blob: 70321facde21cc4a887da6cc968f9d59ad9573b3 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87 "Number of brute force evaluations needed to "
88 "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant derived loop"),
102 cl::init(100));
103
104namespace {
105 RegisterPass<ScalarEvolution>
106 R("scalar-evolution", "Scalar Evolution Analysis");
107}
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117SCEV::~SCEV() {}
118void SCEV::dump() const {
119 print(cerr);
120}
121
122/// getValueRange - Return the tightest constant bounds that this value is
123/// known to have. This method is only valid on integer SCEV objects.
124ConstantRange SCEV::getValueRange() const {
125 const Type *Ty = getType();
126 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
127 // Default to a full range if no better information is available.
128 return ConstantRange(getBitWidth());
129}
130
131uint32_t SCEV::getBitWidth() const {
132 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
133 return ITy->getBitWidth();
134 return 0;
135}
136
137
138SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
139
140bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142 return false;
143}
144
145const Type *SCEVCouldNotCompute::getType() const {
146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147 return 0;
148}
149
150bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152 return false;
153}
154
155SCEVHandle SCEVCouldNotCompute::
156replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000157 const SCEVHandle &Conc,
158 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 return this;
160}
161
162void SCEVCouldNotCompute::print(std::ostream &OS) const {
163 OS << "***COULDNOTCOMPUTE***";
164}
165
166bool SCEVCouldNotCompute::classof(const SCEV *S) {
167 return S->getSCEVType() == scCouldNotCompute;
168}
169
170
171// SCEVConstants - Only allow the creation of one SCEVConstant for any
172// particular value. Don't use a SCEVHandle here, or else the object will
173// never be deleted!
174static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
175
176
177SCEVConstant::~SCEVConstant() {
178 SCEVConstants->erase(V);
179}
180
Dan Gohman89f85052007-10-22 18:31:58 +0000181SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182 SCEVConstant *&R = (*SCEVConstants)[V];
183 if (R == 0) R = new SCEVConstant(V);
184 return R;
185}
186
Dan Gohman89f85052007-10-22 18:31:58 +0000187SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
188 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000189}
190
191ConstantRange SCEVConstant::getValueRange() const {
192 return ConstantRange(V->getValue());
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(std::ostream &OS) const {
198 WriteAsOperand(OS, V, false);
199}
200
201// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202// particular input. Don't use a SCEVHandle here, or else the object will
203// never be deleted!
204static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
205 SCEVTruncateExpr*> > SCEVTruncates;
206
207SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208 : SCEV(scTruncate), Op(op), Ty(ty) {
209 assert(Op->getType()->isInteger() && Ty->isInteger() &&
210 "Cannot truncate non-integer value!");
211 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
212 && "This is not a truncating conversion!");
213}
214
215SCEVTruncateExpr::~SCEVTruncateExpr() {
216 SCEVTruncates->erase(std::make_pair(Op, Ty));
217}
218
219ConstantRange SCEVTruncateExpr::getValueRange() const {
220 return getOperand()->getValueRange().truncate(getBitWidth());
221}
222
223void SCEVTruncateExpr::print(std::ostream &OS) const {
224 OS << "(truncate " << *Op << " to " << *Ty << ")";
225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input. Don't use a SCEVHandle here, or else the object will never
229// be deleted!
230static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
231 SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
234 : SCEV(scZeroExtend), Op(op), Ty(ty) {
235 assert(Op->getType()->isInteger() && Ty->isInteger() &&
236 "Cannot zero extend non-integer value!");
237 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
238 && "This is not an extending conversion!");
239}
240
241SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
242 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
243}
244
245ConstantRange SCEVZeroExtendExpr::getValueRange() const {
246 return getOperand()->getValueRange().zeroExtend(getBitWidth());
247}
248
249void SCEVZeroExtendExpr::print(std::ostream &OS) const {
250 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
251}
252
253// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
254// particular input. Don't use a SCEVHandle here, or else the object will never
255// be deleted!
256static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
257 SCEVSignExtendExpr*> > SCEVSignExtends;
258
259SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
260 : SCEV(scSignExtend), Op(op), Ty(ty) {
261 assert(Op->getType()->isInteger() && Ty->isInteger() &&
262 "Cannot sign extend non-integer value!");
263 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
264 && "This is not an extending conversion!");
265}
266
267SCEVSignExtendExpr::~SCEVSignExtendExpr() {
268 SCEVSignExtends->erase(std::make_pair(Op, Ty));
269}
270
271ConstantRange SCEVSignExtendExpr::getValueRange() const {
272 return getOperand()->getValueRange().signExtend(getBitWidth());
273}
274
275void SCEVSignExtendExpr::print(std::ostream &OS) const {
276 OS << "(signextend " << *Op << " to " << *Ty << ")";
277}
278
279// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
280// particular input. Don't use a SCEVHandle here, or else the object will never
281// be deleted!
282static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
283 SCEVCommutativeExpr*> > SCEVCommExprs;
284
285SCEVCommutativeExpr::~SCEVCommutativeExpr() {
286 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
287 std::vector<SCEV*>(Operands.begin(),
288 Operands.end())));
289}
290
291void SCEVCommutativeExpr::print(std::ostream &OS) const {
292 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
293 const char *OpStr = getOperationStr();
294 OS << "(" << *Operands[0];
295 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
296 OS << OpStr << *Operands[i];
297 OS << ")";
298}
299
300SCEVHandle SCEVCommutativeExpr::
301replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000302 const SCEVHandle &Conc,
303 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000305 SCEVHandle H =
306 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 if (H != getOperand(i)) {
308 std::vector<SCEVHandle> NewOps;
309 NewOps.reserve(getNumOperands());
310 for (unsigned j = 0; j != i; ++j)
311 NewOps.push_back(getOperand(j));
312 NewOps.push_back(H);
313 for (++i; i != e; ++i)
314 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000315 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316
317 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000318 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000320 return SE.getMulExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321 else
322 assert(0 && "Unknown commutative expr!");
323 }
324 }
325 return this;
326}
327
328
329// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
330// input. Don't use a SCEVHandle here, or else the object will never be
331// deleted!
332static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
333 SCEVSDivExpr*> > SCEVSDivs;
334
335SCEVSDivExpr::~SCEVSDivExpr() {
336 SCEVSDivs->erase(std::make_pair(LHS, RHS));
337}
338
339void SCEVSDivExpr::print(std::ostream &OS) const {
340 OS << "(" << *LHS << " /s " << *RHS << ")";
341}
342
343const Type *SCEVSDivExpr::getType() const {
344 return LHS->getType();
345}
346
Nick Lewyckyc44b3fd2007-11-15 06:30:50 +0000347// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
348// input. Don't use a SCEVHandle here, or else the object will never be
349// deleted!
350static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
351 SCEVUDivExpr*> > SCEVUDivs;
352
353SCEVUDivExpr::~SCEVUDivExpr() {
354 SCEVUDivs->erase(std::make_pair(LHS, RHS));
355}
356
357void SCEVUDivExpr::print(std::ostream &OS) const {
358 OS << "(" << *LHS << " /u " << *RHS << ")";
359}
360
361const Type *SCEVUDivExpr::getType() const {
362 return LHS->getType();
363}
364
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
366// particular input. Don't use a SCEVHandle here, or else the object will never
367// be deleted!
368static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
369 SCEVAddRecExpr*> > SCEVAddRecExprs;
370
371SCEVAddRecExpr::~SCEVAddRecExpr() {
372 SCEVAddRecExprs->erase(std::make_pair(L,
373 std::vector<SCEV*>(Operands.begin(),
374 Operands.end())));
375}
376
377SCEVHandle SCEVAddRecExpr::
378replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000379 const SCEVHandle &Conc,
380 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000381 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000382 SCEVHandle H =
383 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384 if (H != getOperand(i)) {
385 std::vector<SCEVHandle> NewOps;
386 NewOps.reserve(getNumOperands());
387 for (unsigned j = 0; j != i; ++j)
388 NewOps.push_back(getOperand(j));
389 NewOps.push_back(H);
390 for (++i; i != e; ++i)
391 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000392 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
Dan Gohman89f85052007-10-22 18:31:58 +0000394 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395 }
396 }
397 return this;
398}
399
400
401bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
402 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
403 // contain L and if the start is invariant.
404 return !QueryLoop->contains(L->getHeader()) &&
405 getOperand(0)->isLoopInvariant(QueryLoop);
406}
407
408
409void SCEVAddRecExpr::print(std::ostream &OS) const {
410 OS << "{" << *Operands[0];
411 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
412 OS << ",+," << *Operands[i];
413 OS << "}<" << L->getHeader()->getName() + ">";
414}
415
416// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
417// value. Don't use a SCEVHandle here, or else the object will never be
418// deleted!
419static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
420
421SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
422
423bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
424 // All non-instruction values are loop invariant. All instructions are loop
425 // invariant if they are not contained in the specified loop.
426 if (Instruction *I = dyn_cast<Instruction>(V))
427 return !L->contains(I->getParent());
428 return true;
429}
430
431const Type *SCEVUnknown::getType() const {
432 return V->getType();
433}
434
435void SCEVUnknown::print(std::ostream &OS) const {
436 WriteAsOperand(OS, V, false);
437}
438
439//===----------------------------------------------------------------------===//
440// SCEV Utilities
441//===----------------------------------------------------------------------===//
442
443namespace {
444 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
445 /// than the complexity of the RHS. This comparator is used to canonicalize
446 /// expressions.
447 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
448 bool operator()(SCEV *LHS, SCEV *RHS) {
449 return LHS->getSCEVType() < RHS->getSCEVType();
450 }
451 };
452}
453
454/// GroupByComplexity - Given a list of SCEV objects, order them by their
455/// complexity, and group objects of the same complexity together by value.
456/// When this routine is finished, we know that any duplicates in the vector are
457/// consecutive and that complexity is monotonically increasing.
458///
459/// Note that we go take special precautions to ensure that we get determinstic
460/// results from this routine. In other words, we don't want the results of
461/// this to depend on where the addresses of various SCEV objects happened to
462/// land in memory.
463///
464static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
465 if (Ops.size() < 2) return; // Noop
466 if (Ops.size() == 2) {
467 // This is the common case, which also happens to be trivially simple.
468 // Special case it.
469 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
470 std::swap(Ops[0], Ops[1]);
471 return;
472 }
473
474 // Do the rough sort by complexity.
475 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
476
477 // Now that we are sorted by complexity, group elements of the same
478 // complexity. Note that this is, at worst, N^2, but the vector is likely to
479 // be extremely short in practice. Note that we take this approach because we
480 // do not want to depend on the addresses of the objects we are grouping.
