blob: ea2156b2e4f6849f04379daba9b0579add6bf218 [file] [log] [blame]
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuild.h"
16#include "llvm/ADT/BitVector.h"
Dan Gohman5b229802008-09-04 20:49:27 +000017#include "llvm/ADT/SmallSet.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000018#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
Bill Wendlingb2a42982008-11-06 02:29:10 +000028#include "llvm/Module.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000029#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
Bill Wendlingb2a42982008-11-06 02:29:10 +000038#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000039#include "llvm/CodeGen/SelectionDAG.h"
Devang Patel83489bb2009-01-13 00:35:13 +000040#include "llvm/CodeGen/DwarfWriter.h"
41#include "llvm/Analysis/DebugInfo.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000042#include "llvm/Target/TargetRegisterInfo.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetFrameInfo.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Support/Compiler.h"
Mikhail Glushenkov2388a582009-01-16 07:02:28 +000050#include "llvm/Support/CommandLine.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000051#include "llvm/Support/Debug.h"
52#include "llvm/Support/MathExtras.h"
Anton Korobeynikov56d245b2008-12-23 22:26:18 +000053#include "llvm/Support/raw_ostream.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000054#include <algorithm>
55using namespace llvm;
56
Dale Johannesen601d3c02008-09-05 01:48:15 +000057/// LimitFloatPrecision - Generate low-precision inline sequences for
58/// some float libcalls (6, 8 or 12 bits).
59static unsigned LimitFloatPrecision;
60
61static cl::opt<unsigned, true>
62LimitFPPrecision("limit-float-precision",
63 cl::desc("Generate low-precision inline sequences "
64 "for some float libcalls"),
65 cl::location(LimitFloatPrecision),
66 cl::init(0));
67
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000068/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
Dan Gohman2c91d102009-01-06 22:53:52 +000069/// of insertvalue or extractvalue indices that identify a member, return
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000070/// the linearized index of the start of the member.
71///
72static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
73 const unsigned *Indices,
74 const unsigned *IndicesEnd,
75 unsigned CurIndex = 0) {
76 // Base case: We're done.
77 if (Indices && Indices == IndicesEnd)
78 return CurIndex;
79
80 // Given a struct type, recursively traverse the elements.
81 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
82 for (StructType::element_iterator EB = STy->element_begin(),
83 EI = EB,
84 EE = STy->element_end();
85 EI != EE; ++EI) {
86 if (Indices && *Indices == unsigned(EI - EB))
87 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
88 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
89 }
Dan Gohman2c91d102009-01-06 22:53:52 +000090 return CurIndex;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000091 }
92 // Given an array type, recursively traverse the elements.
93 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
94 const Type *EltTy = ATy->getElementType();
95 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
96 if (Indices && *Indices == i)
97 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
98 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
99 }
Dan Gohman2c91d102009-01-06 22:53:52 +0000100 return CurIndex;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000101 }
102 // We haven't found the type we're looking for, so keep searching.
103 return CurIndex + 1;
104}
105
106/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
107/// MVTs that represent all the individual underlying
108/// non-aggregate types that comprise it.
109///
110/// If Offsets is non-null, it points to a vector to be filled in
111/// with the in-memory offsets of each of the individual values.
112///
113static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
114 SmallVectorImpl<MVT> &ValueVTs,
115 SmallVectorImpl<uint64_t> *Offsets = 0,
116 uint64_t StartingOffset = 0) {
117 // Given a struct type, recursively traverse the elements.
118 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
119 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
120 for (StructType::element_iterator EB = STy->element_begin(),
121 EI = EB,
122 EE = STy->element_end();
123 EI != EE; ++EI)
124 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
125 StartingOffset + SL->getElementOffset(EI - EB));
126 return;
127 }
128 // Given an array type, recursively traverse the elements.
129 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
130 const Type *EltTy = ATy->getElementType();
Duncan Sandsceb4d1a2009-01-12 20:38:59 +0000131 uint64_t EltSize = TLI.getTargetData()->getTypePaddedSize(EltTy);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000132 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
133 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
134 StartingOffset + i * EltSize);
135 return;
136 }
137 // Base case: we can get an MVT for this LLVM IR type.
138 ValueVTs.push_back(TLI.getValueType(Ty));
139 if (Offsets)
140 Offsets->push_back(StartingOffset);
141}
142
Dan Gohman2a7c6712008-09-03 23:18:39 +0000143namespace llvm {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000144 /// RegsForValue - This struct represents the registers (physical or virtual)
145 /// that a particular set of values is assigned, and the type information about
146 /// the value. The most common situation is to represent one value at a time,
147 /// but struct or array values are handled element-wise as multiple values.
148 /// The splitting of aggregates is performed recursively, so that we never
149 /// have aggregate-typed registers. The values at this point do not necessarily
150 /// have legal types, so each value may require one or more registers of some
151 /// legal type.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000152 ///
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000153 struct VISIBILITY_HIDDEN RegsForValue {
154 /// TLI - The TargetLowering object.
155 ///
156 const TargetLowering *TLI;
157
158 /// ValueVTs - The value types of the values, which may not be legal, and
159 /// may need be promoted or synthesized from one or more registers.
160 ///
161 SmallVector<MVT, 4> ValueVTs;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000162
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000163 /// RegVTs - The value types of the registers. This is the same size as
164 /// ValueVTs and it records, for each value, what the type of the assigned
165 /// register or registers are. (Individual values are never synthesized
166 /// from more than one type of register.)
167 ///
168 /// With virtual registers, the contents of RegVTs is redundant with TLI's
169 /// getRegisterType member function, however when with physical registers
170 /// it is necessary to have a separate record of the types.
171 ///
172 SmallVector<MVT, 4> RegVTs;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000173
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000174 /// Regs - This list holds the registers assigned to the values.
175 /// Each legal or promoted value requires one register, and each
176 /// expanded value requires multiple registers.
177 ///
178 SmallVector<unsigned, 4> Regs;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000179
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000180 RegsForValue() : TLI(0) {}
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000181
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000182 RegsForValue(const TargetLowering &tli,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000183 const SmallVector<unsigned, 4> &regs,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000184 MVT regvt, MVT valuevt)
185 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
186 RegsForValue(const TargetLowering &tli,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000187 const SmallVector<unsigned, 4> &regs,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000188 const SmallVector<MVT, 4> &regvts,
189 const SmallVector<MVT, 4> &valuevts)
190 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
191 RegsForValue(const TargetLowering &tli,
192 unsigned Reg, const Type *Ty) : TLI(&tli) {
193 ComputeValueVTs(tli, Ty, ValueVTs);
194
195 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
196 MVT ValueVT = ValueVTs[Value];
197 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
198 MVT RegisterVT = TLI->getRegisterType(ValueVT);
199 for (unsigned i = 0; i != NumRegs; ++i)
200 Regs.push_back(Reg + i);
201 RegVTs.push_back(RegisterVT);
202 Reg += NumRegs;
203 }
204 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000205
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000206 /// append - Add the specified values to this one.
207 void append(const RegsForValue &RHS) {
208 TLI = RHS.TLI;
209 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
210 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
211 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
212 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000213
214
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000215 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000216 /// this value and returns the result as a ValueVTs value. This uses
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000217 /// Chain/Flag as the input and updates them for the output Chain/Flag.
218 /// If the Flag pointer is NULL, no flag is used.
219 SDValue getCopyFromRegs(SelectionDAG &DAG,
220 SDValue &Chain, SDValue *Flag) const;
221
222 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000223 /// specified value into the registers specified by this object. This uses
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000224 /// Chain/Flag as the input and updates them for the output Chain/Flag.
225 /// If the Flag pointer is NULL, no flag is used.
226 void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
227 SDValue &Chain, SDValue *Flag) const;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000228
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000229 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000230 /// operand list. This adds the code marker and includes the number of
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000231 /// values added into it.
232 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
233 std::vector<SDValue> &Ops) const;
234 };
235}
236
237/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000238/// PHI nodes or outside of the basic block that defines it, or used by a
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000239/// switch or atomic instruction, which may expand to multiple basic blocks.
240static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
241 if (isa<PHINode>(I)) return true;
242 BasicBlock *BB = I->getParent();
243 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
244 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
245 // FIXME: Remove switchinst special case.
246 isa<SwitchInst>(*UI))
247 return true;
248 return false;
249}
250
251/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
252/// entry block, return true. This includes arguments used by switches, since
253/// the switch may expand into multiple basic blocks.
254static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
255 // With FastISel active, we may be splitting blocks, so force creation
256 // of virtual registers for all non-dead arguments.
Dan Gohman33134c42008-09-25 17:05:24 +0000257 // Don't force virtual registers for byval arguments though, because
258 // fast-isel can't handle those in all cases.
259 if (EnableFastISel && !A->hasByValAttr())
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000260 return A->use_empty();
261
262 BasicBlock *Entry = A->getParent()->begin();
263 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
264 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
265 return false; // Use not in entry block.
266 return true;
267}
268
269FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
270 : TLI(tli) {
271}
272
273void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
274 bool EnableFastISel) {
275 Fn = &fn;
276 MF = &mf;
277 RegInfo = &MF->getRegInfo();
278
279 // Create a vreg for each argument register that is not dead and is used
280 // outside of the entry block for the function.
281 for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
282 AI != E; ++AI)
283 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
284 InitializeRegForValue(AI);
285
286 // Initialize the mapping of values to registers. This is only set up for
287 // instruction values that are used outside of the block that defines
288 // them.
289 Function::iterator BB = Fn->begin(), EB = Fn->end();
290 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
291 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
292 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
293 const Type *Ty = AI->getAllocatedType();
Duncan Sandsceb4d1a2009-01-12 20:38:59 +0000294 uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000295 unsigned Align =
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000296 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
297 AI->getAlignment());
298
299 TySize *= CUI->getZExtValue(); // Get total allocated size.
300 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
301 StaticAllocaMap[AI] =
302 MF->getFrameInfo()->CreateStackObject(TySize, Align);
303 }
304
305 for (; BB != EB; ++BB)
306 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
307 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
308 if (!isa<AllocaInst>(I) ||
309 !StaticAllocaMap.count(cast<AllocaInst>(I)))
310 InitializeRegForValue(I);
311
312 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
313 // also creates the initial PHI MachineInstrs, though none of the input
314 // operands are populated.
315 for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
316 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
317 MBBMap[BB] = MBB;
318 MF->push_back(MBB);
319
320 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
321 // appropriate.
322 PHINode *PN;
323 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
324 if (PN->use_empty()) continue;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000325
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000326 unsigned PHIReg = ValueMap[PN];
327 assert(PHIReg && "PHI node does not have an assigned virtual register!");
328
329 SmallVector<MVT, 4> ValueVTs;
330 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
331 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
332 MVT VT = ValueVTs[vti];
333 unsigned NumRegisters = TLI.getNumRegisters(VT);
Dan Gohman6448d912008-09-04 15:39:15 +0000334 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000335 for (unsigned i = 0; i != NumRegisters; ++i)
336 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
337 PHIReg += NumRegisters;
338 }
339 }
340 }
341}
342
343unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
344 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
345}
346
347/// CreateRegForValue - Allocate the appropriate number of virtual registers of
348/// the correctly promoted or expanded types. Assign these registers
349/// consecutive vreg numbers and return the first assigned number.
350///
351/// In the case that the given value has struct or array type, this function
352/// will assign registers for each member or element.
353///
354unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
355 SmallVector<MVT, 4> ValueVTs;
356 ComputeValueVTs(TLI, V->getType(), ValueVTs);
357
358 unsigned FirstReg = 0;
359 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
360 MVT ValueVT = ValueVTs[Value];
361 MVT RegisterVT = TLI.getRegisterType(ValueVT);
362
363 unsigned NumRegs = TLI.getNumRegisters(ValueVT);
364 for (unsigned i = 0; i != NumRegs; ++i) {
365 unsigned R = MakeReg(RegisterVT);
366 if (!FirstReg) FirstReg = R;
367 }
368 }
369 return FirstReg;
370}
371
372/// getCopyFromParts - Create a value that contains the specified legal parts
373/// combined into the value they represent. If the parts combine to a type
374/// larger then ValueVT then AssertOp can be used to specify whether the extra
375/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
376/// (ISD::AssertSext).
377static SDValue getCopyFromParts(SelectionDAG &DAG,
378 const SDValue *Parts,
379 unsigned NumParts,
380 MVT PartVT,
381 MVT ValueVT,
382 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
383 assert(NumParts > 0 && "No parts to assemble!");
Dan Gohmane9530ec2009-01-15 16:58:17 +0000384 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000385 SDValue Val = Parts[0];
386
387 if (NumParts > 1) {
388 // Assemble the value from multiple parts.
389 if (!ValueVT.isVector()) {
390 unsigned PartBits = PartVT.getSizeInBits();
391 unsigned ValueBits = ValueVT.getSizeInBits();
392
393 // Assemble the power of 2 part.
394 unsigned RoundParts = NumParts & (NumParts - 1) ?
395 1 << Log2_32(NumParts) : NumParts;
396 unsigned RoundBits = PartBits * RoundParts;
397 MVT RoundVT = RoundBits == ValueBits ?
398 ValueVT : MVT::getIntegerVT(RoundBits);
399 SDValue Lo, Hi;
400
Duncan Sandsd22ec5f2008-10-29 14:22:20 +0000401 MVT HalfVT = ValueVT.isInteger() ?
402 MVT::getIntegerVT(RoundBits/2) :
403 MVT::getFloatingPointVT(RoundBits/2);
404
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000405 if (RoundParts > 2) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000406 Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
407 Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
408 PartVT, HalfVT);
409 } else {
Duncan Sandsd22ec5f2008-10-29 14:22:20 +0000410 Lo = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[0]);
411 Hi = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[1]);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000412 }
413 if (TLI.isBigEndian())
414 std::swap(Lo, Hi);
415 Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
416
417 if (RoundParts < NumParts) {
418 // Assemble the trailing non-power-of-2 part.
419 unsigned OddParts = NumParts - RoundParts;
420 MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
421 Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
422
423 // Combine the round and odd parts.
424 Lo = Val;
425 if (TLI.isBigEndian())
426 std::swap(Lo, Hi);
427 MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
428 Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
429 Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
430 DAG.getConstant(Lo.getValueType().getSizeInBits(),
431 TLI.getShiftAmountTy()));
432 Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
433 Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
434 }
435 } else {
436 // Handle a multi-element vector.
437 MVT IntermediateVT, RegisterVT;
438 unsigned NumIntermediates;
439 unsigned NumRegs =
440 TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
441 RegisterVT);
442 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
443 NumParts = NumRegs; // Silence a compiler warning.
444 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
445 assert(RegisterVT == Parts[0].getValueType() &&
446 "Part type doesn't match part!");
447
448 // Assemble the parts into intermediate operands.
449 SmallVector<SDValue, 8> Ops(NumIntermediates);
450 if (NumIntermediates == NumParts) {
451 // If the register was not expanded, truncate or copy the value,
452 // as appropriate.
453 for (unsigned i = 0; i != NumParts; ++i)
454 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
455 PartVT, IntermediateVT);
456 } else if (NumParts > 0) {
457 // If the intermediate type was expanded, build the intermediate operands
458 // from the parts.
459 assert(NumParts % NumIntermediates == 0 &&
460 "Must expand into a divisible number of parts!");
461 unsigned Factor = NumParts / NumIntermediates;
462 for (unsigned i = 0; i != NumIntermediates; ++i)
463 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
464 PartVT, IntermediateVT);
465 }
466
467 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
468 // operands.
469 Val = DAG.getNode(IntermediateVT.isVector() ?
470 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
471 ValueVT, &Ops[0], NumIntermediates);
472 }
473 }
474
475 // There is now one part, held in Val. Correct it to match ValueVT.
476 PartVT = Val.getValueType();
477
478 if (PartVT == ValueVT)
479 return Val;
480
481 if (PartVT.isVector()) {
482 assert(ValueVT.isVector() && "Unknown vector conversion!");
483 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
484 }
485
486 if (ValueVT.isVector()) {
487 assert(ValueVT.getVectorElementType() == PartVT &&
488 ValueVT.getVectorNumElements() == 1 &&
489 "Only trivial scalar-to-vector conversions should get here!");
490 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
491 }
492
493 if (PartVT.isInteger() &&
494 ValueVT.isInteger()) {
495 if (ValueVT.bitsLT(PartVT)) {
496 // For a truncate, see if we have any information to
497 // indicate whether the truncated bits will always be
498 // zero or sign-extension.
499 if (AssertOp != ISD::DELETED_NODE)
500 Val = DAG.getNode(AssertOp, PartVT, Val,
501 DAG.getValueType(ValueVT));
502 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
503 } else {
504 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
505 }
506 }
507
508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509 if (ValueVT.bitsLT(Val.getValueType()))
510 // FP_ROUND's are always exact here.
511 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
512 DAG.getIntPtrConstant(1));
513 return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
514 }
515
516 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
517 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
518
519 assert(0 && "Unknown mismatch!");
520 return SDValue();
521}
522
523/// getCopyToParts - Create a series of nodes that contain the specified value
524/// split into legal parts. If the parts contain more bits than Val, then, for
525/// integers, ExtendKind can be used to specify how to generate the extra bits.
Chris Lattner01426e12008-10-21 00:45:36 +0000526static void getCopyToParts(SelectionDAG &DAG, SDValue Val,
527 SDValue *Parts, unsigned NumParts, MVT PartVT,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000528 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
Dan Gohmane9530ec2009-01-15 16:58:17 +0000529 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000530 MVT PtrVT = TLI.getPointerTy();
531 MVT ValueVT = Val.getValueType();
532 unsigned PartBits = PartVT.getSizeInBits();
533 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
534
535 if (!NumParts)
536 return;
537
538 if (!ValueVT.isVector()) {
539 if (PartVT == ValueVT) {
540 assert(NumParts == 1 && "No-op copy with multiple parts!");
541 Parts[0] = Val;
542 return;
543 }
544
545 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
546 // If the parts cover more bits than the value has, promote the value.
547 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
548 assert(NumParts == 1 && "Do not know what to promote to!");
549 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
550 } else if (PartVT.isInteger() && ValueVT.isInteger()) {
551 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
552 Val = DAG.getNode(ExtendKind, ValueVT, Val);
553 } else {
554 assert(0 && "Unknown mismatch!");
555 }
556 } else if (PartBits == ValueVT.getSizeInBits()) {
557 // Different types of the same size.
558 assert(NumParts == 1 && PartVT != ValueVT);
559 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561 // If the parts cover less bits than value has, truncate the value.
562 if (PartVT.isInteger() && ValueVT.isInteger()) {
563 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
564 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
565 } else {
566 assert(0 && "Unknown mismatch!");
567 }
568 }
569
570 // The value may have changed - recompute ValueVT.
571 ValueVT = Val.getValueType();
572 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573 "Failed to tile the value with PartVT!");
574
575 if (NumParts == 1) {
576 assert(PartVT == ValueVT && "Type conversion failed!");
577 Parts[0] = Val;
578 return;
579 }
580
581 // Expand the value into multiple parts.
582 if (NumParts & (NumParts - 1)) {
583 // The number of parts is not a power of 2. Split off and copy the tail.
584 assert(PartVT.isInteger() && ValueVT.isInteger() &&
585 "Do not know what to expand to!");
586 unsigned RoundParts = 1 << Log2_32(NumParts);
587 unsigned RoundBits = RoundParts * PartBits;
588 unsigned OddParts = NumParts - RoundParts;
589 SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
590 DAG.getConstant(RoundBits,
591 TLI.getShiftAmountTy()));
592 getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
593 if (TLI.isBigEndian())
594 // The odd parts were reversed by getCopyToParts - unreverse them.
595 std::reverse(Parts + RoundParts, Parts + NumParts);
596 NumParts = RoundParts;
597 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
598 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
599 }
600
601 // The number of parts is a power of 2. Repeatedly bisect the value using
602 // EXTRACT_ELEMENT.
603 Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
604 MVT::getIntegerVT(ValueVT.getSizeInBits()),
605 Val);
606 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
607 for (unsigned i = 0; i < NumParts; i += StepSize) {
608 unsigned ThisBits = StepSize * PartBits / 2;
609 MVT ThisVT = MVT::getIntegerVT (ThisBits);
610 SDValue &Part0 = Parts[i];
611 SDValue &Part1 = Parts[i+StepSize/2];
612
613 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
614 DAG.getConstant(1, PtrVT));
615 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
616 DAG.getConstant(0, PtrVT));
617
618 if (ThisBits == PartBits && ThisVT != PartVT) {
619 Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
620 Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
621 }
622 }
623 }
624
625 if (TLI.isBigEndian())
626 std::reverse(Parts, Parts + NumParts);
627
628 return;
629 }
630
631 // Vector ValueVT.
632 if (NumParts == 1) {
633 if (PartVT != ValueVT) {
634 if (PartVT.isVector()) {
635 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
636 } else {
637 assert(ValueVT.getVectorElementType() == PartVT &&
638 ValueVT.getVectorNumElements() == 1 &&
639 "Only trivial vector-to-scalar conversions should get here!");
640 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
641 DAG.getConstant(0, PtrVT));
642 }
643 }
644
645 Parts[0] = Val;
646 return;
647 }
648
649 // Handle a multi-element vector.
650 MVT IntermediateVT, RegisterVT;
651 unsigned NumIntermediates;
Dan Gohmane9530ec2009-01-15 16:58:17 +0000652 unsigned NumRegs = TLI
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000653 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
654 RegisterVT);
655 unsigned NumElements = ValueVT.getVectorNumElements();
656
657 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
658 NumParts = NumRegs; // Silence a compiler warning.
659 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
660
661 // Split the vector into intermediate operands.
662 SmallVector<SDValue, 8> Ops(NumIntermediates);
663 for (unsigned i = 0; i != NumIntermediates; ++i)
664 if (IntermediateVT.isVector())
665 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
666 IntermediateVT, Val,
667 DAG.getConstant(i * (NumElements / NumIntermediates),
668 PtrVT));
669 else
670 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000671 IntermediateVT, Val,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000672 DAG.getConstant(i, PtrVT));
673
674 // Split the intermediate operands into legal parts.
675 if (NumParts == NumIntermediates) {
676 // If the register was not expanded, promote or copy the value,
677 // as appropriate.
678 for (unsigned i = 0; i != NumParts; ++i)
679 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
680 } else if (NumParts > 0) {
681 // If the intermediate type was expanded, split each the value into
682 // legal parts.
683 assert(NumParts % NumIntermediates == 0 &&
684 "Must expand into a divisible number of parts!");
685 unsigned Factor = NumParts / NumIntermediates;
686 for (unsigned i = 0; i != NumIntermediates; ++i)
687 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
688 }
689}
690
691
692void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
693 AA = &aa;
694 GFI = gfi;
695 TD = DAG.getTarget().getTargetData();
696}
697
698/// clear - Clear out the curret SelectionDAG and the associated
699/// state and prepare this SelectionDAGLowering object to be used
700/// for a new block. This doesn't clear out information about
701/// additional blocks that are needed to complete switch lowering
702/// or PHI node updating; that information is cleared out as it is
703/// consumed.
704void SelectionDAGLowering::clear() {
705 NodeMap.clear();
706 PendingLoads.clear();
707 PendingExports.clear();
708 DAG.clear();
709}
710
711/// getRoot - Return the current virtual root of the Selection DAG,
712/// flushing any PendingLoad items. This must be done before emitting
713/// a store or any other node that may need to be ordered after any
714/// prior load instructions.
715///
716SDValue SelectionDAGLowering::getRoot() {
717 if (PendingLoads.empty())
718 return DAG.getRoot();
719
720 if (PendingLoads.size() == 1) {
721 SDValue Root = PendingLoads[0];
722 DAG.setRoot(Root);
723 PendingLoads.clear();
724 return Root;
725 }
726
727 // Otherwise, we have to make a token factor node.
728 SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
729 &PendingLoads[0], PendingLoads.size());
730 PendingLoads.clear();
731 DAG.setRoot(Root);
732 return Root;
733}
734
735/// getControlRoot - Similar to getRoot, but instead of flushing all the
736/// PendingLoad items, flush all the PendingExports items. It is necessary
737/// to do this before emitting a terminator instruction.
738///
739SDValue SelectionDAGLowering::getControlRoot() {
740 SDValue Root = DAG.getRoot();
741
742 if (PendingExports.empty())
743 return Root;
744
745 // Turn all of the CopyToReg chains into one factored node.
746 if (Root.getOpcode() != ISD::EntryToken) {
747 unsigned i = 0, e = PendingExports.size();
748 for (; i != e; ++i) {
749 assert(PendingExports[i].getNode()->getNumOperands() > 1);
750 if (PendingExports[i].getNode()->getOperand(0) == Root)
751 break; // Don't add the root if we already indirectly depend on it.
752 }
753
754 if (i == e)
755 PendingExports.push_back(Root);
756 }
757
758 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
759 &PendingExports[0],
760 PendingExports.size());
761 PendingExports.clear();
762 DAG.setRoot(Root);
763 return Root;
764}
765
766void SelectionDAGLowering::visit(Instruction &I) {
767 visit(I.getOpcode(), I);
768}
769
770void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
771 // Note: this doesn't use InstVisitor, because it has to work with
772 // ConstantExpr's in addition to instructions.
773 switch (Opcode) {
774 default: assert(0 && "Unknown instruction type encountered!");
775 abort();
776 // Build the switch statement using the Instruction.def file.
