blob: d4a87070e633612274ee9affe2a1afa09892dc9b [file] [log] [blame]
Misha Brukmancd603132003-06-02 03:28:00 +00001//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner40ead952002-12-02 21:24:12 +00009//
10// This file contains the pass that transforms the X86 machine instructions into
11// actual executable machine code.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnercb533582003-08-03 21:14:38 +000015#define DEBUG_TYPE "jit"
Chris Lattner40ead952002-12-02 21:24:12 +000016#include "X86TargetMachine.h"
Chris Lattnerea1ddab2002-12-03 06:34:06 +000017#include "X86.h"
Chris Lattner40ead952002-12-02 21:24:12 +000018#include "llvm/PassManager.h"
19#include "llvm/CodeGen/MachineCodeEmitter.h"
Chris Lattner5ae99fe2002-12-28 20:24:48 +000020#include "llvm/CodeGen/MachineFunctionPass.h"
Chris Lattner76041ce2002-12-02 21:44:34 +000021#include "llvm/CodeGen/MachineInstr.h"
Chris Lattnerc01d1232003-10-20 03:42:58 +000022#include "llvm/Function.h"
Chris Lattnera11136b2003-08-01 22:21:34 +000023#include "Support/Debug.h"
Chris Lattner302de592003-06-06 04:00:05 +000024#include "Support/Statistic.h"
John Criswell7a73b802003-06-30 21:59:07 +000025#include "Config/alloca.h"
Chris Lattner65b05ce2003-12-12 07:11:18 +000026using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000027
Chris Lattner40ead952002-12-02 21:24:12 +000028namespace {
Chris Lattner302de592003-06-06 04:00:05 +000029 Statistic<>
30 NumEmitted("x86-emitter", "Number of machine instructions emitted");
31
Chris Lattner04b0b302003-06-01 23:23:50 +000032 class JITResolver {
33 MachineCodeEmitter &MCE;
34
35 // LazyCodeGenMap - Keep track of call sites for functions that are to be
36 // lazily resolved.
37 std::map<unsigned, Function*> LazyCodeGenMap;
38
39 // LazyResolverMap - Keep track of the lazy resolver created for a
40 // particular function so that we can reuse them if necessary.
41 std::map<Function*, unsigned> LazyResolverMap;
42 public:
43 JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
44 unsigned getLazyResolver(Function *F);
45 unsigned addFunctionReference(unsigned Address, Function *F);
46
47 private:
48 unsigned emitStubForFunction(Function *F);
49 static void CompilationCallback();
50 unsigned resolveFunctionReference(unsigned RetAddr);
51 };
52
53 JITResolver *TheJITResolver;
54}
55
Chris Lattner65b05ce2003-12-12 07:11:18 +000056void *X86TargetMachine::getJITStubForFunction(Function *F,
57 MachineCodeEmitter &MCE) {
58 if (TheJITResolver == 0)
59 TheJITResolver = new JITResolver(MCE);
60 return (void*)TheJITResolver->getLazyResolver(F);
61}
Chris Lattner04b0b302003-06-01 23:23:50 +000062
63/// addFunctionReference - This method is called when we need to emit the
64/// address of a function that has not yet been emitted, so we don't know the
65/// address. Instead, we emit a call to the CompilationCallback method, and
66/// keep track of where we are.
67///
68unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
69 LazyCodeGenMap[Address] = F;
70 return (intptr_t)&JITResolver::CompilationCallback;
71}
72
73unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
74 std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
75 assert(I != LazyCodeGenMap.end() && "Not in map!");
76 Function *F = I->second;
77 LazyCodeGenMap.erase(I);
78 return MCE.forceCompilationOf(F);
79}
80
81unsigned JITResolver::getLazyResolver(Function *F) {
82 std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
83 if (I != LazyResolverMap.end() && I->first == F) return I->second;
84
85//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
86
87 unsigned Stub = emitStubForFunction(F);
88 LazyResolverMap.insert(I, std::make_pair(F, Stub));
89 return Stub;
90}
91
92void JITResolver::CompilationCallback() {
93 unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
Misha Brukmanbc80b222003-06-02 04:13:58 +000094 unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
Chris Lattner04b0b302003-06-01 23:23:50 +000095 assert(StackPtr[1] == RetAddr &&
96 "Could not find return address on the stack!");
Chris Lattner30d002b2003-06-06 18:25:33 +000097
98 // It's a stub if there is an interrupt marker after the call...
