blob: 933534fb4996df607e8be97bb7d46f73582292d2 [file] [log] [blame]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
5.. sectionauthor:: Chris Lattner <sabre@nondot.org> and Jim Laskey <jlaskey@mac.com>
6
7.. contents::
8 :local:
9
10Introduction
11============
12
13This document is the central repository for all information pertaining to debug
14information in LLVM. It describes the :ref:`actual format that the LLVM debug
15information takes <format>`, which is useful for those interested in creating
16front-ends or dealing directly with the information. Further, this document
17provides specific examples of what debug information for C/C++ looks like.
18
19Philosophy behind LLVM debugging information
20--------------------------------------------
21
22The idea of the LLVM debugging information is to capture how the important
23pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
24Several design aspects have shaped the solution that appears here. The
25important ones are:
26
27* Debugging information should have very little impact on the rest of the
28 compiler. No transformations, analyses, or code generators should need to
29 be modified because of debugging information.
30
31* LLVM optimizations should interact in :ref:`well-defined and easily described
32 ways <intro_debugopt>` with the debugging information.
33
34* Because LLVM is designed to support arbitrary programming languages,
35 LLVM-to-LLVM tools should not need to know anything about the semantics of
36 the source-level-language.
37
38* Source-level languages are often **widely** different from one another.
39 LLVM should not put any restrictions of the flavor of the source-language,
40 and the debugging information should work with any language.
41
42* With code generator support, it should be possible to use an LLVM compiler
43 to compile a program to native machine code and standard debugging
44 formats. This allows compatibility with traditional machine-code level
45 debuggers, like GDB or DBX.
46
47The approach used by the LLVM implementation is to use a small set of
48:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
49between LLVM program objects and the source-level objects. The description of
50the source-level program is maintained in LLVM metadata in an
51:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
52currently uses working draft 7 of the `DWARF 3 standard
53<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
54
55When a program is being debugged, a debugger interacts with the user and turns
56the stored debug information into source-language specific information. As
57such, a debugger must be aware of the source-language, and is thus tied to a
58specific language or family of languages.
59
60Debug information consumers
61---------------------------
62
63The role of debug information is to provide meta information normally stripped
64away during the compilation process. This meta information provides an LLVM
65user a relationship between generated code and the original program source
66code.
67
68Currently, debug information is consumed by DwarfDebug to produce dwarf
69information used by the gdb debugger. Other targets could use the same
70information to produce stabs or other debug forms.
71
72It would also be reasonable to use debug information to feed profiling tools
73for analysis of generated code, or, tools for reconstructing the original
74source from generated code.
75
76TODO - expound a bit more.
77
78.. _intro_debugopt:
79
80Debugging optimized code
81------------------------
82
83An extremely high priority of LLVM debugging information is to make it interact
84well with optimizations and analysis. In particular, the LLVM debug
85information provides the following guarantees:
86
87* LLVM debug information **always provides information to accurately read
88 the source-level state of the program**, regardless of which LLVM
89 optimizations have been run, and without any modification to the
90 optimizations themselves. However, some optimizations may impact the
91 ability to modify the current state of the program with a debugger, such
92 as setting program variables, or calling functions that have been
93 deleted.
94
95* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
96 debugging information, allowing them to update the debugging information
97 as they perform aggressive optimizations. This means that, with effort,
98 the LLVM optimizers could optimize debug code just as well as non-debug
99 code.
100
101* LLVM debug information does not prevent optimizations from
102 happening (for example inlining, basic block reordering/merging/cleanup,
103 tail duplication, etc).
104
105* LLVM debug information is automatically optimized along with the rest of
106 the program, using existing facilities. For example, duplicate
107 information is automatically merged by the linker, and unused information
108 is automatically removed.
109
110Basically, the debug information allows you to compile a program with
111"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
112the program as it executes from a debugger. Compiling a program with
113"``-O3 -g``" gives you full debug information that is always available and
114accurate for reading (e.g., you get accurate stack traces despite tail call
115elimination and inlining), but you might lose the ability to modify the program
116and call functions where were optimized out of the program, or inlined away
117completely.
118
119:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
120optimizer's handling of debugging information. It can be run like this:
121
122.. code-block:: bash
123
124 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
125 % make TEST=dbgopt
126
127This will test impact of debugging information on optimization passes. If
128debugging information influences optimization passes then it will be reported
129as a failure. See :doc:`TestingGuide` for more information on LLVM test
130infrastructure and how to run various tests.
131
132.. _format:
133
134Debugging information format
135============================
136
137LLVM debugging information has been carefully designed to make it possible for
138the optimizer to optimize the program and debugging information without
139necessarily having to know anything about debugging information. In
140particular, the use of metadata avoids duplicated debugging information from
141the beginning, and the global dead code elimination pass automatically deletes
142debugging information for a function if it decides to delete the function.
143
144To do this, most of the debugging information (descriptors for types,
145variables, functions, source files, etc) is inserted by the language front-end
146in the form of LLVM metadata.
147
148Debug information is designed to be agnostic about the target debugger and
149debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
150pass to decode the information that represents variables, types, functions,
151namespaces, etc: this allows for arbitrary source-language semantics and
152type-systems to be used, as long as there is a module written for the target
153debugger to interpret the information.
154
155To provide basic functionality, the LLVM debugger does have to make some
156assumptions about the source-level language being debugged, though it keeps
157these to a minimum. The only common features that the LLVM debugger assumes
158exist are :ref:`source files <format_files>`, and :ref:`program objects
159<format_global_variables>`. These abstract objects are used by a debugger to
160form stack traces, show information about local variables, etc.
161
162This section of the documentation first describes the representation aspects
163common to any source-language. :ref:`ccxx_frontend` describes the data layout
164conventions used by the C and C++ front-ends.
165
166Debug information descriptors
167-----------------------------
168
169In consideration of the complexity and volume of debug information, LLVM
170provides a specification for well formed debug descriptors.
171
172Consumers of LLVM debug information expect the descriptors for program objects
173to start in a canonical format, but the descriptors can include additional
174information appended at the end that is source-language specific. All LLVM
175debugging information is versioned, allowing backwards compatibility in the
176case that the core structures need to change in some way. Also, all debugging
177information objects start with a tag to indicate what type of object it is.
178The source-language is allowed to define its own objects, by using unreserved
179tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
180(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
181
182The fields of debug descriptors used internally by LLVM are restricted to only
183the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
184``mdnode``.
185
186.. code-block:: llvm
187
188 !1 = metadata !{
189 i32, ;; A tag
190 ...
191 }
192
193<a name="LLVMDebugVersion">The first field of a descriptor is always an
194``i32`` containing a tag value identifying the content of the descriptor.
195The remaining fields are specific to the descriptor. The values of tags are
196loosely bound to the tag values of DWARF information entries. However, that
197does not restrict the use of the information supplied to DWARF targets. To
198facilitate versioning of debug information, the tag is augmented with the
199current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
200524288.)
201
202The details of the various descriptors follow.
203
204Compile unit descriptors
205^^^^^^^^^^^^^^^^^^^^^^^^
206
207.. code-block:: llvm
208
209 !0 = metadata !{
210 i32, ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
211 i32, ;; Unused field.
212 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
213 metadata, ;; Source file name
214 metadata, ;; Source file directory (includes trailing slash)
215 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
216 i1, ;; True if this is a main compile unit.
217 i1, ;; True if this is optimized.
218 metadata, ;; Flags
219 i32 ;; Runtime version
220 metadata ;; List of enums types
221 metadata ;; List of retained types
222 metadata ;; List of subprograms
223 metadata ;; List of global variables
224 }
225
226These descriptors contain a source language ID for the file (we use the DWARF
2273.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
228``DW_LANG_Cobol74``, etc), three strings describing the filename, working
229directory of the compiler, and an identifier string for the compiler that
230produced it.
231
232Compile unit descriptors provide the root context for objects declared in a
233specific compilation unit. File descriptors are defined using this context.
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000234These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
235keep track of subprograms, global variables and type information.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000236
237.. _format_files:
238
239File descriptors
240^^^^^^^^^^^^^^^^
241
242.. code-block:: llvm
243
244 !0 = metadata !{
245 i32, ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
246 metadata, ;; Source file name
247 metadata, ;; Source file directory (includes trailing slash)
248 metadata ;; Unused
249 }
250
251These descriptors contain information for a file. Global variables and top
252level functions would be defined using this context. File descriptors also
253provide context for source line correspondence.
254
255Each input file is encoded as a separate file descriptor in LLVM debugging
256information output.
257
258.. _format_global_variables:
259
260Global variable descriptors
261^^^^^^^^^^^^^^^^^^^^^^^^^^^
262
263.. code-block:: llvm
264
265 !1 = metadata !{
266 i32, ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
267 i32, ;; Unused field.
268 metadata, ;; Reference to context descriptor
269 metadata, ;; Name
270 metadata, ;; Display name (fully qualified C++ name)
271 metadata, ;; MIPS linkage name (for C++)
272 metadata, ;; Reference to file where defined
273 i32, ;; Line number where defined
274 metadata, ;; Reference to type descriptor
275 i1, ;; True if the global is local to compile unit (static)
276 i1, ;; True if the global is defined in the compile unit (not extern)
277 {}* ;; Reference to the global variable
278 }
279
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000280These descriptors provide debug information about globals variables. They
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000281provide details such as name, type and where the variable is defined. All
282global variables are collected inside the named metadata ``!llvm.dbg.cu``.