777#define HANDLE_INST(NUM, OPCODE, CLASS) \
778 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
779#include "llvm/Instruction.def"
780 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000781}
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000782
783void SelectionDAGLowering::visitAdd(User &I) {
784 if (I.getType()->isFPOrFPVector())
785 visitBinary(I, ISD::FADD);
786 else
787 visitBinary(I, ISD::ADD);
788}
789
790void SelectionDAGLowering::visitMul(User &I) {
791 if (I.getType()->isFPOrFPVector())
792 visitBinary(I, ISD::FMUL);
793 else
794 visitBinary(I, ISD::MUL);
795}
796
797SDValue SelectionDAGLowering::getValue(const Value *V) {
798 SDValue &N = NodeMap[V];
799 if (N.getNode()) return N;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000800
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000801 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
802 MVT VT = TLI.getValueType(V->getType(), true);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000803
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000804 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000805 return N = DAG.getConstant(*CI, VT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000806
807 if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
808 return N = DAG.getGlobalAddress(GV, VT);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000809
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000810 if (isa<ConstantPointerNull>(C))
811 return N = DAG.getConstant(0, TLI.getPointerTy());
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000812
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000813 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000814 return N = DAG.getConstantFP(*CFP, VT);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000815
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000816 if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
817 !V->getType()->isAggregateType())
818 return N = DAG.getNode(ISD::UNDEF, VT);
819
820 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
821 visit(CE->getOpcode(), *CE);
822 SDValue N1 = NodeMap[V];
823 assert(N1.getNode() && "visit didn't populate the ValueMap!");
824 return N1;
825 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000826
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000827 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
828 SmallVector<SDValue, 4> Constants;
829 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
830 OI != OE; ++OI) {
831 SDNode *Val = getValue(*OI).getNode();
832 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
833 Constants.push_back(SDValue(Val, i));
834 }
835 return DAG.getMergeValues(&Constants[0], Constants.size());
836 }
837
838 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
839 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
840 "Unknown struct or array constant!");
841
842 SmallVector<MVT, 4> ValueVTs;
843 ComputeValueVTs(TLI, C->getType(), ValueVTs);
844 unsigned NumElts = ValueVTs.size();
845 if (NumElts == 0)
846 return SDValue(); // empty struct
847 SmallVector<SDValue, 4> Constants(NumElts);
848 for (unsigned i = 0; i != NumElts; ++i) {
849 MVT EltVT = ValueVTs[i];
850 if (isa<UndefValue>(C))
851 Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
852 else if (EltVT.isFloatingPoint())
853 Constants[i] = DAG.getConstantFP(0, EltVT);
854 else
855 Constants[i] = DAG.getConstant(0, EltVT);
856 }
857 return DAG.getMergeValues(&Constants[0], NumElts);
858 }
859
860 const VectorType *VecTy = cast<VectorType>(V->getType());
861 unsigned NumElements = VecTy->getNumElements();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000862
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000863 // Now that we know the number and type of the elements, get that number of
864 // elements into the Ops array based on what kind of constant it is.
865 SmallVector<SDValue, 16> Ops;
866 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
867 for (unsigned i = 0; i != NumElements; ++i)
868 Ops.push_back(getValue(CP->getOperand(i)));
869 } else {
870 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
871 "Unknown vector constant!");
872 MVT EltVT = TLI.getValueType(VecTy->getElementType());
873
874 SDValue Op;
875 if (isa<UndefValue>(C))
876 Op = DAG.getNode(ISD::UNDEF, EltVT);
877 else if (EltVT.isFloatingPoint())
878 Op = DAG.getConstantFP(0, EltVT);
879 else
880 Op = DAG.getConstant(0, EltVT);
881 Ops.assign(NumElements, Op);
882 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000883
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000884 // Create a BUILD_VECTOR node.
885 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
886 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000887
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000888 // If this is a static alloca, generate it as the frameindex instead of
889 // computation.
890 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
891 DenseMap<const AllocaInst*, int>::iterator SI =
892 FuncInfo.StaticAllocaMap.find(AI);
893 if (SI != FuncInfo.StaticAllocaMap.end())
894 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
895 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000896
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000897 unsigned InReg = FuncInfo.ValueMap[V];
898 assert(InReg && "Value not in map!");
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000899
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000900 RegsForValue RFV(TLI, InReg, V->getType());
901 SDValue Chain = DAG.getEntryNode();
902 return RFV.getCopyFromRegs(DAG, Chain, NULL);
903}
904
905
906void SelectionDAGLowering::visitRet(ReturnInst &I) {
907 if (I.getNumOperands() == 0) {
908 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
909 return;
910 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000911
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000912 SmallVector<SDValue, 8> NewValues;
913 NewValues.push_back(getControlRoot());
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000914 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000915 SmallVector<MVT, 4> ValueVTs;
916 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
Dan Gohman7ea1ca62008-10-21 20:00:42 +0000917 unsigned NumValues = ValueVTs.size();
918 if (NumValues == 0) continue;
919
920 SDValue RetOp = getValue(I.getOperand(i));
921 for (unsigned j = 0, f = NumValues; j != f; ++j) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000922 MVT VT = ValueVTs[j];
923
924 // FIXME: C calling convention requires the return type to be promoted to
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000925 // at least 32-bit. But this is not necessary for non-C calling
926 // conventions.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000927 if (VT.isInteger()) {
928 MVT MinVT = TLI.getRegisterType(MVT::i32);
929 if (VT.bitsLT(MinVT))
930 VT = MinVT;
931 }
932
933 unsigned NumParts = TLI.getNumRegisters(VT);
934 MVT PartVT = TLI.getRegisterType(VT);
935 SmallVector<SDValue, 4> Parts(NumParts);
936 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000937
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000938 const Function *F = I.getParent()->getParent();
Devang Patel05988662008-09-25 21:00:45 +0000939 if (F->paramHasAttr(0, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000940 ExtendKind = ISD::SIGN_EXTEND;
Devang Patel05988662008-09-25 21:00:45 +0000941 else if (F->paramHasAttr(0, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000942 ExtendKind = ISD::ZERO_EXTEND;
943
944 getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j),
945 &Parts[0], NumParts, PartVT, ExtendKind);
946
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000947 // 'inreg' on function refers to return value
948 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
Devang Patel05988662008-09-25 21:00:45 +0000949 if (F->paramHasAttr(0, Attribute::InReg))
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000950 Flags.setInReg();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000951 for (unsigned i = 0; i < NumParts; ++i) {
952 NewValues.push_back(Parts[i]);
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000953 NewValues.push_back(DAG.getArgFlags(Flags));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000954 }
955 }
956 }
957 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
958 &NewValues[0], NewValues.size()));
959}
960
961/// ExportFromCurrentBlock - If this condition isn't known to be exported from
962/// the current basic block, add it to ValueMap now so that we'll get a
963/// CopyTo/FromReg.
964void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
965 // No need to export constants.
966 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000967
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000968 // Already exported?
969 if (FuncInfo.isExportedInst(V)) return;
970
971 unsigned Reg = FuncInfo.InitializeRegForValue(V);
972 CopyValueToVirtualRegister(V, Reg);
973}
974
975bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
976 const BasicBlock *FromBB) {
977 // The operands of the setcc have to be in this block. We don't know
978 // how to export them from some other block.
979 if (Instruction *VI = dyn_cast<Instruction>(V)) {
980 // Can export from current BB.
981 if (VI->getParent() == FromBB)
982 return true;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000983
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000984 // Is already exported, noop.
985 return FuncInfo.isExportedInst(V);
986 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000987
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000988 // If this is an argument, we can export it if the BB is the entry block or
989 // if it is already exported.
990 if (isa<Argument>(V)) {
991 if (FromBB == &FromBB->getParent()->getEntryBlock())
992 return true;
993
994 // Otherwise, can only export this if it is already exported.
995 return FuncInfo.isExportedInst(V);
996 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +0000997
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000998 // Otherwise, constants can always be exported.
999 return true;
1000}
1001
1002static bool InBlock(const Value *V, const BasicBlock *BB) {
1003 if (const Instruction *I = dyn_cast<Instruction>(V))
1004 return I->getParent() == BB;
1005 return true;
1006}
1007
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001008/// getFCmpCondCode - Return the ISD condition code corresponding to
1009/// the given LLVM IR floating-point condition code. This includes
1010/// consideration of global floating-point math flags.
1011///
1012static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
1013 ISD::CondCode FPC, FOC;
1014 switch (Pred) {
1015 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1016 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1017 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1018 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1019 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1020 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1021 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1022 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
1023 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
1024 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1025 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1026 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1027 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1028 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1029 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1030 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1031 default:
1032 assert(0 && "Invalid FCmp predicate opcode!");
1033 FOC = FPC = ISD::SETFALSE;
1034 break;
1035 }
1036 if (FiniteOnlyFPMath())
1037 return FOC;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001038 else
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001039 return FPC;
1040}
1041
1042/// getICmpCondCode - Return the ISD condition code corresponding to
1043/// the given LLVM IR integer condition code.
1044///
1045static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1046 switch (Pred) {
1047 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
1048 case ICmpInst::ICMP_NE: return ISD::SETNE;
1049 case ICmpInst::ICMP_SLE: return ISD::SETLE;
1050 case ICmpInst::ICMP_ULE: return ISD::SETULE;
1051 case ICmpInst::ICMP_SGE: return ISD::SETGE;
1052 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1053 case ICmpInst::ICMP_SLT: return ISD::SETLT;
1054 case ICmpInst::ICMP_ULT: return ISD::SETULT;
1055 case ICmpInst::ICMP_SGT: return ISD::SETGT;
1056 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1057 default:
1058 assert(0 && "Invalid ICmp predicate opcode!");
1059 return ISD::SETNE;
1060 }
1061}
1062
Dan Gohmanc2277342008-10-17 21:16:08 +00001063/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1064/// This function emits a branch and is used at the leaves of an OR or an
1065/// AND operator tree.
1066///
1067void
1068SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
1069 MachineBasicBlock *TBB,
1070 MachineBasicBlock *FBB,
1071 MachineBasicBlock *CurBB) {
1072 const BasicBlock *BB = CurBB->getBasicBlock();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001073
Dan Gohmanc2277342008-10-17 21:16:08 +00001074 // If the leaf of the tree is a comparison, merge the condition into
1075 // the caseblock.
1076 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1077 // The operands of the cmp have to be in this block. We don't know
1078 // how to export them from some other block. If this is the first block
1079 // of the sequence, no exporting is needed.
1080 if (CurBB == CurMBB ||
1081 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1082 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001083 ISD::CondCode Condition;
1084 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001085 Condition = getICmpCondCode(IC->getPredicate());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001086 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001087 Condition = getFCmpCondCode(FC->getPredicate());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001088 } else {
1089 Condition = ISD::SETEQ; // silence warning.
1090 assert(0 && "Unknown compare instruction");
1091 }
Dan Gohmanc2277342008-10-17 21:16:08 +00001092
1093 CaseBlock CB(Condition, BOp->getOperand(0),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001094 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1095 SwitchCases.push_back(CB);
1096 return;
1097 }
Dan Gohmanc2277342008-10-17 21:16:08 +00001098 }
1099
1100 // Create a CaseBlock record representing this branch.
1101 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1102 NULL, TBB, FBB, CurBB);
1103 SwitchCases.push_back(CB);
1104}
1105
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001106/// FindMergedConditions - If Cond is an expression like
Dan Gohmanc2277342008-10-17 21:16:08 +00001107void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1108 MachineBasicBlock *TBB,
1109 MachineBasicBlock *FBB,
1110 MachineBasicBlock *CurBB,
1111 unsigned Opc) {
1112 // If this node is not part of the or/and tree, emit it as a branch.
1113 Instruction *BOp = dyn_cast<Instruction>(Cond);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001114 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
Dan Gohmanc2277342008-10-17 21:16:08 +00001115 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1116 BOp->getParent() != CurBB->getBasicBlock() ||
1117 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1118 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1119 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001120 return;
1121 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001122
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001123 // Create TmpBB after CurBB.
1124 MachineFunction::iterator BBI = CurBB;
1125 MachineFunction &MF = DAG.getMachineFunction();
1126 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1127 CurBB->getParent()->insert(++BBI, TmpBB);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001128
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001129 if (Opc == Instruction::Or) {
1130 // Codegen X | Y as:
1131 // jmp_if_X TBB
1132 // jmp TmpBB
1133 // TmpBB:
1134 // jmp_if_Y TBB
1135 // jmp FBB
1136 //
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001137
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001138 // Emit the LHS condition.
1139 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001140
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001141 // Emit the RHS condition into TmpBB.
1142 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1143 } else {
1144 assert(Opc == Instruction::And && "Unknown merge op!");
1145 // Codegen X & Y as:
1146 // jmp_if_X TmpBB
1147 // jmp FBB
1148 // TmpBB:
1149 // jmp_if_Y TBB
1150 // jmp FBB
1151 //
1152 // This requires creation of TmpBB after CurBB.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001153
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001154 // Emit the LHS condition.
1155 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001156
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001157 // Emit the RHS condition into TmpBB.
1158 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1159 }
1160}
1161
1162/// If the set of cases should be emitted as a series of branches, return true.
1163/// If we should emit this as a bunch of and/or'd together conditions, return
1164/// false.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001165bool
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001166SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1167 if (Cases.size() != 2) return true;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001168
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001169 // If this is two comparisons of the same values or'd or and'd together, they
1170 // will get folded into a single comparison, so don't emit two blocks.
1171 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1172 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1173 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1174 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1175 return false;
1176 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001177
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001178 return true;
1179}
1180
1181void SelectionDAGLowering::visitBr(BranchInst &I) {
1182 // Update machine-CFG edges.
1183 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1184
1185 // Figure out which block is immediately after the current one.
1186 MachineBasicBlock *NextBlock = 0;
1187 MachineFunction::iterator BBI = CurMBB;
1188 if (++BBI != CurMBB->getParent()->end())
1189 NextBlock = BBI;
1190
1191 if (I.isUnconditional()) {
1192 // Update machine-CFG edges.
1193 CurMBB->addSuccessor(Succ0MBB);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001194
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001195 // If this is not a fall-through branch, emit the branch.
1196 if (Succ0MBB != NextBlock)
1197 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1198 DAG.getBasicBlock(Succ0MBB)));
1199 return;
1200 }
1201
1202 // If this condition is one of the special cases we handle, do special stuff
1203 // now.
1204 Value *CondVal = I.getCondition();
1205 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1206
1207 // If this is a series of conditions that are or'd or and'd together, emit
1208 // this as a sequence of branches instead of setcc's with and/or operations.
1209 // For example, instead of something like:
1210 // cmp A, B
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001211 // C = seteq
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001212 // cmp D, E
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001213 // F = setle
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001214 // or C, F
1215 // jnz foo
1216 // Emit:
1217 // cmp A, B
1218 // je foo
1219 // cmp D, E
1220 // jle foo
1221 //
1222 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001223 if (BOp->hasOneUse() &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001224 (BOp->getOpcode() == Instruction::And ||
1225 BOp->getOpcode() == Instruction::Or)) {
1226 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1227 // If the compares in later blocks need to use values not currently
1228 // exported from this block, export them now. This block should always
1229 // be the first entry.
1230 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001231
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001232 // Allow some cases to be rejected.
1233 if (ShouldEmitAsBranches(SwitchCases)) {
1234 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1235 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1236 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1237 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001238
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001239 // Emit the branch for this block.
1240 visitSwitchCase(SwitchCases[0]);
1241 SwitchCases.erase(SwitchCases.begin());
1242 return;
1243 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001244
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001245 // Okay, we decided not to do this, remove any inserted MBB's and clear
1246 // SwitchCases.
1247 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1248 CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001249
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001250 SwitchCases.clear();
1251 }
1252 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001253
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001254 // Create a CaseBlock record representing this branch.
1255 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1256 NULL, Succ0MBB, Succ1MBB, CurMBB);
1257 // Use visitSwitchCase to actually insert the fast branch sequence for this
1258 // cond branch.
1259 visitSwitchCase(CB);
1260}
1261
1262/// visitSwitchCase - Emits the necessary code to represent a single node in
1263/// the binary search tree resulting from lowering a switch instruction.
1264void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
1265 SDValue Cond;
1266 SDValue CondLHS = getValue(CB.CmpLHS);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001267
1268 // Build the setcc now.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001269 if (CB.CmpMHS == NULL) {
1270 // Fold "(X == true)" to X and "(X == false)" to !X to
1271 // handle common cases produced by branch lowering.
1272 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1273 Cond = CondLHS;
1274 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1275 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1276 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1277 } else
1278 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1279 } else {
1280 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1281
Anton Korobeynikov23218582008-12-23 22:25:27 +00001282 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1283 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001284
1285 SDValue CmpOp = getValue(CB.CmpMHS);
1286 MVT VT = CmpOp.getValueType();
1287
1288 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1289 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1290 } else {
1291 SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1292 Cond = DAG.getSetCC(MVT::i1, SUB,
1293 DAG.getConstant(High-Low, VT), ISD::SETULE);
1294 }
1295 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001296
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001297 // Update successor info
1298 CurMBB->addSuccessor(CB.TrueBB);
1299 CurMBB->addSuccessor(CB.FalseBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001300
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001301 // Set NextBlock to be the MBB immediately after the current one, if any.
1302 // This is used to avoid emitting unnecessary branches to the next block.
1303 MachineBasicBlock *NextBlock = 0;
1304 MachineFunction::iterator BBI = CurMBB;
1305 if (++BBI != CurMBB->getParent()->end())
1306 NextBlock = BBI;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001307
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001308 // If the lhs block is the next block, invert the condition so that we can
1309 // fall through to the lhs instead of the rhs block.
1310 if (CB.TrueBB == NextBlock) {
1311 std::swap(CB.TrueBB, CB.FalseBB);
1312 SDValue True = DAG.getConstant(1, Cond.getValueType());
1313 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1314 }
1315 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1316 DAG.getBasicBlock(CB.TrueBB));
Anton Korobeynikov23218582008-12-23 22:25:27 +00001317
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001318 // If the branch was constant folded, fix up the CFG.
1319 if (BrCond.getOpcode() == ISD::BR) {
1320 CurMBB->removeSuccessor(CB.FalseBB);
1321 DAG.setRoot(BrCond);
1322 } else {
1323 // Otherwise, go ahead and insert the false branch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001324 if (BrCond == getControlRoot())
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001325 CurMBB->removeSuccessor(CB.TrueBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001326
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001327 if (CB.FalseBB == NextBlock)
1328 DAG.setRoot(BrCond);
1329 else
Anton Korobeynikov23218582008-12-23 22:25:27 +00001330 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001331 DAG.getBasicBlock(CB.FalseBB)));
1332 }
1333}
1334
1335/// visitJumpTable - Emit JumpTable node in the current MBB
1336void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
1337 // Emit the code for the jump table
1338 assert(JT.Reg != -1U && "Should lower JT Header first!");
1339 MVT PTy = TLI.getPointerTy();
1340 SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1341 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1342 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1343 Table, Index));
1344 return;
1345}
1346
1347/// visitJumpTableHeader - This function emits necessary code to produce index
1348/// in the JumpTable from switch case.
1349void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
1350 JumpTableHeader &JTH) {
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001351 // Subtract the lowest switch case value from the value being switched on and
1352 // conditional branch to default mbb if the result is greater than the
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001353 // difference between smallest and largest cases.
1354 SDValue SwitchOp = getValue(JTH.SValue);
1355 MVT VT = SwitchOp.getValueType();
1356 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001357 DAG.getConstant(JTH.First, VT));
Anton Korobeynikov23218582008-12-23 22:25:27 +00001358
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001359 // The SDNode we just created, which holds the value being switched on minus
1360 // the the smallest case value, needs to be copied to a virtual register so it
1361 // can be used as an index into the jump table in a subsequent basic block.
1362 // This value may be smaller or larger than the target's pointer type, and
1363 // therefore require extension or truncating.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001364 if (VT.bitsGT(TLI.getPointerTy()))
1365 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1366 else
1367 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001368
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001369 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1370 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1371 JT.Reg = JumpTableReg;
1372
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001373 // Emit the range check for the jump table, and branch to the default block
1374 // for the switch statement if the value being switched on exceeds the largest
1375 // case in the switch.
Duncan Sands5480c042009-01-01 15:52:00 +00001376 SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB.getValueType()), SUB,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001377 DAG.getConstant(JTH.Last-JTH.First,VT),
1378 ISD::SETUGT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001379
1380 // Set NextBlock to be the MBB immediately after the current one, if any.
1381 // This is used to avoid emitting unnecessary branches to the next block.
1382 MachineBasicBlock *NextBlock = 0;
1383 MachineFunction::iterator BBI = CurMBB;
1384 if (++BBI != CurMBB->getParent()->end())
1385 NextBlock = BBI;
1386
1387 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001388 DAG.getBasicBlock(JT.Default));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001389
1390 if (JT.MBB == NextBlock)
1391 DAG.setRoot(BrCond);
1392 else
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001393 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001394 DAG.getBasicBlock(JT.MBB)));
1395
1396 return;
1397}
1398
1399/// visitBitTestHeader - This function emits necessary code to produce value
1400/// suitable for "bit tests"
1401void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
1402 // Subtract the minimum value
1403 SDValue SwitchOp = getValue(B.SValue);
1404 MVT VT = SwitchOp.getValueType();
1405 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001406 DAG.getConstant(B.First, VT));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001407
1408 // Check range
Duncan Sands5480c042009-01-01 15:52:00 +00001409 SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB.getValueType()), SUB,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001410 DAG.getConstant(B.Range, VT),
1411 ISD::SETUGT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001412
1413 SDValue ShiftOp;
1414 if (VT.bitsGT(TLI.getShiftAmountTy()))
1415 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1416 else
1417 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1418
1419 // Make desired shift
1420 SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001421 DAG.getConstant(1, TLI.getPointerTy()),
1422 ShiftOp);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001423
1424 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1425 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1426 B.Reg = SwitchReg;
1427
1428 // Set NextBlock to be the MBB immediately after the current one, if any.
1429 // This is used to avoid emitting unnecessary branches to the next block.
1430 MachineBasicBlock *NextBlock = 0;
1431 MachineFunction::iterator BBI = CurMBB;
1432 if (++BBI != CurMBB->getParent()->end())
1433 NextBlock = BBI;
1434
1435 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1436
1437 CurMBB->addSuccessor(B.Default);
1438 CurMBB->addSuccessor(MBB);
1439
1440 SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001441 DAG.getBasicBlock(B.Default));
Anton Korobeynikov23218582008-12-23 22:25:27 +00001442
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001443 if (MBB == NextBlock)
1444 DAG.setRoot(BrRange);
1445 else
1446 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1447 DAG.getBasicBlock(MBB)));
1448
1449 return;
1450}
1451
1452/// visitBitTestCase - this function produces one "bit test"
1453void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1454 unsigned Reg,
1455 BitTestCase &B) {
1456 // Emit bit tests and jumps
Anton Korobeynikov23218582008-12-23 22:25:27 +00001457 SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001458 TLI.getPointerTy());
Anton Korobeynikov23218582008-12-23 22:25:27 +00001459
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001460 SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001461 DAG.getConstant(B.Mask, TLI.getPointerTy()));
Duncan Sands5480c042009-01-01 15:52:00 +00001462 SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp.getValueType()),
1463 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001464 ISD::SETNE);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001465
1466 CurMBB->addSuccessor(B.TargetBB);
1467 CurMBB->addSuccessor(NextMBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001468
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001469 SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001470 AndCmp, DAG.getBasicBlock(B.TargetBB));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001471
1472 // Set NextBlock to be the MBB immediately after the current one, if any.
1473 // This is used to avoid emitting unnecessary branches to the next block.
1474 MachineBasicBlock *NextBlock = 0;
1475 MachineFunction::iterator BBI = CurMBB;
1476 if (++BBI != CurMBB->getParent()->end())
1477 NextBlock = BBI;
1478
1479 if (NextMBB == NextBlock)
1480 DAG.setRoot(BrAnd);
1481 else
1482 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1483 DAG.getBasicBlock(NextMBB)));
1484
1485 return;
1486}
1487
1488void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1489 // Retrieve successors.
1490 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1491 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1492
Gabor Greifb67e6b32009-01-15 11:10:44 +00001493 const Value *Callee(I.getCalledValue());
1494 if (isa<InlineAsm>(Callee))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001495 visitInlineAsm(&I);
1496 else
Gabor Greifb67e6b32009-01-15 11:10:44 +00001497 LowerCallTo(&I, getValue(Callee), false, LandingPad);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001498
1499 // If the value of the invoke is used outside of its defining block, make it
1500 // available as a virtual register.
1501 if (!I.use_empty()) {
1502 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1503 if (VMI != FuncInfo.ValueMap.end())
1504 CopyValueToVirtualRegister(&I, VMI->second);
1505 }
1506
1507 // Update successor info
1508 CurMBB->addSuccessor(Return);
1509 CurMBB->addSuccessor(LandingPad);
1510
1511 // Drop into normal successor.
1512 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1513 DAG.getBasicBlock(Return)));
1514}
1515
1516void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1517}
1518
1519/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1520/// small case ranges).
1521bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1522 CaseRecVector& WorkList,
1523 Value* SV,
1524 MachineBasicBlock* Default) {
1525 Case& BackCase = *(CR.Range.second-1);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001526
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001527 // Size is the number of Cases represented by this range.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001528 size_t Size = CR.Range.second - CR.Range.first;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001529 if (Size > 3)
Anton Korobeynikov23218582008-12-23 22:25:27 +00001530 return false;
1531
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001532 // Get the MachineFunction which holds the current MBB. This is used when
1533 // inserting any additional MBBs necessary to represent the switch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001534 MachineFunction *CurMF = CurMBB->getParent();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001535
1536 // Figure out which block is immediately after the current one.
1537 MachineBasicBlock *NextBlock = 0;
1538 MachineFunction::iterator BBI = CR.CaseBB;
1539
1540 if (++BBI != CurMBB->getParent()->end())
1541 NextBlock = BBI;
1542
1543 // TODO: If any two of the cases has the same destination, and if one value
1544 // is the same as the other, but has one bit unset that the other has set,
1545 // use bit manipulation to do two compares at once. For example:
1546 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
Anton Korobeynikov23218582008-12-23 22:25:27 +00001547
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001548 // Rearrange the case blocks so that the last one falls through if possible.
1549 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1550 // The last case block won't fall through into 'NextBlock' if we emit the
1551 // branches in this order. See if rearranging a case value would help.
1552 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1553 if (I->BB == NextBlock) {
1554 std::swap(*I, BackCase);
1555 break;
1556 }
1557 }
1558 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001559
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001560 // Create a CaseBlock record representing a conditional branch to
1561 // the Case's target mbb if the value being switched on SV is equal
1562 // to C.
