blob: 7954d97a3787c49dcd4a55710f4ca8a492c83018 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner3b27d682006-12-19 22:30:33 +000062#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000063#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000064#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000066#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000068#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000070#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000073#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000074#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000075#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000076#include "llvm/Support/ConstantRange.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000077#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000079#include "llvm/Support/ManagedStatic.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000080#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000081#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000082#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000083#include "llvm/ADT/STLExtras.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000084#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000085using namespace llvm;
86
Chris Lattner3b27d682006-12-19 22:30:33 +000087STATISTIC(NumArrayLenItCounts,
88 "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90 "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92 "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94 "Number of loops with trip counts computed by force");
95
Dan Gohman844731a2008-05-13 00:00:25 +000096static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +000097MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98 cl::desc("Maximum number of iterations SCEV will "
99 "symbolically execute a constant derived loop"),
100 cl::init(100));
101
Dan Gohman844731a2008-05-13 00:00:25 +0000102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000104char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000105
106//===----------------------------------------------------------------------===//
107// SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
Chris Lattner53e677a2004-04-02 20:23:17 +0000113SCEV::~SCEV() {}
114void SCEV::dump() const {
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000115 print(errs());
116 errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120 raw_os_ostream OS(o);
121 print(OS);
Chris Lattner53e677a2004-04-02 20:23:17 +0000122}
123
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000124bool SCEV::isZero() const {
125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126 return SC->getValue()->isZero();
127 return false;
128}
129
Dan Gohman70a1fe72009-05-18 15:22:39 +0000130bool SCEV::isOne() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isOne();
133 return false;
134}
Chris Lattner53e677a2004-04-02 20:23:17 +0000135
Owen Anderson4a7893b2009-06-18 22:25:12 +0000136SCEVCouldNotCompute::SCEVCouldNotCompute(const ScalarEvolution* p) :
137 SCEV(scCouldNotCompute, p) {}
Dan Gohmanf8a8be82009-04-21 23:15:49 +0000138SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Chris Lattner53e677a2004-04-02 20:23:17 +0000139
140bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000142 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000143}
144
145const Type *SCEVCouldNotCompute::getType() const {
146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000147 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000148}
149
150bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152 return false;
153}
154
Chris Lattner4dc534c2005-02-13 04:37:18 +0000155SCEVHandle SCEVCouldNotCompute::
156replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000157 const SCEVHandle &Conc,
158 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000159 return this;
160}
161
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000162void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000163 OS << "***COULDNOTCOMPUTE***";
164}
165
166bool SCEVCouldNotCompute::classof(const SCEV *S) {
167 return S->getSCEVType() == scCouldNotCompute;
168}
169
170
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000171// SCEVConstants - Only allow the creation of one SCEVConstant for any
172// particular value. Don't use a SCEVHandle here, or else the object will
173// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000174static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000175
Chris Lattner53e677a2004-04-02 20:23:17 +0000176
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000177SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000178 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000179}
Chris Lattner53e677a2004-04-02 20:23:17 +0000180
Dan Gohman246b2562007-10-22 18:31:58 +0000181SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Chris Lattnerb3364092006-10-04 21:49:37 +0000182 SCEVConstant *&R = (*SCEVConstants)[V];
Owen Anderson4a7893b2009-06-18 22:25:12 +0000183 if (R == 0) R = new SCEVConstant(V, this);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000184 return R;
185}
Chris Lattner53e677a2004-04-02 20:23:17 +0000186
Dan Gohman246b2562007-10-22 18:31:58 +0000187SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
188 return getConstant(ConstantInt::get(Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000189}
190
Dan Gohman6de29f82009-06-15 22:12:54 +0000191SCEVHandle
192ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
193 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
194}
195
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000196const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000197
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000198void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199 WriteAsOperand(OS, V, false);
200}
Chris Lattner53e677a2004-04-02 20:23:17 +0000201
Dan Gohman84923602009-04-21 01:25:57 +0000202SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
Owen Anderson4a7893b2009-06-18 22:25:12 +0000203 const SCEVHandle &op, const Type *ty,
204 const ScalarEvolution* p)
205 : SCEV(SCEVTy, p), Op(op), Ty(ty) {}
Dan Gohman84923602009-04-21 01:25:57 +0000206
207SCEVCastExpr::~SCEVCastExpr() {}
208
209bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->dominates(BB, DT);
211}
212
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000213// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
214// particular input. Don't use a SCEVHandle here, or else the object will
215// never be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000216static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Chris Lattnerb3364092006-10-04 21:49:37 +0000217 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000218
Owen Anderson4a7893b2009-06-18 22:25:12 +0000219SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty,
220 const ScalarEvolution* p)
221 : SCEVCastExpr(scTruncate, op, ty, p) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000222 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
223 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000224 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000225}
Chris Lattner53e677a2004-04-02 20:23:17 +0000226
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000227SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000228 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000229}
Chris Lattner53e677a2004-04-02 20:23:17 +0000230
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000231void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000232 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000233}
234
235// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
236// particular input. Don't use a SCEVHandle here, or else the object will never
237// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000238static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Chris Lattnerb3364092006-10-04 21:49:37 +0000239 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000240
Owen Anderson4a7893b2009-06-18 22:25:12 +0000241SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty,
242 const ScalarEvolution* p)
243 : SCEVCastExpr(scZeroExtend, op, ty, p) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000244 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
245 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000246 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000247}
248
249SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000250 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000251}
252
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000253void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000254 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000255}
256
Dan Gohmand19534a2007-06-15 14:38:12 +0000257// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
258// particular input. Don't use a SCEVHandle here, or else the object will never
259// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000260static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmand19534a2007-06-15 14:38:12 +0000261 SCEVSignExtendExpr*> > SCEVSignExtends;
262
Owen Anderson4a7893b2009-06-18 22:25:12 +0000263SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty,
264 const ScalarEvolution* p)
265 : SCEVCastExpr(scSignExtend, op, ty, p) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000266 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
267 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000268 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000269}
270
271SCEVSignExtendExpr::~SCEVSignExtendExpr() {
272 SCEVSignExtends->erase(std::make_pair(Op, Ty));
273}
274
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000275void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000276 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000277}
278
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000279// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
280// particular input. Don't use a SCEVHandle here, or else the object will never
281// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000282static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
Chris Lattnerb3364092006-10-04 21:49:37 +0000283 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000284
285SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Dan Gohman35738ac2009-05-04 22:30:44 +0000286 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
287 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000288}
289
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000290void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000291 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
292 const char *OpStr = getOperationStr();
293 OS << "(" << *Operands[0];
294 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
295 OS << OpStr << *Operands[i];
296 OS << ")";
297}
298
Chris Lattner4dc534c2005-02-13 04:37:18 +0000299SCEVHandle SCEVCommutativeExpr::
300replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000301 const SCEVHandle &Conc,
302 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000303 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000304 SCEVHandle H =
305 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000306 if (H != getOperand(i)) {
Dan Gohmana82752c2009-06-14 22:47:23 +0000307 SmallVector<SCEVHandle, 8> NewOps;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000308 NewOps.reserve(getNumOperands());
309 for (unsigned j = 0; j != i; ++j)
310 NewOps.push_back(getOperand(j));
311 NewOps.push_back(H);
312 for (++i; i != e; ++i)
313 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000314 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Chris Lattner4dc534c2005-02-13 04:37:18 +0000315
316 if (isa<SCEVAddExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000317 return SE.getAddExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000318 else if (isa<SCEVMulExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000319 return SE.getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +0000320 else if (isa<SCEVSMaxExpr>(this))
321 return SE.getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +0000322 else if (isa<SCEVUMaxExpr>(this))
323 return SE.getUMaxExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000324 else
325 assert(0 && "Unknown commutative expr!");
326 }
327 }
328 return this;
329}
330
Dan Gohmanecb403a2009-05-07 14:00:19 +0000331bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000332 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
333 if (!getOperand(i)->dominates(BB, DT))
334 return false;
335 }
336 return true;
337}
338
Chris Lattner4dc534c2005-02-13 04:37:18 +0000339
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000340// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000341// input. Don't use a SCEVHandle here, or else the object will never be
342// deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000343static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000344 SCEVUDivExpr*> > SCEVUDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000346SCEVUDivExpr::~SCEVUDivExpr() {
347 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000348}
349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
352}
353
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000354void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000355 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000356}
357
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000358const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000359 // In most cases the types of LHS and RHS will be the same, but in some
360 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
361 // depend on the type for correctness, but handling types carefully can
362 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
363 // a pointer type than the RHS, so use the RHS' type here.
