blob: 01ec5c968aa04956508ecd45f90805a912f6cde2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39 SDVTList Res = {VTs, NumVTs};
40 return Res;
41}
42
43//===----------------------------------------------------------------------===//
44// ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
Dale Johannesenc53301c2007-08-26 01:18:27 +000051bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000052 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053}
54
Dale Johannesenbbe2b702007-08-30 00:23:21 +000055bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56 const APFloat& Val) {
57 // convert modifies in place, so make a copy.
58 APFloat Val2 = APFloat(Val);
59 switch (VT) {
60 default:
61 return false; // These can't be represented as floating point!
62
63 // FIXME rounding mode needs to be more flexible
64 case MVT::f32:
65 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67 APFloat::opOK;
68 case MVT::f64:
69 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70 &Val2.getSemantics() == &APFloat::IEEEdouble ||
71 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72 APFloat::opOK;
73 // TODO: Figure out how to test if we can use a shorter type instead!
74 case MVT::f80:
75 case MVT::f128:
76 case MVT::ppcf128:
77 return true;
78 }
79}
80
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081//===----------------------------------------------------------------------===//
82// ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88 // Look through a bit convert.
89 if (N->getOpcode() == ISD::BIT_CONVERT)
90 N = N->getOperand(0).Val;
91
92 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94 unsigned i = 0, e = N->getNumOperands();
95
96 // Skip over all of the undef values.
97 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98 ++i;
99
100 // Do not accept an all-undef vector.
101 if (i == e) return false;
102
103 // Do not accept build_vectors that aren't all constants or which have non-~0
104 // elements.
105 SDOperand NotZero = N->getOperand(i);
106 if (isa<ConstantSDNode>(NotZero)) {
107 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108 return false;
109 } else if (isa<ConstantFPSDNode>(NotZero)) {
110 MVT::ValueType VT = NotZero.getValueType();
111 if (VT== MVT::f64) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000112 if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->
113 getValueAPF().convertToDouble()) !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 (uint64_t)-1)
115 return false;
116 } else {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000117 if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->
118 getValueAPF().convertToFloat()) !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119 (uint32_t)-1)
120 return false;
121 }
122 } else
123 return false;
124
125 // Okay, we have at least one ~0 value, check to see if the rest match or are
126 // undefs.
127 for (++i; i != e; ++i)
128 if (N->getOperand(i) != NotZero &&
129 N->getOperand(i).getOpcode() != ISD::UNDEF)
130 return false;
131 return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138 // Look through a bit convert.
139 if (N->getOpcode() == ISD::BIT_CONVERT)
140 N = N->getOperand(0).Val;
141
142 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144 unsigned i = 0, e = N->getNumOperands();
145
146 // Skip over all of the undef values.
147 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148 ++i;
149
150 // Do not accept an all-undef vector.
151 if (i == e) return false;
152
153 // Do not accept build_vectors that aren't all constants or which have non-~0
154 // elements.
155 SDOperand Zero = N->getOperand(i);
156 if (isa<ConstantSDNode>(Zero)) {
157 if (!cast<ConstantSDNode>(Zero)->isNullValue())
158 return false;
159 } else if (isa<ConstantFPSDNode>(Zero)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000160 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 return false;
162 } else
163 return false;
164
165 // Okay, we have at least one ~0 value, check to see if the rest match or are
166 // undefs.
167 for (++i; i != e; ++i)
168 if (N->getOperand(i) != Zero &&
169 N->getOperand(i).getOpcode() != ISD::UNDEF)
170 return false;
171 return true;
172}
173
174/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
175/// when given the operation for (X op Y).
176ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
177 // To perform this operation, we just need to swap the L and G bits of the
178 // operation.
179 unsigned OldL = (Operation >> 2) & 1;
180 unsigned OldG = (Operation >> 1) & 1;
181 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
182 (OldL << 1) | // New G bit
183 (OldG << 2)); // New L bit.
184}
185
186/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
187/// 'op' is a valid SetCC operation.
188ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
189 unsigned Operation = Op;
190 if (isInteger)
191 Operation ^= 7; // Flip L, G, E bits, but not U.
192 else
193 Operation ^= 15; // Flip all of the condition bits.
194 if (Operation > ISD::SETTRUE2)
195 Operation &= ~8; // Don't let N and U bits get set.
196 return ISD::CondCode(Operation);
197}
198
199
200/// isSignedOp - For an integer comparison, return 1 if the comparison is a
201/// signed operation and 2 if the result is an unsigned comparison. Return zero
202/// if the operation does not depend on the sign of the input (setne and seteq).
203static int isSignedOp(ISD::CondCode Opcode) {
204 switch (Opcode) {
205 default: assert(0 && "Illegal integer setcc operation!");
206 case ISD::SETEQ:
207 case ISD::SETNE: return 0;
208 case ISD::SETLT:
209 case ISD::SETLE:
210 case ISD::SETGT:
211 case ISD::SETGE: return 1;
212 case ISD::SETULT:
213 case ISD::SETULE:
214 case ISD::SETUGT:
215 case ISD::SETUGE: return 2;
216 }
217}
218
219/// getSetCCOrOperation - Return the result of a logical OR between different
220/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
221/// returns SETCC_INVALID if it is not possible to represent the resultant
222/// comparison.
223ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
224 bool isInteger) {
225 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
226 // Cannot fold a signed integer setcc with an unsigned integer setcc.
227 return ISD::SETCC_INVALID;
228
229 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
230
231 // If the N and U bits get set then the resultant comparison DOES suddenly
232 // care about orderedness, and is true when ordered.
233 if (Op > ISD::SETTRUE2)
234 Op &= ~16; // Clear the U bit if the N bit is set.
235
236 // Canonicalize illegal integer setcc's.
237 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
238 Op = ISD::SETNE;
239
240 return ISD::CondCode(Op);
241}
242
243/// getSetCCAndOperation - Return the result of a logical AND between different
244/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
245/// function returns zero if it is not possible to represent the resultant
246/// comparison.
247ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
248 bool isInteger) {
249 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
250 // Cannot fold a signed setcc with an unsigned setcc.
251 return ISD::SETCC_INVALID;
252
253 // Combine all of the condition bits.
254 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
255
256 // Canonicalize illegal integer setcc's.
257 if (isInteger) {
258 switch (Result) {
259 default: break;
260 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
261 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
262 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
263 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
264 }
265 }
266
267 return Result;
268}
269
270const TargetMachine &SelectionDAG::getTarget() const {
271 return TLI.getTargetMachine();
272}
273
274//===----------------------------------------------------------------------===//
275// SDNode Profile Support
276//===----------------------------------------------------------------------===//
277
278/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
279///
280static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
281 ID.AddInteger(OpC);
282}
283
284/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
285/// solely with their pointer.
286void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
287 ID.AddPointer(VTList.VTs);
288}
289
290/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
291///
292static void AddNodeIDOperands(FoldingSetNodeID &ID,
293 const SDOperand *Ops, unsigned NumOps) {
294 for (; NumOps; --NumOps, ++Ops) {
295 ID.AddPointer(Ops->Val);
296 ID.AddInteger(Ops->ResNo);
297 }
298}
299
300static void AddNodeIDNode(FoldingSetNodeID &ID,
301 unsigned short OpC, SDVTList VTList,
302 const SDOperand *OpList, unsigned N) {
303 AddNodeIDOpcode(ID, OpC);
304 AddNodeIDValueTypes(ID, VTList);
305 AddNodeIDOperands(ID, OpList, N);
306}
307
308/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
309/// data.
310static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
311 AddNodeIDOpcode(ID, N->getOpcode());
312 // Add the return value info.
313 AddNodeIDValueTypes(ID, N->getVTList());
314 // Add the operand info.
315 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
316
317 // Handle SDNode leafs with special info.
318 switch (N->getOpcode()) {
319 default: break; // Normal nodes don't need extra info.
320 case ISD::TargetConstant:
321 case ISD::Constant:
322 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
323 break;
324 case ISD::TargetConstantFP:
Dale Johannesendf8a8312007-08-31 04:03:46 +0000325 case ISD::ConstantFP: {
326 APFloat V = cast<ConstantFPSDNode>(N)->getValueAPF();
327 if (&V.getSemantics() == &APFloat::IEEEdouble)
328 ID.AddDouble(V.convertToDouble());
329 else if (&V.getSemantics() == &APFloat::IEEEsingle)
330 ID.AddDouble((double)V.convertToFloat());
331 else
332 assert(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000333 break;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000334 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 case ISD::TargetGlobalAddress:
336 case ISD::GlobalAddress:
337 case ISD::TargetGlobalTLSAddress:
338 case ISD::GlobalTLSAddress: {
339 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
340 ID.AddPointer(GA->getGlobal());
341 ID.AddInteger(GA->getOffset());
342 break;
343 }
344 case ISD::BasicBlock:
345 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
346 break;
347 case ISD::Register:
348 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
349 break;
350 case ISD::SRCVALUE: {
351 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
352 ID.AddPointer(SV->getValue());
353 ID.AddInteger(SV->getOffset());
354 break;
355 }
356 case ISD::FrameIndex:
357 case ISD::TargetFrameIndex:
358 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
359 break;
360 case ISD::JumpTable:
361 case ISD::TargetJumpTable:
362 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
363 break;
364 case ISD::ConstantPool:
365 case ISD::TargetConstantPool: {
366 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
367 ID.AddInteger(CP->getAlignment());
368 ID.AddInteger(CP->getOffset());
369 if (CP->isMachineConstantPoolEntry())
370 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
371 else
372 ID.AddPointer(CP->getConstVal());
373 break;
374 }
375 case ISD::LOAD: {
376 LoadSDNode *LD = cast<LoadSDNode>(N);
377 ID.AddInteger(LD->getAddressingMode());
378 ID.AddInteger(LD->getExtensionType());
379 ID.AddInteger(LD->getLoadedVT());
380 ID.AddPointer(LD->getSrcValue());
381 ID.AddInteger(LD->getSrcValueOffset());
382 ID.AddInteger(LD->getAlignment());
383 ID.AddInteger(LD->isVolatile());
384 break;
385 }
386 case ISD::STORE: {
387 StoreSDNode *ST = cast<StoreSDNode>(N);
388 ID.AddInteger(ST->getAddressingMode());
389 ID.AddInteger(ST->isTruncatingStore());
390 ID.AddInteger(ST->getStoredVT());
391 ID.AddPointer(ST->getSrcValue());
392 ID.AddInteger(ST->getSrcValueOffset());
393 ID.AddInteger(ST->getAlignment());
394 ID.AddInteger(ST->isVolatile());
395 break;
396 }
397 }
398}
399
400//===----------------------------------------------------------------------===//
401// SelectionDAG Class
402//===----------------------------------------------------------------------===//
403
404/// RemoveDeadNodes - This method deletes all unreachable nodes in the
405/// SelectionDAG.
406void SelectionDAG::RemoveDeadNodes() {
407 // Create a dummy node (which is not added to allnodes), that adds a reference
408 // to the root node, preventing it from being deleted.
409 HandleSDNode Dummy(getRoot());
410
411 SmallVector<SDNode*, 128> DeadNodes;
412
413 // Add all obviously-dead nodes to the DeadNodes worklist.
414 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
415 if (I->use_empty())
416 DeadNodes.push_back(I);
417
418 // Process the worklist, deleting the nodes and adding their uses to the
419 // worklist.
420 while (!DeadNodes.empty()) {
421 SDNode *N = DeadNodes.back();
422 DeadNodes.pop_back();
423
424 // Take the node out of the appropriate CSE map.
425 RemoveNodeFromCSEMaps(N);
426
427 // Next, brutally remove the operand list. This is safe to do, as there are
428 // no cycles in the graph.
429 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
430 SDNode *Operand = I->Val;
431 Operand->removeUser(N);
432
433 // Now that we removed this operand, see if there are no uses of it left.
434 if (Operand->use_empty())
435 DeadNodes.push_back(Operand);
436 }
437 if (N->OperandsNeedDelete)
438 delete[] N->OperandList;
439 N->OperandList = 0;
440 N->NumOperands = 0;
441
442 // Finally, remove N itself.
443 AllNodes.erase(N);
444 }
445
446 // If the root changed (e.g. it was a dead load, update the root).
447 setRoot(Dummy.getValue());
448}
449
450void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
451 SmallVector<SDNode*, 16> DeadNodes;
452 DeadNodes.push_back(N);
453
454 // Process the worklist, deleting the nodes and adding their uses to the
455 // worklist.
456 while (!DeadNodes.empty()) {
457 SDNode *N = DeadNodes.back();
458 DeadNodes.pop_back();
459
460 // Take the node out of the appropriate CSE map.
461 RemoveNodeFromCSEMaps(N);
462
463 // Next, brutally remove the operand list. This is safe to do, as there are
464 // no cycles in the graph.
465 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
466 SDNode *Operand = I->Val;
467 Operand->removeUser(N);
468
469 // Now that we removed this operand, see if there are no uses of it left.
470 if (Operand->use_empty())
471 DeadNodes.push_back(Operand);
472 }
473 if (N->OperandsNeedDelete)
474 delete[] N->OperandList;
475 N->OperandList = 0;
476 N->NumOperands = 0;
477
478 // Finally, remove N itself.
479 Deleted.push_back(N);
480 AllNodes.erase(N);
481 }
482}
483
484void SelectionDAG::DeleteNode(SDNode *N) {
485 assert(N->use_empty() && "Cannot delete a node that is not dead!");
486
487 // First take this out of the appropriate CSE map.
488 RemoveNodeFromCSEMaps(N);
489
490 // Finally, remove uses due to operands of this node, remove from the
491 // AllNodes list, and delete the node.
492 DeleteNodeNotInCSEMaps(N);
493}
494
495void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
496
497 // Remove it from the AllNodes list.
498 AllNodes.remove(N);
499
500 // Drop all of the operands and decrement used nodes use counts.
501 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
502 I->Val->removeUser(N);
503 if (N->OperandsNeedDelete)
504 delete[] N->OperandList;
505 N->OperandList = 0;
506 N->NumOperands = 0;
507
508 delete N;
509}
510
511/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
512/// correspond to it. This is useful when we're about to delete or repurpose
513/// the node. We don't want future request for structurally identical nodes
514/// to return N anymore.
515void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
516 bool Erased = false;
517 switch (N->getOpcode()) {
518 case ISD::HANDLENODE: return; // noop.
519 case ISD::STRING:
520 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
521 break;
522 case ISD::CONDCODE:
523 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
524 "Cond code doesn't exist!");
525 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
526 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
527 break;
528 case ISD::ExternalSymbol:
529 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
530 break;
531 case ISD::TargetExternalSymbol:
532 Erased =
533 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
534 break;
535 case ISD::VALUETYPE:
536 Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
537 ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
538 break;
539 default:
540 // Remove it from the CSE Map.