283
284.. _format_subprograms:
285
286Subprogram descriptors
287^^^^^^^^^^^^^^^^^^^^^^
288
289.. code-block:: llvm
290
291 !2 = metadata !{
292 i32, ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
293 i32, ;; Unused field.
294 metadata, ;; Reference to context descriptor
295 metadata, ;; Name
296 metadata, ;; Display name (fully qualified C++ name)
297 metadata, ;; MIPS linkage name (for C++)
298 metadata, ;; Reference to file where defined
299 i32, ;; Line number where defined
300 metadata, ;; Reference to type descriptor
301 i1, ;; True if the global is local to compile unit (static)
302 i1, ;; True if the global is defined in the compile unit (not extern)
303 i32, ;; Line number where the scope of the subprogram begins
304 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
305 i32, ;; Index into a virtual function
306 metadata, ;; indicates which base type contains the vtable pointer for the
307 ;; derived class
308 i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
309 i1, ;; isOptimized
310 Function * , ;; Pointer to LLVM function
311 metadata, ;; Lists function template parameters
312 metadata, ;; Function declaration descriptor
313 metadata ;; List of function variables
314 }
315
316These descriptors provide debug information about functions, methods and
317subprograms. They provide details such as name, return types and the source
318location where the subprogram is defined.
319
320Block descriptors
321^^^^^^^^^^^^^^^^^
322
323.. code-block:: llvm
324
325 !3 = metadata !{
326 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
327 metadata,;; Reference to context descriptor
328 i32, ;; Line number
329 i32, ;; Column number
330 metadata,;; Reference to source file
331 i32 ;; Unique ID to identify blocks from a template function
332 }
333
334This descriptor provides debug information about nested blocks within a
335subprogram. The line number and column numbers are used to dinstinguish two
336lexical blocks at same depth.
337
338.. code-block:: llvm
339
340 !3 = metadata !{
341 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
342 metadata ;; Reference to the scope we're annotating with a file change
343 metadata,;; Reference to the file the scope is enclosed in.
344 }
345
346This descriptor provides a wrapper around a lexical scope to handle file
347changes in the middle of a lexical block.
348
349.. _format_basic_type:
350
351Basic type descriptors
352^^^^^^^^^^^^^^^^^^^^^^
353
354.. code-block:: llvm
355
356 !4 = metadata !{
357 i32, ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
358 metadata, ;; Reference to context
359 metadata, ;; Name (may be "" for anonymous types)
360 metadata, ;; Reference to file where defined (may be NULL)
361 i32, ;; Line number where defined (may be 0)
362 i64, ;; Size in bits
363 i64, ;; Alignment in bits
364 i64, ;; Offset in bits
365 i32, ;; Flags
366 i32 ;; DWARF type encoding
367 }
368
369These descriptors define primitive types used in the code. Example ``int``,
370``bool`` and ``float``. The context provides the scope of the type, which is
371usually the top level. Since basic types are not usually user defined the
372context and line number can be left as NULL and 0. The size, alignment and
373offset are expressed in bits and can be 64 bit values. The alignment is used
374to round the offset when embedded in a :ref:`composite type
375<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
376The offset is the bit offset if embedded in a :ref:`composite type
377<format_composite_type>`.
378
379The type encoding provides the details of the type. The values are typically
380one of the following:
381
382.. code-block:: llvm
383
384 DW_ATE_address = 1
385 DW_ATE_boolean = 2
386 DW_ATE_float = 4
387 DW_ATE_signed = 5
388 DW_ATE_signed_char = 6
389 DW_ATE_unsigned = 7
390 DW_ATE_unsigned_char = 8
391
392.. _format_derived_type:
393
394Derived type descriptors
395^^^^^^^^^^^^^^^^^^^^^^^^
396
397.. code-block:: llvm
398
399 !5 = metadata !{
400 i32, ;; Tag (see below)
401 metadata, ;; Reference to context
402 metadata, ;; Name (may be "" for anonymous types)
403 metadata, ;; Reference to file where defined (may be NULL)
404 i32, ;; Line number where defined (may be 0)
405 i64, ;; Size in bits
406 i64, ;; Alignment in bits
407 i64, ;; Offset in bits
408 i32, ;; Flags to encode attributes, e.g. private
409 metadata, ;; Reference to type derived from
410 metadata, ;; (optional) Name of the Objective C property associated with
David Blaikie92f09172013-01-07 06:02:07 +0000411 ;; Objective-C an ivar, or the type of which this
412 ;; pointer-to-member is pointing to members of.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000413 metadata, ;; (optional) Name of the Objective C property getter selector.
414 metadata, ;; (optional) Name of the Objective C property setter selector.
415 i32 ;; (optional) Objective C property attributes.
416 }
417
418These descriptors are used to define types derived from other types. The value
419of the tag varies depending on the meaning. The following are possible tag
420values:
421
422.. code-block:: llvm
423
David Blaikie92f09172013-01-07 06:02:07 +0000424 DW_TAG_formal_parameter = 5
425 DW_TAG_member = 13
426 DW_TAG_pointer_type = 15
427 DW_TAG_reference_type = 16
428 DW_TAG_typedef = 22
429 DW_TAG_ptr_to_member_type = 31
430 DW_TAG_const_type = 38
431 DW_TAG_volatile_type = 53
432 DW_TAG_restrict_type = 55
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000433
434``DW_TAG_member`` is used to define a member of a :ref:`composite type
435<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
436of the member is the :ref:`derived type <format_derived_type>`.
437``DW_TAG_formal_parameter`` is used to define a member which is a formal
438argument of a subprogram.
439
440``DW_TAG_typedef`` is used to provide a name for the derived type.
441
442``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
443``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
444:ref:`derived type <format_derived_type>`.
445
446:ref:`Derived type <format_derived_type>` location can be determined from the
447context and line number. The size, alignment and offset are expressed in bits
448and can be 64 bit values. The alignment is used to round the offset when
449embedded in a :ref:`composite type <format_composite_type>` (example to keep
450float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
451in a :ref:`composite type <format_composite_type>`.
452
453Note that the ``void *`` type is expressed as a type derived from NULL.
454
455.. _format_composite_type:
456
457Composite type descriptors
458^^^^^^^^^^^^^^^^^^^^^^^^^^
459
460.. code-block:: llvm
461
462 !6 = metadata !{
463 i32, ;; Tag (see below)
464 metadata, ;; Reference to context
465 metadata, ;; Name (may be "" for anonymous types)
466 metadata, ;; Reference to file where defined (may be NULL)
467 i32, ;; Line number where defined (may be 0)
468 i64, ;; Size in bits
469 i64, ;; Alignment in bits
470 i64, ;; Offset in bits
471 i32, ;; Flags
472 metadata, ;; Reference to type derived from
473 metadata, ;; Reference to array of member descriptors
474 i32 ;; Runtime languages
475 }
476
477These descriptors are used to define types that are composed of 0 or more
478elements. The value of the tag varies depending on the meaning. The following
479are possible tag values:
480
481.. code-block:: llvm
482
483 DW_TAG_array_type = 1
484 DW_TAG_enumeration_type = 4
485 DW_TAG_structure_type = 19
486 DW_TAG_union_type = 23
487 DW_TAG_vector_type = 259
488 DW_TAG_subroutine_type = 21
489 DW_TAG_inheritance = 28
490
491The vector flag indicates that an array type is a native packed vector.
492
493The members of array types (tag = ``DW_TAG_array_type``) or vector types (tag =
494``DW_TAG_vector_type``) are :ref:`subrange descriptors <format_subrange>`, each
495representing the range of subscripts at that level of indexing.
496
497The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
498:ref:`enumerator descriptors <format_enumerator>`, each representing the
499definition of enumeration value for the set. All enumeration type descriptors
500are collected inside the named metadata ``!llvm.dbg.cu``.
501
502The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
503``DW_TAG_union_type``) types are any one of the :ref:`basic
504<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
505<format_composite_type>` type descriptors, each representing a field member of
506the structure or union.
507
508For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
509information about base classes, static members and member functions. If a
510member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
511of ``DW_TAG_inheritance``, then the type represents a base class. If the member
512of is a :ref:`global variable descriptor <format_global_variables>` then it
513represents a static member. And, if the member is a :ref:`subprogram
514descriptor <format_subprograms>` then it represents a member function. For
515static members and member functions, ``getName()`` returns the members link or
516the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
517
518The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
519is the return type for the subroutine. The remaining elements are the formal
520arguments to the subroutine.
521
522:ref:`Composite type <format_composite_type>` location can be determined from
523the context and line number. The size, alignment and offset are expressed in
524bits and can be 64 bit values. The alignment is used to round the offset when
525embedded in a :ref:`composite type <format_composite_type>` (as an example, to
526keep float doubles on 64 bit boundaries). The offset is the bit offset if
527embedded in a :ref:`composite type <format_composite_type>`.
528
529.. _format_subrange:
530
531Subrange descriptors
532^^^^^^^^^^^^^^^^^^^^
533
534.. code-block:: llvm
535
536 !42 = metadata !{
537 i32, ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
538 i64, ;; Low value
539 i64 ;; High value
540 }
541
542These descriptors are used to define ranges of array subscripts for an array
543:ref:`composite type <format_composite_type>`. The low value defines the lower
544bounds typically zero for C/C++. The high value is the upper bounds. Values
545are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
546the array bounds are not included in generated debugging information.