99 bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;
Chris Lattner04b0b302003-06-01 23:23:50 +0000100
Chris Lattner302de592003-06-06 04:00:05 +0000101 // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
102 // pointer elimination has been performed. Having a variable sized alloca
103 // disables frame pointer elimination currently, even if it's dead. This is a
104 // gross hack.
105 alloca(10+isStub);
106 // FIXME FIXME FIXME FIXME
107
Chris Lattner04b0b302003-06-01 23:23:50 +0000108 // The call instruction should have pushed the return value onto the stack...
109 RetAddr -= 4; // Backtrack to the reference itself...
110
111#if 0
112 DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
113 << " ESP=0x" << (unsigned)StackPtr << std::dec
114 << ": Resolving call to function: "
115 << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
116#endif
117
118 // Sanity check to make sure this really is a call instruction...
Chris Lattner30d002b2003-06-06 18:25:33 +0000119 assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000120
121 unsigned NewVal = TheJITResolver->resolveFunctionReference(RetAddr);
122
123 // Rewrite the call target... so that we don't fault every time we execute
124 // the call.
Chris Lattner30d002b2003-06-06 18:25:33 +0000125 *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;
Chris Lattner04b0b302003-06-01 23:23:50 +0000126
127 if (isStub) {
128 // If this is a stub, rewrite the call into an unconditional branch
129 // instruction so that two return addresses are not pushed onto the stack
130 // when the requested function finally gets called. This also makes the
131 // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
Chris Lattner30d002b2003-06-06 18:25:33 +0000132 ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
Chris Lattner04b0b302003-06-01 23:23:50 +0000133 }
134
135 // Change the return address to reexecute the call instruction...
136 StackPtr[1] -= 5;
137}
138
139/// emitStubForFunction - This method is used by the JIT when it needs to emit
140/// the address of a function for a function whose code has not yet been
141/// generated. In order to do this, it generates a stub which jumps to the lazy
142/// function compiler, which will eventually get fixed to call the function
143/// directly.
144///
145unsigned JITResolver::emitStubForFunction(Function *F) {
146 MCE.startFunctionStub(*F, 6);
147 MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
148
149 unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
150 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
151
152 MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
153 return (intptr_t)MCE.finishFunctionStub(*F);
154}
155
156
157
158namespace {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000159 class Emitter : public MachineFunctionPass {
160 const X86InstrInfo *II;
Chris Lattner8f04b092002-12-02 21:56:18 +0000161 MachineCodeEmitter &MCE;
Chris Lattnerdee12632003-07-26 23:06:00 +0000162 std::map<const BasicBlock*, unsigned> BasicBlockAddrs;
163 std::vector<std::pair<const BasicBlock*, unsigned> > BBRefs;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000164 public:
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000165 Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
Chris Lattner40ead952002-12-02 21:24:12 +0000166
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000167 bool runOnMachineFunction(MachineFunction &MF);
Chris Lattner76041ce2002-12-02 21:44:34 +0000168
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000169 virtual const char *getPassName() const {
170 return "X86 Machine Code Emitter";
171 }
172
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000173 private:
Chris Lattner76041ce2002-12-02 21:44:34 +0000174 void emitBasicBlock(MachineBasicBlock &MBB);
175 void emitInstruction(MachineInstr &MI);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000176
Chris Lattner04b0b302003-06-01 23:23:50 +0000177 void emitPCRelativeBlockAddress(BasicBlock *BB);
178 void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative);
179 void emitGlobalAddressForCall(GlobalValue *GV);
180 void emitGlobalAddressForPtr(GlobalValue *GV);
181
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000182 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
183 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
184 void emitConstant(unsigned Val, unsigned Size);
185
186 void emitMemModRMByte(const MachineInstr &MI,
187 unsigned Op, unsigned RegOpcodeField);
188
Chris Lattner40ead952002-12-02 21:24:12 +0000189 };
190}
191
Chris Lattner40ead952002-12-02 21:24:12 +0000192/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
Brian Gaeke45f0b6d2003-10-16 23:45:05 +0000193/// machine code emitted. This uses a MachineCodeEmitter object to handle
Chris Lattner40ead952002-12-02 21:24:12 +0000194/// actually outputting the machine code and resolving things like the address
195/// of functions. This method should returns true if machine code emission is
196/// not supported.