541 Erased = CSEMap.RemoveNode(N);
542 break;
543 }
544#ifndef NDEBUG
545 // Verify that the node was actually in one of the CSE maps, unless it has a
546 // flag result (which cannot be CSE'd) or is one of the special cases that are
547 // not subject to CSE.
548 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
549 !N->isTargetOpcode()) {
550 N->dump(this);
551 cerr << "\n";
552 assert(0 && "Node is not in map!");
553 }
554#endif
555}
556
557/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
558/// has been taken out and modified in some way. If the specified node already
559/// exists in the CSE maps, do not modify the maps, but return the existing node
560/// instead. If it doesn't exist, add it and return null.
561///
562SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
563 assert(N->getNumOperands() && "This is a leaf node!");
564 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
565 return 0; // Never add these nodes.
566
567 // Check that remaining values produced are not flags.
568 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
569 if (N->getValueType(i) == MVT::Flag)
570 return 0; // Never CSE anything that produces a flag.
571
572 SDNode *New = CSEMap.GetOrInsertNode(N);
573 if (New != N) return New; // Node already existed.
574 return 0;
575}
576
577/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
578/// were replaced with those specified. If this node is never memoized,
579/// return null, otherwise return a pointer to the slot it would take. If a
580/// node already exists with these operands, the slot will be non-null.
581SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
582 void *&InsertPos) {
583 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
584 return 0; // Never add these nodes.
585
586 // Check that remaining values produced are not flags.
587 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
588 if (N->getValueType(i) == MVT::Flag)
589 return 0; // Never CSE anything that produces a flag.
590
591 SDOperand Ops[] = { Op };
592 FoldingSetNodeID ID;
593 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
594 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
595}
596
597/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
598/// were replaced with those specified. If this node is never memoized,
599/// return null, otherwise return a pointer to the slot it would take. If a
600/// node already exists with these operands, the slot will be non-null.
601SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
602 SDOperand Op1, SDOperand Op2,
603 void *&InsertPos) {
604 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
605 return 0; // Never add these nodes.
606
607 // Check that remaining values produced are not flags.
608 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
609 if (N->getValueType(i) == MVT::Flag)
610 return 0; // Never CSE anything that produces a flag.
611
612 SDOperand Ops[] = { Op1, Op2 };
613 FoldingSetNodeID ID;
614 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
615 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
616}
617
618
619/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
620/// were replaced with those specified. If this node is never memoized,
621/// return null, otherwise return a pointer to the slot it would take. If a
622/// node already exists with these operands, the slot will be non-null.
623SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
624 const SDOperand *Ops,unsigned NumOps,
625 void *&InsertPos) {
626 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
627 return 0; // Never add these nodes.
628
629 // Check that remaining values produced are not flags.
630 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
631 if (N->getValueType(i) == MVT::Flag)
632 return 0; // Never CSE anything that produces a flag.
633
634 FoldingSetNodeID ID;
635 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
636
637 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
638 ID.AddInteger(LD->getAddressingMode());
639 ID.AddInteger(LD->getExtensionType());
640 ID.AddInteger(LD->getLoadedVT());
641 ID.AddPointer(LD->getSrcValue());
642 ID.AddInteger(LD->getSrcValueOffset());
643 ID.AddInteger(LD->getAlignment());
644 ID.AddInteger(LD->isVolatile());
645 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
646 ID.AddInteger(ST->getAddressingMode());
647 ID.AddInteger(ST->isTruncatingStore());
648 ID.AddInteger(ST->getStoredVT());
649 ID.AddPointer(ST->getSrcValue());
650 ID.AddInteger(ST->getSrcValueOffset());
651 ID.AddInteger(ST->getAlignment());
652 ID.AddInteger(ST->isVolatile());
653 }
654
655 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
656}
657
658
659SelectionDAG::~SelectionDAG() {
660 while (!AllNodes.empty()) {
661 SDNode *N = AllNodes.begin();
662 N->SetNextInBucket(0);
663 if (N->OperandsNeedDelete)
664 delete [] N->OperandList;
665 N->OperandList = 0;
666 N->NumOperands = 0;
667 AllNodes.pop_front();
668 }
669}
670
671SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
672 if (Op.getValueType() == VT) return Op;
673 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
674 return getNode(ISD::AND, Op.getValueType(), Op,
675 getConstant(Imm, Op.getValueType()));
676}
677
678SDOperand SelectionDAG::getString(const std::string &Val) {
679 StringSDNode *&N = StringNodes[Val];
680 if (!N) {
681 N = new StringSDNode(Val);
682 AllNodes.push_back(N);
683 }
684 return SDOperand(N, 0);
685}
686
687SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
688 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
689 assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
690
691 // Mask out any bits that are not valid for this constant.
692 Val &= MVT::getIntVTBitMask(VT);
693
694 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
695 FoldingSetNodeID ID;
696 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
697 ID.AddInteger(Val);
698 void *IP = 0;
699 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
700 return SDOperand(E, 0);
701 SDNode *N = new ConstantSDNode(isT, Val, VT);
702 CSEMap.InsertNode(N, IP);
703 AllNodes.push_back(N);
704 return SDOperand(N, 0);
705}
706
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000707SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708 bool isTarget) {
709 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000710
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 MVT::ValueType EltVT =
712 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000713 bool isDouble = (EltVT == MVT::f64);
714 double Val = isDouble ? V.convertToDouble() : (double)V.convertToFloat();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715
716 // Do the map lookup using the actual bit pattern for the floating point
717 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
718 // we don't have issues with SNANs.
719 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000720 // ?? Should we store float/double/longdouble separately in ID?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 FoldingSetNodeID ID;
722 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
723 ID.AddDouble(Val);
724 void *IP = 0;
725 SDNode *N = NULL;
726 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
727 if (!MVT::isVector(VT))
728 return SDOperand(N, 0);
729 if (!N) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +0000730 N = new ConstantFPSDNode(isTarget,
731 isDouble ? APFloat(Val) : APFloat((float)Val), EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000732 CSEMap.InsertNode(N, IP);
733 AllNodes.push_back(N);
734 }
735
736 SDOperand Result(N, 0);
737 if (MVT::isVector(VT)) {
738 SmallVector<SDOperand, 8> Ops;
739 Ops.assign(MVT::getVectorNumElements(VT), Result);
740 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
741 }
742 return Result;
743}
744
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000745SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
746 bool isTarget) {
747 MVT::ValueType EltVT =
748 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
749 if (EltVT==MVT::f32)
750 return getConstantFP(APFloat((float)Val), VT, isTarget);
751 else
752 return getConstantFP(APFloat(Val), VT, isTarget);
753}
754
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
756 MVT::ValueType VT, int Offset,
757 bool isTargetGA) {
758 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
759 unsigned Opc;
760 if (GVar && GVar->isThreadLocal())
761 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
762 else
763 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
764 FoldingSetNodeID ID;
765 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
766 ID.AddPointer(GV);
767 ID.AddInteger(Offset);
768 void *IP = 0;
769 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
770 return SDOperand(E, 0);
771 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
772 CSEMap.InsertNode(N, IP);
773 AllNodes.push_back(N);
774 return SDOperand(N, 0);
775}
776
777SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
778 bool isTarget) {
779 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
780 FoldingSetNodeID ID;
781 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
782 ID.AddInteger(FI);
783 void *IP = 0;
784 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
785 return SDOperand(E, 0);
786 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
787 CSEMap.InsertNode(N, IP);
788 AllNodes.push_back(N);
789 return SDOperand(N, 0);
790}
791
792SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
793 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
794 FoldingSetNodeID ID;
795 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
796 ID.AddInteger(JTI);
797 void *IP = 0;
798 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
799 return SDOperand(E, 0);
800 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
801 CSEMap.InsertNode(N, IP);
802 AllNodes.push_back(N);
803 return SDOperand(N, 0);
804}
805
806SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
807 unsigned Alignment, int Offset,
808 bool isTarget) {
809 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
810 FoldingSetNodeID ID;
811 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
812 ID.AddInteger(Alignment);
813 ID.AddInteger(Offset);
814 ID.AddPointer(C);
815 void *IP = 0;
816 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
817 return SDOperand(E, 0);
818 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
819 CSEMap.InsertNode(N, IP);
820 AllNodes.push_back(N);
821 return SDOperand(N, 0);
822}
823
824
825SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
826 MVT::ValueType VT,
827 unsigned Alignment, int Offset,
828 bool isTarget) {
829 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
830 FoldingSetNodeID ID;
831 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
832 ID.AddInteger(Alignment);
833 ID.AddInteger(Offset);
834 C->AddSelectionDAGCSEId(ID);
835 void *IP = 0;
836 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
837 return SDOperand(E, 0);
838 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
839 CSEMap.InsertNode(N, IP);
840 AllNodes.push_back(N);
841 return SDOperand(N, 0);
842}
843
844
845SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
846 FoldingSetNodeID ID;
847 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
848 ID.AddPointer(MBB);
849 void *IP = 0;
850 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
851 return SDOperand(E, 0);
852 SDNode *N = new BasicBlockSDNode(MBB);
853 CSEMap.InsertNode(N, IP);
854 AllNodes.push_back(N);
855 return SDOperand(N, 0);
856}
857
858SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
859 if ((unsigned)VT >= ValueTypeNodes.size())
860 ValueTypeNodes.resize(VT+1);
861 if (ValueTypeNodes[VT] == 0) {
862 ValueTypeNodes[VT] = new VTSDNode(VT);
863 AllNodes.push_back(ValueTypeNodes[VT]);
864 }
865
866 return SDOperand(ValueTypeNodes[VT], 0);
867}
868
869SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
870 SDNode *&N = ExternalSymbols[Sym];
871 if (N) return SDOperand(N, 0);
872 N = new ExternalSymbolSDNode(false, Sym, VT);
873 AllNodes.push_back(N);
874 return SDOperand(N, 0);
875}
876
877SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
878 MVT::ValueType VT) {
879 SDNode *&N = TargetExternalSymbols[Sym];
880 if (N) return SDOperand(N, 0);
881 N = new ExternalSymbolSDNode(true, Sym, VT);
882 AllNodes.push_back(N);
883 return SDOperand(N, 0);
884}
885
886SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
887 if ((unsigned)Cond >= CondCodeNodes.size())
888 CondCodeNodes.resize(Cond+1);
889
890 if (CondCodeNodes[Cond] == 0) {
891 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
892 AllNodes.push_back(CondCodeNodes[Cond]);
893 }
894 return SDOperand(CondCodeNodes[Cond], 0);
895}
896
897SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
898 FoldingSetNodeID ID;
899 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
900 ID.AddInteger(RegNo);
901 void *IP = 0;
902 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
903 return SDOperand(E, 0);
904 SDNode *N = new RegisterSDNode(RegNo, VT);
905 CSEMap.InsertNode(N, IP);
906 AllNodes.push_back(N);
907 return SDOperand(N, 0);
908}
909
910SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
911 assert((!V || isa<PointerType>(V->getType())) &&
912 "SrcValue is not a pointer?");
913
914 FoldingSetNodeID ID;
915 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
916 ID.AddPointer(V);
917 ID.AddInteger(Offset);
918 void *IP = 0;
919 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
920 return SDOperand(E, 0);
921 SDNode *N = new SrcValueSDNode(V, Offset);
922 CSEMap.InsertNode(N, IP);
923 AllNodes.push_back(N);
924 return SDOperand(N, 0);
925}
926
927SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
928 SDOperand N2, ISD::CondCode Cond) {
929 // These setcc operations always fold.
930 switch (Cond) {
931 default: break;
932 case ISD::SETFALSE:
933 case ISD::SETFALSE2: return getConstant(0, VT);
934 case ISD::SETTRUE:
935 case ISD::SETTRUE2: return getConstant(1, VT);
936
937 case ISD::SETOEQ:
938 case ISD::SETOGT:
939 case ISD::SETOGE:
940 case ISD::SETOLT:
941 case ISD::SETOLE:
942 case ISD::SETONE:
943 case ISD::SETO:
944 case ISD::SETUO:
945 case ISD::SETUEQ:
946 case ISD::SETUNE:
947 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
948 break;
949 }
950
951 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
952 uint64_t C2 = N2C->getValue();
953 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
954 uint64_t C1 = N1C->getValue();
955
956 // Sign extend the operands if required
957 if (ISD::isSignedIntSetCC(Cond)) {
958 C1 = N1C->getSignExtended();
959 C2 = N2C->getSignExtended();
960 }
961
962 switch (Cond) {
963 default: assert(0 && "Unknown integer setcc!");
964 case ISD::SETEQ: return getConstant(C1 == C2, VT);
965 case ISD::SETNE: return getConstant(C1 != C2, VT);
966 case ISD::SETULT: return getConstant(C1 < C2, VT);
967 case ISD::SETUGT: return getConstant(C1 > C2, VT);
968 case ISD::SETULE: return getConstant(C1 <= C2, VT);
969 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
970 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
971 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
972 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
973 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
974 }
975 }
976 }
977 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
978 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000979
980 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000981 switch (Cond) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000982 default: break;
Dale Johannesen76844472007-08-31 17:03:33 +0000983 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
984 return getNode(ISD::UNDEF, VT);
985 // fall through
986 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
987 case ISD::SETNE: if (R==APFloat::cmpUnordered)
988 return getNode(ISD::UNDEF, VT);
989 // fall through
990 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +0000991 R==APFloat::cmpLessThan, VT);
Dale Johannesen76844472007-08-31 17:03:33 +0000992 case ISD::SETLT: if (R==APFloat::cmpUnordered)
993 return getNode(ISD::UNDEF, VT);
994 // fall through
995 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
996 case ISD::SETGT: if (R==APFloat::cmpUnordered)
997 return getNode(ISD::UNDEF, VT);
998 // fall through
999 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1000 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1001 return getNode(ISD::UNDEF, VT);
1002 // fall through
1003 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001004 R==APFloat::cmpEqual, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001005 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1006 return getNode(ISD::UNDEF, VT);
1007 // fall through
1008 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001009 R==APFloat::cmpEqual, VT);
1010 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1011 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1012 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1013 R==APFloat::cmpEqual, VT);
1014 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1015 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1016 R==APFloat::cmpLessThan, VT);
1017 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1018 R==APFloat::cmpUnordered, VT);
1019 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1020 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 }
1022 } else {
1023 // Ensure that the constant occurs on the RHS.
1024 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1025 }
1026
1027 // Could not fold it.
1028 return SDOperand();
1029}
1030
1031/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1032/// this predicate to simplify operations downstream. Mask is known to be zero
1033/// for bits that V cannot have.
1034bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1035 unsigned Depth) const {
1036 // The masks are not wide enough to represent this type! Should use APInt.
1037 if (Op.getValueType() == MVT::i128)
1038 return false;
1039
1040 uint64_t KnownZero, KnownOne;
1041 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1042 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1043 return (KnownZero & Mask) == Mask;
1044}
1045
1046/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1047/// known to be either zero or one and return them in the KnownZero/KnownOne
1048/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1049/// processing.