481 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
482 SCEV *S = Ops[i];
483 unsigned Complexity = S->getSCEVType();
484
485 // If there are any objects of the same complexity and same value as this
486 // one, group them.
487 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
488 if (Ops[j] == S) { // Found a duplicate.
489 // Move it to immediately after i'th element.
490 std::swap(Ops[i+1], Ops[j]);
491 ++i; // no need to rescan it.
492 if (i == e-2) return; // Done!
493 }
494 }
495 }
496}
497
498
499
500//===----------------------------------------------------------------------===//
501// Simple SCEV method implementations
502//===----------------------------------------------------------------------===//
503
504/// getIntegerSCEV - Given an integer or FP type, create a constant for the
505/// specified signed integer value and return a SCEV for the constant.
Dan Gohman89f85052007-10-22 18:31:58 +0000506SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 Constant *C;
508 if (Val == 0)
509 C = Constant::getNullValue(Ty);
510 else if (Ty->isFloatingPoint())
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000511 C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
512 APFloat::IEEEdouble, Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000513 else
514 C = ConstantInt::get(Ty, Val);
Dan Gohman89f85052007-10-22 18:31:58 +0000515 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000516}
517
518/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
519/// input value to the specified type. If the type must be extended, it is zero
520/// extended.
Dan Gohman89f85052007-10-22 18:31:58 +0000521static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty,
522 ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000523 const Type *SrcTy = V->getType();
524 assert(SrcTy->isInteger() && Ty->isInteger() &&
525 "Cannot truncate or zero extend with non-integer arguments!");
526 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
527 return V; // No conversion
528 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
Dan Gohman89f85052007-10-22 18:31:58 +0000529 return SE.getTruncateExpr(V, Ty);
530 return SE.getZeroExtendExpr(V, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000531}
532
533/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
534///
Dan Gohman89f85052007-10-22 18:31:58 +0000535SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000536 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohman89f85052007-10-22 18:31:58 +0000537 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000538
Dan Gohman89f85052007-10-22 18:31:58 +0000539 return getMulExpr(V, getIntegerSCEV(-1, V->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000540}
541
542/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
543///
Dan Gohman89f85052007-10-22 18:31:58 +0000544SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
545 const SCEVHandle &RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000546 // X - Y --> X + -Y
Dan Gohman89f85052007-10-22 18:31:58 +0000547 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000548}
549
550
551/// PartialFact - Compute V!/(V-NumSteps)!
Dan Gohman89f85052007-10-22 18:31:58 +0000552static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps,
553 ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000554 // Handle this case efficiently, it is common to have constant iteration
555 // counts while computing loop exit values.
556 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
557 const APInt& Val = SC->getValue()->getValue();
558 APInt Result(Val.getBitWidth(), 1);
559 for (; NumSteps; --NumSteps)
560 Result *= Val-(NumSteps-1);
Dan Gohman89f85052007-10-22 18:31:58 +0000561 return SE.getConstant(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000562 }
563
564 const Type *Ty = V->getType();
565 if (NumSteps == 0)
Dan Gohman89f85052007-10-22 18:31:58 +0000566 return SE.getIntegerSCEV(1, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567
568 SCEVHandle Result = V;
569 for (unsigned i = 1; i != NumSteps; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +0000570 Result = SE.getMulExpr(Result, SE.getMinusSCEV(V,
571 SE.getIntegerSCEV(i, Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000572 return Result;
573}
574
575
576/// evaluateAtIteration - Return the value of this chain of recurrences at
577/// the specified iteration number. We can evaluate this recurrence by
578/// multiplying each element in the chain by the binomial coefficient
579/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
580///
581/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
582///
583/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
584/// Is the binomial equation safe using modular arithmetic??
585///
Dan Gohman89f85052007-10-22 18:31:58 +0000586SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
587 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000588 SCEVHandle Result = getStart();
589 int Divisor = 1;
590 const Type *Ty = It->getType();
591 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000592 SCEVHandle BC = PartialFact(It, i, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000593 Divisor *= i;
Nick Lewyckyc44b3fd2007-11-15 06:30:50 +0000594 SCEVHandle Val = SE.getUDivExpr(SE.getMulExpr(BC, getOperand(i)),
Dan Gohman89f85052007-10-22 18:31:58 +0000595 SE.getIntegerSCEV(Divisor,Ty));
596 Result = SE.getAddExpr(Result, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000597 }
598 return Result;
599}
600
601
602//===----------------------------------------------------------------------===//
603// SCEV Expression folder implementations
604//===----------------------------------------------------------------------===//
605
Dan Gohman89f85052007-10-22 18:31:58 +0000606SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000607 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000608 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000609 ConstantExpr::getTrunc(SC->getValue(), Ty));
610
611 // If the input value is a chrec scev made out of constants, truncate
612 // all of the constants.
613 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
614 std::vector<SCEVHandle> Operands;
615 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
616 // FIXME: This should allow truncation of other expression types!
617 if (isa<SCEVConstant>(AddRec->getOperand(i)))
Dan Gohman89f85052007-10-22 18:31:58 +0000618 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000619 else
620 break;
621 if (Operands.size() == AddRec->getNumOperands())
Dan Gohman89f85052007-10-22 18:31:58 +0000622 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000623 }
624
625 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
626 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
627 return Result;
628}
629
Dan Gohman89f85052007-10-22 18:31:58 +0000630SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000632 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633 ConstantExpr::getZExt(SC->getValue(), Ty));
634
635 // FIXME: If the input value is a chrec scev, and we can prove that the value
636 // did not overflow the old, smaller, value, we can zero extend all of the
637 // operands (often constants). This would allow analysis of something like
638 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
639
640 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
641 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
642 return Result;
643}
644
Dan Gohman89f85052007-10-22 18:31:58 +0000645SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000646 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000647 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648 ConstantExpr::getSExt(SC->getValue(), Ty));
649
650 // FIXME: If the input value is a chrec scev, and we can prove that the value
651 // did not overflow the old, smaller, value, we can sign extend all of the
652 // operands (often constants). This would allow analysis of something like
653 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
654
655 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
656 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
657 return Result;
658}
659
660// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000661SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000662 assert(!Ops.empty() && "Cannot get empty add!");
663 if (Ops.size() == 1) return Ops[0];
664
665 // Sort by complexity, this groups all similar expression types together.
666 GroupByComplexity(Ops);
667
668 // If there are any constants, fold them together.
669 unsigned Idx = 0;
670 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
671 ++Idx;
672 assert(Idx < Ops.size());
673 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
674 // We found two constants, fold them together!
675 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
676 RHSC->getValue()->getValue());
677 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
Dan Gohman89f85052007-10-22 18:31:58 +0000678 Ops[0] = getConstant(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679 Ops.erase(Ops.begin()+1); // Erase the folded element
680 if (Ops.size() == 1) return Ops[0];
681 LHSC = cast<SCEVConstant>(Ops[0]);
682 } else {
683 // If we couldn't fold the expression, move to the next constant. Note
684 // that this is impossible to happen in practice because we always
685 // constant fold constant ints to constant ints.
686 ++Idx;
687 }
688 }
689
690 // If we are left with a constant zero being added, strip it off.
691 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
692 Ops.erase(Ops.begin());
693 --Idx;
694 }
695 }
696
697 if (Ops.size() == 1) return Ops[0];
698
699 // Okay, check to see if the same value occurs in the operand list twice. If
700 // so, merge them together into an multiply expression. Since we sorted the
701 // list, these values are required to be adjacent.
702 const Type *Ty = Ops[0]->getType();
703 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
704 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
705 // Found a match, merge the two values into a multiply, and add any
706 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000707 SCEVHandle Two = getIntegerSCEV(2, Ty);
708 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709 if (Ops.size() == 2)
710 return Mul;
711 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
712 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000713 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 }
715
716 // Now we know the first non-constant operand. Skip past any cast SCEVs.
717 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
718 ++Idx;
719
720 // If there are add operands they would be next.
721 if (Idx < Ops.size()) {
722 bool DeletedAdd = false;
723 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
724 // If we have an add, expand the add operands onto the end of the operands
725 // list.
726 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
727 Ops.erase(Ops.begin()+Idx);
728 DeletedAdd = true;
729 }
730
731 // If we deleted at least one add, we added operands to the end of the list,
732 // and they are not necessarily sorted. Recurse to resort and resimplify
733 // any operands we just aquired.
734 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +0000735 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 }
737
738 // Skip over the add expression until we get to a multiply.
739 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
740 ++Idx;
741
742 // If we are adding something to a multiply expression, make sure the
743 // something is not already an operand of the multiply. If so, merge it into
744 // the multiply.
745 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
746 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
747 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
748 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
749 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
750 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
751 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
752 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
753 if (Mul->getNumOperands() != 2) {
754 // If the multiply has more than two operands, we must get the
755 // Y*Z term.
756 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
757 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000758 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 }
Dan Gohman89f85052007-10-22 18:31:58 +0000760 SCEVHandle One = getIntegerSCEV(1, Ty);
761 SCEVHandle AddOne = getAddExpr(InnerMul, One);
762 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763 if (Ops.size() == 2) return OuterMul;
764 if (AddOp < Idx) {
765 Ops.erase(Ops.begin()+AddOp);
766 Ops.erase(Ops.begin()+Idx-1);
767 } else {
768 Ops.erase(Ops.begin()+Idx);
769 Ops.erase(Ops.begin()+AddOp-1);
770 }
771 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000772 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 }
774
775 // Check this multiply against other multiplies being added together.
776 for (unsigned OtherMulIdx = Idx+1;
777 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
778 ++OtherMulIdx) {
779 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
780 // If MulOp occurs in OtherMul, we can fold the two multiplies
781 // together.
782 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
783 OMulOp != e; ++OMulOp)
784 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
785 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
786 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
787 if (Mul->getNumOperands() != 2) {
788 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
789 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000790 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 }
792 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
793 if (OtherMul->getNumOperands() != 2) {
794 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
795 OtherMul->op_end());
796 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000797 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000798 }
Dan Gohman89f85052007-10-22 18:31:58 +0000799 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
800 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000801 if (Ops.size() == 2) return OuterMul;
802 Ops.erase(Ops.begin()+Idx);
803 Ops.erase(Ops.begin()+OtherMulIdx-1);
804 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000805 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000806 }
807 }
808 }
809 }
810
811 // If there are any add recurrences in the operands list, see if any other
812 // added values are loop invariant. If so, we can fold them into the
813 // recurrence.
814 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
815 ++Idx;
816
817 // Scan over all recurrences, trying to fold loop invariants into them.
