161 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1162 // Pull a buried constant out to the outside.
1163 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1164 Interesting = true;
1165 AccumulatedConstant += Scale * C->getValue()->getValue();
1166 } else {
1167 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001168 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001169 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001170 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001171 NewOps.push_back(Pair.first->first);
1172 } else {
1173 Pair.first->second += Scale;
1174 // The map already had an entry for this value, which may indicate
1175 // a folding opportunity.
1176 Interesting = true;
1177 }
1178 }
1179 }
1180
1181 return Interesting;
1182}
1183
1184namespace {
1185 struct APIntCompare {
1186 bool operator()(const APInt &LHS, const APInt &RHS) const {
1187 return LHS.ult(RHS);
1188 }
1189 };
1190}
1191
Dan Gohman6c0866c2009-05-24 23:45:28 +00001192/// getAddExpr - Get a canonical add expression, or something simpler if
1193/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001194const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1195 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001196 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001197 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001198#ifndef NDEBUG
1199 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1200 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1201 getEffectiveSCEVType(Ops[0]->getType()) &&
1202 "SCEVAddExpr operand types don't match!");
1203#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001204
1205 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001206 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001207
1208 // If there are any constants, fold them together.
1209 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001210 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001211 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001212 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001213 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001214 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001215 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1216 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001217 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001218 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001219 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001220 }
1221
1222 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +00001223 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001224 Ops.erase(Ops.begin());
1225 --Idx;
1226 }
1227 }
1228
Chris Lattner627018b2004-04-07 16:16:11 +00001229 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001230
Chris Lattner53e677a2004-04-02 20:23:17 +00001231 // Okay, check to see if the same value occurs in the operand list twice. If
1232 // so, merge them together into an multiply expression. Since we sorted the
1233 // list, these values are required to be adjacent.
1234 const Type *Ty = Ops[0]->getType();
1235 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1236 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1237 // Found a match, merge the two values into a multiply, and add any
1238 // remaining values to the result.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001239 const SCEV *Two = getIntegerSCEV(2, Ty);
1240 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001241 if (Ops.size() == 2)
1242 return Mul;
1243 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1244 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001245 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001246 }
1247
Dan Gohman728c7f32009-05-08 21:03:19 +00001248 // Check for truncates. If all the operands are truncated from the same
1249 // type, see if factoring out the truncate would permit the result to be
1250 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1251 // if the contents of the resulting outer trunc fold to something simple.
1252 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1253 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1254 const Type *DstType = Trunc->getType();
1255 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001256 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001257 bool Ok = true;
1258 // Check all the operands to see if they can be represented in the
1259 // source type of the truncate.
1260 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1261 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1262 if (T->getOperand()->getType() != SrcType) {
1263 Ok = false;
1264 break;
1265 }
1266 LargeOps.push_back(T->getOperand());
1267 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1268 // This could be either sign or zero extension, but sign extension
1269 // is much more likely to be foldable here.
1270 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1271 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001272 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001273 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1274 if (const SCEVTruncateExpr *T =
1275 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1276 if (T->getOperand()->getType() != SrcType) {
1277 Ok = false;
1278 break;
1279 }
1280 LargeMulOps.push_back(T->getOperand());
1281 } else if (const SCEVConstant *C =
1282 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1283 // This could be either sign or zero extension, but sign extension
1284 // is much more likely to be foldable here.
1285 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1286 } else {
1287 Ok = false;
1288 break;
1289 }
1290 }
1291 if (Ok)
1292 LargeOps.push_back(getMulExpr(LargeMulOps));
1293 } else {
1294 Ok = false;
1295 break;
1296 }
1297 }
1298 if (Ok) {
1299 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001300 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001301 // If it folds to something simple, use it. Otherwise, don't.
1302 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1303 return getTruncateExpr(Fold, DstType);
1304 }
1305 }
1306
1307 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001308 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1309 ++Idx;
1310
1311 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001312 if (Idx < Ops.size()) {
1313 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001314 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001315 // If we have an add, expand the add operands onto the end of the operands
1316 // list.
1317 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1318 Ops.erase(Ops.begin()+Idx);
1319 DeletedAdd = true;
1320 }
1321
1322 // If we deleted at least one add, we added operands to the end of the list,
1323 // and they are not necessarily sorted. Recurse to resort and resimplify
1324 // any operands we just aquired.
1325 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001326 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001327 }
1328
1329 // Skip over the add expression until we get to a multiply.
1330 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1331 ++Idx;
1332
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001333 // Check to see if there are any folding opportunities present with
1334 // operands multiplied by constant values.
1335 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1336 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001337 DenseMap<const SCEV *, APInt> M;
1338 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001339 APInt AccumulatedConstant(BitWidth, 0);
1340 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1341 Ops, APInt(BitWidth, 1), *this)) {
1342 // Some interesting folding opportunity is present, so its worthwhile to
1343 // re-generate the operands list. Group the operands by constant scale,
1344 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001345 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1346 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001347 E = NewOps.end(); I != E; ++I)
1348 MulOpLists[M.find(*I)->second].push_back(*I);
1349 // Re-generate the operands list.
1350 Ops.clear();
1351 if (AccumulatedConstant != 0)
1352 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001353 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1354 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001355 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001356 Ops.push_back(getMulExpr(getConstant(I->first),
1357 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001358 if (Ops.empty())
1359 return getIntegerSCEV(0, Ty);
1360 if (Ops.size() == 1)
1361 return Ops[0];
1362 return getAddExpr(Ops);
1363 }
1364 }
1365
Chris Lattner53e677a2004-04-02 20:23:17 +00001366 // If we are adding something to a multiply expression, make sure the
1367 // something is not already an operand of the multiply. If so, merge it into
1368 // the multiply.
1369 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001370 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001371 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001372 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001373 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001374 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001375 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001376 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001377 if (Mul->getNumOperands() != 2) {
1378 // If the multiply has more than two operands, we must get the
1379 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001380 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001381 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001382 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001383 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001384 const SCEV *One = getIntegerSCEV(1, Ty);
1385 const SCEV *AddOne = getAddExpr(InnerMul, One);
1386 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001387 if (Ops.size() == 2) return OuterMul;
1388 if (AddOp < Idx) {
1389 Ops.erase(Ops.begin()+AddOp);
1390 Ops.erase(Ops.begin()+Idx-1);
1391 } else {
1392 Ops.erase(Ops.begin()+Idx);
1393 Ops.erase(Ops.begin()+AddOp-1);
1394 }
1395 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001396 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001397 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001398
Chris Lattner53e677a2004-04-02 20:23:17 +00001399 // Check this multiply against other multiplies being added together.
1400 for (unsigned OtherMulIdx = Idx+1;
1401 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1402 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001403 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 // If MulOp occurs in OtherMul, we can fold the two multiplies
1405 // together.
1406 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1407 OMulOp != e; ++OMulOp)
1408 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1409 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001410 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001411 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001412 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1413 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001414 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001415 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001416 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001417 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001419 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1420 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001421 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001422 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001423 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001424 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1425 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001426 if (Ops.size() == 2) return OuterMul;
1427 Ops.erase(Ops.begin()+Idx);
1428 Ops.erase(Ops.begin()+OtherMulIdx-1);
1429 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001430 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001431 }
1432 }
1433 }
1434 }
1435
1436 // If there are any add recurrences in the operands list, see if any other
1437 // added values are loop invariant. If so, we can fold them into the
1438 // recurrence.
1439 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1440 ++Idx;
1441
1442 // Scan over all recurrences, trying to fold loop invariants into them.
1443 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1444 // Scan all of the other operands to this add and add them to the vector if
1445 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001446 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001447 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001448 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1449 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1450 LIOps.push_back(Ops[i]);
1451 Ops.erase(Ops.begin()+i);
1452 --i; --e;
1453 }
1454
1455 // If we found some loop invariants, fold them into the recurrence.
1456 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001457 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001458 LIOps.push_back(AddRec->getStart());
1459
Dan Gohman0bba49c2009-07-07 17:06:11 +00001460 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001461 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001462 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001463
Dan Gohman355b4f32009-12-19 01:46:34 +00001464 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001465 // is not associative so this isn't necessarily safe.
Dan Gohman3a5d4092009-12-18 03:57:04 +00001466 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohman59de33e2009-12-18 18:45:31 +00001467
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 // If all of the other operands were loop invariant, we are done.
1469 if (Ops.size() == 1) return NewRec;
1470
1471 // Otherwise, add the folded AddRec by the non-liv parts.
1472 for (unsigned i = 0;; ++i)
1473 if (Ops[i] == AddRec) {
1474 Ops[i] = NewRec;
1475 break;
1476 }
Dan Gohman246b2562007-10-22 18:31:58 +00001477 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001478 }
1479
1480 // Okay, if there weren't any loop invariants to be folded, check to see if
1481 // there are multiple AddRec's with the same loop induction variable being
1482 // added together. If so, we can fold them.
1483 for (unsigned OtherIdx = Idx+1;
1484 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1485 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001486 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1488 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001489 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1490 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1492 if (i >= NewOps.size()) {
1493 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1494 OtherAddRec->op_end());
1495 break;
1496 }
Dan Gohman246b2562007-10-22 18:31:58 +00001497 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001499 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001500
1501 if (Ops.size() == 2) return NewAddRec;
1502
1503 Ops.erase(Ops.begin()+Idx);
1504 Ops.erase(Ops.begin()+OtherIdx-1);
1505 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001506 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 }
1508 }
1509
1510 // Otherwise couldn't fold anything into this recurrence. Move onto the
1511 // next one.
1512 }
1513
1514 // Okay, it looks like we really DO need an add expr. Check to see if we
1515 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001516 FoldingSetNodeID ID;
1517 ID.AddInteger(scAddExpr);
1518 ID.AddInteger(Ops.size());
1519 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1520 ID.AddPointer(Ops[i]);
1521 void *IP = 0;
1522 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3645b012009-10-09 00:10:36 +00001523 SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001524 new (S) SCEVAddExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001525 UniqueSCEVs.InsertNode(S, IP);
Dan Gohman3645b012009-10-09 00:10:36 +00001526 if (HasNUW) S->setHasNoUnsignedWrap(true);
1527 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001528 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001529}
1530
1531
Dan Gohman6c0866c2009-05-24 23:45:28 +00001532/// getMulExpr - Get a canonical multiply expression, or something simpler if
1533/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001534const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1535 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001536 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001537#ifndef NDEBUG
1538 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1539 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1540 getEffectiveSCEVType(Ops[0]->getType()) &&
1541 "SCEVMulExpr operand types don't match!");
1542#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001543
1544 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001545 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001546
1547 // If there are any constants, fold them together.
1548 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001549 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001550
1551 // C1*(C2+V) -> C1*C2 + C1*V
1552 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001553 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001554 if (Add->getNumOperands() == 2 &&
1555 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001556 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1557 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001558
1559
1560 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001561 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001562 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001563 ConstantInt *Fold = ConstantInt::get(getContext(),
1564 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001565 RHSC->getValue()->getValue());
1566 Ops[0] = getConstant(Fold);
1567 Ops.erase(Ops.begin()+1); // Erase the folded element
1568 if (Ops.size() == 1) return Ops[0];
1569 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001570 }
1571
1572 // If we are left with a constant one being multiplied, strip it off.
1573 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1574 Ops.erase(Ops.begin());
1575 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001576 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 // If we have a multiply of zero, it will always be zero.
1578 return Ops[0];
1579 }
1580 }
1581
1582 // Skip over the add expression until we get to a multiply.
1583 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1584 ++Idx;
1585
1586 if (Ops.size() == 1)
1587 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001588
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 // If there are mul operands inline them all into this expression.
1590 if (Idx < Ops.size()) {
1591 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001592 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 // If we have an mul, expand the mul operands onto the end of the operands
1594 // list.
1595 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1596 Ops.erase(Ops.begin()+Idx);
1597 DeletedMul = true;
1598 }
1599
1600 // If we deleted at least one mul, we added operands to the end of the list,
1601 // and they are not necessarily sorted. Recurse to resort and resimplify
1602 // any operands we just aquired.
1603 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001604 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 }
1606
1607 // If there are any add recurrences in the operands list, see if any other
1608 // added values are loop invariant. If so, we can fold them into the
1609 // recurrence.
1610 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1611 ++Idx;
1612
1613 // Scan over all recurrences, trying to fold loop invariants into them.
1614 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1615 // Scan all of the other operands to this mul and add them to the vector if
1616 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001617 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001618 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001619 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1620 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1621 LIOps.push_back(Ops[i]);
1622 Ops.erase(Ops.begin()+i);
1623 --i; --e;
1624 }
1625
1626 // If we found some loop invariants, fold them into the recurrence.
1627 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001628 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001629 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001630 NewOps.reserve(AddRec->getNumOperands());
1631 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001632 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001633 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001634 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001635 } else {
1636 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001637 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001638 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001639 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 }
1641 }
1642
Dan Gohman355b4f32009-12-19 01:46:34 +00001643 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001644 // is not associative so this isn't necessarily safe.
1645 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001646
1647 // If all of the other operands were loop invariant, we are done.
1648 if (Ops.size() == 1) return NewRec;
1649
1650 // Otherwise, multiply the folded AddRec by the non-liv parts.
1651 for (unsigned i = 0;; ++i)
1652 if (Ops[i] == AddRec) {
1653 Ops[i] = NewRec;
1654 break;
1655 }
Dan Gohman246b2562007-10-22 18:31:58 +00001656 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001657 }
1658
1659 // Okay, if there weren't any loop invariants to be folded, check to see if
1660 // there are multiple AddRec's with the same loop induction variable being
1661 // multiplied together. If so, we can fold them.
1662 for (unsigned OtherIdx = Idx+1;
1663 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1664 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001665 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1667 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001668 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001669 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001670 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001671 const SCEV *B = F->getStepRecurrence(*this);
1672 const SCEV *D = G->getStepRecurrence(*this);
1673 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001674 getMulExpr(G, B),
1675 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001676 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001677 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 if (Ops.size() == 2) return NewAddRec;
1679
1680 Ops.erase(Ops.begin()+Idx);
1681 Ops.erase(Ops.begin()+OtherIdx-1);
1682 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001683 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001684 }
1685 }
1686
1687 // Otherwise couldn't fold anything into this recurrence. Move onto the
1688 // next one.