197///
Brian Gaeke8844a0b2003-08-13 18:17:27 +0000198bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
Chris Lattner40ead952002-12-02 21:24:12 +0000199 MachineCodeEmitter &MCE) {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000200 PM.add(new Emitter(MCE));
Chris Lattner40ead952002-12-02 21:24:12 +0000201 return false;
202}
Chris Lattner76041ce2002-12-02 21:44:34 +0000203
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000204bool Emitter::runOnMachineFunction(MachineFunction &MF) {
205 II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo();
Chris Lattner76041ce2002-12-02 21:44:34 +0000206
207 MCE.startFunction(MF);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000208 MCE.emitConstantPool(MF.getConstantPool());
Chris Lattner76041ce2002-12-02 21:44:34 +0000209 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
210 emitBasicBlock(*I);
211 MCE.finishFunction(MF);
Chris Lattner04b0b302003-06-01 23:23:50 +0000212
213 // Resolve all forward branches now...
214 for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
215 unsigned Location = BasicBlockAddrs[BBRefs[i].first];
216 unsigned Ref = BBRefs[i].second;
Chris Lattner30d002b2003-06-06 18:25:33 +0000217 *(unsigned*)(intptr_t)Ref = Location-Ref-4;
Chris Lattner04b0b302003-06-01 23:23:50 +0000218 }
219 BBRefs.clear();
220 BasicBlockAddrs.clear();
Chris Lattner76041ce2002-12-02 21:44:34 +0000221 return false;
222}
223
224void Emitter::emitBasicBlock(MachineBasicBlock &MBB) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000225 if (uint64_t Addr = MCE.getCurrentPCValue())
226 BasicBlockAddrs[MBB.getBasicBlock()] = Addr;
227
Chris Lattner76041ce2002-12-02 21:44:34 +0000228 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
229 emitInstruction(**I);
230}
231
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000232
Chris Lattner04b0b302003-06-01 23:23:50 +0000233/// emitPCRelativeBlockAddress - This method emits the PC relative address of
234/// the specified basic block, or if the basic block hasn't been emitted yet
235/// (because this is a forward branch), it keeps track of the information
236/// necessary to resolve this address later (and emits a dummy value).
237///
238void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) {
239 // FIXME: Emit backward branches directly
240 BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue()));
241 MCE.emitWord(0); // Emit a dummy value
242}
243
244/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative.
245///
246void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) {
247 if (isPCRelative)
248 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
249 else
250 MCE.emitWord(Address);
251}
252
253/// emitGlobalAddressForCall - Emit the specified address to the code stream
254/// assuming this is part of a function call, which is PC relative.
255///
256void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
257 // Get the address from the backend...
258 unsigned Address = MCE.getGlobalValueAddress(GV);
259
Chris Lattner04b0b302003-06-01 23:23:50 +0000260 if (Address == 0) {
261 // FIXME: this is JIT specific!
262 if (TheJITResolver == 0)
263 TheJITResolver = new JITResolver(MCE);
264 Address = TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
Chris Lattnerc01d1232003-10-20 03:42:58 +0000265 cast<Function>(GV));
Chris Lattner04b0b302003-06-01 23:23:50 +0000266 }
267 emitMaybePCRelativeValue(Address, true);
268}
269
270/// emitGlobalAddress - Emit the specified address to the code stream assuming
271/// this is part of a "take the address of a global" instruction, which is not
272/// PC relative.
273///
274void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) {
275 // Get the address from the backend...
276 unsigned Address = MCE.getGlobalValueAddress(GV);
277
278 // If the machine code emitter doesn't know what the address IS yet, we have
279 // to take special measures.
280 //
281 if (Address == 0) {
282 // FIXME: this is JIT specific!