1563 MachineBasicBlock *CurBlock = CR.CaseBB;
1564 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1565 MachineBasicBlock *FallThrough;
1566 if (I != E-1) {
1567 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1568 CurMF->insert(BBI, FallThrough);
1569 } else {
1570 // If the last case doesn't match, go to the default block.
1571 FallThrough = Default;
1572 }
1573
1574 Value *RHS, *LHS, *MHS;
1575 ISD::CondCode CC;
1576 if (I->High == I->Low) {
1577 // This is just small small case range :) containing exactly 1 case
1578 CC = ISD::SETEQ;
1579 LHS = SV; RHS = I->High; MHS = NULL;
1580 } else {
1581 CC = ISD::SETLE;
1582 LHS = I->Low; MHS = SV; RHS = I->High;
1583 }
1584 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001585
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001586 // If emitting the first comparison, just call visitSwitchCase to emit the
1587 // code into the current block. Otherwise, push the CaseBlock onto the
1588 // vector to be later processed by SDISel, and insert the node's MBB
1589 // before the next MBB.
1590 if (CurBlock == CurMBB)
1591 visitSwitchCase(CB);
1592 else
1593 SwitchCases.push_back(CB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001594
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001595 CurBlock = FallThrough;
1596 }
1597
1598 return true;
1599}
1600
1601static inline bool areJTsAllowed(const TargetLowering &TLI) {
1602 return !DisableJumpTables &&
1603 (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1604 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1605}
Anton Korobeynikov23218582008-12-23 22:25:27 +00001606
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001607static APInt ComputeRange(const APInt &First, const APInt &Last) {
1608 APInt LastExt(Last), FirstExt(First);
1609 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1610 LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1611 return (LastExt - FirstExt + 1ULL);
1612}
1613
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001614/// handleJTSwitchCase - Emit jumptable for current switch case range
1615bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1616 CaseRecVector& WorkList,
1617 Value* SV,
1618 MachineBasicBlock* Default) {
1619 Case& FrontCase = *CR.Range.first;
1620 Case& BackCase = *(CR.Range.second-1);
1621
Anton Korobeynikov23218582008-12-23 22:25:27 +00001622 const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue();
1623 const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001624
Anton Korobeynikov23218582008-12-23 22:25:27 +00001625 size_t TSize = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001626 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1627 I!=E; ++I)
1628 TSize += I->size();
1629
1630 if (!areJTsAllowed(TLI) || TSize <= 3)
1631 return false;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001632
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001633 APInt Range = ComputeRange(First, Last);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001634 double Density = (double)TSize / Range.roundToDouble();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001635 if (Density < 0.4)
1636 return false;
1637
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001638 DEBUG(errs() << "Lowering jump table\n"
1639 << "First entry: " << First << ". Last entry: " << Last << '\n'
1640 << "Range: " << Range
1641 << "Size: " << TSize << ". Density: " << Density << "\n\n");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001642
1643 // Get the MachineFunction which holds the current MBB. This is used when
1644 // inserting any additional MBBs necessary to represent the switch.
1645 MachineFunction *CurMF = CurMBB->getParent();
1646
1647 // Figure out which block is immediately after the current one.
1648 MachineBasicBlock *NextBlock = 0;
1649 MachineFunction::iterator BBI = CR.CaseBB;
1650
1651 if (++BBI != CurMBB->getParent()->end())
1652 NextBlock = BBI;
1653
1654 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1655
1656 // Create a new basic block to hold the code for loading the address
1657 // of the jump table, and jumping to it. Update successor information;
1658 // we will either branch to the default case for the switch, or the jump
1659 // table.
1660 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1661 CurMF->insert(BBI, JumpTableBB);
1662 CR.CaseBB->addSuccessor(Default);
1663 CR.CaseBB->addSuccessor(JumpTableBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001664
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001665 // Build a vector of destination BBs, corresponding to each target
1666 // of the jump table. If the value of the jump table slot corresponds to
1667 // a case statement, push the case's BB onto the vector, otherwise, push
1668 // the default BB.
1669 std::vector<MachineBasicBlock*> DestBBs;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001670 APInt TEI = First;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001671 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001672 const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
1673 const APInt& High = cast<ConstantInt>(I->High)->getValue();
1674
1675 if (Low.sle(TEI) && TEI.sle(High)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001676 DestBBs.push_back(I->BB);
1677 if (TEI==High)
1678 ++I;
1679 } else {
1680 DestBBs.push_back(Default);
1681 }
1682 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001683
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001684 // Update successor info. Add one edge to each unique successor.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001685 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1686 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001687 E = DestBBs.end(); I != E; ++I) {
1688 if (!SuccsHandled[(*I)->getNumber()]) {
1689 SuccsHandled[(*I)->getNumber()] = true;
1690 JumpTableBB->addSuccessor(*I);
1691 }
1692 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001693
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001694 // Create a jump table index for this jump table, or return an existing
1695 // one.
1696 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001697
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001698 // Set the jump table information so that we can codegen it as a second
1699 // MachineBasicBlock
1700 JumpTable JT(-1U, JTI, JumpTableBB, Default);
1701 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1702 if (CR.CaseBB == CurMBB)
1703 visitJumpTableHeader(JT, JTH);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001704
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001705 JTCases.push_back(JumpTableBlock(JTH, JT));
1706
1707 return true;
1708}
1709
1710/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1711/// 2 subtrees.
1712bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1713 CaseRecVector& WorkList,
1714 Value* SV,
1715 MachineBasicBlock* Default) {
1716 // Get the MachineFunction which holds the current MBB. This is used when
1717 // inserting any additional MBBs necessary to represent the switch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001718 MachineFunction *CurMF = CurMBB->getParent();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001719
1720 // Figure out which block is immediately after the current one.
1721 MachineBasicBlock *NextBlock = 0;
1722 MachineFunction::iterator BBI = CR.CaseBB;
1723
1724 if (++BBI != CurMBB->getParent()->end())
1725 NextBlock = BBI;
1726
1727 Case& FrontCase = *CR.Range.first;
1728 Case& BackCase = *(CR.Range.second-1);
1729 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1730
1731 // Size is the number of Cases represented by this range.
1732 unsigned Size = CR.Range.second - CR.Range.first;
1733
Anton Korobeynikov23218582008-12-23 22:25:27 +00001734 const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue();
1735 const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001736 double FMetric = 0;
1737 CaseItr Pivot = CR.Range.first + Size/2;
1738
1739 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1740 // (heuristically) allow us to emit JumpTable's later.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001741 size_t TSize = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001742 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1743 I!=E; ++I)
1744 TSize += I->size();
1745
Anton Korobeynikov23218582008-12-23 22:25:27 +00001746 size_t LSize = FrontCase.size();
1747 size_t RSize = TSize-LSize;
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001748 DEBUG(errs() << "Selecting best pivot: \n"
1749 << "First: " << First << ", Last: " << Last <<'\n'
1750 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001751 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1752 J!=E; ++I, ++J) {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001753 const APInt& LEnd = cast<ConstantInt>(I->High)->getValue();
1754 const APInt& RBegin = cast<ConstantInt>(J->Low)->getValue();
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001755 APInt Range = ComputeRange(LEnd, RBegin);
1756 assert((Range - 2ULL).isNonNegative() &&
1757 "Invalid case distance");
Anton Korobeynikov23218582008-12-23 22:25:27 +00001758 double LDensity = (double)LSize / (LEnd - First + 1ULL).roundToDouble();
1759 double RDensity = (double)RSize / (Last - RBegin + 1ULL).roundToDouble();
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001760 double Metric = Range.logBase2()*(LDensity+RDensity);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001761 // Should always split in some non-trivial place
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001762 DEBUG(errs() <<"=>Step\n"
1763 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1764 << "LDensity: " << LDensity
1765 << ", RDensity: " << RDensity << '\n'
1766 << "Metric: " << Metric << '\n');
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001767 if (FMetric < Metric) {
1768 Pivot = J;
1769 FMetric = Metric;
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001770 DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001771 }
1772
1773 LSize += J->size();
1774 RSize -= J->size();
1775 }
1776 if (areJTsAllowed(TLI)) {
1777 // If our case is dense we *really* should handle it earlier!
1778 assert((FMetric > 0) && "Should handle dense range earlier!");
1779 } else {
1780 Pivot = CR.Range.first + Size/2;
1781 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001782
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001783 CaseRange LHSR(CR.Range.first, Pivot);
1784 CaseRange RHSR(Pivot, CR.Range.second);
1785 Constant *C = Pivot->Low;
1786 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001787
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001788 // We know that we branch to the LHS if the Value being switched on is
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001789 // less than the Pivot value, C. We use this to optimize our binary
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001790 // tree a bit, by recognizing that if SV is greater than or equal to the
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001791 // LHS's Case Value, and that Case Value is exactly one less than the
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001792 // Pivot's Value, then we can branch directly to the LHS's Target,
1793 // rather than creating a leaf node for it.
1794 if ((LHSR.second - LHSR.first) == 1 &&
1795 LHSR.first->High == CR.GE &&
Anton Korobeynikov23218582008-12-23 22:25:27 +00001796 cast<ConstantInt>(C)->getValue() ==
1797 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001798 TrueBB = LHSR.first->BB;
1799 } else {
1800 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1801 CurMF->insert(BBI, TrueBB);
1802 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1803 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001804
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001805 // Similar to the optimization above, if the Value being switched on is
1806 // known to be less than the Constant CR.LT, and the current Case Value
1807 // is CR.LT - 1, then we can branch directly to the target block for
1808 // the current Case Value, rather than emitting a RHS leaf node for it.
1809 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
Anton Korobeynikov23218582008-12-23 22:25:27 +00001810 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1811 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001812 FalseBB = RHSR.first->BB;
1813 } else {
1814 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1815 CurMF->insert(BBI, FalseBB);
1816 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1817 }
1818
1819 // Create a CaseBlock record representing a conditional branch to
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00001820 // the LHS node if the value being switched on SV is less than C.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001821 // Otherwise, branch to LHS.
1822 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1823
1824 if (CR.CaseBB == CurMBB)
1825 visitSwitchCase(CB);
1826 else
1827 SwitchCases.push_back(CB);
1828
1829 return true;
1830}
1831
1832/// handleBitTestsSwitchCase - if current case range has few destination and
1833/// range span less, than machine word bitwidth, encode case range into series
1834/// of masks and emit bit tests with these masks.
1835bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1836 CaseRecVector& WorkList,
1837 Value* SV,
1838 MachineBasicBlock* Default){
1839 unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
1840
1841 Case& FrontCase = *CR.Range.first;
1842 Case& BackCase = *(CR.Range.second-1);
1843
1844 // Get the MachineFunction which holds the current MBB. This is used when
1845 // inserting any additional MBBs necessary to represent the switch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001846 MachineFunction *CurMF = CurMBB->getParent();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001847
Anton Korobeynikov23218582008-12-23 22:25:27 +00001848 size_t numCmps = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001849 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1850 I!=E; ++I) {
1851 // Single case counts one, case range - two.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001852 numCmps += (I->Low == I->High ? 1 : 2);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001853 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001854
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001855 // Count unique destinations
1856 SmallSet<MachineBasicBlock*, 4> Dests;
1857 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1858 Dests.insert(I->BB);
1859 if (Dests.size() > 3)
1860 // Don't bother the code below, if there are too much unique destinations
1861 return false;
1862 }
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001863 DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
1864 << "Total number of comparisons: " << numCmps << '\n');
Anton Korobeynikov23218582008-12-23 22:25:27 +00001865
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001866 // Compute span of values.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001867 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1868 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001869 APInt cmpRange = maxValue - minValue;
1870
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001871 DEBUG(errs() << "Compare range: " << cmpRange << '\n'
1872 << "Low bound: " << minValue << '\n'
1873 << "High bound: " << maxValue << '\n');
Anton Korobeynikov23218582008-12-23 22:25:27 +00001874
1875 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001876 (!(Dests.size() == 1 && numCmps >= 3) &&
1877 !(Dests.size() == 2 && numCmps >= 5) &&
1878 !(Dests.size() >= 3 && numCmps >= 6)))
1879 return false;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001880
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001881 DEBUG(errs() << "Emitting bit tests\n");
Anton Korobeynikov23218582008-12-23 22:25:27 +00001882 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1883
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001884 // Optimize the case where all the case values fit in a
1885 // word without having to subtract minValue. In this case,
1886 // we can optimize away the subtraction.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001887 if (minValue.isNonNegative() &&
1888 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1889 cmpRange = maxValue;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001890 } else {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001891 lowBound = minValue;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001892 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001893
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001894 CaseBitsVector CasesBits;
1895 unsigned i, count = 0;
1896
1897 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1898 MachineBasicBlock* Dest = I->BB;
1899 for (i = 0; i < count; ++i)
1900 if (Dest == CasesBits[i].BB)
1901 break;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001902
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001903 if (i == count) {
1904 assert((count < 3) && "Too much destinations to test!");
1905 CasesBits.push_back(CaseBits(0, Dest, 0));
1906 count++;
1907 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001908
1909 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1910 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1911
1912 uint64_t lo = (lowValue - lowBound).getZExtValue();
1913 uint64_t hi = (highValue - lowBound).getZExtValue();
1914
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001915 for (uint64_t j = lo; j <= hi; j++) {
1916 CasesBits[i].Mask |= 1ULL << j;
1917 CasesBits[i].Bits++;
1918 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001919
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001920 }
1921 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
Anton Korobeynikov23218582008-12-23 22:25:27 +00001922
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001923 BitTestInfo BTC;
1924
1925 // Figure out which block is immediately after the current one.
1926 MachineFunction::iterator BBI = CR.CaseBB;
1927 ++BBI;
1928
1929 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1930
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001931 DEBUG(errs() << "Cases:\n");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001932 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00001933 DEBUG(errs() << "Mask: " << CasesBits[i].Mask
1934 << ", Bits: " << CasesBits[i].Bits
1935 << ", BB: " << CasesBits[i].BB << '\n');
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001936
1937 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1938 CurMF->insert(BBI, CaseBB);
1939 BTC.push_back(BitTestCase(CasesBits[i].Mask,
1940 CaseBB,
1941 CasesBits[i].BB));
1942 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001943
1944 BitTestBlock BTB(lowBound, cmpRange, SV,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001945 -1U, (CR.CaseBB == CurMBB),
1946 CR.CaseBB, Default, BTC);
1947
1948 if (CR.CaseBB == CurMBB)
1949 visitBitTestHeader(BTB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001950
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001951 BitTestCases.push_back(BTB);
1952
1953 return true;
1954}
1955
1956
1957/// Clusterify - Transform simple list of Cases into list of CaseRange's
Anton Korobeynikov23218582008-12-23 22:25:27 +00001958size_t SelectionDAGLowering::Clusterify(CaseVector& Cases,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001959 const SwitchInst& SI) {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001960 size_t numCmps = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001961
1962 // Start with "simple" cases
Anton Korobeynikov23218582008-12-23 22:25:27 +00001963 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001964 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1965 Cases.push_back(Case(SI.getSuccessorValue(i),
1966 SI.getSuccessorValue(i),
1967 SMBB));
1968 }
1969 std::sort(Cases.begin(), Cases.end(), CaseCmp());
1970
1971 // Merge case into clusters
Anton Korobeynikov23218582008-12-23 22:25:27 +00001972 if (Cases.size() >= 2)
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001973 // Must recompute end() each iteration because it may be
1974 // invalidated by erase if we hold on to it
Anton Korobeynikov23218582008-12-23 22:25:27 +00001975 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1976 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1977 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001978 MachineBasicBlock* nextBB = J->BB;
1979 MachineBasicBlock* currentBB = I->BB;
1980
1981 // If the two neighboring cases go to the same destination, merge them
1982 // into a single case.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001983 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001984 I->High = J->High;
1985 J = Cases.erase(J);
1986 } else {
1987 I = J++;
1988 }
1989 }
1990
1991 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1992 if (I->Low != I->High)
1993 // A range counts double, since it requires two compares.
1994 ++numCmps;
1995 }
1996
1997 return numCmps;
1998}
1999
Anton Korobeynikov23218582008-12-23 22:25:27 +00002000void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002001 // Figure out which block is immediately after the current one.
2002 MachineBasicBlock *NextBlock = 0;
2003 MachineFunction::iterator BBI = CurMBB;
2004
2005 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2006
2007 // If there is only the default destination, branch to it if it is not the
2008 // next basic block. Otherwise, just fall through.
2009 if (SI.getNumOperands() == 2) {
2010 // Update machine-CFG edges.
2011
2012 // If this is not a fall-through branch, emit the branch.
2013 CurMBB->addSuccessor(Default);
2014 if (Default != NextBlock)
2015 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2016 DAG.getBasicBlock(Default)));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002017 return;
2018 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00002019
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002020 // If there are any non-default case statements, create a vector of Cases
2021 // representing each one, and sort the vector so that we can efficiently
2022 // create a binary search tree from them.
2023 CaseVector Cases;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002024 size_t numCmps = Clusterify(Cases, SI);
Anton Korobeynikov56d245b2008-12-23 22:26:18 +00002025 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
2026 << ". Total compares: " << numCmps << '\n');
Devang Patel8a84e442009-01-05 17:31:22 +00002027 numCmps = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002028
2029 // Get the Value to be switched on and default basic blocks, which will be
2030 // inserted into CaseBlock records, representing basic blocks in the binary
2031 // search tree.
2032 Value *SV = SI.getOperand(0);
2033
2034 // Push the initial CaseRec onto the worklist
2035 CaseRecVector WorkList;
2036 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2037
2038 while (!WorkList.empty()) {
2039 // Grab a record representing a case range to process off the worklist
2040 CaseRec CR = WorkList.back();
2041 WorkList.pop_back();
2042
2043 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2044 continue;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002045
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002046 // If the range has few cases (two or less) emit a series of specific
2047 // tests.
2048 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2049 continue;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002050
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00002051 // If the switch has more than 5 blocks, and at least 40% dense, and the
2052 // target supports indirect branches, then emit a jump table rather than
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002053 // lowering the switch to a binary tree of conditional branches.
2054 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2055 continue;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002056
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002057 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2058 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2059 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2060 }
2061}
2062
2063
2064void SelectionDAGLowering::visitSub(User &I) {
2065 // -0.0 - X --> fneg
2066 const Type *Ty = I.getType();
2067 if (isa<VectorType>(Ty)) {
2068 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2069 const VectorType *DestTy = cast<VectorType>(I.getType());
2070 const Type *ElTy = DestTy->getElementType();
2071 if (ElTy->isFloatingPoint()) {
2072 unsigned VL = DestTy->getNumElements();
2073 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2074 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2075 if (CV == CNZ) {
2076 SDValue Op2 = getValue(I.getOperand(1));
2077 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2078 return;
2079 }
2080 }
2081 }
2082 }
2083 if (Ty->isFloatingPoint()) {
2084 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2085 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2086 SDValue Op2 = getValue(I.getOperand(1));
2087 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2088 return;
2089 }
2090 }
2091
2092 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2093}
2094
2095void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2096 SDValue Op1 = getValue(I.getOperand(0));
2097 SDValue Op2 = getValue(I.getOperand(1));
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002098
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002099 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2100}
2101
2102void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2103 SDValue Op1 = getValue(I.getOperand(0));
2104 SDValue Op2 = getValue(I.getOperand(1));
2105 if (!isa<VectorType>(I.getType())) {
2106 if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2107 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2108 else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2109 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2110 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002111
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002112 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2113}
2114
2115void SelectionDAGLowering::visitICmp(User &I) {
2116 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2117 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2118 predicate = IC->getPredicate();
2119 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2120 predicate = ICmpInst::Predicate(IC->getPredicate());
2121 SDValue Op1 = getValue(I.getOperand(0));
2122 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002123 ISD::CondCode Opcode = getICmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002124 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2125}
2126
2127void SelectionDAGLowering::visitFCmp(User &I) {
2128 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2129 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2130 predicate = FC->getPredicate();
2131 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2132 predicate = FCmpInst::Predicate(FC->getPredicate());
2133 SDValue Op1 = getValue(I.getOperand(0));
2134 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002135 ISD::CondCode Condition = getFCmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002136 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2137}
2138
2139void SelectionDAGLowering::visitVICmp(User &I) {
2140 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2141 if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2142 predicate = IC->getPredicate();
2143 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2144 predicate = ICmpInst::Predicate(IC->getPredicate());
2145 SDValue Op1 = getValue(I.getOperand(0));
2146 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002147 ISD::CondCode Opcode = getICmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002148 setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2149}
2150
2151void SelectionDAGLowering::visitVFCmp(User &I) {
2152 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2153 if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2154 predicate = FC->getPredicate();
2155 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2156 predicate = FCmpInst::Predicate(FC->getPredicate());
2157 SDValue Op1 = getValue(I.getOperand(0));
2158 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002159 ISD::CondCode Condition = getFCmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002160 MVT DestVT = TLI.getValueType(I.getType());
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002161
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002162 setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2163}
2164
2165void SelectionDAGLowering::visitSelect(User &I) {
Dan Gohman7ea1ca62008-10-21 20:00:42 +00002166 SmallVector<MVT, 4> ValueVTs;
2167 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2168 unsigned NumValues = ValueVTs.size();
2169 if (NumValues != 0) {
2170 SmallVector<SDValue, 4> Values(NumValues);
2171 SDValue Cond = getValue(I.getOperand(0));
2172 SDValue TrueVal = getValue(I.getOperand(1));
2173 SDValue FalseVal = getValue(I.getOperand(2));
2174
2175 for (unsigned i = 0; i != NumValues; ++i)
2176 Values[i] = DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2177 SDValue(TrueVal.getNode(), TrueVal.getResNo() + i),
2178 SDValue(FalseVal.getNode(), FalseVal.getResNo() + i));
2179
Duncan Sandsaaffa052008-12-01 11:41:29 +00002180 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2181 DAG.getVTList(&ValueVTs[0], NumValues),
2182 &Values[0], NumValues));
Dan Gohman7ea1ca62008-10-21 20:00:42 +00002183 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002184}
2185
2186
2187void SelectionDAGLowering::visitTrunc(User &I) {
2188 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2189 SDValue N = getValue(I.getOperand(0));
2190 MVT DestVT = TLI.getValueType(I.getType());
2191 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2192}
2193
2194void SelectionDAGLowering::visitZExt(User &I) {
2195 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2196 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2197 SDValue N = getValue(I.getOperand(0));
2198 MVT DestVT = TLI.getValueType(I.getType());
2199 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2200}
2201
2202void SelectionDAGLowering::visitSExt(User &I) {
2203 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2204 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2205 SDValue N = getValue(I.getOperand(0));
2206 MVT DestVT = TLI.getValueType(I.getType());
2207 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2208}
2209
2210void SelectionDAGLowering::visitFPTrunc(User &I) {
2211 // FPTrunc is never a no-op cast, no need to check
2212 SDValue N = getValue(I.getOperand(0));
2213 MVT DestVT = TLI.getValueType(I.getType());
2214 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2215}
2216
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002217void SelectionDAGLowering::visitFPExt(User &I){
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002218 // FPTrunc is never a no-op cast, no need to check
2219 SDValue N = getValue(I.getOperand(0));
2220 MVT DestVT = TLI.getValueType(I.getType());
2221 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2222}
2223
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002224void SelectionDAGLowering::visitFPToUI(User &I) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002225 // FPToUI is never a no-op cast, no need to check
2226 SDValue N = getValue(I.getOperand(0));
2227 MVT DestVT = TLI.getValueType(I.getType());
2228 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2229}
2230
2231void SelectionDAGLowering::visitFPToSI(User &I) {
2232 // FPToSI is never a no-op cast, no need to check
2233 SDValue N = getValue(I.getOperand(0));
2234 MVT DestVT = TLI.getValueType(I.getType());
2235 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2236}
2237
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002238void SelectionDAGLowering::visitUIToFP(User &I) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002239 // UIToFP is never a no-op cast, no need to check
2240 SDValue N = getValue(I.getOperand(0));
2241 MVT DestVT = TLI.getValueType(I.getType());
2242 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2243}
2244
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002245void SelectionDAGLowering::visitSIToFP(User &I){
Bill Wendling181b6272008-10-19 20:34:04 +00002246 // SIToFP is never a no-op cast, no need to check
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002247 SDValue N = getValue(I.getOperand(0));
2248 MVT DestVT = TLI.getValueType(I.getType());
2249 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2250}
2251
2252void SelectionDAGLowering::visitPtrToInt(User &I) {
2253 // What to do depends on the size of the integer and the size of the pointer.
2254 // We can either truncate, zero extend, or no-op, accordingly.
2255 SDValue N = getValue(I.getOperand(0));
2256 MVT SrcVT = N.getValueType();
2257 MVT DestVT = TLI.getValueType(I.getType());
2258 SDValue Result;
2259 if (DestVT.bitsLT(SrcVT))
2260 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002261 else
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002262 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2263 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2264 setValue(&I, Result);
2265}
2266
2267void SelectionDAGLowering::visitIntToPtr(User &I) {
2268 // What to do depends on the size of the integer and the size of the pointer.
2269 // We can either truncate, zero extend, or no-op, accordingly.
2270 SDValue N = getValue(I.getOperand(0));
2271 MVT SrcVT = N.getValueType();
2272 MVT DestVT = TLI.getValueType(I.getType());
2273 if (DestVT.bitsLT(SrcVT))
2274 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002275 else
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002276 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2277 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2278}
2279
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002280void SelectionDAGLowering::visitBitCast(User &I) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002281 SDValue N = getValue(I.getOperand(0));
2282 MVT DestVT = TLI.getValueType(I.getType());
2283
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002284 // BitCast assures us that source and destination are the same size so this
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002285 // is either a BIT_CONVERT or a no-op.
2286 if (DestVT != N.getValueType())
2287 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2288 else
2289 setValue(&I, N); // noop cast.