1689 }
1690
1691 // Okay, it looks like we really DO need an mul expr. Check to see if we
1692 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001693 FoldingSetNodeID ID;
1694 ID.AddInteger(scMulExpr);
1695 ID.AddInteger(Ops.size());
1696 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1697 ID.AddPointer(Ops[i]);
1698 void *IP = 0;
1699 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3645b012009-10-09 00:10:36 +00001700 SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001701 new (S) SCEVMulExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001702 UniqueSCEVs.InsertNode(S, IP);
Dan Gohman3645b012009-10-09 00:10:36 +00001703 if (HasNUW) S->setHasNoUnsignedWrap(true);
1704 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001705 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001706}
1707
Andreas Bolka8a11c982009-08-07 22:55:26 +00001708/// getUDivExpr - Get a canonical unsigned division expression, or something
1709/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001710const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1711 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001712 assert(getEffectiveSCEVType(LHS->getType()) ==
1713 getEffectiveSCEVType(RHS->getType()) &&
1714 "SCEVUDivExpr operand types don't match!");
1715
Dan Gohman622ed672009-05-04 22:02:23 +00001716 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001718 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001719 if (RHSC->isZero())
1720 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001721
Dan Gohman185cf032009-05-08 20:18:49 +00001722 // Determine if the division can be folded into the operands of
1723 // its operands.
1724 // TODO: Generalize this to non-constants by using known-bits information.
1725 const Type *Ty = LHS->getType();
1726 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1727 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1728 // For non-power-of-two values, effectively round the value up to the
1729 // nearest power of two.
1730 if (!RHSC->getValue()->getValue().isPowerOf2())
1731 ++MaxShiftAmt;
1732 const IntegerType *ExtTy =
Owen Anderson1d0be152009-08-13 21:58:54 +00001733 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohman185cf032009-05-08 20:18:49 +00001734 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1735 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1736 if (const SCEVConstant *Step =
1737 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1738 if (!Step->getValue()->getValue()
1739 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001740 getZeroExtendExpr(AR, ExtTy) ==
1741 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1742 getZeroExtendExpr(Step, ExtTy),
1743 AR->getLoop())) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001744 SmallVector<const SCEV *, 4> Operands;
Dan Gohman185cf032009-05-08 20:18:49 +00001745 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1746 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1747 return getAddRecExpr(Operands, AR->getLoop());
1748 }
1749 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001750 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001751 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001752 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1753 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1754 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001755 // Find an operand that's safely divisible.
1756 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001757 const SCEV *Op = M->getOperand(i);
1758 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohman185cf032009-05-08 20:18:49 +00001759 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001760 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1761 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
Dan Gohmana82752c2009-06-14 22:47:23 +00001762 MOperands.end());
Dan Gohman185cf032009-05-08 20:18:49 +00001763 Operands[i] = Div;
1764 return getMulExpr(Operands);
1765 }
1766 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001767 }
Dan Gohman185cf032009-05-08 20:18:49 +00001768 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001769 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001770 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001771 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1772 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1773 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1774 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001775 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001776 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohman185cf032009-05-08 20:18:49 +00001777 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1778 break;
1779 Operands.push_back(Op);
1780 }
1781 if (Operands.size() == A->getNumOperands())
1782 return getAddExpr(Operands);
1783 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001784 }
Dan Gohman185cf032009-05-08 20:18:49 +00001785
1786 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001787 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 Constant *LHSCV = LHSC->getValue();
1789 Constant *RHSCV = RHSC->getValue();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001790 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001791 RHSCV)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001792 }
1793 }
1794
Dan Gohman1c343752009-06-27 21:21:31 +00001795 FoldingSetNodeID ID;
1796 ID.AddInteger(scUDivExpr);
1797 ID.AddPointer(LHS);
1798 ID.AddPointer(RHS);
1799 void *IP = 0;
1800 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1801 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001802 new (S) SCEVUDivExpr(ID, LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001803 UniqueSCEVs.InsertNode(S, IP);
1804 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001805}
1806
1807
Dan Gohman6c0866c2009-05-24 23:45:28 +00001808/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1809/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001810const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001811 const SCEV *Step, const Loop *L,
1812 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001813 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001814 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001815 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001816 if (StepChrec->getLoop() == L) {
1817 Operands.insert(Operands.end(), StepChrec->op_begin(),
1818 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001819 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001820 }
1821
1822 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001823 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001824}
1825
Dan Gohman6c0866c2009-05-24 23:45:28 +00001826/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1827/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001828const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001829ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001830 const Loop *L,
1831 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001832 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001833#ifndef NDEBUG
1834 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1835 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1836 getEffectiveSCEVType(Operands[0]->getType()) &&
1837 "SCEVAddRecExpr operand types don't match!");
1838#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001839
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001840 if (Operands.back()->isZero()) {
1841 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001842 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001843 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001844
Dan Gohmand9cc7492008-08-08 18:33:12 +00001845 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001846 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001847 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmand9cc7492008-08-08 18:33:12 +00001848 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001849 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001850 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001851 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001852 // AddRecs require their operands be loop-invariant with respect to their
1853 // loops. Don't perform this transformation if it would break this
1854 // requirement.
1855 bool AllInvariant = true;
1856 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1857 if (!Operands[i]->isLoopInvariant(L)) {
1858 AllInvariant = false;
1859 break;
1860 }
1861 if (AllInvariant) {
1862 NestedOperands[0] = getAddRecExpr(Operands, L);
1863 AllInvariant = true;
1864 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1865 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1866 AllInvariant = false;
1867 break;
1868 }
1869 if (AllInvariant)
1870 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00001871 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00001872 }
1873 // Reset Operands to its original state.
1874 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00001875 }
1876 }
1877
Dan Gohman1c343752009-06-27 21:21:31 +00001878 FoldingSetNodeID ID;
1879 ID.AddInteger(scAddRecExpr);
1880 ID.AddInteger(Operands.size());
1881 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1882 ID.AddPointer(Operands[i]);
1883 ID.AddPointer(L);
1884 void *IP = 0;
1885 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3645b012009-10-09 00:10:36 +00001886 SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001887 new (S) SCEVAddRecExpr(ID, Operands, L);
Dan Gohman1c343752009-06-27 21:21:31 +00001888 UniqueSCEVs.InsertNode(S, IP);
Dan Gohman3645b012009-10-09 00:10:36 +00001889 if (HasNUW) S->setHasNoUnsignedWrap(true);
1890 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001891 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001892}
1893
Dan Gohman9311ef62009-06-24 14:49:00 +00001894const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1895 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001896 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001897 Ops.push_back(LHS);
1898 Ops.push_back(RHS);
1899 return getSMaxExpr(Ops);
1900}
1901
Dan Gohman0bba49c2009-07-07 17:06:11 +00001902const SCEV *
1903ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001904 assert(!Ops.empty() && "Cannot get empty smax!");
1905 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001906#ifndef NDEBUG
1907 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1908 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1909 getEffectiveSCEVType(Ops[0]->getType()) &&
1910 "SCEVSMaxExpr operand types don't match!");
1911#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001912
1913 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001914 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001915
1916 // If there are any constants, fold them together.
1917 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001918 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001919 ++Idx;
1920 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001921 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001922 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001923 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001924 APIntOps::smax(LHSC->getValue()->getValue(),
1925 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001926 Ops[0] = getConstant(Fold);
1927 Ops.erase(Ops.begin()+1); // Erase the folded element
1928 if (Ops.size() == 1) return Ops[0];
1929 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001930 }
1931
Dan Gohmane5aceed2009-06-24 14:46:22 +00001932 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001933 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1934 Ops.erase(Ops.begin());
1935 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00001936 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1937 // If we have an smax with a constant maximum-int, it will always be
1938 // maximum-int.
1939 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001940 }
1941 }
1942
1943 if (Ops.size() == 1) return Ops[0];
1944
1945 // Find the first SMax
1946 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1947 ++Idx;
1948
1949 // Check to see if one of the operands is an SMax. If so, expand its operands
1950 // onto our operand list, and recurse to simplify.
1951 if (Idx < Ops.size()) {
1952 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001953 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001954 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1955 Ops.erase(Ops.begin()+Idx);
1956 DeletedSMax = true;
1957 }
1958
1959 if (DeletedSMax)
1960 return getSMaxExpr(Ops);
1961 }
1962
1963 // Okay, check to see if the same value occurs in the operand list twice. If
1964 // so, delete one. Since we sorted the list, these values are required to
1965 // be adjacent.
1966 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1967 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1968 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1969 --i; --e;
1970 }
1971
1972 if (Ops.size() == 1) return Ops[0];
1973
1974 assert(!Ops.empty() && "Reduced smax down to nothing!");
1975
Nick Lewycky3e630762008-02-20 06:48:22 +00001976 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001977 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001978 FoldingSetNodeID ID;
1979 ID.AddInteger(scSMaxExpr);
1980 ID.AddInteger(Ops.size());
1981 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1982 ID.AddPointer(Ops[i]);
1983 void *IP = 0;
1984 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1985 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001986 new (S) SCEVSMaxExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001987 UniqueSCEVs.InsertNode(S, IP);
1988 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001989}
1990
Dan Gohman9311ef62009-06-24 14:49:00 +00001991const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1992 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001993 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00001994 Ops.push_back(LHS);
1995 Ops.push_back(RHS);
1996 return getUMaxExpr(Ops);
1997}
1998
Dan Gohman0bba49c2009-07-07 17:06:11 +00001999const SCEV *
2000ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002001 assert(!Ops.empty() && "Cannot get empty umax!");
2002 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002003#ifndef NDEBUG
2004 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2005 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2006 getEffectiveSCEVType(Ops[0]->getType()) &&
2007 "SCEVUMaxExpr operand types don't match!");
2008#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002009
2010 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002011 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002012
2013 // If there are any constants, fold them together.
2014 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002015 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002016 ++Idx;
2017 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002018 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002019 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002020 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002021 APIntOps::umax(LHSC->getValue()->getValue(),
2022 RHSC->getValue()->getValue()));
2023 Ops[0] = getConstant(Fold);
2024 Ops.erase(Ops.begin()+1); // Erase the folded element
2025 if (Ops.size() == 1) return Ops[0];
2026 LHSC = cast<SCEVConstant>(Ops[0]);
2027 }
2028
Dan Gohmane5aceed2009-06-24 14:46:22 +00002029 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002030 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2031 Ops.erase(Ops.begin());
2032 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002033 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2034 // If we have an umax with a constant maximum-int, it will always be
2035 // maximum-int.
2036 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002037 }
2038 }
2039
2040 if (Ops.size() == 1) return Ops[0];
2041
2042 // Find the first UMax
2043 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2044 ++Idx;
2045
2046 // Check to see if one of the operands is a UMax. If so, expand its operands
2047 // onto our operand list, and recurse to simplify.
2048 if (Idx < Ops.size()) {
2049 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002050 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002051 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2052 Ops.erase(Ops.begin()+Idx);
2053 DeletedUMax = true;
2054 }
2055
2056 if (DeletedUMax)
2057 return getUMaxExpr(Ops);
2058 }
2059
2060 // Okay, check to see if the same value occurs in the operand list twice. If
2061 // so, delete one. Since we sorted the list, these values are required to
2062 // be adjacent.
2063 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2064 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2065 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2066 --i; --e;
2067 }
2068
2069 if (Ops.size() == 1) return Ops[0];
2070
2071 assert(!Ops.empty() && "Reduced umax down to nothing!");
2072
2073 // Okay, it looks like we really DO need a umax expr. Check to see if we
2074 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002075 FoldingSetNodeID ID;
2076 ID.AddInteger(scUMaxExpr);
2077 ID.AddInteger(Ops.size());
2078 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2079 ID.AddPointer(Ops[i]);
2080 void *IP = 0;
2081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2082 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00002083 new (S) SCEVUMaxExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00002084 UniqueSCEVs.InsertNode(S, IP);
2085 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002086}
2087
Dan Gohman9311ef62009-06-24 14:49:00 +00002088const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2089 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002090 // ~smax(~x, ~y) == smin(x, y).
2091 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2092}
2093
Dan Gohman9311ef62009-06-24 14:49:00 +00002094const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2095 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002096 // ~umax(~x, ~y) == umin(x, y)
2097 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2098}
2099
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002100const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
2101 unsigned FieldNo) {
2102 // If we have TargetData we can determine the constant offset.
2103 if (TD) {
2104 const Type *IntPtrTy = TD->getIntPtrType(getContext());
2105 const StructLayout &SL = *TD->getStructLayout(STy);
2106 uint64_t Offset = SL.getElementOffset(FieldNo);
2107 return getIntegerSCEV(Offset, IntPtrTy);
2108 }
2109
2110 // Field 0 is always at offset 0.
2111 if (FieldNo == 0) {
2112 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2113 return getIntegerSCEV(0, Ty);
2114 }
2115
2116 // Okay, it looks like we really DO need an offsetof expr. Check to see if we
2117 // already have one, otherwise create a new one.
2118 FoldingSetNodeID ID;
2119 ID.AddInteger(scFieldOffset);
2120 ID.AddPointer(STy);
2121 ID.AddInteger(FieldNo);
2122 void *IP = 0;
2123 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2124 SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
2125 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2126 new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
2127 UniqueSCEVs.InsertNode(S, IP);
2128 return S;
2129}
2130
2131const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
2132 // If we have TargetData we can determine the constant size.
2133 if (TD && AllocTy->isSized()) {
2134 const Type *IntPtrTy = TD->getIntPtrType(getContext());
2135 return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
2136 }
2137
2138 // Expand an array size into the element size times the number
2139 // of elements.
2140 if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
2141 const SCEV *E = getAllocSizeExpr(ATy->getElementType());
2142 return getMulExpr(
2143 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2144 ATy->getNumElements())));
2145 }
2146
2147 // Expand a vector size into the element size times the number
2148 // of elements.
2149 if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
2150 const SCEV *E = getAllocSizeExpr(VTy->getElementType());
2151 return getMulExpr(
2152 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2153 VTy->getNumElements())));
2154 }
2155
2156 // Okay, it looks like we really DO need a sizeof expr. Check to see if we
2157 // already have one, otherwise create a new one.
2158 FoldingSetNodeID ID;
2159 ID.AddInteger(scAllocSize);
2160 ID.AddPointer(AllocTy);
2161 void *IP = 0;
2162 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2163 SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
2164 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2165 new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
2166 UniqueSCEVs.InsertNode(S, IP);
2167 return S;
2168}
2169
Dan Gohman0bba49c2009-07-07 17:06:11 +00002170const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002171 // Don't attempt to do anything other than create a SCEVUnknown object
2172 // here. createSCEV only calls getUnknown after checking for all other
2173 // interesting possibilities, and any other code that calls getUnknown
2174 // is doing so in order to hide a value from SCEV canonicalization.
2175
Dan Gohman1c343752009-06-27 21:21:31 +00002176 FoldingSetNodeID ID;
2177 ID.AddInteger(scUnknown);
2178 ID.AddPointer(V);
2179 void *IP = 0;
2180 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2181 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00002182 new (S) SCEVUnknown(ID, V);
Dan Gohman1c343752009-06-27 21:21:31 +00002183 UniqueSCEVs.InsertNode(S, IP);
2184 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002185}
2186
Chris Lattner53e677a2004-04-02 20:23:17 +00002187//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002188// Basic SCEV Analysis and PHI Idiom Recognition Code
2189//
2190
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002191/// isSCEVable - Test if values of the given type are analyzable within
2192/// the SCEV framework. This primarily includes integer types, and it
2193/// can optionally include pointer types if the ScalarEvolution class
2194/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002195bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002196 // Integers and pointers are always SCEVable.