283 if (TheJITResolver == 0)
284 TheJITResolver = new JITResolver(MCE);
285 Address = TheJITResolver->getLazyResolver((Function*)GV);
286 }
287
288 emitMaybePCRelativeValue(Address, false);
289}
290
291
292
Chris Lattnerff3261a2003-06-03 15:31:23 +0000293/// N86 namespace - Native X86 Register numbers... used by X86 backend.
294///
295namespace N86 {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000296 enum {
297 EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
298 };
299}
300
301
302// getX86RegNum - This function maps LLVM register identifiers to their X86
303// specific numbering, which is used in various places encoding instructions.
304//
305static unsigned getX86RegNum(unsigned RegNo) {
306 switch(RegNo) {
307 case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
308 case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
309 case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
310 case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
311 case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
312 case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
313 case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
314 case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000315
316 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
317 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
318 return RegNo-X86::ST0;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000319 default:
320 assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
321 "Unknown physical register!");
322 assert(0 && "Register allocator hasn't allocated reg correctly yet!");
323 return 0;
324 }
325}
326
327inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
328 unsigned RM) {
329 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
330 return RM | (RegOpcode << 3) | (Mod << 6);
331}
332
333void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
334 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
335}
336
337void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
338 // SIB byte is in the same format as the ModRMByte...
339 MCE.emitByte(ModRMByte(SS, Index, Base));
340}
341
342void Emitter::emitConstant(unsigned Val, unsigned Size) {
343 // Output the constant in little endian byte order...
344 for (unsigned i = 0; i != Size; ++i) {
345 MCE.emitByte(Val & 255);
346 Val >>= 8;
347 }
348}
349
350static bool isDisp8(int Value) {
351 return Value == (signed char)Value;
352}
353
354void Emitter::emitMemModRMByte(const MachineInstr &MI,
355 unsigned Op, unsigned RegOpcodeField) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000356 const MachineOperand &Disp = MI.getOperand(Op+3);
357 if (MI.getOperand(Op).isConstantPoolIndex()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000358 // Emit a direct address reference [disp32] where the displacement of the
359 // constant pool entry is controlled by the MCE.
Chris Lattnere831b6b2003-01-13 00:33:59 +0000360 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
361 unsigned Index = MI.getOperand(Op).getConstantPoolIndex();
Chris Lattner04b0b302003-06-01 23:23:50 +0000362 unsigned Address = MCE.getConstantPoolEntryAddress(Index);
363 MCE.emitWord(Address+Disp.getImmedValue());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000364 return;
365 }
366
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000367 const MachineOperand &BaseReg = MI.getOperand(Op);
368 const MachineOperand &Scale = MI.getOperand(Op+1);
369 const MachineOperand &IndexReg = MI.getOperand(Op+2);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000370
371 // Is a SIB byte needed?
372 if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
373 if (BaseReg.getReg() == 0) { // Just a displacement?
374 // Emit special case [disp32] encoding
375 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
376 emitConstant(Disp.getImmedValue(), 4);
377 } else {
378 unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
379 if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
380 // Emit simple indirect register encoding... [EAX] f.e.
381 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
382 } else if (isDisp8(Disp.getImmedValue())) {
383 // Emit the disp8 encoding... [REG+disp8]
384 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
385 emitConstant(Disp.getImmedValue(), 1);
386 } else {
387 // Emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner20671842002-12-13 05:05:05 +0000388 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000389 emitConstant(Disp.getImmedValue(), 4);
390 }
391 }
392
393 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
394 assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
395
396 bool ForceDisp32 = false;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000397 bool ForceDisp8 = false;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000398 if (BaseReg.getReg() == 0) {
399 // If there is no base register, we emit the special case SIB byte with
400 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
401 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
402 ForceDisp32 = true;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000403 } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000404 // Emit no displacement ModR/M byte
405 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
406 } else if (isDisp8(Disp.getImmedValue())) {
407 // Emit the disp8 encoding...
408 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
Brian Gaeke95780cc2002-12-13 07:56:18 +0000409 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000410 } else {
411 // Emit the normal disp32 encoding...
412 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
413 }
414
415 // Calculate what the SS field value should be...
416 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
417 unsigned SS = SSTable[Scale.getImmedValue()];
418
419 if (BaseReg.getReg() == 0) {
420 // Handle the SIB byte for the case where there is no base. The
421 // displacement has already been output.