818 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
819 // Scan all of the other operands to this add and add them to the vector if
820 // they are loop invariant w.r.t. the recurrence.
821 std::vector<SCEVHandle> LIOps;
822 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
823 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
824 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
825 LIOps.push_back(Ops[i]);
826 Ops.erase(Ops.begin()+i);
827 --i; --e;
828 }
829
830 // If we found some loop invariants, fold them into the recurrence.
831 if (!LIOps.empty()) {
832 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
833 LIOps.push_back(AddRec->getStart());
834
835 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +0000836 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000837
Dan Gohman89f85052007-10-22 18:31:58 +0000838 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 // If all of the other operands were loop invariant, we are done.
840 if (Ops.size() == 1) return NewRec;
841
842 // Otherwise, add the folded AddRec by the non-liv parts.
843 for (unsigned i = 0;; ++i)
844 if (Ops[i] == AddRec) {
845 Ops[i] = NewRec;
846 break;
847 }
Dan Gohman89f85052007-10-22 18:31:58 +0000848 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000849 }
850
851 // Okay, if there weren't any loop invariants to be folded, check to see if
852 // there are multiple AddRec's with the same loop induction variable being
853 // added together. If so, we can fold them.
854 for (unsigned OtherIdx = Idx+1;
855 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
856 if (OtherIdx != Idx) {
857 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
858 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
859 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
860 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
861 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
862 if (i >= NewOps.size()) {
863 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
864 OtherAddRec->op_end());
865 break;
866 }
Dan Gohman89f85052007-10-22 18:31:58 +0000867 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000868 }
Dan Gohman89f85052007-10-22 18:31:58 +0000869 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870
871 if (Ops.size() == 2) return NewAddRec;
872
873 Ops.erase(Ops.begin()+Idx);
874 Ops.erase(Ops.begin()+OtherIdx-1);
875 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +0000876 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 }
878 }
879
880 // Otherwise couldn't fold anything into this recurrence. Move onto the
881 // next one.
882 }
883
884 // Okay, it looks like we really DO need an add expr. Check to see if we
885 // already have one, otherwise create a new one.
886 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
887 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
888 SCEVOps)];
889 if (Result == 0) Result = new SCEVAddExpr(Ops);
890 return Result;
891}
892
893
Dan Gohman89f85052007-10-22 18:31:58 +0000894SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000895 assert(!Ops.empty() && "Cannot get empty mul!");
896
897 // Sort by complexity, this groups all similar expression types together.
898 GroupByComplexity(Ops);
899
900 // If there are any constants, fold them together.
901 unsigned Idx = 0;
902 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
903
904 // C1*(C2+V) -> C1*C2 + C1*V
905 if (Ops.size() == 2)
906 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
907 if (Add->getNumOperands() == 2 &&
908 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +0000909 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
910 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000911
912
913 ++Idx;
914 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
915 // We found two constants, fold them together!
916 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
917 RHSC->getValue()->getValue());
918 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
Dan Gohman89f85052007-10-22 18:31:58 +0000919 Ops[0] = getConstant(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000920 Ops.erase(Ops.begin()+1); // Erase the folded element
921 if (Ops.size() == 1) return Ops[0];
922 LHSC = cast<SCEVConstant>(Ops[0]);
923 } else {
924 // If we couldn't fold the expression, move to the next constant. Note
925 // that this is impossible to happen in practice because we always
926 // constant fold constant ints to constant ints.
927 ++Idx;
928 }
929 }
930
931 // If we are left with a constant one being multiplied, strip it off.
932 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
933 Ops.erase(Ops.begin());
934 --Idx;
935 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
936 // If we have a multiply of zero, it will always be zero.
937 return Ops[0];
938 }
939 }
940
941 // Skip over the add expression until we get to a multiply.
942 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
943 ++Idx;
944
945 if (Ops.size() == 1)
946 return Ops[0];
947
948 // If there are mul operands inline them all into this expression.
949 if (Idx < Ops.size()) {
950 bool DeletedMul = false;
951 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
952 // If we have an mul, expand the mul operands onto the end of the operands
953 // list.
954 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
955 Ops.erase(Ops.begin()+Idx);
956 DeletedMul = true;
957 }
958
959 // If we deleted at least one mul, we added operands to the end of the list,
960 // and they are not necessarily sorted. Recurse to resort and resimplify
961 // any operands we just aquired.
962 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +0000963 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964 }
965
966 // If there are any add recurrences in the operands list, see if any other
967 // added values are loop invariant. If so, we can fold them into the
968 // recurrence.
969 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
970 ++Idx;
971
972 // Scan over all recurrences, trying to fold loop invariants into them.
973 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
974 // Scan all of the other operands to this mul and add them to the vector if
975 // they are loop invariant w.r.t. the recurrence.
976 std::vector<SCEVHandle> LIOps;
977 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
978 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
979 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
980 LIOps.push_back(Ops[i]);
981 Ops.erase(Ops.begin()+i);
982 --i; --e;
983 }
984
985 // If we found some loop invariants, fold them into the recurrence.
986 if (!LIOps.empty()) {
987 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
988 std::vector<SCEVHandle> NewOps;
989 NewOps.reserve(AddRec->getNumOperands());
990 if (LIOps.size() == 1) {
991 SCEV *Scale = LIOps[0];
992 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +0000993 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994 } else {
995 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
996 std::vector<SCEVHandle> MulOps(LIOps);
997 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +0000998 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000999 }
1000 }
1001
Dan Gohman89f85052007-10-22 18:31:58 +00001002 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003
1004 // If all of the other operands were loop invariant, we are done.
1005 if (Ops.size() == 1) return NewRec;
1006
1007 // Otherwise, multiply the folded AddRec by the non-liv parts.
1008 for (unsigned i = 0;; ++i)
1009 if (Ops[i] == AddRec) {
1010 Ops[i] = NewRec;
1011 break;
1012 }
Dan Gohman89f85052007-10-22 18:31:58 +00001013 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001014 }
1015
1016 // Okay, if there weren't any loop invariants to be folded, check to see if
1017 // there are multiple AddRec's with the same loop induction variable being
1018 // multiplied together. If so, we can fold them.
1019 for (unsigned OtherIdx = Idx+1;
1020 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1021 if (OtherIdx != Idx) {
1022 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1023 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1024 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1025 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001026 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001028 SCEVHandle B = F->getStepRecurrence(*this);
1029 SCEVHandle D = G->getStepRecurrence(*this);
1030 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1031 getMulExpr(G, B),
1032 getMulExpr(B, D));
1033 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1034 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 if (Ops.size() == 2) return NewAddRec;
1036
1037 Ops.erase(Ops.begin()+Idx);
1038 Ops.erase(Ops.begin()+OtherIdx-1);
1039 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001040 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 }
1042 }
1043
1044 // Otherwise couldn't fold anything into this recurrence. Move onto the
1045 // next one.
1046 }
1047
1048 // Okay, it looks like we really DO need an mul expr. Check to see if we
1049 // already have one, otherwise create a new one.
1050 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1051 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1052 SCEVOps)];
1053 if (Result == 0)
1054 Result = new SCEVMulExpr(Ops);
1055 return Result;
1056}
1057
Nick Lewyckyc44b3fd2007-11-15 06:30:50 +00001058SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS,
1059 const SCEVHandle &RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001060 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1061 if (RHSC->getValue()->equalsInt(1))
1062 return LHS; // X sdiv 1 --> x
1063 if (RHSC->getValue()->isAllOnesValue())
Dan Gohman89f85052007-10-22 18:31:58 +00001064 return getNegativeSCEV(LHS); // X sdiv -1 --> -x
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001065
1066 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1067 Constant *LHSCV = LHSC->getValue();
1068 Constant *RHSCV = RHSC->getValue();
Dan Gohman89f85052007-10-22 18:31:58 +00001069 return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001070 }
1071 }
1072
1073 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1074
1075 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1076 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1077 return Result;
1078}
1079
Nick Lewyckyc44b3fd2007-11-15 06:30:50 +00001080SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1081 const SCEVHandle &RHS) {
1082 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1083 if (RHSC->getValue()->equalsInt(1))
1084 return LHS; // X udiv 1 --> x
1085
1086 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1087 Constant *LHSCV = LHSC->getValue();
1088 Constant *RHSCV = RHSC->getValue();
1089 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1090 }
1091 }
1092
1093 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1094
1095 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1096 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1097 return Result;
1098}
1099
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001100
1101/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1102/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001103SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001104 const SCEVHandle &Step, const Loop *L) {
1105 std::vector<SCEVHandle> Operands;
1106 Operands.push_back(Start);
1107 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1108 if (StepChrec->getLoop() == L) {
1109 Operands.insert(Operands.end(), StepChrec->op_begin(),
1110 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001111 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001112 }
1113
1114 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001115 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116}
1117
1118/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1119/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001120SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 const Loop *L) {
1122 if (Operands.size() == 1) return Operands[0];
1123
1124 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1125 if (StepC->getValue()->isZero()) {
1126 Operands.pop_back();
Dan Gohman89f85052007-10-22 18:31:58 +00001127 return getAddRecExpr(Operands, L); // { X,+,0 } --> X
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001128 }
1129
1130 SCEVAddRecExpr *&Result =
1131 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1132 Operands.end()))];
1133 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1134 return Result;
1135}
1136
Dan Gohman89f85052007-10-22 18:31:58 +00001137SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001138 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001139 return getConstant(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001140 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1141 if (Result == 0) Result = new SCEVUnknown(V);
1142 return Result;
1143}
1144
1145
1146//===----------------------------------------------------------------------===//
1147// ScalarEvolutionsImpl Definition and Implementation
1148//===----------------------------------------------------------------------===//
1149//
1150/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1151/// evolution code.
1152///
1153namespace {
1154 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Dan Gohman89f85052007-10-22 18:31:58 +00001155 /// SE - A reference to the public ScalarEvolution object.
1156 ScalarEvolution &SE;
1157
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 /// F - The function we are analyzing.
1159 ///
1160 Function &F;
1161
1162 /// LI - The loop information for the function we are currently analyzing.
1163 ///
1164 LoopInfo &LI;
1165
1166 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1167 /// things.
1168 SCEVHandle UnknownValue;
1169
1170 /// Scalars - This is a cache of the scalars we have analyzed so far.
1171 ///
1172 std::map<Value*, SCEVHandle> Scalars;
1173
1174 /// IterationCounts - Cache the iteration count of the loops for this
1175 /// function as they are computed.
1176 std::map<const Loop*, SCEVHandle> IterationCounts;
1177
1178 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1179 /// the PHI instructions that we attempt to compute constant evolutions for.