2197 return Ty->isInteger() || isa<PointerType>(Ty);
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002198}
2199
2200/// getTypeSizeInBits - Return the size in bits of the specified type,
2201/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002202uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002203 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2204
2205 // If we have a TargetData, use it!
2206 if (TD)
2207 return TD->getTypeSizeInBits(Ty);
2208
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002209 // Integer types have fixed sizes.
2210 if (Ty->isInteger())
2211 return Ty->getPrimitiveSizeInBits();
2212
2213 // The only other support type is pointer. Without TargetData, conservatively
2214 // assume pointers are 64-bit.
2215 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2216 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002217}
2218
2219/// getEffectiveSCEVType - Return a type with the same bitwidth as
2220/// the given type and which represents how SCEV will treat the given
2221/// type, for which isSCEVable must return true. For pointer types,
2222/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002223const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002224 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2225
2226 if (Ty->isInteger())
2227 return Ty;
2228
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002229 // The only other support type is pointer.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002230 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002231 if (TD) return TD->getIntPtrType(getContext());
2232
2233 // Without TargetData, conservatively assume pointers are 64-bit.
2234 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002235}
Chris Lattner53e677a2004-04-02 20:23:17 +00002236
Dan Gohman0bba49c2009-07-07 17:06:11 +00002237const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002238 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002239}
2240
Chris Lattner53e677a2004-04-02 20:23:17 +00002241/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2242/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002243const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002244 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002245
Dan Gohman0bba49c2009-07-07 17:06:11 +00002246 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002247 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002248 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002249 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002250 return S;
2251}
2252
Dan Gohman6bbcba12009-06-24 00:54:57 +00002253/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002254/// specified signed integer value and return a SCEV for the constant.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002255const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002256 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002257 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002258}
2259
2260/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2261///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002262const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002263 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002264 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002265 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002266
2267 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002268 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002269 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002270 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002271}
2272
2273/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002274const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002275 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002276 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002277 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002278
2279 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002280 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002281 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002282 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002283 return getMinusSCEV(AllOnes, V);
2284}
2285
2286/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2287///
Dan Gohman9311ef62009-06-24 14:49:00 +00002288const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2289 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002290 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002291 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002292}
2293
2294/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2295/// input value to the specified type. If the type must be extended, it is zero
2296/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002297const SCEV *
2298ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002299 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002300 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002301 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2302 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002303 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002304 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002305 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002306 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002307 return getTruncateExpr(V, Ty);
2308 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002309}
2310
2311/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2312/// input value to the specified type. If the type must be extended, it is sign
2313/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002314const SCEV *
2315ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002316 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002317 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002318 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2319 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002320 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002321 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002322 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002323 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002324 return getTruncateExpr(V, Ty);
2325 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002326}
2327
Dan Gohman467c4302009-05-13 03:46:30 +00002328/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2329/// input value to the specified type. If the type must be extended, it is zero
2330/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002331const SCEV *
2332ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002333 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002334 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2335 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002336 "Cannot noop or zero extend with non-integer arguments!");
2337 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2338 "getNoopOrZeroExtend cannot truncate!");
2339 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2340 return V; // No conversion
2341 return getZeroExtendExpr(V, Ty);
2342}
2343
2344/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2345/// input value to the specified type. If the type must be extended, it is sign
2346/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002347const SCEV *
2348ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002349 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002350 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2351 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002352 "Cannot noop or sign extend with non-integer arguments!");
2353 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2354 "getNoopOrSignExtend cannot truncate!");
2355 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2356 return V; // No conversion
2357 return getSignExtendExpr(V, Ty);
2358}
2359
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002360/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2361/// the input value to the specified type. If the type must be extended,
2362/// it is extended with unspecified bits. The conversion must not be
2363/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002364const SCEV *
2365ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002366 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002367 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2368 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002369 "Cannot noop or any extend with non-integer arguments!");
2370 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2371 "getNoopOrAnyExtend cannot truncate!");
2372 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2373 return V; // No conversion
2374 return getAnyExtendExpr(V, Ty);
2375}
2376
Dan Gohman467c4302009-05-13 03:46:30 +00002377/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2378/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002379const SCEV *
2380ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002381 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002382 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2383 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002384 "Cannot truncate or noop with non-integer arguments!");
2385 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2386 "getTruncateOrNoop cannot extend!");
2387 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2388 return V; // No conversion
2389 return getTruncateExpr(V, Ty);
2390}
2391
Dan Gohmana334aa72009-06-22 00:31:57 +00002392/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2393/// the types using zero-extension, and then perform a umax operation
2394/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002395const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2396 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002397 const SCEV *PromotedLHS = LHS;
2398 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002399
2400 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2401 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2402 else
2403 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2404
2405 return getUMaxExpr(PromotedLHS, PromotedRHS);
2406}
2407
Dan Gohmanc9759e82009-06-22 15:03:27 +00002408/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2409/// the types using zero-extension, and then perform a umin operation
2410/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002411const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2412 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002413 const SCEV *PromotedLHS = LHS;
2414 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002415
2416 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2417 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2418 else
2419 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2420
2421 return getUMinExpr(PromotedLHS, PromotedRHS);
2422}
2423
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002424/// PushDefUseChildren - Push users of the given Instruction
2425/// onto the given Worklist.
2426static void
2427PushDefUseChildren(Instruction *I,
2428 SmallVectorImpl<Instruction *> &Worklist) {
2429 // Push the def-use children onto the Worklist stack.
2430 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2431 UI != UE; ++UI)
2432 Worklist.push_back(cast<Instruction>(UI));
2433}
2434
2435/// ForgetSymbolicValue - This looks up computed SCEV values for all
2436/// instructions that depend on the given instruction and removes them from
2437/// the Scalars map if they reference SymName. This is used during PHI
2438/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002439void
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002440ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2441 SmallVector<Instruction *, 16> Worklist;
2442 PushDefUseChildren(I, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002443
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002444 SmallPtrSet<Instruction *, 8> Visited;
2445 Visited.insert(I);
2446 while (!Worklist.empty()) {
2447 Instruction *I = Worklist.pop_back_val();
2448 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002449
Dan Gohman5d984912009-12-18 01:14:11 +00002450 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002451 Scalars.find(static_cast<Value *>(I));
2452 if (It != Scalars.end()) {
2453 // Short-circuit the def-use traversal if the symbolic name
2454 // ceases to appear in expressions.
2455 if (!It->second->hasOperand(SymName))
2456 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002457
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002458 // SCEVUnknown for a PHI either means that it has an unrecognized
2459 // structure, or it's a PHI that's in the progress of being computed
2460 // by createNodeForPHI. In the former case, additional loop trip
2461 // count information isn't going to change anything. In the later
2462 // case, createNodeForPHI will perform the necessary updates on its
2463 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00002464 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2465 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002466 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002467 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002468 }
2469
2470 PushDefUseChildren(I, Worklist);
2471 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002472}
Chris Lattner53e677a2004-04-02 20:23:17 +00002473
2474/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2475/// a loop header, making it a potential recurrence, or it doesn't.
2476///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002477const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002478 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002479 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002480 if (L->getHeader() == PN->getParent()) {
2481 // If it lives in the loop header, it has two incoming values, one
2482 // from outside the loop, and one from inside.
2483 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2484 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002485
Chris Lattner53e677a2004-04-02 20:23:17 +00002486 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002487 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002488 assert(Scalars.find(PN) == Scalars.end() &&
2489 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002490 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002491
2492 // Using this symbolic name for the PHI, analyze the value coming around
2493 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002494 Value *BEValueV = PN->getIncomingValue(BackEdge);
2495 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002496
2497 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2498 // has a special value for the first iteration of the loop.
2499
2500 // If the value coming around the backedge is an add with the symbolic
2501 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002502 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002503 // If there is a single occurrence of the symbolic value, replace it
2504 // with a recurrence.
2505 unsigned FoundIndex = Add->getNumOperands();
2506 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2507 if (Add->getOperand(i) == SymbolicName)
2508 if (FoundIndex == e) {
2509 FoundIndex = i;
2510 break;
2511 }
2512
2513 if (FoundIndex != Add->getNumOperands()) {
2514 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002515 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002516 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2517 if (i != FoundIndex)
2518 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002519 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002520
2521 // This is not a valid addrec if the step amount is varying each
2522 // loop iteration, but is not itself an addrec in this loop.
2523 if (Accum->isLoopInvariant(L) ||
2524 (isa<SCEVAddRecExpr>(Accum) &&
2525 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohman64a845e2009-06-24 04:48:43 +00002526 const SCEV *StartVal =
2527 getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmaneb490a72009-07-25 01:22:26 +00002528 const SCEVAddRecExpr *PHISCEV =
2529 cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2530
2531 // If the increment doesn't overflow, then neither the addrec nor the
2532 // post-increment will overflow.
2533 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2534 if (OBO->getOperand(0) == PN &&
2535 getSCEV(OBO->getOperand(1)) ==
2536 PHISCEV->getStepRecurrence(*this)) {
2537 const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
Dan Gohman5078f842009-08-20 17:11:38 +00002538 if (OBO->hasNoUnsignedWrap()) {
Dan Gohmaneb490a72009-07-25 01:22:26 +00002539 const_cast<SCEVAddRecExpr *>(PHISCEV)
Dan Gohman5078f842009-08-20 17:11:38 +00002540 ->setHasNoUnsignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002541 const_cast<SCEVAddRecExpr *>(PostInc)
Dan Gohman5078f842009-08-20 17:11:38 +00002542 ->setHasNoUnsignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002543 }
Dan Gohman5078f842009-08-20 17:11:38 +00002544 if (OBO->hasNoSignedWrap()) {
Dan Gohmaneb490a72009-07-25 01:22:26 +00002545 const_cast<SCEVAddRecExpr *>(PHISCEV)
Dan Gohman5078f842009-08-20 17:11:38 +00002546 ->setHasNoSignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002547 const_cast<SCEVAddRecExpr *>(PostInc)
Dan Gohman5078f842009-08-20 17:11:38 +00002548 ->setHasNoSignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002549 }
2550 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002551
2552 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002553 // to be symbolic. We now need to go back and purge all of the
2554 // entries for the scalars that use the symbolic expression.
2555 ForgetSymbolicName(PN, SymbolicName);
2556 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002557 return PHISCEV;
2558 }
2559 }
Dan Gohman622ed672009-05-04 22:02:23 +00002560 } else if (const SCEVAddRecExpr *AddRec =
2561 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002562 // Otherwise, this could be a loop like this:
2563 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2564 // In this case, j = {1,+,1} and BEValue is j.
2565 // Because the other in-value of i (0) fits the evolution of BEValue
2566 // i really is an addrec evolution.
2567 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002568 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Chris Lattner97156e72006-04-26 18:34:07 +00002569
2570 // If StartVal = j.start - j.stride, we can use StartVal as the
2571 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002572 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman246b2562007-10-22 18:31:58 +00002573 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002574 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002575 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002576
2577 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002578 // to be symbolic. We now need to go back and purge all of the
2579 // entries for the scalars that use the symbolic expression.
2580 ForgetSymbolicName(PN, SymbolicName);
2581 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002582 return PHISCEV;
2583 }
2584 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002585 }
2586
2587 return SymbolicName;
2588 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002589
Dan Gohmana653fc52009-07-14 14:06:25 +00002590 // It's tempting to recognize PHIs with a unique incoming value, however
2591 // this leads passes like indvars to break LCSSA form. Fortunately, such
2592 // PHIs are rare, as instcombine zaps them.
2593
Chris Lattner53e677a2004-04-02 20:23:17 +00002594 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002595 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002596}
2597
Dan Gohman26466c02009-05-08 20:26:55 +00002598/// createNodeForGEP - Expand GEP instructions into add and multiply
2599/// operations. This allows them to be analyzed by regular SCEV code.
2600///
Dan Gohmand281ed22009-12-18 02:09:29 +00002601const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002602
Dan Gohmand281ed22009-12-18 02:09:29 +00002603 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002604 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002605 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002606 // Don't attempt to analyze GEPs over unsized objects.
2607 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2608 return getUnknown(GEP);
Dan Gohman0bba49c2009-07-07 17:06:11 +00002609 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002610 gep_type_iterator GTI = gep_type_begin(GEP);
2611 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2612 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002613 I != E; ++I) {
2614 Value *Index = *I;
2615 // Compute the (potentially symbolic) offset in bytes for this index.
2616 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2617 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002618 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002619 TotalOffset = getAddExpr(TotalOffset,
Dan Gohmand281ed22009-12-18 02:09:29 +00002620 getFieldOffsetExpr(STy, FieldNo),
2621 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002622 } else {
2623 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002624 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman26466c02009-05-08 20:26:55 +00002625 if (!isa<PointerType>(LocalOffset->getType()))
2626 // Getelementptr indicies are signed.
Dan Gohman85b05a22009-07-13 21:35:55 +00002627 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002628 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohmand281ed22009-12-18 02:09:29 +00002629 LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI),
2630 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2631 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2632 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002633 }
2634 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002635 return getAddExpr(getSCEV(Base), TotalOffset,
2636 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002637}
2638
Nick Lewycky83bb0052007-11-22 07:59:40 +00002639/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2640/// guaranteed to end in (at every loop iteration). It is, at the same time,
2641/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2642/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002643uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002644ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002645 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002646 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002647
Dan Gohman622ed672009-05-04 22:02:23 +00002648 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002649 return std::min(GetMinTrailingZeros(T->getOperand()),
2650 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002651
Dan Gohman622ed672009-05-04 22:02:23 +00002652 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002653 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2654 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2655 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002656 }
2657
Dan Gohman622ed672009-05-04 22:02:23 +00002658 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002659 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2660 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2661 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002662 }
2663
Dan Gohman622ed672009-05-04 22:02:23 +00002664 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002665 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002666 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002667 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002668 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002669 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002670 }
2671
Dan Gohman622ed672009-05-04 22:02:23 +00002672 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002673 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002674 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2675 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002676 for (unsigned i = 1, e = M->getNumOperands();
2677 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002678 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002679 BitWidth);
2680 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002681 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002682
Dan Gohman622ed672009-05-04 22:02:23 +00002683 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002684 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002685 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002686 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002687 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002688 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002689 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002690
Dan Gohman622ed672009-05-04 22:02:23 +00002691 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002692 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002693 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002694 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002695 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002696 return MinOpRes;
2697 }
2698
Dan Gohman622ed672009-05-04 22:02:23 +00002699 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002700 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002701 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002702 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002703 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002704 return MinOpRes;
2705 }
2706
Dan Gohman2c364ad2009-06-19 23:29:04 +00002707 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2708 // For a SCEVUnknown, ask ValueTracking.