1050void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1051 uint64_t &KnownZero, uint64_t &KnownOne,
1052 unsigned Depth) const {
1053 KnownZero = KnownOne = 0; // Don't know anything.
1054 if (Depth == 6 || Mask == 0)
1055 return; // Limit search depth.
1056
1057 // The masks are not wide enough to represent this type! Should use APInt.
1058 if (Op.getValueType() == MVT::i128)
1059 return;
1060
1061 uint64_t KnownZero2, KnownOne2;
1062
1063 switch (Op.getOpcode()) {
1064 case ISD::Constant:
1065 // We know all of the bits for a constant!
1066 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1067 KnownZero = ~KnownOne & Mask;
1068 return;
1069 case ISD::AND:
1070 // If either the LHS or the RHS are Zero, the result is zero.
1071 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1072 Mask &= ~KnownZero;
1073 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1074 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1075 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1076
1077 // Output known-1 bits are only known if set in both the LHS & RHS.
1078 KnownOne &= KnownOne2;
1079 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1080 KnownZero |= KnownZero2;
1081 return;
1082 case ISD::OR:
1083 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1084 Mask &= ~KnownOne;
1085 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1086 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1088
1089 // Output known-0 bits are only known if clear in both the LHS & RHS.
1090 KnownZero &= KnownZero2;
1091 // Output known-1 are known to be set if set in either the LHS | RHS.
1092 KnownOne |= KnownOne2;
1093 return;
1094 case ISD::XOR: {
1095 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1096 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1097 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1098 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1099
1100 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1101 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1102 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1103 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1104 KnownZero = KnownZeroOut;
1105 return;
1106 }
1107 case ISD::SELECT:
1108 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1109 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1110 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1111 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1112
1113 // Only known if known in both the LHS and RHS.
1114 KnownOne &= KnownOne2;
1115 KnownZero &= KnownZero2;
1116 return;
1117 case ISD::SELECT_CC:
1118 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1119 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1120 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1121 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1122
1123 // Only known if known in both the LHS and RHS.
1124 KnownOne &= KnownOne2;
1125 KnownZero &= KnownZero2;
1126 return;
1127 case ISD::SETCC:
1128 // If we know the result of a setcc has the top bits zero, use this info.
1129 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1130 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1131 return;
1132 case ISD::SHL:
1133 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1134 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1135 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1136 KnownZero, KnownOne, Depth+1);
1137 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1138 KnownZero <<= SA->getValue();
1139 KnownOne <<= SA->getValue();
1140 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1141 }
1142 return;
1143 case ISD::SRL:
1144 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1145 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1146 MVT::ValueType VT = Op.getValueType();
1147 unsigned ShAmt = SA->getValue();
1148
1149 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1150 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1151 KnownZero, KnownOne, Depth+1);
1152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1153 KnownZero &= TypeMask;
1154 KnownOne &= TypeMask;
1155 KnownZero >>= ShAmt;
1156 KnownOne >>= ShAmt;
1157
1158 uint64_t HighBits = (1ULL << ShAmt)-1;
1159 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1160 KnownZero |= HighBits; // High bits known zero.
1161 }
1162 return;
1163 case ISD::SRA:
1164 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1165 MVT::ValueType VT = Op.getValueType();
1166 unsigned ShAmt = SA->getValue();
1167
1168 // Compute the new bits that are at the top now.
1169 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1170
1171 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1172 // If any of the demanded bits are produced by the sign extension, we also
1173 // demand the input sign bit.
1174 uint64_t HighBits = (1ULL << ShAmt)-1;
1175 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1176 if (HighBits & Mask)
1177 InDemandedMask |= MVT::getIntVTSignBit(VT);
1178
1179 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1180 Depth+1);
1181 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1182 KnownZero &= TypeMask;
1183 KnownOne &= TypeMask;
1184 KnownZero >>= ShAmt;
1185 KnownOne >>= ShAmt;
1186
1187 // Handle the sign bits.
1188 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1189 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1190
1191 if (KnownZero & SignBit) {
1192 KnownZero |= HighBits; // New bits are known zero.
1193 } else if (KnownOne & SignBit) {
1194 KnownOne |= HighBits; // New bits are known one.
1195 }
1196 }
1197 return;
1198 case ISD::SIGN_EXTEND_INREG: {
1199 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1200
1201 // Sign extension. Compute the demanded bits in the result that are not
1202 // present in the input.
1203 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1204
1205 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1206 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1207
1208 // If the sign extended bits are demanded, we know that the sign
1209 // bit is demanded.
1210 if (NewBits)
1211 InputDemandedBits |= InSignBit;
1212
1213 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1214 KnownZero, KnownOne, Depth+1);
1215 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1216
1217 // If the sign bit of the input is known set or clear, then we know the
1218 // top bits of the result.
1219 if (KnownZero & InSignBit) { // Input sign bit known clear
1220 KnownZero |= NewBits;
1221 KnownOne &= ~NewBits;
1222 } else if (KnownOne & InSignBit) { // Input sign bit known set
1223 KnownOne |= NewBits;
1224 KnownZero &= ~NewBits;
1225 } else { // Input sign bit unknown
1226 KnownZero &= ~NewBits;
1227 KnownOne &= ~NewBits;
1228 }
1229 return;
1230 }
1231 case ISD::CTTZ:
1232 case ISD::CTLZ:
1233 case ISD::CTPOP: {
1234 MVT::ValueType VT = Op.getValueType();
1235 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1236 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1237 KnownOne = 0;
1238 return;
1239 }
1240 case ISD::LOAD: {
1241 if (ISD::isZEXTLoad(Op.Val)) {
1242 LoadSDNode *LD = cast<LoadSDNode>(Op);
1243 MVT::ValueType VT = LD->getLoadedVT();
1244 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1245 }
1246 return;
1247 }
1248 case ISD::ZERO_EXTEND: {
1249 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1250 uint64_t NewBits = (~InMask) & Mask;
1251 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1252 KnownOne, Depth+1);
1253 KnownZero |= NewBits & Mask;
1254 KnownOne &= ~NewBits;
1255 return;
1256 }
1257 case ISD::SIGN_EXTEND: {
1258 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1259 unsigned InBits = MVT::getSizeInBits(InVT);
1260 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1261 uint64_t InSignBit = 1ULL << (InBits-1);
1262 uint64_t NewBits = (~InMask) & Mask;
1263 uint64_t InDemandedBits = Mask & InMask;
1264
1265 // If any of the sign extended bits are demanded, we know that the sign
1266 // bit is demanded.
1267 if (NewBits & Mask)
1268 InDemandedBits |= InSignBit;
1269
1270 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1271 KnownOne, Depth+1);
1272 // If the sign bit is known zero or one, the top bits match.
1273 if (KnownZero & InSignBit) {
1274 KnownZero |= NewBits;
1275 KnownOne &= ~NewBits;
1276 } else if (KnownOne & InSignBit) {
1277 KnownOne |= NewBits;
1278 KnownZero &= ~NewBits;
1279 } else { // Otherwise, top bits aren't known.
1280 KnownOne &= ~NewBits;
1281 KnownZero &= ~NewBits;
1282 }
1283 return;
1284 }
1285 case ISD::ANY_EXTEND: {
1286 MVT::ValueType VT = Op.getOperand(0).getValueType();
1287 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1288 KnownZero, KnownOne, Depth+1);
1289 return;
1290 }
1291 case ISD::TRUNCATE: {
1292 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1293 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1294 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1295 KnownZero &= OutMask;
1296 KnownOne &= OutMask;
1297 break;
1298 }
1299 case ISD::AssertZext: {
1300 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1301 uint64_t InMask = MVT::getIntVTBitMask(VT);
1302 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1303 KnownOne, Depth+1);
1304 KnownZero |= (~InMask) & Mask;
1305 return;
1306 }
1307 case ISD::ADD: {
1308 // If either the LHS or the RHS are Zero, the result is zero.
1309 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1310 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1311 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1312 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1313
1314 // Output known-0 bits are known if clear or set in both the low clear bits
1315 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1316 // low 3 bits clear.
1317 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1318 CountTrailingZeros_64(~KnownZero2));
1319
1320 KnownZero = (1ULL << KnownZeroOut) - 1;
1321 KnownOne = 0;
1322 return;
1323 }
1324 case ISD::SUB: {
1325 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1326 if (!CLHS) return;
1327
1328 // We know that the top bits of C-X are clear if X contains less bits
1329 // than C (i.e. no wrap-around can happen). For example, 20-X is
1330 // positive if we can prove that X is >= 0 and < 16.
1331 MVT::ValueType VT = CLHS->getValueType(0);
1332 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1333 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1334 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1335 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1336 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1337
1338 // If all of the MaskV bits are known to be zero, then we know the output
1339 // top bits are zero, because we now know that the output is from [0-C].
1340 if ((KnownZero & MaskV) == MaskV) {
1341 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1342 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1343 KnownOne = 0; // No one bits known.
1344 } else {
1345 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1346 }
1347 }
1348 return;
1349 }
1350 default:
1351 // Allow the target to implement this method for its nodes.
1352 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1353 case ISD::INTRINSIC_WO_CHAIN:
1354 case ISD::INTRINSIC_W_CHAIN:
1355 case ISD::INTRINSIC_VOID:
1356 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1357 }
1358 return;
1359 }
1360}
1361
1362/// ComputeNumSignBits - Return the number of times the sign bit of the
1363/// register is replicated into the other bits. We know that at least 1 bit
1364/// is always equal to the sign bit (itself), but other cases can give us
1365/// information. For example, immediately after an "SRA X, 2", we know that
1366/// the top 3 bits are all equal to each other, so we return 3.
1367unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1368 MVT::ValueType VT = Op.getValueType();
1369 assert(MVT::isInteger(VT) && "Invalid VT!");
1370 unsigned VTBits = MVT::getSizeInBits(VT);
1371 unsigned Tmp, Tmp2;
1372
1373 if (Depth == 6)
1374 return 1; // Limit search depth.
1375
1376 switch (Op.getOpcode()) {
1377 default: break;
1378 case ISD::AssertSext:
1379 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1380 return VTBits-Tmp+1;
1381 case ISD::AssertZext:
1382 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1383 return VTBits-Tmp;
1384
1385 case ISD::Constant: {
1386 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1387 // If negative, invert the bits, then look at it.
1388 if (Val & MVT::getIntVTSignBit(VT))
1389 Val = ~Val;
1390
1391 // Shift the bits so they are the leading bits in the int64_t.
1392 Val <<= 64-VTBits;
1393
1394 // Return # leading zeros. We use 'min' here in case Val was zero before
1395 // shifting. We don't want to return '64' as for an i32 "0".
1396 return std::min(VTBits, CountLeadingZeros_64(Val));
1397 }
1398
1399 case ISD::SIGN_EXTEND:
1400 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1401 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1402
1403 case ISD::SIGN_EXTEND_INREG:
1404 // Max of the input and what this extends.
1405 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1406 Tmp = VTBits-Tmp+1;
1407
1408 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1409 return std::max(Tmp, Tmp2);
1410
1411 case ISD::SRA:
1412 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1413 // SRA X, C -> adds C sign bits.
1414 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1415 Tmp += C->getValue();
1416 if (Tmp > VTBits) Tmp = VTBits;
1417 }
1418 return Tmp;
1419 case ISD::SHL:
1420 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1421 // shl destroys sign bits.
1422 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1423 if (C->getValue() >= VTBits || // Bad shift.
1424 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1425 return Tmp - C->getValue();
1426 }
1427 break;
1428 case ISD::AND:
1429 case ISD::OR:
1430 case ISD::XOR: // NOT is handled here.
1431 // Logical binary ops preserve the number of sign bits.
1432 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1433 if (Tmp == 1) return 1; // Early out.
1434 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1435 return std::min(Tmp, Tmp2);
1436
1437 case ISD::SELECT:
1438 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1439 if (Tmp == 1) return 1; // Early out.
1440 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1441 return std::min(Tmp, Tmp2);
1442
1443 case ISD::SETCC:
1444 // If setcc returns 0/-1, all bits are sign bits.
1445 if (TLI.getSetCCResultContents() ==
1446 TargetLowering::ZeroOrNegativeOneSetCCResult)
1447 return VTBits;
1448 break;
1449 case ISD::ROTL:
1450 case ISD::ROTR:
1451 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1452 unsigned RotAmt = C->getValue() & (VTBits-1);
1453
1454 // Handle rotate right by N like a rotate left by 32-N.
1455 if (Op.getOpcode() == ISD::ROTR)
1456 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1457
1458 // If we aren't rotating out all of the known-in sign bits, return the
1459 // number that are left. This handles rotl(sext(x), 1) for example.
1460 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1461 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1462 }
1463 break;
1464 case ISD::ADD:
1465 // Add can have at most one carry bit. Thus we know that the output
1466 // is, at worst, one more bit than the inputs.
1467 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468 if (Tmp == 1) return 1; // Early out.
1469
1470 // Special case decrementing a value (ADD X, -1):
1471 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1472 if (CRHS->isAllOnesValue()) {
1473 uint64_t KnownZero, KnownOne;
1474 uint64_t Mask = MVT::getIntVTBitMask(VT);
1475 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1476
1477 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1478 // sign bits set.
1479 if ((KnownZero|1) == Mask)
1480 return VTBits;
1481
1482 // If we are subtracting one from a positive number, there is no carry
1483 // out of the result.
1484 if (KnownZero & MVT::getIntVTSignBit(VT))
1485 return Tmp;
1486 }
1487
1488 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1489 if (Tmp2 == 1) return 1;
1490 return std::min(Tmp, Tmp2)-1;
1491 break;
1492
1493 case ISD::SUB:
1494 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1495 if (Tmp2 == 1) return 1;
1496
1497 // Handle NEG.
1498 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1499 if (CLHS->getValue() == 0) {
1500 uint64_t KnownZero, KnownOne;
1501 uint64_t Mask = MVT::getIntVTBitMask(VT);
1502 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1503 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1504 // sign bits set.
1505 if ((KnownZero|1) == Mask)
1506 return VTBits;
1507
1508 // If the input is known to be positive (the sign bit is known clear),
1509 // the output of the NEG has the same number of sign bits as the input.
1510 if (KnownZero & MVT::getIntVTSignBit(VT))
1511 return Tmp2;
1512
1513 // Otherwise, we treat this like a SUB.
1514 }
1515
1516 // Sub can have at most one carry bit. Thus we know that the output
1517 // is, at worst, one more bit than the inputs.
1518 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1519 if (Tmp == 1) return 1; // Early out.
1520 return std::min(Tmp, Tmp2)-1;
1521 break;
1522 case ISD::TRUNCATE:
1523 // FIXME: it's tricky to do anything useful for this, but it is an important
1524 // case for targets like X86.