1180 /// This allows us to avoid potentially expensive recomputation of these
1181 /// properties. An instruction maps to null if we are unable to compute its
1182 /// exit value.
1183 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1184
1185 public:
Dan Gohman89f85052007-10-22 18:31:58 +00001186 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li)
1187 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001188
1189 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1190 /// expression and create a new one.
1191 SCEVHandle getSCEV(Value *V);
1192
1193 /// hasSCEV - Return true if the SCEV for this value has already been
1194 /// computed.
1195 bool hasSCEV(Value *V) const {
1196 return Scalars.count(V);
1197 }
1198
1199 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1200 /// the specified value.
1201 void setSCEV(Value *V, const SCEVHandle &H) {
1202 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1203 assert(isNew && "This entry already existed!");
1204 }
1205
1206
1207 /// getSCEVAtScope - Compute the value of the specified expression within
1208 /// the indicated loop (which may be null to indicate in no loop). If the
1209 /// expression cannot be evaluated, return UnknownValue itself.
1210 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1211
1212
1213 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1214 /// an analyzable loop-invariant iteration count.
1215 bool hasLoopInvariantIterationCount(const Loop *L);
1216
1217 /// getIterationCount - If the specified loop has a predictable iteration
1218 /// count, return it. Note that it is not valid to call this method on a
1219 /// loop without a loop-invariant iteration count.
1220 SCEVHandle getIterationCount(const Loop *L);
1221
1222 /// deleteValueFromRecords - This method should be called by the
1223 /// client before it removes a value from the program, to make sure
1224 /// that no dangling references are left around.
1225 void deleteValueFromRecords(Value *V);
1226
1227 private:
1228 /// createSCEV - We know that there is no SCEV for the specified value.
1229 /// Analyze the expression.
1230 SCEVHandle createSCEV(Value *V);
1231
1232 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1233 /// SCEVs.
1234 SCEVHandle createNodeForPHI(PHINode *PN);
1235
1236 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1237 /// for the specified instruction and replaces any references to the
1238 /// symbolic value SymName with the specified value. This is used during
1239 /// PHI resolution.
1240 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1241 const SCEVHandle &SymName,
1242 const SCEVHandle &NewVal);
1243
1244 /// ComputeIterationCount - Compute the number of times the specified loop
1245 /// will iterate.
1246 SCEVHandle ComputeIterationCount(const Loop *L);
1247
1248 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1249 /// 'setcc load X, cst', try to see if we can compute the trip count.
1250 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1251 Constant *RHS,
1252 const Loop *L,
1253 ICmpInst::Predicate p);
1254
1255 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1256 /// constant number of times (the condition evolves only from constants),
1257 /// try to evaluate a few iterations of the loop until we get the exit
1258 /// condition gets a value of ExitWhen (true or false). If we cannot
1259 /// evaluate the trip count of the loop, return UnknownValue.
1260 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1261 bool ExitWhen);
1262
1263 /// HowFarToZero - Return the number of times a backedge comparing the
1264 /// specified value to zero will execute. If not computable, return
1265 /// UnknownValue.
1266 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1267
1268 /// HowFarToNonZero - Return the number of times a backedge checking the
1269 /// specified value for nonzero will execute. If not computable, return
1270 /// UnknownValue.
1271 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1272
1273 /// HowManyLessThans - Return the number of times a backedge containing the
1274 /// specified less-than comparison will execute. If not computable, return
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001275 /// UnknownValue. isSigned specifies whether the less-than is signed.
1276 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1277 bool isSigned);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278
1279 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1280 /// in the header of its containing loop, we know the loop executes a
1281 /// constant number of times, and the PHI node is just a recurrence
1282 /// involving constants, fold it.
1283 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1284 const Loop *L);
1285 };
1286}
1287
1288//===----------------------------------------------------------------------===//
1289// Basic SCEV Analysis and PHI Idiom Recognition Code
1290//
1291
1292/// deleteValueFromRecords - This method should be called by the
1293/// client before it removes an instruction from the program, to make sure
1294/// that no dangling references are left around.
1295void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1296 SmallVector<Value *, 16> Worklist;
1297
1298 if (Scalars.erase(V)) {
1299 if (PHINode *PN = dyn_cast<PHINode>(V))
1300 ConstantEvolutionLoopExitValue.erase(PN);
1301 Worklist.push_back(V);
1302 }
1303
1304 while (!Worklist.empty()) {
1305 Value *VV = Worklist.back();
1306 Worklist.pop_back();
1307
1308 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1309 UI != UE; ++UI) {
1310 Instruction *Inst = cast<Instruction>(*UI);
1311 if (Scalars.erase(Inst)) {
1312 if (PHINode *PN = dyn_cast<PHINode>(VV))
1313 ConstantEvolutionLoopExitValue.erase(PN);
1314 Worklist.push_back(Inst);
1315 }
1316 }
1317 }
1318}
1319
1320
1321/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1322/// expression and create a new one.
1323SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1324 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1325
1326 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1327 if (I != Scalars.end()) return I->second;
1328 SCEVHandle S = createSCEV(V);
1329 Scalars.insert(std::make_pair(V, S));
1330 return S;
1331}
1332
1333/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1334/// the specified instruction and replaces any references to the symbolic value
1335/// SymName with the specified value. This is used during PHI resolution.
1336void ScalarEvolutionsImpl::
1337ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1338 const SCEVHandle &NewVal) {
1339 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1340 if (SI == Scalars.end()) return;
1341
1342 SCEVHandle NV =
Dan Gohman89f85052007-10-22 18:31:58 +00001343 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 if (NV == SI->second) return; // No change.
1345
1346 SI->second = NV; // Update the scalars map!
1347
1348 // Any instruction values that use this instruction might also need to be
1349 // updated!
1350 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1351 UI != E; ++UI)
1352 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1353}
1354
1355/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1356/// a loop header, making it a potential recurrence, or it doesn't.
1357///
1358SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1359 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1360 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1361 if (L->getHeader() == PN->getParent()) {
1362 // If it lives in the loop header, it has two incoming values, one
1363 // from outside the loop, and one from inside.
1364 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1365 unsigned BackEdge = IncomingEdge^1;
1366
1367 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman89f85052007-10-22 18:31:58 +00001368 SCEVHandle SymbolicName = SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 assert(Scalars.find(PN) == Scalars.end() &&
1370 "PHI node already processed?");
1371 Scalars.insert(std::make_pair(PN, SymbolicName));
1372
1373 // Using this symbolic name for the PHI, analyze the value coming around
1374 // the back-edge.
1375 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1376
1377 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1378 // has a special value for the first iteration of the loop.
1379
1380 // If the value coming around the backedge is an add with the symbolic
1381 // value we just inserted, then we found a simple induction variable!
1382 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1383 // If there is a single occurrence of the symbolic value, replace it
1384 // with a recurrence.
1385 unsigned FoundIndex = Add->getNumOperands();
1386 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1387 if (Add->getOperand(i) == SymbolicName)
1388 if (FoundIndex == e) {
1389 FoundIndex = i;
1390 break;
1391 }
1392
1393 if (FoundIndex != Add->getNumOperands()) {
1394 // Create an add with everything but the specified operand.
1395 std::vector<SCEVHandle> Ops;
1396 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1397 if (i != FoundIndex)
1398 Ops.push_back(Add->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001399 SCEVHandle Accum = SE.getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001400
1401 // This is not a valid addrec if the step amount is varying each
1402 // loop iteration, but is not itself an addrec in this loop.
1403 if (Accum->isLoopInvariant(L) ||
1404 (isa<SCEVAddRecExpr>(Accum) &&
1405 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1406 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohman89f85052007-10-22 18:31:58 +00001407 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001408
1409 // Okay, for the entire analysis of this edge we assumed the PHI
1410 // to be symbolic. We now need to go back and update all of the
1411 // entries for the scalars that use the PHI (except for the PHI
1412 // itself) to use the new analyzed value instead of the "symbolic"
1413 // value.
1414 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1415 return PHISCEV;
1416 }
1417 }
1418 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1419 // Otherwise, this could be a loop like this:
1420 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1421 // In this case, j = {1,+,1} and BEValue is j.
1422 // Because the other in-value of i (0) fits the evolution of BEValue
1423 // i really is an addrec evolution.
1424 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1425 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1426
1427 // If StartVal = j.start - j.stride, we can use StartVal as the
1428 // initial step of the addrec evolution.
Dan Gohman89f85052007-10-22 18:31:58 +00001429 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1430 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001431 SCEVHandle PHISCEV =
Dan Gohman89f85052007-10-22 18:31:58 +00001432 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001433
1434 // Okay, for the entire analysis of this edge we assumed the PHI
1435 // to be symbolic. We now need to go back and update all of the
1436 // entries for the scalars that use the PHI (except for the PHI
1437 // itself) to use the new analyzed value instead of the "symbolic"
1438 // value.
1439 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1440 return PHISCEV;
1441 }
1442 }
1443 }
1444
1445 return SymbolicName;
1446 }
1447
1448 // If it's not a loop phi, we can't handle it yet.
Dan Gohman89f85052007-10-22 18:31:58 +00001449 return SE.getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450}
1451
1452/// GetConstantFactor - Determine the largest constant factor that S has. For
1453/// example, turn {4,+,8} -> 4. (S umod result) should always equal zero.
1454static APInt GetConstantFactor(SCEVHandle S) {
1455 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1456 const APInt& V = C->getValue()->getValue();
1457 if (!V.isMinValue())
1458 return V;
1459 else // Zero is a multiple of everything.
1460 return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1);
1461 }
1462
1463 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) {
1464 return GetConstantFactor(T->getOperand()).trunc(
1465 cast<IntegerType>(T->getType())->getBitWidth());
1466 }
1467 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1468 return GetConstantFactor(E->getOperand()).zext(
1469 cast<IntegerType>(E->getType())->getBitWidth());
1470 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S))
1471 return GetConstantFactor(E->getOperand()).sext(
1472 cast<IntegerType>(E->getType())->getBitWidth());
1473
1474 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1475 // The result is the min of all operands.
1476 APInt Res(GetConstantFactor(A->getOperand(0)));
1477 for (unsigned i = 1, e = A->getNumOperands();
1478 i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) {
1479 APInt Tmp(GetConstantFactor(A->getOperand(i)));
1480 Res = APIntOps::umin(Res, Tmp);
1481 }
1482 return Res;
1483 }
1484
1485 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1486 // The result is the product of all the operands.
1487 APInt Res(GetConstantFactor(M->getOperand(0)));
1488 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) {
1489 APInt Tmp(GetConstantFactor(M->getOperand(i)));
1490 Res *= Tmp;
1491 }
1492 return Res;
1493 }
1494
1495 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1496 // For now, we just handle linear expressions.
