blob: 51609f683f2873fe2886e314d2f05c5cfa47c1e4 [file] [log] [blame]
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001// $Id$ -*- C++ -*--
2//***************************************************************************
3// File:
4// SparcInternals.h
5//
6// Purpose:
7// This file defines stuff that is to be private to the Sparc
8// backend, but is shared among different portions of the backend.
9//**************************************************************************/
10
Chris Lattnerc6495ee2001-09-14 03:56:45 +000011
12#ifndef SPARC_INTERNALS_H
13#define SPARC_INTERNALS_H
14
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +000015
16#include "SparcRegClassInfo.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MachineInstrInfo.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000019#include "llvm/Target/MachineSchedInfo.h"
Vikram S. Adve5afff3b2001-11-09 02:15:52 +000020#include "llvm/Target/MachineFrameInfo.h"
21#include "llvm/Target/MachineCacheInfo.h"
Ruchira Sasankaab304c42001-09-30 23:19:57 +000022#include "llvm/CodeGen/RegClass.h"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000023#include "llvm/Type.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000024
Chris Lattner46cbff62001-09-14 16:56:32 +000025#include <sys/types.h>
Chris Lattnerc6495ee2001-09-14 03:56:45 +000026
Chris Lattnerf6e0e282001-09-14 04:32:55 +000027class UltraSparc;
28
Chris Lattnerc6495ee2001-09-14 03:56:45 +000029// OpCodeMask definitions for the Sparc V9
30//
31const OpCodeMask Immed = 0x00002000; // immed or reg operand?
32const OpCodeMask Annul = 0x20000000; // annul delay instr?
33const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
34
35
36enum SparcInstrSchedClass {
37 SPARC_NONE, /* Instructions with no scheduling restrictions */
38 SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
39 SPARC_IEU0, /* Integer class IEU0 */
40 SPARC_IEU1, /* Integer class IEU1 */
41 SPARC_FPM, /* FP Multiply or Divide instructions */
42 SPARC_FPA, /* All other FP instructions */
43 SPARC_CTI, /* Control-transfer instructions */
44 SPARC_LD, /* Load instructions */
45 SPARC_ST, /* Store instructions */
46 SPARC_SINGLE, /* Instructions that must issue by themselves */
47
48 SPARC_INV, /* This should stay at the end for the next value */
49 SPARC_NUM_SCHED_CLASSES = SPARC_INV
50};
51
Chris Lattnerc6495ee2001-09-14 03:56:45 +000052
53//---------------------------------------------------------------------------
54// enum SparcMachineOpCode.
55// const MachineInstrDescriptor SparcMachineInstrDesc[]
56//
57// Purpose:
58// Description of UltraSparc machine instructions.
59//
60//---------------------------------------------------------------------------
61
Chris Lattnerc6495ee2001-09-14 03:56:45 +000062enum SparcMachineOpCode {
Chris Lattner9a3d63b2001-09-19 15:56:23 +000063#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
64 NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
65 ENUM,
66#include "SparcInstr.def"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000067
Chris Lattnerc6495ee2001-09-14 03:56:45 +000068 // End-of-array marker
69 INVALID_OPCODE,
Vikram S. Advec1521632001-10-22 13:31:53 +000070 NUM_REAL_OPCODES = PHI, // number of valid opcodes
Chris Lattnerc6495ee2001-09-14 03:56:45 +000071 NUM_TOTAL_OPCODES = INVALID_OPCODE
72};
73
Chris Lattnerc6495ee2001-09-14 03:56:45 +000074
Chris Lattner9a3d63b2001-09-19 15:56:23 +000075// Array of machine instruction descriptions...
76extern const MachineInstrDescriptor SparcMachineInstrDesc[];
Chris Lattnerc6495ee2001-09-14 03:56:45 +000077
78
79//---------------------------------------------------------------------------
80// class UltraSparcInstrInfo
81//
82// Purpose:
83// Information about individual instructions.
84// Most information is stored in the SparcMachineInstrDesc array above.
85// Other information is computed on demand, and most such functions
86// default to member functions in base class MachineInstrInfo.
87//---------------------------------------------------------------------------
88
89class UltraSparcInstrInfo : public MachineInstrInfo {
90public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +000091 /*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt);
Vikram S. Adve4c5fe2d2001-11-14 18:48:36 +000092
93 //
94 // All immediate constants are in position 0 except the
95 // store instructions.
96 //
97 virtual int getImmmedConstantPos(MachineOpCode opCode) const {
98 bool ignore;
99 if (this->maxImmedConstant(opCode, ignore) != 0)
100 {
101 assert(! this->isStore((MachineOpCode) STB - 1)); // first store is STB
102 assert(! this->isStore((MachineOpCode) STD + 1)); // last store is STD
103 return (opCode >= STB || opCode <= STD)? 2 : 1;
104 }
105 else
106 return -1;
107 }
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000108
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000109 virtual bool hasResultInterlock (MachineOpCode opCode) const
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000110 {
111 // All UltraSPARC instructions have interlocks (note that delay slots
112 // are not considered here).
113 // However, instructions that use the result of an FCMP produce a
114 // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
115 // Force the compiler to insert a software interlock (i.e., gap of
116 // 2 other groups, including NOPs if necessary).
117 return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
118 }
119
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000120 //-------------------------------------------------------------------------
121 // Code generation support for creating individual machine instructions
122 //-------------------------------------------------------------------------
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000123
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000124 // Create an instruction sequence to put the constant `val' into
125 // the virtual register `dest'. The generated instructions are
126 // returned in `minstrVec'. Any temporary registers (TmpInstruction)
127 // created are returned in `tempVec'.
128 //
129 virtual void CreateCodeToLoadConst(Value* val,
130 Instruction* dest,
131 vector<MachineInstr*>& minstrVec,
132 vector<TmpInstruction*>& tempVec) const;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +0000133
134
Vikram S. Adve5afff3b2001-11-09 02:15:52 +0000135 // Create an instruction sequence to copy an integer value `val'
136 // to a floating point value `dest' by copying to memory and back.
137 // val must be an integral type. dest must be a Float or Double.
Vikram S. Adve7f37fe52001-11-08 04:55:13 +0000138 // The generated instructions are returned in `minstrVec'.
139 // Any temp. registers (TmpInstruction) created are returned in `tempVec'.