422 assert(IndexReg.getReg() && "Index register must be specified!");
423 emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
424 } else {
425 unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000426 unsigned IndexRegNo;
427 if (IndexReg.getReg())
428 IndexRegNo = getX86RegNum(IndexReg.getReg());
429 else
430 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000431 emitSIBByte(SS, IndexRegNo, BaseRegNo);
432 }
433
434 // Do we need to output a displacement?
Brian Gaeke95780cc2002-12-13 07:56:18 +0000435 if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000436 if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
437 emitConstant(Disp.getImmedValue(), 1);
438 else
439 emitConstant(Disp.getImmedValue(), 4);
440 }
441 }
442}
443
Chris Lattner04b0b302003-06-01 23:23:50 +0000444static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) {
Chris Lattnera0f38c82002-12-13 03:51:55 +0000445 switch (Desc.TSFlags & X86II::ArgMask) {
446 case X86II::Arg8: return 1;
447 case X86II::Arg16: return 2;
448 case X86II::Arg32: return 4;
Chris Lattner5ada8df2002-12-25 05:09:21 +0000449 case X86II::ArgF32: return 4;
450 case X86II::ArgF64: return 8;
451 case X86II::ArgF80: return 10;
Chris Lattnera6a382c2002-12-13 03:50:13 +0000452 default: assert(0 && "Memory size not set!");
Chris Lattnerdf642e12002-12-20 04:12:48 +0000453 return 0;
Misha Brukman5000e432002-12-13 02:13:15 +0000454 }
455}
456
Chris Lattner76041ce2002-12-02 21:44:34 +0000457void Emitter::emitInstruction(MachineInstr &MI) {
Chris Lattner302de592003-06-06 04:00:05 +0000458 NumEmitted++; // Keep track of the # of mi's emitted
459
Chris Lattner76041ce2002-12-02 21:44:34 +0000460 unsigned Opcode = MI.getOpcode();
Chris Lattner3501fea2003-01-14 22:00:31 +0000461 const TargetInstrDescriptor &Desc = II->get(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000462
Misha Brukman5560c9d2003-08-18 14:43:39 +0000463 // Emit instruction prefixes if necessary
Chris Lattner76041ce2002-12-02 21:44:34 +0000464 if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
Chris Lattner5ada8df2002-12-25 05:09:21 +0000465
466 switch (Desc.TSFlags & X86II::Op0Mask) {
467 case X86II::TB:
468 MCE.emitByte(0x0F); // Two-byte opcode prefix
469 break;
470 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
471 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
Chris Lattnere831b6b2003-01-13 00:33:59 +0000472 MCE.emitByte(0xD8+
473 (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
474 >> X86II::Op0Shift));
Chris Lattner5ada8df2002-12-25 05:09:21 +0000475 break; // Two-byte opcode prefix
Chris Lattnere831b6b2003-01-13 00:33:59 +0000476 default: assert(0 && "Invalid prefix!");
477 case 0: break; // No prefix!
Chris Lattner5ada8df2002-12-25 05:09:21 +0000478 }
Chris Lattner76041ce2002-12-02 21:44:34 +0000479
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000480 unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000481 switch (Desc.TSFlags & X86II::FormMask) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000482 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
Chris Lattner5ada8df2002-12-25 05:09:21 +0000483 case X86II::Pseudo:
Chris Lattner02beda12003-08-05 00:48:47 +0000484 if (Opcode != X86::IMPLICIT_USE && Opcode != X86::IMPLICIT_DEF)
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000485 std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI;
Chris Lattner5ada8df2002-12-25 05:09:21 +0000486 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000487
Chris Lattner76041ce2002-12-02 21:44:34 +0000488 case X86II::RawFrm:
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000489 MCE.emitByte(BaseOpcode);
Chris Lattner8f04b092002-12-02 21:56:18 +0000490 if (MI.getNumOperands() == 1) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000491 MachineOperand &MO = MI.getOperand(0);
492 if (MO.isPCRelativeDisp()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000493 // Conditional branch... FIXME: this should use an MBB destination!