1497 if (A->getNumOperands() == 2) {
1498 // We want the GCD between the start and the stride value.
1499 APInt Start(GetConstantFactor(A->getOperand(0)));
1500 if (Start == 1)
1501 return Start;
1502 APInt Stride(GetConstantFactor(A->getOperand(1)));
1503 return APIntOps::GreatestCommonDivisor(Start, Stride);
1504 }
1505 }
1506
1507 // SCEVSDivExpr, SCEVUnknown.
1508 return APInt(S->getBitWidth(), 1);
1509}
1510
1511/// createSCEV - We know that there is no SCEV for the specified value.
1512/// Analyze the expression.
1513///
1514SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1515 if (Instruction *I = dyn_cast<Instruction>(V)) {
1516 switch (I->getOpcode()) {
1517 case Instruction::Add:
Dan Gohman89f85052007-10-22 18:31:58 +00001518 return SE.getAddExpr(getSCEV(I->getOperand(0)),
1519 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 case Instruction::Mul:
Dan Gohman89f85052007-10-22 18:31:58 +00001521 return SE.getMulExpr(getSCEV(I->getOperand(0)),
1522 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001523 case Instruction::SDiv:
Dan Gohman89f85052007-10-22 18:31:58 +00001524 return SE.getSDivExpr(getSCEV(I->getOperand(0)),
1525 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001526 case Instruction::Sub:
Dan Gohman89f85052007-10-22 18:31:58 +00001527 return SE.getMinusSCEV(getSCEV(I->getOperand(0)),
1528 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001529 case Instruction::Or:
1530 // If the RHS of the Or is a constant, we may have something like:
1531 // X*4+1 which got turned into X*4|1. Handle this as an add so loop
1532 // optimizations will transparently handle this case.
1533 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1534 SCEVHandle LHS = getSCEV(I->getOperand(0));
1535 APInt CommonFact(GetConstantFactor(LHS));
1536 assert(!CommonFact.isMinValue() &&
1537 "Common factor should at least be 1!");
1538 if (CommonFact.ugt(CI->getValue())) {
1539 // If the LHS is a multiple that is larger than the RHS, use +.
Dan Gohman89f85052007-10-22 18:31:58 +00001540 return SE.getAddExpr(LHS,
1541 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001542 }
1543 }
1544 break;
1545 case Instruction::Xor:
1546 // If the RHS of the xor is a signbit, then this is just an add.
1547 // Instcombine turns add of signbit into xor as a strength reduction step.
1548 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1549 if (CI->getValue().isSignBit())
Dan Gohman89f85052007-10-22 18:31:58 +00001550 return SE.getAddExpr(getSCEV(I->getOperand(0)),
1551 getSCEV(I->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001552 }
1553 break;
1554
1555 case Instruction::Shl:
1556 // Turn shift left of a constant amount into a multiply.
1557 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1558 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1559 Constant *X = ConstantInt::get(
1560 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohman89f85052007-10-22 18:31:58 +00001561 return SE.getMulExpr(getSCEV(I->getOperand(0)), getSCEV(X));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001562 }
1563 break;
1564
1565 case Instruction::Trunc:
Dan Gohman89f85052007-10-22 18:31:58 +00001566 return SE.getTruncateExpr(getSCEV(I->getOperand(0)), I->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567
1568 case Instruction::ZExt:
Dan Gohman89f85052007-10-22 18:31:58 +00001569 return SE.getZeroExtendExpr(getSCEV(I->getOperand(0)), I->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001570
1571 case Instruction::SExt:
Dan Gohman89f85052007-10-22 18:31:58 +00001572 return SE.getSignExtendExpr(getSCEV(I->getOperand(0)), I->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573
1574 case Instruction::BitCast:
1575 // BitCasts are no-op casts so we just eliminate the cast.
1576 if (I->getType()->isInteger() &&
1577 I->getOperand(0)->getType()->isInteger())
1578 return getSCEV(I->getOperand(0));
1579 break;
1580
1581 case Instruction::PHI:
1582 return createNodeForPHI(cast<PHINode>(I));
1583
1584 default: // We cannot analyze this expression.
1585 break;
1586 }
1587 }
1588
Dan Gohman89f85052007-10-22 18:31:58 +00001589 return SE.getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001590}
1591
1592
1593
1594//===----------------------------------------------------------------------===//
1595// Iteration Count Computation Code
1596//
1597
1598/// getIterationCount - If the specified loop has a predictable iteration
1599/// count, return it. Note that it is not valid to call this method on a
1600/// loop without a loop-invariant iteration count.
1601SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1602 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1603 if (I == IterationCounts.end()) {
1604 SCEVHandle ItCount = ComputeIterationCount(L);
1605 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1606 if (ItCount != UnknownValue) {
1607 assert(ItCount->isLoopInvariant(L) &&
1608 "Computed trip count isn't loop invariant for loop!");
1609 ++NumTripCountsComputed;
1610 } else if (isa<PHINode>(L->getHeader()->begin())) {
1611 // Only count loops that have phi nodes as not being computable.
1612 ++NumTripCountsNotComputed;
1613 }
1614 }
1615 return I->second;
1616}
1617
1618/// ComputeIterationCount - Compute the number of times the specified loop
1619/// will iterate.
1620SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1621 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00001622 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623 L->getExitBlocks(ExitBlocks);
1624 if (ExitBlocks.size() != 1) return UnknownValue;
1625
1626 // Okay, there is one exit block. Try to find the condition that causes the
1627 // loop to be exited.
1628 BasicBlock *ExitBlock = ExitBlocks[0];
1629
1630 BasicBlock *ExitingBlock = 0;
1631 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1632 PI != E; ++PI)
1633 if (L->contains(*PI)) {
1634 if (ExitingBlock == 0)
1635 ExitingBlock = *PI;
1636 else
1637 return UnknownValue; // More than one block exiting!
1638 }
1639 assert(ExitingBlock && "No exits from loop, something is broken!");
1640
1641 // Okay, we've computed the exiting block. See what condition causes us to
1642 // exit.
1643 //
1644 // FIXME: we should be able to handle switch instructions (with a single exit)
1645 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1646 if (ExitBr == 0) return UnknownValue;
1647 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1648
1649 // At this point, we know we have a conditional branch that determines whether
1650 // the loop is exited. However, we don't know if the branch is executed each
1651 // time through the loop. If not, then the execution count of the branch will
1652 // not be equal to the trip count of the loop.
1653 //
1654 // Currently we check for this by checking to see if the Exit branch goes to
1655 // the loop header. If so, we know it will always execute the same number of
1656 // times as the loop. We also handle the case where the exit block *is* the
1657 // loop header. This is common for un-rotated loops. More extensive analysis
1658 // could be done to handle more cases here.
1659 if (ExitBr->getSuccessor(0) != L->getHeader() &&
1660 ExitBr->getSuccessor(1) != L->getHeader() &&
1661 ExitBr->getParent() != L->getHeader())
1662 return UnknownValue;
1663
1664 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1665
1666 // If its not an integer comparison then compute it the hard way.
1667 // Note that ICmpInst deals with pointer comparisons too so we must check
1668 // the type of the operand.
1669 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1670 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1671 ExitBr->getSuccessor(0) == ExitBlock);
1672
1673 // If the condition was exit on true, convert the condition to exit on false
1674 ICmpInst::Predicate Cond;
1675 if (ExitBr->getSuccessor(1) == ExitBlock)
1676 Cond = ExitCond->getPredicate();
1677 else
1678 Cond = ExitCond->getInversePredicate();
1679
1680 // Handle common loops like: for (X = "string"; *X; ++X)
1681 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1682 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1683 SCEVHandle ItCnt =
1684 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1685 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1686 }
1687
1688 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1689 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1690
1691 // Try to evaluate any dependencies out of the loop.
1692 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1693 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1694 Tmp = getSCEVAtScope(RHS, L);
1695 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1696
1697 // At this point, we would like to compute how many iterations of the
1698 // loop the predicate will return true for these inputs.
1699 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1700 // If there is a constant, force it into the RHS.
1701 std::swap(LHS, RHS);
1702 Cond = ICmpInst::getSwappedPredicate(Cond);
1703 }
1704
1705 // FIXME: think about handling pointer comparisons! i.e.:
1706 // while (P != P+100) ++P;
1707
1708 // If we have a comparison of a chrec against a constant, try to use value
1709 // ranges to answer this query.
1710 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1711 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1712 if (AddRec->getLoop() == L) {
1713 // Form the comparison range using the constant of the correct type so
1714 // that the ConstantRange class knows to do a signed or unsigned
1715 // comparison.
1716 ConstantInt *CompVal = RHSC->getValue();
1717 const Type *RealTy = ExitCond->getOperand(0)->getType();
1718 CompVal = dyn_cast<ConstantInt>(
1719 ConstantExpr::getBitCast(CompVal, RealTy));
1720 if (CompVal) {
1721 // Form the constant range.
1722 ConstantRange CompRange(
1723 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1724
Dan Gohman89f85052007-10-22 18:31:58 +00001725 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001726 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1727 }
1728 }
1729
1730 switch (Cond) {
1731 case ICmpInst::ICMP_NE: { // while (X != Y)
1732 // Convert to: while (X-Y != 0)
Dan Gohman89f85052007-10-22 18:31:58 +00001733 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001734 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1735 break;
1736 }
1737 case ICmpInst::ICMP_EQ: {
1738 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman89f85052007-10-22 18:31:58 +00001739 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1741 break;
1742 }
1743 case ICmpInst::ICMP_SLT: {
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001744 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001745 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1746 break;
1747 }
1748 case ICmpInst::ICMP_SGT: {
Dan Gohman89f85052007-10-22 18:31:58 +00001749 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS),
1750 SE.getNegativeSCEV(RHS), L, true);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00001751 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1752 break;
1753 }
1754 case ICmpInst::ICMP_ULT: {
1755 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
1756 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1757 break;
1758 }
1759 case ICmpInst::ICMP_UGT: {
Dan Gohman89f85052007-10-22 18:31:58 +00001760 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS),
1761 SE.getNegativeSCEV(RHS), L, false);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1763 break;
1764 }
1765 default:
1766#if 0
1767 cerr << "ComputeIterationCount ";
1768 if (ExitCond->getOperand(0)->getType()->isUnsigned())
1769 cerr << "[unsigned] ";
1770 cerr << *LHS << " "
1771 << Instruction::getOpcodeName(Instruction::ICmp)
1772 << " " << *RHS << "\n";
1773#endif
1774 break;
1775 }
1776 return ComputeIterationCountExhaustively(L, ExitCond,
1777 ExitBr->getSuccessor(0) == ExitBlock);
1778}
1779
1780static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00001781EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
1782 ScalarEvolution &SE) {
1783 SCEVHandle InVal = SE.getConstant(C);
1784 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785 assert(isa<SCEVConstant>(Val) &&
1786 "Evaluation of SCEV at constant didn't fold correctly?");
1787 return cast<SCEVConstant>(Val)->getValue();
1788}
1789
1790/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1791/// and a GEP expression (missing the pointer index) indexing into it, return
1792/// the addressed element of the initializer or null if the index expression is
1793/// invalid.