140 //
141 virtual void CreateCodeToCopyIntToFloat(Method* method,
142 Value* val,
143 Instruction* dest,
144 vector<MachineInstr*>& minstrVec,
145 vector<TmpInstruction*>& tempVec,
146 TargetMachine& target) const;
Vikram S. Adve5afff3b2001-11-09 02:15:52 +0000147
148 // Similarly, create an instruction sequence to copy an FP value
149 // `val' to an integer value `dest' by copying to memory and back.
150 // See the previous function for information about return values.
151 //
152 virtual void CreateCodeToCopyFloatToInt(Method* method,
153 Value* val,
154 Instruction* dest,
155 vector<MachineInstr*>& minstrVec,
156 vector<TmpInstruction*>& tempVec,
157 TargetMachine& target) const;
Ruchira Sasanka67a463a2001-11-12 14:45:33 +0000158
159 // create copy instruction(s)
160 virtual void
161 CreateCopyInstructionsByType(const TargetMachine& target,
162 Value* src,
163 Instruction* dest,
164 vector<MachineInstr*>& minstrVec) const;
165
166
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000167};
168
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000169
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000170//----------------------------------------------------------------------------
171// class UltraSparcRegInfo
172//
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000173// This class implements the virtual class MachineRegInfo for Sparc.
174//
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000175//----------------------------------------------------------------------------
176
177
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000178class LiveRange;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000179class UltraSparc;
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000180class PhyRegAlloc;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000181
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000182
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000183class UltraSparcRegInfo : public MachineRegInfo
184{
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000185 private:
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000186
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000187 // The actual register classes in the Sparc
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000188 //
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000189 enum RegClassIDs {
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000190 IntRegClassID, // Integer
191 FloatRegClassID, // Float (both single/double)
192 IntCCRegClassID, // Int Condition Code
193 FloatCCRegClassID // Float Condition code
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000194 };
195
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000196
197 // Type of registers available in Sparc. There can be several reg types
198 // in the same class. For instace, the float reg class has Single/Double
199 // types
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000200 //
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000201 enum RegTypes {
202 IntRegType,
203 FPSingleRegType,
204 FPDoubleRegType,
205 IntCCRegType,
206 FloatCCRegType
207 };
208
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000209 // **** WARNING: If the above enum order is changed, also modify
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000210 // getRegisterClassOfValue method below since it assumes this particular
211 // order for efficiency.
212
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000213
214 // reverse pointer to get info about the ultra sparc machine
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000215 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000216 const UltraSparc *const UltraSparcInfo;
217
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000218 // Number of registers used for passing int args (usually 6: %o0 - %o5)
219 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000220 unsigned const NumOfIntArgRegs;
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000221
222 // Number of registers used for passing float args (usually 32: %f0 - %f31)
223 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000224 unsigned const NumOfFloatArgRegs;
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000225
226 // An out of bound register number that can be used to initialize register
227 // numbers. Useful for error detection.
228 //
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000229 int const InvalidRegNum;
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000230
231
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000232 // ======================== Private Methods =============================
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000233
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000234 // The following methods are used to color special live ranges (e.g.
235 // method args and return values etc.) with specific hardware registers
236 // as required. See SparcRegInfo.cpp for the implementation.
237 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000238 void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
239 const MachineInstr *MI,AddedInstrMapType &AIMap)const;
240
241 MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
242 unsigned RegClassID) const ;
243
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000244 void suggestReg4RetAddr(const MachineInstr * RetMI,
245 LiveRangeInfo& LRI) const;
246
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000247 void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI,
248 vector<RegClass *> RCList) const;
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000249
250
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000251
252 // The following methods are used to find the addresses etc. contained
253 // in specail machine instructions like CALL/RET
254 //
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000255 Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000256 const Value *getCallInstRetAddr(const MachineInstr *CallMI) const;
257 const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const;
258
259
260 // The following 3 methods are used to find the RegType (see enum above)
261 // of a LiveRange, Value and using the unified RegClassID
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000262
263 int getRegType(const LiveRange *const LR) const {
264
265 unsigned Typ;
266
267 switch( (LR->getRegClass())->getID() ) {
268
269 case IntRegClassID: return IntRegType;
270
271 case FloatRegClassID:
272 Typ = LR->getTypeID();
273 if( Typ == Type::FloatTyID )
274 return FPSingleRegType;
275 else if( Typ == Type::DoubleTyID )
276 return FPDoubleRegType;
277 else assert(0 && "Unknown type in FloatRegClass");
278
279 case IntCCRegClassID: return IntCCRegType;
280
281 case FloatCCRegClassID: return FloatCCRegType ;
282
283 default: assert( 0 && "Unknown reg class ID");
Chris Lattner6dad5062001-11-07 13:49:12 +0000284 return 0;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000285 }
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000286 }
287
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000288
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000289 int getRegType(const Value *const Val) const {
290
291 unsigned Typ;
292
293 switch( getRegClassIDOfValue(Val) ) {
294
295 case IntRegClassID: return IntRegType;
296
297 case FloatRegClassID:
298 Typ = (Val->getType())->getPrimitiveID();
299 if( Typ == Type::FloatTyID )
300 return FPSingleRegType;
301 else if( Typ == Type::DoubleTyID )
302 return FPDoubleRegType;
303 else assert(0 && "Unknown type in FloatRegClass");
304
305 case IntCCRegClassID: return IntCCRegType;
306
307 case FloatCCRegClassID: return FloatCCRegType ;
308
309 default: assert( 0 && "Unknown reg class ID");
Chris Lattner6dad5062001-11-07 13:49:12 +0000310 return 0;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000311 }
312
313 }
314
315
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000316 int getRegType(int reg) const {
317 if( reg < 32 )
318 return IntRegType;
319 else if ( reg < (32 + 32) )
320 return FPSingleRegType;
321 else if ( reg < (64 + 32) )
322 return FPDoubleRegType;
323 else if( reg < (64+32+4) )
324 return FloatCCRegType;
325 else if( reg < (64+32+4+2) )
326 return IntCCRegType;
327 else
328 assert(0 && "Invalid register number in getRegType");
329 }
330
331
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000332
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000333
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000334 // The following methods are used to generate copy instructions to move
335 // data between condition code registers
336 //
Ruchira Sasanka3839e6e2001-11-03 19:59:59 +0000337 MachineInstr * cpCCR2IntMI(const unsigned IntReg) const;
338 MachineInstr * cpInt2CCRMI(const unsigned IntReg) const;
339
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000340 // Used to generate a copy instruction based on the register class of
341 // value.