1525 break;
1526 }
1527
1528 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1529 if (Op.getOpcode() == ISD::LOAD) {
1530 LoadSDNode *LD = cast<LoadSDNode>(Op);
1531 unsigned ExtType = LD->getExtensionType();
1532 switch (ExtType) {
1533 default: break;
1534 case ISD::SEXTLOAD: // '17' bits known
1535 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1536 return VTBits-Tmp+1;
1537 case ISD::ZEXTLOAD: // '16' bits known
1538 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1539 return VTBits-Tmp;
1540 }
1541 }
1542
1543 // Allow the target to implement this method for its nodes.
1544 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1545 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1546 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1547 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1548 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1549 if (NumBits > 1) return NumBits;
1550 }
1551
1552 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1553 // use this information.
1554 uint64_t KnownZero, KnownOne;
1555 uint64_t Mask = MVT::getIntVTBitMask(VT);
1556 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1557
1558 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1559 if (KnownZero & SignBit) { // SignBit is 0
1560 Mask = KnownZero;
1561 } else if (KnownOne & SignBit) { // SignBit is 1;
1562 Mask = KnownOne;
1563 } else {
1564 // Nothing known.
1565 return 1;
1566 }
1567
1568 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1569 // the number of identical bits in the top of the input value.
1570 Mask ^= ~0ULL;
1571 Mask <<= 64-VTBits;
1572 // Return # leading zeros. We use 'min' here in case Val was zero before
1573 // shifting. We don't want to return '64' as for an i32 "0".
1574 return std::min(VTBits, CountLeadingZeros_64(Mask));
1575}
1576
1577
1578/// getNode - Gets or creates the specified node.
1579///
1580SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1581 FoldingSetNodeID ID;
1582 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1583 void *IP = 0;
1584 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1585 return SDOperand(E, 0);
1586 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1587 CSEMap.InsertNode(N, IP);
1588
1589 AllNodes.push_back(N);
1590 return SDOperand(N, 0);
1591}
1592
1593SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1594 SDOperand Operand) {
1595 unsigned Tmp1;
1596 // Constant fold unary operations with an integer constant operand.
1597 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1598 uint64_t Val = C->getValue();
1599 switch (Opcode) {
1600 default: break;
1601 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1602 case ISD::ANY_EXTEND:
1603 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1604 case ISD::TRUNCATE: return getConstant(Val, VT);
1605 case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
1606 case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
1607 case ISD::BIT_CONVERT:
1608 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1609 return getConstantFP(BitsToFloat(Val), VT);
1610 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1611 return getConstantFP(BitsToDouble(Val), VT);
1612 break;
1613 case ISD::BSWAP:
1614 switch(VT) {
1615 default: assert(0 && "Invalid bswap!"); break;
1616 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1617 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1618 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1619 }
1620 break;
1621 case ISD::CTPOP:
1622 switch(VT) {
1623 default: assert(0 && "Invalid ctpop!"); break;
1624 case MVT::i1: return getConstant(Val != 0, VT);
1625 case MVT::i8:
1626 Tmp1 = (unsigned)Val & 0xFF;
1627 return getConstant(CountPopulation_32(Tmp1), VT);
1628 case MVT::i16:
1629 Tmp1 = (unsigned)Val & 0xFFFF;
1630 return getConstant(CountPopulation_32(Tmp1), VT);
1631 case MVT::i32:
1632 return getConstant(CountPopulation_32((unsigned)Val), VT);
1633 case MVT::i64:
1634 return getConstant(CountPopulation_64(Val), VT);
1635 }
1636 case ISD::CTLZ:
1637 switch(VT) {
1638 default: assert(0 && "Invalid ctlz!"); break;
1639 case MVT::i1: return getConstant(Val == 0, VT);
1640 case MVT::i8:
1641 Tmp1 = (unsigned)Val & 0xFF;
1642 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1643 case MVT::i16:
1644 Tmp1 = (unsigned)Val & 0xFFFF;
1645 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1646 case MVT::i32:
1647 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1648 case MVT::i64:
1649 return getConstant(CountLeadingZeros_64(Val), VT);
1650 }
1651 case ISD::CTTZ:
1652 switch(VT) {
1653 default: assert(0 && "Invalid cttz!"); break;
1654 case MVT::i1: return getConstant(Val == 0, VT);
1655 case MVT::i8:
1656 Tmp1 = (unsigned)Val | 0x100;
1657 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1658 case MVT::i16:
1659 Tmp1 = (unsigned)Val | 0x10000;
1660 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1661 case MVT::i32:
1662 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1663 case MVT::i64:
1664 return getConstant(CountTrailingZeros_64(Val), VT);
1665 }
1666 }
1667 }
1668
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001669 // Constant fold unary operations with a floating point constant operand.
1670 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1671 APFloat V = C->getValueAPF(); // make copy
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001672 switch (Opcode) {
1673 case ISD::FNEG:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001674 V.changeSign();
1675 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001676 case ISD::FABS:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001677 V.clearSign();
1678 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001679 case ISD::FP_ROUND:
1680 case ISD::FP_EXTEND:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001681 // This can return overflow, underflow, or inexact; we don't care.
1682 // FIXME need to be more flexible about rounding mode.
1683 (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1684 APFloat::IEEEdouble,
1685 APFloat::rmNearestTiesToEven);
1686 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001687 case ISD::FP_TO_SINT:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001688 case ISD::FP_TO_UINT: {
1689 integerPart x;
1690 assert(integerPartWidth >= 64);
1691 // FIXME need to be more flexible about rounding mode.
1692 APFloat::opStatus s = V.convertToInteger(&x, 64U,
1693 Opcode==ISD::FP_TO_SINT,
1694 APFloat::rmTowardZero);
1695 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
1696 break;
1697 return getConstant(x, VT);
1698 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699 case ISD::BIT_CONVERT:
1700 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001701 return getConstant(FloatToBits(V.convertToFloat()), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001702 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001703 return getConstant(DoubleToBits(V.convertToDouble()), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001704 break;
1705 }
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001706 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707
1708 unsigned OpOpcode = Operand.Val->getOpcode();
1709 switch (Opcode) {
1710 case ISD::TokenFactor:
1711 return Operand; // Factor of one node? No factor.
1712 case ISD::FP_ROUND:
1713 case ISD::FP_EXTEND:
1714 assert(MVT::isFloatingPoint(VT) &&
1715 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1716 break;
1717 case ISD::SIGN_EXTEND:
1718 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1719 "Invalid SIGN_EXTEND!");
1720 if (Operand.getValueType() == VT) return Operand; // noop extension
1721 assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1722 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1723 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1724 break;
1725 case ISD::ZERO_EXTEND:
1726 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1727 "Invalid ZERO_EXTEND!");
1728 if (Operand.getValueType() == VT) return Operand; // noop extension
1729 assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1730 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1731 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1732 break;
1733 case ISD::ANY_EXTEND:
1734 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1735 "Invalid ANY_EXTEND!");
1736 if (Operand.getValueType() == VT) return Operand; // noop extension
1737 assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1738 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1739 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1740 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1741 break;
1742 case ISD::TRUNCATE:
1743 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1744 "Invalid TRUNCATE!");
1745 if (Operand.getValueType() == VT) return Operand; // noop truncate
1746 assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1747 if (OpOpcode == ISD::TRUNCATE)
1748 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1749 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1750 OpOpcode == ISD::ANY_EXTEND) {
1751 // If the source is smaller than the dest, we still need an extend.
1752 if (Operand.Val->getOperand(0).getValueType() < VT)
1753 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1754 else if (Operand.Val->getOperand(0).getValueType() > VT)
1755 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1756 else
1757 return Operand.Val->getOperand(0);
1758 }
1759 break;
1760 case ISD::BIT_CONVERT:
1761 // Basic sanity checking.
1762 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1763 && "Cannot BIT_CONVERT between types of different sizes!");
1764 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1765 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1766 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1767 if (OpOpcode == ISD::UNDEF)
1768 return getNode(ISD::UNDEF, VT);
1769 break;
1770 case ISD::SCALAR_TO_VECTOR:
1771 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1772 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1773 "Illegal SCALAR_TO_VECTOR node!");
1774 break;
1775 case ISD::FNEG:
1776 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1777 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1778 Operand.Val->getOperand(0));
1779 if (OpOpcode == ISD::FNEG) // --X -> X
1780 return Operand.Val->getOperand(0);
1781 break;
1782 case ISD::FABS:
1783 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1784 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1785 break;
1786 }
1787
1788 SDNode *N;
1789 SDVTList VTs = getVTList(VT);
1790 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1791 FoldingSetNodeID ID;
1792 SDOperand Ops[1] = { Operand };
1793 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1794 void *IP = 0;
1795 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1796 return SDOperand(E, 0);
1797 N = new UnarySDNode(Opcode, VTs, Operand);
1798 CSEMap.InsertNode(N, IP);
1799 } else {
1800 N = new UnarySDNode(Opcode, VTs, Operand);
1801 }
1802 AllNodes.push_back(N);
1803 return SDOperand(N, 0);
1804}
1805
1806
1807
1808SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1809 SDOperand N1, SDOperand N2) {
1810#ifndef NDEBUG
1811 switch (Opcode) {
1812 case ISD::TokenFactor:
1813 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1814 N2.getValueType() == MVT::Other && "Invalid token factor!");
1815 break;
1816 case ISD::AND:
1817 case ISD::OR:
1818 case ISD::XOR:
1819 case ISD::UDIV:
1820 case ISD::UREM:
1821 case ISD::MULHU:
1822 case ISD::MULHS:
1823 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1824 // fall through
1825 case ISD::ADD:
1826 case ISD::SUB:
1827 case ISD::MUL:
1828 case ISD::SDIV:
1829 case ISD::SREM:
1830 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1831 // fall through.
1832 case ISD::FADD:
1833 case ISD::FSUB:
1834 case ISD::FMUL:
1835 case ISD::FDIV:
1836 case ISD::FREM:
1837 assert(N1.getValueType() == N2.getValueType() &&
1838 N1.getValueType() == VT && "Binary operator types must match!");
1839 break;
1840 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1841 assert(N1.getValueType() == VT &&
1842 MVT::isFloatingPoint(N1.getValueType()) &&
1843 MVT::isFloatingPoint(N2.getValueType()) &&
1844 "Invalid FCOPYSIGN!");
1845 break;
1846 case ISD::SHL:
1847 case ISD::SRA:
1848 case ISD::SRL:
1849 case ISD::ROTL:
1850 case ISD::ROTR:
1851 assert(VT == N1.getValueType() &&
1852 "Shift operators return type must be the same as their first arg");
1853 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1854 VT != MVT::i1 && "Shifts only work on integers");
1855 break;
1856 case ISD::FP_ROUND_INREG: {
1857 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1858 assert(VT == N1.getValueType() && "Not an inreg round!");
1859 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1860 "Cannot FP_ROUND_INREG integer types");
1861 assert(EVT <= VT && "Not rounding down!");
1862 break;
1863 }
1864 case ISD::AssertSext:
1865 case ISD::AssertZext:
1866 case ISD::SIGN_EXTEND_INREG: {
1867 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1868 assert(VT == N1.getValueType() && "Not an inreg extend!");
1869 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1870 "Cannot *_EXTEND_INREG FP types");
1871 assert(EVT <= VT && "Not extending!");
1872 }
1873
1874 default: break;
1875 }
1876#endif
1877
1878 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1879 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1880 if (N1C) {
1881 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1882 int64_t Val = N1C->getValue();
1883 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1884 Val <<= 64-FromBits;
1885 Val >>= 64-FromBits;
1886 return getConstant(Val, VT);
1887 }
1888
1889 if (N2C) {
1890 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1891 switch (Opcode) {
1892 case ISD::ADD: return getConstant(C1 + C2, VT);
1893 case ISD::SUB: return getConstant(C1 - C2, VT);
1894 case ISD::MUL: return getConstant(C1 * C2, VT);
1895 case ISD::UDIV:
1896 if (C2) return getConstant(C1 / C2, VT);
1897 break;
1898 case ISD::UREM :
1899 if (C2) return getConstant(C1 % C2, VT);
1900 break;
1901 case ISD::SDIV :
1902 if (C2) return getConstant(N1C->getSignExtended() /
1903 N2C->getSignExtended(), VT);
1904 break;
1905 case ISD::SREM :
1906 if (C2) return getConstant(N1C->getSignExtended() %
1907 N2C->getSignExtended(), VT);
1908 break;
1909 case ISD::AND : return getConstant(C1 & C2, VT);
1910 case ISD::OR : return getConstant(C1 | C2, VT);
1911 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1912 case ISD::SHL : return getConstant(C1 << C2, VT);
1913 case ISD::SRL : return getConstant(C1 >> C2, VT);
1914 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1915 case ISD::ROTL :
1916 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1917 VT);
1918 case ISD::ROTR :
1919 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1920 VT);
1921 default: break;
1922 }
1923 } else { // Cannonicalize constant to RHS if commutative
1924 if (isCommutativeBinOp(Opcode)) {
1925 std::swap(N1C, N2C);
1926 std::swap(N1, N2);
1927 }
1928 }
1929 }
1930
1931 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1932 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1933 if (N1CFP) {
1934 if (N2CFP) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001935 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1936 APFloat::opStatus s;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001937 switch (Opcode) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001938 case ISD::FADD:
1939 s = V1.add(V2, APFloat::rmNearestTiesToEven);
1940 if (s!=APFloat::opInvalidOp)
1941 return getConstantFP(V1, VT);
1942 break;
1943 case ISD::FSUB:
1944 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1945 if (s!=APFloat::opInvalidOp)
1946 return getConstantFP(V1, VT);
1947 break;
1948 case ISD::FMUL:
1949 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1950 if (s!=APFloat::opInvalidOp)
1951 return getConstantFP(V1, VT);
1952 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001953 case ISD::FDIV:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001954 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1955 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1956 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001957 break;
1958 case ISD::FREM :
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001959 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1960 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1961 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001962 break;
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001963 case ISD::FCOPYSIGN:
1964 V1.copySign(V2);
1965 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001966 default: break;
1967 }
1968 } else { // Cannonicalize constant to RHS if commutative
1969 if (isCommutativeBinOp(Opcode)) {
1970 std::swap(N1CFP, N2CFP);
1971 std::swap(N1, N2);
1972 }
1973 }
1974 }
1975
1976 // Canonicalize an UNDEF to the RHS, even over a constant.
1977 if (N1.getOpcode() == ISD::UNDEF) {
1978 if (isCommutativeBinOp(Opcode)) {
1979 std::swap(N1, N2);
1980 } else {
1981 switch (Opcode) {
1982 case ISD::FP_ROUND_INREG:
1983 case ISD::SIGN_EXTEND_INREG:
1984 case ISD::SUB:
1985 case ISD::FSUB:
1986 case ISD::FDIV:
1987 case ISD::FREM:
1988 case ISD::SRA:
1989 return N1; // fold op(undef, arg2) -> undef
1990 case ISD::UDIV:
1991 case ISD::SDIV:
1992 case ISD::UREM:
1993 case ISD::SREM:
1994 case ISD::SRL:
1995 case ISD::SHL:
1996 if (!MVT::isVector(VT))
1997 return getConstant(0, VT); // fold op(undef, arg2) -> 0
1998 // For vectors, we can't easily build an all zero vector, just return
1999 // the LHS.