547
548.. _format_enumerator:
549
550Enumerator descriptors
551^^^^^^^^^^^^^^^^^^^^^^
552
553.. code-block:: llvm
554
555 !6 = metadata !{
556 i32, ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
557 metadata, ;; Name
558 i64 ;; Value
559 }
560
561These descriptors are used to define members of an enumeration :ref:`composite
562type <format_composite_type>`, it associates the name to the value.
563
564Local variables
565^^^^^^^^^^^^^^^
566
567.. code-block:: llvm
568
569 !7 = metadata !{
570 i32, ;; Tag (see below)
571 metadata, ;; Context
572 metadata, ;; Name
573 metadata, ;; Reference to file where defined
574 i32, ;; 24 bit - Line number where defined
575 ;; 8 bit - Argument number. 1 indicates 1st argument.
576 metadata, ;; Type descriptor
577 i32, ;; flags
578 metadata ;; (optional) Reference to inline location
579 }
580
581These descriptors are used to define variables local to a sub program. The
582value of the tag depends on the usage of the variable:
583
584.. code-block:: llvm
585
586 DW_TAG_auto_variable = 256
587 DW_TAG_arg_variable = 257
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000588
589An auto variable is any variable declared in the body of the function. An
590argument variable is any variable that appears as a formal argument to the
Eric Christopher72a81be2013-01-08 00:16:33 +0000591function.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000592
593The context is either the subprogram or block where the variable is defined.
594Name the source variable name. Context and line indicate where the variable
595was defined. Type descriptor defines the declared type of the variable.
596
597.. _format_common_intrinsics:
598
599Debugger intrinsic functions
600^^^^^^^^^^^^^^^^^^^^^^^^^^^^
601
602LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
603provide debug information at various points in generated code.
604
605``llvm.dbg.declare``
606^^^^^^^^^^^^^^^^^^^^
607
608.. code-block:: llvm
609
610 void %llvm.dbg.declare(metadata, metadata)
611
612This intrinsic provides information about a local element (e.g., variable).
613The first argument is metadata holding the alloca for the variable. The second
614argument is metadata containing a description of the variable.
615
616``llvm.dbg.value``
617^^^^^^^^^^^^^^^^^^
618
619.. code-block:: llvm
620
621 void %llvm.dbg.value(metadata, i64, metadata)
622
623This intrinsic provides information when a user source variable is set to a new
624value. The first argument is the new value (wrapped as metadata). The second
625argument is the offset in the user source variable where the new value is
626written. The third argument is metadata containing a description of the user
627source variable.
628
629Object lifetimes and scoping
630============================
631
632In many languages, the local variables in functions can have their lifetimes or
633scopes limited to a subset of a function. In the C family of languages, for
634example, variables are only live (readable and writable) within the source
635block that they are defined in. In functional languages, values are only
636readable after they have been defined. Though this is a very obvious concept,
637it is non-trivial to model in LLVM, because it has no notion of scoping in this
638sense, and does not want to be tied to a language's scoping rules.
639
640In order to handle this, the LLVM debug format uses the metadata attached to
641llvm instructions to encode line number and scoping information. Consider the
642following C fragment, for example:
643
644.. code-block:: c
645
646 1. void foo() {
647 2. int X = 21;
648 3. int Y = 22;
649 4. {
650 5. int Z = 23;
651 6. Z = X;
652 7. }
653 8. X = Y;
654 9. }
655
656Compiled to LLVM, this function would be represented like this:
657
658.. code-block:: llvm
659
660 define void @foo() nounwind ssp {
661 entry:
662 %X = alloca i32, align 4 ; <i32*> [#uses=4]
663 %Y = alloca i32, align 4 ; <i32*> [#uses=4]
664 %Z = alloca i32, align 4 ; <i32*> [#uses=3]
665 %0 = bitcast i32* %X to {}* ; <{}*> [#uses=1]
666 call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
667 store i32 21, i32* %X, !dbg !8
668 %1 = bitcast i32* %Y to {}* ; <{}*> [#uses=1]
669 call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
670 store i32 22, i32* %Y, !dbg !11
671 %2 = bitcast i32* %Z to {}* ; <{}*> [#uses=1]
672 call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
673 store i32 23, i32* %Z, !dbg !15
674 %tmp = load i32* %X, !dbg !16 ; <i32> [#uses=1]
675 %tmp1 = load i32* %Y, !dbg !16 ; <i32> [#uses=1]
676 %add = add nsw i32 %tmp, %tmp1, !dbg !16 ; <i32> [#uses=1]
677 store i32 %add, i32* %Z, !dbg !16
678 %tmp2 = load i32* %Y, !dbg !17 ; <i32> [#uses=1]
679 store i32 %tmp2, i32* %X, !dbg !17
680 ret void, !dbg !18
681 }
682
683 declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
684
685 !0 = metadata !{i32 459008, metadata !1, metadata !"X",
686 metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
687 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
688 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
689 metadata !"foo", metadata !3, i32 1, metadata !4,
690 i1 false, i1 true}; [DW_TAG_subprogram ]
691 !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
692 metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
693 i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
694 !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
695 i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
696 !5 = metadata !{null}
697 !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
698 i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
699 !7 = metadata !{i32 2, i32 7, metadata !1, null}
700 !8 = metadata !{i32 2, i32 3, metadata !1, null}
701 !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
702 metadata !6}; [ DW_TAG_auto_variable ]
703 !10 = metadata !{i32 3, i32 7, metadata !1, null}
704 !11 = metadata !{i32 3, i32 3, metadata !1, null}
705 !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
706 metadata !6}; [ DW_TAG_auto_variable ]
707 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
708 !14 = metadata !{i32 5, i32 9, metadata !13, null}
709 !15 = metadata !{i32 5, i32 5, metadata !13, null}
710 !16 = metadata !{i32 6, i32 5, metadata !13, null}
711 !17 = metadata !{i32 8, i32 3, metadata !1, null}
712 !18 = metadata !{i32 9, i32 1, metadata !2, null}
713
714This example illustrates a few important details about LLVM debugging
715information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
716location information, which are attached to an instruction, are applied
717together to allow a debugger to analyze the relationship between statements,
718variable definitions, and the code used to implement the function.
719
720.. code-block:: llvm
721
722 call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7
723
724The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
725variable ``X``. The metadata ``!dbg !7`` attached to the intrinsic provides
726scope information for the variable ``X``.
727
728.. code-block:: llvm
729
730 !7 = metadata !{i32 2, i32 7, metadata !1, null}
731 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
732 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
733 metadata !"foo", metadata !"foo", metadata !3, i32 1,
734 metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]
735
736Here ``!7`` is metadata providing location information. It has four fields:
737line number, column number, scope, and original scope. The original scope
738represents inline location if this instruction is inlined inside a caller, and
739is null otherwise. In this example, scope is encoded by ``!1``. ``!1``
740represents a lexical block inside the scope ``!2``, where ``!2`` is a
741:ref:`subprogram descriptor <format_subprograms>`. This way the location
742information attached to the intrinsics indicates that the variable ``X`` is
743declared at line number 2 at a function level scope in function ``foo``.
744
745Now lets take another example.
746
747.. code-block:: llvm
748
749 call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14
750
751The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
752variable ``Z``. The metadata ``!dbg !14`` attached to the intrinsic provides
753scope information for the variable ``Z``.
754
755.. code-block:: llvm
756
757 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
758 !14 = metadata !{i32 5, i32 9, metadata !13, null}
759
760Here ``!14`` indicates that ``Z`` is declared at line number 5 and
761column number 9 inside of lexical scope ``!13``. The lexical scope itself
762resides inside of lexical scope ``!1`` described above.
763
764The scope information attached with each instruction provides a straightforward
765way to find instructions covered by a scope.
766
767.. _ccxx_frontend:
768
769C/C++ front-end specific debug information
770==========================================
771
772The C and C++ front-ends represent information about the program in a format
773that is effectively identical to `DWARF 3.0
774<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
775content. This allows code generators to trivially support native debuggers by
776generating standard dwarf information, and contains enough information for
777non-dwarf targets to translate it as needed.
778
779This section describes the forms used to represent C and C++ programs. Other
780languages could pattern themselves after this (which itself is tuned to
781representing programs in the same way that DWARF 3 does), or they could choose
782to provide completely different forms if they don't fit into the DWARF model.
783As support for debugging information gets added to the various LLVM
784source-language front-ends, the information used should be documented here.
785
786The following sections provide examples of various C/C++ constructs and the
787debug information that would best describe those constructs.
788
789C/C++ source file information
790-----------------------------
791
792Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
793directory ``/Users/mine/sources``, the following code:
794
795.. code-block:: c
796
797 #include "MyHeader.h"
798
799 int main(int argc, char *argv[]) {
800 return 0;
801 }
802
803a C/C++ front-end would generate the following descriptors:
804
805.. code-block:: llvm
806
807 ...
808 ;;
809 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
810 ;;
811 !2 = metadata !{
812 i32 524305, ;; Tag
813 i32 0, ;; Unused
814 i32 4, ;; Language Id
815 metadata !"MySource.cpp",
816 metadata !"/Users/mine/sources",
817 metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
818 i1 true, ;; Main Compile Unit
819 i1 false, ;; Optimized compile unit
820 metadata !"", ;; Compiler flags
821 i32 0} ;; Runtime version
822
823 ;;
824 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
825 ;;
826 !1 = metadata !{
827 i32 524329, ;; Tag
828 metadata !"MySource.cpp",
829 metadata !"/Users/mine/sources",
830 metadata !2 ;; Compile unit
831 }
832
833 ;;
834 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
835 ;;
836 !3 = metadata !{
837 i32 524329, ;; Tag
838 metadata !"Myheader.h"
839 metadata !"/Users/mine/sources",
840 metadata !2 ;; Compile unit
841 }
842
843 ...