2709 unsigned BitWidth = getTypeSizeInBits(U->getType());
2710 APInt Mask = APInt::getAllOnesValue(BitWidth);
2711 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2712 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2713 return Zeros.countTrailingOnes();
2714 }
2715
2716 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002717 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002718}
Chris Lattner53e677a2004-04-02 20:23:17 +00002719
Dan Gohman85b05a22009-07-13 21:35:55 +00002720/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2721///
2722ConstantRange
2723ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002724
2725 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002726 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002727
Dan Gohman85b05a22009-07-13 21:35:55 +00002728 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2729 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2730 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2731 X = X.add(getUnsignedRange(Add->getOperand(i)));
2732 return X;
2733 }
2734
2735 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2736 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2737 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2738 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2739 return X;
2740 }
2741
2742 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2743 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2744 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2745 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2746 return X;
2747 }
2748
2749 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2750 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2751 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2752 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2753 return X;
2754 }
2755
2756 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2757 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2758 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2759 return X.udiv(Y);
2760 }
2761
2762 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2763 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2764 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2765 }
2766
2767 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2768 ConstantRange X = getUnsignedRange(SExt->getOperand());
2769 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2770 }
2771
2772 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2773 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2774 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2775 }
2776
2777 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2778
2779 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2780 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2781 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2782 if (!Trip) return FullSet;
2783
2784 // TODO: non-affine addrec
2785 if (AddRec->isAffine()) {
2786 const Type *Ty = AddRec->getType();
2787 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2788 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2789 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2790
2791 const SCEV *Start = AddRec->getStart();
Dan Gohmana16b5762009-07-21 00:42:47 +00002792 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002793 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2794
2795 // Check for overflow.
Dan Gohmana16b5762009-07-21 00:42:47 +00002796 // TODO: This is very conservative.
2797 if (!(Step->isOne() &&
2798 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2799 !(Step->isAllOnesValue() &&
2800 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
Dan Gohman85b05a22009-07-13 21:35:55 +00002801 return FullSet;
2802
2803 ConstantRange StartRange = getUnsignedRange(Start);
2804 ConstantRange EndRange = getUnsignedRange(End);
2805 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2806 EndRange.getUnsignedMin());
2807 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2808 EndRange.getUnsignedMax());
2809 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman0d5bae42009-07-20 22:41:51 +00002810 return FullSet;
Dan Gohman85b05a22009-07-13 21:35:55 +00002811 return ConstantRange(Min, Max+1);
2812 }
2813 }
Dan Gohman2c364ad2009-06-19 23:29:04 +00002814 }
2815
2816 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2817 // For a SCEVUnknown, ask ValueTracking.
2818 unsigned BitWidth = getTypeSizeInBits(U->getType());
2819 APInt Mask = APInt::getAllOnesValue(BitWidth);
2820 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2821 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00002822 if (Ones == ~Zeros + 1)
2823 return FullSet;
2824 return ConstantRange(Ones, ~Zeros + 1);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002825 }
2826
Dan Gohman85b05a22009-07-13 21:35:55 +00002827 return FullSet;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002828}
2829
Dan Gohman85b05a22009-07-13 21:35:55 +00002830/// getSignedRange - Determine the signed range for a particular SCEV.
2831///
2832ConstantRange
2833ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002834
Dan Gohman85b05a22009-07-13 21:35:55 +00002835 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2836 return ConstantRange(C->getValue()->getValue());
2837
2838 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2839 ConstantRange X = getSignedRange(Add->getOperand(0));
2840 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2841 X = X.add(getSignedRange(Add->getOperand(i)));
2842 return X;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002843 }
2844
Dan Gohman85b05a22009-07-13 21:35:55 +00002845 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2846 ConstantRange X = getSignedRange(Mul->getOperand(0));
2847 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2848 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2849 return X;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002850 }
2851
Dan Gohman85b05a22009-07-13 21:35:55 +00002852 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2853 ConstantRange X = getSignedRange(SMax->getOperand(0));
2854 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2855 X = X.smax(getSignedRange(SMax->getOperand(i)));
2856 return X;
2857 }
Dan Gohman62849c02009-06-24 01:05:09 +00002858
Dan Gohman85b05a22009-07-13 21:35:55 +00002859 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2860 ConstantRange X = getSignedRange(UMax->getOperand(0));
2861 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2862 X = X.umax(getSignedRange(UMax->getOperand(i)));
2863 return X;
2864 }
Dan Gohman62849c02009-06-24 01:05:09 +00002865
Dan Gohman85b05a22009-07-13 21:35:55 +00002866 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2867 ConstantRange X = getSignedRange(UDiv->getLHS());
2868 ConstantRange Y = getSignedRange(UDiv->getRHS());
2869 return X.udiv(Y);
2870 }
Dan Gohman62849c02009-06-24 01:05:09 +00002871
Dan Gohman85b05a22009-07-13 21:35:55 +00002872 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2873 ConstantRange X = getSignedRange(ZExt->getOperand());
2874 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2875 }
2876
2877 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2878 ConstantRange X = getSignedRange(SExt->getOperand());
2879 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2880 }
2881
2882 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2883 ConstantRange X = getSignedRange(Trunc->getOperand());
2884 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2885 }
2886
2887 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2888
2889 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2890 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2891 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2892 if (!Trip) return FullSet;
2893
2894 // TODO: non-affine addrec
2895 if (AddRec->isAffine()) {
2896 const Type *Ty = AddRec->getType();
2897 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2898 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2899 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2900
2901 const SCEV *Start = AddRec->getStart();
2902 const SCEV *Step = AddRec->getStepRecurrence(*this);
2903 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2904
2905 // Check for overflow.
Dan Gohmana16b5762009-07-21 00:42:47 +00002906 // TODO: This is very conservative.
2907 if (!(Step->isOne() &&
Dan Gohman85b05a22009-07-13 21:35:55 +00002908 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
Dan Gohmana16b5762009-07-21 00:42:47 +00002909 !(Step->isAllOnesValue() &&
Dan Gohman85b05a22009-07-13 21:35:55 +00002910 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2911 return FullSet;
2912
2913 ConstantRange StartRange = getSignedRange(Start);
2914 ConstantRange EndRange = getSignedRange(End);
2915 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2916 EndRange.getSignedMin());
2917 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2918 EndRange.getSignedMax());
2919 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmanc268e7c2009-07-21 00:37:45 +00002920 return FullSet;
Dan Gohman85b05a22009-07-13 21:35:55 +00002921 return ConstantRange(Min, Max+1);
Dan Gohman62849c02009-06-24 01:05:09 +00002922 }
Dan Gohman62849c02009-06-24 01:05:09 +00002923 }
Dan Gohman62849c02009-06-24 01:05:09 +00002924 }
2925
Dan Gohman2c364ad2009-06-19 23:29:04 +00002926 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2927 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman85b05a22009-07-13 21:35:55 +00002928 unsigned BitWidth = getTypeSizeInBits(U->getType());
2929 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2930 if (NS == 1)
2931 return FullSet;
2932 return
2933 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2934 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002935 }
2936
Dan Gohman85b05a22009-07-13 21:35:55 +00002937 return FullSet;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002938}
2939
Chris Lattner53e677a2004-04-02 20:23:17 +00002940/// createSCEV - We know that there is no SCEV for the specified value.
2941/// Analyze the expression.
2942///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002943const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002944 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002945 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00002946
Dan Gohman6c459a22008-06-22 19:56:46 +00002947 unsigned Opcode = Instruction::UserOp1;
2948 if (Instruction *I = dyn_cast<Instruction>(V))
2949 Opcode = I->getOpcode();
2950 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2951 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00002952 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2953 return getConstant(CI);
2954 else if (isa<ConstantPointerNull>(V))
2955 return getIntegerSCEV(0, V->getType());
2956 else if (isa<UndefValue>(V))
2957 return getIntegerSCEV(0, V->getType());
Dan Gohman26812322009-08-25 17:49:57 +00002958 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
2959 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00002960 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002961 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00002962
Dan Gohmanca178902009-07-17 20:47:02 +00002963 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00002964 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00002965 case Instruction::Add:
2966 // Don't transfer the NSW and NUW bits from the Add instruction to the
2967 // Add expression, because the Instruction may be guarded by control
2968 // flow and the no-overflow bits may not be valid for the expression in
2969 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002970 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00002971 getSCEV(U->getOperand(1)));
2972 case Instruction::Mul:
2973 // Don't transfer the NSW and NUW bits from the Mul instruction to the
2974 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002975 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00002976 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002977 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002978 return getUDivExpr(getSCEV(U->getOperand(0)),
2979 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002980 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002981 return getMinusSCEV(getSCEV(U->getOperand(0)),
2982 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002983 case Instruction::And:
2984 // For an expression like x&255 that merely masks off the high bits,
2985 // use zext(trunc(x)) as the SCEV expression.
2986 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002987 if (CI->isNullValue())
2988 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00002989 if (CI->isAllOnesValue())
2990 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002991 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00002992
2993 // Instcombine's ShrinkDemandedConstant may strip bits out of
2994 // constants, obscuring what would otherwise be a low-bits mask.
2995 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2996 // knew about to reconstruct a low-bits mask value.
2997 unsigned LZ = A.countLeadingZeros();
2998 unsigned BitWidth = A.getBitWidth();
2999 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3000 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3001 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3002
3003 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3004
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003005 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003006 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003007 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003008 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003009 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003010 }
3011 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003012
Dan Gohman6c459a22008-06-22 19:56:46 +00003013 case Instruction::Or:
3014 // If the RHS of the Or is a constant, we may have something like:
3015 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3016 // optimizations will transparently handle this case.
3017 //
3018 // In order for this transformation to be safe, the LHS must be of the
3019 // form X*(2^n) and the Or constant must be less than 2^n.
3020 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003021 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003022 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003023 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003024 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3025 // Build a plain add SCEV.
3026 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3027 // If the LHS of the add was an addrec and it has no-wrap flags,
3028 // transfer the no-wrap flags, since an or won't introduce a wrap.
3029 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3030 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3031 if (OldAR->hasNoUnsignedWrap())
3032 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3033 if (OldAR->hasNoSignedWrap())
3034 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3035 }
3036 return S;
3037 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003038 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003039 break;
3040 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003041 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003042 // If the RHS of the xor is a signbit, then this is just an add.
3043 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003044 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003045 return getAddExpr(getSCEV(U->getOperand(0)),
3046 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003047
3048 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003049 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003050 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003051
3052 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3053 // This is a variant of the check for xor with -1, and it handles
3054 // the case where instcombine has trimmed non-demanded bits out
3055 // of an xor with -1.
3056 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3057 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3058 if (BO->getOpcode() == Instruction::And &&
3059 LCI->getValue() == CI->getValue())
3060 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003061 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003062 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003063 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003064 const Type *Z0Ty = Z0->getType();
3065 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3066
3067 // If C is a low-bits mask, the zero extend is zerving to
3068 // mask off the high bits. Complement the operand and
3069 // re-apply the zext.
3070 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3071 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3072
3073 // If C is a single bit, it may be in the sign-bit position
3074 // before the zero-extend. In this case, represent the xor
3075 // using an add, which is equivalent, and re-apply the zext.
3076 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3077 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3078 Trunc.isSignBit())
3079 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3080 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003081 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003082 }
3083 break;
3084
3085 case Instruction::Shl:
3086 // Turn shift left of a constant amount into a multiply.
3087 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3088 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003089 Constant *X = ConstantInt::get(getContext(),
Dan Gohman6c459a22008-06-22 19:56:46 +00003090 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003091 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003092 }
3093 break;
3094
Nick Lewycky01eaf802008-07-07 06:15:49 +00003095 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003096 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003097 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3098 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003099 Constant *X = ConstantInt::get(getContext(),
Nick Lewycky01eaf802008-07-07 06:15:49 +00003100 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003101 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003102 }
3103 break;
3104
Dan Gohman4ee29af2009-04-21 02:26:00 +00003105 case Instruction::AShr:
3106 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3107 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3108 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3109 if (L->getOpcode() == Instruction::Shl &&
3110 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003111 unsigned BitWidth = getTypeSizeInBits(U->getType());
3112 uint64_t Amt = BitWidth - CI->getZExtValue();
3113 if (Amt == BitWidth)
3114 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3115 if (Amt > BitWidth)
3116 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00003117 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003118 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003119 IntegerType::get(getContext(), Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00003120 U->getType());
3121 }
3122 break;
3123
Dan Gohman6c459a22008-06-22 19:56:46 +00003124 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003125 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003126
3127 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003128 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003129
3130 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003131 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003132
3133 case Instruction::BitCast:
3134 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003135 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003136 return getSCEV(U->getOperand(0));
3137 break;
3138
Dan Gohmanf2411742009-07-20 17:43:30 +00003139 // It's tempting to handle inttoptr and ptrtoint, however this can
3140 // lead to pointer expressions which cannot be expanded to GEPs
3141 // (because they may overflow). For now, the only pointer-typed
3142 // expressions we handle are GEPs and address literals.
Dan Gohman2d1be872009-04-16 03:18:22 +00003143
Dan Gohman26466c02009-05-08 20:26:55 +00003144 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003145 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003146
Dan Gohman6c459a22008-06-22 19:56:46 +00003147 case Instruction::PHI:
3148 return createNodeForPHI(cast<PHINode>(U));
3149
3150 case Instruction::Select:
3151 // This could be a smax or umax that was lowered earlier.
3152 // Try to recover it.
3153 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3154 Value *LHS = ICI->getOperand(0);
3155 Value *RHS = ICI->getOperand(1);
3156 switch (ICI->getPredicate()) {
3157 case ICmpInst::ICMP_SLT:
3158 case ICmpInst::ICMP_SLE:
3159 std::swap(LHS, RHS);
3160 // fall through
3161 case ICmpInst::ICMP_SGT:
3162 case ICmpInst::ICMP_SGE:
3163 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003164 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003165 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003166 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003167 break;
3168 case ICmpInst::ICMP_ULT:
3169 case ICmpInst::ICMP_ULE:
3170 std::swap(LHS, RHS);
3171 // fall through
3172 case ICmpInst::ICMP_UGT:
3173 case ICmpInst::ICMP_UGE:
3174 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003175 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003176 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003177 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003178 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003179 case ICmpInst::ICMP_NE:
3180 // n != 0 ? n : 1 -> umax(n, 1)
3181 if (LHS == U->getOperand(1) &&
3182 isa<ConstantInt>(U->getOperand(2)) &&
3183 cast<ConstantInt>(U->getOperand(2))->isOne() &&
3184 isa<ConstantInt>(RHS) &&
3185 cast<ConstantInt>(RHS)->isZero())
3186 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3187 break;
3188 case ICmpInst::ICMP_EQ:
3189 // n == 0 ? 1 : n -> umax(n, 1)
3190 if (LHS == U->getOperand(2) &&
3191 isa<ConstantInt>(U->getOperand(1)) &&
3192 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3193 isa<ConstantInt>(RHS) &&
3194 cast<ConstantInt>(RHS)->isZero())
3195 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3196 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003197 default:
3198 break;
3199 }
3200 }
3201
3202 default: // We cannot analyze this expression.