494 emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue()));
Chris Lattnere831b6b2003-01-13 00:33:59 +0000495 } else if (MO.isGlobalAddress()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000496 assert(MO.isPCRelative() && "Call target is not PC Relative?");
497 emitGlobalAddressForCall(MO.getGlobal());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000498 } else if (MO.isExternalSymbol()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000499 unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
500 assert(Address && "Unknown external symbol!");
501 emitMaybePCRelativeValue(Address, MO.isPCRelative());
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000502 } else {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000503 assert(0 && "Unknown RawFrm operand!");
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000504 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000505 }
506 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000507
508 case X86II::AddRegFrm:
509 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
510 if (MI.getNumOperands() == 2) {
511 MachineOperand &MO1 = MI.getOperand(1);
512 if (MO1.isImmediate() || MO1.getVRegValueOrNull() ||
513 MO1.isGlobalAddress() || MO1.isExternalSymbol()) {
514 unsigned Size = sizeOfPtr(Desc);
515 if (Value *V = MO1.getVRegValueOrNull()) {
516 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000517 emitGlobalAddressForPtr(cast<GlobalValue>(V));
Chris Lattnere831b6b2003-01-13 00:33:59 +0000518 } else if (MO1.isGlobalAddress()) {
519 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000520 assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
521 emitGlobalAddressForPtr(MO1.getGlobal());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000522 } else if (MO1.isExternalSymbol()) {
523 assert(Size == 4 && "Don't know how to emit non-pointer values!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000524
525 unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
526 assert(Address && "Unknown external symbol!");
527 emitMaybePCRelativeValue(Address, MO1.isPCRelative());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000528 } else {
529 emitConstant(MO1.getImmedValue(), Size);
530 }
531 }
532 }
533 break;
534
535 case X86II::MRMDestReg: {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000536 MCE.emitByte(BaseOpcode);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000537 MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode));
538 emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg()));
539 if (MI.getNumOperands() == 4)
540 emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc));
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000541 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000542 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000543 case X86II::MRMDestMem:
544 MCE.emitByte(BaseOpcode);
545 emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
546 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000547
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000548 case X86II::MRMSrcReg:
549 MCE.emitByte(BaseOpcode);
Chris Lattnerc01d1232003-10-20 03:42:58 +0000550
551 if (MI.getNumOperands() == 2) {
552 emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
553 getX86RegNum(MI.getOperand(0).getReg()));
554 } else if (MI.getOperand(2).isImmediate()) {
555 emitRegModRMByte(MI.getOperand(1).getReg(),
556 getX86RegNum(MI.getOperand(0).getReg()));
557
558 emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc));
559 } else {
560 emitRegModRMByte(MI.getOperand(2).getReg(),
561 getX86RegNum(MI.getOperand(0).getReg()));
562 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000563 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000564
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000565 case X86II::MRMSrcMem:
566 MCE.emitByte(BaseOpcode);
567 emitMemModRMByte(MI, MI.getNumOperands()-4,
568 getX86RegNum(MI.getOperand(0).getReg()));
569 break;
570
571 case X86II::MRMS0r: case X86II::MRMS1r:
572 case X86II::MRMS2r: case X86II::MRMS3r:
573 case X86II::MRMS4r: case X86II::MRMS5r:
574 case X86II::MRMS6r: case X86II::MRMS7r:
575 MCE.emitByte(BaseOpcode);
576 emitRegModRMByte(MI.getOperand(0).getReg(),
577 (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);
578
Chris Lattnerd9096832002-12-15 08:01:39 +0000579 if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
Misha Brukman5000e432002-12-13 02:13:15 +0000580 unsigned Size = sizeOfPtr(Desc);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000581 emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
582 }
583 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000584
585 case X86II::MRMS0m: case X86II::MRMS1m:
586 case X86II::MRMS2m: case X86II::MRMS3m:
587 case X86II::MRMS4m: case X86II::MRMS5m:
588 case X86II::MRMS6m: case X86II::MRMS7m:
589 MCE.emitByte(BaseOpcode);
590 emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m);
591
592 if (MI.getNumOperands() == 5) {
593 unsigned Size = sizeOfPtr(Desc);
594 emitConstant(MI.getOperand(4).getImmedValue(), Size);
595 }
596 break;
Chris Lattner76041ce2002-12-02 21:44:34 +0000597 }
598}