844
845``llvm::Instruction`` provides easy access to metadata attached with an
846instruction. One can extract line number information encoded in LLVM IR using
847``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
848
849.. code-block:: c++
850
851 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
852 DILocation Loc(N); // DILocation is in DebugInfo.h
853 unsigned Line = Loc.getLineNumber();
854 StringRef File = Loc.getFilename();
855 StringRef Dir = Loc.getDirectory();
856 }
857
858C/C++ global variable information
859---------------------------------
860
861Given an integer global variable declared as follows:
862
863.. code-block:: c
864
865 int MyGlobal = 100;
866
867a C/C++ front-end would generate the following descriptors:
868
869.. code-block:: llvm
870
871 ;;
872 ;; Define the global itself.
873 ;;
874 %MyGlobal = global int 100
875 ...
876 ;;
877 ;; List of debug info of globals
878 ;;
879 !llvm.dbg.cu = !{!0}
880
881 ;; Define the compile unit.
882 !0 = metadata !{
883 i32 786449, ;; Tag
884 i32 0, ;; Context
885 i32 4, ;; Language
886 metadata !"foo.cpp", ;; File
887 metadata !"/Volumes/Data/tmp", ;; Directory
888 metadata !"clang version 3.1 ", ;; Producer
889 i1 true, ;; Deprecated field
890 i1 false, ;; "isOptimized"?
891 metadata !"", ;; Flags
892 i32 0, ;; Runtime Version
893 metadata !1, ;; Enum Types
894 metadata !1, ;; Retained Types
895 metadata !1, ;; Subprograms
896 metadata !3 ;; Global Variables
897 } ; [ DW_TAG_compile_unit ]
898
899 ;; The Array of Global Variables
900 !3 = metadata !{
901 metadata !4
902 }
903
904 !4 = metadata !{
905 metadata !5
906 }
907
908 ;;
909 ;; Define the global variable itself.
910 ;;
911 !5 = metadata !{
912 i32 786484, ;; Tag
913 i32 0, ;; Unused
914 null, ;; Unused
915 metadata !"MyGlobal", ;; Name
916 metadata !"MyGlobal", ;; Display Name
917 metadata !"", ;; Linkage Name
918 metadata !6, ;; File
919 i32 1, ;; Line
920 metadata !7, ;; Type
921 i32 0, ;; IsLocalToUnit
922 i32 1, ;; IsDefinition
923 i32* @MyGlobal ;; LLVM-IR Value
924 } ; [ DW_TAG_variable ]
925
926 ;;
927 ;; Define the file
928 ;;
929 !6 = metadata !{
930 i32 786473, ;; Tag
931 metadata !"foo.cpp", ;; File
932 metadata !"/Volumes/Data/tmp", ;; Directory
933 null ;; Unused
934 } ; [ DW_TAG_file_type ]
935
936 ;;
937 ;; Define the type
938 ;;
939 !7 = metadata !{
940 i32 786468, ;; Tag
941 null, ;; Unused
942 metadata !"int", ;; Name
943 null, ;; Unused
944 i32 0, ;; Line
945 i64 32, ;; Size in Bits
946 i64 32, ;; Align in Bits
947 i64 0, ;; Offset
948 i32 0, ;; Flags
949 i32 5 ;; Encoding
950 } ; [ DW_TAG_base_type ]
951
952C/C++ function information
953--------------------------
954
955Given a function declared as follows:
956
957.. code-block:: c
958
959 int main(int argc, char *argv[]) {
960 return 0;
961 }
962
963a C/C++ front-end would generate the following descriptors:
964
965.. code-block:: llvm
966
967 ;;
968 ;; Define the anchor for subprograms. Note that the second field of the
969 ;; anchor is 46, which is the same as the tag for subprograms
970 ;; (46 = DW_TAG_subprogram.)
971 ;;
972 !6 = metadata !{
973 i32 524334, ;; Tag
974 i32 0, ;; Unused
975 metadata !1, ;; Context
976 metadata !"main", ;; Name
977 metadata !"main", ;; Display name
978 metadata !"main", ;; Linkage name
979 metadata !1, ;; File
980 i32 1, ;; Line number
981 metadata !4, ;; Type
982 i1 false, ;; Is local
983 i1 true, ;; Is definition
984 i32 0, ;; Virtuality attribute, e.g. pure virtual function
985 i32 0, ;; Index into virtual table for C++ methods
986 i32 0, ;; Type that holds virtual table.
987 i32 0, ;; Flags
988 i1 false, ;; True if this function is optimized
989 Function *, ;; Pointer to llvm::Function
990 null ;; Function template parameters
991 }
992 ;;
993 ;; Define the subprogram itself.
994 ;;
995 define i32 @main(i32 %argc, i8** %argv) {
996 ...
997 }
998
999C/C++ basic types
1000-----------------
1001
1002The following are the basic type descriptors for C/C++ core types:
1003
1004bool
1005^^^^
1006
1007.. code-block:: llvm
1008
1009 !2 = metadata !{
1010 i32 524324, ;; Tag
1011 metadata !1, ;; Context
1012 metadata !"bool", ;; Name
1013 metadata !1, ;; File
1014 i32 0, ;; Line number
1015 i64 8, ;; Size in Bits
1016 i64 8, ;; Align in Bits
1017 i64 0, ;; Offset in Bits
1018 i32 0, ;; Flags
1019 i32 2 ;; Encoding
1020 }
1021
1022char
1023^^^^
1024
1025.. code-block:: llvm
1026
1027 !2 = metadata !{
1028 i32 524324, ;; Tag
1029 metadata !1, ;; Context
1030 metadata !"char", ;; Name
1031 metadata !1, ;; File
1032 i32 0, ;; Line number
1033 i64 8, ;; Size in Bits
1034 i64 8, ;; Align in Bits
1035 i64 0, ;; Offset in Bits
1036 i32 0, ;; Flags
1037 i32 6 ;; Encoding
1038 }
1039
1040unsigned char
1041^^^^^^^^^^^^^
1042
1043.. code-block:: llvm
1044
1045 !2 = metadata !{
1046 i32 524324, ;; Tag
1047 metadata !1, ;; Context
1048 metadata !"unsigned char",
1049 metadata !1, ;; File
1050 i32 0, ;; Line number
1051 i64 8, ;; Size in Bits
1052 i64 8, ;; Align in Bits
1053 i64 0, ;; Offset in Bits
1054 i32 0, ;; Flags
1055 i32 8 ;; Encoding
1056 }
1057
1058short
1059^^^^^
1060
1061.. code-block:: llvm
1062
1063 !2 = metadata !{
1064 i32 524324, ;; Tag
1065 metadata !1, ;; Context
1066 metadata !"short int",
1067 metadata !1, ;; File
1068 i32 0, ;; Line number
1069 i64 16, ;; Size in Bits
1070 i64 16, ;; Align in Bits
1071 i64 0, ;; Offset in Bits
1072 i32 0, ;; Flags
1073 i32 5 ;; Encoding
1074 }
1075
1076unsigned short
1077^^^^^^^^^^^^^^
1078
1079.. code-block:: llvm
1080
1081 !2 = metadata !{
1082 i32 524324, ;; Tag
1083 metadata !1, ;; Context
1084 metadata !"short unsigned int",
1085 metadata !1, ;; File
1086 i32 0, ;; Line number
1087 i64 16, ;; Size in Bits
1088 i64 16, ;; Align in Bits
1089 i64 0, ;; Offset in Bits
1090 i32 0, ;; Flags
1091 i32 7 ;; Encoding
1092 }
1093
1094int
1095^^^
1096
1097.. code-block:: llvm
1098
1099 !2 = metadata !{
1100 i32 524324, ;; Tag
1101 metadata !1, ;; Context
1102 metadata !"int", ;; Name
1103 metadata !1, ;; File
1104 i32 0, ;; Line number
1105 i64 32, ;; Size in Bits
1106 i64 32, ;; Align in Bits
1107 i64 0, ;; Offset in Bits
1108 i32 0, ;; Flags
1109 i32 5 ;; Encoding
1110 }
1111
1112unsigned int
1113^^^^^^^^^^^^
1114
1115.. code-block:: llvm
1116
1117 !2 = metadata !{
1118 i32 524324, ;; Tag
1119 metadata !1, ;; Context
1120 metadata !"unsigned int",
1121 metadata !1, ;; File
1122 i32 0, ;; Line number
1123 i64 32, ;; Size in Bits
1124 i64 32, ;; Align in Bits
1125 i64 0, ;; Offset in Bits
1126 i32 0, ;; Flags
1127 i32 7 ;; Encoding
1128 }
1129
1130long long
1131^^^^^^^^^
1132
1133.. code-block:: llvm
1134
1135 !2 = metadata !{
1136 i32 524324, ;; Tag
1137 metadata !1, ;; Context
1138 metadata !"long long int",
1139 metadata !1, ;; File
1140 i32 0, ;; Line number
1141 i64 64, ;; Size in Bits
1142 i64 64, ;; Align in Bits
1143 i64 0, ;; Offset in Bits
1144 i32 0, ;; Flags
1145 i32 5 ;; Encoding
1146 }
1147
1148unsigned long long
1149^^^^^^^^^^^^^^^^^^
1150
1151.. code-block:: llvm
1152
1153 !2 = metadata !{
1154 i32 524324, ;; Tag
1155 metadata !1, ;; Context
1156 metadata !"long long unsigned int",
1157 metadata !1, ;; File
1158 i32 0, ;; Line number
1159 i64 64, ;; Size in Bits
1160 i64 64, ;; Align in Bits
1161 i64 0, ;; Offset in Bits
1162 i32 0, ;; Flags
1163 i32 7 ;; Encoding
1164 }
1165
1166float
1167^^^^^
1168
1169.. code-block:: llvm
1170
1171 !2 = metadata !{
1172 i32 524324, ;; Tag
1173 metadata !1, ;; Context
1174 metadata !"float",
1175 metadata !1, ;; File
1176 i32 0, ;; Line number
1177 i64 32, ;; Size in Bits
1178 i64 32, ;; Align in Bits
1179 i64 0, ;; Offset in Bits
1180 i32 0, ;; Flags
1181 i32 4 ;; Encoding
1182 }
1183
1184double
1185^^^^^^
1186
1187.. code-block:: llvm
1188
1189 !2 = metadata !{
1190 i32 524324, ;; Tag
1191 metadata !1, ;; Context
1192 metadata !"double",;; Name
1193 metadata !1, ;; File
1194 i32 0, ;; Line number
1195 i64 64, ;; Size in Bits
1196 i64 64, ;; Align in Bits
1197 i64 0, ;; Offset in Bits
1198 i32 0, ;; Flags
1199 i32 4 ;; Encoding
1200 }
1201
1202C/C++ derived types
1203-------------------
1204
1205Given the following as an example of C/C++ derived type:
1206
1207.. code-block:: c
1208
1209 typedef const int *IntPtr;
1210
1211a C/C++ front-end would generate the following descriptors:
1212
1213.. code-block:: llvm
1214
1215 ;;
1216 ;; Define the typedef "IntPtr".