3203 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003204 }
3205
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003206 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003207}
3208
3209
3210
3211//===----------------------------------------------------------------------===//
3212// Iteration Count Computation Code
3213//
3214
Dan Gohman46bdfb02009-02-24 18:55:53 +00003215/// getBackedgeTakenCount - If the specified loop has a predictable
3216/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3217/// object. The backedge-taken count is the number of times the loop header
3218/// will be branched to from within the loop. This is one less than the
3219/// trip count of the loop, since it doesn't count the first iteration,
3220/// when the header is branched to from outside the loop.
3221///
3222/// Note that it is not valid to call this method on a loop without a
3223/// loop-invariant backedge-taken count (see
3224/// hasLoopInvariantBackedgeTakenCount).
3225///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003226const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003227 return getBackedgeTakenInfo(L).Exact;
3228}
3229
3230/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3231/// return the least SCEV value that is known never to be less than the
3232/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003233const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003234 return getBackedgeTakenInfo(L).Max;
3235}
3236
Dan Gohman59ae6b92009-07-08 19:23:34 +00003237/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3238/// onto the given Worklist.
3239static void
3240PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3241 BasicBlock *Header = L->getHeader();
3242
3243 // Push all Loop-header PHIs onto the Worklist stack.
3244 for (BasicBlock::iterator I = Header->begin();
3245 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3246 Worklist.push_back(PN);
3247}
3248
Dan Gohmana1af7572009-04-30 20:47:05 +00003249const ScalarEvolution::BackedgeTakenInfo &
3250ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003251 // Initially insert a CouldNotCompute for this loop. If the insertion
3252 // succeeds, procede to actually compute a backedge-taken count and
3253 // update the value. The temporary CouldNotCompute value tells SCEV
3254 // code elsewhere that it shouldn't attempt to request a new
3255 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003256 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003257 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3258 if (Pair.second) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003259 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohman1c343752009-06-27 21:21:31 +00003260 if (ItCount.Exact != getCouldNotCompute()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003261 assert(ItCount.Exact->isLoopInvariant(L) &&
3262 ItCount.Max->isLoopInvariant(L) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003263 "Computed trip count isn't loop invariant for loop!");
3264 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003265
Dan Gohman01ecca22009-04-27 20:16:15 +00003266 // Update the value in the map.
3267 Pair.first->second = ItCount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003268 } else {
Dan Gohman1c343752009-06-27 21:21:31 +00003269 if (ItCount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003270 // Update the value in the map.
3271 Pair.first->second = ItCount;
3272 if (isa<PHINode>(L->getHeader()->begin()))
3273 // Only count loops that have phi nodes as not being computable.
3274 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003275 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003276
3277 // Now that we know more about the trip count for this loop, forget any
3278 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003279 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003280 // information. This is similar to the code in forgetLoop, except that
3281 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman59ae6b92009-07-08 19:23:34 +00003282 if (ItCount.hasAnyInfo()) {
3283 SmallVector<Instruction *, 16> Worklist;
3284 PushLoopPHIs(L, Worklist);
3285
3286 SmallPtrSet<Instruction *, 8> Visited;
3287 while (!Worklist.empty()) {
3288 Instruction *I = Worklist.pop_back_val();
3289 if (!Visited.insert(I)) continue;
3290
Dan Gohman5d984912009-12-18 01:14:11 +00003291 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003292 Scalars.find(static_cast<Value *>(I));
3293 if (It != Scalars.end()) {
3294 // SCEVUnknown for a PHI either means that it has an unrecognized
3295 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003296 // by createNodeForPHI. In the former case, additional loop trip
3297 // count information isn't going to change anything. In the later
3298 // case, createNodeForPHI will perform the necessary updates on its
3299 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003300 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3301 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003302 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003303 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003304 if (PHINode *PN = dyn_cast<PHINode>(I))
3305 ConstantEvolutionLoopExitValue.erase(PN);
3306 }
3307
3308 PushDefUseChildren(I, Worklist);
3309 }
3310 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003311 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003312 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003313}
3314
Dan Gohman4c7279a2009-10-31 15:04:55 +00003315/// forgetLoop - This method should be called by the client when it has
3316/// changed a loop in a way that may effect ScalarEvolution's ability to
3317/// compute a trip count, or if the loop is deleted.
3318void ScalarEvolution::forgetLoop(const Loop *L) {
3319 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003320 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003321
Dan Gohman4c7279a2009-10-31 15:04:55 +00003322 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003323 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003324 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003325
Dan Gohman59ae6b92009-07-08 19:23:34 +00003326 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003327 while (!Worklist.empty()) {
3328 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003329 if (!Visited.insert(I)) continue;
3330
Dan Gohman5d984912009-12-18 01:14:11 +00003331 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003332 Scalars.find(static_cast<Value *>(I));
3333 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003334 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003335 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003336 if (PHINode *PN = dyn_cast<PHINode>(I))
3337 ConstantEvolutionLoopExitValue.erase(PN);
3338 }
3339
3340 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003341 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003342}
3343
Dan Gohman46bdfb02009-02-24 18:55:53 +00003344/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3345/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003346ScalarEvolution::BackedgeTakenInfo
3347ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003348 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003349 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003350
Dan Gohmana334aa72009-06-22 00:31:57 +00003351 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003352 const SCEV *BECount = getCouldNotCompute();
3353 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003354 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003355 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3356 BackedgeTakenInfo NewBTI =
3357 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003358
Dan Gohman1c343752009-06-27 21:21:31 +00003359 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003360 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003361 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003362 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003363 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003364 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003365 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003366 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003367 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003368 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003369 }
Dan Gohman1c343752009-06-27 21:21:31 +00003370 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003371 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003372 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003373 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003374 }
3375
3376 return BackedgeTakenInfo(BECount, MaxBECount);
3377}
3378
3379/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3380/// of the specified loop will execute if it exits via the specified block.
3381ScalarEvolution::BackedgeTakenInfo
3382ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3383 BasicBlock *ExitingBlock) {
3384
3385 // Okay, we've chosen an exiting block. See what condition causes us to
3386 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003387 //
3388 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003389 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003390 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003391 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003392
Chris Lattner8b0e3602007-01-07 02:24:26 +00003393 // At this point, we know we have a conditional branch that determines whether
3394 // the loop is exited. However, we don't know if the branch is executed each
3395 // time through the loop. If not, then the execution count of the branch will
3396 // not be equal to the trip count of the loop.
3397 //
3398 // Currently we check for this by checking to see if the Exit branch goes to
3399 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003400 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003401 // loop header. This is common for un-rotated loops.
3402 //
3403 // If both of those tests fail, walk up the unique predecessor chain to the
3404 // header, stopping if there is an edge that doesn't exit the loop. If the
3405 // header is reached, the execution count of the branch will be equal to the
3406 // trip count of the loop.
3407 //
3408 // More extensive analysis could be done to handle more cases here.
3409 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003410 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003411 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003412 ExitBr->getParent() != L->getHeader()) {
3413 // The simple checks failed, try climbing the unique predecessor chain
3414 // up to the header.
3415 bool Ok = false;
3416 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3417 BasicBlock *Pred = BB->getUniquePredecessor();
3418 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003419 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003420 TerminatorInst *PredTerm = Pred->getTerminator();
3421 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3422 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3423 if (PredSucc == BB)
3424 continue;
3425 // If the predecessor has a successor that isn't BB and isn't
3426 // outside the loop, assume the worst.
3427 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003428 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003429 }
3430 if (Pred == L->getHeader()) {
3431 Ok = true;
3432 break;
3433 }
3434 BB = Pred;
3435 }
3436 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003437 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003438 }
3439
3440 // Procede to the next level to examine the exit condition expression.
3441 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3442 ExitBr->getSuccessor(0),
3443 ExitBr->getSuccessor(1));
3444}
3445
3446/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3447/// backedge of the specified loop will execute if its exit condition
3448/// were a conditional branch of ExitCond, TBB, and FBB.
3449ScalarEvolution::BackedgeTakenInfo
3450ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3451 Value *ExitCond,
3452 BasicBlock *TBB,
3453 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003454 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003455 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3456 if (BO->getOpcode() == Instruction::And) {
3457 // Recurse on the operands of the and.
3458 BackedgeTakenInfo BTI0 =
3459 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3460 BackedgeTakenInfo BTI1 =
3461 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003462 const SCEV *BECount = getCouldNotCompute();
3463 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003464 if (L->contains(TBB)) {
3465 // Both conditions must be true for the loop to continue executing.
3466 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003467 if (BTI0.Exact == getCouldNotCompute() ||
3468 BTI1.Exact == getCouldNotCompute())
3469 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003470 else
3471 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003472 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003473 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003474 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003475 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003476 else
3477 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003478 } else {
3479 // Both conditions must be true for the loop to exit.
3480 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003481 if (BTI0.Exact != getCouldNotCompute() &&
3482 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003483 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003484 if (BTI0.Max != getCouldNotCompute() &&
3485 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003486 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3487 }
3488
3489 return BackedgeTakenInfo(BECount, MaxBECount);
3490 }
3491 if (BO->getOpcode() == Instruction::Or) {
3492 // Recurse on the operands of the or.
3493 BackedgeTakenInfo BTI0 =
3494 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3495 BackedgeTakenInfo BTI1 =
3496 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003497 const SCEV *BECount = getCouldNotCompute();
3498 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003499 if (L->contains(FBB)) {
3500 // Both conditions must be false for the loop to continue executing.
3501 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003502 if (BTI0.Exact == getCouldNotCompute() ||
3503 BTI1.Exact == getCouldNotCompute())
3504 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003505 else
3506 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003507 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003508 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003509 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003510 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003511 else
3512 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003513 } else {
3514 // Both conditions must be false for the loop to exit.
3515 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003516 if (BTI0.Exact != getCouldNotCompute() &&
3517 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003518 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003519 if (BTI0.Max != getCouldNotCompute() &&
3520 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003521 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3522 }
3523
3524 return BackedgeTakenInfo(BECount, MaxBECount);
3525 }
3526 }
3527
3528 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3529 // Procede to the next level to examine the icmp.
3530 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3531 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003532
Eli Friedman361e54d2009-05-09 12:32:42 +00003533 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003534 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3535}
3536
3537/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3538/// backedge of the specified loop will execute if its exit condition
3539/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3540ScalarEvolution::BackedgeTakenInfo
3541ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3542 ICmpInst *ExitCond,
3543 BasicBlock *TBB,
3544 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003545
Reid Spencere4d87aa2006-12-23 06:05:41 +00003546 // If the condition was exit on true, convert the condition to exit on false
3547 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003548 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003549 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003550 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003551 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003552
3553 // Handle common loops like: for (X = "string"; *X; ++X)
3554 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3555 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003556 const SCEV *ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003557 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmana334aa72009-06-22 00:31:57 +00003558 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3559 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3560 return BackedgeTakenInfo(ItCnt,
3561 isa<SCEVConstant>(ItCnt) ? ItCnt :
3562 getConstant(APInt::getMaxValue(BitWidth)-1));
3563 }
Chris Lattner673e02b2004-10-12 01:49:27 +00003564 }
3565
Dan Gohman0bba49c2009-07-07 17:06:11 +00003566 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3567 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003568
3569 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003570 LHS = getSCEVAtScope(LHS, L);
3571 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003572
Dan Gohman64a845e2009-06-24 04:48:43 +00003573 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003574 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003575 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3576 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003577 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003578 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003579 }
3580
Chris Lattner53e677a2004-04-02 20:23:17 +00003581 // If we have a comparison of a chrec against a constant, try to use value
3582 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003583 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3584 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003585 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003586 // Form the constant range.
3587 ConstantRange CompRange(
3588 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003589
Dan Gohman0bba49c2009-07-07 17:06:11 +00003590 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003591 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003592 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003593
Chris Lattner53e677a2004-04-02 20:23:17 +00003594 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003595 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003596 // Convert to: while (X-Y != 0)
Dan Gohman0bba49c2009-07-07 17:06:11 +00003597 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003598 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003599 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003600 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003601 case ICmpInst::ICMP_EQ: { // while (X == Y)
3602 // Convert to: while (X-Y == 0)
Dan Gohman0bba49c2009-07-07 17:06:11 +00003603 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003604 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003605 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003606 }
3607 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003608 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3609 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003610 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003611 }
3612 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003613 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3614 getNotSCEV(RHS), L, true);
3615 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003616 break;
3617 }
3618 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003619 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3620 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003621 break;
3622 }
3623 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003624 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3625 getNotSCEV(RHS), L, false);
3626 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003627 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003628 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003629 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003630#if 0
David Greene25e0e872009-12-23 22:18:14 +00003631 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003632 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003633 dbgs() << "[unsigned] ";
3634 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003635 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003636 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003637#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003638 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003639 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003640 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003641 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003642}
3643
Chris Lattner673e02b2004-10-12 01:49:27 +00003644static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003645EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3646 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003647 const SCEV *InVal = SE.getConstant(C);
3648 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003649 assert(isa<SCEVConstant>(Val) &&
3650 "Evaluation of SCEV at constant didn't fold correctly?");
3651 return cast<SCEVConstant>(Val)->getValue();
3652}
3653
3654/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3655/// and a GEP expression (missing the pointer index) indexing into it, return
3656/// the addressed element of the initializer or null if the index expression is
3657/// invalid.
3658static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003659GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003660 const std::vector<ConstantInt*> &Indices) {
3661 Constant *Init = GV->getInitializer();
3662 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003663 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003664 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3665 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3666 Init = cast<Constant>(CS->getOperand(Idx));
3667 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3668 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3669 Init = cast<Constant>(CA->getOperand(Idx));
3670 } else if (isa<ConstantAggregateZero>(Init)) {
3671 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3672 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003673 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003674 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3675 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003676 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003677 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003678 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003679 }
3680 return 0;
3681 } else {
3682 return 0; // Unknown initializer type
3683 }
3684 }
3685 return Init;
3686}
3687
Dan Gohman46bdfb02009-02-24 18:55:53 +00003688/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3689/// 'icmp op load X, cst', try to see if we can compute the backedge
3690/// execution count.
Dan Gohman64a845e2009-06-24 04:48:43 +00003691const SCEV *
3692ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3693 LoadInst *LI,
3694 Constant *RHS,
3695 const Loop *L,
3696 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003697 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003698
3699 // Check to see if the loaded pointer is a getelementptr of a global.
3700 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003701 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003702
3703 // Make sure that it is really a constant global we are gepping, with an
3704 // initializer, and make sure the first IDX is really 0.