342 //
343 MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
344 const int RegType) const;
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000345
346
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000347 // The following 2 methods are used to order the instructions addeed by
348 // the register allocator in association with method calling. See
349 // SparcRegInfo.cpp for more details
350 //
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000351 void moveInst2OrdVec(vector<MachineInstr *> &OrdVec, MachineInstr *UnordInst,
352 PhyRegAlloc &PRA ) const;
353
Ruchira Sasanka868cf822001-11-09 23:49:14 +0000354 void OrderAddedInstrns( vector<MachineInstr *> &UnordVec,
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000355 vector<MachineInstr *> &OrdVec,
356 PhyRegAlloc &PRA) const;
357
358
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000359 // To find whether a particular call is to a var arg method
360 //
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000361 bool isVarArgCall(const MachineInstr *CallMI) const;
Ruchira Sasankaae4bcd72001-11-10 21:20:43 +0000362
Ruchira Sasanka868cf822001-11-09 23:49:14 +0000363
364
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000365 public:
366
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000367 // constructor
368 //
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000369 UltraSparcRegInfo(const TargetMachine& tgt ) :
370 MachineRegInfo(tgt),
371 UltraSparcInfo(& (const UltraSparc&) tgt),
372 NumOfIntArgRegs(6),
373 NumOfFloatArgRegs(32),
Ruchira Sasanka690f3672002-01-07 20:33:44 +0000374 InvalidRegNum(1000) {
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000375
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000376 MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
377 MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000378 MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
379 MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000380
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000381 assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
382 "32 Float regs are used for float arg passing");
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000383
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000384 }
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000385
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000386
387 ~UltraSparcRegInfo(void) { } // empty destructor
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000388
389
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000390 // To get complete machine information structure using the machine register
391 // information
392 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000393 inline const UltraSparc & getUltraSparcInfo() const {
394 return *UltraSparcInfo;
395 }
396
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000397
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000398 // To find the register class of a Value
399 //
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000400 inline unsigned getRegClassIDOfValue (const Value *const Val,
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000401 bool isCCReg = false) const {
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000402
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000403 Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000404
405 unsigned res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000406
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000407 if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
408 (ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000409 res = IntRegClassID; // sparc int reg (ty=0: void)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000410 else if( ty <= Type::DoubleTyID)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000411 res = FloatRegClassID; // sparc float reg class
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000412 else {
Chris Lattner1e23ed72001-10-15 18:15:27 +0000413 cerr << "TypeID: " << ty << endl;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000414 assert(0 && "Cannot resolve register class for type");
Chris Lattner8e5c0b42001-11-07 14:01:59 +0000415 return 0;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000416 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000417
418 if(isCCReg)
419 return res + 2; // corresponidng condition code regiser
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000420 else
421 return res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000422 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000423
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000424
425
426 // returns the register that contains always zero
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000427 // this is the unified register number
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000428 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000429 inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
430
431 // returns the reg used for pushing the address when a method is called.
432 // This can be used for other purposes between calls
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000433 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000434 unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
435
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000436 // Returns the register containing the return address.
437 // It should be made sure that this register contains the return
438 // value when a return instruction is reached.
439 //
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000440 unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
441
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000442
443
444 // The following methods are used to color special live ranges (e.g.
445 // method args and return values etc.) with specific hardware registers
446 // as required. See SparcRegInfo.cpp for the implementation for Sparc.
447 //
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000448 void suggestRegs4MethodArgs(const Method *const Meth,
449 LiveRangeInfo& LRI) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000450
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000451 void suggestRegs4CallArgs(const MachineInstr *const CallMI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000452 LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000453
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000454 void suggestReg4RetValue(const MachineInstr *const RetMI,
455 LiveRangeInfo& LRI ) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000456
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000457
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000458 void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
459 AddedInstrns *const FirstAI) const;
460
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000461 void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000462 AddedInstrns *const CallAI, PhyRegAlloc &PRA,
463 const BasicBlock *BB) const;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000464
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000465 void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000466 AddedInstrns *const RetAI) const;
467
468
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000469
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000470 // method used for printing a register for debugging purposes
471 //
472 static void printReg(const LiveRange *const LR) ;
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000473
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000474 // this method provides a unique number for each register
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000475 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000476 inline int getUnifiedRegNum(int RegClassID, int reg) const {
477
478 if( RegClassID == IntRegClassID && reg < 32 )
479 return reg;
480 else if ( RegClassID == FloatRegClassID && reg < 64)
481 return reg + 32; // we have 32 int regs
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000482 else if( RegClassID == FloatCCRegClassID && reg < 4)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000483 return reg + 32 + 64; // 32 int, 64 float
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000484 else if( RegClassID == IntCCRegClassID )
485 return 4+ 32 + 64; // only int cc reg
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000486 else if (reg==InvalidRegNum)
487 return InvalidRegNum;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000488 else
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000489 assert(0 && "Invalid register class or reg number");
Chris Lattner6dad5062001-11-07 13:49:12 +0000490 return 0;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000491 }
492
493 // given the unified register number, this gives the name
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000494 // for generating assembly code or debugging.
495 //
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000496 inline const string getUnifiedRegName(int reg) const {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000497 if( reg < 32 )
498 return SparcIntRegOrder::getRegName(reg);
499 else if ( reg < (64 + 32) )
500 return SparcFloatRegOrder::getRegName( reg - 32);
501 else if( reg < (64+32+4) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000502 return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
Ruchira Sasanka3839e6e2001-11-03 19:59:59 +0000503 else if( reg < (64+32+4+2) ) // two names: %xcc and %ccr
504 return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4);
Vikram S. Advec1521632001-10-22 13:31:53 +0000505 else if (reg== InvalidRegNum) //****** TODO: Remove */
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000506 return "<*NoReg*>";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000507 else
508 assert(0 && "Invalid register number");
Chris Lattner6dad5062001-11-07 13:49:12 +0000509 return "";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000510 }
511
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000512
513
514 // The fllowing methods are used by instruction selection
515 //
Vikram S. Advec1521632001-10-22 13:31:53 +0000516 inline unsigned int getRegNumInCallersWindow(int reg) {
517 if (reg == InvalidRegNum || reg >= 32)
518 return reg;
519 return SparcIntRegOrder::getRegNumInCallersWindow(reg);
520 }
521
522 inline bool mustBeRemappedInCallersWindow(int reg) {
523 return (reg != InvalidRegNum && reg < 32);
524 }
525
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000526
527
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000528 // returns the # of bytes of stack space allocated for each register
529 // type. For Sparc, currently we allocate 8 bytes on stack for all
530 // register types. We can optimize this later if necessary to save stack
531 // space (However, should make sure that stack alignment is correct)
532 //
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000533 inline int getSpilledRegSize(const int RegType) const {
534 return 8;
Ruchira Sasankad00982a2002-01-07 19:20:28 +0000535 }
536
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000537
538 // To obtain the return value contained in a CALL machine instruction
539 //
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000540 const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
541
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000542
543 // The following methods are used to generate "copy" machine instructions
544 // for an architecture.