2000 return N2;
2001 }
2002 }
2003 }
2004
2005 // Fold a bunch of operators when the RHS is undef.
2006 if (N2.getOpcode() == ISD::UNDEF) {
2007 switch (Opcode) {
2008 case ISD::ADD:
2009 case ISD::ADDC:
2010 case ISD::ADDE:
2011 case ISD::SUB:
2012 case ISD::FADD:
2013 case ISD::FSUB:
2014 case ISD::FMUL:
2015 case ISD::FDIV:
2016 case ISD::FREM:
2017 case ISD::UDIV:
2018 case ISD::SDIV:
2019 case ISD::UREM:
2020 case ISD::SREM:
2021 case ISD::XOR:
2022 return N2; // fold op(arg1, undef) -> undef
2023 case ISD::MUL:
2024 case ISD::AND:
2025 case ISD::SRL:
2026 case ISD::SHL:
2027 if (!MVT::isVector(VT))
2028 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2029 // For vectors, we can't easily build an all zero vector, just return
2030 // the LHS.
2031 return N1;
2032 case ISD::OR:
2033 if (!MVT::isVector(VT))
2034 return getConstant(MVT::getIntVTBitMask(VT), VT);
2035 // For vectors, we can't easily build an all one vector, just return
2036 // the LHS.
2037 return N1;
2038 case ISD::SRA:
2039 return N1;
2040 }
2041 }
2042
2043 // Fold operations.
2044 switch (Opcode) {
2045 case ISD::TokenFactor:
2046 // Fold trivial token factors.
2047 if (N1.getOpcode() == ISD::EntryToken) return N2;
2048 if (N2.getOpcode() == ISD::EntryToken) return N1;
2049 break;
2050
2051 case ISD::AND:
2052 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2053 // worth handling here.
2054 if (N2C && N2C->getValue() == 0)
2055 return N2;
2056 break;
2057 case ISD::OR:
2058 case ISD::XOR:
2059 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
2060 // worth handling here.
2061 if (N2C && N2C->getValue() == 0)
2062 return N1;
2063 break;
2064 case ISD::FP_ROUND_INREG:
2065 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2066 break;
2067 case ISD::SIGN_EXTEND_INREG: {
2068 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2069 if (EVT == VT) return N1; // Not actually extending
2070 break;
2071 }
2072 case ISD::EXTRACT_VECTOR_ELT:
2073 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2074
2075 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2076 // expanding copies of large vectors from registers.
2077 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2078 N1.getNumOperands() > 0) {
2079 unsigned Factor =
2080 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2081 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2082 N1.getOperand(N2C->getValue() / Factor),
2083 getConstant(N2C->getValue() % Factor, N2.getValueType()));
2084 }
2085
2086 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2087 // expanding large vector constants.
2088 if (N1.getOpcode() == ISD::BUILD_VECTOR)
2089 return N1.getOperand(N2C->getValue());
2090
2091 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2092 // operations are lowered to scalars.
2093 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2094 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2095 if (IEC == N2C)
2096 return N1.getOperand(1);
2097 else
2098 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2099 }
2100 break;
2101 case ISD::EXTRACT_ELEMENT:
2102 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2103
2104 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2105 // 64-bit integers into 32-bit parts. Instead of building the extract of
2106 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2107 if (N1.getOpcode() == ISD::BUILD_PAIR)
2108 return N1.getOperand(N2C->getValue());
2109
2110 // EXTRACT_ELEMENT of a constant int is also very common.
2111 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2112 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2113 return getConstant(C->getValue() >> Shift, VT);
2114 }
2115 break;
2116
2117 // FIXME: figure out how to safely handle things like
2118 // int foo(int x) { return 1 << (x & 255); }
2119 // int bar() { return foo(256); }
2120#if 0
2121 case ISD::SHL:
2122 case ISD::SRL:
2123 case ISD::SRA:
2124 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2125 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2126 return getNode(Opcode, VT, N1, N2.getOperand(0));
2127 else if (N2.getOpcode() == ISD::AND)
2128 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2129 // If the and is only masking out bits that cannot effect the shift,
2130 // eliminate the and.
2131 unsigned NumBits = MVT::getSizeInBits(VT);
2132 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2133 return getNode(Opcode, VT, N1, N2.getOperand(0));
2134 }
2135 break;
2136#endif
2137 }
2138
2139 // Memoize this node if possible.
2140 SDNode *N;
2141 SDVTList VTs = getVTList(VT);
2142 if (VT != MVT::Flag) {
2143 SDOperand Ops[] = { N1, N2 };
2144 FoldingSetNodeID ID;
2145 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2146 void *IP = 0;
2147 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2148 return SDOperand(E, 0);
2149 N = new BinarySDNode(Opcode, VTs, N1, N2);
2150 CSEMap.InsertNode(N, IP);
2151 } else {
2152 N = new BinarySDNode(Opcode, VTs, N1, N2);
2153 }
2154
2155 AllNodes.push_back(N);
2156 return SDOperand(N, 0);
2157}
2158
2159SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2160 SDOperand N1, SDOperand N2, SDOperand N3) {
2161 // Perform various simplifications.
2162 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2163 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2164 switch (Opcode) {
2165 case ISD::SETCC: {
2166 // Use FoldSetCC to simplify SETCC's.
2167 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2168 if (Simp.Val) return Simp;
2169 break;
2170 }
2171 case ISD::SELECT:
2172 if (N1C)
2173 if (N1C->getValue())
2174 return N2; // select true, X, Y -> X
2175 else
2176 return N3; // select false, X, Y -> Y
2177
2178 if (N2 == N3) return N2; // select C, X, X -> X
2179 break;
2180 case ISD::BRCOND:
2181 if (N2C)
2182 if (N2C->getValue()) // Unconditional branch
2183 return getNode(ISD::BR, MVT::Other, N1, N3);
2184 else
2185 return N1; // Never-taken branch
2186 break;
2187 case ISD::VECTOR_SHUFFLE:
2188 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2189 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2190 N3.getOpcode() == ISD::BUILD_VECTOR &&
2191 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2192 "Illegal VECTOR_SHUFFLE node!");
2193 break;
2194 case ISD::BIT_CONVERT:
2195 // Fold bit_convert nodes from a type to themselves.
2196 if (N1.getValueType() == VT)
2197 return N1;
2198 break;
2199 }
2200
2201 // Memoize node if it doesn't produce a flag.
2202 SDNode *N;
2203 SDVTList VTs = getVTList(VT);
2204 if (VT != MVT::Flag) {
2205 SDOperand Ops[] = { N1, N2, N3 };
2206 FoldingSetNodeID ID;
2207 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2208 void *IP = 0;
2209 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2210 return SDOperand(E, 0);
2211 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2212 CSEMap.InsertNode(N, IP);
2213 } else {
2214 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2215 }
2216 AllNodes.push_back(N);
2217 return SDOperand(N, 0);
2218}
2219
2220SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2221 SDOperand N1, SDOperand N2, SDOperand N3,
2222 SDOperand N4) {
2223 SDOperand Ops[] = { N1, N2, N3, N4 };
2224 return getNode(Opcode, VT, Ops, 4);
2225}
2226
2227SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2228 SDOperand N1, SDOperand N2, SDOperand N3,
2229 SDOperand N4, SDOperand N5) {
2230 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2231 return getNode(Opcode, VT, Ops, 5);
2232}
2233
2234SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2235 SDOperand Chain, SDOperand Ptr,
2236 const Value *SV, int SVOffset,
2237 bool isVolatile, unsigned Alignment) {
2238 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2239 const Type *Ty = 0;
2240 if (VT != MVT::iPTR) {
2241 Ty = MVT::getTypeForValueType(VT);
2242 } else if (SV) {
2243 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2244 assert(PT && "Value for load must be a pointer");
2245 Ty = PT->getElementType();
2246 }
2247 assert(Ty && "Could not get type information for load");
2248 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2249 }
2250 SDVTList VTs = getVTList(VT, MVT::Other);
2251 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2252 SDOperand Ops[] = { Chain, Ptr, Undef };
2253 FoldingSetNodeID ID;
2254 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2255 ID.AddInteger(ISD::UNINDEXED);
2256 ID.AddInteger(ISD::NON_EXTLOAD);
2257 ID.AddInteger(VT);
2258 ID.AddPointer(SV);
2259 ID.AddInteger(SVOffset);
2260 ID.AddInteger(Alignment);
2261 ID.AddInteger(isVolatile);
2262 void *IP = 0;
2263 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2264 return SDOperand(E, 0);
2265 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2266 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2267 isVolatile);
2268 CSEMap.InsertNode(N, IP);
2269 AllNodes.push_back(N);
2270 return SDOperand(N, 0);
2271}
2272
2273SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2274 SDOperand Chain, SDOperand Ptr,
2275 const Value *SV,
2276 int SVOffset, MVT::ValueType EVT,
2277 bool isVolatile, unsigned Alignment) {
2278 // If they are asking for an extending load from/to the same thing, return a
2279 // normal load.
2280 if (VT == EVT)
2281 ExtType = ISD::NON_EXTLOAD;
2282
2283 if (MVT::isVector(VT))
2284 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2285 else
2286 assert(EVT < VT && "Should only be an extending load, not truncating!");
2287 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2288 "Cannot sign/zero extend a FP/Vector load!");
2289 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2290 "Cannot convert from FP to Int or Int -> FP!");
2291
2292 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2293 const Type *Ty = 0;
2294 if (VT != MVT::iPTR) {
2295 Ty = MVT::getTypeForValueType(VT);
2296 } else if (SV) {
2297 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2298 assert(PT && "Value for load must be a pointer");
2299 Ty = PT->getElementType();
2300 }
2301 assert(Ty && "Could not get type information for load");
2302 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2303 }
2304 SDVTList VTs = getVTList(VT, MVT::Other);
2305 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2306 SDOperand Ops[] = { Chain, Ptr, Undef };
2307 FoldingSetNodeID ID;
2308 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2309 ID.AddInteger(ISD::UNINDEXED);
2310 ID.AddInteger(ExtType);
2311 ID.AddInteger(EVT);
2312 ID.AddPointer(SV);
2313 ID.AddInteger(SVOffset);
2314 ID.AddInteger(Alignment);
2315 ID.AddInteger(isVolatile);
2316 void *IP = 0;
2317 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2318 return SDOperand(E, 0);
2319 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2320 SV, SVOffset, Alignment, isVolatile);
2321 CSEMap.InsertNode(N, IP);
2322 AllNodes.push_back(N);
2323 return SDOperand(N, 0);
2324}
2325
2326SDOperand
2327SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2328 SDOperand Offset, ISD::MemIndexedMode AM) {
2329 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2330 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2331 "Load is already a indexed load!");
2332 MVT::ValueType VT = OrigLoad.getValueType();
2333 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2334 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2335 FoldingSetNodeID ID;
2336 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2337 ID.AddInteger(AM);
2338 ID.AddInteger(LD->getExtensionType());
2339 ID.AddInteger(LD->getLoadedVT());
2340 ID.AddPointer(LD->getSrcValue());
2341 ID.AddInteger(LD->getSrcValueOffset());
2342 ID.AddInteger(LD->getAlignment());
2343 ID.AddInteger(LD->isVolatile());
2344 void *IP = 0;
2345 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2346 return SDOperand(E, 0);
2347 SDNode *N = new LoadSDNode(Ops, VTs, AM,
2348 LD->getExtensionType(), LD->getLoadedVT(),
2349 LD->getSrcValue(), LD->getSrcValueOffset(),
2350 LD->getAlignment(), LD->isVolatile());
2351 CSEMap.InsertNode(N, IP);
2352 AllNodes.push_back(N);
2353 return SDOperand(N, 0);
2354}
2355
2356SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2357 SDOperand Ptr, const Value *SV, int SVOffset,
2358 bool isVolatile, unsigned Alignment) {
2359 MVT::ValueType VT = Val.getValueType();
2360
2361 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2362 const Type *Ty = 0;
2363 if (VT != MVT::iPTR) {
2364 Ty = MVT::getTypeForValueType(VT);
2365 } else if (SV) {
2366 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2367 assert(PT && "Value for store must be a pointer");
2368 Ty = PT->getElementType();
2369 }
2370 assert(Ty && "Could not get type information for store");
2371 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2372 }
2373 SDVTList VTs = getVTList(MVT::Other);
2374 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2375 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2376 FoldingSetNodeID ID;
2377 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2378 ID.AddInteger(ISD::UNINDEXED);
2379 ID.AddInteger(false);
2380 ID.AddInteger(VT);
2381 ID.AddPointer(SV);
2382 ID.AddInteger(SVOffset);
2383 ID.AddInteger(Alignment);
2384 ID.AddInteger(isVolatile);
2385 void *IP = 0;
2386 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2387 return SDOperand(E, 0);
2388 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2389 VT, SV, SVOffset, Alignment, isVolatile);
2390 CSEMap.InsertNode(N, IP);
2391 AllNodes.push_back(N);
2392 return SDOperand(N, 0);
2393}
2394
2395SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2396 SDOperand Ptr, const Value *SV,
2397 int SVOffset, MVT::ValueType SVT,
2398 bool isVolatile, unsigned Alignment) {
2399 MVT::ValueType VT = Val.getValueType();
2400 bool isTrunc = VT != SVT;
2401
2402 assert(VT > SVT && "Not a truncation?");
2403 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2404 "Can't do FP-INT conversion!");
2405
2406 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2407 const Type *Ty = 0;
2408 if (VT != MVT::iPTR) {
2409 Ty = MVT::getTypeForValueType(VT);
2410 } else if (SV) {
2411 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2412 assert(PT && "Value for store must be a pointer");
2413 Ty = PT->getElementType();
2414 }
2415 assert(Ty && "Could not get type information for store");
2416 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2417 }
2418 SDVTList VTs = getVTList(MVT::Other);
2419 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2420 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2421 FoldingSetNodeID ID;
2422 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2423 ID.AddInteger(ISD::UNINDEXED);
2424 ID.AddInteger(isTrunc);
2425 ID.AddInteger(SVT);
2426 ID.AddPointer(SV);
2427 ID.AddInteger(SVOffset);
2428 ID.AddInteger(Alignment);
2429 ID.AddInteger(isVolatile);
2430 void *IP = 0;
2431 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2432 return SDOperand(E, 0);
2433 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2434 SVT, SV, SVOffset, Alignment, isVolatile);
2435 CSEMap.InsertNode(N, IP);
2436 AllNodes.push_back(N);
2437 return SDOperand(N, 0);
2438}
2439
2440SDOperand
2441SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2442 SDOperand Offset, ISD::MemIndexedMode AM) {
2443 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2444 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2445 "Store is already a indexed store!");
2446 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2447 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2448 FoldingSetNodeID ID;
2449 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2450 ID.AddInteger(AM);
2451 ID.AddInteger(ST->isTruncatingStore());
2452 ID.AddInteger(ST->getStoredVT());
2453 ID.AddPointer(ST->getSrcValue());
2454 ID.AddInteger(ST->getSrcValueOffset());
2455 ID.AddInteger(ST->getAlignment());
2456 ID.AddInteger(ST->isVolatile());
2457 void *IP = 0;
2458 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2459 return SDOperand(E, 0);
2460 SDNode *N = new StoreSDNode(Ops, VTs, AM,
2461 ST->isTruncatingStore(), ST->getStoredVT(),
2462 ST->getSrcValue(), ST->getSrcValueOffset(),
2463 ST->getAlignment(), ST->isVolatile());
2464 CSEMap.InsertNode(N, IP);
2465 AllNodes.push_back(N);
2466 return SDOperand(N, 0);
2467}
2468
2469SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2470 SDOperand Chain, SDOperand Ptr,
2471 SDOperand SV) {
2472 SDOperand Ops[] = { Chain, Ptr, SV };
2473 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2474}
2475
2476SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2477 const SDOperand *Ops, unsigned NumOps) {
2478 switch (NumOps) {
2479 case 0: return getNode(Opcode, VT);
2480 case 1: return getNode(Opcode, VT, Ops[0]);
2481 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2482 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2483 default: break;
2484 }
2485
2486 switch (Opcode) {
2487 default: break;
2488 case ISD::SELECT_CC: {
2489 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2490 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2491 "LHS and RHS of condition must have same type!");
2492 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2493 "True and False arms of SelectCC must have same type!");
2494 assert(Ops[2].getValueType() == VT &&
2495 "select_cc node must be of same type as true and false value!");
2496 break;
2497 }
2498 case ISD::BR_CC: {
2499 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2500 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2501 "LHS/RHS of comparison should match types!");
2502 break;
2503 }
2504 }
2505
2506 // Memoize nodes.