1217 ;;
1218 !2 = metadata !{
1219 i32 524310, ;; Tag
1220 metadata !1, ;; Context
1221 metadata !"IntPtr", ;; Name
1222 metadata !3, ;; File
1223 i32 0, ;; Line number
1224 i64 0, ;; Size in bits
1225 i64 0, ;; Align in bits
1226 i64 0, ;; Offset in bits
1227 i32 0, ;; Flags
1228 metadata !4 ;; Derived From type
1229 }
1230 ;;
1231 ;; Define the pointer type.
1232 ;;
1233 !4 = metadata !{
1234 i32 524303, ;; Tag
1235 metadata !1, ;; Context
1236 metadata !"", ;; Name
1237 metadata !1, ;; File
1238 i32 0, ;; Line number
1239 i64 64, ;; Size in bits
1240 i64 64, ;; Align in bits
1241 i64 0, ;; Offset in bits
1242 i32 0, ;; Flags
1243 metadata !5 ;; Derived From type
1244 }
1245 ;;
1246 ;; Define the const type.
1247 ;;
1248 !5 = metadata !{
1249 i32 524326, ;; Tag
1250 metadata !1, ;; Context
1251 metadata !"", ;; Name
1252 metadata !1, ;; File
1253 i32 0, ;; Line number
1254 i64 32, ;; Size in bits
1255 i64 32, ;; Align in bits
1256 i64 0, ;; Offset in bits
1257 i32 0, ;; Flags
1258 metadata !6 ;; Derived From type
1259 }
1260 ;;
1261 ;; Define the int type.
1262 ;;
1263 !6 = metadata !{
1264 i32 524324, ;; Tag
1265 metadata !1, ;; Context
1266 metadata !"int", ;; Name
1267 metadata !1, ;; File
1268 i32 0, ;; Line number
1269 i64 32, ;; Size in bits
1270 i64 32, ;; Align in bits
1271 i64 0, ;; Offset in bits
1272 i32 0, ;; Flags
1273 5 ;; Encoding
1274 }
1275
1276C/C++ struct/union types
1277------------------------
1278
1279Given the following as an example of C/C++ struct type:
1280
1281.. code-block:: c
1282
1283 struct Color {
1284 unsigned Red;
1285 unsigned Green;
1286 unsigned Blue;
1287 };
1288
1289a C/C++ front-end would generate the following descriptors:
1290
1291.. code-block:: llvm
1292
1293 ;;
1294 ;; Define basic type for unsigned int.
1295 ;;
1296 !5 = metadata !{
1297 i32 524324, ;; Tag
1298 metadata !1, ;; Context
1299 metadata !"unsigned int",
1300 metadata !1, ;; File
1301 i32 0, ;; Line number
1302 i64 32, ;; Size in Bits
1303 i64 32, ;; Align in Bits
1304 i64 0, ;; Offset in Bits
1305 i32 0, ;; Flags
1306 i32 7 ;; Encoding
1307 }
1308 ;;
1309 ;; Define composite type for struct Color.
1310 ;;
1311 !2 = metadata !{
1312 i32 524307, ;; Tag
1313 metadata !1, ;; Context
1314 metadata !"Color", ;; Name
1315 metadata !1, ;; Compile unit
1316 i32 1, ;; Line number
1317 i64 96, ;; Size in bits
1318 i64 32, ;; Align in bits
1319 i64 0, ;; Offset in bits
1320 i32 0, ;; Flags
1321 null, ;; Derived From
1322 metadata !3, ;; Elements
1323 i32 0 ;; Runtime Language
1324 }
1325
1326 ;;
1327 ;; Define the Red field.
1328 ;;
1329 !4 = metadata !{
1330 i32 524301, ;; Tag
1331 metadata !1, ;; Context
1332 metadata !"Red", ;; Name
1333 metadata !1, ;; File
1334 i32 2, ;; Line number
1335 i64 32, ;; Size in bits
1336 i64 32, ;; Align in bits
1337 i64 0, ;; Offset in bits
1338 i32 0, ;; Flags
1339 metadata !5 ;; Derived From type
1340 }
1341
1342 ;;
1343 ;; Define the Green field.
1344 ;;
1345 !6 = metadata !{
1346 i32 524301, ;; Tag
1347 metadata !1, ;; Context
1348 metadata !"Green", ;; Name
1349 metadata !1, ;; File
1350 i32 3, ;; Line number
1351 i64 32, ;; Size in bits
1352 i64 32, ;; Align in bits
1353 i64 32, ;; Offset in bits
1354 i32 0, ;; Flags
1355 metadata !5 ;; Derived From type
1356 }
1357
1358 ;;
1359 ;; Define the Blue field.
1360 ;;
1361 !7 = metadata !{
1362 i32 524301, ;; Tag
1363 metadata !1, ;; Context
1364 metadata !"Blue", ;; Name
1365 metadata !1, ;; File
1366 i32 4, ;; Line number
1367 i64 32, ;; Size in bits
1368 i64 32, ;; Align in bits
1369 i64 64, ;; Offset in bits
1370 i32 0, ;; Flags
1371 metadata !5 ;; Derived From type
1372 }
1373
1374 ;;
1375 ;; Define the array of fields used by the composite type Color.
1376 ;;
1377 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1378
1379C/C++ enumeration types
1380-----------------------
1381
1382Given the following as an example of C/C++ enumeration type:
1383
1384.. code-block:: c
1385
1386 enum Trees {
1387 Spruce = 100,
1388 Oak = 200,
1389 Maple = 300
1390 };
1391
1392a C/C++ front-end would generate the following descriptors:
1393
1394.. code-block:: llvm
1395
1396 ;;
1397 ;; Define composite type for enum Trees
1398 ;;
1399 !2 = metadata !{
1400 i32 524292, ;; Tag
1401 metadata !1, ;; Context
1402 metadata !"Trees", ;; Name
1403 metadata !1, ;; File
1404 i32 1, ;; Line number
1405 i64 32, ;; Size in bits
1406 i64 32, ;; Align in bits
1407 i64 0, ;; Offset in bits
1408 i32 0, ;; Flags
1409 null, ;; Derived From type
1410 metadata !3, ;; Elements
1411 i32 0 ;; Runtime language
1412 }
1413
1414 ;;
1415 ;; Define the array of enumerators used by composite type Trees.
1416 ;;
1417 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1418
1419 ;;
1420 ;; Define Spruce enumerator.
1421 ;;
1422 !4 = metadata !{i32 524328, metadata !"Spruce", i64 100}
1423
1424 ;;
1425 ;; Define Oak enumerator.
1426 ;;
1427 !5 = metadata !{i32 524328, metadata !"Oak", i64 200}
1428
1429 ;;
1430 ;; Define Maple enumerator.
1431 ;;
1432 !6 = metadata !{i32 524328, metadata !"Maple", i64 300}
1433
1434Debugging information format
1435============================
1436
1437Debugging Information Extension for Objective C Properties
1438----------------------------------------------------------
1439
1440Introduction
1441^^^^^^^^^^^^
1442
1443Objective C provides a simpler way to declare and define accessor methods using
1444declared properties. The language provides features to declare a property and
1445to let compiler synthesize accessor methods.