364 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000365}
366
367// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
368// particular input. Don't use a SCEVHandle here, or else the object will never
369// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000370static ManagedStatic<std::map<std::pair<const Loop *,
371 std::vector<const SCEV*> >,
Chris Lattnerb3364092006-10-04 21:49:37 +0000372 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000373
374SCEVAddRecExpr::~SCEVAddRecExpr() {
Dan Gohman35738ac2009-05-04 22:30:44 +0000375 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
376 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000377}
378
Chris Lattner4dc534c2005-02-13 04:37:18 +0000379SCEVHandle SCEVAddRecExpr::
380replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000381 const SCEVHandle &Conc,
382 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000383 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000384 SCEVHandle H =
385 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000386 if (H != getOperand(i)) {
Dan Gohmana82752c2009-06-14 22:47:23 +0000387 SmallVector<SCEVHandle, 8> NewOps;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000388 NewOps.reserve(getNumOperands());
389 for (unsigned j = 0; j != i; ++j)
390 NewOps.push_back(getOperand(j));
391 NewOps.push_back(H);
392 for (++i; i != e; ++i)
393 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000394 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000395
Dan Gohman246b2562007-10-22 18:31:58 +0000396 return SE.getAddRecExpr(NewOps, L);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000397 }
398 }
399 return this;
400}
401
402
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000403bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
404 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000405 // contain L and if the start is invariant.
Dan Gohmana3035a62009-05-20 01:01:24 +0000406 // Add recurrences are never invariant in the function-body (null loop).
407 return QueryLoop &&
408 !QueryLoop->contains(L->getHeader()) &&
Chris Lattnerff2006a2005-08-16 00:37:01 +0000409 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000410}
411
412
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000413void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000414 OS << "{" << *Operands[0];
415 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
416 OS << ",+," << *Operands[i];
417 OS << "}<" << L->getHeader()->getName() + ">";
418}
Chris Lattner53e677a2004-04-02 20:23:17 +0000419
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000420// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
421// value. Don't use a SCEVHandle here, or else the object will never be
422// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000423static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000424
Chris Lattnerb3364092006-10-04 21:49:37 +0000425SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000426
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000427bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
428 // All non-instruction values are loop invariant. All instructions are loop
429 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000430 // Instructions are never considered invariant in the function body
431 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000432 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmana3035a62009-05-20 01:01:24 +0000433 return L && !L->contains(I->getParent());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000434 return true;
435}
Chris Lattner53e677a2004-04-02 20:23:17 +0000436
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000437bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
438 if (Instruction *I = dyn_cast<Instruction>(getValue()))
439 return DT->dominates(I->getParent(), BB);
440 return true;
441}
442
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000443const Type *SCEVUnknown::getType() const {
444 return V->getType();
445}
Chris Lattner53e677a2004-04-02 20:23:17 +0000446
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000447void SCEVUnknown::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000448 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000449}
450
Chris Lattner8d741b82004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Dan Gohman72861302009-05-07 14:39:04 +0000459 class VISIBILITY_HIDDEN SCEVComplexityCompare {
460 LoopInfo *LI;
461 public:
462 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
463
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000464 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman72861302009-05-07 14:39:04 +0000465 // Primarily, sort the SCEVs by their getSCEVType().
466 if (LHS->getSCEVType() != RHS->getSCEVType())
467 return LHS->getSCEVType() < RHS->getSCEVType();
468
469 // Aside from the getSCEVType() ordering, the particular ordering
470 // isn't very important except that it's beneficial to be consistent,
471 // so that (a + b) and (b + a) don't end up as different expressions.
472
473 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
474 // not as complete as it could be.
475 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
476 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
477
Dan Gohman5be18e82009-05-19 02:15:55 +0000478 // Order pointer values after integer values. This helps SCEVExpander
479 // form GEPs.
480 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
481 return false;
482 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
483 return true;
484
Dan Gohman72861302009-05-07 14:39:04 +0000485 // Compare getValueID values.
486 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
487 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
488
489 // Sort arguments by their position.
490 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
491 const Argument *RA = cast<Argument>(RU->getValue());
492 return LA->getArgNo() < RA->getArgNo();
493 }
494
495 // For instructions, compare their loop depth, and their opcode.
496 // This is pretty loose.
497 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
498 Instruction *RV = cast<Instruction>(RU->getValue());
499
500 // Compare loop depths.
501 if (LI->getLoopDepth(LV->getParent()) !=
502 LI->getLoopDepth(RV->getParent()))
503 return LI->getLoopDepth(LV->getParent()) <
504 LI->getLoopDepth(RV->getParent());
505
506 // Compare opcodes.
507 if (LV->getOpcode() != RV->getOpcode())
508 return LV->getOpcode() < RV->getOpcode();
509
510 // Compare the number of operands.
511 if (LV->getNumOperands() != RV->getNumOperands())
512 return LV->getNumOperands() < RV->getNumOperands();
513 }
514
515 return false;
516 }
517
Dan Gohman4dfad292009-06-14 22:51:25 +0000518 // Compare constant values.
519 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
520 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
521 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
522 }
523
524 // Compare addrec loop depths.
525 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
526 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
527 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
528 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
529 }
Dan Gohman72861302009-05-07 14:39:04 +0000530
531 // Lexicographically compare n-ary expressions.
532 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
533 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
534 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
535 if (i >= RC->getNumOperands())
536 return false;
537 if (operator()(LC->getOperand(i), RC->getOperand(i)))
538 return true;
539 if (operator()(RC->getOperand(i), LC->getOperand(i)))
540 return false;
541 }
542 return LC->getNumOperands() < RC->getNumOperands();
543 }
544
Dan Gohmana6b35e22009-05-07 19:23:21 +0000545 // Lexicographically compare udiv expressions.
546 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
547 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
548 if (operator()(LC->getLHS(), RC->getLHS()))
549 return true;
550 if (operator()(RC->getLHS(), LC->getLHS()))
551 return false;
552 if (operator()(LC->getRHS(), RC->getRHS()))
553 return true;
554 if (operator()(RC->getRHS(), LC->getRHS()))
555 return false;
556 return false;
557 }
558
Dan Gohman72861302009-05-07 14:39:04 +0000559 // Compare cast expressions by operand.
560 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
561 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
562 return operator()(LC->getOperand(), RC->getOperand());
563 }
564
565 assert(0 && "Unknown SCEV kind!");
566 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000567 }
568 };
569}
570
571/// GroupByComplexity - Given a list of SCEV objects, order them by their
572/// complexity, and group objects of the same complexity together by value.
573/// When this routine is finished, we know that any duplicates in the vector are
574/// consecutive and that complexity is monotonically increasing.
575///
576/// Note that we go take special precautions to ensure that we get determinstic
577/// results from this routine. In other words, we don't want the results of
578/// this to depend on where the addresses of various SCEV objects happened to
579/// land in memory.
580///
Dan Gohmana82752c2009-06-14 22:47:23 +0000581static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000582 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000583 if (Ops.size() < 2) return; // Noop
584 if (Ops.size() == 2) {
585 // This is the common case, which also happens to be trivially simple.
586 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000587 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000588 std::swap(Ops[0], Ops[1]);
589 return;
590 }
591
592 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000593 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000594
595 // Now that we are sorted by complexity, group elements of the same
596 // complexity. Note that this is, at worst, N^2, but the vector is likely to
597 // be extremely short in practice. Note that we take this approach because we
598 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000599 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000600 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000601 unsigned Complexity = S->getSCEVType();
602
603 // If there are any objects of the same complexity and same value as this
604 // one, group them.
605 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
606 if (Ops[j] == S) { // Found a duplicate.
607 // Move it to immediately after i'th element.