2290}
2291
2292void SelectionDAGLowering::visitInsertElement(User &I) {
2293 SDValue InVec = getValue(I.getOperand(0));
2294 SDValue InVal = getValue(I.getOperand(1));
2295 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2296 getValue(I.getOperand(2)));
2297
2298 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2299 TLI.getValueType(I.getType()),
2300 InVec, InVal, InIdx));
2301}
2302
2303void SelectionDAGLowering::visitExtractElement(User &I) {
2304 SDValue InVec = getValue(I.getOperand(0));
2305 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2306 getValue(I.getOperand(1)));
2307 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2308 TLI.getValueType(I.getType()), InVec, InIdx));
2309}
2310
Mon P Wangaeb06d22008-11-10 04:46:22 +00002311
2312// Utility for visitShuffleVector - Returns true if the mask is mask starting
2313// from SIndx and increasing to the element length (undefs are allowed).
2314static bool SequentialMask(SDValue Mask, unsigned SIndx) {
Mon P Wangc7849c22008-11-16 05:06:27 +00002315 unsigned MaskNumElts = Mask.getNumOperands();
2316 for (unsigned i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002317 if (Mask.getOperand(i).getOpcode() != ISD::UNDEF) {
2318 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2319 if (Idx != i + SIndx)
2320 return false;
2321 }
2322 }
2323 return true;
2324}
2325
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002326void SelectionDAGLowering::visitShuffleVector(User &I) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002327 SDValue Src1 = getValue(I.getOperand(0));
2328 SDValue Src2 = getValue(I.getOperand(1));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002329 SDValue Mask = getValue(I.getOperand(2));
2330
Mon P Wangaeb06d22008-11-10 04:46:22 +00002331 MVT VT = TLI.getValueType(I.getType());
Mon P Wang230e4fa2008-11-21 04:25:21 +00002332 MVT SrcVT = Src1.getValueType();
Mon P Wangc7849c22008-11-16 05:06:27 +00002333 int MaskNumElts = Mask.getNumOperands();
2334 int SrcNumElts = SrcVT.getVectorNumElements();
Mon P Wangaeb06d22008-11-10 04:46:22 +00002335
Mon P Wangc7849c22008-11-16 05:06:27 +00002336 if (SrcNumElts == MaskNumElts) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002337 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002338 return;
2339 }
2340
2341 // Normalize the shuffle vector since mask and vector length don't match.
Mon P Wangc7849c22008-11-16 05:06:27 +00002342 MVT MaskEltVT = Mask.getValueType().getVectorElementType();
2343
2344 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2345 // Mask is longer than the source vectors and is a multiple of the source
2346 // vectors. We can use concatenate vector to make the mask and vectors
Mon P Wang230e4fa2008-11-21 04:25:21 +00002347 // lengths match.
Mon P Wangc7849c22008-11-16 05:06:27 +00002348 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2349 // The shuffle is concatenating two vectors together.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002350 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, VT, Src1, Src2));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002351 return;
2352 }
2353
Mon P Wangc7849c22008-11-16 05:06:27 +00002354 // Pad both vectors with undefs to make them the same length as the mask.
2355 unsigned NumConcat = MaskNumElts / SrcNumElts;
2356 SDValue UndefVal = DAG.getNode(ISD::UNDEF, SrcVT);
Mon P Wangaeb06d22008-11-10 04:46:22 +00002357
Mon P Wang230e4fa2008-11-21 04:25:21 +00002358 SDValue* MOps1 = new SDValue[NumConcat];
2359 SDValue* MOps2 = new SDValue[NumConcat];
2360 MOps1[0] = Src1;
2361 MOps2[0] = Src2;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002362 for (unsigned i = 1; i != NumConcat; ++i) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002363 MOps1[i] = UndefVal;
2364 MOps2[i] = UndefVal;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002365 }
Mon P Wang230e4fa2008-11-21 04:25:21 +00002366 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, VT, MOps1, NumConcat);
2367 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, VT, MOps2, NumConcat);
2368
2369 delete [] MOps1;
2370 delete [] MOps2;
2371
Mon P Wangaeb06d22008-11-10 04:46:22 +00002372 // Readjust mask for new input vector length.
2373 SmallVector<SDValue, 8> MappedOps;
Mon P Wangc7849c22008-11-16 05:06:27 +00002374 for (int i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002375 if (Mask.getOperand(i).getOpcode() == ISD::UNDEF) {
2376 MappedOps.push_back(Mask.getOperand(i));
2377 } else {
Mon P Wangc7849c22008-11-16 05:06:27 +00002378 int Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2379 if (Idx < SrcNumElts)
2380 MappedOps.push_back(DAG.getConstant(Idx, MaskEltVT));
2381 else
2382 MappedOps.push_back(DAG.getConstant(Idx + MaskNumElts - SrcNumElts,
2383 MaskEltVT));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002384 }
2385 }
2386 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2387 &MappedOps[0], MappedOps.size());
2388
Mon P Wang230e4fa2008-11-21 04:25:21 +00002389 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002390 return;
2391 }
2392
Mon P Wangc7849c22008-11-16 05:06:27 +00002393 if (SrcNumElts > MaskNumElts) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002394 // Resulting vector is shorter than the incoming vector.
Mon P Wangc7849c22008-11-16 05:06:27 +00002395 if (SrcNumElts == MaskNumElts && SequentialMask(Mask,0)) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002396 // Shuffle extracts 1st vector.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002397 setValue(&I, Src1);
Mon P Wangaeb06d22008-11-10 04:46:22 +00002398 return;
2399 }
2400
Mon P Wangc7849c22008-11-16 05:06:27 +00002401 if (SrcNumElts == MaskNumElts && SequentialMask(Mask,MaskNumElts)) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002402 // Shuffle extracts 2nd vector.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002403 setValue(&I, Src2);
Mon P Wangaeb06d22008-11-10 04:46:22 +00002404 return;
2405 }
2406
Mon P Wangc7849c22008-11-16 05:06:27 +00002407 // Analyze the access pattern of the vector to see if we can extract
2408 // two subvectors and do the shuffle. The analysis is done by calculating
2409 // the range of elements the mask access on both vectors.
2410 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2411 int MaxRange[2] = {-1, -1};
2412
2413 for (int i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002414 SDValue Arg = Mask.getOperand(i);
2415 if (Arg.getOpcode() != ISD::UNDEF) {
2416 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Mon P Wangc7849c22008-11-16 05:06:27 +00002417 int Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2418 int Input = 0;
2419 if (Idx >= SrcNumElts) {
2420 Input = 1;
2421 Idx -= SrcNumElts;
2422 }
2423 if (Idx > MaxRange[Input])
2424 MaxRange[Input] = Idx;
2425 if (Idx < MinRange[Input])
2426 MinRange[Input] = Idx;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002427 }
2428 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00002429
Mon P Wangc7849c22008-11-16 05:06:27 +00002430 // Check if the access is smaller than the vector size and can we find
2431 // a reasonable extract index.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002432 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract.
Mon P Wangc7849c22008-11-16 05:06:27 +00002433 int StartIdx[2]; // StartIdx to extract from
2434 for (int Input=0; Input < 2; ++Input) {
2435 if (MinRange[Input] == SrcNumElts+1 && MaxRange[Input] == -1) {
2436 RangeUse[Input] = 0; // Unused
2437 StartIdx[Input] = 0;
2438 } else if (MaxRange[Input] - MinRange[Input] < MaskNumElts) {
2439 // Fits within range but we should see if we can find a good
Mon P Wang230e4fa2008-11-21 04:25:21 +00002440 // start index that is a multiple of the mask length.
Mon P Wangc7849c22008-11-16 05:06:27 +00002441 if (MaxRange[Input] < MaskNumElts) {
2442 RangeUse[Input] = 1; // Extract from beginning of the vector
2443 StartIdx[Input] = 0;
2444 } else {
2445 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
Mon P Wang6cce3da2008-11-23 04:35:05 +00002446 if (MaxRange[Input] - StartIdx[Input] < MaskNumElts &&
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002447 StartIdx[Input] + MaskNumElts < SrcNumElts)
Mon P Wangc7849c22008-11-16 05:06:27 +00002448 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
Mon P Wangc7849c22008-11-16 05:06:27 +00002449 }
Mon P Wang230e4fa2008-11-21 04:25:21 +00002450 }
Mon P Wangc7849c22008-11-16 05:06:27 +00002451 }
2452
2453 if (RangeUse[0] == 0 && RangeUse[0] == 0) {
2454 setValue(&I, DAG.getNode(ISD::UNDEF, VT)); // Vectors are not used.
2455 return;
2456 }
2457 else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2458 // Extract appropriate subvector and generate a vector shuffle
2459 for (int Input=0; Input < 2; ++Input) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002460 SDValue& Src = Input == 0 ? Src1 : Src2;
Mon P Wangc7849c22008-11-16 05:06:27 +00002461 if (RangeUse[Input] == 0) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002462 Src = DAG.getNode(ISD::UNDEF, VT);
Mon P Wangc7849c22008-11-16 05:06:27 +00002463 } else {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002464 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, VT, Src,
2465 DAG.getIntPtrConstant(StartIdx[Input]));
Mon P Wangc7849c22008-11-16 05:06:27 +00002466 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00002467 }
Mon P Wangc7849c22008-11-16 05:06:27 +00002468 // Calculate new mask.
2469 SmallVector<SDValue, 8> MappedOps;
2470 for (int i = 0; i != MaskNumElts; ++i) {
2471 SDValue Arg = Mask.getOperand(i);
2472 if (Arg.getOpcode() == ISD::UNDEF) {
2473 MappedOps.push_back(Arg);
2474 } else {
2475 int Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2476 if (Idx < SrcNumElts)
2477 MappedOps.push_back(DAG.getConstant(Idx - StartIdx[0], MaskEltVT));
2478 else {
2479 Idx = Idx - SrcNumElts - StartIdx[1] + MaskNumElts;
2480 MappedOps.push_back(DAG.getConstant(Idx, MaskEltVT));
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002481 }
Mon P Wangc7849c22008-11-16 05:06:27 +00002482 }
2483 }
2484 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2485 &MappedOps[0], MappedOps.size());
Mon P Wang230e4fa2008-11-21 04:25:21 +00002486 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask));
Mon P Wangc7849c22008-11-16 05:06:27 +00002487 return;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002488 }
2489 }
2490
Mon P Wangc7849c22008-11-16 05:06:27 +00002491 // We can't use either concat vectors or extract subvectors so fall back to
2492 // replacing the shuffle with extract and build vector.
2493 // to insert and build vector.
Mon P Wangaeb06d22008-11-10 04:46:22 +00002494 MVT EltVT = VT.getVectorElementType();
2495 MVT PtrVT = TLI.getPointerTy();
2496 SmallVector<SDValue,8> Ops;
Mon P Wangc7849c22008-11-16 05:06:27 +00002497 for (int i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002498 SDValue Arg = Mask.getOperand(i);
2499 if (Arg.getOpcode() == ISD::UNDEF) {
2500 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2501 } else {
2502 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Mon P Wangc7849c22008-11-16 05:06:27 +00002503 int Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2504 if (Idx < SrcNumElts)
Mon P Wang230e4fa2008-11-21 04:25:21 +00002505 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Src1,
Mon P Wangaeb06d22008-11-10 04:46:22 +00002506 DAG.getConstant(Idx, PtrVT)));
2507 else
Mon P Wang230e4fa2008-11-21 04:25:21 +00002508 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Src2,
Mon P Wangc7849c22008-11-16 05:06:27 +00002509 DAG.getConstant(Idx - SrcNumElts, PtrVT)));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002510 }
2511 }
2512 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002513}
2514
2515void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2516 const Value *Op0 = I.getOperand(0);
2517 const Value *Op1 = I.getOperand(1);
2518 const Type *AggTy = I.getType();
2519 const Type *ValTy = Op1->getType();
2520 bool IntoUndef = isa<UndefValue>(Op0);
2521 bool FromUndef = isa<UndefValue>(Op1);
2522
2523 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2524 I.idx_begin(), I.idx_end());
2525
2526 SmallVector<MVT, 4> AggValueVTs;
2527 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2528 SmallVector<MVT, 4> ValValueVTs;
2529 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2530
2531 unsigned NumAggValues = AggValueVTs.size();
2532 unsigned NumValValues = ValValueVTs.size();
2533 SmallVector<SDValue, 4> Values(NumAggValues);
2534
2535 SDValue Agg = getValue(Op0);
2536 SDValue Val = getValue(Op1);
2537 unsigned i = 0;
2538 // Copy the beginning value(s) from the original aggregate.
2539 for (; i != LinearIndex; ++i)
2540 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2541 SDValue(Agg.getNode(), Agg.getResNo() + i);
2542 // Copy values from the inserted value(s).
2543 for (; i != LinearIndex + NumValValues; ++i)
2544 Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2545 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2546 // Copy remaining value(s) from the original aggregate.
2547 for (; i != NumAggValues; ++i)
2548 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2549 SDValue(Agg.getNode(), Agg.getResNo() + i);
2550
Duncan Sandsaaffa052008-12-01 11:41:29 +00002551 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2552 DAG.getVTList(&AggValueVTs[0], NumAggValues),
2553 &Values[0], NumAggValues));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002554}
2555
2556void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2557 const Value *Op0 = I.getOperand(0);
2558 const Type *AggTy = Op0->getType();
2559 const Type *ValTy = I.getType();
2560 bool OutOfUndef = isa<UndefValue>(Op0);
2561
2562 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2563 I.idx_begin(), I.idx_end());
2564
2565 SmallVector<MVT, 4> ValValueVTs;
2566 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2567
2568 unsigned NumValValues = ValValueVTs.size();
2569 SmallVector<SDValue, 4> Values(NumValValues);
2570
2571 SDValue Agg = getValue(Op0);
2572 // Copy out the selected value(s).
2573 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2574 Values[i - LinearIndex] =
Bill Wendlingf0a2d0c2008-11-20 07:24:30 +00002575 OutOfUndef ?
2576 DAG.getNode(ISD::UNDEF,
2577 Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2578 SDValue(Agg.getNode(), Agg.getResNo() + i);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002579
Duncan Sandsaaffa052008-12-01 11:41:29 +00002580 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2581 DAG.getVTList(&ValValueVTs[0], NumValValues),
2582 &Values[0], NumValValues));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002583}
2584
2585
2586void SelectionDAGLowering::visitGetElementPtr(User &I) {
2587 SDValue N = getValue(I.getOperand(0));
2588 const Type *Ty = I.getOperand(0)->getType();
2589
2590 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2591 OI != E; ++OI) {
2592 Value *Idx = *OI;
2593 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2594 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2595 if (Field) {
2596 // N = N + Offset
2597 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2598 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2599 DAG.getIntPtrConstant(Offset));
2600 }
2601 Ty = StTy->getElementType(Field);
2602 } else {
2603 Ty = cast<SequentialType>(Ty)->getElementType();
2604
2605 // If this is a constant subscript, handle it quickly.
2606 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2607 if (CI->getZExtValue() == 0) continue;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002608 uint64_t Offs =
Duncan Sandsceb4d1a2009-01-12 20:38:59 +00002609 TD->getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002610 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2611 DAG.getIntPtrConstant(Offs));
2612 continue;
2613 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002614
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002615 // N = N + Idx * ElementSize;
Duncan Sandsceb4d1a2009-01-12 20:38:59 +00002616 uint64_t ElementSize = TD->getTypePaddedSize(Ty);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002617 SDValue IdxN = getValue(Idx);
2618
2619 // If the index is smaller or larger than intptr_t, truncate or extend
2620 // it.
2621 if (IdxN.getValueType().bitsLT(N.getValueType()))
2622 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2623 else if (IdxN.getValueType().bitsGT(N.getValueType()))
2624 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2625
2626 // If this is a multiply by a power of two, turn it into a shl
2627 // immediately. This is a very common case.
2628 if (ElementSize != 1) {
2629 if (isPowerOf2_64(ElementSize)) {
2630 unsigned Amt = Log2_64(ElementSize);
2631 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2632 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2633 } else {
2634 SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2635 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2636 }
2637 }
2638
2639 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2640 }
2641 }
2642 setValue(&I, N);
2643}
2644
2645void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2646 // If this is a fixed sized alloca in the entry block of the function,
2647 // allocate it statically on the stack.
2648 if (FuncInfo.StaticAllocaMap.count(&I))
2649 return; // getValue will auto-populate this.
2650
2651 const Type *Ty = I.getAllocatedType();
Duncan Sandsceb4d1a2009-01-12 20:38:59 +00002652 uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002653 unsigned Align =
2654 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2655 I.getAlignment());
2656
2657 SDValue AllocSize = getValue(I.getArraySize());
2658 MVT IntPtr = TLI.getPointerTy();
2659 if (IntPtr.bitsLT(AllocSize.getValueType()))
2660 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2661 else if (IntPtr.bitsGT(AllocSize.getValueType()))
2662 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2663
2664 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2665 DAG.getIntPtrConstant(TySize));
2666
2667 // Handle alignment. If the requested alignment is less than or equal to
2668 // the stack alignment, ignore it. If the size is greater than or equal to
2669 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2670 unsigned StackAlign =
2671 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2672 if (Align <= StackAlign)
2673 Align = 0;
2674
2675 // Round the size of the allocation up to the stack alignment size
2676 // by add SA-1 to the size.
2677 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2678 DAG.getIntPtrConstant(StackAlign-1));
2679 // Mask out the low bits for alignment purposes.
2680 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2681 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2682
2683 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2684 const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2685 MVT::Other);
2686 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2687 setValue(&I, DSA);
2688 DAG.setRoot(DSA.getValue(1));
2689
2690 // Inform the Frame Information that we have just allocated a variable-sized
2691 // object.
2692 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2693}
2694
2695void SelectionDAGLowering::visitLoad(LoadInst &I) {
2696 const Value *SV = I.getOperand(0);
2697 SDValue Ptr = getValue(SV);
2698
2699 const Type *Ty = I.getType();
2700 bool isVolatile = I.isVolatile();
2701 unsigned Alignment = I.getAlignment();
2702
2703 SmallVector<MVT, 4> ValueVTs;
2704 SmallVector<uint64_t, 4> Offsets;
2705 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2706 unsigned NumValues = ValueVTs.size();
2707 if (NumValues == 0)
2708 return;
2709
2710 SDValue Root;
2711 bool ConstantMemory = false;
2712 if (I.isVolatile())
2713 // Serialize volatile loads with other side effects.
2714 Root = getRoot();
2715 else if (AA->pointsToConstantMemory(SV)) {
2716 // Do not serialize (non-volatile) loads of constant memory with anything.
2717 Root = DAG.getEntryNode();
2718 ConstantMemory = true;
2719 } else {
2720 // Do not serialize non-volatile loads against each other.
2721 Root = DAG.getRoot();
2722 }
2723
2724 SmallVector<SDValue, 4> Values(NumValues);
2725 SmallVector<SDValue, 4> Chains(NumValues);
2726 MVT PtrVT = Ptr.getValueType();
2727 for (unsigned i = 0; i != NumValues; ++i) {
2728 SDValue L = DAG.getLoad(ValueVTs[i], Root,
2729 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2730 DAG.getConstant(Offsets[i], PtrVT)),
2731 SV, Offsets[i],
2732 isVolatile, Alignment);
2733 Values[i] = L;
2734 Chains[i] = L.getValue(1);
2735 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002736
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002737 if (!ConstantMemory) {
2738 SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2739 &Chains[0], NumValues);
2740 if (isVolatile)
2741 DAG.setRoot(Chain);
2742 else
2743 PendingLoads.push_back(Chain);
2744 }
2745
Duncan Sandsaaffa052008-12-01 11:41:29 +00002746 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2747 DAG.getVTList(&ValueVTs[0], NumValues),
2748 &Values[0], NumValues));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002749}
2750
2751
2752void SelectionDAGLowering::visitStore(StoreInst &I) {
2753 Value *SrcV = I.getOperand(0);
2754 Value *PtrV = I.getOperand(1);
2755
2756 SmallVector<MVT, 4> ValueVTs;
2757 SmallVector<uint64_t, 4> Offsets;
2758 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2759 unsigned NumValues = ValueVTs.size();
2760 if (NumValues == 0)
2761 return;
2762
2763 // Get the lowered operands. Note that we do this after
2764 // checking if NumResults is zero, because with zero results
2765 // the operands won't have values in the map.
2766 SDValue Src = getValue(SrcV);
2767 SDValue Ptr = getValue(PtrV);
2768
2769 SDValue Root = getRoot();
2770 SmallVector<SDValue, 4> Chains(NumValues);
2771 MVT PtrVT = Ptr.getValueType();
2772 bool isVolatile = I.isVolatile();
2773 unsigned Alignment = I.getAlignment();
2774 for (unsigned i = 0; i != NumValues; ++i)
2775 Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i),
2776 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2777 DAG.getConstant(Offsets[i], PtrVT)),
2778 PtrV, Offsets[i],
2779 isVolatile, Alignment);
2780
2781 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2782}
2783
2784/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2785/// node.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002786void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002787 unsigned Intrinsic) {
2788 bool HasChain = !I.doesNotAccessMemory();
2789 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2790
2791 // Build the operand list.
2792 SmallVector<SDValue, 8> Ops;
2793 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2794 if (OnlyLoad) {
2795 // We don't need to serialize loads against other loads.
2796 Ops.push_back(DAG.getRoot());
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002797 } else {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002798 Ops.push_back(getRoot());
2799 }
2800 }
Mon P Wang3efcd4a2008-11-01 20:24:53 +00002801
2802 // Info is set by getTgtMemInstrinsic
2803 TargetLowering::IntrinsicInfo Info;
2804 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2805
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002806 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
Mon P Wang3efcd4a2008-11-01 20:24:53 +00002807 if (!IsTgtIntrinsic)
2808 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002809
2810 // Add all operands of the call to the operand list.
2811 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2812 SDValue Op = getValue(I.getOperand(i));
2813 assert(TLI.isTypeLegal(Op.getValueType()) &&
2814 "Intrinsic uses a non-legal type?");
2815 Ops.push_back(Op);
2816 }
2817
2818 std::vector<MVT> VTs;
2819 if (I.getType() != Type::VoidTy) {
2820 MVT VT = TLI.getValueType(I.getType());
2821 if (VT.isVector()) {
2822 const VectorType *DestTy = cast<VectorType>(I.getType());
2823 MVT EltVT = TLI.getValueType(DestTy->getElementType());
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002824
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002825 VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2826 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2827 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002828
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002829 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2830 VTs.push_back(VT);
2831 }
2832 if (HasChain)
2833 VTs.push_back(MVT::Other);
2834
2835 const MVT *VTList = DAG.getNodeValueTypes(VTs);
2836
2837 // Create the node.
2838 SDValue Result;
Mon P Wang3efcd4a2008-11-01 20:24:53 +00002839 if (IsTgtIntrinsic) {
2840 // This is target intrinsic that touches memory
2841 Result = DAG.getMemIntrinsicNode(Info.opc, VTList, VTs.size(),
2842 &Ops[0], Ops.size(),
2843 Info.memVT, Info.ptrVal, Info.offset,
2844 Info.align, Info.vol,
2845 Info.readMem, Info.writeMem);
2846 }
2847 else if (!HasChain)
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002848 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2849 &Ops[0], Ops.size());
2850 else if (I.getType() != Type::VoidTy)
2851 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2852 &Ops[0], Ops.size());
2853 else
2854 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2855 &Ops[0], Ops.size());
2856
2857 if (HasChain) {
2858 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2859 if (OnlyLoad)
2860 PendingLoads.push_back(Chain);
2861 else
2862 DAG.setRoot(Chain);
2863 }
2864 if (I.getType() != Type::VoidTy) {
2865 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2866 MVT VT = TLI.getValueType(PTy);
2867 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002868 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002869 setValue(&I, Result);
2870 }
2871}
2872
2873/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2874static GlobalVariable *ExtractTypeInfo(Value *V) {
2875 V = V->stripPointerCasts();
2876 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2877 assert ((GV || isa<ConstantPointerNull>(V)) &&
2878 "TypeInfo must be a global variable or NULL");
2879 return GV;
2880}
2881
2882namespace llvm {
2883
2884/// AddCatchInfo - Extract the personality and type infos from an eh.selector
2885/// call, and add them to the specified machine basic block.
2886void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2887 MachineBasicBlock *MBB) {
2888 // Inform the MachineModuleInfo of the personality for this landing pad.
2889 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2890 assert(CE->getOpcode() == Instruction::BitCast &&
2891 isa<Function>(CE->getOperand(0)) &&
2892 "Personality should be a function");
2893 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2894
2895 // Gather all the type infos for this landing pad and pass them along to
2896 // MachineModuleInfo.
2897 std::vector<GlobalVariable *> TyInfo;
2898 unsigned N = I.getNumOperands();
2899
2900 for (unsigned i = N - 1; i > 2; --i) {
2901 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2902 unsigned FilterLength = CI->getZExtValue();
2903 unsigned FirstCatch = i + FilterLength + !FilterLength;
2904 assert (FirstCatch <= N && "Invalid filter length");
2905
2906 if (FirstCatch < N) {
2907 TyInfo.reserve(N - FirstCatch);
2908 for (unsigned j = FirstCatch; j < N; ++j)
2909 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2910 MMI->addCatchTypeInfo(MBB, TyInfo);
2911 TyInfo.clear();
2912 }
2913
2914 if (!FilterLength) {
2915 // Cleanup.
2916 MMI->addCleanup(MBB);
2917 } else {
2918 // Filter.