2507 SDNode *N;
2508 SDVTList VTs = getVTList(VT);
2509 if (VT != MVT::Flag) {
2510 FoldingSetNodeID ID;
2511 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2512 void *IP = 0;
2513 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2514 return SDOperand(E, 0);
2515 N = new SDNode(Opcode, VTs, Ops, NumOps);
2516 CSEMap.InsertNode(N, IP);
2517 } else {
2518 N = new SDNode(Opcode, VTs, Ops, NumOps);
2519 }
2520 AllNodes.push_back(N);
2521 return SDOperand(N, 0);
2522}
2523
2524SDOperand SelectionDAG::getNode(unsigned Opcode,
2525 std::vector<MVT::ValueType> &ResultTys,
2526 const SDOperand *Ops, unsigned NumOps) {
2527 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2528 Ops, NumOps);
2529}
2530
2531SDOperand SelectionDAG::getNode(unsigned Opcode,
2532 const MVT::ValueType *VTs, unsigned NumVTs,
2533 const SDOperand *Ops, unsigned NumOps) {
2534 if (NumVTs == 1)
2535 return getNode(Opcode, VTs[0], Ops, NumOps);
2536 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2537}
2538
2539SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2540 const SDOperand *Ops, unsigned NumOps) {
2541 if (VTList.NumVTs == 1)
2542 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2543
2544 switch (Opcode) {
2545 // FIXME: figure out how to safely handle things like
2546 // int foo(int x) { return 1 << (x & 255); }
2547 // int bar() { return foo(256); }
2548#if 0
2549 case ISD::SRA_PARTS:
2550 case ISD::SRL_PARTS:
2551 case ISD::SHL_PARTS:
2552 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2553 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2554 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2555 else if (N3.getOpcode() == ISD::AND)
2556 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2557 // If the and is only masking out bits that cannot effect the shift,
2558 // eliminate the and.
2559 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2560 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2561 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2562 }
2563 break;
2564#endif
2565 }
2566
2567 // Memoize the node unless it returns a flag.
2568 SDNode *N;
2569 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2570 FoldingSetNodeID ID;
2571 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2572 void *IP = 0;
2573 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2574 return SDOperand(E, 0);
2575 if (NumOps == 1)
2576 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2577 else if (NumOps == 2)
2578 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2579 else if (NumOps == 3)
2580 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2581 else
2582 N = new SDNode(Opcode, VTList, Ops, NumOps);
2583 CSEMap.InsertNode(N, IP);
2584 } else {
2585 if (NumOps == 1)
2586 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2587 else if (NumOps == 2)
2588 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2589 else if (NumOps == 3)
2590 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2591 else
2592 N = new SDNode(Opcode, VTList, Ops, NumOps);
2593 }
2594 AllNodes.push_back(N);
2595 return SDOperand(N, 0);
2596}
2597
2598SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2599 if (!MVT::isExtendedVT(VT))
2600 return makeVTList(SDNode::getValueTypeList(VT), 1);
2601
2602 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2603 E = VTList.end(); I != E; ++I) {
2604 if (I->size() == 1 && (*I)[0] == VT)
2605 return makeVTList(&(*I)[0], 1);
2606 }
2607 std::vector<MVT::ValueType> V;
2608 V.push_back(VT);
2609 VTList.push_front(V);
2610 return makeVTList(&(*VTList.begin())[0], 1);
2611}
2612
2613SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2614 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2615 E = VTList.end(); I != E; ++I) {
2616 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2617 return makeVTList(&(*I)[0], 2);
2618 }
2619 std::vector<MVT::ValueType> V;
2620 V.push_back(VT1);
2621 V.push_back(VT2);
2622 VTList.push_front(V);
2623 return makeVTList(&(*VTList.begin())[0], 2);
2624}
2625SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2626 MVT::ValueType VT3) {
2627 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2628 E = VTList.end(); I != E; ++I) {
2629 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2630 (*I)[2] == VT3)
2631 return makeVTList(&(*I)[0], 3);
2632 }
2633 std::vector<MVT::ValueType> V;
2634 V.push_back(VT1);
2635 V.push_back(VT2);
2636 V.push_back(VT3);
2637 VTList.push_front(V);
2638 return makeVTList(&(*VTList.begin())[0], 3);
2639}
2640
2641SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2642 switch (NumVTs) {
2643 case 0: assert(0 && "Cannot have nodes without results!");
2644 case 1: return getVTList(VTs[0]);
2645 case 2: return getVTList(VTs[0], VTs[1]);
2646 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2647 default: break;
2648 }
2649
2650 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2651 E = VTList.end(); I != E; ++I) {
2652 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2653
2654 bool NoMatch = false;
2655 for (unsigned i = 2; i != NumVTs; ++i)
2656 if (VTs[i] != (*I)[i]) {
2657 NoMatch = true;
2658 break;
2659 }
2660 if (!NoMatch)
2661 return makeVTList(&*I->begin(), NumVTs);
2662 }
2663
2664 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2665 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2666}
2667
2668
2669/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2670/// specified operands. If the resultant node already exists in the DAG,
2671/// this does not modify the specified node, instead it returns the node that
2672/// already exists. If the resultant node does not exist in the DAG, the
2673/// input node is returned. As a degenerate case, if you specify the same
2674/// input operands as the node already has, the input node is returned.
2675SDOperand SelectionDAG::
2676UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2677 SDNode *N = InN.Val;
2678 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2679
2680 // Check to see if there is no change.
2681 if (Op == N->getOperand(0)) return InN;
2682
2683 // See if the modified node already exists.
2684 void *InsertPos = 0;
2685 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2686 return SDOperand(Existing, InN.ResNo);
2687
2688 // Nope it doesn't. Remove the node from it's current place in the maps.
2689 if (InsertPos)
2690 RemoveNodeFromCSEMaps(N);
2691
2692 // Now we update the operands.
2693 N->OperandList[0].Val->removeUser(N);
2694 Op.Val->addUser(N);
2695 N->OperandList[0] = Op;
2696
2697 // If this gets put into a CSE map, add it.
2698 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2699 return InN;
2700}
2701
2702SDOperand SelectionDAG::
2703UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2704 SDNode *N = InN.Val;
2705 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2706
2707 // Check to see if there is no change.
2708 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2709 return InN; // No operands changed, just return the input node.
2710
2711 // See if the modified node already exists.
2712 void *InsertPos = 0;
2713 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2714 return SDOperand(Existing, InN.ResNo);
2715
2716 // Nope it doesn't. Remove the node from it's current place in the maps.
2717 if (InsertPos)
2718 RemoveNodeFromCSEMaps(N);
2719
2720 // Now we update the operands.
2721 if (N->OperandList[0] != Op1) {
2722 N->OperandList[0].Val->removeUser(N);
2723 Op1.Val->addUser(N);
2724 N->OperandList[0] = Op1;
2725 }
2726 if (N->OperandList[1] != Op2) {
2727 N->OperandList[1].Val->removeUser(N);
2728 Op2.Val->addUser(N);
2729 N->OperandList[1] = Op2;
2730 }
2731
2732 // If this gets put into a CSE map, add it.
2733 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2734 return InN;
2735}
2736
2737SDOperand SelectionDAG::
2738UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2739 SDOperand Ops[] = { Op1, Op2, Op3 };
2740 return UpdateNodeOperands(N, Ops, 3);
2741}
2742
2743SDOperand SelectionDAG::
2744UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2745 SDOperand Op3, SDOperand Op4) {
2746 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2747 return UpdateNodeOperands(N, Ops, 4);
2748}
2749
2750SDOperand SelectionDAG::
2751UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2752 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2753 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2754 return UpdateNodeOperands(N, Ops, 5);
2755}
2756
2757
2758SDOperand SelectionDAG::
2759UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2760 SDNode *N = InN.Val;
2761 assert(N->getNumOperands() == NumOps &&
2762 "Update with wrong number of operands");
2763
2764 // Check to see if there is no change.
2765 bool AnyChange = false;
2766 for (unsigned i = 0; i != NumOps; ++i) {
2767 if (Ops[i] != N->getOperand(i)) {
2768 AnyChange = true;
2769 break;
2770 }
2771 }
2772
2773 // No operands changed, just return the input node.
2774 if (!AnyChange) return InN;
2775
2776 // See if the modified node already exists.
2777 void *InsertPos = 0;
2778 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2779 return SDOperand(Existing, InN.ResNo);
2780
2781 // Nope it doesn't. Remove the node from it's current place in the maps.
2782 if (InsertPos)
2783 RemoveNodeFromCSEMaps(N);
2784
2785 // Now we update the operands.
2786 for (unsigned i = 0; i != NumOps; ++i) {
2787 if (N->OperandList[i] != Ops[i]) {
2788 N->OperandList[i].Val->removeUser(N);
2789 Ops[i].Val->addUser(N);
2790 N->OperandList[i] = Ops[i];
2791 }
2792 }
2793
2794 // If this gets put into a CSE map, add it.
2795 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2796 return InN;
2797}
2798
2799
2800/// MorphNodeTo - This frees the operands of the current node, resets the
2801/// opcode, types, and operands to the specified value. This should only be
2802/// used by the SelectionDAG class.
2803void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2804 const SDOperand *Ops, unsigned NumOps) {
2805 NodeType = Opc;
2806 ValueList = L.VTs;
2807 NumValues = L.NumVTs;
2808
2809 // Clear the operands list, updating used nodes to remove this from their
2810 // use list.
2811 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2812 I->Val->removeUser(this);
2813
2814 // If NumOps is larger than the # of operands we currently have, reallocate
2815 // the operand list.
2816 if (NumOps > NumOperands) {
2817 if (OperandsNeedDelete)
2818 delete [] OperandList;
2819 OperandList = new SDOperand[NumOps];
2820 OperandsNeedDelete = true;
2821 }
2822
2823 // Assign the new operands.
2824 NumOperands = NumOps;
2825
2826 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2827 OperandList[i] = Ops[i];
2828 SDNode *N = OperandList[i].Val;
2829 N->Uses.push_back(this);
2830 }
2831}
2832
2833/// SelectNodeTo - These are used for target selectors to *mutate* the
2834/// specified node to have the specified return type, Target opcode, and
2835/// operands. Note that target opcodes are stored as
2836/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2837///
2838/// Note that SelectNodeTo returns the resultant node. If there is already a
2839/// node of the specified opcode and operands, it returns that node instead of
2840/// the current one.
2841SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2842 MVT::ValueType VT) {
2843 SDVTList VTs = getVTList(VT);
2844 FoldingSetNodeID ID;
2845 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2846 void *IP = 0;
2847 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2848 return ON;
2849
2850 RemoveNodeFromCSEMaps(N);
2851
2852 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2853
2854 CSEMap.InsertNode(N, IP);
2855 return N;
2856}
2857
2858SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2859 MVT::ValueType VT, SDOperand Op1) {
2860 // If an identical node already exists, use it.
2861 SDVTList VTs = getVTList(VT);
2862 SDOperand Ops[] = { Op1 };
2863
2864 FoldingSetNodeID ID;
2865 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2866 void *IP = 0;
2867 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2868 return ON;
2869
2870 RemoveNodeFromCSEMaps(N);
2871 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2872 CSEMap.InsertNode(N, IP);
2873 return N;
2874}
2875
2876SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2877 MVT::ValueType VT, SDOperand Op1,
2878 SDOperand Op2) {
2879 // If an identical node already exists, use it.
2880 SDVTList VTs = getVTList(VT);
2881 SDOperand Ops[] = { Op1, Op2 };
2882
2883 FoldingSetNodeID ID;
2884 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2885 void *IP = 0;
2886 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2887 return ON;
2888
2889 RemoveNodeFromCSEMaps(N);
2890
2891 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2892
2893 CSEMap.InsertNode(N, IP); // Memoize the new node.
2894 return N;
2895}
2896
2897SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2898 MVT::ValueType VT, SDOperand Op1,
2899 SDOperand Op2, SDOperand Op3) {
2900 // If an identical node already exists, use it.
2901 SDVTList VTs = getVTList(VT);
2902 SDOperand Ops[] = { Op1, Op2, Op3 };
2903 FoldingSetNodeID ID;
2904 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2905 void *IP = 0;
2906 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2907 return ON;
2908
2909 RemoveNodeFromCSEMaps(N);
2910
2911 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2912
2913 CSEMap.InsertNode(N, IP); // Memoize the new node.
2914 return N;
2915}
2916
2917SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2918 MVT::ValueType VT, const SDOperand *Ops,
2919 unsigned NumOps) {
2920 // If an identical node already exists, use it.