608 std::swap(Ops[i+1], Ops[j]);
609 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000610 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 }
613 }
614}
615
Chris Lattner53e677a2004-04-02 20:23:17 +0000616
Chris Lattner53e677a2004-04-02 20:23:17 +0000617
618//===----------------------------------------------------------------------===//
619// Simple SCEV method implementations
620//===----------------------------------------------------------------------===//
621
Eli Friedmanb42a6262008-08-04 23:49:06 +0000622/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000623/// Assume, K > 0.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000624static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedmanb42a6262008-08-04 23:49:06 +0000625 ScalarEvolution &SE,
Dan Gohman2d1be872009-04-16 03:18:22 +0000626 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000627 // Handle the simplest case efficiently.
628 if (K == 1)
629 return SE.getTruncateOrZeroExtend(It, ResultTy);
630
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000631 // We are using the following formula for BC(It, K):
632 //
633 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
634 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000635 // Suppose, W is the bitwidth of the return value. We must be prepared for
636 // overflow. Hence, we must assure that the result of our computation is
637 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
638 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000639 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000640 // However, this code doesn't use exactly that formula; the formula it uses
641 // is something like the following, where T is the number of factors of 2 in
642 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
643 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000644 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000645 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000646 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000647 // This formula is trivially equivalent to the previous formula. However,
648 // this formula can be implemented much more efficiently. The trick is that
649 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
650 // arithmetic. To do exact division in modular arithmetic, all we have
651 // to do is multiply by the inverse. Therefore, this step can be done at
652 // width W.
653 //
654 // The next issue is how to safely do the division by 2^T. The way this
655 // is done is by doing the multiplication step at a width of at least W + T
656 // bits. This way, the bottom W+T bits of the product are accurate. Then,
657 // when we perform the division by 2^T (which is equivalent to a right shift
658 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
659 // truncated out after the division by 2^T.
660 //
661 // In comparison to just directly using the first formula, this technique
662 // is much more efficient; using the first formula requires W * K bits,
663 // but this formula less than W + K bits. Also, the first formula requires
664 // a division step, whereas this formula only requires multiplies and shifts.
665 //
666 // It doesn't matter whether the subtraction step is done in the calculation
667 // width or the input iteration count's width; if the subtraction overflows,
668 // the result must be zero anyway. We prefer here to do it in the width of
669 // the induction variable because it helps a lot for certain cases; CodeGen
670 // isn't smart enough to ignore the overflow, which leads to much less
671 // efficient code if the width of the subtraction is wider than the native
672 // register width.
673 //
674 // (It's possible to not widen at all by pulling out factors of 2 before
675 // the multiplication; for example, K=2 can be calculated as
676 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
677 // extra arithmetic, so it's not an obvious win, and it gets
678 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000679
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // Protection from insane SCEVs; this bound is conservative,
681 // but it probably doesn't matter.
682 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000683 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000684
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000685 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000686
Eli Friedmanb42a6262008-08-04 23:49:06 +0000687 // Calculate K! / 2^T and T; we divide out the factors of two before
688 // multiplying for calculating K! / 2^T to avoid overflow.
689 // Other overflow doesn't matter because we only care about the bottom
690 // W bits of the result.
691 APInt OddFactorial(W, 1);
692 unsigned T = 1;
693 for (unsigned i = 3; i <= K; ++i) {
694 APInt Mult(W, i);
695 unsigned TwoFactors = Mult.countTrailingZeros();
696 T += TwoFactors;
697 Mult = Mult.lshr(TwoFactors);
698 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000699 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000700
Eli Friedmanb42a6262008-08-04 23:49:06 +0000701 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000702 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000703
704 // Calcuate 2^T, at width T+W.
705 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
706
707 // Calculate the multiplicative inverse of K! / 2^T;
708 // this multiplication factor will perform the exact division by
709 // K! / 2^T.
710 APInt Mod = APInt::getSignedMinValue(W+1);
711 APInt MultiplyFactor = OddFactorial.zext(W+1);
712 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
713 MultiplyFactor = MultiplyFactor.trunc(W);
714
715 // Calculate the product, at width T+W
716 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
717 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
718 for (unsigned i = 1; i != K; ++i) {
719 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
720 Dividend = SE.getMulExpr(Dividend,
721 SE.getTruncateOrZeroExtend(S, CalculationTy));
722 }
723
724 // Divide by 2^T
725 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
726
727 // Truncate the result, and divide by K! / 2^T.
728
729 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
730 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000731}
732
Chris Lattner53e677a2004-04-02 20:23:17 +0000733/// evaluateAtIteration - Return the value of this chain of recurrences at
734/// the specified iteration number. We can evaluate this recurrence by
735/// multiplying each element in the chain by the binomial coefficient
736/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
737///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000738/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000739///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000740/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000741///
Dan Gohman246b2562007-10-22 18:31:58 +0000742SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
743 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000744 SCEVHandle Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000745 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000746 // The computation is correct in the face of overflow provided that the
747 // multiplication is performed _after_ the evaluation of the binomial
748 // coefficient.
Dan Gohman2d1be872009-04-16 03:18:22 +0000749 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000750 if (isa<SCEVCouldNotCompute>(Coeff))
751 return Coeff;
752
753 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000754 }
755 return Result;
756}
757
Chris Lattner53e677a2004-04-02 20:23:17 +0000758//===----------------------------------------------------------------------===//
759// SCEV Expression folder implementations
760//===----------------------------------------------------------------------===//
761
Dan Gohman99243b32009-05-01 16:44:56 +0000762SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
763 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000764 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000765 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000766 assert(isSCEVable(Ty) &&
767 "This is not a conversion to a SCEVable type!");
768 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000769
Dan Gohman622ed672009-05-04 22:02:23 +0000770 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman246b2562007-10-22 18:31:58 +0000771 return getUnknown(
Reid Spencer315d0552006-12-05 22:39:58 +0000772 ConstantExpr::getTrunc(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000773
Dan Gohman20900ca2009-04-22 16:20:48 +0000774 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000775 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000776 return getTruncateExpr(ST->getOperand(), Ty);
777
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000778 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000779 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000780 return getTruncateOrSignExtend(SS->getOperand(), Ty);
781
782 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000783 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000784 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
785
Dan Gohman6864db62009-06-18 16:24:47 +0000786 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000787 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmana82752c2009-06-14 22:47:23 +0000788 SmallVector<SCEVHandle, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000789 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000790 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
791 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000792 }
793
Chris Lattnerb3364092006-10-04 21:49:37 +0000794 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Owen Anderson4a7893b2009-06-18 22:25:12 +0000795 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty, this);
Chris Lattner53e677a2004-04-02 20:23:17 +0000796 return Result;
797}
798
Dan Gohman8170a682009-04-16 19:25:55 +0000799SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
800 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000801 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000802 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000803 assert(isSCEVable(Ty) &&
804 "This is not a conversion to a SCEVable type!");
805 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000806
Dan Gohman622ed672009-05-04 22:02:23 +0000807 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000808 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000809 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
810 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
811 return getUnknown(C);
812 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000813
Dan Gohman20900ca2009-04-22 16:20:48 +0000814 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000816 return getZeroExtendExpr(SZ->getOperand(), Ty);
817
Dan Gohman01ecca22009-04-27 20:16:15 +0000818 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000819 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000820 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000821 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000822 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000823 if (AR->isAffine()) {
824 // Check whether the backedge-taken count is SCEVCouldNotCompute.
825 // Note that this serves two purposes: It filters out loops that are
826 // simply not analyzable, and it covers the case where this code is
827 // being called from within backedge-taken count analysis, such that
828 // attempting to ask for the backedge-taken count would likely result
829 // in infinite recursion. In the later case, the analysis code will
830 // cope with a conservative value, and it will take care to purge
831 // that value once it has finished.
Dan Gohmana1af7572009-04-30 20:47:05 +0000832 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
833 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000834 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000835 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000836 SCEVHandle Start = AR->getStart();
837 SCEVHandle Step = AR->getStepRecurrence(*this);
838
839 // Check whether the backedge-taken count can be losslessly casted to
840 // the addrec's type. The count is always unsigned.