2919 TyInfo.reserve(FilterLength - 1);
2920 for (unsigned j = i + 1; j < FirstCatch; ++j)
2921 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2922 MMI->addFilterTypeInfo(MBB, TyInfo);
2923 TyInfo.clear();
2924 }
2925
2926 N = i;
2927 }
2928 }
2929
2930 if (N > 3) {
2931 TyInfo.reserve(N - 3);
2932 for (unsigned j = 3; j < N; ++j)
2933 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2934 MMI->addCatchTypeInfo(MBB, TyInfo);
2935 }
2936}
2937
2938}
2939
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002940/// GetSignificand - Get the significand and build it into a floating-point
2941/// number with exponent of 1:
2942///
2943/// Op = (Op & 0x007fffff) | 0x3f800000;
2944///
2945/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002946static SDValue
2947GetSignificand(SelectionDAG &DAG, SDValue Op) {
2948 SDValue t1 = DAG.getNode(ISD::AND, MVT::i32, Op,
2949 DAG.getConstant(0x007fffff, MVT::i32));
2950 SDValue t2 = DAG.getNode(ISD::OR, MVT::i32, t1,
2951 DAG.getConstant(0x3f800000, MVT::i32));
2952 return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t2);
2953}
2954
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002955/// GetExponent - Get the exponent:
2956///
2957/// (float)((Op1 >> 23) - 127);
2958///
2959/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002960static SDValue
Bill Wendling6c533342009-01-20 06:10:42 +00002961GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI) {
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002962 SDValue t1 = DAG.getNode(ISD::SRL, MVT::i32, Op,
Bill Wendling6c533342009-01-20 06:10:42 +00002963 DAG.getConstant(23, TLI.getShiftAmountTy()));
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002964 SDValue t2 = DAG.getNode(ISD::SUB, MVT::i32, t1,
Bill Wendling39150252008-09-09 20:39:27 +00002965 DAG.getConstant(127, MVT::i32));
Bill Wendling6c533342009-01-20 06:10:42 +00002966 // SDValue t3 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t2);
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002967 return DAG.getNode(ISD::UINT_TO_FP, MVT::f32, t2);
Bill Wendling39150252008-09-09 20:39:27 +00002968}
2969
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002970/// getF32Constant - Get 32-bit floating point constant.
2971static SDValue
2972getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2973 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2974}
2975
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002976/// Inlined utility function to implement binary input atomic intrinsics for
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002977/// visitIntrinsicCall: I is a call instruction
2978/// Op is the associated NodeType for I
2979const char *
2980SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002981 SDValue Root = getRoot();
Dan Gohman0b1d4a72008-12-23 21:37:04 +00002982 SDValue L =
2983 DAG.getAtomic(Op, getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2984 Root,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00002985 getValue(I.getOperand(1)),
Dan Gohman0b1d4a72008-12-23 21:37:04 +00002986 getValue(I.getOperand(2)),
2987 I.getOperand(1));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002988 setValue(&I, L);
2989 DAG.setRoot(L.getValue(1));
2990 return 0;
2991}
2992
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002993// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
Bill Wendling74c37652008-12-09 22:08:41 +00002994const char *
2995SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002996 SDValue Op1 = getValue(I.getOperand(1));
2997 SDValue Op2 = getValue(I.getOperand(2));
Bill Wendling74c37652008-12-09 22:08:41 +00002998
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002999 MVT ValueVTs[] = { Op1.getValueType(), MVT::i1 };
3000 SDValue Ops[] = { Op1, Op2 };
Bill Wendling74c37652008-12-09 22:08:41 +00003001
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00003002 SDValue Result = DAG.getNode(Op, DAG.getVTList(&ValueVTs[0], 2), &Ops[0], 2);
Bill Wendling74c37652008-12-09 22:08:41 +00003003
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00003004 setValue(&I, Result);
3005 return 0;
3006}
Bill Wendling74c37652008-12-09 22:08:41 +00003007
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003008/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3009/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003010void
3011SelectionDAGLowering::visitExp(CallInst &I) {
3012 SDValue result;
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003013
3014 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3015 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3016 SDValue Op = getValue(I.getOperand(1));
3017
3018 // Put the exponent in the right bit position for later addition to the
3019 // final result:
3020 //
3021 // #define LOG2OFe 1.4426950f
3022 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3023 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003024 getF32Constant(DAG, 0x3fb8aa3b));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003025 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
3026
3027 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3028 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3029 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
3030
3031 // IntegerPartOfX <<= 23;
3032 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
Bill Wendling6c533342009-01-20 06:10:42 +00003033 DAG.getConstant(23, TLI.getShiftAmountTy()));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003034
3035 if (LimitFloatPrecision <= 6) {
3036 // For floating-point precision of 6:
3037 //
3038 // TwoToFractionalPartOfX =
3039 // 0.997535578f +
3040 // (0.735607626f + 0.252464424f * x) * x;
3041 //
3042 // error 0.0144103317, which is 6 bits
3043 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003044 getF32Constant(DAG, 0x3e814304));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003045 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003046 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003047 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3048 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003049 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003050 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3051
3052 // Add the exponent into the result in integer domain.
3053 SDValue t6 = DAG.getNode(ISD::ADD, MVT::i32,
3054 TwoToFracPartOfX, IntegerPartOfX);
3055
3056 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t6);
3057 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3058 // For floating-point precision of 12:
3059 //
3060 // TwoToFractionalPartOfX =
3061 // 0.999892986f +
3062 // (0.696457318f +
3063 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3064 //
3065 // 0.000107046256 error, which is 13 to 14 bits
3066 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003067 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003068 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003069 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003070 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3071 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003072 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003073 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3074 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003075 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003076 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3077
3078 // Add the exponent into the result in integer domain.
3079 SDValue t8 = DAG.getNode(ISD::ADD, MVT::i32,
3080 TwoToFracPartOfX, IntegerPartOfX);
3081
3082 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t8);
3083 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3084 // For floating-point precision of 18:
3085 //
3086 // TwoToFractionalPartOfX =
3087 // 0.999999982f +
3088 // (0.693148872f +
3089 // (0.240227044f +
3090 // (0.554906021e-1f +
3091 // (0.961591928e-2f +
3092 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3093 //
3094 // error 2.47208000*10^(-7), which is better than 18 bits
3095 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003096 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003097 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003098 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003099 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3100 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003101 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003102 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3103 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003104 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003105 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3106 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003107 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003108 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3109 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003110 getF32Constant(DAG, 0x3f317234));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003111 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3112 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003113 getF32Constant(DAG, 0x3f800000));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003114 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3115
3116 // Add the exponent into the result in integer domain.
3117 SDValue t14 = DAG.getNode(ISD::ADD, MVT::i32,
3118 TwoToFracPartOfX, IntegerPartOfX);
3119
3120 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t14);
3121 }
3122 } else {
3123 // No special expansion.
3124 result = DAG.getNode(ISD::FEXP,
3125 getValue(I.getOperand(1)).getValueType(),
3126 getValue(I.getOperand(1)));
3127 }
3128
Dale Johannesen59e577f2008-09-05 18:38:42 +00003129 setValue(&I, result);
3130}
3131
Bill Wendling39150252008-09-09 20:39:27 +00003132/// visitLog - Lower a log intrinsic. Handles the special sequences for
3133/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003134void
3135SelectionDAGLowering::visitLog(CallInst &I) {
3136 SDValue result;
Bill Wendling39150252008-09-09 20:39:27 +00003137
3138 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3139 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3140 SDValue Op = getValue(I.getOperand(1));
3141 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3142
3143 // Scale the exponent by log(2) [0.69314718f].
Bill Wendling6c533342009-01-20 06:10:42 +00003144 SDValue Exp = GetExponent(DAG, Op1, TLI);
Bill Wendling39150252008-09-09 20:39:27 +00003145 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003146 getF32Constant(DAG, 0x3f317218));
Bill Wendling39150252008-09-09 20:39:27 +00003147
3148 // Get the significand and build it into a floating-point number with
3149 // exponent of 1.
3150 SDValue X = GetSignificand(DAG, Op1);
3151
3152 if (LimitFloatPrecision <= 6) {
3153 // For floating-point precision of 6:
3154 //
3155 // LogofMantissa =
3156 // -1.1609546f +
3157 // (1.4034025f - 0.23903021f * x) * x;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003158 //
Bill Wendling39150252008-09-09 20:39:27 +00003159 // error 0.0034276066, which is better than 8 bits
3160 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003161 getF32Constant(DAG, 0xbe74c456));
Bill Wendling39150252008-09-09 20:39:27 +00003162 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003163 getF32Constant(DAG, 0x3fb3a2b1));
Bill Wendling39150252008-09-09 20:39:27 +00003164 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3165 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003166 getF32Constant(DAG, 0x3f949a29));
Bill Wendling39150252008-09-09 20:39:27 +00003167
3168 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3169 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3170 // For floating-point precision of 12:
3171 //
3172 // LogOfMantissa =
3173 // -1.7417939f +
3174 // (2.8212026f +
3175 // (-1.4699568f +
3176 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3177 //
3178 // error 0.000061011436, which is 14 bits
3179 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003180 getF32Constant(DAG, 0xbd67b6d6));
Bill Wendling39150252008-09-09 20:39:27 +00003181 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003182 getF32Constant(DAG, 0x3ee4f4b8));
Bill Wendling39150252008-09-09 20:39:27 +00003183 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3184 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003185 getF32Constant(DAG, 0x3fbc278b));
Bill Wendling39150252008-09-09 20:39:27 +00003186 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3187 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003188 getF32Constant(DAG, 0x40348e95));
Bill Wendling39150252008-09-09 20:39:27 +00003189 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3190 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003191 getF32Constant(DAG, 0x3fdef31a));
Bill Wendling39150252008-09-09 20:39:27 +00003192
3193 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3194 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3195 // For floating-point precision of 18:
3196 //
3197 // LogOfMantissa =
3198 // -2.1072184f +
3199 // (4.2372794f +
3200 // (-3.7029485f +
3201 // (2.2781945f +
3202 // (-0.87823314f +
3203 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3204 //
3205 // error 0.0000023660568, which is better than 18 bits
3206 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003207 getF32Constant(DAG, 0xbc91e5ac));
Bill Wendling39150252008-09-09 20:39:27 +00003208 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003209 getF32Constant(DAG, 0x3e4350aa));
Bill Wendling39150252008-09-09 20:39:27 +00003210 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3211 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003212 getF32Constant(DAG, 0x3f60d3e3));
Bill Wendling39150252008-09-09 20:39:27 +00003213 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3214 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003215 getF32Constant(DAG, 0x4011cdf0));
Bill Wendling39150252008-09-09 20:39:27 +00003216 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3217 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003218 getF32Constant(DAG, 0x406cfd1c));
Bill Wendling39150252008-09-09 20:39:27 +00003219 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3220 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003221 getF32Constant(DAG, 0x408797cb));
Bill Wendling39150252008-09-09 20:39:27 +00003222 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3223 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003224 getF32Constant(DAG, 0x4006dcab));
Bill Wendling39150252008-09-09 20:39:27 +00003225
3226 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3227 }
3228 } else {
3229 // No special expansion.
3230 result = DAG.getNode(ISD::FLOG,
3231 getValue(I.getOperand(1)).getValueType(),
3232 getValue(I.getOperand(1)));
3233 }
3234
Dale Johannesen59e577f2008-09-05 18:38:42 +00003235 setValue(&I, result);
3236}
3237
Bill Wendling3eb59402008-09-09 00:28:24 +00003238/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3239/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003240void
3241SelectionDAGLowering::visitLog2(CallInst &I) {
3242 SDValue result;
Bill Wendling3eb59402008-09-09 00:28:24 +00003243
Dale Johannesen853244f2008-09-05 23:49:37 +00003244 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003245 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3246 SDValue Op = getValue(I.getOperand(1));
3247 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3248
Bill Wendling39150252008-09-09 20:39:27 +00003249 // Get the exponent.
Bill Wendling6c533342009-01-20 06:10:42 +00003250 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI);
Bill Wendling3eb59402008-09-09 00:28:24 +00003251
3252 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003253 // exponent of 1.
3254 SDValue X = GetSignificand(DAG, Op1);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003255
Bill Wendling3eb59402008-09-09 00:28:24 +00003256 // Different possible minimax approximations of significand in
3257 // floating-point for various degrees of accuracy over [1,2].
3258 if (LimitFloatPrecision <= 6) {
3259 // For floating-point precision of 6:
3260 //
3261 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3262 //
3263 // error 0.0049451742, which is more than 7 bits
Bill Wendling39150252008-09-09 20:39:27 +00003264 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003265 getF32Constant(DAG, 0xbeb08fe0));
Bill Wendling39150252008-09-09 20:39:27 +00003266 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003267 getF32Constant(DAG, 0x40019463));
Bill Wendling39150252008-09-09 20:39:27 +00003268 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3269 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003270 getF32Constant(DAG, 0x3fd6633d));
Bill Wendling3eb59402008-09-09 00:28:24 +00003271
3272 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3273 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3274 // For floating-point precision of 12:
3275 //
3276 // Log2ofMantissa =
3277 // -2.51285454f +
3278 // (4.07009056f +
3279 // (-2.12067489f +
3280 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003281 //
Bill Wendling3eb59402008-09-09 00:28:24 +00003282 // error 0.0000876136000, which is better than 13 bits
Bill Wendling39150252008-09-09 20:39:27 +00003283 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003284 getF32Constant(DAG, 0xbda7262e));
Bill Wendling39150252008-09-09 20:39:27 +00003285 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003286 getF32Constant(DAG, 0x3f25280b));
Bill Wendling39150252008-09-09 20:39:27 +00003287 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3288 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003289 getF32Constant(DAG, 0x4007b923));
Bill Wendling39150252008-09-09 20:39:27 +00003290 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3291 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003292 getF32Constant(DAG, 0x40823e2f));
Bill Wendling39150252008-09-09 20:39:27 +00003293 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3294 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003295 getF32Constant(DAG, 0x4020d29c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003296
3297 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3298 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3299 // For floating-point precision of 18:
3300 //
3301 // Log2ofMantissa =
3302 // -3.0400495f +
3303 // (6.1129976f +
3304 // (-5.3420409f +
3305 // (3.2865683f +
3306 // (-1.2669343f +
3307 // (0.27515199f -
3308 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3309 //
3310 // error 0.0000018516, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003311 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003312 getF32Constant(DAG, 0xbcd2769e));
Bill Wendling39150252008-09-09 20:39:27 +00003313 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003314 getF32Constant(DAG, 0x3e8ce0b9));
Bill Wendling39150252008-09-09 20:39:27 +00003315 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3316 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003317 getF32Constant(DAG, 0x3fa22ae7));
Bill Wendling39150252008-09-09 20:39:27 +00003318 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3319 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003320 getF32Constant(DAG, 0x40525723));
Bill Wendling39150252008-09-09 20:39:27 +00003321 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3322 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003323 getF32Constant(DAG, 0x40aaf200));
Bill Wendling39150252008-09-09 20:39:27 +00003324 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3325 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003326 getF32Constant(DAG, 0x40c39dad));
Bill Wendling3eb59402008-09-09 00:28:24 +00003327 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
Bill Wendling39150252008-09-09 20:39:27 +00003328 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003329 getF32Constant(DAG, 0x4042902c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003330
3331 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3332 }
Dale Johannesen853244f2008-09-05 23:49:37 +00003333 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003334 // No special expansion.
Dale Johannesen853244f2008-09-05 23:49:37 +00003335 result = DAG.getNode(ISD::FLOG2,
3336 getValue(I.getOperand(1)).getValueType(),
3337 getValue(I.getOperand(1)));
3338 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003339
Dale Johannesen59e577f2008-09-05 18:38:42 +00003340 setValue(&I, result);
3341}
3342
Bill Wendling3eb59402008-09-09 00:28:24 +00003343/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3344/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003345void
3346SelectionDAGLowering::visitLog10(CallInst &I) {
3347 SDValue result;
Bill Wendling181b6272008-10-19 20:34:04 +00003348
Dale Johannesen852680a2008-09-05 21:27:19 +00003349 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003350 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3351 SDValue Op = getValue(I.getOperand(1));
3352 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3353
Bill Wendling39150252008-09-09 20:39:27 +00003354 // Scale the exponent by log10(2) [0.30102999f].
Bill Wendling6c533342009-01-20 06:10:42 +00003355 SDValue Exp = GetExponent(DAG, Op1, TLI);
Bill Wendling39150252008-09-09 20:39:27 +00003356 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003357 getF32Constant(DAG, 0x3e9a209a));
Bill Wendling3eb59402008-09-09 00:28:24 +00003358
3359 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003360 // exponent of 1.
3361 SDValue X = GetSignificand(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003362
3363 if (LimitFloatPrecision <= 6) {
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003364 // For floating-point precision of 6:
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003365 //
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003366 // Log10ofMantissa =
3367 // -0.50419619f +
3368 // (0.60948995f - 0.10380950f * x) * x;
3369 //
3370 // error 0.0014886165, which is 6 bits
Bill Wendling39150252008-09-09 20:39:27 +00003371 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003372 getF32Constant(DAG, 0xbdd49a13));
Bill Wendling39150252008-09-09 20:39:27 +00003373 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003374 getF32Constant(DAG, 0x3f1c0789));
Bill Wendling39150252008-09-09 20:39:27 +00003375 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3376 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003377 getF32Constant(DAG, 0x3f011300));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003378
3379 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003380 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3381 // For floating-point precision of 12:
3382 //
3383 // Log10ofMantissa =
3384 // -0.64831180f +
3385 // (0.91751397f +
3386 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3387 //
3388 // error 0.00019228036, which is better than 12 bits
Bill Wendling39150252008-09-09 20:39:27 +00003389 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003390 getF32Constant(DAG, 0x3d431f31));
Bill Wendling39150252008-09-09 20:39:27 +00003391 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003392 getF32Constant(DAG, 0x3ea21fb2));
Bill Wendling39150252008-09-09 20:39:27 +00003393 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3394 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003395 getF32Constant(DAG, 0x3f6ae232));
Bill Wendling39150252008-09-09 20:39:27 +00003396 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3397 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003398 getF32Constant(DAG, 0x3f25f7c3));
Bill Wendling3eb59402008-09-09 00:28:24 +00003399
3400 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
3401 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003402 // For floating-point precision of 18:
3403 //
3404 // Log10ofMantissa =
3405 // -0.84299375f +
3406 // (1.5327582f +
3407 // (-1.0688956f +
3408 // (0.49102474f +
3409 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3410 //
3411 // error 0.0000037995730, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003412 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003413 getF32Constant(DAG, 0x3c5d51ce));
Bill Wendling39150252008-09-09 20:39:27 +00003414 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003415 getF32Constant(DAG, 0x3e00685a));
Bill Wendling39150252008-09-09 20:39:27 +00003416 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3417 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003418 getF32Constant(DAG, 0x3efb6798));
Bill Wendling39150252008-09-09 20:39:27 +00003419 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3420 SDValue t5 = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003421 getF32Constant(DAG, 0x3f88d192));
Bill Wendling39150252008-09-09 20:39:27 +00003422 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3423 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003424 getF32Constant(DAG, 0x3fc4316c));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003425 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
Bill Wendling39150252008-09-09 20:39:27 +00003426 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003427 getF32Constant(DAG, 0x3f57ce70));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003428
3429 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003430 }
Dale Johannesen852680a2008-09-05 21:27:19 +00003431 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003432 // No special expansion.
Dale Johannesen852680a2008-09-05 21:27:19 +00003433 result = DAG.getNode(ISD::FLOG10,
3434 getValue(I.getOperand(1)).getValueType(),
3435 getValue(I.getOperand(1)));
3436 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003437
Dale Johannesen59e577f2008-09-05 18:38:42 +00003438 setValue(&I, result);
3439}
3440
Bill Wendlinge10c8142008-09-09 22:39:21 +00003441/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3442/// limited-precision mode.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003443void
3444SelectionDAGLowering::visitExp2(CallInst &I) {
3445 SDValue result;
Bill Wendlinge10c8142008-09-09 22:39:21 +00003446
Dale Johannesen601d3c02008-09-05 01:48:15 +00003447 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendlinge10c8142008-09-09 22:39:21 +00003448 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3449 SDValue Op = getValue(I.getOperand(1));
3450
3451 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, Op);
3452
3453 // FractionalPartOfX = x - (float)IntegerPartOfX;
3454 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3455 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, Op, t1);
3456
3457 // IntegerPartOfX <<= 23;
3458 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
Bill Wendling6c533342009-01-20 06:10:42 +00003459 DAG.getConstant(23, TLI.getShiftAmountTy()));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003460
3461 if (LimitFloatPrecision <= 6) {
3462 // For floating-point precision of 6:
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003463 //
Bill Wendlinge10c8142008-09-09 22:39:21 +00003464 // TwoToFractionalPartOfX =
3465 // 0.997535578f +
3466 // (0.735607626f + 0.252464424f * x) * x;
3467 //
3468 // error 0.0144103317, which is 6 bits
3469 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003470 getF32Constant(DAG, 0x3e814304));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003471 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003472 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003473 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003474 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003475 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003476 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3477 SDValue TwoToFractionalPartOfX =
3478 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3479
3480 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3481 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3482 // For floating-point precision of 12:
3483 //
3484 // TwoToFractionalPartOfX =
3485 // 0.999892986f +
3486 // (0.696457318f +
3487 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3488 //
3489 // error 0.000107046256, which is 13 to 14 bits
3490 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003491 getF32Constant(DAG, 0x3da235e3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003492 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003493 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003494 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003495 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003496 getF32Constant(DAG, 0x3f324b07));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003497 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3498 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003499 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003500 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3501 SDValue TwoToFractionalPartOfX =
3502 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3503
3504 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3505 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3506 // For floating-point precision of 18:
3507 //
3508 // TwoToFractionalPartOfX =
3509 // 0.999999982f +
3510 // (0.693148872f +
3511 // (0.240227044f +
3512 // (0.554906021e-1f +
3513 // (0.961591928e-2f +
3514 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3515 // error 2.47208000*10^(-7), which is better than 18 bits
3516 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003517 getF32Constant(DAG, 0x3924b03e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003518 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003519 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003520 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003521 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003522 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003523 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3524 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003525 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003526 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3527 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003528 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003529 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3530 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003531 getF32Constant(DAG, 0x3f317234));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003532 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3533 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003534 getF32Constant(DAG, 0x3f800000));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003535 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3536 SDValue TwoToFractionalPartOfX =
3537 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3538
3539 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3540 }
Dale Johannesen601d3c02008-09-05 01:48:15 +00003541 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003542 // No special expansion.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003543 result = DAG.getNode(ISD::FEXP2,
3544 getValue(I.getOperand(1)).getValueType(),
3545 getValue(I.getOperand(1)));
3546 }
Bill Wendlinge10c8142008-09-09 22:39:21 +00003547
Dale Johannesen601d3c02008-09-05 01:48:15 +00003548 setValue(&I, result);
3549}
3550
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003551/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3552/// limited-precision mode with x == 10.0f.
3553void
3554SelectionDAGLowering::visitPow(CallInst &I) {
3555 SDValue result;
3556 Value *Val = I.getOperand(1);
3557 bool IsExp10 = false;
3558
3559 if (getValue(Val).getValueType() == MVT::f32 &&
Bill Wendling277fc242008-09-10 00:24:59 +00003560 getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003561 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3562 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3563 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3564 APFloat Ten(10.0f);
3565 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3566 }
3567 }
3568 }
3569
3570 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3571 SDValue Op = getValue(I.getOperand(2));
3572
3573 // Put the exponent in the right bit position for later addition to the
3574 // final result:
3575 //
3576 // #define LOG2OF10 3.3219281f
3577 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3578 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003579 getF32Constant(DAG, 0x40549a78));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003580 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
3581
3582 // FractionalPartOfX = x - (float)IntegerPartOfX;
3583 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3584 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
3585
3586 // IntegerPartOfX <<= 23;
3587 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
Bill Wendling6c533342009-01-20 06:10:42 +00003588 DAG.getConstant(23, TLI.getShiftAmountTy()));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003589
3590 if (LimitFloatPrecision <= 6) {
3591 // For floating-point precision of 6:
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003592 //
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003593 // twoToFractionalPartOfX =
3594 // 0.997535578f +
3595 // (0.735607626f + 0.252464424f * x) * x;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003596 //
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003597 // error 0.0144103317, which is 6 bits
3598 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003599 getF32Constant(DAG, 0x3e814304));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003600 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003601 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003602 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003603 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003604 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003605 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3606 SDValue TwoToFractionalPartOfX =
3607 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3608
3609 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3610 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3611 // For floating-point precision of 12:
3612 //
3613 // TwoToFractionalPartOfX =
3614 // 0.999892986f +
3615 // (0.696457318f +
3616 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3617 //
3618 // error 0.000107046256, which is 13 to 14 bits
3619 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003620 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003621 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003622 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003623 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003624 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003625 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003626 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3627 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003628 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003629 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3630 SDValue TwoToFractionalPartOfX =
3631 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3632
3633 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3634 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3635 // For floating-point precision of 18:
3636 //
3637 // TwoToFractionalPartOfX =
3638 // 0.999999982f +
3639 // (0.693148872f +
3640 // (0.240227044f +
3641 // (0.554906021e-1f +
3642 // (0.961591928e-2f +
3643 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3644 // error 2.47208000*10^(-7), which is better than 18 bits
3645 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003646 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003647 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003648 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003649 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003650 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003651 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003652 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3653 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003654 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003655 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3656 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003657 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003658 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3659 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003660 getF32Constant(DAG, 0x3f317234));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003661 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3662 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003663 getF32Constant(DAG, 0x3f800000));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003664 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3665 SDValue TwoToFractionalPartOfX =
3666 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3667
3668 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3669 }
3670 } else {
3671 // No special expansion.
3672 result = DAG.getNode(ISD::FPOW,
3673 getValue(I.getOperand(1)).getValueType(),
3674 getValue(I.getOperand(1)),
3675 getValue(I.getOperand(2)));
3676 }
3677
3678 setValue(&I, result);
3679}
3680
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003681/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
3682/// we want to emit this as a call to a named external function, return the name
3683/// otherwise lower it and return null.
3684const char *
3685SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3686 switch (Intrinsic) {
3687 default:
3688 // By default, turn this into a target intrinsic node.