2921 SDVTList VTs = getVTList(VT);
2922 FoldingSetNodeID ID;
2923 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2924 void *IP = 0;
2925 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2926 return ON;
2927
2928 RemoveNodeFromCSEMaps(N);
2929 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2930
2931 CSEMap.InsertNode(N, IP); // Memoize the new node.
2932 return N;
2933}
2934
2935SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2936 MVT::ValueType VT1, MVT::ValueType VT2,
2937 SDOperand Op1, SDOperand Op2) {
2938 SDVTList VTs = getVTList(VT1, VT2);
2939 FoldingSetNodeID ID;
2940 SDOperand Ops[] = { Op1, Op2 };
2941 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2942 void *IP = 0;
2943 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2944 return ON;
2945
2946 RemoveNodeFromCSEMaps(N);
2947 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2948 CSEMap.InsertNode(N, IP); // Memoize the new node.
2949 return N;
2950}
2951
2952SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2953 MVT::ValueType VT1, MVT::ValueType VT2,
2954 SDOperand Op1, SDOperand Op2,
2955 SDOperand Op3) {
2956 // If an identical node already exists, use it.
2957 SDVTList VTs = getVTList(VT1, VT2);
2958 SDOperand Ops[] = { Op1, Op2, Op3 };
2959 FoldingSetNodeID ID;
2960 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2961 void *IP = 0;
2962 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2963 return ON;
2964
2965 RemoveNodeFromCSEMaps(N);
2966
2967 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2968 CSEMap.InsertNode(N, IP); // Memoize the new node.
2969 return N;
2970}
2971
2972
2973/// getTargetNode - These are used for target selectors to create a new node
2974/// with specified return type(s), target opcode, and operands.
2975///
2976/// Note that getTargetNode returns the resultant node. If there is already a
2977/// node of the specified opcode and operands, it returns that node instead of
2978/// the current one.
2979SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2980 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2981}
2982SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2983 SDOperand Op1) {
2984 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2985}
2986SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2987 SDOperand Op1, SDOperand Op2) {
2988 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2989}
2990SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2991 SDOperand Op1, SDOperand Op2,
2992 SDOperand Op3) {
2993 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2994}
2995SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2996 const SDOperand *Ops, unsigned NumOps) {
2997 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2998}
2999SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3000 MVT::ValueType VT2, SDOperand Op1) {
3001 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3002 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3003}
3004SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3005 MVT::ValueType VT2, SDOperand Op1,
3006 SDOperand Op2) {
3007 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3008 SDOperand Ops[] = { Op1, Op2 };
3009 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3010}
3011SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3012 MVT::ValueType VT2, SDOperand Op1,
3013 SDOperand Op2, SDOperand Op3) {
3014 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3015 SDOperand Ops[] = { Op1, Op2, Op3 };
3016 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3017}
3018SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3019 MVT::ValueType VT2,
3020 const SDOperand *Ops, unsigned NumOps) {
3021 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3022 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3023}
3024SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3025 MVT::ValueType VT2, MVT::ValueType VT3,
3026 SDOperand Op1, SDOperand Op2) {
3027 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3028 SDOperand Ops[] = { Op1, Op2 };
3029 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3030}
3031SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3032 MVT::ValueType VT2, MVT::ValueType VT3,
3033 SDOperand Op1, SDOperand Op2,
3034 SDOperand Op3) {
3035 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3036 SDOperand Ops[] = { Op1, Op2, Op3 };
3037 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3038}
3039SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3040 MVT::ValueType VT2, MVT::ValueType VT3,
3041 const SDOperand *Ops, unsigned NumOps) {
3042 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3043 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3044}
3045
3046/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3047/// This can cause recursive merging of nodes in the DAG.
3048///
3049/// This version assumes From/To have a single result value.
3050///
3051void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3052 std::vector<SDNode*> *Deleted) {
3053 SDNode *From = FromN.Val, *To = ToN.Val;
3054 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3055 "Cannot replace with this method!");
3056 assert(From != To && "Cannot replace uses of with self");
3057
3058 while (!From->use_empty()) {
3059 // Process users until they are all gone.
3060 SDNode *U = *From->use_begin();
3061
3062 // This node is about to morph, remove its old self from the CSE maps.
3063 RemoveNodeFromCSEMaps(U);
3064
3065 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3066 I != E; ++I)
3067 if (I->Val == From) {
3068 From->removeUser(U);
3069 I->Val = To;
3070 To->addUser(U);
3071 }
3072
3073 // Now that we have modified U, add it back to the CSE maps. If it already
3074 // exists there, recursively merge the results together.
3075 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3076 ReplaceAllUsesWith(U, Existing, Deleted);
3077 // U is now dead.
3078 if (Deleted) Deleted->push_back(U);
3079 DeleteNodeNotInCSEMaps(U);
3080 }
3081 }
3082}
3083
3084/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3085/// This can cause recursive merging of nodes in the DAG.
3086///
3087/// This version assumes From/To have matching types and numbers of result
3088/// values.
3089///
3090void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3091 std::vector<SDNode*> *Deleted) {
3092 assert(From != To && "Cannot replace uses of with self");
3093 assert(From->getNumValues() == To->getNumValues() &&
3094 "Cannot use this version of ReplaceAllUsesWith!");
3095 if (From->getNumValues() == 1) { // If possible, use the faster version.
3096 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3097 return;
3098 }
3099
3100 while (!From->use_empty()) {
3101 // Process users until they are all gone.
3102 SDNode *U = *From->use_begin();
3103
3104 // This node is about to morph, remove its old self from the CSE maps.
3105 RemoveNodeFromCSEMaps(U);
3106
3107 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3108 I != E; ++I)
3109 if (I->Val == From) {
3110 From->removeUser(U);
3111 I->Val = To;
3112 To->addUser(U);
3113 }
3114
3115 // Now that we have modified U, add it back to the CSE maps. If it already
3116 // exists there, recursively merge the results together.
3117 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3118 ReplaceAllUsesWith(U, Existing, Deleted);
3119 // U is now dead.
3120 if (Deleted) Deleted->push_back(U);
3121 DeleteNodeNotInCSEMaps(U);
3122 }
3123 }
3124}
3125
3126/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3127/// This can cause recursive merging of nodes in the DAG.
3128///
3129/// This version can replace From with any result values. To must match the
3130/// number and types of values returned by From.
3131void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3132 const SDOperand *To,
3133 std::vector<SDNode*> *Deleted) {
3134 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3135 // Degenerate case handled above.
3136 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3137 return;
3138 }
3139
3140 while (!From->use_empty()) {
3141 // Process users until they are all gone.
3142 SDNode *U = *From->use_begin();
3143
3144 // This node is about to morph, remove its old self from the CSE maps.
3145 RemoveNodeFromCSEMaps(U);
3146
3147 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3148 I != E; ++I)
3149 if (I->Val == From) {
3150 const SDOperand &ToOp = To[I->ResNo];
3151 From->removeUser(U);
3152 *I = ToOp;
3153 ToOp.Val->addUser(U);
3154 }
3155
3156 // Now that we have modified U, add it back to the CSE maps. If it already
3157 // exists there, recursively merge the results together.
3158 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3159 ReplaceAllUsesWith(U, Existing, Deleted);
3160 // U is now dead.
3161 if (Deleted) Deleted->push_back(U);
3162 DeleteNodeNotInCSEMaps(U);
3163 }
3164 }
3165}
3166
3167/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3168/// uses of other values produced by From.Val alone. The Deleted vector is
3169/// handled the same was as for ReplaceAllUsesWith.
3170void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3171 std::vector<SDNode*> &Deleted) {
3172 assert(From != To && "Cannot replace a value with itself");
3173 // Handle the simple, trivial, case efficiently.
3174 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3175 ReplaceAllUsesWith(From, To, &Deleted);
3176 return;
3177 }
3178
3179 // Get all of the users of From.Val. We want these in a nice,
3180 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3181 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3182
3183 while (!Users.empty()) {
3184 // We know that this user uses some value of From. If it is the right
3185 // value, update it.
3186 SDNode *User = Users.back();
3187 Users.pop_back();
3188
3189 for (SDOperand *Op = User->OperandList,
3190 *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3191 if (*Op == From) {
3192 // Okay, we know this user needs to be updated. Remove its old self
3193 // from the CSE maps.
3194 RemoveNodeFromCSEMaps(User);
3195
3196 // Update all operands that match "From".
3197 for (; Op != E; ++Op) {
3198 if (*Op == From) {
3199 From.Val->removeUser(User);
3200 *Op = To;
3201 To.Val->addUser(User);
3202 }
3203 }
3204
3205 // Now that we have modified User, add it back to the CSE maps. If it
3206 // already exists there, recursively merge the results together.
3207 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3208 unsigned NumDeleted = Deleted.size();
3209 ReplaceAllUsesWith(User, Existing, &Deleted);
3210
3211 // User is now dead.
3212 Deleted.push_back(User);
3213 DeleteNodeNotInCSEMaps(User);
3214
3215 // We have to be careful here, because ReplaceAllUsesWith could have
3216 // deleted a user of From, which means there may be dangling pointers
3217 // in the "Users" setvector. Scan over the deleted node pointers and
3218 // remove them from the setvector.
3219 for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3220 Users.remove(Deleted[i]);
3221 }
3222 break; // Exit the operand scanning loop.
3223 }
3224 }
3225 }
3226}
3227
3228
3229/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3230/// their allnodes order. It returns the maximum id.
3231unsigned SelectionDAG::AssignNodeIds() {
3232 unsigned Id = 0;
3233 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3234 SDNode *N = I;
3235 N->setNodeId(Id++);
3236 }
3237 return Id;
3238}
3239
3240/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3241/// based on their topological order. It returns the maximum id and a vector
3242/// of the SDNodes* in assigned order by reference.
3243unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3244 unsigned DAGSize = AllNodes.size();
3245 std::vector<unsigned> InDegree(DAGSize);
3246 std::vector<SDNode*> Sources;
3247
3248 // Use a two pass approach to avoid using a std::map which is slow.
3249 unsigned Id = 0;
3250 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3251 SDNode *N = I;
3252 N->setNodeId(Id++);
3253 unsigned Degree = N->use_size();
3254 InDegree[N->getNodeId()] = Degree;
3255 if (Degree == 0)
3256 Sources.push_back(N);
3257 }
3258
3259 TopOrder.clear();
3260 while (!Sources.empty()) {
3261 SDNode *N = Sources.back();
3262 Sources.pop_back();
3263 TopOrder.push_back(N);
3264 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3265 SDNode *P = I->Val;
3266 unsigned Degree = --InDegree[P->getNodeId()];
3267 if (Degree == 0)
3268 Sources.push_back(P);
3269 }
3270 }
3271
3272 // Second pass, assign the actual topological order as node ids.
3273 Id = 0;
3274 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3275 TI != TE; ++TI)
3276 (*TI)->setNodeId(Id++);
3277
3278 return Id;
3279}
3280
3281
3282
3283//===----------------------------------------------------------------------===//
3284// SDNode Class
3285//===----------------------------------------------------------------------===//
3286
3287// Out-of-line virtual method to give class a home.
3288void SDNode::ANCHOR() {}
3289void UnarySDNode::ANCHOR() {}
3290void BinarySDNode::ANCHOR() {}
3291void TernarySDNode::ANCHOR() {}
3292void HandleSDNode::ANCHOR() {}
3293void StringSDNode::ANCHOR() {}
3294void ConstantSDNode::ANCHOR() {}
3295void ConstantFPSDNode::ANCHOR() {}
3296void GlobalAddressSDNode::ANCHOR() {}
3297void FrameIndexSDNode::ANCHOR() {}
3298void JumpTableSDNode::ANCHOR() {}
3299void ConstantPoolSDNode::ANCHOR() {}
3300void BasicBlockSDNode::ANCHOR() {}
3301void SrcValueSDNode::ANCHOR() {}
3302void RegisterSDNode::ANCHOR() {}
3303void ExternalSymbolSDNode::ANCHOR() {}
3304void CondCodeSDNode::ANCHOR() {}
3305void VTSDNode::ANCHOR() {}
3306void LoadSDNode::ANCHOR() {}
3307void StoreSDNode::ANCHOR() {}
3308
3309HandleSDNode::~HandleSDNode() {
3310 SDVTList VTs = { 0, 0 };
3311 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3312}
3313
3314GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3315 MVT::ValueType VT, int o)
3316 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003317 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318 // Thread Local
3319 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3320 // Non Thread Local
3321 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3322 getSDVTList(VT)), Offset(o) {
3323 TheGlobal = const_cast<GlobalValue*>(GA);
3324}
3325
3326/// Profile - Gather unique data for the node.
3327///
3328void SDNode::Profile(FoldingSetNodeID &ID) {
3329 AddNodeIDNode(ID, this);
3330}
3331
3332/// getValueTypeList - Return a pointer to the specified value type.
3333///
3334MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3335 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3336 VTs[VT] = VT;
3337 return &VTs[VT];
3338}
3339
3340/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3341/// indicated value. This method ignores uses of other values defined by this
3342/// operation.
3343bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3344 assert(Value < getNumValues() && "Bad value!");
3345
3346 // If there is only one value, this is easy.
3347 if (getNumValues() == 1)
3348 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003349 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003350
3351 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3352
3353 SmallPtrSet<SDNode*, 32> UsersHandled;
3354
3355 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3356 SDNode *User = *UI;
3357 if (User->getNumOperands() == 1 ||
3358 UsersHandled.insert(User)) // First time we've seen this?
3359 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3360 if (User->getOperand(i) == TheValue) {
3361 if (NUses == 0)
3362 return false; // too many uses
3363 --NUses;
3364 }
3365 }
3366
3367 // Found exactly the right number of uses?
3368 return NUses == 0;
3369}
3370
3371
Evan Cheng0af04f72007-08-02 05:29:38 +00003372/// hasAnyUseOfValue - Return true if there are any use of the indicated
3373/// value. This method ignores uses of other values defined by this operation.
3374bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3375 assert(Value < getNumValues() && "Bad value!");
3376
3377 if (use_size() == 0) return false;
3378
3379 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3380
3381 SmallPtrSet<SDNode*, 32> UsersHandled;
3382
3383 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3384 SDNode *User = *UI;
3385 if (User->getNumOperands() == 1 ||
3386 UsersHandled.insert(User)) // First time we've seen this?
3387 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3388 if (User->getOperand(i) == TheValue) {
3389 return true;
3390 }
3391 }
3392
3393 return false;
3394}
3395
3396
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003397/// isOnlyUse - Return true if this node is the only use of N.
3398///
3399bool SDNode::isOnlyUse(SDNode *N) const {
3400 bool Seen = false;
3401 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3402 SDNode *User = *I;
3403 if (User == this)
3404 Seen = true;
3405 else
3406 return false;
3407 }
3408
3409 return Seen;
3410}
3411
3412/// isOperand - Return true if this node is an operand of N.