3705 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003706 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003707 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3708 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003709 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003710
3711 // Okay, we allow one non-constant index into the GEP instruction.
3712 Value *VarIdx = 0;
3713 std::vector<ConstantInt*> Indexes;
3714 unsigned VarIdxNum = 0;
3715 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3716 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3717 Indexes.push_back(CI);
3718 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003719 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003720 VarIdx = GEP->getOperand(i);
3721 VarIdxNum = i-2;
3722 Indexes.push_back(0);
3723 }
3724
3725 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3726 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003727 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003728 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003729
3730 // We can only recognize very limited forms of loop index expressions, in
3731 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003732 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003733 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3734 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3735 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003736 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003737
3738 unsigned MaxSteps = MaxBruteForceIterations;
3739 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003740 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003741 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003742 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003743
3744 // Form the GEP offset.
3745 Indexes[VarIdxNum] = Val;
3746
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003747 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00003748 if (Result == 0) break; // Cannot compute!
3749
3750 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003751 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003752 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003753 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003754#if 0
David Greene25e0e872009-12-23 22:18:14 +00003755 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003756 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3757 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00003758#endif
3759 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003760 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00003761 }
3762 }
Dan Gohman1c343752009-06-27 21:21:31 +00003763 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003764}
3765
3766
Chris Lattner3221ad02004-04-17 22:58:41 +00003767/// CanConstantFold - Return true if we can constant fold an instruction of the
3768/// specified type, assuming that all operands were constants.
3769static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00003770 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00003771 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3772 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003773
Chris Lattner3221ad02004-04-17 22:58:41 +00003774 if (const CallInst *CI = dyn_cast<CallInst>(I))
3775 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00003776 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00003777 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00003778}
3779
Chris Lattner3221ad02004-04-17 22:58:41 +00003780/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3781/// in the loop that V is derived from. We allow arbitrary operations along the
3782/// way, but the operands of an operation must either be constants or a value
3783/// derived from a constant PHI. If this expression does not fit with these
3784/// constraints, return null.
3785static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3786 // If this is not an instruction, or if this is an instruction outside of the
3787 // loop, it can't be derived from a loop PHI.
3788 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00003789 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00003790
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003791 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003792 if (L->getHeader() == I->getParent())
3793 return PN;
3794 else
3795 // We don't currently keep track of the control flow needed to evaluate
3796 // PHIs, so we cannot handle PHIs inside of loops.
3797 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003798 }
Chris Lattner3221ad02004-04-17 22:58:41 +00003799
3800 // If we won't be able to constant fold this expression even if the operands
3801 // are constants, return early.
3802 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003803
Chris Lattner3221ad02004-04-17 22:58:41 +00003804 // Otherwise, we can evaluate this instruction if all of its operands are
3805 // constant or derived from a PHI node themselves.
3806 PHINode *PHI = 0;
3807 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3808 if (!(isa<Constant>(I->getOperand(Op)) ||
3809 isa<GlobalValue>(I->getOperand(Op)))) {
3810 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3811 if (P == 0) return 0; // Not evolving from PHI
3812 if (PHI == 0)
3813 PHI = P;
3814 else if (PHI != P)
3815 return 0; // Evolving from multiple different PHIs.
3816 }
3817
3818 // This is a expression evolving from a constant PHI!
3819 return PHI;
3820}
3821
3822/// EvaluateExpression - Given an expression that passes the
3823/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3824/// in the loop has the value PHIVal. If we can't fold this expression for some
3825/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003826static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
3827 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003828 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00003829 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00003830 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00003831 Instruction *I = cast<Instruction>(V);
3832
3833 std::vector<Constant*> Operands;
3834 Operands.resize(I->getNumOperands());
3835
3836 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003837 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003838 if (Operands[i] == 0) return 0;
3839 }
3840
Chris Lattnerf286f6f2007-12-10 22:53:04 +00003841 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00003842 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003843 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00003844 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003845 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003846}
3847
3848/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3849/// in the header of its containing loop, we know the loop executes a
3850/// constant number of times, and the PHI node is just a recurrence
3851/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00003852Constant *
3853ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00003854 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00003855 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003856 std::map<PHINode*, Constant*>::iterator I =
3857 ConstantEvolutionLoopExitValue.find(PN);
3858 if (I != ConstantEvolutionLoopExitValue.end())
3859 return I->second;
3860
Dan Gohman46bdfb02009-02-24 18:55:53 +00003861 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00003862 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3863
3864 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3865
3866 // Since the loop is canonicalized, the PHI node must have two entries. One
3867 // entry must be a constant (coming in from outside of the loop), and the
3868 // second must be derived from the same PHI.
3869 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3870 Constant *StartCST =
3871 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3872 if (StartCST == 0)
3873 return RetVal = 0; // Must be a constant.
3874
3875 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3876 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3877 if (PN2 != PN)
3878 return RetVal = 0; // Not derived from same PHI.
3879
3880 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003881 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00003882 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00003883
Dan Gohman46bdfb02009-02-24 18:55:53 +00003884 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00003885 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00003886 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3887 if (IterationNum == NumIterations)
3888 return RetVal = PHIVal; // Got exit value!
3889
3890 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003891 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003892 if (NextPHI == PHIVal)
3893 return RetVal = NextPHI; // Stopped evolving!
3894 if (NextPHI == 0)
3895 return 0; // Couldn't evaluate!
3896 PHIVal = NextPHI;
3897 }
3898}
3899
Dan Gohman07ad19b2009-07-27 16:09:48 +00003900/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00003901/// constant number of times (the condition evolves only from constants),
3902/// try to evaluate a few iterations of the loop until we get the exit
3903/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00003904/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00003905const SCEV *
3906ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3907 Value *Cond,
3908 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00003909 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00003910 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00003911
3912 // Since the loop is canonicalized, the PHI node must have two entries. One
3913 // entry must be a constant (coming in from outside of the loop), and the
3914 // second must be derived from the same PHI.
3915 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3916 Constant *StartCST =
3917 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00003918 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00003919
3920 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3921 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00003922 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00003923
3924 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3925 // the loop symbolically to determine when the condition gets a value of
3926 // "ExitWhen".
3927 unsigned IterationNum = 0;
3928 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3929 for (Constant *PHIVal = StartCST;
3930 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003931 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003932 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00003933
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003934 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00003935 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003936
Reid Spencere8019bb2007-03-01 07:25:48 +00003937 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00003938 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00003939 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00003940 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003941
Chris Lattner3221ad02004-04-17 22:58:41 +00003942 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00003943 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00003944 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00003945 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00003946 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00003947 }
3948
3949 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00003950 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003951}
3952
Dan Gohmane7125f42009-09-03 15:00:26 +00003953/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00003954/// at the specified scope in the program. The L value specifies a loop
3955/// nest to evaluate the expression at, where null is the top-level or a
3956/// specified loop is immediately inside of the loop.
3957///
3958/// This method can be used to compute the exit value for a variable defined
3959/// in a loop by querying what the value will hold in the parent loop.
3960///
Dan Gohmand594e6f2009-05-24 23:25:42 +00003961/// In the case that a relevant loop exit value cannot be computed, the
3962/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003963const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00003964 // Check to see if we've folded this expression at this loop before.
3965 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
3966 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
3967 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
3968 if (!Pair.second)
3969 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00003970
Dan Gohman42214892009-08-31 21:15:23 +00003971 // Otherwise compute it.
3972 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00003973 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00003974 return C;
3975}
3976
3977const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003978 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003979
Nick Lewycky3e630762008-02-20 06:48:22 +00003980 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00003981 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00003982 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003983 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003984 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00003985 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3986 if (PHINode *PN = dyn_cast<PHINode>(I))
3987 if (PN->getParent() == LI->getHeader()) {
3988 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00003989 // to see if the loop that contains it has a known backedge-taken
3990 // count. If so, we may be able to force computation of the exit
3991 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003992 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00003993 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003994 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003995 // Okay, we know how many times the containing loop executes. If
3996 // this is a constant evolving PHI node, get the final value at
3997 // the specified iteration number.
3998 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00003999 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004000 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004001 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004002 }
4003 }
4004
Reid Spencer09906f32006-12-04 21:33:23 +00004005 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004006 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004007 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004008 // result. This is particularly useful for computing loop exit values.
4009 if (CanConstantFold(I)) {
4010 std::vector<Constant*> Operands;
4011 Operands.reserve(I->getNumOperands());
4012 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4013 Value *Op = I->getOperand(i);
4014 if (Constant *C = dyn_cast<Constant>(Op)) {
4015 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004016 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004017 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004018 // non-integer and non-pointer, don't even try to analyze them
4019 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004020 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004021 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004022
Dan Gohman5d984912009-12-18 01:14:11 +00004023 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004024 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004025 Constant *C = SC->getValue();
4026 if (C->getType() != Op->getType())
4027 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4028 Op->getType(),
4029 false),
4030 C, Op->getType());
4031 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004032 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004033 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4034 if (C->getType() != Op->getType())
4035 C =
4036 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4037 Op->getType(),
4038 false),
4039 C, Op->getType());
4040 Operands.push_back(C);
4041 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004042 return V;
4043 } else {
4044 return V;
4045 }
4046 }
4047 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004048
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004049 Constant *C;
4050 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4051 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004052 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004053 else
4054 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004055 &Operands[0], Operands.size(), TD);
Dan Gohman09987962009-06-29 21:31:18 +00004056 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004057 }
4058 }
4059
4060 // This is some other type of SCEVUnknown, just return it.
4061 return V;
4062 }
4063
Dan Gohman622ed672009-05-04 22:02:23 +00004064 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004065 // Avoid performing the look-up in the common case where the specified
4066 // expression has no loop-variant portions.
4067 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004068 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004069 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004070 // Okay, at least one of these operands is loop variant but might be
4071 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004072 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4073 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004074 NewOps.push_back(OpAtScope);
4075
4076 for (++i; i != e; ++i) {
4077 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004078 NewOps.push_back(OpAtScope);
4079 }
4080 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004081 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004082 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004083 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004084 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004085 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004086 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004087 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004088 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004089 }
4090 }
4091 // If we got here, all operands are loop invariant.
4092 return Comm;
4093 }
4094
Dan Gohman622ed672009-05-04 22:02:23 +00004095 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004096 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4097 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004098 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4099 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004100 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004101 }
4102
4103 // If this is a loop recurrence for a loop that does not contain L, then we
4104 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004105 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004106 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004107 // To evaluate this recurrence, we need to know how many times the AddRec
4108 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004109 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004110 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004111
Eli Friedmanb42a6262008-08-04 23:49:06 +00004112 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004113 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004114 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004115 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004116 }
4117
Dan Gohman622ed672009-05-04 22:02:23 +00004118 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004119 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004120 if (Op == Cast->getOperand())
4121 return Cast; // must be loop invariant
4122 return getZeroExtendExpr(Op, Cast->getType());
4123 }
4124
Dan Gohman622ed672009-05-04 22:02:23 +00004125 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004126 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004127 if (Op == Cast->getOperand())
4128 return Cast; // must be loop invariant
4129 return getSignExtendExpr(Op, Cast->getType());
4130 }
4131
Dan Gohman622ed672009-05-04 22:02:23 +00004132 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004133 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004134 if (Op == Cast->getOperand())
4135 return Cast; // must be loop invariant
4136 return getTruncateExpr(Op, Cast->getType());
4137 }
4138
Dan Gohmanc40f17b2009-08-18 16:46:41 +00004139 if (isa<SCEVTargetDataConstant>(V))
4140 return V;
4141
Torok Edwinc23197a2009-07-14 16:55:14 +00004142 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004143 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004144}
4145
Dan Gohman66a7e852009-05-08 20:38:54 +00004146/// getSCEVAtScope - This is a convenience function which does
4147/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004148const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004149 return getSCEVAtScope(getSCEV(V), L);
4150}
4151
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004152/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4153/// following equation:
4154///
4155/// A * X = B (mod N)
4156///
4157/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4158/// A and B isn't important.
4159///
4160/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004161static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004162 ScalarEvolution &SE) {
4163 uint32_t BW = A.getBitWidth();
4164 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4165 assert(A != 0 && "A must be non-zero.");
4166
4167 // 1. D = gcd(A, N)
4168 //
4169 // The gcd of A and N may have only one prime factor: 2. The number of
4170 // trailing zeros in A is its multiplicity
4171 uint32_t Mult2 = A.countTrailingZeros();
4172 // D = 2^Mult2
4173
4174 // 2. Check if B is divisible by D.
4175 //
4176 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4177 // is not less than multiplicity of this prime factor for D.
4178 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004179 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004180
4181 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4182 // modulo (N / D).
4183 //
4184 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4185 // bit width during computations.
4186 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4187 APInt Mod(BW + 1, 0);
4188 Mod.set(BW - Mult2); // Mod = N / D
4189 APInt I = AD.multiplicativeInverse(Mod);
4190
4191 // 4. Compute the minimum unsigned root of the equation:
4192 // I * (B / D) mod (N / D)
4193 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4194
4195 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4196 // bits.
4197 return SE.getConstant(Result.trunc(BW));
4198}
Chris Lattner53e677a2004-04-02 20:23:17 +00004199
4200/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4201/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4202/// might be the same) or two SCEVCouldNotCompute objects.
4203///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004204static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004205SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004206 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004207 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4208 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4209 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004210
Chris Lattner53e677a2004-04-02 20:23:17 +00004211 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004212 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004213 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004214 return std::make_pair(CNC, CNC);
4215 }
4216
Reid Spencere8019bb2007-03-01 07:25:48 +00004217 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004218 const APInt &L = LC->getValue()->getValue();
4219 const APInt &M = MC->getValue()->getValue();
4220 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004221 APInt Two(BitWidth, 2);
4222 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004223
Dan Gohman64a845e2009-06-24 04:48:43 +00004224 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004225 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004226 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004227 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4228 // The B coefficient is M-N/2
4229 APInt B(M);
4230 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004231
Reid Spencere8019bb2007-03-01 07:25:48 +00004232 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004233 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004234
Reid Spencere8019bb2007-03-01 07:25:48 +00004235 // Compute the B^2-4ac term.
4236 APInt SqrtTerm(B);
4237 SqrtTerm *= B;
4238 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004239
Reid Spencere8019bb2007-03-01 07:25:48 +00004240 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4241 // integer value or else APInt::sqrt() will assert.
4242 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004243
Dan Gohman64a845e2009-06-24 04:48:43 +00004244 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004245 // The divisions must be performed as signed divisions.