1794static Constant *
1795GetAddressedElementFromGlobal(GlobalVariable *GV,
1796 const std::vector<ConstantInt*> &Indices) {
1797 Constant *Init = GV->getInitializer();
1798 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1799 uint64_t Idx = Indices[i]->getZExtValue();
1800 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1801 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1802 Init = cast<Constant>(CS->getOperand(Idx));
1803 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1804 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1805 Init = cast<Constant>(CA->getOperand(Idx));
1806 } else if (isa<ConstantAggregateZero>(Init)) {
1807 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1808 assert(Idx < STy->getNumElements() && "Bad struct index!");
1809 Init = Constant::getNullValue(STy->getElementType(Idx));
1810 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1811 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1812 Init = Constant::getNullValue(ATy->getElementType());
1813 } else {
1814 assert(0 && "Unknown constant aggregate type!");
1815 }
1816 return 0;
1817 } else {
1818 return 0; // Unknown initializer type
1819 }
1820 }
1821 return Init;
1822}
1823
1824/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1825/// 'setcc load X, cst', try to se if we can compute the trip count.
1826SCEVHandle ScalarEvolutionsImpl::
1827ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1828 const Loop *L,
1829 ICmpInst::Predicate predicate) {
1830 if (LI->isVolatile()) return UnknownValue;
1831
1832 // Check to see if the loaded pointer is a getelementptr of a global.
1833 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1834 if (!GEP) return UnknownValue;
1835
1836 // Make sure that it is really a constant global we are gepping, with an
1837 // initializer, and make sure the first IDX is really 0.
1838 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1839 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1840 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1841 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1842 return UnknownValue;
1843
1844 // Okay, we allow one non-constant index into the GEP instruction.
1845 Value *VarIdx = 0;
1846 std::vector<ConstantInt*> Indexes;
1847 unsigned VarIdxNum = 0;
1848 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1849 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1850 Indexes.push_back(CI);
1851 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1852 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1853 VarIdx = GEP->getOperand(i);
1854 VarIdxNum = i-2;
1855 Indexes.push_back(0);
1856 }
1857
1858 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1859 // Check to see if X is a loop variant variable value now.
1860 SCEVHandle Idx = getSCEV(VarIdx);
1861 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1862 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1863
1864 // We can only recognize very limited forms of loop index expressions, in
1865 // particular, only affine AddRec's like {C1,+,C2}.
1866 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1867 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1868 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1869 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1870 return UnknownValue;
1871
1872 unsigned MaxSteps = MaxBruteForceIterations;
1873 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1874 ConstantInt *ItCst =
1875 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohman89f85052007-10-22 18:31:58 +00001876 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877
1878 // Form the GEP offset.
1879 Indexes[VarIdxNum] = Val;
1880
1881 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1882 if (Result == 0) break; // Cannot compute!
1883
1884 // Evaluate the condition for this iteration.
1885 Result = ConstantExpr::getICmp(predicate, Result, RHS);
1886 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
1887 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
1888#if 0
1889 cerr << "\n***\n*** Computed loop count " << *ItCst
1890 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1891 << "***\n";
1892#endif
1893 ++NumArrayLenItCounts;
Dan Gohman89f85052007-10-22 18:31:58 +00001894 return SE.getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001895 }
1896 }
1897 return UnknownValue;
1898}
1899
1900
1901/// CanConstantFold - Return true if we can constant fold an instruction of the
1902/// specified type, assuming that all operands were constants.
1903static bool CanConstantFold(const Instruction *I) {
1904 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1905 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1906 return true;
1907
1908 if (const CallInst *CI = dyn_cast<CallInst>(I))
1909 if (const Function *F = CI->getCalledFunction())
1910 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1911 return false;
1912}
1913
1914/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1915/// in the loop that V is derived from. We allow arbitrary operations along the
1916/// way, but the operands of an operation must either be constants or a value
1917/// derived from a constant PHI. If this expression does not fit with these
1918/// constraints, return null.
1919static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1920 // If this is not an instruction, or if this is an instruction outside of the
1921 // loop, it can't be derived from a loop PHI.
1922 Instruction *I = dyn_cast<Instruction>(V);
1923 if (I == 0 || !L->contains(I->getParent())) return 0;
1924
1925 if (PHINode *PN = dyn_cast<PHINode>(I))
1926 if (L->getHeader() == I->getParent())
1927 return PN;
1928 else
1929 // We don't currently keep track of the control flow needed to evaluate
1930 // PHIs, so we cannot handle PHIs inside of loops.
1931 return 0;
1932
1933 // If we won't be able to constant fold this expression even if the operands
1934 // are constants, return early.
1935 if (!CanConstantFold(I)) return 0;
1936
1937 // Otherwise, we can evaluate this instruction if all of its operands are
1938 // constant or derived from a PHI node themselves.
1939 PHINode *PHI = 0;
1940 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1941 if (!(isa<Constant>(I->getOperand(Op)) ||
1942 isa<GlobalValue>(I->getOperand(Op)))) {
1943 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1944 if (P == 0) return 0; // Not evolving from PHI
1945 if (PHI == 0)
1946 PHI = P;
1947 else if (PHI != P)
1948 return 0; // Evolving from multiple different PHIs.
1949 }
1950
1951 // This is a expression evolving from a constant PHI!
1952 return PHI;
1953}
1954
1955/// EvaluateExpression - Given an expression that passes the
1956/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1957/// in the loop has the value PHIVal. If we can't fold this expression for some
1958/// reason, return null.
1959static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1960 if (isa<PHINode>(V)) return PHIVal;
1961 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1962 return GV;
1963 if (Constant *C = dyn_cast<Constant>(V)) return C;
1964 Instruction *I = cast<Instruction>(V);
1965
1966 std::vector<Constant*> Operands;
1967 Operands.resize(I->getNumOperands());
1968
1969 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1970 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1971 if (Operands[i] == 0) return 0;
1972 }
1973
1974 return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1975}
1976
1977/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1978/// in the header of its containing loop, we know the loop executes a
1979/// constant number of times, and the PHI node is just a recurrence
1980/// involving constants, fold it.
1981Constant *ScalarEvolutionsImpl::
1982getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
1983 std::map<PHINode*, Constant*>::iterator I =
1984 ConstantEvolutionLoopExitValue.find(PN);
1985 if (I != ConstantEvolutionLoopExitValue.end())
1986 return I->second;
1987
1988 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
1989 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1990
1991 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1992
1993 // Since the loop is canonicalized, the PHI node must have two entries. One
1994 // entry must be a constant (coming in from outside of the loop), and the
1995 // second must be derived from the same PHI.
1996 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1997 Constant *StartCST =
1998 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1999 if (StartCST == 0)
2000 return RetVal = 0; // Must be a constant.
2001
2002 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2003 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2004 if (PN2 != PN)
2005 return RetVal = 0; // Not derived from same PHI.
2006
2007 // Execute the loop symbolically to determine the exit value.
2008 if (Its.getActiveBits() >= 32)
2009 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2010
2011 unsigned NumIterations = Its.getZExtValue(); // must be in range
2012 unsigned IterationNum = 0;
2013 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2014 if (IterationNum == NumIterations)
2015 return RetVal = PHIVal; // Got exit value!
2016
2017 // Compute the value of the PHI node for the next iteration.
2018 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2019 if (NextPHI == PHIVal)
2020 return RetVal = NextPHI; // Stopped evolving!
2021 if (NextPHI == 0)
2022 return 0; // Couldn't evaluate!
2023 PHIVal = NextPHI;
2024 }
2025}
2026
2027/// ComputeIterationCountExhaustively - If the trip is known to execute a
2028/// constant number of times (the condition evolves only from constants),
2029/// try to evaluate a few iterations of the loop until we get the exit
2030/// condition gets a value of ExitWhen (true or false). If we cannot
2031/// evaluate the trip count of the loop, return UnknownValue.
2032SCEVHandle ScalarEvolutionsImpl::
2033ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2034 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2035 if (PN == 0) return UnknownValue;
2036
2037 // Since the loop is canonicalized, the PHI node must have two entries. One
2038 // entry must be a constant (coming in from outside of the loop), and the
2039 // second must be derived from the same PHI.
2040 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2041 Constant *StartCST =
2042 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2043 if (StartCST == 0) return UnknownValue; // Must be a constant.
2044
2045 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2046 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2047 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2048
2049 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2050 // the loop symbolically to determine when the condition gets a value of
2051 // "ExitWhen".
2052 unsigned IterationNum = 0;
2053 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2054 for (Constant *PHIVal = StartCST;
2055 IterationNum != MaxIterations; ++IterationNum) {
2056 ConstantInt *CondVal =
2057 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2058
2059 // Couldn't symbolically evaluate.
2060 if (!CondVal) return UnknownValue;
2061
2062 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2063 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2064 ++NumBruteForceTripCountsComputed;
Dan Gohman89f85052007-10-22 18:31:58 +00002065 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002066 }
2067
2068 // Compute the value of the PHI node for the next iteration.
2069 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2070 if (NextPHI == 0 || NextPHI == PHIVal)
2071 return UnknownValue; // Couldn't evaluate or not making progress...
2072 PHIVal = NextPHI;
2073 }
2074
2075 // Too many iterations were needed to evaluate.
2076 return UnknownValue;
2077}
2078
2079/// getSCEVAtScope - Compute the value of the specified expression within the
2080/// indicated loop (which may be null to indicate in no loop). If the
2081/// expression cannot be evaluated, return UnknownValue.
2082SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2083 // FIXME: this should be turned into a virtual method on SCEV!
2084
2085 if (isa<SCEVConstant>(V)) return V;
2086
2087 // If this instruction is evolves from a constant-evolving PHI, compute the
2088 // exit value from the loop without using SCEVs.
2089 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2090 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2091 const Loop *LI = this->LI[I->getParent()];
2092 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2093 if (PHINode *PN = dyn_cast<PHINode>(I))
2094 if (PN->getParent() == LI->getHeader()) {
2095 // Okay, there is no closed form solution for the PHI node. Check
2096 // to see if the loop that contains it has a known iteration count.