545 //
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000546 MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
547 const int RegType) const;
548
549 MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
550 const int Offset, const int RegType) const;
551
552 MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
553 const unsigned DestReg, const int RegType) const;
554
Ruchira Sasankaef1b0cb2001-11-03 17:13:27 +0000555 MachineInstr* cpValue2Value(Value *Src, Value *Dest) const;
556
557
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000558 // To see whether a register is a volatile (i.e., whehter it must be
559 // preserved acorss calls)
560 //
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000561 inline bool isRegVolatile(const int RegClassID, const int Reg) const {
562 return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
563 }
564
565
566 inline unsigned getFramePointer() const {
567 return SparcIntRegOrder::i6;
568 }
569
570 inline unsigned getStackPointer() const {
571 return SparcIntRegOrder::o6;
572 }
573
574 inline int getInvalidRegNum() const {
575 return InvalidRegNum;
576 }
577
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000578
Ruchira Sasanka2563a982002-01-07 20:28:49 +0000579
580 // This method inserts the caller saving code for call instructions
581 //
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000582 void insertCallerSavingCode(const MachineInstr *MInst,
583 const BasicBlock *BB, PhyRegAlloc &PRA ) const;
584
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000585};
586
587
588
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000589/*---------------------------------------------------------------------------
590Scheduling guidelines for SPARC IIi:
591
592I-Cache alignment rules (pg 326)
593-- Align a branch target instruction so that it's entire group is within
594 the same cache line (may be 1-4 instructions).
595** Don't let a branch that is predicted taken be the last instruction
596 on an I-cache line: delay slot will need an entire line to be fetched
597-- Make a FP instruction or a branch be the 4th instruction in a group.
598 For branches, there are tradeoffs in reordering to make this happen
599 (see pg. 327).
600** Don't put a branch in a group that crosses a 32-byte boundary!
601 An artificial branch is inserted after every 32 bytes, and having
602 another branch will force the group to be broken into 2 groups.
603
604iTLB rules:
605-- Don't let a loop span two memory pages, if possible
606
607Branch prediction performance:
608-- Don't make the branch in a delay slot the target of a branch
609-- Try not to have 2 predicted branches within a group of 4 instructions
610 (because each such group has a single branch target field).
611-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
612 the wrong prediction bits being used in some cases).
613
614D-Cache timing constraints:
615-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
616-- All other loads that hit in D-Cache have 2 cycle latency
617-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
618-- Mis-aligned loads or stores cause a trap. In particular, replace
619 mis-aligned FP double precision l/s with 2 single-precision l/s.
620-- Simulations of integer codes show increase in avg. group size of
621 33% when code (including esp. non-faulting loads) is moved across
622 one branch, and 50% across 2 branches.
623
624E-Cache timing constraints:
625-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
626
627Store buffer timing constraints:
628-- Stores can be executed in same cycle as instruction producing the value
629-- Stores are buffered and have lower priority for E-cache until
630 highwater mark is reached in the store buffer (5 stores)
631
632Pipeline constraints:
633-- Shifts can only use IEU0.
634-- CC setting instructions can only use IEU1.
635-- Several other instructions must only use IEU1:
636 EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
637-- Two instructions cannot store to the same register file in a single cycle
638 (single write port per file).
639
640Issue and grouping constraints:
641-- FP and branch instructions must use slot 4.
642-- Shift instructions cannot be grouped with other IEU0-specific instructions.
643-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
644-- Several instructions must be issued in a single-instruction group:
645 MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
646-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
647--
648--
649
650Branch delay slot scheduling rules:
651-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
652 has a 9-instruction penalty: the entire pipeline is flushed when the
653 second instruction reaches stage 9 (W-Writeback).
654-- Avoid putting multicycle instructions, and instructions that may cause
655 load misses, in the delay slot of an annulling branch.
656-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
657 delay slot of an annulling branch.
658
659 *--------------------------------------------------------------------------- */
660
661//---------------------------------------------------------------------------
662// List of CPUResources for UltraSPARC IIi.
663//---------------------------------------------------------------------------
664
665const CPUResource AllIssueSlots( "All Instr Slots", 4);
666const CPUResource IntIssueSlots( "Int Instr Slots", 3);
667const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
668const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
669const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
670const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
671const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
672
673// IEUN instructions can use either Alu and should use IAluN.
674// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
675// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
676const CPUResource IAluN("Int ALU 1or2", 2);
677const CPUResource IAlu0("Int ALU 1", 1);
678const CPUResource IAlu1("Int ALU 2", 1);
679
680const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
681const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
682const CPUResource LdReturn("Load Return Unit", 1);
683
684const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
685const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
686const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
687
688const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
689const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
690const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
691
692const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
693const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
694const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
695const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
696
697const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
698const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
699
700
701//---------------------------------------------------------------------------
702// const InstrClassRUsage SparcRUsageDesc[]
703//
704// Purpose:
705// Resource usage information for instruction in each scheduling class.
706// The InstrRUsage Objects for individual classes are specified first.
707// Note that fetch and decode are decoupled from the execution pipelines
708// via an instr buffer, so they are not included in the cycles below.