Dan Gohmana1af7572009-04-30 20:47:05 +0000841 SCEVHandle CastedMaxBECount =
842 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman5183cae2009-05-18 15:58:39 +0000843 SCEVHandle RecastedMaxBECount =
844 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
845 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman01ecca22009-04-27 20:16:15 +0000846 const Type *WideTy =
847 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000848 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000849 SCEVHandle ZMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000850 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000851 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000852 SCEVHandle Add = getAddExpr(Start, ZMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000853 SCEVHandle OperandExtendedAdd =
854 getAddExpr(getZeroExtendExpr(Start, WideTy),
855 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
856 getZeroExtendExpr(Step, WideTy)));
857 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000858 // Return the expression with the addrec on the outside.
859 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
860 getZeroExtendExpr(Step, Ty),
861 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000862
863 // Similar to above, only this time treat the step value as signed.
864 // This covers loops that count down.
865 SCEVHandle SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000866 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000867 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000868 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000869 OperandExtendedAdd =
870 getAddExpr(getZeroExtendExpr(Start, WideTy),
871 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
872 getSignExtendExpr(Step, WideTy)));
873 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000874 // Return the expression with the addrec on the outside.
875 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
876 getSignExtendExpr(Step, Ty),
877 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000878 }
879 }
880 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000881
Chris Lattnerb3364092006-10-04 21:49:37 +0000882 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Owen Anderson4a7893b2009-06-18 22:25:12 +0000883 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty, this);
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 return Result;
885}
886
Dan Gohman01ecca22009-04-27 20:16:15 +0000887SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
888 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000889 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000890 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000891 assert(isSCEVable(Ty) &&
892 "This is not a conversion to a SCEVable type!");
893 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000894
Dan Gohman622ed672009-05-04 22:02:23 +0000895 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000896 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000897 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
898 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
899 return getUnknown(C);
900 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000901
Dan Gohman20900ca2009-04-22 16:20:48 +0000902 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000903 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000904 return getSignExtendExpr(SS->getOperand(), Ty);
905
Dan Gohman01ecca22009-04-27 20:16:15 +0000906 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000907 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000908 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000909 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000910 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000911 if (AR->isAffine()) {
912 // Check whether the backedge-taken count is SCEVCouldNotCompute.
913 // Note that this serves two purposes: It filters out loops that are
914 // simply not analyzable, and it covers the case where this code is
915 // being called from within backedge-taken count analysis, such that
916 // attempting to ask for the backedge-taken count would likely result
917 // in infinite recursion. In the later case, the analysis code will
918 // cope with a conservative value, and it will take care to purge
919 // that value once it has finished.
Dan Gohmana1af7572009-04-30 20:47:05 +0000920 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
921 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000922 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000923 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000924 SCEVHandle Start = AR->getStart();
925 SCEVHandle Step = AR->getStepRecurrence(*this);
926
927 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000928 // the addrec's type. The count is always unsigned.
Dan Gohmana1af7572009-04-30 20:47:05 +0000929 SCEVHandle CastedMaxBECount =
930 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman5183cae2009-05-18 15:58:39 +0000931 SCEVHandle RecastedMaxBECount =
932 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
933 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman01ecca22009-04-27 20:16:15 +0000934 const Type *WideTy =
935 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000936 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 SCEVHandle SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000938 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000939 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000940 SCEVHandle Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000941 SCEVHandle OperandExtendedAdd =
942 getAddExpr(getSignExtendExpr(Start, WideTy),
943 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944 getSignExtendExpr(Step, WideTy)));
945 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000946 // Return the expression with the addrec on the outside.
947 return getAddRecExpr(getSignExtendExpr(Start, Ty),
948 getSignExtendExpr(Step, Ty),
949 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000950 }
951 }
952 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000953
954 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
Owen Anderson4a7893b2009-06-18 22:25:12 +0000955 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty, this);
Dan Gohmand19534a2007-06-15 14:38:12 +0000956 return Result;
957}
958
Dan Gohman2ce84c8d2009-06-13 15:56:47 +0000959/// getAnyExtendExpr - Return a SCEV for the given operand extended with
960/// unspecified bits out to the given type.
961///
962SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op,
963 const Type *Ty) {
964 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
965 "This is not an extending conversion!");
966 assert(isSCEVable(Ty) &&
967 "This is not a conversion to a SCEVable type!");
968 Ty = getEffectiveSCEVType(Ty);
969
970 // Sign-extend negative constants.
971 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
972 if (SC->getValue()->getValue().isNegative())
973 return getSignExtendExpr(Op, Ty);
974
975 // Peel off a truncate cast.
976 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
977 SCEVHandle NewOp = T->getOperand();
978 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
979 return getAnyExtendExpr(NewOp, Ty);
980 return getTruncateOrNoop(NewOp, Ty);
981 }
982
983 // Next try a zext cast. If the cast is folded, use it.
984 SCEVHandle ZExt = getZeroExtendExpr(Op, Ty);
985 if (!isa<SCEVZeroExtendExpr>(ZExt))
986 return ZExt;
987
988 // Next try a sext cast. If the cast is folded, use it.
989 SCEVHandle SExt = getSignExtendExpr(Op, Ty);
990 if (!isa<SCEVSignExtendExpr>(SExt))
991 return SExt;
992
993 // If the expression is obviously signed, use the sext cast value.
994 if (isa<SCEVSMaxExpr>(Op))
995 return SExt;
996
997 // Absent any other information, use the zext cast value.
998 return ZExt;
999}
1000
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001001/// CollectAddOperandsWithScales - Process the given Ops list, which is
1002/// a list of operands to be added under the given scale, update the given
1003/// map. This is a helper function for getAddRecExpr. As an example of
1004/// what it does, given a sequence of operands that would form an add
1005/// expression like this:
1006///
1007/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1008///
1009/// where A and B are constants, update the map with these values:
1010///
1011/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1012///
1013/// and add 13 + A*B*29 to AccumulatedConstant.
1014/// This will allow getAddRecExpr to produce this:
1015///
1016/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1017///
1018/// This form often exposes folding opportunities that are hidden in
1019/// the original operand list.
1020///
1021/// Return true iff it appears that any interesting folding opportunities
1022/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1023/// the common case where no interesting opportunities are present, and
1024/// is also used as a check to avoid infinite recursion.
1025///
1026static bool
1027CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M,
1028 SmallVector<SCEVHandle, 8> &NewOps,
1029 APInt &AccumulatedConstant,
1030 const SmallVectorImpl<SCEVHandle> &Ops,
1031 const APInt &Scale,
1032 ScalarEvolution &SE) {
1033 bool Interesting = false;
1034
1035 // Iterate over the add operands.
1036 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1037 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1038 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1039 APInt NewScale =
1040 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1041 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1042 // A multiplication of a constant with another add; recurse.
1043 Interesting |=
1044 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1045 cast<SCEVAddExpr>(Mul->getOperand(1))
1046 ->getOperands(),
1047 NewScale, SE);
1048 } else {
1049 // A multiplication of a constant with some other value. Update
1050 // the map.
1051 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1052 SCEVHandle Key = SE.getMulExpr(MulOps);
1053 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair =
1054 M.insert(std::make_pair(Key, APInt()));
1055 if (Pair.second) {
1056 Pair.first->second = NewScale;
1057 NewOps.push_back(Pair.first->first);
1058 } else {
1059 Pair.first->second += NewScale;
1060 // The map already had an entry for this value, which may indicate
1061 // a folding opportunity.
1062 Interesting = true;
1063 }
1064 }
1065 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1066 // Pull a buried constant out to the outside.
1067 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1068 Interesting = true;
1069 AccumulatedConstant += Scale * C->getValue()->getValue();
1070 } else {
1071 // An ordinary operand. Update the map.
1072 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair =
1073 M.insert(std::make_pair(Ops[i], APInt()));
1074 if (Pair.second) {
1075 Pair.first->second = Scale;
1076 NewOps.push_back(Pair.first->first);
1077 } else {
1078 Pair.first->second += Scale;
1079 // The map already had an entry for this value, which may indicate
1080 // a folding opportunity.
1081 Interesting = true;
1082 }
1083 }
1084 }
1085
1086 return Interesting;
1087}
1088
1089namespace {
1090 struct APIntCompare {
1091 bool operator()(const APInt &LHS, const APInt &RHS) const {
1092 return LHS.ult(RHS);
1093 }
1094 };
1095}
1096
Dan Gohman6c0866c2009-05-24 23:45:28 +00001097/// getAddExpr - Get a canonical add expression, or something simpler if
1098/// possible.