3689 visitTargetIntrinsic(I, Intrinsic);
3690 return 0;
3691 case Intrinsic::vastart: visitVAStart(I); return 0;
3692 case Intrinsic::vaend: visitVAEnd(I); return 0;
3693 case Intrinsic::vacopy: visitVACopy(I); return 0;
3694 case Intrinsic::returnaddress:
3695 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3696 getValue(I.getOperand(1))));
3697 return 0;
Bill Wendlingd5d81912008-09-26 22:10:44 +00003698 case Intrinsic::frameaddress:
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003699 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3700 getValue(I.getOperand(1))));
3701 return 0;
3702 case Intrinsic::setjmp:
3703 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3704 break;
3705 case Intrinsic::longjmp:
3706 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3707 break;
Chris Lattner824b9582008-11-21 16:42:48 +00003708 case Intrinsic::memcpy: {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003709 SDValue Op1 = getValue(I.getOperand(1));
3710 SDValue Op2 = getValue(I.getOperand(2));
3711 SDValue Op3 = getValue(I.getOperand(3));
3712 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3713 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3714 I.getOperand(1), 0, I.getOperand(2), 0));
3715 return 0;
3716 }
Chris Lattner824b9582008-11-21 16:42:48 +00003717 case Intrinsic::memset: {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003718 SDValue Op1 = getValue(I.getOperand(1));
3719 SDValue Op2 = getValue(I.getOperand(2));
3720 SDValue Op3 = getValue(I.getOperand(3));
3721 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3722 DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3723 I.getOperand(1), 0));
3724 return 0;
3725 }
Chris Lattner824b9582008-11-21 16:42:48 +00003726 case Intrinsic::memmove: {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003727 SDValue Op1 = getValue(I.getOperand(1));
3728 SDValue Op2 = getValue(I.getOperand(2));
3729 SDValue Op3 = getValue(I.getOperand(3));
3730 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3731
3732 // If the source and destination are known to not be aliases, we can
3733 // lower memmove as memcpy.
3734 uint64_t Size = -1ULL;
3735 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00003736 Size = C->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003737 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3738 AliasAnalysis::NoAlias) {
3739 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3740 I.getOperand(1), 0, I.getOperand(2), 0));
3741 return 0;
3742 }
3743
3744 DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3745 I.getOperand(1), 0, I.getOperand(2), 0));
3746 return 0;
3747 }
3748 case Intrinsic::dbg_stoppoint: {
Devang Patel83489bb2009-01-13 00:35:13 +00003749 DwarfWriter *DW = DAG.getDwarfWriter();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003750 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
Devang Patelb79b5352009-01-19 23:21:49 +00003751 if (DW && DW->ValidDebugInfo(SPI.getContext()))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003752 DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3753 SPI.getLine(),
3754 SPI.getColumn(),
Devang Patel83489bb2009-01-13 00:35:13 +00003755 SPI.getContext()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003756 return 0;
3757 }
3758 case Intrinsic::dbg_region_start: {
Devang Patel83489bb2009-01-13 00:35:13 +00003759 DwarfWriter *DW = DAG.getDwarfWriter();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003760 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
Devang Patelb79b5352009-01-19 23:21:49 +00003761 if (DW && DW->ValidDebugInfo(RSI.getContext())) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003762 unsigned LabelID =
Devang Patel83489bb2009-01-13 00:35:13 +00003763 DW->RecordRegionStart(cast<GlobalVariable>(RSI.getContext()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003764 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3765 }
3766
3767 return 0;
3768 }
3769 case Intrinsic::dbg_region_end: {
Devang Patel83489bb2009-01-13 00:35:13 +00003770 DwarfWriter *DW = DAG.getDwarfWriter();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003771 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
Devang Patelb79b5352009-01-19 23:21:49 +00003772 if (DW && DW->ValidDebugInfo(REI.getContext())) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003773 unsigned LabelID =
Devang Patel83489bb2009-01-13 00:35:13 +00003774 DW->RecordRegionEnd(cast<GlobalVariable>(REI.getContext()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003775 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3776 }
3777
3778 return 0;
3779 }
3780 case Intrinsic::dbg_func_start: {
Devang Patel83489bb2009-01-13 00:35:13 +00003781 DwarfWriter *DW = DAG.getDwarfWriter();
3782 if (!DW) return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003783 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3784 Value *SP = FSI.getSubprogram();
Devang Patelcf3a4482009-01-15 23:41:32 +00003785 if (SP && DW->ValidDebugInfo(SP)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003786 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3787 // what (most?) gdb expects.
Devang Patel83489bb2009-01-13 00:35:13 +00003788 DISubprogram Subprogram(cast<GlobalVariable>(SP));
3789 DICompileUnit CompileUnit = Subprogram.getCompileUnit();
3790 unsigned SrcFile = DW->RecordSource(CompileUnit.getDirectory(),
3791 CompileUnit.getFilename());
Devang Patel20dd0462008-11-06 00:30:09 +00003792 // Record the source line but does not create a label for the normal
3793 // function start. It will be emitted at asm emission time. However,
3794 // create a label if this is a beginning of inlined function.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003795 unsigned LabelID =
Devang Patel83489bb2009-01-13 00:35:13 +00003796 DW->RecordSourceLine(Subprogram.getLineNumber(), 0, SrcFile);
3797 if (DW->getRecordSourceLineCount() != 1)
Devang Patel20dd0462008-11-06 00:30:09 +00003798 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003799 }
3800
3801 return 0;
3802 }
3803 case Intrinsic::dbg_declare: {
Devang Patel83489bb2009-01-13 00:35:13 +00003804 DwarfWriter *DW = DAG.getDwarfWriter();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003805 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3806 Value *Variable = DI.getVariable();
Devang Patelb79b5352009-01-19 23:21:49 +00003807 if (DW && DW->ValidDebugInfo(Variable))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003808 DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3809 getValue(DI.getAddress()), getValue(Variable)));
3810 return 0;
3811 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003812
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003813 case Intrinsic::eh_exception: {
3814 if (!CurMBB->isLandingPad()) {
3815 // FIXME: Mark exception register as live in. Hack for PR1508.
3816 unsigned Reg = TLI.getExceptionAddressRegister();
3817 if (Reg) CurMBB->addLiveIn(Reg);
3818 }
3819 // Insert the EXCEPTIONADDR instruction.
3820 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3821 SDValue Ops[1];
3822 Ops[0] = DAG.getRoot();
3823 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3824 setValue(&I, Op);
3825 DAG.setRoot(Op.getValue(1));
3826 return 0;
3827 }
3828
3829 case Intrinsic::eh_selector_i32:
3830 case Intrinsic::eh_selector_i64: {
3831 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3832 MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3833 MVT::i32 : MVT::i64);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003834
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003835 if (MMI) {
3836 if (CurMBB->isLandingPad())
3837 AddCatchInfo(I, MMI, CurMBB);
3838 else {
3839#ifndef NDEBUG
3840 FuncInfo.CatchInfoLost.insert(&I);
3841#endif
3842 // FIXME: Mark exception selector register as live in. Hack for PR1508.
3843 unsigned Reg = TLI.getExceptionSelectorRegister();
3844 if (Reg) CurMBB->addLiveIn(Reg);
3845 }
3846
3847 // Insert the EHSELECTION instruction.
3848 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3849 SDValue Ops[2];
3850 Ops[0] = getValue(I.getOperand(1));
3851 Ops[1] = getRoot();
3852 SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3853 setValue(&I, Op);
3854 DAG.setRoot(Op.getValue(1));
3855 } else {
3856 setValue(&I, DAG.getConstant(0, VT));
3857 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00003858
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003859 return 0;
3860 }
3861
3862 case Intrinsic::eh_typeid_for_i32:
3863 case Intrinsic::eh_typeid_for_i64: {
3864 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3865 MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3866 MVT::i32 : MVT::i64);
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003867
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003868 if (MMI) {
3869 // Find the type id for the given typeinfo.
3870 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3871
3872 unsigned TypeID = MMI->getTypeIDFor(GV);
3873 setValue(&I, DAG.getConstant(TypeID, VT));
3874 } else {
3875 // Return something different to eh_selector.
3876 setValue(&I, DAG.getConstant(1, VT));
3877 }
3878
3879 return 0;
3880 }
3881
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003882 case Intrinsic::eh_return_i32:
3883 case Intrinsic::eh_return_i64:
3884 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003885 MMI->setCallsEHReturn(true);
3886 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3887 MVT::Other,
3888 getControlRoot(),
3889 getValue(I.getOperand(1)),
3890 getValue(I.getOperand(2))));
3891 } else {
3892 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3893 }
3894
3895 return 0;
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003896 case Intrinsic::eh_unwind_init:
3897 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3898 MMI->setCallsUnwindInit(true);
3899 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003900
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003901 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003902
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003903 case Intrinsic::eh_dwarf_cfa: {
3904 MVT VT = getValue(I.getOperand(1)).getValueType();
3905 SDValue CfaArg;
3906 if (VT.bitsGT(TLI.getPointerTy()))
3907 CfaArg = DAG.getNode(ISD::TRUNCATE,
3908 TLI.getPointerTy(), getValue(I.getOperand(1)));
3909 else
3910 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3911 TLI.getPointerTy(), getValue(I.getOperand(1)));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003912
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003913 SDValue Offset = DAG.getNode(ISD::ADD,
3914 TLI.getPointerTy(),
3915 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3916 TLI.getPointerTy()),
3917 CfaArg);
3918 setValue(&I, DAG.getNode(ISD::ADD,
3919 TLI.getPointerTy(),
3920 DAG.getNode(ISD::FRAMEADDR,
3921 TLI.getPointerTy(),
3922 DAG.getConstant(0,
3923 TLI.getPointerTy())),
3924 Offset));
3925 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003926 }
3927
Mon P Wang77cdf302008-11-10 20:54:11 +00003928 case Intrinsic::convertff:
3929 case Intrinsic::convertfsi:
3930 case Intrinsic::convertfui:
3931 case Intrinsic::convertsif:
3932 case Intrinsic::convertuif:
3933 case Intrinsic::convertss:
3934 case Intrinsic::convertsu:
3935 case Intrinsic::convertus:
3936 case Intrinsic::convertuu: {
3937 ISD::CvtCode Code = ISD::CVT_INVALID;
3938 switch (Intrinsic) {
3939 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
3940 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3941 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3942 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3943 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3944 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
3945 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
3946 case Intrinsic::convertus: Code = ISD::CVT_US; break;
3947 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
3948 }
3949 MVT DestVT = TLI.getValueType(I.getType());
3950 Value* Op1 = I.getOperand(1);
3951 setValue(&I, DAG.getConvertRndSat(DestVT, getValue(Op1),
3952 DAG.getValueType(DestVT),
3953 DAG.getValueType(getValue(Op1).getValueType()),
3954 getValue(I.getOperand(2)),
3955 getValue(I.getOperand(3)),
3956 Code));
3957 return 0;
3958 }
3959
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003960 case Intrinsic::sqrt:
3961 setValue(&I, DAG.getNode(ISD::FSQRT,
3962 getValue(I.getOperand(1)).getValueType(),
3963 getValue(I.getOperand(1))));
3964 return 0;
3965 case Intrinsic::powi:
3966 setValue(&I, DAG.getNode(ISD::FPOWI,
3967 getValue(I.getOperand(1)).getValueType(),
3968 getValue(I.getOperand(1)),
3969 getValue(I.getOperand(2))));
3970 return 0;
3971 case Intrinsic::sin:
3972 setValue(&I, DAG.getNode(ISD::FSIN,
3973 getValue(I.getOperand(1)).getValueType(),
3974 getValue(I.getOperand(1))));
3975 return 0;
3976 case Intrinsic::cos:
3977 setValue(&I, DAG.getNode(ISD::FCOS,
3978 getValue(I.getOperand(1)).getValueType(),
3979 getValue(I.getOperand(1))));
3980 return 0;
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003981 case Intrinsic::log:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003982 visitLog(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003983 return 0;
3984 case Intrinsic::log2:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003985 visitLog2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003986 return 0;
3987 case Intrinsic::log10:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003988 visitLog10(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003989 return 0;
3990 case Intrinsic::exp:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003991 visitExp(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003992 return 0;
3993 case Intrinsic::exp2:
Dale Johannesen601d3c02008-09-05 01:48:15 +00003994 visitExp2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003995 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003996 case Intrinsic::pow:
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003997 visitPow(I);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003998 return 0;
3999 case Intrinsic::pcmarker: {
4000 SDValue Tmp = getValue(I.getOperand(1));
4001 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
4002 return 0;
4003 }
4004 case Intrinsic::readcyclecounter: {
4005 SDValue Op = getRoot();
4006 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
4007 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
4008 &Op, 1);
4009 setValue(&I, Tmp);
4010 DAG.setRoot(Tmp.getValue(1));
4011 return 0;
4012 }
4013 case Intrinsic::part_select: {
4014 // Currently not implemented: just abort
4015 assert(0 && "part_select intrinsic not implemented");
4016 abort();
4017 }
4018 case Intrinsic::part_set: {
4019 // Currently not implemented: just abort
4020 assert(0 && "part_set intrinsic not implemented");
4021 abort();
4022 }
4023 case Intrinsic::bswap:
4024 setValue(&I, DAG.getNode(ISD::BSWAP,
4025 getValue(I.getOperand(1)).getValueType(),
4026 getValue(I.getOperand(1))));
4027 return 0;
4028 case Intrinsic::cttz: {
4029 SDValue Arg = getValue(I.getOperand(1));
4030 MVT Ty = Arg.getValueType();
4031 SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
4032 setValue(&I, result);
4033 return 0;
4034 }
4035 case Intrinsic::ctlz: {
4036 SDValue Arg = getValue(I.getOperand(1));
4037 MVT Ty = Arg.getValueType();
4038 SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
4039 setValue(&I, result);
4040 return 0;
4041 }
4042 case Intrinsic::ctpop: {
4043 SDValue Arg = getValue(I.getOperand(1));
4044 MVT Ty = Arg.getValueType();
4045 SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
4046 setValue(&I, result);
4047 return 0;
4048 }
4049 case Intrinsic::stacksave: {
4050 SDValue Op = getRoot();
4051 SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
4052 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
4053 setValue(&I, Tmp);
4054 DAG.setRoot(Tmp.getValue(1));
4055 return 0;
4056 }
4057 case Intrinsic::stackrestore: {
4058 SDValue Tmp = getValue(I.getOperand(1));
4059 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
4060 return 0;
4061 }
Bill Wendling57344502008-11-18 11:01:33 +00004062 case Intrinsic::stackprotector: {
Bill Wendlingb2a42982008-11-06 02:29:10 +00004063 // Emit code into the DAG to store the stack guard onto the stack.
4064 MachineFunction &MF = DAG.getMachineFunction();
4065 MachineFrameInfo *MFI = MF.getFrameInfo();
4066 MVT PtrTy = TLI.getPointerTy();
4067
Bill Wendlingb7c6ebc2008-11-07 01:23:58 +00004068 SDValue Src = getValue(I.getOperand(1)); // The guard's value.
4069 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
Bill Wendlingb2a42982008-11-06 02:29:10 +00004070
Bill Wendlingb7c6ebc2008-11-07 01:23:58 +00004071 int FI = FuncInfo.StaticAllocaMap[Slot];
Bill Wendlingb2a42982008-11-06 02:29:10 +00004072 MFI->setStackProtectorIndex(FI);
4073
4074 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4075
4076 // Store the stack protector onto the stack.
4077 SDValue Result = DAG.getStore(getRoot(), Src, FIN,
4078 PseudoSourceValue::getFixedStack(FI),
4079 0, true);
4080 setValue(&I, Result);
4081 DAG.setRoot(Result);
4082 return 0;
4083 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004084 case Intrinsic::var_annotation:
4085 // Discard annotate attributes
4086 return 0;
4087
4088 case Intrinsic::init_trampoline: {
4089 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4090
4091 SDValue Ops[6];
4092 Ops[0] = getRoot();
4093 Ops[1] = getValue(I.getOperand(1));
4094 Ops[2] = getValue(I.getOperand(2));
4095 Ops[3] = getValue(I.getOperand(3));
4096 Ops[4] = DAG.getSrcValue(I.getOperand(1));
4097 Ops[5] = DAG.getSrcValue(F);
4098
4099 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
4100 DAG.getNodeValueTypes(TLI.getPointerTy(),
4101 MVT::Other), 2,
4102 Ops, 6);
4103
4104 setValue(&I, Tmp);
4105 DAG.setRoot(Tmp.getValue(1));
4106 return 0;
4107 }
4108
4109 case Intrinsic::gcroot:
4110 if (GFI) {
4111 Value *Alloca = I.getOperand(1);
4112 Constant *TypeMap = cast<Constant>(I.getOperand(2));
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004113
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004114 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4115 GFI->addStackRoot(FI->getIndex(), TypeMap);
4116 }
4117 return 0;
4118
4119 case Intrinsic::gcread:
4120 case Intrinsic::gcwrite:
4121 assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
4122 return 0;
4123
4124 case Intrinsic::flt_rounds: {
4125 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
4126 return 0;
4127 }
4128
4129 case Intrinsic::trap: {
4130 DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
4131 return 0;
4132 }
Bill Wendling7cdc3c82008-11-21 02:03:52 +00004133
Bill Wendlingef375462008-11-21 02:38:44 +00004134 case Intrinsic::uadd_with_overflow:
Bill Wendling74c37652008-12-09 22:08:41 +00004135 return implVisitAluOverflow(I, ISD::UADDO);
4136 case Intrinsic::sadd_with_overflow:
4137 return implVisitAluOverflow(I, ISD::SADDO);
4138 case Intrinsic::usub_with_overflow:
4139 return implVisitAluOverflow(I, ISD::USUBO);
4140 case Intrinsic::ssub_with_overflow:
4141 return implVisitAluOverflow(I, ISD::SSUBO);
4142 case Intrinsic::umul_with_overflow:
4143 return implVisitAluOverflow(I, ISD::UMULO);
4144 case Intrinsic::smul_with_overflow:
4145 return implVisitAluOverflow(I, ISD::SMULO);
Bill Wendling7cdc3c82008-11-21 02:03:52 +00004146
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004147 case Intrinsic::prefetch: {
4148 SDValue Ops[4];
4149 Ops[0] = getRoot();
4150 Ops[1] = getValue(I.getOperand(1));
4151 Ops[2] = getValue(I.getOperand(2));
4152 Ops[3] = getValue(I.getOperand(3));
4153 DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
4154 return 0;
4155 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004156
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004157 case Intrinsic::memory_barrier: {
4158 SDValue Ops[6];
4159 Ops[0] = getRoot();
4160 for (int x = 1; x < 6; ++x)
4161 Ops[x] = getValue(I.getOperand(x));
4162
4163 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
4164 return 0;
4165 }
4166 case Intrinsic::atomic_cmp_swap: {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004167 SDValue Root = getRoot();
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004168 SDValue L =
4169 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP,
4170 getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4171 Root,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004172 getValue(I.getOperand(1)),
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004173 getValue(I.getOperand(2)),
4174 getValue(I.getOperand(3)),
4175 I.getOperand(1));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004176 setValue(&I, L);
4177 DAG.setRoot(L.getValue(1));
4178 return 0;
4179 }
4180 case Intrinsic::atomic_load_add:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004181 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004182 case Intrinsic::atomic_load_sub:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004183 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004184 case Intrinsic::atomic_load_or:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004185 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004186 case Intrinsic::atomic_load_xor:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004187 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004188 case Intrinsic::atomic_load_and:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004189 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004190 case Intrinsic::atomic_load_nand:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004191 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004192 case Intrinsic::atomic_load_max:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004193 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004194 case Intrinsic::atomic_load_min:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004195 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004196 case Intrinsic::atomic_load_umin:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004197 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004198 case Intrinsic::atomic_load_umax:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004199 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004200 case Intrinsic::atomic_swap:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004201 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004202 }
4203}
4204
4205
4206void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
4207 bool IsTailCall,
4208 MachineBasicBlock *LandingPad) {
4209 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4210 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4211 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4212 unsigned BeginLabel = 0, EndLabel = 0;
4213
4214 TargetLowering::ArgListTy Args;
4215 TargetLowering::ArgListEntry Entry;
4216 Args.reserve(CS.arg_size());
4217 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4218 i != e; ++i) {
4219 SDValue ArgNode = getValue(*i);
4220 Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4221
4222 unsigned attrInd = i - CS.arg_begin() + 1;
Devang Patel05988662008-09-25 21:00:45 +00004223 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
4224 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
4225 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4226 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
4227 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
4228 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004229 Entry.Alignment = CS.getParamAlignment(attrInd);
4230 Args.push_back(Entry);
4231 }
4232
4233 if (LandingPad && MMI) {
4234 // Insert a label before the invoke call to mark the try range. This can be
4235 // used to detect deletion of the invoke via the MachineModuleInfo.
4236 BeginLabel = MMI->NextLabelID();
4237 // Both PendingLoads and PendingExports must be flushed here;
4238 // this call might not return.
4239 (void)getRoot();
4240 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
4241 }
4242
4243 std::pair<SDValue,SDValue> Result =
4244 TLI.LowerCallTo(getRoot(), CS.getType(),
Devang Patel05988662008-09-25 21:00:45 +00004245 CS.paramHasAttr(0, Attribute::SExt),
Dale Johannesen86098bd2008-09-26 19:31:26 +00004246 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4247 CS.paramHasAttr(0, Attribute::InReg),
4248 CS.getCallingConv(),
Dan Gohman1937e2f2008-09-16 01:42:28 +00004249 IsTailCall && PerformTailCallOpt,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004250 Callee, Args, DAG);
4251 if (CS.getType() != Type::VoidTy)
4252 setValue(CS.getInstruction(), Result.first);
4253 DAG.setRoot(Result.second);
4254
4255 if (LandingPad && MMI) {
4256 // Insert a label at the end of the invoke call to mark the try range. This
4257 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4258 EndLabel = MMI->NextLabelID();
4259 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
4260
4261 // Inform MachineModuleInfo of range.
4262 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4263 }
4264}
4265
4266
4267void SelectionDAGLowering::visitCall(CallInst &I) {
4268 const char *RenameFn = 0;
4269 if (Function *F = I.getCalledFunction()) {
4270 if (F->isDeclaration()) {
4271 if (unsigned IID = F->getIntrinsicID()) {
4272 RenameFn = visitIntrinsicCall(I, IID);
4273 if (!RenameFn)
4274 return;
4275 }
4276 }
4277
4278 // Check for well-known libc/libm calls. If the function is internal, it
4279 // can't be a library call.
4280 unsigned NameLen = F->getNameLen();
Rafael Espindolabb46f522009-01-15 20:18:42 +00004281 if (!F->hasLocalLinkage() && NameLen) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004282 const char *NameStr = F->getNameStart();
4283 if (NameStr[0] == 'c' &&
4284 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
4285 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
4286 if (I.getNumOperands() == 3 && // Basic sanity checks.
4287 I.getOperand(1)->getType()->isFloatingPoint() &&
4288 I.getType() == I.getOperand(1)->getType() &&
4289 I.getType() == I.getOperand(2)->getType()) {
4290 SDValue LHS = getValue(I.getOperand(1));
4291 SDValue RHS = getValue(I.getOperand(2));
4292 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
4293 LHS, RHS));
4294 return;
4295 }
4296 } else if (NameStr[0] == 'f' &&
4297 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
4298 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
4299 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
4300 if (I.getNumOperands() == 2 && // Basic sanity checks.
4301 I.getOperand(1)->getType()->isFloatingPoint() &&
4302 I.getType() == I.getOperand(1)->getType()) {
4303 SDValue Tmp = getValue(I.getOperand(1));
4304 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
4305 return;
4306 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004307 } else if (NameStr[0] == 's' &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004308 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
4309 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
4310 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
4311 if (I.getNumOperands() == 2 && // Basic sanity checks.
4312 I.getOperand(1)->getType()->isFloatingPoint() &&
4313 I.getType() == I.getOperand(1)->getType()) {
4314 SDValue Tmp = getValue(I.getOperand(1));
4315 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
4316 return;
4317 }
4318 } else if (NameStr[0] == 'c' &&
4319 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
4320 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
4321 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
4322 if (I.getNumOperands() == 2 && // Basic sanity checks.
4323 I.getOperand(1)->getType()->isFloatingPoint() &&
4324 I.getType() == I.getOperand(1)->getType()) {
4325 SDValue Tmp = getValue(I.getOperand(1));
4326 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
4327 return;
4328 }
4329 }
4330 }
4331 } else if (isa<InlineAsm>(I.getOperand(0))) {
4332 visitInlineAsm(&I);
4333 return;
4334 }
4335
4336 SDValue Callee;
4337 if (!RenameFn)
4338 Callee = getValue(I.getOperand(0));
4339 else
Bill Wendling056292f2008-09-16 21:48:12 +00004340 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004341
4342 LowerCallTo(&I, Callee, I.isTailCall());
4343}
4344
4345
4346/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004347/// this value and returns the result as a ValueVT value. This uses
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004348/// Chain/Flag as the input and updates them for the output Chain/Flag.
4349/// If the Flag pointer is NULL, no flag is used.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004350SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004351 SDValue &Chain,
4352 SDValue *Flag) const {
4353 // Assemble the legal parts into the final values.
4354 SmallVector<SDValue, 4> Values(ValueVTs.size());
4355 SmallVector<SDValue, 8> Parts;
4356 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4357 // Copy the legal parts from the registers.
4358 MVT ValueVT = ValueVTs[Value];
4359 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
4360 MVT RegisterVT = RegVTs[Value];
4361
4362 Parts.resize(NumRegs);
4363 for (unsigned i = 0; i != NumRegs; ++i) {
4364 SDValue P;
4365 if (Flag == 0)
4366 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
4367 else {
4368 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
4369 *Flag = P.getValue(2);
4370 }
4371 Chain = P.getValue(1);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004372
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004373 // If the source register was virtual and if we know something about it,
4374 // add an assert node.
4375 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4376 RegisterVT.isInteger() && !RegisterVT.isVector()) {
4377 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4378 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4379 if (FLI.LiveOutRegInfo.size() > SlotNo) {
4380 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004381
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004382 unsigned RegSize = RegisterVT.getSizeInBits();
4383 unsigned NumSignBits = LOI.NumSignBits;
4384 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004385
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004386 // FIXME: We capture more information than the dag can represent. For
4387 // now, just use the tightest assertzext/assertsext possible.