709//---------------------------------------------------------------------------
710
711const InstrClassRUsage NoneClassRUsage = {
712 SPARC_NONE,
713 /*totCycles*/ 7,
714
715 /* maxIssueNum */ 4,
716 /* isSingleIssue */ false,
717 /* breaksGroup */ false,
718 /* numBubbles */ 0,
719
720 /*numSlots*/ 4,
721 /* feasibleSlots[] */ { 0, 1, 2, 3 },
722
723 /*numEntries*/ 0,
724 /* V[] */ {
725 /*Cycle G */
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000726 /*Ccle E */
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000727 /*Cycle C */
728 /*Cycle N1*/
729 /*Cycle N1*/
730 /*Cycle N1*/
731 /*Cycle W */
732 }
733};
734
735const InstrClassRUsage IEUNClassRUsage = {
736 SPARC_IEUN,
737 /*totCycles*/ 7,
738
739 /* maxIssueNum */ 3,
740 /* isSingleIssue */ false,
741 /* breaksGroup */ false,
742 /* numBubbles */ 0,
743
744 /*numSlots*/ 3,
745 /* feasibleSlots[] */ { 0, 1, 2 },
746
747 /*numEntries*/ 4,
748 /* V[] */ {
749 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
750 { IntIssueSlots.rid, 0, 1 },
751 /*Cycle E */ { IAluN.rid, 1, 1 },
752 /*Cycle C */
753 /*Cycle N1*/
754 /*Cycle N1*/
755 /*Cycle N1*/
756 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
757 }
758};
759
760const InstrClassRUsage IEU0ClassRUsage = {
761 SPARC_IEU0,
762 /*totCycles*/ 7,
763
764 /* maxIssueNum */ 1,
765 /* isSingleIssue */ false,
766 /* breaksGroup */ false,
767 /* numBubbles */ 0,
768
769 /*numSlots*/ 3,
770 /* feasibleSlots[] */ { 0, 1, 2 },
771
772 /*numEntries*/ 5,
773 /* V[] */ {
774 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
775 { IntIssueSlots.rid, 0, 1 },
776 /*Cycle E */ { IAluN.rid, 1, 1 },
777 { IAlu0.rid, 1, 1 },
778 /*Cycle C */
779 /*Cycle N1*/
780 /*Cycle N1*/
781 /*Cycle N1*/
782 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
783 }
784};
785
786const InstrClassRUsage IEU1ClassRUsage = {
787 SPARC_IEU1,
788 /*totCycles*/ 7,
789
790 /* maxIssueNum */ 1,
791 /* isSingleIssue */ false,
792 /* breaksGroup */ false,
793 /* numBubbles */ 0,
794
795 /*numSlots*/ 3,
796 /* feasibleSlots[] */ { 0, 1, 2 },
797
798 /*numEntries*/ 5,
799 /* V[] */ {
800 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
801 { IntIssueSlots.rid, 0, 1 },
802 /*Cycle E */ { IAluN.rid, 1, 1 },
803 { IAlu1.rid, 1, 1 },
804 /*Cycle C */
805 /*Cycle N1*/
806 /*Cycle N1*/
807 /*Cycle N1*/
808 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
809 }
810};
811
812const InstrClassRUsage FPMClassRUsage = {
813 SPARC_FPM,
814 /*totCycles*/ 7,
815
816 /* maxIssueNum */ 1,
817 /* isSingleIssue */ false,
818 /* breaksGroup */ false,
819 /* numBubbles */ 0,
820
821 /*numSlots*/ 4,
822 /* feasibleSlots[] */ { 0, 1, 2, 3 },
823
824 /*numEntries*/ 7,
825 /* V[] */ {
826 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
827 { FPMIssueSlots.rid, 0, 1 },
828 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
829 /*Cycle C */ { FPMAluC1.rid, 2, 1 },
830 /*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
831 /*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
832 /*Cycle N1*/
833 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
834 }
835};
836
837const InstrClassRUsage FPAClassRUsage = {
838 SPARC_FPA,
839 /*totCycles*/ 7,
840
841 /* maxIssueNum */ 1,
842 /* isSingleIssue */ false,
843 /* breaksGroup */ false,
844 /* numBubbles */ 0,
845
846 /*numSlots*/ 4,
847 /* feasibleSlots[] */ { 0, 1, 2, 3 },
848
849 /*numEntries*/ 7,
850 /* V[] */ {
851 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
852 { FPAIssueSlots.rid, 0, 1 },
853 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
854 /*Cycle C */ { FPAAluC1.rid, 2, 1 },
855 /*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
856 /*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
857 /*Cycle N1*/
858 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
859 }
860};
861
862const InstrClassRUsage LDClassRUsage = {
863 SPARC_LD,
864 /*totCycles*/ 7,
865
866 /* maxIssueNum */ 1,
867 /* isSingleIssue */ false,
868 /* breaksGroup */ false,
869 /* numBubbles */ 0,
870
871 /*numSlots*/ 3,
872 /* feasibleSlots[] */ { 0, 1, 2, },
873
874 /*numEntries*/ 6,
875 /* V[] */ {
876 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
877 { First3IssueSlots.rid, 0, 1 },
878 { LSIssueSlots.rid, 0, 1 },
879 /*Cycle E */ { LSAluC1.rid, 1, 1 },
880 /*Cycle C */ { LSAluC2.rid, 2, 1 },
881 { LdReturn.rid, 2, 1 },
882 /*Cycle N1*/
883 /*Cycle N1*/
884 /*Cycle N1*/
885 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
886 }
887};
888
889const InstrClassRUsage STClassRUsage = {
890 SPARC_ST,
891 /*totCycles*/ 7,
892
893 /* maxIssueNum */ 1,
894 /* isSingleIssue */ false,
895 /* breaksGroup */ false,
896 /* numBubbles */ 0,
897
898 /*numSlots*/ 3,
899 /* feasibleSlots[] */ { 0, 1, 2 },
900
901 /*numEntries*/ 4,
902 /* V[] */ {
903 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
904 { First3IssueSlots.rid, 0, 1 },
905 { LSIssueSlots.rid, 0, 1 },
906 /*Cycle E */ { LSAluC1.rid, 1, 1 },
907 /*Cycle C */ { LSAluC2.rid, 2, 1 }
908 /*Cycle N1*/
909 /*Cycle N1*/
910 /*Cycle N1*/
911 /*Cycle W */
912 }
913};
914
915const InstrClassRUsage CTIClassRUsage = {
916 SPARC_CTI,
917 /*totCycles*/ 7,
918
919 /* maxIssueNum */ 1,
920 /* isSingleIssue */ false,
921 /* breaksGroup */ false,
922 /* numBubbles */ 0,
923
924 /*numSlots*/ 4,
925 /* feasibleSlots[] */ { 0, 1, 2, 3 },
926
927 /*numEntries*/ 4,
928 /* V[] */ {
929 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
930 { CTIIssueSlots.rid, 0, 1 },
931 /*Cycle E */ { IAlu0.rid, 1, 1 },
932 /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
933 /*Cycle C */
934 /*Cycle N1*/
935 /*Cycle N1*/
936 /*Cycle N1*/
937 /*Cycle W */
938 }
939};
940
941const InstrClassRUsage SingleClassRUsage = {
942 SPARC_SINGLE,
943 /*totCycles*/ 7,
944
945 /* maxIssueNum */ 1,
946 /* isSingleIssue */ true,
947 /* breaksGroup */ false,
948 /* numBubbles */ 0,
949
950 /*numSlots*/ 1,
951 /* feasibleSlots[] */ { 0 },
952
953 /*numEntries*/ 5,
954 /* V[] */ {
955 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
956 { AllIssueSlots.rid, 0, 1 },
957 { AllIssueSlots.rid, 0, 1 },
958 { AllIssueSlots.rid, 0, 1 },
959 /*Cycle E */ { IAlu0.rid, 1, 1 }
960 /*Cycle C */
961 /*Cycle N1*/
962 /*Cycle N1*/
963 /*Cycle N1*/
964 /*Cycle W */
965 }
966};
967
968
969const InstrClassRUsage SparcRUsageDesc[] = {
970 NoneClassRUsage,
971 IEUNClassRUsage,
972 IEU0ClassRUsage,
973 IEU1ClassRUsage,
974 FPMClassRUsage,
975 FPAClassRUsage,
976 CTIClassRUsage,
977 LDClassRUsage,
978 STClassRUsage,
979 SingleClassRUsage
980};
981
982
983//---------------------------------------------------------------------------
984// const InstrIssueDelta SparcInstrIssueDeltas[]
985//
986// Purpose:
987// Changes to issue restrictions information in InstrClassRUsage for
988// instructions that differ from other instructions in their class.