3413///
3414bool SDOperand::isOperand(SDNode *N) const {
3415 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3416 if (*this == N->getOperand(i))
3417 return true;
3418 return false;
3419}
3420
3421bool SDNode::isOperand(SDNode *N) const {
3422 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3423 if (this == N->OperandList[i].Val)
3424 return true;
3425 return false;
3426}
3427
3428static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3429 SmallPtrSet<SDNode *, 32> &Visited) {
3430 if (found || !Visited.insert(N))
3431 return;
3432
3433 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3434 SDNode *Op = N->getOperand(i).Val;
3435 if (Op == P) {
3436 found = true;
3437 return;
3438 }
3439 findPredecessor(Op, P, found, Visited);
3440 }
3441}
3442
3443/// isPredecessor - Return true if this node is a predecessor of N. This node
3444/// is either an operand of N or it can be reached by recursively traversing
3445/// up the operands.
3446/// NOTE: this is an expensive method. Use it carefully.
3447bool SDNode::isPredecessor(SDNode *N) const {
3448 SmallPtrSet<SDNode *, 32> Visited;
3449 bool found = false;
3450 findPredecessor(N, this, found, Visited);
3451 return found;
3452}
3453
3454uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3455 assert(Num < NumOperands && "Invalid child # of SDNode!");
3456 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3457}
3458
3459std::string SDNode::getOperationName(const SelectionDAG *G) const {
3460 switch (getOpcode()) {
3461 default:
3462 if (getOpcode() < ISD::BUILTIN_OP_END)
3463 return "<<Unknown DAG Node>>";
3464 else {
3465 if (G) {
3466 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3467 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3468 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3469
3470 TargetLowering &TLI = G->getTargetLoweringInfo();
3471 const char *Name =
3472 TLI.getTargetNodeName(getOpcode());
3473 if (Name) return Name;
3474 }
3475
3476 return "<<Unknown Target Node>>";
3477 }
3478
3479 case ISD::PCMARKER: return "PCMarker";
3480 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3481 case ISD::SRCVALUE: return "SrcValue";
3482 case ISD::EntryToken: return "EntryToken";
3483 case ISD::TokenFactor: return "TokenFactor";
3484 case ISD::AssertSext: return "AssertSext";
3485 case ISD::AssertZext: return "AssertZext";
3486
3487 case ISD::STRING: return "String";
3488 case ISD::BasicBlock: return "BasicBlock";
3489 case ISD::VALUETYPE: return "ValueType";
3490 case ISD::Register: return "Register";
3491
3492 case ISD::Constant: return "Constant";
3493 case ISD::ConstantFP: return "ConstantFP";
3494 case ISD::GlobalAddress: return "GlobalAddress";
3495 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3496 case ISD::FrameIndex: return "FrameIndex";
3497 case ISD::JumpTable: return "JumpTable";
3498 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3499 case ISD::RETURNADDR: return "RETURNADDR";
3500 case ISD::FRAMEADDR: return "FRAMEADDR";
3501 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3502 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3503 case ISD::EHSELECTION: return "EHSELECTION";
3504 case ISD::EH_RETURN: return "EH_RETURN";
3505 case ISD::ConstantPool: return "ConstantPool";
3506 case ISD::ExternalSymbol: return "ExternalSymbol";
3507 case ISD::INTRINSIC_WO_CHAIN: {
3508 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3509 return Intrinsic::getName((Intrinsic::ID)IID);
3510 }
3511 case ISD::INTRINSIC_VOID:
3512 case ISD::INTRINSIC_W_CHAIN: {
3513 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3514 return Intrinsic::getName((Intrinsic::ID)IID);
3515 }
3516
3517 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3518 case ISD::TargetConstant: return "TargetConstant";
3519 case ISD::TargetConstantFP:return "TargetConstantFP";
3520 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3521 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3522 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3523 case ISD::TargetJumpTable: return "TargetJumpTable";
3524 case ISD::TargetConstantPool: return "TargetConstantPool";
3525 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3526
3527 case ISD::CopyToReg: return "CopyToReg";
3528 case ISD::CopyFromReg: return "CopyFromReg";
3529 case ISD::UNDEF: return "undef";
3530 case ISD::MERGE_VALUES: return "merge_values";
3531 case ISD::INLINEASM: return "inlineasm";
3532 case ISD::LABEL: return "label";
3533 case ISD::HANDLENODE: return "handlenode";
3534 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3535 case ISD::CALL: return "call";
3536
3537 // Unary operators
3538 case ISD::FABS: return "fabs";
3539 case ISD::FNEG: return "fneg";
3540 case ISD::FSQRT: return "fsqrt";
3541 case ISD::FSIN: return "fsin";
3542 case ISD::FCOS: return "fcos";
3543 case ISD::FPOWI: return "fpowi";
3544
3545 // Binary operators
3546 case ISD::ADD: return "add";
3547 case ISD::SUB: return "sub";
3548 case ISD::MUL: return "mul";
3549 case ISD::MULHU: return "mulhu";
3550 case ISD::MULHS: return "mulhs";
3551 case ISD::SDIV: return "sdiv";
3552 case ISD::UDIV: return "udiv";
3553 case ISD::SREM: return "srem";
3554 case ISD::UREM: return "urem";
3555 case ISD::AND: return "and";
3556 case ISD::OR: return "or";
3557 case ISD::XOR: return "xor";
3558 case ISD::SHL: return "shl";
3559 case ISD::SRA: return "sra";
3560 case ISD::SRL: return "srl";
3561 case ISD::ROTL: return "rotl";
3562 case ISD::ROTR: return "rotr";
3563 case ISD::FADD: return "fadd";
3564 case ISD::FSUB: return "fsub";
3565 case ISD::FMUL: return "fmul";
3566 case ISD::FDIV: return "fdiv";
3567 case ISD::FREM: return "frem";
3568 case ISD::FCOPYSIGN: return "fcopysign";
3569
3570 case ISD::SETCC: return "setcc";
3571 case ISD::SELECT: return "select";
3572 case ISD::SELECT_CC: return "select_cc";
3573 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3574 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3575 case ISD::CONCAT_VECTORS: return "concat_vectors";
3576 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3577 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3578 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3579 case ISD::CARRY_FALSE: return "carry_false";
3580 case ISD::ADDC: return "addc";
3581 case ISD::ADDE: return "adde";
3582 case ISD::SUBC: return "subc";
3583 case ISD::SUBE: return "sube";
3584 case ISD::SHL_PARTS: return "shl_parts";
3585 case ISD::SRA_PARTS: return "sra_parts";
3586 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003587
3588 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3589 case ISD::INSERT_SUBREG: return "insert_subreg";
3590
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591 // Conversion operators.
3592 case ISD::SIGN_EXTEND: return "sign_extend";
3593 case ISD::ZERO_EXTEND: return "zero_extend";
3594 case ISD::ANY_EXTEND: return "any_extend";
3595 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3596 case ISD::TRUNCATE: return "truncate";
3597 case ISD::FP_ROUND: return "fp_round";
3598 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3599 case ISD::FP_EXTEND: return "fp_extend";
3600
3601 case ISD::SINT_TO_FP: return "sint_to_fp";
3602 case ISD::UINT_TO_FP: return "uint_to_fp";
3603 case ISD::FP_TO_SINT: return "fp_to_sint";
3604 case ISD::FP_TO_UINT: return "fp_to_uint";
3605 case ISD::BIT_CONVERT: return "bit_convert";
3606
3607 // Control flow instructions
3608 case ISD::BR: return "br";
3609 case ISD::BRIND: return "brind";
3610 case ISD::BR_JT: return "br_jt";
3611 case ISD::BRCOND: return "brcond";
3612 case ISD::BR_CC: return "br_cc";
3613 case ISD::RET: return "ret";
3614 case ISD::CALLSEQ_START: return "callseq_start";
3615 case ISD::CALLSEQ_END: return "callseq_end";
3616
3617 // Other operators
3618 case ISD::LOAD: return "load";
3619 case ISD::STORE: return "store";
3620 case ISD::VAARG: return "vaarg";
3621 case ISD::VACOPY: return "vacopy";
3622 case ISD::VAEND: return "vaend";
3623 case ISD::VASTART: return "vastart";
3624 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3625 case ISD::EXTRACT_ELEMENT: return "extract_element";
3626 case ISD::BUILD_PAIR: return "build_pair";
3627 case ISD::STACKSAVE: return "stacksave";
3628 case ISD::STACKRESTORE: return "stackrestore";
3629
3630 // Block memory operations.
3631 case ISD::MEMSET: return "memset";
3632 case ISD::MEMCPY: return "memcpy";
3633 case ISD::MEMMOVE: return "memmove";
3634
3635 // Bit manipulation
3636 case ISD::BSWAP: return "bswap";
3637 case ISD::CTPOP: return "ctpop";
3638 case ISD::CTTZ: return "cttz";
3639 case ISD::CTLZ: return "ctlz";
3640
3641 // Debug info
3642 case ISD::LOCATION: return "location";
3643 case ISD::DEBUG_LOC: return "debug_loc";
3644
Duncan Sands38947cd2007-07-27 12:58:54 +00003645 // Trampolines
Duncan Sands7407a9f2007-09-11 14:10:23 +00003646 case ISD::TRAMPOLINE: return "trampoline";
Duncan Sands38947cd2007-07-27 12:58:54 +00003647
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 case ISD::CONDCODE:
3649 switch (cast<CondCodeSDNode>(this)->get()) {
3650 default: assert(0 && "Unknown setcc condition!");
3651 case ISD::SETOEQ: return "setoeq";
3652 case ISD::SETOGT: return "setogt";
3653 case ISD::SETOGE: return "setoge";
3654 case ISD::SETOLT: return "setolt";
3655 case ISD::SETOLE: return "setole";
3656 case ISD::SETONE: return "setone";
3657
3658 case ISD::SETO: return "seto";
3659 case ISD::SETUO: return "setuo";
3660 case ISD::SETUEQ: return "setue";
3661 case ISD::SETUGT: return "setugt";
3662 case ISD::SETUGE: return "setuge";
3663 case ISD::SETULT: return "setult";
3664 case ISD::SETULE: return "setule";
3665 case ISD::SETUNE: return "setune";
3666
3667 case ISD::SETEQ: return "seteq";
3668 case ISD::SETGT: return "setgt";
3669 case ISD::SETGE: return "setge";
3670 case ISD::SETLT: return "setlt";
3671 case ISD::SETLE: return "setle";
3672 case ISD::SETNE: return "setne";
3673 }
3674 }
3675}
3676
3677const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3678 switch (AM) {
3679 default:
3680 return "";
3681 case ISD::PRE_INC:
3682 return "<pre-inc>";
3683 case ISD::PRE_DEC:
3684 return "<pre-dec>";
3685 case ISD::POST_INC:
3686 return "<post-inc>";
3687 case ISD::POST_DEC:
3688 return "<post-dec>";
3689 }
3690}
3691
3692void SDNode::dump() const { dump(0); }
3693void SDNode::dump(const SelectionDAG *G) const {
3694 cerr << (void*)this << ": ";
3695
3696 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3697 if (i) cerr << ",";
3698 if (getValueType(i) == MVT::Other)
3699 cerr << "ch";
3700 else
3701 cerr << MVT::getValueTypeString(getValueType(i));
3702 }
3703 cerr << " = " << getOperationName(G);
3704
3705 cerr << " ";
3706 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3707 if (i) cerr << ", ";
3708 cerr << (void*)getOperand(i).Val;
3709 if (unsigned RN = getOperand(i).ResNo)
3710 cerr << ":" << RN;
3711 }
3712
3713 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3714 cerr << "<" << CSDN->getValue() << ">";
3715 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00003716 cerr << "<" << (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle ?
3717 CSDN->getValueAPF().convertToFloat() :
3718 CSDN->getValueAPF().convertToDouble()) << ">";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003719 } else if (const GlobalAddressSDNode *GADN =
3720 dyn_cast<GlobalAddressSDNode>(this)) {
3721 int offset = GADN->getOffset();
3722 cerr << "<";
3723 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3724 if (offset > 0)
3725 cerr << " + " << offset;
3726 else
3727 cerr << " " << offset;
3728 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3729 cerr << "<" << FIDN->getIndex() << ">";
3730 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3731 cerr << "<" << JTDN->getIndex() << ">";
3732 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3733 int offset = CP->getOffset();
3734 if (CP->isMachineConstantPoolEntry())
3735 cerr << "<" << *CP->getMachineCPVal() << ">";
3736 else
3737 cerr << "<" << *CP->getConstVal() << ">";
3738 if (offset > 0)
3739 cerr << " + " << offset;
3740 else
3741 cerr << " " << offset;
3742 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3743 cerr << "<";
3744 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3745 if (LBB)
3746 cerr << LBB->getName() << " ";
3747 cerr << (const void*)BBDN->getBasicBlock() << ">";
3748 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3749 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3750 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3751 } else {
3752 cerr << " #" << R->getReg();
3753 }
3754 } else if (const ExternalSymbolSDNode *ES =
3755 dyn_cast<ExternalSymbolSDNode>(this)) {
3756 cerr << "'" << ES->getSymbol() << "'";
3757 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3758 if (M->getValue())
3759 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3760 else
3761 cerr << "<null:" << M->getOffset() << ">";
3762 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3763 cerr << ":" << MVT::getValueTypeString(N->getVT());
3764 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3765 bool doExt = true;
3766 switch (LD->getExtensionType()) {
3767 default: doExt = false; break;
3768 case ISD::EXTLOAD:
3769 cerr << " <anyext ";
3770 break;
3771 case ISD::SEXTLOAD:
3772 cerr << " <sext ";
3773 break;
3774 case ISD::ZEXTLOAD:
3775 cerr << " <zext ";
3776 break;
3777 }
3778 if (doExt)
3779 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3780
3781 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003782 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003783 cerr << " " << AM;
3784 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3785 if (ST->isTruncatingStore())
3786 cerr << " <trunc "
3787 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3788
3789 const char *AM = getIndexedModeName(ST->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003790 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791 cerr << " " << AM;
3792 }
3793}
3794
3795static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3796 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3797 if (N->getOperand(i).Val->hasOneUse())
3798 DumpNodes(N->getOperand(i).Val, indent+2, G);
3799 else
3800 cerr << "\n" << std::string(indent+2, ' ')
3801 << (void*)N->getOperand(i).Val << ": <multiple use>";
3802
3803
3804 cerr << "\n" << std::string(indent, ' ');
3805 N->dump(G);
3806}
3807
3808void SelectionDAG::dump() const {
3809 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3810 std::vector<const SDNode*> Nodes;
3811 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3812 I != E; ++I)
3813 Nodes.push_back(I);
3814
3815 std::sort(Nodes.begin(), Nodes.end());
3816
3817 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3818 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3819 DumpNodes(Nodes[i], 2, this);
3820 }
3821
3822 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3823
3824 cerr << "\n\n";
3825}
3826
3827const Type *ConstantPoolSDNode::getType() const {
3828 if (isMachineConstantPoolEntry())
3829 return Val.MachineCPVal->getType();
3830 return Val.ConstVal->getType();
3831}