Dan Gohmana82752c2009-06-14 22:47:23 +00001099SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001100 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001101 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001102#ifndef NDEBUG
1103 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1104 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1105 getEffectiveSCEVType(Ops[0]->getType()) &&
1106 "SCEVAddExpr operand types don't match!");
1107#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001108
1109 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001110 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001111
1112 // If there are any constants, fold them together.
1113 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001114 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001115 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001116 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001117 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001118 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001119 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1120 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001121 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001122 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001123 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001124 }
1125
1126 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +00001127 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001128 Ops.erase(Ops.begin());
1129 --Idx;
1130 }
1131 }
1132
Chris Lattner627018b2004-04-07 16:16:11 +00001133 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001134
Chris Lattner53e677a2004-04-02 20:23:17 +00001135 // Okay, check to see if the same value occurs in the operand list twice. If
1136 // so, merge them together into an multiply expression. Since we sorted the
1137 // list, these values are required to be adjacent.
1138 const Type *Ty = Ops[0]->getType();
1139 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1140 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1141 // Found a match, merge the two values into a multiply, and add any
1142 // remaining values to the result.
Dan Gohman246b2562007-10-22 18:31:58 +00001143 SCEVHandle Two = getIntegerSCEV(2, Ty);
1144 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001145 if (Ops.size() == 2)
1146 return Mul;
1147 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1148 Ops.push_back(Mul);
Dan Gohman246b2562007-10-22 18:31:58 +00001149 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001150 }
1151
Dan Gohman728c7f32009-05-08 21:03:19 +00001152 // Check for truncates. If all the operands are truncated from the same
1153 // type, see if factoring out the truncate would permit the result to be
1154 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1155 // if the contents of the resulting outer trunc fold to something simple.
1156 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1157 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1158 const Type *DstType = Trunc->getType();
1159 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmana82752c2009-06-14 22:47:23 +00001160 SmallVector<SCEVHandle, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001161 bool Ok = true;
1162 // Check all the operands to see if they can be represented in the
1163 // source type of the truncate.
1164 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1166 if (T->getOperand()->getType() != SrcType) {
1167 Ok = false;
1168 break;
1169 }
1170 LargeOps.push_back(T->getOperand());
1171 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1172 // This could be either sign or zero extension, but sign extension
1173 // is much more likely to be foldable here.
1174 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1175 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001176 SmallVector<SCEVHandle, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001177 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1178 if (const SCEVTruncateExpr *T =
1179 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1180 if (T->getOperand()->getType() != SrcType) {
1181 Ok = false;
1182 break;
1183 }
1184 LargeMulOps.push_back(T->getOperand());
1185 } else if (const SCEVConstant *C =
1186 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1187 // This could be either sign or zero extension, but sign extension
1188 // is much more likely to be foldable here.
1189 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1190 } else {
1191 Ok = false;
1192 break;
1193 }
1194 }
1195 if (Ok)
1196 LargeOps.push_back(getMulExpr(LargeMulOps));
1197 } else {
1198 Ok = false;
1199 break;
1200 }
1201 }
1202 if (Ok) {
1203 // Evaluate the expression in the larger type.
1204 SCEVHandle Fold = getAddExpr(LargeOps);
1205 // If it folds to something simple, use it. Otherwise, don't.
1206 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1207 return getTruncateExpr(Fold, DstType);
1208 }
1209 }
1210
1211 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001212 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1213 ++Idx;
1214
1215 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001216 if (Idx < Ops.size()) {
1217 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001218 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001219 // If we have an add, expand the add operands onto the end of the operands
1220 // list.
1221 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1222 Ops.erase(Ops.begin()+Idx);
1223 DeletedAdd = true;
1224 }
1225
1226 // If we deleted at least one add, we added operands to the end of the list,
1227 // and they are not necessarily sorted. Recurse to resort and resimplify
1228 // any operands we just aquired.
1229 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001230 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001231 }
1232
1233 // Skip over the add expression until we get to a multiply.
1234 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1235 ++Idx;
1236
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001237 // Check to see if there are any folding opportunities present with
1238 // operands multiplied by constant values.
1239 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1240 uint64_t BitWidth = getTypeSizeInBits(Ty);
1241 DenseMap<SCEVHandle, APInt> M;
1242 SmallVector<SCEVHandle, 8> NewOps;
1243 APInt AccumulatedConstant(BitWidth, 0);
1244 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1245 Ops, APInt(BitWidth, 1), *this)) {
1246 // Some interesting folding opportunity is present, so its worthwhile to
1247 // re-generate the operands list. Group the operands by constant scale,
1248 // to avoid multiplying by the same constant scale multiple times.
1249 std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare> MulOpLists;
1250 for (SmallVector<SCEVHandle, 8>::iterator I = NewOps.begin(),
1251 E = NewOps.end(); I != E; ++I)
1252 MulOpLists[M.find(*I)->second].push_back(*I);
1253 // Re-generate the operands list.
1254 Ops.clear();
1255 if (AccumulatedConstant != 0)
1256 Ops.push_back(getConstant(AccumulatedConstant));
1257 for (std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare>::iterator I =
1258 MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1259 if (I->first != 0)
1260 Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second)));
1261 if (Ops.empty())
1262 return getIntegerSCEV(0, Ty);
1263 if (Ops.size() == 1)
1264 return Ops[0];
1265 return getAddExpr(Ops);
1266 }
1267 }
1268
Chris Lattner53e677a2004-04-02 20:23:17 +00001269 // If we are adding something to a multiply expression, make sure the
1270 // something is not already an operand of the multiply. If so, merge it into
1271 // the multiply.
1272 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001273 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001274 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001275 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001276 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001277 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001278 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1279 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1280 if (Mul->getNumOperands() != 2) {
1281 // If the multiply has more than two operands, we must get the
1282 // Y*Z term.
Dan Gohmana82752c2009-06-14 22:47:23 +00001283 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001284 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001285 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001286 }
Dan Gohman246b2562007-10-22 18:31:58 +00001287 SCEVHandle One = getIntegerSCEV(1, Ty);
1288 SCEVHandle AddOne = getAddExpr(InnerMul, One);
1289 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001290 if (Ops.size() == 2) return OuterMul;
1291 if (AddOp < Idx) {
1292 Ops.erase(Ops.begin()+AddOp);
1293 Ops.erase(Ops.begin()+Idx-1);
1294 } else {
1295 Ops.erase(Ops.begin()+Idx);
1296 Ops.erase(Ops.begin()+AddOp-1);
1297 }
1298 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001299 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001300 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001301
Chris Lattner53e677a2004-04-02 20:23:17 +00001302 // Check this multiply against other multiplies being added together.
1303 for (unsigned OtherMulIdx = Idx+1;
1304 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1305 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001306 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001307 // If MulOp occurs in OtherMul, we can fold the two multiplies
1308 // together.
1309 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1310 OMulOp != e; ++OMulOp)
1311 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1312 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1313 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1314 if (Mul->getNumOperands() != 2) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001315 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001316 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001317 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001318 }
1319 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1320 if (OtherMul->getNumOperands() != 2) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001321 SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001322 OtherMul->op_end());
1323 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001324 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001325 }
Dan Gohman246b2562007-10-22 18:31:58 +00001326 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1327 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001328 if (Ops.size() == 2) return OuterMul;
1329 Ops.erase(Ops.begin()+Idx);
1330 Ops.erase(Ops.begin()+OtherMulIdx-1);
1331 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001332 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001333 }
1334 }
1335 }
1336 }
1337
1338 // If there are any add recurrences in the operands list, see if any other
1339 // added values are loop invariant. If so, we can fold them into the
1340 // recurrence.
1341 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1342 ++Idx;
1343
1344 // Scan over all recurrences, trying to fold loop invariants into them.
1345 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1346 // Scan all of the other operands to this add and add them to the vector if
1347 // they are loop invariant w.r.t. the recurrence.
Dan Gohmana82752c2009-06-14 22:47:23 +00001348 SmallVector<SCEVHandle, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001349 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001350 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1351 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1352 LIOps.push_back(Ops[i]);
1353 Ops.erase(Ops.begin()+i);
1354 --i; --e;
1355 }
1356
1357 // If we found some loop invariants, fold them into the recurrence.