4246 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004247 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004248 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004249 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004250 return std::make_pair(CNC, CNC);
4251 }
4252
Owen Andersone922c022009-07-22 00:24:57 +00004253 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004254
4255 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004256 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004257 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004258 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004259
Dan Gohman64a845e2009-06-24 04:48:43 +00004260 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004261 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004262 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004263}
4264
4265/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004266/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004267const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004268 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004269 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004270 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004271 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004272 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004273 }
4274
Dan Gohman35738ac2009-05-04 22:30:44 +00004275 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004276 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004277 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004278
4279 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004280 // If this is an affine expression, the execution count of this branch is
4281 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004282 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004283 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004284 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004285 // equivalent to:
4286 //
4287 // Step*N = -Start (mod 2^BW)
4288 //
4289 // where BW is the common bit width of Start and Step.
4290
Chris Lattner53e677a2004-04-02 20:23:17 +00004291 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004292 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4293 L->getParentLoop());
4294 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4295 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004296
Dan Gohman622ed672009-05-04 22:02:23 +00004297 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004298 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004299
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004300 // First, handle unitary steps.
4301 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004302 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004303 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4304 return Start; // N = Start (as unsigned)
4305
4306 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004307 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004308 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004309 -StartC->getValue()->getValue(),
4310 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004311 }
Chris Lattner42a75512007-01-15 02:27:26 +00004312 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004313 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4314 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004315 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004316 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004317 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4318 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004319 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004320#if 0
David Greene25e0e872009-12-23 22:18:14 +00004321 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004322 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004323#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004324 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004325 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004326 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004327 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004328 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004329 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004330
Chris Lattner53e677a2004-04-02 20:23:17 +00004331 // We can only use this value if the chrec ends up with an exact zero
4332 // value at this index. When solving for "X*X != 5", for example, we
4333 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004334 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004335 if (Val->isZero())
4336 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004337 }
4338 }
4339 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004340
Dan Gohman1c343752009-06-27 21:21:31 +00004341 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004342}
4343
4344/// HowFarToNonZero - Return the number of times a backedge checking the
4345/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004346/// CouldNotCompute
Dan Gohman0bba49c2009-07-07 17:06:11 +00004347const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004348 // Loops that look like: while (X == 0) are very strange indeed. We don't
4349 // handle them yet except for the trivial case. This could be expanded in the
4350 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004351
Chris Lattner53e677a2004-04-02 20:23:17 +00004352 // If the value is a constant, check to see if it is known to be non-zero
4353 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004354 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004355 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004356 return getIntegerSCEV(0, C->getType());
Dan Gohman1c343752009-06-27 21:21:31 +00004357 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004358 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004359
Chris Lattner53e677a2004-04-02 20:23:17 +00004360 // We could implement others, but I really doubt anyone writes loops like
4361 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004362 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004363}
4364
Dan Gohman859b4822009-05-18 15:36:09 +00004365/// getLoopPredecessor - If the given loop's header has exactly one unique
4366/// predecessor outside the loop, return it. Otherwise return null.
4367///
4368BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4369 BasicBlock *Header = L->getHeader();
4370 BasicBlock *Pred = 0;
4371 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4372 PI != E; ++PI)
4373 if (!L->contains(*PI)) {
4374 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4375 Pred = *PI;
4376 }
4377 return Pred;
4378}
4379
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004380/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4381/// (which may not be an immediate predecessor) which has exactly one
4382/// successor from which BB is reachable, or null if no such block is
4383/// found.
4384///
4385BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004386ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004387 // If the block has a unique predecessor, then there is no path from the
4388 // predecessor to the block that does not go through the direct edge
4389 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004390 if (BasicBlock *Pred = BB->getSinglePredecessor())
4391 return Pred;
4392
4393 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004394 // If the header has a unique predecessor outside the loop, it must be
4395 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004396 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00004397 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004398
4399 return 0;
4400}
4401
Dan Gohman763bad12009-06-20 00:35:32 +00004402/// HasSameValue - SCEV structural equivalence is usually sufficient for
4403/// testing whether two expressions are equal, however for the purposes of
4404/// looking for a condition guarding a loop, it can be useful to be a little
4405/// more general, since a front-end may have replicated the controlling
4406/// expression.
4407///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004408static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004409 // Quick check to see if they are the same SCEV.
4410 if (A == B) return true;
4411
4412 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4413 // two different instructions with the same value. Check for this case.
4414 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4415 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4416 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4417 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004418 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004419 return true;
4420
4421 // Otherwise assume they may have a different value.
4422 return false;
4423}
4424
Dan Gohman85b05a22009-07-13 21:35:55 +00004425bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4426 return getSignedRange(S).getSignedMax().isNegative();
4427}
4428
4429bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4430 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4431}
4432
4433bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4434 return !getSignedRange(S).getSignedMin().isNegative();
4435}
4436
4437bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4438 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4439}
4440
4441bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4442 return isKnownNegative(S) || isKnownPositive(S);
4443}
4444
4445bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4446 const SCEV *LHS, const SCEV *RHS) {
4447
4448 if (HasSameValue(LHS, RHS))
4449 return ICmpInst::isTrueWhenEqual(Pred);
4450
4451 switch (Pred) {
4452 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004453 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004454 break;
4455 case ICmpInst::ICMP_SGT:
4456 Pred = ICmpInst::ICMP_SLT;
4457 std::swap(LHS, RHS);
4458 case ICmpInst::ICMP_SLT: {
4459 ConstantRange LHSRange = getSignedRange(LHS);
4460 ConstantRange RHSRange = getSignedRange(RHS);
4461 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4462 return true;
4463 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4464 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004465 break;
4466 }
4467 case ICmpInst::ICMP_SGE:
4468 Pred = ICmpInst::ICMP_SLE;
4469 std::swap(LHS, RHS);
4470 case ICmpInst::ICMP_SLE: {
4471 ConstantRange LHSRange = getSignedRange(LHS);
4472 ConstantRange RHSRange = getSignedRange(RHS);
4473 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4474 return true;
4475 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4476 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004477 break;
4478 }
4479 case ICmpInst::ICMP_UGT:
4480 Pred = ICmpInst::ICMP_ULT;
4481 std::swap(LHS, RHS);
4482 case ICmpInst::ICMP_ULT: {
4483 ConstantRange LHSRange = getUnsignedRange(LHS);
4484 ConstantRange RHSRange = getUnsignedRange(RHS);
4485 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4486 return true;
4487 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4488 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004489 break;
4490 }
4491 case ICmpInst::ICMP_UGE:
4492 Pred = ICmpInst::ICMP_ULE;
4493 std::swap(LHS, RHS);
4494 case ICmpInst::ICMP_ULE: {
4495 ConstantRange LHSRange = getUnsignedRange(LHS);
4496 ConstantRange RHSRange = getUnsignedRange(RHS);
4497 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4498 return true;
4499 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4500 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004501 break;
4502 }
4503 case ICmpInst::ICMP_NE: {
4504 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4505 return true;
4506 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4507 return true;
4508
4509 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4510 if (isKnownNonZero(Diff))
4511 return true;
4512 break;
4513 }
4514 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00004515 // The check at the top of the function catches the case where
4516 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00004517 break;
4518 }
4519 return false;
4520}
4521
4522/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4523/// protected by a conditional between LHS and RHS. This is used to
4524/// to eliminate casts.
4525bool
4526ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4527 ICmpInst::Predicate Pred,
4528 const SCEV *LHS, const SCEV *RHS) {
4529 // Interpret a null as meaning no loop, where there is obviously no guard
4530 // (interprocedural conditions notwithstanding).
4531 if (!L) return true;
4532
4533 BasicBlock *Latch = L->getLoopLatch();
4534 if (!Latch)
4535 return false;
4536
4537 BranchInst *LoopContinuePredicate =
4538 dyn_cast<BranchInst>(Latch->getTerminator());
4539 if (!LoopContinuePredicate ||
4540 LoopContinuePredicate->isUnconditional())
4541 return false;
4542
Dan Gohman0f4b2852009-07-21 23:03:19 +00004543 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4544 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00004545}
4546
4547/// isLoopGuardedByCond - Test whether entry to the loop is protected
4548/// by a conditional between LHS and RHS. This is used to help avoid max
4549/// expressions in loop trip counts, and to eliminate casts.
4550bool
4551ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4552 ICmpInst::Predicate Pred,
4553 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00004554 // Interpret a null as meaning no loop, where there is obviously no guard
4555 // (interprocedural conditions notwithstanding).
4556 if (!L) return false;
4557
Dan Gohman859b4822009-05-18 15:36:09 +00004558 BasicBlock *Predecessor = getLoopPredecessor(L);
4559 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00004560
Dan Gohman859b4822009-05-18 15:36:09 +00004561 // Starting at the loop predecessor, climb up the predecessor chain, as long
4562 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004563 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00004564 for (; Predecessor;
4565 PredecessorDest = Predecessor,
4566 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00004567
4568 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00004569 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00004570 if (!LoopEntryPredicate ||
4571 LoopEntryPredicate->isUnconditional())
4572 continue;
4573
Dan Gohman0f4b2852009-07-21 23:03:19 +00004574 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4575 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohman38372182008-08-12 20:17:31 +00004576 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00004577 }
4578
Dan Gohman38372182008-08-12 20:17:31 +00004579 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00004580}
4581
Dan Gohman0f4b2852009-07-21 23:03:19 +00004582/// isImpliedCond - Test whether the condition described by Pred, LHS,
4583/// and RHS is true whenever the given Cond value evaluates to true.
4584bool ScalarEvolution::isImpliedCond(Value *CondValue,
4585 ICmpInst::Predicate Pred,
4586 const SCEV *LHS, const SCEV *RHS,
4587 bool Inverse) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004588 // Recursivly handle And and Or conditions.
4589 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4590 if (BO->getOpcode() == Instruction::And) {
4591 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004592 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4593 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004594 } else if (BO->getOpcode() == Instruction::Or) {
4595 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004596 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4597 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004598 }
4599 }
4600
4601 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4602 if (!ICI) return false;
4603
Dan Gohman85b05a22009-07-13 21:35:55 +00004604 // Bail if the ICmp's operands' types are wider than the needed type
4605 // before attempting to call getSCEV on them. This avoids infinite
4606 // recursion, since the analysis of widening casts can require loop
4607 // exit condition information for overflow checking, which would
4608 // lead back here.
4609 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00004610 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00004611 return false;
4612
Dan Gohman0f4b2852009-07-21 23:03:19 +00004613 // Now that we found a conditional branch that dominates the loop, check to
4614 // see if it is the comparison we are looking for.
4615 ICmpInst::Predicate FoundPred;
4616 if (Inverse)
4617 FoundPred = ICI->getInversePredicate();
4618 else
4619 FoundPred = ICI->getPredicate();
4620
4621 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4622 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00004623
4624 // Balance the types. The case where FoundLHS' type is wider than
4625 // LHS' type is checked for above.
4626 if (getTypeSizeInBits(LHS->getType()) >
4627 getTypeSizeInBits(FoundLHS->getType())) {
4628 if (CmpInst::isSigned(Pred)) {
4629 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4630 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4631 } else {
4632 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4633 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4634 }
4635 }
4636
Dan Gohman0f4b2852009-07-21 23:03:19 +00004637 // Canonicalize the query to match the way instcombine will have
4638 // canonicalized the comparison.
4639 // First, put a constant operand on the right.
4640 if (isa<SCEVConstant>(LHS)) {
4641 std::swap(LHS, RHS);
4642 Pred = ICmpInst::getSwappedPredicate(Pred);
4643 }
4644 // Then, canonicalize comparisons with boundary cases.
4645 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4646 const APInt &RA = RC->getValue()->getValue();
4647 switch (Pred) {
4648 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4649 case ICmpInst::ICMP_EQ:
4650 case ICmpInst::ICMP_NE:
4651 break;
4652 case ICmpInst::ICMP_UGE:
4653 if ((RA - 1).isMinValue()) {
4654 Pred = ICmpInst::ICMP_NE;
4655 RHS = getConstant(RA - 1);
4656 break;
4657 }
4658 if (RA.isMaxValue()) {
4659 Pred = ICmpInst::ICMP_EQ;
4660 break;
4661 }
4662 if (RA.isMinValue()) return true;
4663 break;
4664 case ICmpInst::ICMP_ULE:
4665 if ((RA + 1).isMaxValue()) {
4666 Pred = ICmpInst::ICMP_NE;
4667 RHS = getConstant(RA + 1);
4668 break;
4669 }
4670 if (RA.isMinValue()) {
4671 Pred = ICmpInst::ICMP_EQ;
4672 break;
4673 }
4674 if (RA.isMaxValue()) return true;
4675 break;
4676 case ICmpInst::ICMP_SGE:
4677 if ((RA - 1).isMinSignedValue()) {
4678 Pred = ICmpInst::ICMP_NE;
4679 RHS = getConstant(RA - 1);
4680 break;
4681 }
4682 if (RA.isMaxSignedValue()) {
4683 Pred = ICmpInst::ICMP_EQ;
4684 break;
4685 }
4686 if (RA.isMinSignedValue()) return true;
4687 break;
4688 case ICmpInst::ICMP_SLE:
4689 if ((RA + 1).isMaxSignedValue()) {
4690 Pred = ICmpInst::ICMP_NE;
4691 RHS = getConstant(RA + 1);
4692 break;
4693 }
4694 if (RA.isMinSignedValue()) {
4695 Pred = ICmpInst::ICMP_EQ;
4696 break;
4697 }
4698 if (RA.isMaxSignedValue()) return true;
4699 break;
4700 case ICmpInst::ICMP_UGT:
4701 if (RA.isMinValue()) {
4702 Pred = ICmpInst::ICMP_NE;
4703 break;
4704 }
4705 if ((RA + 1).isMaxValue()) {
4706 Pred = ICmpInst::ICMP_EQ;
4707 RHS = getConstant(RA + 1);
4708 break;
4709 }
4710 if (RA.isMaxValue()) return false;
4711 break;
4712 case ICmpInst::ICMP_ULT:
4713 if (RA.isMaxValue()) {
4714 Pred = ICmpInst::ICMP_NE;
4715 break;
4716 }
4717 if ((RA - 1).isMinValue()) {
4718 Pred = ICmpInst::ICMP_EQ;
4719 RHS = getConstant(RA - 1);
4720 break;
4721 }
4722 if (RA.isMinValue()) return false;
4723 break;
4724 case ICmpInst::ICMP_SGT:
4725 if (RA.isMinSignedValue()) {
4726 Pred = ICmpInst::ICMP_NE;
4727 break;
4728 }
4729 if ((RA + 1).isMaxSignedValue()) {
4730 Pred = ICmpInst::ICMP_EQ;
4731 RHS = getConstant(RA + 1);
4732 break;
4733 }
4734 if (RA.isMaxSignedValue()) return false;
4735 break;
4736 case ICmpInst::ICMP_SLT:
4737 if (RA.isMaxSignedValue()) {
4738 Pred = ICmpInst::ICMP_NE;
4739 break;
4740 }
4741 if ((RA - 1).isMinSignedValue()) {
4742 Pred = ICmpInst::ICMP_EQ;
4743 RHS = getConstant(RA - 1);
4744 break;
4745 }
4746 if (RA.isMinSignedValue()) return false;
4747 break;
4748 }
4749 }
4750
4751 // Check to see if we can make the LHS or RHS match.