1446
1447The debugger lets developer inspect Objective C interfaces and their instance
1448variables and class variables. However, the debugger does not know anything
1449about the properties defined in Objective C interfaces. The debugger consumes
1450information generated by compiler in DWARF format. The format does not support
1451encoding of Objective C properties. This proposal describes DWARF extensions to
1452encode Objective C properties, which the debugger can use to let developers
1453inspect Objective C properties.
1454
1455Proposal
1456^^^^^^^^
1457
1458Objective C properties exist separately from class members. A property can be
1459defined only by "setter" and "getter" selectors, and be calculated anew on each
1460access. Or a property can just be a direct access to some declared ivar.
1461Finally it can have an ivar "automatically synthesized" for it by the compiler,
1462in which case the property can be referred to in user code directly using the
1463standard C dereference syntax as well as through the property "dot" syntax, but
1464there is no entry in the ``@interface`` declaration corresponding to this ivar.
1465
1466To facilitate debugging, these properties we will add a new DWARF TAG into the
1467``DW_TAG_structure_type`` definition for the class to hold the description of a
1468given property, and a set of DWARF attributes that provide said description.
1469The property tag will also contain the name and declared type of the property.
1470
1471If there is a related ivar, there will also be a DWARF property attribute placed
1472in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1473for that property. And in the case where the compiler synthesizes the ivar
1474directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1475ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1476to access this ivar directly in code, and with the property attribute pointing
1477back to the property it is backing.
1478
1479The following examples will serve as illustration for our discussion:
1480
1481.. code-block:: objc
1482
1483 @interface I1 {
1484 int n2;
1485 }
1486
1487 @property int p1;
1488 @property int p2;
1489 @end
1490
1491 @implementation I1
1492 @synthesize p1;
1493 @synthesize p2 = n2;
1494 @end
1495
1496This produces the following DWARF (this is a "pseudo dwarfdump" output):
1497
1498.. code-block:: none
1499
1500 0x00000100: TAG_structure_type [7] *
1501 AT_APPLE_runtime_class( 0x10 )
1502 AT_name( "I1" )
1503 AT_decl_file( "Objc_Property.m" )
1504 AT_decl_line( 3 )
1505
1506 0x00000110 TAG_APPLE_property
1507 AT_name ( "p1" )
1508 AT_type ( {0x00000150} ( int ) )
1509
1510 0x00000120: TAG_APPLE_property
1511 AT_name ( "p2" )
1512 AT_type ( {0x00000150} ( int ) )
1513
1514 0x00000130: TAG_member [8]
1515 AT_name( "_p1" )
1516 AT_APPLE_property ( {0x00000110} "p1" )
1517 AT_type( {0x00000150} ( int ) )
1518 AT_artificial ( 0x1 )
1519
1520 0x00000140: TAG_member [8]
1521 AT_name( "n2" )
1522 AT_APPLE_property ( {0x00000120} "p2" )
1523 AT_type( {0x00000150} ( int ) )
1524
1525 0x00000150: AT_type( ( int ) )
1526
1527Note, the current convention is that the name of the ivar for an
1528auto-synthesized property is the name of the property from which it derives
1529with an underscore prepended, as is shown in the example. But we actually
1530don't need to know this convention, since we are given the name of the ivar
1531directly.
1532
1533Also, it is common practice in ObjC to have different property declarations in
1534the @interface and @implementation - e.g. to provide a read-only property in
1535the interface,and a read-write interface in the implementation. In that case,
1536the compiler should emit whichever property declaration will be in force in the
1537current translation unit.
1538
1539Developers can decorate a property with attributes which are encoded using
1540``DW_AT_APPLE_property_attribute``.
1541
1542.. code-block:: objc
1543
1544 @property (readonly, nonatomic) int pr;
1545
1546.. code-block:: none
1547
1548 TAG_APPLE_property [8]
1549 AT_name( "pr" )
1550 AT_type ( {0x00000147} (int) )
1551 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1552
1553The setter and getter method names are attached to the property using
1554``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1555
1556.. code-block:: objc
1557
1558 @interface I1
1559 @property (setter=myOwnP3Setter:) int p3;
1560 -(void)myOwnP3Setter:(int)a;
1561 @end
1562
1563 @implementation I1
1564 @synthesize p3;
1565 -(void)myOwnP3Setter:(int)a{ }
1566 @end
1567
1568The DWARF for this would be:
1569
1570.. code-block:: none
1571
1572 0x000003bd: TAG_structure_type [7] *
1573 AT_APPLE_runtime_class( 0x10 )
1574 AT_name( "I1" )
1575 AT_decl_file( "Objc_Property.m" )
1576 AT_decl_line( 3 )
1577
1578 0x000003cd TAG_APPLE_property
1579 AT_name ( "p3" )
1580 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1581 AT_type( {0x00000147} ( int ) )
1582
1583 0x000003f3: TAG_member [8]
1584 AT_name( "_p3" )
1585 AT_type ( {0x00000147} ( int ) )
1586 AT_APPLE_property ( {0x000003cd} )
1587 AT_artificial ( 0x1 )
1588
1589New DWARF Tags
1590^^^^^^^^^^^^^^
1591
1592+-----------------------+--------+
1593| TAG | Value |
1594+=======================+========+
1595| DW_TAG_APPLE_property | 0x4200 |
1596+-----------------------+--------+
1597
1598New DWARF Attributes
1599^^^^^^^^^^^^^^^^^^^^
1600
1601+--------------------------------+--------+-----------+
1602| Attribute | Value | Classes |
1603+================================+========+===========+
1604| DW_AT_APPLE_property | 0x3fed | Reference |
1605+--------------------------------+--------+-----------+
1606| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1607+--------------------------------+--------+-----------+
1608| DW_AT_APPLE_property_setter | 0x3fea | String |
1609+--------------------------------+--------+-----------+
1610| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1611+--------------------------------+--------+-----------+
1612
1613New DWARF Constants
1614^^^^^^^^^^^^^^^^^^^
1615
1616+--------------------------------+-------+
1617| Name | Value |
1618+================================+=======+
1619| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1620+--------------------------------+-------+
1621| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1622+--------------------------------+-------+
1623| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1624+--------------------------------+-------+
1625| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1626+--------------------------------+-------+
1627| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1628+--------------------------------+-------+
1629| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1630+--------------------------------+-------+
1631
1632Name Accelerator Tables
1633-----------------------
1634
1635Introduction
1636^^^^^^^^^^^^
1637
1638The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1639debugger needs. The "``pub``" in the section name indicates that the entries
1640in the table are publicly visible names only. This means no static or hidden
1641functions show up in the "``.debug_pubnames``". No static variables or private
1642class variables are in the "``.debug_pubtypes``". Many compilers add different
1643things to these tables, so we can't rely upon the contents between gcc, icc, or
1644clang.
1645
1646The typical query given by users tends not to match up with the contents of
1647these tables. For example, the DWARF spec states that "In the case of the name
1648of a function member or static data member of a C++ structure, class or union,
1649the name presented in the "``.debug_pubnames``" section is not the simple name
1650given by the ``DW_AT_name attribute`` of the referenced debugging information
1651entry, but rather the fully qualified name of the data or function member."
1652So the only names in these tables for complex C++ entries is a fully
1653qualified name. Debugger users tend not to enter their search strings as
1654"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1655"``a::b::c``". So the name entered in the name table must be demangled in
1656order to chop it up appropriately and additional names must be manually entered
1657into the table to make it effective as a name lookup table for debuggers to
1658se.
1659
1660All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1661its inconsistent and useless public-only name content making it a waste of
1662space in the object file. These tables, when they are written to disk, are not
1663sorted in any way, leaving every debugger to do its own parsing and sorting.
1664These tables also include an inlined copy of the string values in the table
1665itself making the tables much larger than they need to be on disk, especially
1666for large C++ programs.
1667
1668Can't we just fix the sections by adding all of the names we need to this
1669table? No, because that is not what the tables are defined to contain and we
1670won't know the difference between the old bad tables and the new good tables.
1671At best we could make our own renamed sections that contain all of the data we
1672need.
1673
1674These tables are also insufficient for what a debugger like LLDB needs. LLDB
1675uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1676often asked to look for type "``foo``" or namespace "``bar``", or list items in
1677namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1678tables. Since clang asks a lot of questions when it is parsing an expression,
1679we need to be very fast when looking up names, as it happens a lot. Having new
1680accelerator tables that are optimized for very quick lookups will benefit this
1681type of debugging experience greatly.
1682
1683We would like to generate name lookup tables that can be mapped into memory
1684from disk, and used as is, with little or no up-front parsing. We would also
1685be able to control the exact content of these different tables so they contain
1686exactly what we need. The Name Accelerator Tables were designed to fix these
1687issues. In order to solve these issues we need to:
1688
1689* Have a format that can be mapped into memory from disk and used as is
1690* Lookups should be very fast
1691* Extensible table format so these tables can be made by many producers
1692* Contain all of the names needed for typical lookups out of the box
1693* Strict rules for the contents of tables
1694
1695Table size is important and the accelerator table format should allow the reuse
1696of strings from common string tables so the strings for the names are not
1697duplicated. We also want to make sure the table is ready to be used as-is by
1698simply mapping the table into memory with minimal header parsing.
1699
1700The name lookups need to be fast and optimized for the kinds of lookups that
1701debuggers tend to do. Optimally we would like to touch as few parts of the
1702mapped table as possible when doing a name lookup and be able to quickly find
1703the name entry we are looking for, or discover there are no matches. In the
1704case of debuggers we optimized for lookups that fail most of the time.