989//---------------------------------------------------------------------------
990
991const InstrIssueDelta SparcInstrIssueDeltas[] = {
992
993 // opCode, isSingleIssue, breaksGroup, numBubbles
994
995 // Special cases for single-issue only
996 // Other single issue cases are below.
997//{ LDDA, true, true, 0 },
998//{ STDA, true, true, 0 },
999//{ LDDF, true, true, 0 },
1000//{ LDDFA, true, true, 0 },
1001 { ADDC, true, true, 0 },
1002 { ADDCcc, true, true, 0 },
1003 { SUBC, true, true, 0 },
1004 { SUBCcc, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001005//{ LDSTUB, true, true, 0 },
1006//{ SWAP, true, true, 0 },
1007//{ SWAPA, true, true, 0 },
1008//{ CAS, true, true, 0 },
1009//{ CASA, true, true, 0 },
1010//{ CASX, true, true, 0 },
1011//{ CASXA, true, true, 0 },
1012//{ LDFSR, true, true, 0 },
1013//{ LDFSRA, true, true, 0 },
1014//{ LDXFSR, true, true, 0 },
1015//{ LDXFSRA, true, true, 0 },
1016//{ STFSR, true, true, 0 },
1017//{ STFSRA, true, true, 0 },
1018//{ STXFSR, true, true, 0 },
1019//{ STXFSRA, true, true, 0 },
1020//{ SAVED, true, true, 0 },
1021//{ RESTORED, true, true, 0 },
1022//{ FLUSH, true, true, 9 },
1023//{ FLUSHW, true, true, 9 },
1024//{ ALIGNADDR, true, true, 0 },
1025 { RETURN, true, true, 0 },
1026//{ DONE, true, true, 0 },
1027//{ RETRY, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001028//{ TCC, true, true, 0 },
1029//{ SHUTDOWN, true, true, 0 },
1030
1031 // Special cases for breaking group *before*
1032 // CURRENTLY NOT SUPPORTED!
1033 { CALL, false, false, 0 },
Vikram S. Advec1521632001-10-22 13:31:53 +00001034 { JMPLCALL, false, false, 0 },
1035 { JMPLRET, false, false, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001036
1037 // Special cases for breaking the group *after*
1038 { MULX, true, true, (4+34)/2 },
1039 { FDIVS, false, true, 0 },
1040 { FDIVD, false, true, 0 },
1041 { FDIVQ, false, true, 0 },
1042 { FSQRTS, false, true, 0 },
1043 { FSQRTD, false, true, 0 },
1044 { FSQRTQ, false, true, 0 },
1045//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
1046
1047 // Instructions that introduce bubbles
1048//{ MULScc, true, true, 2 },
1049//{ SMULcc, true, true, (4+18)/2 },
1050//{ UMULcc, true, true, (4+19)/2 },
1051 { SDIVX, true, true, 68 },
1052 { UDIVX, true, true, 68 },
1053//{ SDIVcc, true, true, 36 },
1054//{ UDIVcc, true, true, 37 },
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001055 { WRCCR, true, true, 4 },
1056//{ WRPR, true, true, 4 },
1057//{ RDCCR, true, true, 0 }, // no bubbles after, but see below
1058//{ RDPR, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001059};
1060
1061
1062//---------------------------------------------------------------------------
1063// const InstrRUsageDelta SparcInstrUsageDeltas[]
1064//
1065// Purpose:
1066// Changes to resource usage information in InstrClassRUsage for
1067// instructions that differ from other instructions in their class.
1068//---------------------------------------------------------------------------
1069
1070const InstrRUsageDelta SparcInstrUsageDeltas[] = {
1071
1072 // MachineOpCode, Resource, Start cycle, Num cycles
1073
1074 //
1075 // JMPL counts as a load/store instruction for issue!
1076 //
Vikram S. Advec1521632001-10-22 13:31:53 +00001077 { JMPLCALL, LSIssueSlots.rid, 0, 1 },
1078 { JMPLRET, LSIssueSlots.rid, 0, 1 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001079
1080 //
1081 // Many instructions cannot issue for the next 2 cycles after an FCMP
1082 // We model that with a fake resource FCMPDelayCycle.