1358 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001359 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001360 LIOps.push_back(AddRec->getStart());
1361
Dan Gohmana82752c2009-06-14 22:47:23 +00001362 SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(),
1363 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001364 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001365
Dan Gohman246b2562007-10-22 18:31:58 +00001366 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001367 // If all of the other operands were loop invariant, we are done.
1368 if (Ops.size() == 1) return NewRec;
1369
1370 // Otherwise, add the folded AddRec by the non-liv parts.
1371 for (unsigned i = 0;; ++i)
1372 if (Ops[i] == AddRec) {
1373 Ops[i] = NewRec;
1374 break;
1375 }
Dan Gohman246b2562007-10-22 18:31:58 +00001376 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001377 }
1378
1379 // Okay, if there weren't any loop invariants to be folded, check to see if
1380 // there are multiple AddRec's with the same loop induction variable being
1381 // added together. If so, we can fold them.
1382 for (unsigned OtherIdx = Idx+1;
1383 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1384 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001385 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001386 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1387 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohmana82752c2009-06-14 22:47:23 +00001388 SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001389 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1390 if (i >= NewOps.size()) {
1391 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1392 OtherAddRec->op_end());
1393 break;
1394 }
Dan Gohman246b2562007-10-22 18:31:58 +00001395 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001396 }
Dan Gohman246b2562007-10-22 18:31:58 +00001397 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001398
1399 if (Ops.size() == 2) return NewAddRec;
1400
1401 Ops.erase(Ops.begin()+Idx);
1402 Ops.erase(Ops.begin()+OtherIdx-1);
1403 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001404 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 }
1406 }
1407
1408 // Otherwise couldn't fold anything into this recurrence. Move onto the
1409 // next one.
1410 }
1411
1412 // Okay, it looks like we really DO need an add expr. Check to see if we
1413 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001414 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +00001415 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1416 SCEVOps)];
Owen Anderson4a7893b2009-06-18 22:25:12 +00001417 if (Result == 0) Result = new SCEVAddExpr(Ops, this);
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 return Result;
1419}
1420
1421
Dan Gohman6c0866c2009-05-24 23:45:28 +00001422/// getMulExpr - Get a canonical multiply expression, or something simpler if
1423/// possible.
Dan Gohmana82752c2009-06-14 22:47:23 +00001424SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001425 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001426#ifndef NDEBUG
1427 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1428 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1429 getEffectiveSCEVType(Ops[0]->getType()) &&
1430 "SCEVMulExpr operand types don't match!");
1431#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001432
1433 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001434 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001435
1436 // If there are any constants, fold them together.
1437 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001438 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001439
1440 // C1*(C2+V) -> C1*C2 + C1*V
1441 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001442 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001443 if (Add->getNumOperands() == 2 &&
1444 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001445 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1446 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001447
1448
1449 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001450 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001451 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +00001452 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1453 RHSC->getValue()->getValue());
1454 Ops[0] = getConstant(Fold);
1455 Ops.erase(Ops.begin()+1); // Erase the folded element
1456 if (Ops.size() == 1) return Ops[0];
1457 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001458 }
1459
1460 // If we are left with a constant one being multiplied, strip it off.
1461 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1462 Ops.erase(Ops.begin());
1463 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001464 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 // If we have a multiply of zero, it will always be zero.
1466 return Ops[0];
1467 }
1468 }
1469
1470 // Skip over the add expression until we get to a multiply.
1471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1472 ++Idx;
1473
1474 if (Ops.size() == 1)
1475 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001476
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 // If there are mul operands inline them all into this expression.
1478 if (Idx < Ops.size()) {
1479 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001480 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001481 // If we have an mul, expand the mul operands onto the end of the operands
1482 // list.
1483 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1484 Ops.erase(Ops.begin()+Idx);
1485 DeletedMul = true;
1486 }
1487
1488 // If we deleted at least one mul, we added operands to the end of the list,
1489 // and they are not necessarily sorted. Recurse to resort and resimplify
1490 // any operands we just aquired.
1491 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001492 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 }
1494
1495 // If there are any add recurrences in the operands list, see if any other
1496 // added values are loop invariant. If so, we can fold them into the
1497 // recurrence.
1498 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1499 ++Idx;
1500
1501 // Scan over all recurrences, trying to fold loop invariants into them.
1502 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1503 // Scan all of the other operands to this mul and add them to the vector if
1504 // they are loop invariant w.r.t. the recurrence.
Dan Gohmana82752c2009-06-14 22:47:23 +00001505 SmallVector<SCEVHandle, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001506 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1508 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1509 LIOps.push_back(Ops[i]);
1510 Ops.erase(Ops.begin()+i);
1511 --i; --e;
1512 }
1513
1514 // If we found some loop invariants, fold them into the recurrence.
1515 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001516 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmana82752c2009-06-14 22:47:23 +00001517 SmallVector<SCEVHandle, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 NewOps.reserve(AddRec->getNumOperands());
1519 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001520 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001522 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 } else {
1524 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001525 SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001526 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001527 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 }
1529 }
1530
Dan Gohman246b2562007-10-22 18:31:58 +00001531 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001532
1533 // If all of the other operands were loop invariant, we are done.
1534 if (Ops.size() == 1) return NewRec;
1535
1536 // Otherwise, multiply the folded AddRec by the non-liv parts.
1537 for (unsigned i = 0;; ++i)
1538 if (Ops[i] == AddRec) {
1539 Ops[i] = NewRec;
1540 break;
1541 }
Dan Gohman246b2562007-10-22 18:31:58 +00001542 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001543 }
1544
1545 // Okay, if there weren't any loop invariants to be folded, check to see if
1546 // there are multiple AddRec's with the same loop induction variable being
1547 // multiplied together. If so, we can fold them.
1548 for (unsigned OtherIdx = Idx+1;
1549 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1550 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001551 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001552 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1553 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001554 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman246b2562007-10-22 18:31:58 +00001555 SCEVHandle NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 G->getStart());
Dan Gohman246b2562007-10-22 18:31:58 +00001557 SCEVHandle B = F->getStepRecurrence(*this);
1558 SCEVHandle D = G->getStepRecurrence(*this);
1559 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1560 getMulExpr(G, B),
1561 getMulExpr(B, D));
1562 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1563 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 if (Ops.size() == 2) return NewAddRec;
1565
1566 Ops.erase(Ops.begin()+Idx);
1567 Ops.erase(Ops.begin()+OtherIdx-1);
1568 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001569 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001570 }
1571 }
1572
1573 // Otherwise couldn't fold anything into this recurrence. Move onto the
1574 // next one.
1575 }
1576
1577 // Okay, it looks like we really DO need an mul expr. Check to see if we
1578 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001579 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +00001580 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1581 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +00001582 if (Result == 0)
Owen Anderson4a7893b2009-06-18 22:25:12 +00001583 Result = new SCEVMulExpr(Ops, this);
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 return Result;
1585}
1586
Dan Gohman6c0866c2009-05-24 23:45:28 +00001587/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1588/// possible.
Dan Gohmanbf2176a2009-05-04 22:23:18 +00001589SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1590 const SCEVHandle &RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001591 assert(getEffectiveSCEVType(LHS->getType()) ==
1592 getEffectiveSCEVType(RHS->getType()) &&
1593 "SCEVUDivExpr operand types don't match!");
1594
Dan Gohman622ed672009-05-04 22:02:23 +00001595 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky789558d2009-01-13 09:18:58 +00001597 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001598 if (RHSC->isZero())
1599 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001600
Dan Gohman185cf032009-05-08 20:18:49 +00001601 // Determine if the division can be folded into the operands of
1602 // its operands.
1603 // TODO: Generalize this to non-constants by using known-bits information.
1604 const Type *Ty = LHS->getType();
1605 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1606 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1607 // For non-power-of-two values, effectively round the value up to the
1608 // nearest power of two.