2097 // If so, we may be able to force computation of the exit value.
2098 SCEVHandle IterationCount = getIterationCount(LI);
2099 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2100 // Okay, we know how many times the containing loop executes. If
2101 // this is a constant evolving PHI node, get the final value at
2102 // the specified iteration number.
2103 Constant *RV = getConstantEvolutionLoopExitValue(PN,
2104 ICC->getValue()->getValue(),
2105 LI);
Dan Gohman89f85052007-10-22 18:31:58 +00002106 if (RV) return SE.getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107 }
2108 }
2109
2110 // Okay, this is an expression that we cannot symbolically evaluate
2111 // into a SCEV. Check to see if it's possible to symbolically evaluate
2112 // the arguments into constants, and if so, try to constant propagate the
2113 // result. This is particularly useful for computing loop exit values.
2114 if (CanConstantFold(I)) {
2115 std::vector<Constant*> Operands;
2116 Operands.reserve(I->getNumOperands());
2117 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2118 Value *Op = I->getOperand(i);
2119 if (Constant *C = dyn_cast<Constant>(Op)) {
2120 Operands.push_back(C);
2121 } else {
2122 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2123 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2124 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2125 Op->getType(),
2126 false));
2127 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2128 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2129 Operands.push_back(ConstantExpr::getIntegerCast(C,
2130 Op->getType(),
2131 false));
2132 else
2133 return V;
2134 } else {
2135 return V;
2136 }
2137 }
2138 }
2139 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
Dan Gohman89f85052007-10-22 18:31:58 +00002140 return SE.getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002141 }
2142 }
2143
2144 // This is some other type of SCEVUnknown, just return it.
2145 return V;
2146 }
2147
2148 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2149 // Avoid performing the look-up in the common case where the specified
2150 // expression has no loop-variant portions.
2151 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2152 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2153 if (OpAtScope != Comm->getOperand(i)) {
2154 if (OpAtScope == UnknownValue) return UnknownValue;
2155 // Okay, at least one of these operands is loop variant but might be
2156 // foldable. Build a new instance of the folded commutative expression.
2157 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2158 NewOps.push_back(OpAtScope);
2159
2160 for (++i; i != e; ++i) {
2161 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2162 if (OpAtScope == UnknownValue) return UnknownValue;
2163 NewOps.push_back(OpAtScope);
2164 }
2165 if (isa<SCEVAddExpr>(Comm))
Dan Gohman89f85052007-10-22 18:31:58 +00002166 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002167 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
Dan Gohman89f85052007-10-22 18:31:58 +00002168 return SE.getMulExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169 }
2170 }
2171 // If we got here, all operands are loop invariant.
2172 return Comm;
2173 }
2174
2175 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2176 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2177 if (LHS == UnknownValue) return LHS;
2178 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2179 if (RHS == UnknownValue) return RHS;
2180 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2181 return Div; // must be loop invariant
Dan Gohman89f85052007-10-22 18:31:58 +00002182 return SE.getSDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002183 }
2184
Nick Lewyckyc44b3fd2007-11-15 06:30:50 +00002185 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2186 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2187 if (LHS == UnknownValue) return LHS;
2188 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2189 if (RHS == UnknownValue) return RHS;
2190 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2191 return Div; // must be loop invariant
2192 return SE.getUDivExpr(LHS, RHS);
2193 }
2194
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195 // If this is a loop recurrence for a loop that does not contain L, then we
2196 // are dealing with the final value computed by the loop.
2197 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2198 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2199 // To evaluate this recurrence, we need to know how many times the AddRec
2200 // loop iterates. Compute this now.
2201 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2202 if (IterationCount == UnknownValue) return UnknownValue;
2203 IterationCount = getTruncateOrZeroExtend(IterationCount,
Dan Gohman89f85052007-10-22 18:31:58 +00002204 AddRec->getType(), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205
2206 // If the value is affine, simplify the expression evaluation to just
2207 // Start + Step*IterationCount.
2208 if (AddRec->isAffine())
Dan Gohman89f85052007-10-22 18:31:58 +00002209 return SE.getAddExpr(AddRec->getStart(),
2210 SE.getMulExpr(IterationCount,
2211 AddRec->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002212
2213 // Otherwise, evaluate it the hard way.
Dan Gohman89f85052007-10-22 18:31:58 +00002214 return AddRec->evaluateAtIteration(IterationCount, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002215 }
2216 return UnknownValue;
2217 }
2218
2219 //assert(0 && "Unknown SCEV type!");
2220 return UnknownValue;
2221}
2222
2223
2224/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2225/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2226/// might be the same) or two SCEVCouldNotCompute objects.
2227///
2228static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00002229SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002230 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2231 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2232 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2233 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2234
2235 // We currently can only solve this if the coefficients are constants.
2236 if (!LC || !MC || !NC) {
2237 SCEV *CNC = new SCEVCouldNotCompute();
2238 return std::make_pair(CNC, CNC);
2239 }
2240
2241 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2242 const APInt &L = LC->getValue()->getValue();
2243 const APInt &M = MC->getValue()->getValue();
2244 const APInt &N = NC->getValue()->getValue();
2245 APInt Two(BitWidth, 2);
2246 APInt Four(BitWidth, 4);
2247
2248 {
2249 using namespace APIntOps;
2250 const APInt& C = L;
2251 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2252 // The B coefficient is M-N/2
2253 APInt B(M);
2254 B -= sdiv(N,Two);
2255
2256 // The A coefficient is N/2
2257 APInt A(N.sdiv(Two));
2258
2259 // Compute the B^2-4ac term.
2260 APInt SqrtTerm(B);
2261 SqrtTerm *= B;
2262 SqrtTerm -= Four * (A * C);
2263
2264 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2265 // integer value or else APInt::sqrt() will assert.
2266 APInt SqrtVal(SqrtTerm.sqrt());
2267
2268 // Compute the two solutions for the quadratic formula.
2269 // The divisions must be performed as signed divisions.
2270 APInt NegB(-B);
2271 APInt TwoA( A << 1 );
2272 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2273 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2274
Dan Gohman89f85052007-10-22 18:31:58 +00002275 return std::make_pair(SE.getConstant(Solution1),
2276 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002277 } // end APIntOps namespace
2278}
2279
2280/// HowFarToZero - Return the number of times a backedge comparing the specified
2281/// value to zero will execute. If not computable, return UnknownValue
2282SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2283 // If the value is a constant
2284 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2285 // If the value is already zero, the branch will execute zero times.
2286 if (C->getValue()->isZero()) return C;
2287 return UnknownValue; // Otherwise it will loop infinitely.
2288 }
2289
2290 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2291 if (!AddRec || AddRec->getLoop() != L)
2292 return UnknownValue;
2293
2294 if (AddRec->isAffine()) {
2295 // If this is an affine expression the execution count of this branch is
2296 // equal to:
2297 //
2298 // (0 - Start/Step) iff Start % Step == 0
2299 //
2300 // Get the initial value for the loop.
2301 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2302 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2303 SCEVHandle Step = AddRec->getOperand(1);
2304
2305 Step = getSCEVAtScope(Step, L->getParentLoop());
2306
2307 // Figure out if Start % Step == 0.
2308 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2309 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2310 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Dan Gohman89f85052007-10-22 18:31:58 +00002311 return SE.getNegativeSCEV(Start); // 0 - Start/1 == -Start
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002312 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2313 return Start; // 0 - Start/-1 == Start
2314
2315 // Check to see if Start is divisible by SC with no remainder.
2316 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2317 ConstantInt *StartCC = StartC->getValue();
2318 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2319 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2320 if (Rem->isNullValue()) {
2321 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
Dan Gohman89f85052007-10-22 18:31:58 +00002322 return SE.getUnknown(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002323 }
2324 }
2325 }
2326 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2327 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2328 // the quadratic equation to solve it.
Dan Gohman89f85052007-10-22 18:31:58 +00002329 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2331 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2332 if (R1) {
2333#if 0
2334 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2335 << " sol#2: " << *R2 << "\n";
2336#endif
2337 // Pick the smallest positive root value.
2338 if (ConstantInt *CB =
2339 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2340 R1->getValue(), R2->getValue()))) {
2341 if (CB->getZExtValue() == false)
2342 std::swap(R1, R2); // R1 is the minimum root now.
2343
2344 // We can only use this value if the chrec ends up with an exact zero
2345 // value at this index. When solving for "X*X != 5", for example, we
2346 // should not accept a root of 2.
Dan Gohman89f85052007-10-22 18:31:58 +00002347 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002348 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2349 if (EvalVal->getValue()->isZero())
2350 return R1; // We found a quadratic root!
2351 }
2352 }
2353 }
2354
2355 return UnknownValue;
2356}
2357
2358/// HowFarToNonZero - Return the number of times a backedge checking the
2359/// specified value for nonzero will execute. If not computable, return
2360/// UnknownValue
2361SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2362 // Loops that look like: while (X == 0) are very strange indeed. We don't
2363 // handle them yet except for the trivial case. This could be expanded in the
2364 // future as needed.
2365
2366 // If the value is a constant, check to see if it is known to be non-zero
2367 // already. If so, the backedge will execute zero times.
2368 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2369 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2370 Constant *NonZero =
2371 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2372 if (NonZero == ConstantInt::getTrue())
2373 return getSCEV(Zero);
2374 return UnknownValue; // Otherwise it will loop infinitely.
2375 }
2376
2377 // We could implement others, but I really doubt anyone writes loops like
2378 // this, and if they did, they would already be constant folded.
2379 return UnknownValue;
2380}
2381
2382/// HowManyLessThans - Return the number of times a backedge containing the
2383/// specified less-than comparison will execute. If not computable, return
2384/// UnknownValue.
2385SCEVHandle ScalarEvolutionsImpl::
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002386HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002387 // Only handle: "ADDREC < LoopInvariant".
2388 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2389
2390 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2391 if (!AddRec || AddRec->getLoop() != L)
2392 return UnknownValue;
2393
2394 if (AddRec->isAffine()) {
2395 // FORNOW: We only support unit strides.
Dan Gohman89f85052007-10-22 18:31:58 +00002396 SCEVHandle Zero = SE.getIntegerSCEV(0, RHS->getType());
2397 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002398 if (AddRec->getOperand(1) != One)
2399 return UnknownValue;
2400
Dan Gohman89f85052007-10-22 18:31:58 +00002401 // The number of iterations for "{n,+,1} < m", is m-n. However, we don't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402 // know that m is >= n on input to the loop. If it is, the condition return
2403 // true zero times. What we really should return, for full generality, is
2404 // SMAX(0, m-n). Since we cannot check this, we will instead check for a
2405 // canonical loop form: most do-loops will have a check that dominates the
Dan Gohman89f85052007-10-22 18:31:58 +00002406 // loop, that only enters the loop if (n-1)<m. If we can find this check,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002407 // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2408
2409 // Search for the check.