1083 //
1084 { FCMPS, FCMPDelayCycle.rid, 1, 3 },
1085 { FCMPD, FCMPDelayCycle.rid, 1, 3 },
1086 { FCMPQ, FCMPDelayCycle.rid, 1, 3 },
1087
1088 { MULX, FCMPDelayCycle.rid, 1, 1 },
1089 { SDIVX, FCMPDelayCycle.rid, 1, 1 },
1090 { UDIVX, FCMPDelayCycle.rid, 1, 1 },
1091//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
1092//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
1093//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
1094//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
1095 { STD, FCMPDelayCycle.rid, 1, 1 },
1096 { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
1097 { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
1098 { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
1099 { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
1100 { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
1101 { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
1102
1103 //
1104 // Some instructions are stalled in the GROUP stage if a CTI is in
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001105 // the E or C stage. We model that with a fake resource CTIDelayCycle.
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001106 //
1107 { LDD, CTIDelayCycle.rid, 1, 1 },
1108//{ LDDA, CTIDelayCycle.rid, 1, 1 },
1109//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
1110//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
1111//{ SWAP, CTIDelayCycle.rid, 1, 1 },
1112//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
1113//{ CAS, CTIDelayCycle.rid, 1, 1 },
1114//{ CASA, CTIDelayCycle.rid, 1, 1 },
1115//{ CASX, CTIDelayCycle.rid, 1, 1 },
1116//{ CASXA, CTIDelayCycle.rid, 1, 1 },
1117
1118 //
1119 // Signed int loads of less than dword size return data in cycle N1 (not C)
1120 // and put all loads in consecutive cycles into delayed load return mode.
1121 //
1122 { LDSB, LdReturn.rid, 2, -1 },
1123 { LDSB, LdReturn.rid, 3, 1 },
1124
1125 { LDSH, LdReturn.rid, 2, -1 },
1126 { LDSH, LdReturn.rid, 3, 1 },
1127
1128 { LDSW, LdReturn.rid, 2, -1 },
1129 { LDSW, LdReturn.rid, 3, 1 },
1130
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001131 //
1132 // RDPR from certain registers and RD from any register are not dispatchable
1133 // until four clocks after they reach the head of the instr. buffer.
1134 // Together with their single-issue requirement, this means all four issue
1135 // slots are effectively blocked for those cycles, plus the issue cycle.
1136 // This does not increase the latency of the instruction itself.
1137 //
1138 { RDCCR, AllIssueSlots.rid, 0, 5 },
1139 { RDCCR, AllIssueSlots.rid, 0, 5 },
1140 { RDCCR, AllIssueSlots.rid, 0, 5 },
1141 { RDCCR, AllIssueSlots.rid, 0, 5 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001142
1143#undef EXPLICIT_BUBBLES_NEEDED
1144#ifdef EXPLICIT_BUBBLES_NEEDED
1145 //
1146 // MULScc inserts one bubble.
1147 // This means it breaks the current group (captured in UltraSparcSchedInfo)
1148 // *and occupies all issue slots for the next cycle
1149 //
1150//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1151//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1152//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1153//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1154
1155 //
1156 // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
1157 // We just model this with a simple average.
1158 //
1159//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1160//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1161//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1162//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1163
1164 // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
1165//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1166//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1167//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1168//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1169
1170 //
1171 // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
1172 //
1173 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1174 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1175 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1176 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1177
1178 //
1179 // SDIVcc inserts 36 bubbles.
1180 //
1181//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1182//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1183//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1184//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1185
1186 // UDIVcc inserts 37 bubbles.
1187//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1188//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1189//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1190//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1191
1192 //
1193 // SDIVX inserts 68 bubbles.
1194 //
1195 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1196 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1197 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1198 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1199
1200 //
1201 // UDIVX inserts 68 bubbles.
1202 //
1203 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1204 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1205 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1206 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1207
1208 //
1209 // WR inserts 4 bubbles.
1210 //
1211//{ WR, AllIssueSlots.rid, 2, 68-1 },
1212//{ WR, AllIssueSlots.rid, 2, 68-1 },
1213//{ WR, AllIssueSlots.rid, 2, 68-1 },
1214//{ WR, AllIssueSlots.rid, 2, 68-1 },
1215
1216 //
1217 // WRPR inserts 4 bubbles.
1218 //
1219//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1220//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1221//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1222//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1223
1224 //
1225 // DONE inserts 9 bubbles.
1226 //
1227//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1228//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1229//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1230//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1231
1232 //
1233 // RETRY inserts 9 bubbles.
1234 //
1235//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1236//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1237//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1238//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1239
Chris Lattnere369fcb2001-10-13 06:54:54 +00001240#endif /*EXPLICIT_BUBBLES_NEEDED */
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001241};
1242
1243
1244
1245// Additional delays to be captured in code:
1246// 1. RDPR from several state registers (page 349)
1247// 2. RD from *any* register (page 349)
1248// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
1249// 4. Integer store can be in same group as instr producing value to store.
1250// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
1251// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
1252// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
1253// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
1254// follow an annulling branch cannot be issued in the same group or in
1255// the 3 groups following the branch.
1256// 9. A predicted annulled load does not stall dependent instructions.
1257// Other annulled delay slot instructions *do* stall dependents, so
1258// nothing special needs to be done for them during scheduling.
1259//10. Do not put a load use that may be annulled in the same group as the
1260// branch. The group will stall until the load returns.
1261//11. Single-prec. FP loads lock 2 registers, for dependency checking.
1262//
1263//
1264// Additional delays we cannot or will not capture:
1265// 1. If DCTI is last word of cache line, it is delayed until next line can be
1266// fetched. Also, other DCTI alignment-related delays (pg 352)
1267// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
1268// Also, several other store-load and load-store conflicts (pg 358)
1269// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
1270// 4. There can be at most 8 outstanding buffered store instructions
1271// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
1272
1273
1274
1275//---------------------------------------------------------------------------
1276// class UltraSparcSchedInfo
1277//
1278// Purpose:
1279// Interface to instruction scheduling information for UltraSPARC.
1280// The parameter values above are based on UltraSPARC IIi.
1281//---------------------------------------------------------------------------
1282
1283
1284class UltraSparcSchedInfo: public MachineSchedInfo {
1285public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001286 /*ctor*/ UltraSparcSchedInfo (const TargetMachine& tgt);
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001287 /*dtor*/ virtual ~UltraSparcSchedInfo () {}
1288protected:
1289 virtual void initializeResources ();
1290};
1291
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001292
1293//---------------------------------------------------------------------------
Vikram S. Advec1521632001-10-22 13:31:53 +00001294// class UltraSparcFrameInfo
1295//
1296// Purpose:
1297// Interface to stack frame layout info for the UltraSPARC.