1609 if (!RHSC->getValue()->getValue().isPowerOf2())
1610 ++MaxShiftAmt;
1611 const IntegerType *ExtTy =
1612 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1613 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1615 if (const SCEVConstant *Step =
1616 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1617 if (!Step->getValue()->getValue()
1618 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001619 getZeroExtendExpr(AR, ExtTy) ==
1620 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1621 getZeroExtendExpr(Step, ExtTy),
1622 AR->getLoop())) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001623 SmallVector<SCEVHandle, 4> Operands;
Dan Gohman185cf032009-05-08 20:18:49 +00001624 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1625 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1626 return getAddRecExpr(Operands, AR->getLoop());
1627 }
1628 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001629 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001630 SmallVector<SCEVHandle, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001631 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1632 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1633 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001634 // Find an operand that's safely divisible.
1635 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1636 SCEVHandle Op = M->getOperand(i);
1637 SCEVHandle Div = getUDivExpr(Op, RHSC);
1638 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001639 const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands();
1640 Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(),
1641 MOperands.end());
Dan Gohman185cf032009-05-08 20:18:49 +00001642 Operands[i] = Div;
1643 return getMulExpr(Operands);
1644 }
1645 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001646 }
Dan Gohman185cf032009-05-08 20:18:49 +00001647 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001648 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001649 SmallVector<SCEVHandle, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001650 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1651 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1652 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1653 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001654 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1655 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1656 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1657 break;
1658 Operands.push_back(Op);
1659 }
1660 if (Operands.size() == A->getNumOperands())
1661 return getAddExpr(Operands);
1662 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001663 }
Dan Gohman185cf032009-05-08 20:18:49 +00001664
1665 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001666 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 Constant *LHSCV = LHSC->getValue();
1668 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001669 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +00001670 }
1671 }
1672
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001673 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
Owen Anderson4a7893b2009-06-18 22:25:12 +00001674 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS, this);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 return Result;
1676}
1677
1678
Dan Gohman6c0866c2009-05-24 23:45:28 +00001679/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1680/// Simplify the expression as much as possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001681SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 const SCEVHandle &Step, const Loop *L) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001683 SmallVector<SCEVHandle, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001684 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001685 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 if (StepChrec->getLoop() == L) {
1687 Operands.insert(Operands.end(), StepChrec->op_begin(),
1688 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001689 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 }
1691
1692 Operands.push_back(Step);
Dan Gohman246b2562007-10-22 18:31:58 +00001693 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001694}
1695
Dan Gohman6c0866c2009-05-24 23:45:28 +00001696/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1697/// Simplify the expression as much as possible.
Dan Gohmana82752c2009-06-14 22:47:23 +00001698SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001699 const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001700 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001701#ifndef NDEBUG
1702 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1703 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1704 getEffectiveSCEVType(Operands[0]->getType()) &&
1705 "SCEVAddRecExpr operand types don't match!");
1706#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001707
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001708 if (Operands.back()->isZero()) {
1709 Operands.pop_back();
Dan Gohman8dae1382008-09-14 17:21:12 +00001710 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001711 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001712
Dan Gohmand9cc7492008-08-08 18:33:12 +00001713 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001714 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmand9cc7492008-08-08 18:33:12 +00001715 const Loop* NestedLoop = NestedAR->getLoop();
1716 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001717 SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(),
1718 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001719 SCEVHandle NestedARHandle(NestedAR);
1720 Operands[0] = NestedAR->getStart();
1721 NestedOperands[0] = getAddRecExpr(Operands, L);
1722 return getAddRecExpr(NestedOperands, NestedLoop);
1723 }
1724 }
1725
Dan Gohman35738ac2009-05-04 22:30:44 +00001726 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1727 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
Owen Anderson4a7893b2009-06-18 22:25:12 +00001728 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L, this);
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 return Result;
1730}
1731
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001732SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1733 const SCEVHandle &RHS) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001734 SmallVector<SCEVHandle, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001735 Ops.push_back(LHS);
1736 Ops.push_back(RHS);
1737 return getSMaxExpr(Ops);
1738}
1739
Dan Gohmana82752c2009-06-14 22:47:23 +00001740SCEVHandle
1741ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001742 assert(!Ops.empty() && "Cannot get empty smax!");
1743 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001744#ifndef NDEBUG
1745 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1746 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1747 getEffectiveSCEVType(Ops[0]->getType()) &&
1748 "SCEVSMaxExpr operand types don't match!");
1749#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001750
1751 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001752 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001753
1754 // If there are any constants, fold them together.
1755 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001756 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001757 ++Idx;
1758 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001759 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001760 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +00001761 ConstantInt *Fold = ConstantInt::get(
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001762 APIntOps::smax(LHSC->getValue()->getValue(),
1763 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001764 Ops[0] = getConstant(Fold);
1765 Ops.erase(Ops.begin()+1); // Erase the folded element
1766 if (Ops.size() == 1) return Ops[0];
1767 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001768 }
1769
1770 // If we are left with a constant -inf, strip it off.
1771 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1772 Ops.erase(Ops.begin());
1773 --Idx;
1774 }
1775 }
1776
1777 if (Ops.size() == 1) return Ops[0];
1778
1779 // Find the first SMax
1780 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1781 ++Idx;
1782
1783 // Check to see if one of the operands is an SMax. If so, expand its operands
1784 // onto our operand list, and recurse to simplify.
1785 if (Idx < Ops.size()) {
1786 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001787 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001788 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1789 Ops.erase(Ops.begin()+Idx);
1790 DeletedSMax = true;
1791 }
1792
1793 if (DeletedSMax)
1794 return getSMaxExpr(Ops);
1795 }
1796
1797 // Okay, check to see if the same value occurs in the operand list twice. If
1798 // so, delete one. Since we sorted the list, these values are required to
1799 // be adjacent.
1800 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1801 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1802 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1803 --i; --e;
1804 }
1805
1806 if (Ops.size() == 1) return Ops[0];
1807
1808 assert(!Ops.empty() && "Reduced smax down to nothing!");
1809
Nick Lewycky3e630762008-02-20 06:48:22 +00001810 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001811 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001812 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001813 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1814 SCEVOps)];
Owen Anderson4a7893b2009-06-18 22:25:12 +00001815 if (Result == 0) Result = new SCEVSMaxExpr(Ops, this);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001816 return Result;
1817}
1818
Nick Lewycky3e630762008-02-20 06:48:22 +00001819SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1820 const SCEVHandle &RHS) {
Dan Gohmana82752c2009-06-14 22:47:23 +00001821 SmallVector<SCEVHandle, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00001822 Ops.push_back(LHS);
1823 Ops.push_back(RHS);
1824 return getUMaxExpr(Ops);
1825}
1826
Dan Gohmana82752c2009-06-14 22:47:23 +00001827SCEVHandle
1828ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001829 assert(!Ops.empty() && "Cannot get empty umax!");
1830 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001831#ifndef NDEBUG
1832 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1833 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1834 getEffectiveSCEVType(Ops[0]->getType()) &&
1835 "SCEVUMaxExpr operand types don't match!");
1836#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00001837
1838 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001839 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00001840
1841 // If there are any constants, fold them together.
1842 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001843 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001844 ++Idx;
1845 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001846 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001847 // We found two constants, fold them together!
1848 ConstantInt *Fold = ConstantInt::get(
1849 APIntOps::umax(LHSC->getValue()->getValue(),
1850 RHSC->getValue()->getValue()));
1851 Ops[0] = getConstant(Fold);
1852 Ops.erase(Ops.begin()+1); // Erase the folded element
1853 if (Ops.size() == 1) return Ops[0];
1854 LHSC = cast<SCEVConstant>(Ops[0]);
1855 }
1856
1857 // If we are left with a constant zero, strip it off.
1858 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1859 Ops.erase(Ops.begin());
1860 --Idx;
1861 }
1862 }
1863
1864 if (Ops.size() == 1) return Ops[0];
1865
1866 // Find the first UMax
1867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1868 ++Idx;
1869
1870 // Check to see if one of the operands is a UMax. If so, expand its operands
1871 // onto our operand list, and recurse to simplify.
1872 if (Idx < Ops.size()) {
1873 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001874 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001875 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1876 Ops.erase(Ops.begin()+Idx);
1877 DeletedUMax = true;
1878 }
1879
1880 if (DeletedUMax)
1881 return getUMaxExpr(Ops);
1882 }
1883
1884 // Okay, check to see if the same value occurs in the operand list twice. If
1885 // so, delete one. Since we sorted the list, these values are required to
1886 // be adjacent.