2410 BasicBlock *Preheader = L->getLoopPreheader();
2411 BasicBlock *PreheaderDest = L->getHeader();
2412 if (Preheader == 0) return UnknownValue;
2413
2414 BranchInst *LoopEntryPredicate =
2415 dyn_cast<BranchInst>(Preheader->getTerminator());
2416 if (!LoopEntryPredicate) return UnknownValue;
2417
2418 // This might be a critical edge broken out. If the loop preheader ends in
2419 // an unconditional branch to the loop, check to see if the preheader has a
2420 // single predecessor, and if so, look for its terminator.
2421 while (LoopEntryPredicate->isUnconditional()) {
2422 PreheaderDest = Preheader;
2423 Preheader = Preheader->getSinglePredecessor();
2424 if (!Preheader) return UnknownValue; // Multiple preds.
2425
2426 LoopEntryPredicate =
2427 dyn_cast<BranchInst>(Preheader->getTerminator());
2428 if (!LoopEntryPredicate) return UnknownValue;
2429 }
2430
2431 // Now that we found a conditional branch that dominates the loop, check to
2432 // see if it is the comparison we are looking for.
2433 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2434 Value *PreCondLHS = ICI->getOperand(0);
2435 Value *PreCondRHS = ICI->getOperand(1);
2436 ICmpInst::Predicate Cond;
2437 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2438 Cond = ICI->getPredicate();
2439 else
2440 Cond = ICI->getInversePredicate();
2441
2442 switch (Cond) {
2443 case ICmpInst::ICMP_UGT:
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002444 if (isSigned) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002445 std::swap(PreCondLHS, PreCondRHS);
2446 Cond = ICmpInst::ICMP_ULT;
2447 break;
2448 case ICmpInst::ICMP_SGT:
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002449 if (!isSigned) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002450 std::swap(PreCondLHS, PreCondRHS);
2451 Cond = ICmpInst::ICMP_SLT;
2452 break;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002453 case ICmpInst::ICMP_ULT:
2454 if (isSigned) return UnknownValue;
2455 break;
2456 case ICmpInst::ICMP_SLT:
2457 if (!isSigned) return UnknownValue;
2458 break;
2459 default:
2460 return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002461 }
2462
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002463 if (PreCondLHS->getType()->isInteger()) {
2464 if (RHS != getSCEV(PreCondRHS))
2465 return UnknownValue; // Not a comparison against 'm'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002466
Dan Gohman89f85052007-10-22 18:31:58 +00002467 if (SE.getMinusSCEV(AddRec->getOperand(0), One)
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002468 != getSCEV(PreCondLHS))
2469 return UnknownValue; // Not a comparison against 'n-1'.
2470 }
2471 else return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472
2473 // cerr << "Computed Loop Trip Count as: "
Dan Gohman89f85052007-10-22 18:31:58 +00002474 // << // *SE.getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2475 return SE.getMinusSCEV(RHS, AddRec->getOperand(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476 }
2477 else
2478 return UnknownValue;
2479 }
2480
2481 return UnknownValue;
2482}
2483
2484/// getNumIterationsInRange - Return the number of iterations of this loop that
2485/// produce values in the specified constant range. Another way of looking at
2486/// this is that it returns the first iteration number where the value is not in
2487/// the condition, thus computing the exit count. If the iteration count can't
2488/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00002489SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2490 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002491 if (Range.isFullSet()) // Infinite loop.
2492 return new SCEVCouldNotCompute();
2493
2494 // If the start is a non-zero constant, shift the range to simplify things.
2495 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2496 if (!SC->getValue()->isZero()) {
2497 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00002498 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
2499 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2501 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00002502 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002503 // This is strange and shouldn't happen.
2504 return new SCEVCouldNotCompute();
2505 }
2506
2507 // The only time we can solve this is when we have all constant indices.
2508 // Otherwise, we cannot determine the overflow conditions.
2509 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2510 if (!isa<SCEVConstant>(getOperand(i)))
2511 return new SCEVCouldNotCompute();
2512
2513
2514 // Okay at this point we know that all elements of the chrec are constants and
2515 // that the start element is zero.
2516
2517 // First check to see if the range contains zero. If not, the first
2518 // iteration exits.
2519 if (!Range.contains(APInt(getBitWidth(),0)))
Dan Gohman89f85052007-10-22 18:31:58 +00002520 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002521
2522 if (isAffine()) {
2523 // If this is an affine expression then we have this situation:
2524 // Solve {0,+,A} in Range === Ax in Range
2525
2526 // We know that zero is in the range. If A is positive then we know that
2527 // the upper value of the range must be the first possible exit value.
2528 // If A is negative then the lower of the range is the last possible loop
2529 // value. Also note that we already checked for a full range.
2530 APInt One(getBitWidth(),1);
2531 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2532 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
2533
2534 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00002535 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2537
2538 // Evaluate at the exit value. If we really did fall out of the valid
2539 // range, then we computed our trip count, otherwise wrap around or other
2540 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00002541 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002542 if (Range.contains(Val->getValue()))
2543 return new SCEVCouldNotCompute(); // Something strange happened
2544
2545 // Ensure that the previous value is in the range. This is a sanity check.
2546 assert(Range.contains(
2547 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00002548 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002549 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00002550 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551 } else if (isQuadratic()) {
2552 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2553 // quadratic equation to solve it. To do this, we must frame our problem in
2554 // terms of figuring out when zero is crossed, instead of when
2555 // Range.getUpper() is crossed.
2556 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00002557 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
2558 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002559
2560 // Next, solve the constructed addrec
2561 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00002562 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2564 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2565 if (R1) {
2566 // Pick the smallest positive root value.
2567 if (ConstantInt *CB =
2568 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2569 R1->getValue(), R2->getValue()))) {
2570 if (CB->getZExtValue() == false)
2571 std::swap(R1, R2); // R1 is the minimum root now.
2572
2573 // Make sure the root is not off by one. The returned iteration should
2574 // not be in the range, but the previous one should be. When solving
2575 // for "X*X < 5", for example, we should not return a root of 2.
2576 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00002577 R1->getValue(),
2578 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002579 if (Range.contains(R1Val->getValue())) {
2580 // The next iteration must be out of the range...
2581 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2582
Dan Gohman89f85052007-10-22 18:31:58 +00002583 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002584 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00002585 return SE.getConstant(NextVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002586 return new SCEVCouldNotCompute(); // Something strange happened
2587 }
2588
2589 // If R1 was not in the range, then it is a good return value. Make
2590 // sure that R1-1 WAS in the range though, just in case.
2591 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00002592 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002593 if (Range.contains(R1Val->getValue()))
2594 return R1;
2595 return new SCEVCouldNotCompute(); // Something strange happened
2596 }
2597 }
2598 }
2599
2600 // Fallback, if this is a general polynomial, figure out the progression
2601 // through brute force: evaluate until we find an iteration that fails the
2602 // test. This is likely to be slow, but getting an accurate trip count is
2603 // incredibly important, we will be able to simplify the exit test a lot, and
2604 // we are almost guaranteed to get a trip count in this case.
2605 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2606 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2607 do {
2608 ++NumBruteForceEvaluations;
Dan Gohman89f85052007-10-22 18:31:58 +00002609 SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002610 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2611 return new SCEVCouldNotCompute();
2612
2613 // Check to see if we found the value!
2614 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00002615 return SE.getConstant(TestVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002616
2617 // Increment to test the next index.
2618 TestVal = ConstantInt::get(TestVal->getValue()+1);
2619 } while (TestVal != EndVal);
2620
2621 return new SCEVCouldNotCompute();
2622}
2623
2624
2625
2626//===----------------------------------------------------------------------===//
2627// ScalarEvolution Class Implementation
2628//===----------------------------------------------------------------------===//
2629
2630bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohman89f85052007-10-22 18:31:58 +00002631 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002632 return false;
2633}
2634
2635void ScalarEvolution::releaseMemory() {
2636 delete (ScalarEvolutionsImpl*)Impl;
2637 Impl = 0;
2638}
2639
2640void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2641 AU.setPreservesAll();
2642 AU.addRequiredTransitive<LoopInfo>();
2643}
2644
2645SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2646 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2647}
2648
2649/// hasSCEV - Return true if the SCEV for this value has already been
2650/// computed.
2651bool ScalarEvolution::hasSCEV(Value *V) const {
2652 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2653}
2654
2655
2656/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2657/// the specified value.
2658void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2659 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2660}
2661
2662
2663SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2664 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2665}
2666
2667bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2668 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2669}
2670
2671SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2672 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2673}
2674
2675void ScalarEvolution::deleteValueFromRecords(Value *V) const {
2676 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
2677}
2678
2679static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2680 const Loop *L) {
2681 // Print all inner loops first
2682 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2683 PrintLoopInfo(OS, SE, *I);
2684
2685 cerr << "Loop " << L->getHeader()->getName() << ": ";
2686
Devang Patel02451fa2007-08-21 00:31:24 +00002687 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002688 L->getExitBlocks(ExitBlocks);
2689 if (ExitBlocks.size() != 1)
2690 cerr << "<multiple exits> ";
2691
2692 if (SE->hasLoopInvariantIterationCount(L)) {
2693 cerr << *SE->getIterationCount(L) << " iterations! ";
2694 } else {
2695 cerr << "Unpredictable iteration count. ";
2696 }
2697
2698 cerr << "\n";
2699}
2700
2701void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2702 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2703 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2704
2705 OS << "Classifying expressions for: " << F.getName() << "\n";
2706 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2707 if (I->getType()->isInteger()) {
2708 OS << *I;
2709 OS << " --> ";
2710 SCEVHandle SV = getSCEV(&*I);
2711 SV->print(OS);
2712 OS << "\t\t";
2713
2714 if ((*I).getType()->isInteger()) {
2715 ConstantRange Bounds = SV->getValueRange();
2716 if (!Bounds.isFullSet())
2717 OS << "Bounds: " << Bounds << " ";
2718 }
2719
2720 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2721 OS << "Exits: ";
2722 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2723 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2724 OS << "<<Unknown>>";
2725 } else {
2726 OS << *ExitValue;
2727 }
2728 }
2729
2730
2731 OS << "\n";
2732 }
2733
2734 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2735 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2736 PrintLoopInfo(OS, this, *I);
2737}
2738