4388 bool isSExt = true;
4389 MVT FromVT(MVT::Other);
4390 if (NumSignBits == RegSize)
4391 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
4392 else if (NumZeroBits >= RegSize-1)
4393 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
4394 else if (NumSignBits > RegSize-8)
4395 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
4396 else if (NumZeroBits >= RegSize-9)
4397 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
4398 else if (NumSignBits > RegSize-16)
Bill Wendling181b6272008-10-19 20:34:04 +00004399 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004400 else if (NumZeroBits >= RegSize-17)
Bill Wendling181b6272008-10-19 20:34:04 +00004401 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004402 else if (NumSignBits > RegSize-32)
Bill Wendling181b6272008-10-19 20:34:04 +00004403 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004404 else if (NumZeroBits >= RegSize-33)
Bill Wendling181b6272008-10-19 20:34:04 +00004405 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004406
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004407 if (FromVT != MVT::Other) {
4408 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
4409 RegisterVT, P, DAG.getValueType(FromVT));
4410
4411 }
4412 }
4413 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004414
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004415 Parts[i] = P;
4416 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004417
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004418 Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT,
4419 ValueVT);
4420 Part += NumRegs;
4421 Parts.clear();
4422 }
4423
Duncan Sandsaaffa052008-12-01 11:41:29 +00004424 return DAG.getNode(ISD::MERGE_VALUES,
4425 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4426 &Values[0], ValueVTs.size());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004427}
4428
4429/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004430/// specified value into the registers specified by this object. This uses
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004431/// Chain/Flag as the input and updates them for the output Chain/Flag.
4432/// If the Flag pointer is NULL, no flag is used.
4433void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
4434 SDValue &Chain, SDValue *Flag) const {
4435 // Get the list of the values's legal parts.
4436 unsigned NumRegs = Regs.size();
4437 SmallVector<SDValue, 8> Parts(NumRegs);
4438 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4439 MVT ValueVT = ValueVTs[Value];
4440 unsigned NumParts = TLI->getNumRegisters(ValueVT);
4441 MVT RegisterVT = RegVTs[Value];
4442
4443 getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value),
4444 &Parts[Part], NumParts, RegisterVT);
4445 Part += NumParts;
4446 }
4447
4448 // Copy the parts into the registers.
4449 SmallVector<SDValue, 8> Chains(NumRegs);
4450 for (unsigned i = 0; i != NumRegs; ++i) {
4451 SDValue Part;
4452 if (Flag == 0)
4453 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
4454 else {
4455 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
4456 *Flag = Part.getValue(1);
4457 }
4458 Chains[i] = Part.getValue(0);
4459 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004460
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004461 if (NumRegs == 1 || Flag)
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004462 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004463 // flagged to it. That is the CopyToReg nodes and the user are considered
4464 // a single scheduling unit. If we create a TokenFactor and return it as
4465 // chain, then the TokenFactor is both a predecessor (operand) of the
4466 // user as well as a successor (the TF operands are flagged to the user).
4467 // c1, f1 = CopyToReg
4468 // c2, f2 = CopyToReg
4469 // c3 = TokenFactor c1, c2
4470 // ...
4471 // = op c3, ..., f2
4472 Chain = Chains[NumRegs-1];
4473 else
4474 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4475}
4476
4477/// AddInlineAsmOperands - Add this value to the specified inlineasm node
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004478/// operand list. This adds the code marker and includes the number of
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004479/// values added into it.
4480void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
4481 std::vector<SDValue> &Ops) const {
4482 MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4483 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
4484 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4485 unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
4486 MVT RegisterVT = RegVTs[Value];
Chris Lattner58f15c42008-10-17 16:21:11 +00004487 for (unsigned i = 0; i != NumRegs; ++i) {
4488 assert(Reg < Regs.size() && "Mismatch in # registers expected");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004489 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
Chris Lattner58f15c42008-10-17 16:21:11 +00004490 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004491 }
4492}
4493
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004494/// isAllocatableRegister - If the specified register is safe to allocate,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004495/// i.e. it isn't a stack pointer or some other special register, return the
4496/// register class for the register. Otherwise, return null.
4497static const TargetRegisterClass *
4498isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4499 const TargetLowering &TLI,
4500 const TargetRegisterInfo *TRI) {
4501 MVT FoundVT = MVT::Other;
4502 const TargetRegisterClass *FoundRC = 0;
4503 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4504 E = TRI->regclass_end(); RCI != E; ++RCI) {
4505 MVT ThisVT = MVT::Other;
4506
4507 const TargetRegisterClass *RC = *RCI;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004508 // If none of the the value types for this register class are valid, we
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004509 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4510 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4511 I != E; ++I) {
4512 if (TLI.isTypeLegal(*I)) {
4513 // If we have already found this register in a different register class,
4514 // choose the one with the largest VT specified. For example, on
4515 // PowerPC, we favor f64 register classes over f32.
4516 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4517 ThisVT = *I;
4518 break;
4519 }
4520 }
4521 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004522
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004523 if (ThisVT == MVT::Other) continue;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004524
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004525 // NOTE: This isn't ideal. In particular, this might allocate the
4526 // frame pointer in functions that need it (due to them not being taken
4527 // out of allocation, because a variable sized allocation hasn't been seen
4528 // yet). This is a slight code pessimization, but should still work.
4529 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4530 E = RC->allocation_order_end(MF); I != E; ++I)
4531 if (*I == Reg) {
4532 // We found a matching register class. Keep looking at others in case
4533 // we find one with larger registers that this physreg is also in.
4534 FoundRC = RC;
4535 FoundVT = ThisVT;
4536 break;
4537 }
4538 }
4539 return FoundRC;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004540}
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004541
4542
4543namespace llvm {
4544/// AsmOperandInfo - This contains information for each constraint that we are
4545/// lowering.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004546struct VISIBILITY_HIDDEN SDISelAsmOperandInfo :
Daniel Dunbarc0c3b9a2008-09-10 04:16:29 +00004547 public TargetLowering::AsmOperandInfo {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004548 /// CallOperand - If this is the result output operand or a clobber
4549 /// this is null, otherwise it is the incoming operand to the CallInst.
4550 /// This gets modified as the asm is processed.
4551 SDValue CallOperand;
4552
4553 /// AssignedRegs - If this is a register or register class operand, this
4554 /// contains the set of register corresponding to the operand.
4555 RegsForValue AssignedRegs;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004556
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004557 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4558 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4559 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004560
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004561 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4562 /// busy in OutputRegs/InputRegs.
4563 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004564 std::set<unsigned> &OutputRegs,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004565 std::set<unsigned> &InputRegs,
4566 const TargetRegisterInfo &TRI) const {
4567 if (isOutReg) {
4568 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4569 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4570 }
4571 if (isInReg) {
4572 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4573 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4574 }
4575 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004576
Chris Lattner81249c92008-10-17 17:05:25 +00004577 /// getCallOperandValMVT - Return the MVT of the Value* that this operand
4578 /// corresponds to. If there is no Value* for this operand, it returns
4579 /// MVT::Other.
4580 MVT getCallOperandValMVT(const TargetLowering &TLI,
4581 const TargetData *TD) const {
4582 if (CallOperandVal == 0) return MVT::Other;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004583
Chris Lattner81249c92008-10-17 17:05:25 +00004584 if (isa<BasicBlock>(CallOperandVal))
4585 return TLI.getPointerTy();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004586
Chris Lattner81249c92008-10-17 17:05:25 +00004587 const llvm::Type *OpTy = CallOperandVal->getType();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004588
Chris Lattner81249c92008-10-17 17:05:25 +00004589 // If this is an indirect operand, the operand is a pointer to the
4590 // accessed type.
4591 if (isIndirect)
4592 OpTy = cast<PointerType>(OpTy)->getElementType();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004593
Chris Lattner81249c92008-10-17 17:05:25 +00004594 // If OpTy is not a single value, it may be a struct/union that we
4595 // can tile with integers.
4596 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4597 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4598 switch (BitSize) {
4599 default: break;
4600 case 1:
4601 case 8:
4602 case 16:
4603 case 32:
4604 case 64:
Chris Lattnercfc14c12008-10-17 19:59:51 +00004605 case 128:
Chris Lattner81249c92008-10-17 17:05:25 +00004606 OpTy = IntegerType::get(BitSize);
4607 break;
4608 }
4609 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004610
Chris Lattner81249c92008-10-17 17:05:25 +00004611 return TLI.getValueType(OpTy, true);
4612 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004613
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004614private:
4615 /// MarkRegAndAliases - Mark the specified register and all aliases in the
4616 /// specified set.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004617 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004618 const TargetRegisterInfo &TRI) {
4619 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4620 Regs.insert(Reg);
4621 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4622 for (; *Aliases; ++Aliases)
4623 Regs.insert(*Aliases);
4624 }
4625};
4626} // end llvm namespace.
4627
4628
4629/// GetRegistersForValue - Assign registers (virtual or physical) for the
4630/// specified operand. We prefer to assign virtual registers, to allow the
4631/// register allocator handle the assignment process. However, if the asm uses
4632/// features that we can't model on machineinstrs, we have SDISel do the
4633/// allocation. This produces generally horrible, but correct, code.
4634///
4635/// OpInfo describes the operand.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004636/// Input and OutputRegs are the set of already allocated physical registers.
4637///
4638void SelectionDAGLowering::
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004639GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004640 std::set<unsigned> &OutputRegs,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004641 std::set<unsigned> &InputRegs) {
4642 // Compute whether this value requires an input register, an output register,
4643 // or both.
4644 bool isOutReg = false;
4645 bool isInReg = false;
4646 switch (OpInfo.Type) {
4647 case InlineAsm::isOutput:
4648 isOutReg = true;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004649
4650 // If there is an input constraint that matches this, we need to reserve
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004651 // the input register so no other inputs allocate to it.
Chris Lattner6bdcda32008-10-17 16:47:46 +00004652 isInReg = OpInfo.hasMatchingInput();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004653 break;
4654 case InlineAsm::isInput:
4655 isInReg = true;
4656 isOutReg = false;
4657 break;
4658 case InlineAsm::isClobber:
4659 isOutReg = true;
4660 isInReg = true;
4661 break;
4662 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004663
4664
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004665 MachineFunction &MF = DAG.getMachineFunction();
4666 SmallVector<unsigned, 4> Regs;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004667
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004668 // If this is a constraint for a single physreg, or a constraint for a
4669 // register class, find it.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004670 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004671 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4672 OpInfo.ConstraintVT);
4673
4674 unsigned NumRegs = 1;
Chris Lattner01426e12008-10-21 00:45:36 +00004675 if (OpInfo.ConstraintVT != MVT::Other) {
4676 // If this is a FP input in an integer register (or visa versa) insert a bit
4677 // cast of the input value. More generally, handle any case where the input
4678 // value disagrees with the register class we plan to stick this in.
4679 if (OpInfo.Type == InlineAsm::isInput &&
4680 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
4681 // Try to convert to the first MVT that the reg class contains. If the
4682 // types are identical size, use a bitcast to convert (e.g. two differing
4683 // vector types).
4684 MVT RegVT = *PhysReg.second->vt_begin();
4685 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
4686 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT,
4687 OpInfo.CallOperand);
4688 OpInfo.ConstraintVT = RegVT;
4689 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
4690 // If the input is a FP value and we want it in FP registers, do a
4691 // bitcast to the corresponding integer type. This turns an f64 value
4692 // into i64, which can be passed with two i32 values on a 32-bit
4693 // machine.
4694 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
4695 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT,
4696 OpInfo.CallOperand);
4697 OpInfo.ConstraintVT = RegVT;
4698 }
4699 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004700
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004701 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
Chris Lattner01426e12008-10-21 00:45:36 +00004702 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004703
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004704 MVT RegVT;
4705 MVT ValueVT = OpInfo.ConstraintVT;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004706
4707 // If this is a constraint for a specific physical register, like {r17},
4708 // assign it now.
4709 if (PhysReg.first) {
4710 if (OpInfo.ConstraintVT == MVT::Other)
4711 ValueVT = *PhysReg.second->vt_begin();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004712
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004713 // Get the actual register value type. This is important, because the user
4714 // may have asked for (e.g.) the AX register in i32 type. We need to
4715 // remember that AX is actually i16 to get the right extension.
4716 RegVT = *PhysReg.second->vt_begin();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004717
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004718 // This is a explicit reference to a physical register.
4719 Regs.push_back(PhysReg.first);
4720
4721 // If this is an expanded reference, add the rest of the regs to Regs.
4722 if (NumRegs != 1) {
4723 TargetRegisterClass::iterator I = PhysReg.second->begin();
4724 for (; *I != PhysReg.first; ++I)
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004725 assert(I != PhysReg.second->end() && "Didn't find reg!");
4726
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004727 // Already added the first reg.
4728 --NumRegs; ++I;
4729 for (; NumRegs; --NumRegs, ++I) {
4730 assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4731 Regs.push_back(*I);
4732 }
4733 }
4734 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4735 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4736 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4737 return;
4738 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004739
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004740 // Otherwise, if this was a reference to an LLVM register class, create vregs
4741 // for this reference.
4742 std::vector<unsigned> RegClassRegs;
4743 const TargetRegisterClass *RC = PhysReg.second;
4744 if (RC) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004745 // If this is a tied register, our regalloc doesn't know how to maintain
Chris Lattner58f15c42008-10-17 16:21:11 +00004746 // the constraint, so we have to pick a register to pin the input/output to.
4747 // If it isn't a matched constraint, go ahead and create vreg and let the
4748 // regalloc do its thing.
Chris Lattner6bdcda32008-10-17 16:47:46 +00004749 if (!OpInfo.hasMatchingInput()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004750 RegVT = *PhysReg.second->vt_begin();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004751 if (OpInfo.ConstraintVT == MVT::Other)
4752 ValueVT = RegVT;
4753
4754 // Create the appropriate number of virtual registers.
4755 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4756 for (; NumRegs; --NumRegs)
4757 Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004758
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004759 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4760 return;
4761 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004762
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004763 // Otherwise, we can't allocate it. Let the code below figure out how to
4764 // maintain these constraints.
4765 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004766
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004767 } else {
4768 // This is a reference to a register class that doesn't directly correspond
4769 // to an LLVM register class. Allocate NumRegs consecutive, available,
4770 // registers from the class.
4771 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4772 OpInfo.ConstraintVT);
4773 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004774
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004775 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4776 unsigned NumAllocated = 0;
4777 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4778 unsigned Reg = RegClassRegs[i];
4779 // See if this register is available.
4780 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
4781 (isInReg && InputRegs.count(Reg))) { // Already used.
4782 // Make sure we find consecutive registers.
4783 NumAllocated = 0;
4784 continue;
4785 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004786
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004787 // Check to see if this register is allocatable (i.e. don't give out the
4788 // stack pointer).
4789 if (RC == 0) {
4790 RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4791 if (!RC) { // Couldn't allocate this register.
4792 // Reset NumAllocated to make sure we return consecutive registers.
4793 NumAllocated = 0;
4794 continue;
4795 }
4796 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004797
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004798 // Okay, this register is good, we can use it.
4799 ++NumAllocated;
4800
4801 // If we allocated enough consecutive registers, succeed.
4802 if (NumAllocated == NumRegs) {
4803 unsigned RegStart = (i-NumAllocated)+1;
4804 unsigned RegEnd = i+1;
4805 // Mark all of the allocated registers used.
4806 for (unsigned i = RegStart; i != RegEnd; ++i)
4807 Regs.push_back(RegClassRegs[i]);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004808
4809 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004810 OpInfo.ConstraintVT);
4811 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4812 return;
4813 }
4814 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004815
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004816 // Otherwise, we couldn't allocate enough registers for this.
4817}
4818
Evan Chengda43bcf2008-09-24 00:05:32 +00004819/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
4820/// processed uses a memory 'm' constraint.
4821static bool
4822hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
Dan Gohmane9530ec2009-01-15 16:58:17 +00004823 const TargetLowering &TLI) {
Evan Chengda43bcf2008-09-24 00:05:32 +00004824 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
4825 InlineAsm::ConstraintInfo &CI = CInfos[i];
4826 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
4827 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
4828 if (CType == TargetLowering::C_Memory)
4829 return true;
4830 }
4831 }
4832
4833 return false;
4834}
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004835
4836/// visitInlineAsm - Handle a call to an InlineAsm object.
4837///
4838void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4839 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4840
4841 /// ConstraintOperands - Information about all of the constraints.
4842 std::vector<SDISelAsmOperandInfo> ConstraintOperands;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004843
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004844 SDValue Chain = getRoot();
4845 SDValue Flag;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004846
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004847 std::set<unsigned> OutputRegs, InputRegs;
4848
4849 // Do a prepass over the constraints, canonicalizing them, and building up the
4850 // ConstraintOperands list.
4851 std::vector<InlineAsm::ConstraintInfo>
4852 ConstraintInfos = IA->ParseConstraints();
4853
Evan Chengda43bcf2008-09-24 00:05:32 +00004854 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004855
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004856 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4857 unsigned ResNo = 0; // ResNo - The result number of the next output.
4858 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4859 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4860 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004861
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004862 MVT OpVT = MVT::Other;
4863
4864 // Compute the value type for each operand.
4865 switch (OpInfo.Type) {
4866 case InlineAsm::isOutput:
4867 // Indirect outputs just consume an argument.
4868 if (OpInfo.isIndirect) {
4869 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4870 break;
4871 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004872
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004873 // The return value of the call is this value. As such, there is no
4874 // corresponding argument.
4875 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4876 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4877 OpVT = TLI.getValueType(STy->getElementType(ResNo));
4878 } else {
4879 assert(ResNo == 0 && "Asm only has one result!");
4880 OpVT = TLI.getValueType(CS.getType());
4881 }
4882 ++ResNo;
4883 break;
4884 case InlineAsm::isInput:
4885 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4886 break;
4887 case InlineAsm::isClobber:
4888 // Nothing to do.
4889 break;
4890 }
4891
4892 // If this is an input or an indirect output, process the call argument.
4893 // BasicBlocks are labels, currently appearing only in asm's.
4894 if (OpInfo.CallOperandVal) {
Chris Lattner81249c92008-10-17 17:05:25 +00004895 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004896 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
Chris Lattner81249c92008-10-17 17:05:25 +00004897 } else {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004898 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004899 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004900
Chris Lattner81249c92008-10-17 17:05:25 +00004901 OpVT = OpInfo.getCallOperandValMVT(TLI, TD);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004902 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004903
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004904 OpInfo.ConstraintVT = OpVT;
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004905 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004906
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004907 // Second pass over the constraints: compute which constraint option to use
4908 // and assign registers to constraints that want a specific physreg.
4909 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4910 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004911
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004912 // If this is an output operand with a matching input operand, look up the
Evan Cheng09dc9c02008-12-16 18:21:39 +00004913 // matching input. If their types mismatch, e.g. one is an integer, the
4914 // other is floating point, or their sizes are different, flag it as an
4915 // error.
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004916 if (OpInfo.hasMatchingInput()) {
4917 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4918 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
Evan Cheng09dc9c02008-12-16 18:21:39 +00004919 if ((OpInfo.ConstraintVT.isInteger() !=
4920 Input.ConstraintVT.isInteger()) ||
4921 (OpInfo.ConstraintVT.getSizeInBits() !=
4922 Input.ConstraintVT.getSizeInBits())) {
4923 cerr << "Unsupported asm: input constraint with a matching output "
4924 << "constraint of incompatible type!\n";
4925 exit(1);
4926 }
4927 Input.ConstraintVT = OpInfo.ConstraintVT;
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004928 }
4929 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004930
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004931 // Compute the constraint code and ConstraintType to use.
Evan Chengda43bcf2008-09-24 00:05:32 +00004932 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004933
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004934 // If this is a memory input, and if the operand is not indirect, do what we
4935 // need to to provide an address for the memory input.
4936 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4937 !OpInfo.isIndirect) {
4938 assert(OpInfo.Type == InlineAsm::isInput &&
4939 "Can only indirectify direct input operands!");
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004940
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004941 // Memory operands really want the address of the value. If we don't have
4942 // an indirect input, put it in the constpool if we can, otherwise spill
4943 // it to a stack slot.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004944
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004945 // If the operand is a float, integer, or vector constant, spill to a
4946 // constant pool entry to get its address.
4947 Value *OpVal = OpInfo.CallOperandVal;
4948 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4949 isa<ConstantVector>(OpVal)) {
4950 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4951 TLI.getPointerTy());
4952 } else {
4953 // Otherwise, create a stack slot and emit a store to it before the
4954 // asm.
4955 const Type *Ty = OpVal->getType();
Duncan Sandsceb4d1a2009-01-12 20:38:59 +00004956 uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004957 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4958 MachineFunction &MF = DAG.getMachineFunction();
4959 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4960 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4961 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4962 OpInfo.CallOperand = StackSlot;
4963 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004964
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004965 // There is no longer a Value* corresponding to this operand.
4966 OpInfo.CallOperandVal = 0;
4967 // It is now an indirect operand.
4968 OpInfo.isIndirect = true;
4969 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004970
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004971 // If this constraint is for a specific register, allocate it before
4972 // anything else.
4973 if (OpInfo.ConstraintType == TargetLowering::C_Register)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004974 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004975 }
4976 ConstraintInfos.clear();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004977
4978
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004979 // Second pass - Loop over all of the operands, assigning virtual or physregs
Chris Lattner58f15c42008-10-17 16:21:11 +00004980 // to register class operands.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004981 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4982 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004983
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004984 // C_Register operands have already been allocated, Other/Memory don't need
4985 // to be.
4986 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004987 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004988 }
4989
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004990 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4991 std::vector<SDValue> AsmNodeOperands;
4992 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
4993 AsmNodeOperands.push_back(
Bill Wendling056292f2008-09-16 21:48:12 +00004994 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00004995
4996
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004997 // Loop over all of the inputs, copying the operand values into the
4998 // appropriate registers and processing the output regs.
4999 RegsForValue RetValRegs;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005000
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005001 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5002 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005003
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005004 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5005 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5006
5007 switch (OpInfo.Type) {
5008 case InlineAsm::isOutput: {
5009 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5010 OpInfo.ConstraintType != TargetLowering::C_Register) {
5011 // Memory output, or 'other' output (e.g. 'X' constraint).
5012 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5013
5014 // Add information to the INLINEASM node to know about this output.
Dale Johannesen86b49f82008-09-24 01:07:17 +00005015 unsigned ResOpType = 4/*MEM*/ | (1<<3);
5016 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005017 TLI.getPointerTy()));
5018 AsmNodeOperands.push_back(OpInfo.CallOperand);
5019 break;
5020 }
5021
5022 // Otherwise, this is a register or register class output.
5023
5024 // Copy the output from the appropriate register. Find a register that
5025 // we can use.
5026 if (OpInfo.AssignedRegs.Regs.empty()) {
5027 cerr << "Couldn't allocate output reg for constraint '"
5028 << OpInfo.ConstraintCode << "'!\n";
5029 exit(1);
5030 }
5031
5032 // If this is an indirect operand, store through the pointer after the
5033 // asm.
5034 if (OpInfo.isIndirect) {
5035 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5036 OpInfo.CallOperandVal));
5037 } else {
5038 // This is the result value of the call.
5039 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
5040 // Concatenate this output onto the outputs list.
5041 RetValRegs.append(OpInfo.AssignedRegs);
5042 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005043
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005044 // Add information to the INLINEASM node to know that this register is
5045 // set.
Dale Johannesen913d3df2008-09-12 17:49:03 +00005046 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5047 6 /* EARLYCLOBBER REGDEF */ :
5048 2 /* REGDEF */ ,
5049 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005050 break;
5051 }
5052 case InlineAsm::isInput: {
5053 SDValue InOperandVal = OpInfo.CallOperand;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005054
Chris Lattner6bdcda32008-10-17 16:47:46 +00005055 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005056 // If this is required to match an output register we have already set,
5057 // just use its register.
Chris Lattner58f15c42008-10-17 16:21:11 +00005058 unsigned OperandNo = OpInfo.getMatchedOperand();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005059
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005060 // Scan until we find the definition we already emitted of this operand.
5061 // When we find it, create a RegsForValue operand.
5062 unsigned CurOp = 2; // The first operand.
5063 for (; OperandNo; --OperandNo) {
5064 // Advance to the next operand.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005065 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00005066 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005067 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
Dale Johannesen913d3df2008-09-12 17:49:03 +00005068 (NumOps & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
Dale Johannesen86b49f82008-09-24 01:07:17 +00005069 (NumOps & 7) == 4 /*MEM*/) &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005070 "Skipped past definitions?");
5071 CurOp += (NumOps>>3)+1;
5072 }
5073
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005074 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00005075 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005076 if ((NumOps & 7) == 2 /*REGDEF*/
Dale Johannesen913d3df2008-09-12 17:49:03 +00005077 || (NumOps & 7) == 6 /* EARLYCLOBBER REGDEF */) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005078 // Add NumOps>>3 registers to MatchedRegs.
5079 RegsForValue MatchedRegs;
5080 MatchedRegs.TLI = &TLI;
5081 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5082 MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
5083 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
5084 unsigned Reg =
5085 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
5086 MatchedRegs.Regs.push_back(Reg);
5087 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005088
5089 // Use the produced MatchedRegs object to
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005090 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
Dale Johannesen86b49f82008-09-24 01:07:17 +00005091 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005092 break;
5093 } else {
Dale Johannesen86b49f82008-09-24 01:07:17 +00005094 assert(((NumOps & 7) == 4) && "Unknown matching constraint!");
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005095 assert((NumOps >> 3) == 1 && "Unexpected number of operands");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005096 // Add information to the INLINEASM node to know about this input.