Vikram S. Adve00521d72001-11-12 23:26:35 +00001298// Starting offsets for each area of the stack frame are aligned at
1299// a multiple of getStackFrameSizeAlignment().
Vikram S. Advec1521632001-10-22 13:31:53 +00001300//---------------------------------------------------------------------------
1301
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001302class UltraSparcFrameInfo: public MachineFrameInfo {
Vikram S. Advec1521632001-10-22 13:31:53 +00001303public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001304 /*ctor*/ UltraSparcFrameInfo(const TargetMachine& tgt) : MachineFrameInfo(tgt) {}
1305
1306public:
1307 int getStackFrameSizeAlignment () const { return StackFrameSizeAlignment;}
1308 int getMinStackFrameSize () const { return MinStackFrameSize; }
1309 int getNumFixedOutgoingArgs () const { return NumFixedOutgoingArgs; }
1310 int getSizeOfEachArgOnStack () const { return SizeOfEachArgOnStack; }
1311 bool argsOnStackHaveFixedSize () const { return true; }
1312
1313 //
1314 // These methods compute offsets using the frame contents for a
1315 // particular method. The frame contents are obtained from the
1316 // MachineCodeInfoForMethod object for the given method.
1317 //
1318 int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo,
1319 bool& pos) const
1320 {
1321 pos = true; // arguments area grows upwards
1322 return FirstIncomingArgOffsetFromFP;
1323 }
1324 int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo,
1325 bool& pos) const
1326 {
1327 pos = true; // arguments area grows upwards
1328 return FirstOutgoingArgOffsetFromSP;
1329 }
1330 int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo,
1331 bool& pos)const
1332 {
1333 pos = true; // arguments area grows upwards
1334 return FirstOptionalOutgoingArgOffsetFromSP;
1335 }
1336
1337 int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo,
1338 bool& pos) const;
1339 int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo,
1340 bool& pos) const;
1341 int getTmpAreaOffset (MachineCodeForMethod& mcInfo,
1342 bool& pos) const;
1343 int getDynamicAreaOffset (MachineCodeForMethod& mcInfo,
1344 bool& pos) const;
1345
1346 //
1347 // These methods specify the base register used for each stack area
1348 // (generally FP or SP)
1349 //
1350 virtual int getIncomingArgBaseRegNum() const {
1351 return (int) target.getRegInfo().getFramePointer();
1352 }
1353 virtual int getOutgoingArgBaseRegNum() const {
1354 return (int) target.getRegInfo().getStackPointer();
1355 }
1356 virtual int getOptionalOutgoingArgBaseRegNum() const {
1357 return (int) target.getRegInfo().getStackPointer();
1358 }
1359 virtual int getAutomaticVarBaseRegNum() const {
1360 return (int) target.getRegInfo().getFramePointer();
1361 }
1362 virtual int getRegSpillAreaBaseRegNum() const {
1363 return (int) target.getRegInfo().getFramePointer();
1364 }
1365 virtual int getDynamicAreaBaseRegNum() const {
1366 return (int) target.getRegInfo().getStackPointer();
1367 }
1368
1369private:
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001370 // All stack addresses must be offset by 0x7ff (2047) on Sparc V9.
1371 static const int OFFSET = (int) 0x7ff;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001372 static const int StackFrameSizeAlignment = 16;
Vikram S. Advec1521632001-10-22 13:31:53 +00001373 static const int MinStackFrameSize = 176;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001374 static const int NumFixedOutgoingArgs = 6;
1375 static const int SizeOfEachArgOnStack = 8;
Ruchira Sasanka67a463a2001-11-12 14:45:33 +00001376 static const int StaticAreaOffsetFromFP = 0 + OFFSET;
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001377 static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET;
1378 static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET;
1379 static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET;
1380 static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET;
Vikram S. Advec1521632001-10-22 13:31:53 +00001381};
1382
1383
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001384//---------------------------------------------------------------------------
1385// class UltraSparcCacheInfo
1386//
1387// Purpose:
1388// Interface to cache parameters for the UltraSPARC.
1389// Just use defaults for now.
1390//---------------------------------------------------------------------------
1391
1392class UltraSparcCacheInfo: public MachineCacheInfo {
1393public:
1394 /*ctor*/ UltraSparcCacheInfo (const TargetMachine& target) :
1395 MachineCacheInfo(target) {}
1396};
1397
Vikram S. Advec1521632001-10-22 13:31:53 +00001398
1399//---------------------------------------------------------------------------
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001400// class UltraSparcMachine
1401//
1402// Purpose:
1403// Primary interface to machine description for the UltraSPARC.
1404// Primarily just initializes machine-dependent parameters in
1405// class TargetMachine, and creates machine-dependent subclasses
Vikram S. Adve339084b2001-09-18 13:04:24 +00001406// for classes such as InstrInfo, SchedInfo and RegInfo.
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001407//---------------------------------------------------------------------------
1408
1409class UltraSparc : public TargetMachine {
Vikram S. Adve339084b2001-09-18 13:04:24 +00001410private:
1411 UltraSparcInstrInfo instrInfo;
1412 UltraSparcSchedInfo schedInfo;
1413 UltraSparcRegInfo regInfo;
Vikram S. Advec1521632001-10-22 13:31:53 +00001414 UltraSparcFrameInfo frameInfo;
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001415 UltraSparcCacheInfo cacheInfo;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001416public:
1417 UltraSparc();
1418 virtual ~UltraSparc() {}
Vikram S. Adve339084b2001-09-18 13:04:24 +00001419
Chris Lattner32f600a2001-09-19 13:47:12 +00001420 virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
1421 virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
1422 virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001423 virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; }
Vikram S. Adve5afff3b2001-11-09 02:15:52 +00001424 virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; }
Vikram S. Adve339084b2001-09-18 13:04:24 +00001425
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001426 // compileMethod - For the sparc, we do instruction selection, followed by
1427 // delay slot scheduling, then register allocation.
1428 //
1429 virtual bool compileMethod(Method *M);
Chris Lattner32f600a2001-09-19 13:47:12 +00001430
1431 //
1432 // emitAssembly - Output assembly language code (a .s file) for the specified
1433 // module. The specified module must have been compiled before this may be
1434 // used.
1435 //
Chris Lattnerec0a95f2001-10-15 15:54:43 +00001436 virtual void emitAssembly(const Module *M, ostream &OutStr) const;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001437};
1438
1439
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001440#endif