4752 if (LHS == FoundRHS || RHS == FoundLHS) {
4753 if (isa<SCEVConstant>(RHS)) {
4754 std::swap(FoundLHS, FoundRHS);
4755 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4756 } else {
4757 std::swap(LHS, RHS);
4758 Pred = ICmpInst::getSwappedPredicate(Pred);
4759 }
4760 }
4761
4762 // Check whether the found predicate is the same as the desired predicate.
4763 if (FoundPred == Pred)
4764 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4765
4766 // Check whether swapping the found predicate makes it the same as the
4767 // desired predicate.
4768 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4769 if (isa<SCEVConstant>(RHS))
4770 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4771 else
4772 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4773 RHS, LHS, FoundLHS, FoundRHS);
4774 }
4775
4776 // Check whether the actual condition is beyond sufficient.
4777 if (FoundPred == ICmpInst::ICMP_EQ)
4778 if (ICmpInst::isTrueWhenEqual(Pred))
4779 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4780 return true;
4781 if (Pred == ICmpInst::ICMP_NE)
4782 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4783 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4784 return true;
4785
4786 // Otherwise assume the worst.
4787 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004788}
4789
Dan Gohman0f4b2852009-07-21 23:03:19 +00004790/// isImpliedCondOperands - Test whether the condition described by Pred,
4791/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4792/// and FoundRHS is true.
4793bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4794 const SCEV *LHS, const SCEV *RHS,
4795 const SCEV *FoundLHS,
4796 const SCEV *FoundRHS) {
4797 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4798 FoundLHS, FoundRHS) ||
4799 // ~x < ~y --> x > y
4800 isImpliedCondOperandsHelper(Pred, LHS, RHS,
4801 getNotSCEV(FoundRHS),
4802 getNotSCEV(FoundLHS));
4803}
4804
4805/// isImpliedCondOperandsHelper - Test whether the condition described by
4806/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4807/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00004808bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00004809ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4810 const SCEV *LHS, const SCEV *RHS,
4811 const SCEV *FoundLHS,
4812 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00004813 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00004814 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4815 case ICmpInst::ICMP_EQ:
4816 case ICmpInst::ICMP_NE:
4817 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4818 return true;
4819 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00004820 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00004821 case ICmpInst::ICMP_SLE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004822 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4823 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4824 return true;
4825 break;
4826 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00004827 case ICmpInst::ICMP_SGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004828 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4829 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4830 return true;
4831 break;
4832 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00004833 case ICmpInst::ICMP_ULE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004834 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4835 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4836 return true;
4837 break;
4838 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00004839 case ICmpInst::ICMP_UGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004840 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4841 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4842 return true;
4843 break;
4844 }
4845
4846 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004847}
4848
Dan Gohman51f53b72009-06-21 23:46:38 +00004849/// getBECount - Subtract the end and start values and divide by the step,
4850/// rounding up, to get the number of times the backedge is executed. Return
4851/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004852const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00004853 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00004854 const SCEV *Step,
4855 bool NoWrap) {
Dan Gohman51f53b72009-06-21 23:46:38 +00004856 const Type *Ty = Start->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00004857 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4858 const SCEV *Diff = getMinusSCEV(End, Start);
4859 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00004860
4861 // Add an adjustment to the difference between End and Start so that
4862 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004863 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00004864
Dan Gohman1f96e672009-09-17 18:05:20 +00004865 if (!NoWrap) {
4866 // Check Add for unsigned overflow.
4867 // TODO: More sophisticated things could be done here.
4868 const Type *WideTy = IntegerType::get(getContext(),
4869 getTypeSizeInBits(Ty) + 1);
4870 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4871 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4872 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4873 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4874 return getCouldNotCompute();
4875 }
Dan Gohman51f53b72009-06-21 23:46:38 +00004876
4877 return getUDivExpr(Add, Step);
4878}
4879
Chris Lattnerdb25de42005-08-15 23:33:51 +00004880/// HowManyLessThans - Return the number of times a backedge containing the
4881/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004882/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00004883ScalarEvolution::BackedgeTakenInfo
4884ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4885 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00004886 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00004887 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004888
Dan Gohman35738ac2009-05-04 22:30:44 +00004889 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004890 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004891 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004892
Dan Gohman1f96e672009-09-17 18:05:20 +00004893 // Check to see if we have a flag which makes analysis easy.
4894 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
4895 AddRec->hasNoUnsignedWrap();
4896
Chris Lattnerdb25de42005-08-15 23:33:51 +00004897 if (AddRec->isAffine()) {
Nick Lewycky789558d2009-01-13 09:18:58 +00004898 // FORNOW: We only support unit strides.
Dan Gohmana1af7572009-04-30 20:47:05 +00004899 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00004900 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004901
4902 // TODO: handle non-constant strides.
4903 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4904 if (!CStep || CStep->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00004905 return getCouldNotCompute();
Dan Gohman70a1fe72009-05-18 15:22:39 +00004906 if (CStep->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00004907 // With unit stride, the iteration never steps past the limit value.
4908 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
Dan Gohman1f96e672009-09-17 18:05:20 +00004909 if (NoWrap) {
4910 // We know the iteration won't step past the maximum value for its type.
4911 ;
4912 } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmana1af7572009-04-30 20:47:05 +00004913 // Test whether a positive iteration iteration can step past the limit
4914 // value and past the maximum value for its type in a single step.
4915 if (isSigned) {
4916 APInt Max = APInt::getSignedMaxValue(BitWidth);
4917 if ((Max - CStep->getValue()->getValue())
4918 .slt(CLimit->getValue()->getValue()))
Dan Gohman1c343752009-06-27 21:21:31 +00004919 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004920 } else {
4921 APInt Max = APInt::getMaxValue(BitWidth);
4922 if ((Max - CStep->getValue()->getValue())
4923 .ult(CLimit->getValue()->getValue()))
Dan Gohman1c343752009-06-27 21:21:31 +00004924 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004925 }
4926 } else
4927 // TODO: handle non-constant limit values below.
Dan Gohman1c343752009-06-27 21:21:31 +00004928 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004929 } else
4930 // TODO: handle negative strides below.
Dan Gohman1c343752009-06-27 21:21:31 +00004931 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004932
Dan Gohmana1af7572009-04-30 20:47:05 +00004933 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4934 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4935 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00004936 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00004937
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004938 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00004939 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004940
Dan Gohmana1af7572009-04-30 20:47:05 +00004941 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00004942 const SCEV *MinStart = getConstant(isSigned ?
4943 getSignedRange(Start).getSignedMin() :
4944 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004945
Dan Gohmana1af7572009-04-30 20:47:05 +00004946 // If we know that the condition is true in order to enter the loop,
4947 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00004948 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4949 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004950 const SCEV *End = RHS;
Dan Gohmana1af7572009-04-30 20:47:05 +00004951 if (!isLoopGuardedByCond(L,
Dan Gohman85b05a22009-07-13 21:35:55 +00004952 isSigned ? ICmpInst::ICMP_SLT :
4953 ICmpInst::ICMP_ULT,
Dan Gohmana1af7572009-04-30 20:47:05 +00004954 getMinusSCEV(Start, Step), RHS))
4955 End = isSigned ? getSMaxExpr(RHS, Start)
4956 : getUMaxExpr(RHS, Start);
4957
4958 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00004959 const SCEV *MaxEnd = getConstant(isSigned ?
4960 getSignedRange(End).getSignedMax() :
4961 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00004962
4963 // Finally, we subtract these two values and divide, rounding up, to get
4964 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00004965 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00004966
4967 // The maximum backedge count is similar, except using the minimum start
4968 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00004969 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00004970
4971 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004972 }
4973
Dan Gohman1c343752009-06-27 21:21:31 +00004974 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004975}
4976
Chris Lattner53e677a2004-04-02 20:23:17 +00004977/// getNumIterationsInRange - Return the number of iterations of this loop that
4978/// produce values in the specified constant range. Another way of looking at
4979/// this is that it returns the first iteration number where the value is not in
4980/// the condition, thus computing the exit count. If the iteration count can't
4981/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004982const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00004983 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00004984 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004985 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004986
4987 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00004988 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00004989 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004990 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00004991 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00004992 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00004993 if (const SCEVAddRecExpr *ShiftedAddRec =
4994 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00004995 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00004996 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00004997 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004998 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004999 }
5000
5001 // The only time we can solve this is when we have all constant indices.
5002 // Otherwise, we cannot determine the overflow conditions.
5003 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5004 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005005 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005006
5007
5008 // Okay at this point we know that all elements of the chrec are constants and
5009 // that the start element is zero.
5010
5011 // First check to see if the range contains zero. If not, the first
5012 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005013 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005014 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00005015 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005016
Chris Lattner53e677a2004-04-02 20:23:17 +00005017 if (isAffine()) {
5018 // If this is an affine expression then we have this situation:
5019 // Solve {0,+,A} in Range === Ax in Range
5020
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005021 // We know that zero is in the range. If A is positive then we know that
5022 // the upper value of the range must be the first possible exit value.
5023 // If A is negative then the lower of the range is the last possible loop
5024 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005025 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005026 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5027 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005028
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005029 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005030 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005031 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005032
5033 // Evaluate at the exit value. If we really did fall out of the valid
5034 // range, then we computed our trip count, otherwise wrap around or other
5035 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005036 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005037 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005038 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005039
5040 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005041 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005042 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005043 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005044 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005045 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005046 } else if (isQuadratic()) {
5047 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5048 // quadratic equation to solve it. To do this, we must frame our problem in
5049 // terms of figuring out when zero is crossed, instead of when
5050 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005051 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005052 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005053 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005054
5055 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005056 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005057 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005058 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5059 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005060 if (R1) {
5061 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005062 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005063 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005064 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005065 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005066 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005067
Chris Lattner53e677a2004-04-02 20:23:17 +00005068 // Make sure the root is not off by one. The returned iteration should
5069 // not be in the range, but the previous one should be. When solving
5070 // for "X*X < 5", for example, we should not return a root of 2.
5071 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005072 R1->getValue(),
5073 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005074 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005075 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005076 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005077 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005078
Dan Gohman246b2562007-10-22 18:31:58 +00005079 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005080 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005081 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005082 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005083 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005084
Chris Lattner53e677a2004-04-02 20:23:17 +00005085 // If R1 was not in the range, then it is a good return value. Make
5086 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005087 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005088 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005089 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005090 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005091 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005092 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005093 }
5094 }
5095 }
5096
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005097 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005098}
5099
5100
5101
5102//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005103// SCEVCallbackVH Class Implementation
5104//===----------------------------------------------------------------------===//
5105
Dan Gohman1959b752009-05-19 19:22:47 +00005106void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005107 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005108 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5109 SE->ConstantEvolutionLoopExitValue.erase(PN);
5110 SE->Scalars.erase(getValPtr());
5111 // this now dangles!
5112}
5113
Dan Gohman1959b752009-05-19 19:22:47 +00005114void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005115 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005116
5117 // Forget all the expressions associated with users of the old value,
5118 // so that future queries will recompute the expressions using the new
5119 // value.
5120 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005121 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005122 Value *Old = getValPtr();
5123 bool DeleteOld = false;
5124 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5125 UI != UE; ++UI)
5126 Worklist.push_back(*UI);
5127 while (!Worklist.empty()) {
5128 User *U = Worklist.pop_back_val();
5129 // Deleting the Old value will cause this to dangle. Postpone
5130 // that until everything else is done.
5131 if (U == Old) {
5132 DeleteOld = true;
5133 continue;
5134 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005135 if (!Visited.insert(U))
5136 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005137 if (PHINode *PN = dyn_cast<PHINode>(U))
5138 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005139 SE->Scalars.erase(U);
5140 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5141 UI != UE; ++UI)
5142 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005143 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005144 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005145 if (DeleteOld) {
5146 if (PHINode *PN = dyn_cast<PHINode>(Old))
5147 SE->ConstantEvolutionLoopExitValue.erase(PN);
5148 SE->Scalars.erase(Old);
5149 // this now dangles!
5150 }
5151 // this may dangle!
5152}
5153
Dan Gohman1959b752009-05-19 19:22:47 +00005154ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005155 : CallbackVH(V), SE(se) {}
5156
5157//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005158// ScalarEvolution Class Implementation
5159//===----------------------------------------------------------------------===//
5160
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005161ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005162 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005163}
5164
Chris Lattner53e677a2004-04-02 20:23:17 +00005165bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005166 this->F = &F;
5167 LI = &getAnalysis<LoopInfo>();
5168 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005169 return false;
5170}
5171
5172void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005173 Scalars.clear();
5174 BackedgeTakenCounts.clear();
5175 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005176 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005177 UniqueSCEVs.clear();
5178 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005179}
5180
5181void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5182 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005183 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005184}
5185
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005186bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005187 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005188}
5189
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005190static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005191 const Loop *L) {
5192 // Print all inner loops first
5193 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5194 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005195
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005196 OS << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005197
Dan Gohman5d984912009-12-18 01:14:11 +00005198 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005199 L->getExitBlocks(ExitBlocks);
5200 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005201 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005202
Dan Gohman46bdfb02009-02-24 18:55:53 +00005203 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5204 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005205 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005206 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005207 }
5208
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005209 OS << "\n";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005210 OS << "Loop " << L->getHeader()->getName() << ": ";
5211
5212 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5213 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5214 } else {
5215 OS << "Unpredictable max backedge-taken count. ";
5216 }
5217
5218 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005219}
5220
Dan Gohman5d984912009-12-18 01:14:11 +00005221void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005222 // ScalarEvolution's implementaiton of the print method is to print
5223 // out SCEV values of all instructions that are interesting. Doing
5224 // this potentially causes it to create new SCEV objects though,
5225 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005226 // observable from outside the class though, so casting away the
5227 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005228 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005229
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005230 OS << "Classifying expressions for: " << F->getName() << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005231 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00005232 if (isSCEVable(I->getType())) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005233 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005234 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005235 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005236 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005237
Dan Gohman0c689c52009-06-19 17:49:54 +00005238 const Loop *L = LI->getLoopFor((*I).getParent());
5239
Dan Gohman0bba49c2009-07-07 17:06:11 +00005240 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005241 if (AtUse != SV) {
5242 OS << " --> ";
5243 AtUse->print(OS);
5244 }
5245
5246 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005247 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005248 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005249 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005250 OS << "<<Unknown>>";
5251 } else {
5252 OS << *ExitValue;
5253 }
5254 }
5255
Chris Lattner53e677a2004-04-02 20:23:17 +00005256 OS << "\n";
5257 }
5258
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005259 OS << "Determining loop execution counts for: " << F->getName() << "\n";
5260 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5261 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005262}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005263