Dale Johannesen91aac102008-09-17 21:13:11 +00005097 AsmNodeOperands.push_back(DAG.getTargetConstant(NumOps,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005098 TLI.getPointerTy()));
5099 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5100 break;
5101 }
5102 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005103
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005104 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005105 assert(!OpInfo.isIndirect &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005106 "Don't know how to handle indirect other inputs yet!");
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005107
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005108 std::vector<SDValue> Ops;
5109 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
Evan Chengda43bcf2008-09-24 00:05:32 +00005110 hasMemory, Ops, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005111 if (Ops.empty()) {
5112 cerr << "Invalid operand for inline asm constraint '"
5113 << OpInfo.ConstraintCode << "'!\n";
5114 exit(1);
5115 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005116
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005117 // Add information to the INLINEASM node to know about this input.
5118 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005119 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005120 TLI.getPointerTy()));
5121 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5122 break;
5123 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5124 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5125 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5126 "Memory operands expect pointer values");
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005127
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005128 // Add information to the INLINEASM node to know about this input.
Dale Johannesen86b49f82008-09-24 01:07:17 +00005129 unsigned ResOpType = 4/*MEM*/ | (1<<3);
5130 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005131 TLI.getPointerTy()));
5132 AsmNodeOperands.push_back(InOperandVal);
5133 break;
5134 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005135
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005136 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5137 OpInfo.ConstraintType == TargetLowering::C_Register) &&
5138 "Unknown constraint type!");
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005139 assert(!OpInfo.isIndirect &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005140 "Don't know how to handle indirect register inputs yet!");
5141
5142 // Copy the input into the appropriate registers.
Evan Chengaa765b82008-09-25 00:14:04 +00005143 if (OpInfo.AssignedRegs.Regs.empty()) {
5144 cerr << "Couldn't allocate output reg for constraint '"
5145 << OpInfo.ConstraintCode << "'!\n";
5146 exit(1);
5147 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005148
5149 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005150
Dale Johannesen86b49f82008-09-24 01:07:17 +00005151 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/,
5152 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005153 break;
5154 }
5155 case InlineAsm::isClobber: {
5156 // Add the clobbered value to the operand list, so that the register
5157 // allocator is aware that the physreg got clobbered.
5158 if (!OpInfo.AssignedRegs.Regs.empty())
Dale Johannesen91aac102008-09-17 21:13:11 +00005159 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5160 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005161 break;
5162 }
5163 }
5164 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005165
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005166 // Finish up input operands.
5167 AsmNodeOperands[0] = Chain;
5168 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005169
5170 Chain = DAG.getNode(ISD::INLINEASM,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005171 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
5172 &AsmNodeOperands[0], AsmNodeOperands.size());
5173 Flag = Chain.getValue(1);
5174
5175 // If this asm returns a register value, copy the result from that register
5176 // and set it as the value of the call.
5177 if (!RetValRegs.Regs.empty()) {
5178 SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005179
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005180 // FIXME: Why don't we do this for inline asms with MRVs?
5181 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5182 MVT ResultType = TLI.getValueType(CS.getType());
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005183
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005184 // If any of the results of the inline asm is a vector, it may have the
5185 // wrong width/num elts. This can happen for register classes that can
5186 // contain multiple different value types. The preg or vreg allocated may
5187 // not have the same VT as was expected. Convert it to the right type
5188 // with bit_convert.
5189 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5190 Val = DAG.getNode(ISD::BIT_CONVERT, ResultType, Val);
Dan Gohman95915732008-10-18 01:03:45 +00005191
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005192 } else if (ResultType != Val.getValueType() &&
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005193 ResultType.isInteger() && Val.getValueType().isInteger()) {
5194 // If a result value was tied to an input value, the computed result may
5195 // have a wider width than the expected result. Extract the relevant
5196 // portion.
5197 Val = DAG.getNode(ISD::TRUNCATE, ResultType, Val);
Dan Gohman95915732008-10-18 01:03:45 +00005198 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005199
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005200 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
Chris Lattner0c526442008-10-17 17:52:49 +00005201 }
Dan Gohman95915732008-10-18 01:03:45 +00005202
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005203 setValue(CS.getInstruction(), Val);
5204 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005205
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005206 std::vector<std::pair<SDValue, Value*> > StoresToEmit;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005207
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005208 // Process indirect outputs, first output all of the flagged copies out of
5209 // physregs.
5210 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5211 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5212 Value *Ptr = IndirectStoresToEmit[i].second;
5213 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
5214 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5215 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005216
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005217 // Emit the non-flagged stores from the physregs.
5218 SmallVector<SDValue, 8> OutChains;
5219 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
5220 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
5221 getValue(StoresToEmit[i].second),
5222 StoresToEmit[i].second, 0));
5223 if (!OutChains.empty())
5224 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5225 &OutChains[0], OutChains.size());
5226 DAG.setRoot(Chain);
5227}
5228
5229
5230void SelectionDAGLowering::visitMalloc(MallocInst &I) {
5231 SDValue Src = getValue(I.getOperand(0));
5232
5233 MVT IntPtr = TLI.getPointerTy();
5234
5235 if (IntPtr.bitsLT(Src.getValueType()))
5236 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
5237 else if (IntPtr.bitsGT(Src.getValueType()))
5238 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
5239
5240 // Scale the source by the type size.
Duncan Sandsceb4d1a2009-01-12 20:38:59 +00005241 uint64_t ElementSize = TD->getTypePaddedSize(I.getType()->getElementType());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005242 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
5243 Src, DAG.getIntPtrConstant(ElementSize));
5244
5245 TargetLowering::ArgListTy Args;
5246 TargetLowering::ArgListEntry Entry;
5247 Entry.Node = Src;
5248 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5249 Args.push_back(Entry);
5250
5251 std::pair<SDValue,SDValue> Result =
Dale Johannesen86098bd2008-09-26 19:31:26 +00005252 TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, false,
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005253 CallingConv::C, PerformTailCallOpt,
Dale Johannesen86098bd2008-09-26 19:31:26 +00005254 DAG.getExternalSymbol("malloc", IntPtr),
Dan Gohman1937e2f2008-09-16 01:42:28 +00005255 Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005256 setValue(&I, Result.first); // Pointers always fit in registers
5257 DAG.setRoot(Result.second);
5258}
5259
5260void SelectionDAGLowering::visitFree(FreeInst &I) {
5261 TargetLowering::ArgListTy Args;
5262 TargetLowering::ArgListEntry Entry;
5263 Entry.Node = getValue(I.getOperand(0));
5264 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5265 Args.push_back(Entry);
5266 MVT IntPtr = TLI.getPointerTy();
5267 std::pair<SDValue,SDValue> Result =
Dale Johannesen86098bd2008-09-26 19:31:26 +00005268 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, false,
Dan Gohman1937e2f2008-09-16 01:42:28 +00005269 CallingConv::C, PerformTailCallOpt,
Bill Wendling056292f2008-09-16 21:48:12 +00005270 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005271 DAG.setRoot(Result.second);
5272}
5273
5274void SelectionDAGLowering::visitVAStart(CallInst &I) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005275 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
5276 getValue(I.getOperand(1)),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005277 DAG.getSrcValue(I.getOperand(1))));
5278}
5279
5280void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
5281 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
5282 getValue(I.getOperand(0)),
5283 DAG.getSrcValue(I.getOperand(0)));
5284 setValue(&I, V);
5285 DAG.setRoot(V.getValue(1));
5286}
5287
5288void SelectionDAGLowering::visitVAEnd(CallInst &I) {
5289 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005290 getValue(I.getOperand(1)),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005291 DAG.getSrcValue(I.getOperand(1))));
5292}
5293
5294void SelectionDAGLowering::visitVACopy(CallInst &I) {
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005295 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
5296 getValue(I.getOperand(1)),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005297 getValue(I.getOperand(2)),
5298 DAG.getSrcValue(I.getOperand(1)),
5299 DAG.getSrcValue(I.getOperand(2))));
5300}
5301
5302/// TargetLowering::LowerArguments - This is the default LowerArguments
5303/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005304/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005305/// integrated into SDISel.
5306void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
5307 SmallVectorImpl<SDValue> &ArgValues) {
5308 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
5309 SmallVector<SDValue, 3+16> Ops;
5310 Ops.push_back(DAG.getRoot());
5311 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
5312 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
5313
5314 // Add one result value for each formal argument.
5315 SmallVector<MVT, 16> RetVals;
5316 unsigned j = 1;
5317 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5318 I != E; ++I, ++j) {
5319 SmallVector<MVT, 4> ValueVTs;
5320 ComputeValueVTs(*this, I->getType(), ValueVTs);
5321 for (unsigned Value = 0, NumValues = ValueVTs.size();
5322 Value != NumValues; ++Value) {
5323 MVT VT = ValueVTs[Value];
5324 const Type *ArgTy = VT.getTypeForMVT();
5325 ISD::ArgFlagsTy Flags;
5326 unsigned OriginalAlignment =
5327 getTargetData()->getABITypeAlignment(ArgTy);
5328
Devang Patel05988662008-09-25 21:00:45 +00005329 if (F.paramHasAttr(j, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005330 Flags.setZExt();
Devang Patel05988662008-09-25 21:00:45 +00005331 if (F.paramHasAttr(j, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005332 Flags.setSExt();
Devang Patel05988662008-09-25 21:00:45 +00005333 if (F.paramHasAttr(j, Attribute::InReg))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005334 Flags.setInReg();
Devang Patel05988662008-09-25 21:00:45 +00005335 if (F.paramHasAttr(j, Attribute::StructRet))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005336 Flags.setSRet();
Devang Patel05988662008-09-25 21:00:45 +00005337 if (F.paramHasAttr(j, Attribute::ByVal)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005338 Flags.setByVal();
5339 const PointerType *Ty = cast<PointerType>(I->getType());
5340 const Type *ElementTy = Ty->getElementType();
5341 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
Duncan Sandsceb4d1a2009-01-12 20:38:59 +00005342 unsigned FrameSize = getTargetData()->getTypePaddedSize(ElementTy);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005343 // For ByVal, alignment should be passed from FE. BE will guess if
5344 // this info is not there but there are cases it cannot get right.
5345 if (F.getParamAlignment(j))
5346 FrameAlign = F.getParamAlignment(j);
5347 Flags.setByValAlign(FrameAlign);
5348 Flags.setByValSize(FrameSize);
5349 }
Devang Patel05988662008-09-25 21:00:45 +00005350 if (F.paramHasAttr(j, Attribute::Nest))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005351 Flags.setNest();
5352 Flags.setOrigAlign(OriginalAlignment);
5353
5354 MVT RegisterVT = getRegisterType(VT);
5355 unsigned NumRegs = getNumRegisters(VT);
5356 for (unsigned i = 0; i != NumRegs; ++i) {
5357 RetVals.push_back(RegisterVT);
5358 ISD::ArgFlagsTy MyFlags = Flags;
5359 if (NumRegs > 1 && i == 0)
5360 MyFlags.setSplit();
5361 // if it isn't first piece, alignment must be 1
5362 else if (i > 0)
5363 MyFlags.setOrigAlign(1);
5364 Ops.push_back(DAG.getArgFlags(MyFlags));
5365 }
5366 }
5367 }
5368
5369 RetVals.push_back(MVT::Other);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005370
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005371 // Create the node.
5372 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
5373 DAG.getVTList(&RetVals[0], RetVals.size()),
5374 &Ops[0], Ops.size()).getNode();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005375
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005376 // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
5377 // allows exposing the loads that may be part of the argument access to the
5378 // first DAGCombiner pass.
5379 SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005380
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005381 // The number of results should match up, except that the lowered one may have
5382 // an extra flag result.
5383 assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
5384 (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
5385 TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
5386 && "Lowering produced unexpected number of results!");
5387
5388 // The FORMAL_ARGUMENTS node itself is likely no longer needed.
5389 if (Result != TmpRes.getNode() && Result->use_empty()) {
5390 HandleSDNode Dummy(DAG.getRoot());
5391 DAG.RemoveDeadNode(Result);
5392 }
5393
5394 Result = TmpRes.getNode();
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005395
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005396 unsigned NumArgRegs = Result->getNumValues() - 1;
5397 DAG.setRoot(SDValue(Result, NumArgRegs));
5398
5399 // Set up the return result vector.
5400 unsigned i = 0;
5401 unsigned Idx = 1;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005402 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005403 ++I, ++Idx) {
5404 SmallVector<MVT, 4> ValueVTs;
5405 ComputeValueVTs(*this, I->getType(), ValueVTs);
5406 for (unsigned Value = 0, NumValues = ValueVTs.size();
5407 Value != NumValues; ++Value) {
5408 MVT VT = ValueVTs[Value];
5409 MVT PartVT = getRegisterType(VT);
5410
5411 unsigned NumParts = getNumRegisters(VT);
5412 SmallVector<SDValue, 4> Parts(NumParts);
5413 for (unsigned j = 0; j != NumParts; ++j)
5414 Parts[j] = SDValue(Result, i++);
5415
5416 ISD::NodeType AssertOp = ISD::DELETED_NODE;
Devang Patel05988662008-09-25 21:00:45 +00005417 if (F.paramHasAttr(Idx, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005418 AssertOp = ISD::AssertSext;
Devang Patel05988662008-09-25 21:00:45 +00005419 else if (F.paramHasAttr(Idx, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005420 AssertOp = ISD::AssertZext;
5421
5422 ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
5423 AssertOp));
5424 }
5425 }
5426 assert(i == NumArgRegs && "Argument register count mismatch!");
5427}
5428
5429
5430/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5431/// implementation, which just inserts an ISD::CALL node, which is later custom
5432/// lowered by the target to something concrete. FIXME: When all targets are
5433/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
5434std::pair<SDValue, SDValue>
5435TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5436 bool RetSExt, bool RetZExt, bool isVarArg,
Dale Johannesen86098bd2008-09-26 19:31:26 +00005437 bool isInreg,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005438 unsigned CallingConv, bool isTailCall,
5439 SDValue Callee,
5440 ArgListTy &Args, SelectionDAG &DAG) {
Dan Gohman1937e2f2008-09-16 01:42:28 +00005441 assert((!isTailCall || PerformTailCallOpt) &&
5442 "isTailCall set when tail-call optimizations are disabled!");
5443
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005444 SmallVector<SDValue, 32> Ops;
5445 Ops.push_back(Chain); // Op#0 - Chain
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005446 Ops.push_back(Callee);
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005447
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005448 // Handle all of the outgoing arguments.
5449 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5450 SmallVector<MVT, 4> ValueVTs;
5451 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5452 for (unsigned Value = 0, NumValues = ValueVTs.size();
5453 Value != NumValues; ++Value) {
5454 MVT VT = ValueVTs[Value];
5455 const Type *ArgTy = VT.getTypeForMVT();
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005456 SDValue Op = SDValue(Args[i].Node.getNode(),
5457 Args[i].Node.getResNo() + Value);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005458 ISD::ArgFlagsTy Flags;
5459 unsigned OriginalAlignment =
5460 getTargetData()->getABITypeAlignment(ArgTy);
5461
5462 if (Args[i].isZExt)
5463 Flags.setZExt();
5464 if (Args[i].isSExt)
5465 Flags.setSExt();
5466 if (Args[i].isInReg)
5467 Flags.setInReg();
5468 if (Args[i].isSRet)
5469 Flags.setSRet();
5470 if (Args[i].isByVal) {
5471 Flags.setByVal();
5472 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5473 const Type *ElementTy = Ty->getElementType();
5474 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
Duncan Sandsceb4d1a2009-01-12 20:38:59 +00005475 unsigned FrameSize = getTargetData()->getTypePaddedSize(ElementTy);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005476 // For ByVal, alignment should come from FE. BE will guess if this
5477 // info is not there but there are cases it cannot get right.
5478 if (Args[i].Alignment)
5479 FrameAlign = Args[i].Alignment;
5480 Flags.setByValAlign(FrameAlign);
5481 Flags.setByValSize(FrameSize);
5482 }
5483 if (Args[i].isNest)
5484 Flags.setNest();
5485 Flags.setOrigAlign(OriginalAlignment);
5486
5487 MVT PartVT = getRegisterType(VT);
5488 unsigned NumParts = getNumRegisters(VT);
5489 SmallVector<SDValue, 4> Parts(NumParts);
5490 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5491
5492 if (Args[i].isSExt)
5493 ExtendKind = ISD::SIGN_EXTEND;
5494 else if (Args[i].isZExt)
5495 ExtendKind = ISD::ZERO_EXTEND;
5496
5497 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
5498
5499 for (unsigned i = 0; i != NumParts; ++i) {
5500 // if it isn't first piece, alignment must be 1
5501 ISD::ArgFlagsTy MyFlags = Flags;
5502 if (NumParts > 1 && i == 0)
5503 MyFlags.setSplit();
5504 else if (i != 0)
5505 MyFlags.setOrigAlign(1);
5506
5507 Ops.push_back(Parts[i]);
5508 Ops.push_back(DAG.getArgFlags(MyFlags));
5509 }
5510 }
5511 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005512
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005513 // Figure out the result value types. We start by making a list of
5514 // the potentially illegal return value types.
5515 SmallVector<MVT, 4> LoweredRetTys;
5516 SmallVector<MVT, 4> RetTys;
5517 ComputeValueVTs(*this, RetTy, RetTys);
5518
5519 // Then we translate that to a list of legal types.
5520 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5521 MVT VT = RetTys[I];
5522 MVT RegisterVT = getRegisterType(VT);
5523 unsigned NumRegs = getNumRegisters(VT);
5524 for (unsigned i = 0; i != NumRegs; ++i)
5525 LoweredRetTys.push_back(RegisterVT);
5526 }
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005527
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005528 LoweredRetTys.push_back(MVT::Other); // Always has a chain.
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005529
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005530 // Create the CALL node.
Dale Johannesen86098bd2008-09-26 19:31:26 +00005531 SDValue Res = DAG.getCall(CallingConv, isVarArg, isTailCall, isInreg,
Dan Gohman095cc292008-09-13 01:54:27 +00005532 DAG.getVTList(&LoweredRetTys[0],
5533 LoweredRetTys.size()),
Dale Johannesen86098bd2008-09-26 19:31:26 +00005534 &Ops[0], Ops.size()
5535 );
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005536 Chain = Res.getValue(LoweredRetTys.size() - 1);
5537
5538 // Gather up the call result into a single value.
Dan Gohmanb5cc34d2008-10-07 00:12:37 +00005539 if (RetTy != Type::VoidTy && !RetTys.empty()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005540 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5541
5542 if (RetSExt)
5543 AssertOp = ISD::AssertSext;
5544 else if (RetZExt)
5545 AssertOp = ISD::AssertZext;
5546
5547 SmallVector<SDValue, 4> ReturnValues;
5548 unsigned RegNo = 0;
5549 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5550 MVT VT = RetTys[I];
5551 MVT RegisterVT = getRegisterType(VT);
5552 unsigned NumRegs = getNumRegisters(VT);
5553 unsigned RegNoEnd = NumRegs + RegNo;
5554 SmallVector<SDValue, 4> Results;
5555 for (; RegNo != RegNoEnd; ++RegNo)
5556 Results.push_back(Res.getValue(RegNo));
5557 SDValue ReturnValue =
5558 getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
5559 AssertOp);
5560 ReturnValues.push_back(ReturnValue);
5561 }
Duncan Sandsaaffa052008-12-01 11:41:29 +00005562 Res = DAG.getNode(ISD::MERGE_VALUES,
5563 DAG.getVTList(&RetTys[0], RetTys.size()),
5564 &ReturnValues[0], ReturnValues.size());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005565 }
5566
5567 return std::make_pair(Res, Chain);
5568}
5569
5570SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5571 assert(0 && "LowerOperation not implemented for this target!");
5572 abort();
5573 return SDValue();
5574}
5575
5576
5577void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5578 SDValue Op = getValue(V);
5579 assert((Op.getOpcode() != ISD::CopyFromReg ||
5580 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5581 "Copy from a reg to the same reg!");
5582 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5583
5584 RegsForValue RFV(TLI, Reg, V->getType());
5585 SDValue Chain = DAG.getEntryNode();
5586 RFV.getCopyToRegs(Op, DAG, Chain, 0);
5587 PendingExports.push_back(Chain);
5588}
5589
5590#include "llvm/CodeGen/SelectionDAGISel.h"
5591
5592void SelectionDAGISel::
5593LowerArguments(BasicBlock *LLVMBB) {
5594 // If this is the entry block, emit arguments.
5595 Function &F = *LLVMBB->getParent();
5596 SDValue OldRoot = SDL->DAG.getRoot();
5597 SmallVector<SDValue, 16> Args;
5598 TLI.LowerArguments(F, SDL->DAG, Args);
5599
5600 unsigned a = 0;
5601 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
5602 AI != E; ++AI) {
5603 SmallVector<MVT, 4> ValueVTs;
5604 ComputeValueVTs(TLI, AI->getType(), ValueVTs);
5605 unsigned NumValues = ValueVTs.size();
5606 if (!AI->use_empty()) {
5607 SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues));
5608 // If this argument is live outside of the entry block, insert a copy from
5609 // whereever we got it to the vreg that other BB's will reference it as.
5610 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI);
5611 if (VMI != FuncInfo->ValueMap.end()) {
5612 SDL->CopyValueToVirtualRegister(AI, VMI->second);
5613 }
5614 }
5615 a += NumValues;
5616 }
5617
5618 // Finally, if the target has anything special to do, allow it to do so.
5619 // FIXME: this should insert code into the DAG!
5620 EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
5621}
5622
5623/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
5624/// ensure constants are generated when needed. Remember the virtual registers
5625/// that need to be added to the Machine PHI nodes as input. We cannot just
5626/// directly add them, because expansion might result in multiple MBB's for one
5627/// BB. As such, the start of the BB might correspond to a different MBB than
5628/// the end.
5629///
5630void
5631SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5632 TerminatorInst *TI = LLVMBB->getTerminator();
5633
5634 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5635
5636 // Check successor nodes' PHI nodes that expect a constant to be available
5637 // from this block.
5638 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5639 BasicBlock *SuccBB = TI->getSuccessor(succ);
5640 if (!isa<PHINode>(SuccBB->begin())) continue;
5641 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005642
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005643 // If this terminator has multiple identical successors (common for
5644 // switches), only handle each succ once.
5645 if (!SuccsHandled.insert(SuccMBB)) continue;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005646
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005647 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5648 PHINode *PN;
5649
5650 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5651 // nodes and Machine PHI nodes, but the incoming operands have not been
5652 // emitted yet.
5653 for (BasicBlock::iterator I = SuccBB->begin();
5654 (PN = dyn_cast<PHINode>(I)); ++I) {
5655 // Ignore dead phi's.
5656 if (PN->use_empty()) continue;
5657
5658 unsigned Reg;
5659 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5660
5661 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5662 unsigned &RegOut = SDL->ConstantsOut[C];
5663 if (RegOut == 0) {
5664 RegOut = FuncInfo->CreateRegForValue(C);
5665 SDL->CopyValueToVirtualRegister(C, RegOut);
5666 }
5667 Reg = RegOut;
5668 } else {
5669 Reg = FuncInfo->ValueMap[PHIOp];
5670 if (Reg == 0) {
5671 assert(isa<AllocaInst>(PHIOp) &&
5672 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5673 "Didn't codegen value into a register!??");
5674 Reg = FuncInfo->CreateRegForValue(PHIOp);
5675 SDL->CopyValueToVirtualRegister(PHIOp, Reg);
5676 }
5677 }
5678
5679 // Remember that this register needs to added to the machine PHI node as
5680 // the input for this MBB.
5681 SmallVector<MVT, 4> ValueVTs;
5682 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5683 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5684 MVT VT = ValueVTs[vti];
5685 unsigned NumRegisters = TLI.getNumRegisters(VT);
5686 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5687 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5688 Reg += NumRegisters;
5689 }
5690 }
5691 }
5692 SDL->ConstantsOut.clear();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005693}
5694
Dan Gohman3df24e62008-09-03 23:12:08 +00005695/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
5696/// supports legal types, and it emits MachineInstrs directly instead of
5697/// creating SelectionDAG nodes.
5698///
5699bool
5700SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
5701 FastISel *F) {
5702 TerminatorInst *TI = LLVMBB->getTerminator();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005703
Dan Gohman3df24e62008-09-03 23:12:08 +00005704 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5705 unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size();
5706
5707 // Check successor nodes' PHI nodes that expect a constant to be available
5708 // from this block.
5709 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5710 BasicBlock *SuccBB = TI->getSuccessor(succ);
5711 if (!isa<PHINode>(SuccBB->begin())) continue;
5712 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005713
Dan Gohman3df24e62008-09-03 23:12:08 +00005714 // If this terminator has multiple identical successors (common for
5715 // switches), only handle each succ once.
5716 if (!SuccsHandled.insert(SuccMBB)) continue;
Mikhail Glushenkov5c1799b2009-01-16 06:53:46 +00005717
Dan Gohman3df24e62008-09-03 23:12:08 +00005718 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5719 PHINode *PN;
5720
5721 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5722 // nodes and Machine PHI nodes, but the incoming operands have not been
5723 // emitted yet.
5724 for (BasicBlock::iterator I = SuccBB->begin();
5725 (PN = dyn_cast<PHINode>(I)); ++I) {
5726 // Ignore dead phi's.
5727 if (PN->use_empty()) continue;
5728
5729 // Only handle legal types. Two interesting things to note here. First,
5730 // by bailing out early, we may leave behind some dead instructions,
5731 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
5732 // own moves. Second, this check is necessary becuase FastISel doesn't
5733 // use CreateRegForValue to create registers, so it always creates
5734 // exactly one register for each non-void instruction.
5735 MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
5736 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
Dan Gohman74321ab2008-09-10 21:01:31 +00005737 // Promote MVT::i1.
5738 if (VT == MVT::i1)
5739 VT = TLI.getTypeToTransformTo(VT);
5740 else {
5741 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5742 return false;
5743 }
Dan Gohman3df24e62008-09-03 23:12:08 +00005744 }
5745
5746 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5747
5748 unsigned Reg = F->getRegForValue(PHIOp);
5749 if (Reg == 0) {
5750 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5751 return false;
5752 }
5753 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
5754 }
5755 }
5756
5757 return true;
5758}