1705
1706Each table that is defined should have strict rules on exactly what is in the
1707accelerator tables and documented so clients can rely on the content.
1708
1709Hash Tables
1710^^^^^^^^^^^
1711
1712Standard Hash Tables
1713""""""""""""""""""""
1714
1715Typical hash tables have a header, buckets, and each bucket points to the
1716bucket contents:
1717
1718.. code-block:: none
1719
1720 .------------.
1721 | HEADER |
1722 |------------|
1723 | BUCKETS |
1724 |------------|
1725 | DATA |
1726 `------------'
1727
1728The BUCKETS are an array of offsets to DATA for each hash:
1729
1730.. code-block:: none
1731
1732 .------------.
1733 | 0x00001000 | BUCKETS[0]
1734 | 0x00002000 | BUCKETS[1]
1735 | 0x00002200 | BUCKETS[2]
1736 | 0x000034f0 | BUCKETS[3]
1737 | | ...
1738 | 0xXXXXXXXX | BUCKETS[n_buckets]
1739 '------------'
1740
1741So for ``bucket[3]`` in the example above, we have an offset into the table
17420x000034f0 which points to a chain of entries for the bucket. Each bucket must
1743contain a next pointer, full 32 bit hash value, the string itself, and the data
1744for the current string value.
1745
1746.. code-block:: none
1747
1748 .------------.
1749 0x000034f0: | 0x00003500 | next pointer
1750 | 0x12345678 | 32 bit hash
1751 | "erase" | string value
1752 | data[n] | HashData for this bucket
1753 |------------|
1754 0x00003500: | 0x00003550 | next pointer
1755 | 0x29273623 | 32 bit hash
1756 | "dump" | string value
1757 | data[n] | HashData for this bucket
1758 |------------|
1759 0x00003550: | 0x00000000 | next pointer
1760 | 0x82638293 | 32 bit hash
1761 | "main" | string value
1762 | data[n] | HashData for this bucket
1763 `------------'
1764
1765The problem with this layout for debuggers is that we need to optimize for the
1766negative lookup case where the symbol we're searching for is not present. So
1767if we were to lookup "``printf``" in the table above, we would make a 32 hash
1768for "``printf``", it might match ``bucket[3]``. We would need to go to the
1769offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1770so, we need to read the next pointer, then read the hash, compare it, and skip
1771to the next bucket. Each time we are skipping many bytes in memory and
1772touching new cache pages just to do the compare on the full 32 bit hash. All
1773of these accesses then tell us that we didn't have a match.
1774
1775Name Hash Tables
1776""""""""""""""""
1777
1778To solve the issues mentioned above we have structured the hash tables a bit
1779differently: a header, buckets, an array of all unique 32 bit hash values,
1780followed by an array of hash value data offsets, one for each hash value, then
1781the data for all hash values:
1782
1783.. code-block:: none
1784
1785 .-------------.
1786 | HEADER |
1787 |-------------|
1788 | BUCKETS |
1789 |-------------|
1790 | HASHES |
1791 |-------------|
1792 | OFFSETS |
1793 |-------------|
1794 | DATA |
1795 `-------------'
1796
1797The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1798making all of the full 32 bit hash values contiguous in memory, we allow
1799ourselves to efficiently check for a match while touching as little memory as
1800possible. Most often checking the 32 bit hash values is as far as the lookup
1801goes. If it does match, it usually is a match with no collisions. So for a
1802table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1803values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1804``OFFSETS`` as:
1805
1806.. code-block:: none
1807
1808 .-------------------------.
1809 | HEADER.magic | uint32_t
1810 | HEADER.version | uint16_t
1811 | HEADER.hash_function | uint16_t
1812 | HEADER.bucket_count | uint32_t
1813 | HEADER.hashes_count | uint32_t
1814 | HEADER.header_data_len | uint32_t
1815 | HEADER_DATA | HeaderData
1816 |-------------------------|
1817 | BUCKETS | uint32_t[bucket_count] // 32 bit hash indexes
1818 |-------------------------|
1819 | HASHES | uint32_t[hashes_count] // 32 bit hash values
1820 |-------------------------|
1821 | OFFSETS | uint32_t[hashes_count] // 32 bit offsets to hash value data
1822 |-------------------------|
1823 | ALL HASH DATA |
1824 `-------------------------'
1825
1826So taking the exact same data from the standard hash example above we end up
1827with:
1828
1829.. code-block:: none
1830
1831 .------------.
1832 | HEADER |
1833 |------------|
1834 | 0 | BUCKETS[0]
1835 | 2 | BUCKETS[1]
1836 | 5 | BUCKETS[2]
1837 | 6 | BUCKETS[3]
1838 | | ...
1839 | ... | BUCKETS[n_buckets]
1840 |------------|
1841 | 0x........ | HASHES[0]
1842 | 0x........ | HASHES[1]
1843 | 0x........ | HASHES[2]
1844 | 0x........ | HASHES[3]
1845 | 0x........ | HASHES[4]
1846 | 0x........ | HASHES[5]
1847 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1848 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1849 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1850 | 0x........ | HASHES[9]
1851 | 0x........ | HASHES[10]
1852 | 0x........ | HASHES[11]
1853 | 0x........ | HASHES[12]
1854 | 0x........ | HASHES[13]
1855 | 0x........ | HASHES[n_hashes]
1856 |------------|
1857 | 0x........ | OFFSETS[0]
1858 | 0x........ | OFFSETS[1]
1859 | 0x........ | OFFSETS[2]
1860 | 0x........ | OFFSETS[3]
1861 | 0x........ | OFFSETS[4]
1862 | 0x........ | OFFSETS[5]
1863 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1864 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1865 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1866 | 0x........ | OFFSETS[9]
1867 | 0x........ | OFFSETS[10]
1868 | 0x........ | OFFSETS[11]
1869 | 0x........ | OFFSETS[12]
1870 | 0x........ | OFFSETS[13]
1871 | 0x........ | OFFSETS[n_hashes]
1872 |------------|
1873 | |
1874 | |
1875 | |
1876 | |
1877 | |
1878 |------------|
1879 0x000034f0: | 0x00001203 | .debug_str ("erase")
1880 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1881 | 0x........ | HashData[0]
1882 | 0x........ | HashData[1]
1883 | 0x........ | HashData[2]
1884 | 0x........ | HashData[3]
1885 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1886 |------------|
1887 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1888 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1889 | 0x........ | HashData[0]
1890 | 0x........ | HashData[1]
1891 | 0x00001203 | String offset into .debug_str ("dump")
1892 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1893 | 0x........ | HashData[0]
1894 | 0x........ | HashData[1]
1895 | 0x........ | HashData[2]
1896 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1897 |------------|
1898 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1899 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1900 | 0x........ | HashData[0]
1901 | 0x........ | HashData[1]
1902 | 0x........ | HashData[2]
1903 | 0x........ | HashData[3]
1904 | 0x........ | HashData[4]
1905 | 0x........ | HashData[5]
1906 | 0x........ | HashData[6]
1907 | 0x........ | HashData[7]
1908 | 0x........ | HashData[8]
1909 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1910 `------------'
1911
1912So we still have all of the same data, we just organize it more efficiently for
1913debugger lookup. If we repeat the same "``printf``" lookup from above, we
1914would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1915hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1916is the index into the ``HASHES`` table. We would then compare any consecutive
191732 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1918``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1919``n_buckets`` is still 3. In the case of a failed lookup we would access the
1920memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1921before we know that we have no match. We don't end up marching through
1922multiple words of memory and we really keep the number of processor data cache
1923lines being accessed as small as possible.
1924
1925The string hash that is used for these lookup tables is the Daniel J.
1926Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1927very good hash for all kinds of names in programs with very few hash
1928collisions.
1929
1930Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1931
1932Details
1933^^^^^^^
1934
1935These name hash tables are designed to be generic where specializations of the
1936table get to define additional data that goes into the header ("``HeaderData``"),
1937how the string value is stored ("``KeyType``") and the content of the data for each
1938hash value.
1939
1940Header Layout
1941"""""""""""""
1942
1943The header has a fixed part, and the specialized part. The exact format of the
1944header is:
1945
1946.. code-block:: c
1947
1948 struct Header
1949 {
1950 uint32_t magic; // 'HASH' magic value to allow endian detection
1951 uint16_t version; // Version number
1952 uint16_t hash_function; // The hash function enumeration that was used
1953 uint32_t bucket_count; // The number of buckets in this hash table
1954 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1955 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1956 // Specifically the length of the following HeaderData field - this does not
1957 // include the size of the preceding fields
1958 HeaderData header_data; // Implementation specific header data
1959 };
1960
1961The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1962encoded as an ASCII integer. This allows the detection of the start of the
1963hash table and also allows the table's byte order to be determined so the table
1964can be correctly extracted. The "``magic``" value is followed by a 16 bit
1965``version`` number which allows the table to be revised and modified in the
1966future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1967enumeration that specifies which hash function was used to produce this table.
1968The current values for the hash function enumerations include:
1969
1970.. code-block:: c
1971
1972 enum HashFunctionType
1973 {
1974 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1975 };
1976
1977``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1978are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1979hash values that are in the ``HASHES`` array, and is the same number of offsets
1980are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1981in bytes of the ``HeaderData`` that is filled in by specialized versions of
1982this table.
1983
1984Fixed Lookup
1985""""""""""""
1986
1987The header is followed by the buckets, hashes, offsets, and hash value data.
1988
1989.. code-block:: c
1990
1991 struct FixedTable
1992 {
1993 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1994 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1995 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1996 };
1997
1998``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
1999``hashes`` array contains all of the 32 bit hash values for all names in the
2000hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
2001array that points to the data for the hash value.
2002
2003This table setup makes it very easy to repurpose these tables to contain
2004different data, while keeping the lookup mechanism the same for all tables.
2005This layout also makes it possible to save the table to disk and map it in
2006later and do very efficient name lookups with little or no parsing.
2007
2008DWARF lookup tables can be implemented in a variety of ways and can store a lot
2009of information for each name. We want to make the DWARF tables extensible and
2010able to store the data efficiently so we have used some of the DWARF features
2011that enable efficient data storage to define exactly what kind of data we store
2012for each name.
2013
2014The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2015We might want to store an offset to all of the debug information entries (DIEs)
2016for each name. To keep things extensible, we create a list of items, or
2017Atoms, that are contained in the data for each name. First comes the type of
2018the data in each atom:
2019
2020.. code-block:: c
2021
2022 enum AtomType
2023 {
2024 eAtomTypeNULL = 0u,
2025 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2026 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2027 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2028 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2029 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2030 };
2031
2032The enumeration values and their meanings are:
2033
2034.. code-block:: none
2035
2036 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2037 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2038 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2039 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2040 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2041 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2042
2043Then we allow each atom type to define the atom type and how the data for each
2044atom type data is encoded:
2045
2046.. code-block:: c
2047
2048 struct Atom
2049 {
2050 uint16_t type; // AtomType enum value
2051 uint16_t form; // DWARF DW_FORM_XXX defines
2052 };
2053
2054The ``form`` type above is from the DWARF specification and defines the exact
2055encoding of the data for the Atom type. See the DWARF specification for the
2056``DW_FORM_`` definitions.
2057
2058.. code-block:: c
2059
2060 struct HeaderData
2061 {
2062 uint32_t die_offset_base;
2063 uint32_t atom_count;
2064 Atoms atoms[atom_count0];
2065 };
2066
2067``HeaderData`` defines the base DIE offset that should be added to any atoms
2068that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2069``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2070what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2071each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2072should be interpreted.
2073
2074For the current implementations of the "``.apple_names``" (all functions +
2075globals), the "``.apple_types``" (names of all types that are defined), and
2076the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2077array to be:
2078
2079.. code-block:: c
2080
2081 HeaderData.atom_count = 1;
2082 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2083 HeaderData.atoms[0].form = DW_FORM_data4;
2084
2085This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2086 encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2087 multiple matching DIEs in a single file, which could come up with an inlined
2088 function for instance. Future tables could include more information about the
2089 DIE such as flags indicating if the DIE is a function, method, block,
2090 or inlined.
2091
2092The KeyType for the DWARF table is a 32 bit string table offset into the
2093 ".debug_str" table. The ".debug_str" is the string table for the DWARF which
2094 may already contain copies of all of the strings. This helps make sure, with
2095 help from the compiler, that we reuse the strings between all of the DWARF
2096 sections and keeps the hash table size down. Another benefit to having the
2097 compiler generate all strings as DW_FORM_strp in the debug info, is that
2098 DWARF parsing can be made much faster.
2099
2100After a lookup is made, we get an offset into the hash data. The hash data
2101 needs to be able to deal with 32 bit hash collisions, so the chunk of data
2102 at the offset in the hash data consists of a triple:
2103
2104.. code-block:: c
2105
2106 uint32_t str_offset
2107 uint32_t hash_data_count
2108 HashData[hash_data_count]
2109
2110If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2111 hash data chunks contain a single item (no 32 bit hash collision):
2112
2113.. code-block:: none
2114
2115 .------------.
2116 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2117 | 0x00000004 | uint32_t HashData count
2118 | 0x........ | uint32_t HashData[0] DIE offset
2119 | 0x........ | uint32_t HashData[1] DIE offset
2120 | 0x........ | uint32_t HashData[2] DIE offset
2121 | 0x........ | uint32_t HashData[3] DIE offset
2122 | 0x00000000 | uint32_t KeyType (end of hash chain)
2123 `------------'
2124
2125If there are collisions, you will have multiple valid string offsets:
2126
2127.. code-block:: none
2128
2129 .------------.
2130 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2131 | 0x00000004 | uint32_t HashData count
2132 | 0x........ | uint32_t HashData[0] DIE offset
2133 | 0x........ | uint32_t HashData[1] DIE offset
2134 | 0x........ | uint32_t HashData[2] DIE offset
2135 | 0x........ | uint32_t HashData[3] DIE offset
2136 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2137 | 0x00000002 | uint32_t HashData count
2138 | 0x........ | uint32_t HashData[0] DIE offset
2139 | 0x........ | uint32_t HashData[1] DIE offset
2140 | 0x00000000 | uint32_t KeyType (end of hash chain)
2141 `------------'
2142
2143Current testing with real world C++ binaries has shown that there is around 1
214432 bit hash collision per 100,000 name entries.
2145
2146Contents
2147^^^^^^^^
2148
2149As we said, we want to strictly define exactly what is included in the
2150different tables. For DWARF, we have 3 tables: "``.apple_names``",
2151"``.apple_types``", and "``.apple_namespaces``".
2152
2153"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2154``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2155``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2156``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2157``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2158static variables). All global and static variables should be included,
2159including those scoped within functions and classes. For example using the
2160following code:
2161
2162.. code-block:: c
2163
2164 static int var = 0;
2165
2166 void f ()
2167 {
2168 static int var = 0;
2169 }
2170
2171Both of the static ``var`` variables would be included in the table. All
2172functions should emit both their full names and their basenames. For C or C++,
2173the full name is the mangled name (if available) which is usually in the
2174``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2175function basename. If global or static variables have a mangled name in a
2176``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2177simple name found in the ``DW_AT_name`` attribute.
2178
2179"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2180tag is one of:
2181
2182* DW_TAG_array_type
2183* DW_TAG_class_type
2184* DW_TAG_enumeration_type
2185* DW_TAG_pointer_type
2186* DW_TAG_reference_type
2187* DW_TAG_string_type
2188* DW_TAG_structure_type
2189* DW_TAG_subroutine_type
2190* DW_TAG_typedef
2191* DW_TAG_union_type
2192* DW_TAG_ptr_to_member_type
2193* DW_TAG_set_type
2194* DW_TAG_subrange_type
2195* DW_TAG_base_type
2196* DW_TAG_const_type
2197* DW_TAG_constant
2198* DW_TAG_file_type
2199* DW_TAG_namelist
2200* DW_TAG_packed_type
2201* DW_TAG_volatile_type
2202* DW_TAG_restrict_type
2203* DW_TAG_interface_type
2204* DW_TAG_unspecified_type
2205* DW_TAG_shared_type
2206
2207Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2208not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2209value). For example, using the following code:
2210
2211.. code-block:: c
2212
2213 int main ()
2214 {
2215 int *b = 0;
2216 return *b;
2217 }
2218
2219We get a few type DIEs:
2220
2221.. code-block:: none
2222
2223 0x00000067: TAG_base_type [5]
2224 AT_encoding( DW_ATE_signed )
2225 AT_name( "int" )
2226 AT_byte_size( 0x04 )
2227
2228 0x0000006e: TAG_pointer_type [6]
2229 AT_type( {0x00000067} ( int ) )
2230 AT_byte_size( 0x08 )
2231
2232The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2233
2234"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2235If we run into a namespace that has no name this is an anonymous namespace, and
2236the name should be output as "``(anonymous namespace)``" (without the quotes).
2237Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2238standard C++ library that demangles mangled names.
2239
2240
2241Language Extensions and File Format Changes
2242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2243
2244Objective-C Extensions
2245""""""""""""""""""""""
2246
2247"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2248Objective-C class. The name used in the hash table is the name of the
2249Objective-C class itself. If the Objective-C class has a category, then an
2250entry is made for both the class name without the category, and for the class
2251name with the category. So if we have a DIE at offset 0x1234 with a name of
2252method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2253an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2254"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2255track down all Objective-C methods for an Objective-C class when doing
2256expressions. It is needed because of the dynamic nature of Objective-C where
2257anyone can add methods to a class. The DWARF for Objective-C methods is also
2258emitted differently from C++ classes where the methods are not usually
2259contained in the class definition, they are scattered about across one or more
2260compile units. Categories can also be defined in different shared libraries.
2261So we need to be able to quickly find all of the methods and class functions
2262given the Objective-C class name, or quickly find all methods and class
2263functions for a class + category name. This table does not contain any
2264selector names, it just maps Objective-C class names (or class names +
2265category) to all of the methods and class functions. The selectors are added
2266as function basenames in the "``.debug_names``" section.
2267
2268In the "``.apple_names``" section for Objective-C functions, the full name is
2269the entire function name with the brackets ("``-[NSString
2270stringWithCString:]``") and the basename is the selector only
2271("``stringWithCString:``").
2272
2273Mach-O Changes
2274""""""""""""""
2275
2276The sections names for the apple hash tables are for non mach-o files. For
2277mach-o files, the sections should be contained in the ``__DWARF`` segment with
2278names as follows:
2279
2280* "``.apple_names``" -> "``__apple_names``"
2281* "``.apple_types``" -> "``__apple_types``"
2282* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2283* "``.apple_objc``" -> "``__apple_objc``"
2284