1887 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1888 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1889 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1890 --i; --e;
1891 }
1892
1893 if (Ops.size() == 1) return Ops[0];
1894
1895 assert(!Ops.empty() && "Reduced umax down to nothing!");
1896
1897 // Okay, it looks like we really DO need a umax expr. Check to see if we
1898 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001899 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewycky3e630762008-02-20 06:48:22 +00001900 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1901 SCEVOps)];
Owen Anderson4a7893b2009-06-18 22:25:12 +00001902 if (Result == 0) Result = new SCEVUMaxExpr(Ops, this);
Nick Lewycky3e630762008-02-20 06:48:22 +00001903 return Result;
1904}
1905
Dan Gohmanf9a9a992009-06-22 03:18:45 +00001906SCEVHandle ScalarEvolution::getSMinExpr(const SCEVHandle &LHS,
1907 const SCEVHandle &RHS) {
1908 // ~smax(~x, ~y) == smin(x, y).
1909 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1910}
1911
1912SCEVHandle ScalarEvolution::getUMinExpr(const SCEVHandle &LHS,
1913 const SCEVHandle &RHS) {
1914 // ~umax(~x, ~y) == umin(x, y)
1915 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1916}
1917
Dan Gohman246b2562007-10-22 18:31:58 +00001918SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001919 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman246b2562007-10-22 18:31:58 +00001920 return getConstant(CI);
Dan Gohman2d1be872009-04-16 03:18:22 +00001921 if (isa<ConstantPointerNull>(V))
1922 return getIntegerSCEV(0, V->getType());
Chris Lattnerb3364092006-10-04 21:49:37 +00001923 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Owen Anderson4a7893b2009-06-18 22:25:12 +00001924 if (Result == 0) Result = new SCEVUnknown(V, this);
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001925 return Result;
1926}
1927
Chris Lattner53e677a2004-04-02 20:23:17 +00001928//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001929// Basic SCEV Analysis and PHI Idiom Recognition Code
1930//
1931
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001932/// isSCEVable - Test if values of the given type are analyzable within
1933/// the SCEV framework. This primarily includes integer types, and it
1934/// can optionally include pointer types if the ScalarEvolution class
1935/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001936bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001937 // Integers are always SCEVable.
1938 if (Ty->isInteger())
1939 return true;
1940
1941 // Pointers are SCEVable if TargetData information is available
1942 // to provide pointer size information.
1943 if (isa<PointerType>(Ty))
1944 return TD != NULL;
1945
1946 // Otherwise it's not SCEVable.
1947 return false;
1948}
1949
1950/// getTypeSizeInBits - Return the size in bits of the specified type,
1951/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001952uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001953 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1954
1955 // If we have a TargetData, use it!
1956 if (TD)
1957 return TD->getTypeSizeInBits(Ty);
1958
1959 // Otherwise, we support only integer types.
1960 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1961 return Ty->getPrimitiveSizeInBits();
1962}
1963
1964/// getEffectiveSCEVType - Return a type with the same bitwidth as
1965/// the given type and which represents how SCEV will treat the given
1966/// type, for which isSCEVable must return true. For pointer types,
1967/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001968const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001969 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1970
1971 if (Ty->isInteger())
1972 return Ty;
1973
1974 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1975 return TD->getIntPtrType();
Dan Gohman2d1be872009-04-16 03:18:22 +00001976}
Chris Lattner53e677a2004-04-02 20:23:17 +00001977
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001978SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohman86fbf2f2009-06-06 14:37:11 +00001979 return CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00001980}
1981
Dan Gohman92fa56e2009-05-04 22:20:30 +00001982/// hasSCEV - Return true if the SCEV for this value has already been
Torok Edwine3d12852009-05-01 08:33:47 +00001983/// computed.
1984bool ScalarEvolution::hasSCEV(Value *V) const {
1985 return Scalars.count(V);
1986}
1987
Chris Lattner53e677a2004-04-02 20:23:17 +00001988/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1989/// expression and create a new one.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001990SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001991 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00001992
Dan Gohman35738ac2009-05-04 22:30:44 +00001993 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001994 if (I != Scalars.end()) return I->second;
1995 SCEVHandle S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00001996 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00001997 return S;
1998}
1999
Dan Gohman2d1be872009-04-16 03:18:22 +00002000/// getIntegerSCEV - Given an integer or FP type, create a constant for the
2001/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002002SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2003 Ty = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002004 Constant *C;
2005 if (Val == 0)
2006 C = Constant::getNullValue(Ty);
2007 else if (Ty->isFloatingPoint())
2008 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
2009 APFloat::IEEEdouble, Val));
2010 else
2011 C = ConstantInt::get(Ty, Val);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002012 return getUnknown(C);
Dan Gohman2d1be872009-04-16 03:18:22 +00002013}
2014
2015/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2016///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002017SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002018 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002019 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman2d1be872009-04-16 03:18:22 +00002020
2021 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002022 Ty = getEffectiveSCEVType(Ty);
2023 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002024}
2025
2026/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002027SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002028 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002029 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman2d1be872009-04-16 03:18:22 +00002030
2031 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002032 Ty = getEffectiveSCEVType(Ty);
2033 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman2d1be872009-04-16 03:18:22 +00002034 return getMinusSCEV(AllOnes, V);
2035}
2036
2037/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2038///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002039SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002040 const SCEVHandle &RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002041 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002042 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002043}
2044
2045/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2046/// input value to the specified type. If the type must be extended, it is zero
2047/// extended.
2048SCEVHandle
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002049ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002050 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002051 const Type *SrcTy = V->getType();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002052 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2053 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002054 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002055 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002056 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002057 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002058 return getTruncateExpr(V, Ty);
2059 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002060}
2061
2062/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2063/// input value to the specified type. If the type must be extended, it is sign
2064/// extended.
2065SCEVHandle
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002066ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002067 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002068 const Type *SrcTy = V->getType();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002069 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2070 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002071 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002072 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002073 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002074 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002075 return getTruncateExpr(V, Ty);
2076 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002077}
2078
Dan Gohman467c4302009-05-13 03:46:30 +00002079/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2080/// input value to the specified type. If the type must be extended, it is zero
2081/// extended. The conversion must not be narrowing.
2082SCEVHandle
2083ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
2084 const Type *SrcTy = V->getType();
2085 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2086 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2087 "Cannot noop or zero extend with non-integer arguments!");
2088 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2089 "getNoopOrZeroExtend cannot truncate!");
2090 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2091 return V; // No conversion
2092 return getZeroExtendExpr(V, Ty);
2093}
2094
2095/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2096/// input value to the specified type. If the type must be extended, it is sign
2097/// extended. The conversion must not be narrowing.
2098SCEVHandle
2099ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
2100 const Type *SrcTy = V->getType();
2101 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2102 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2103 "Cannot noop or sign extend with non-integer arguments!");
2104 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2105 "getNoopOrSignExtend cannot truncate!");
2106 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2107 return V; // No conversion
2108 return getSignExtendExpr(V, Ty);
2109}
2110
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002111/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2112/// the input value to the specified type. If the type must be extended,
2113/// it is extended with unspecified bits. The conversion must not be
2114/// narrowing.
2115SCEVHandle
2116ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) {
2117 const Type *SrcTy = V->getType();
2118 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2119 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2120 "Cannot noop or any extend with non-integer arguments!");
2121 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2122 "getNoopOrAnyExtend cannot truncate!");
2123 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2124 return V; // No conversion
2125 return getAnyExtendExpr(V, Ty);
2126}
2127
Dan Gohman467c4302009-05-13 03:46:30 +00002128/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2129/// input value to the specified type. The conversion must not be widening.
2130SCEVHandle
2131ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
2132 const Type *SrcTy = V->getType();
2133 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2134 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2135 "Cannot truncate or noop with non-integer arguments!");
2136 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2137 "getTruncateOrNoop cannot extend!");
2138 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2139 return V; // No conversion
2140 return getTruncateExpr(V, Ty);
2141}
2142
Dan Gohmana334aa72009-06-22 00:31:57 +00002143/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2144/// the types using zero-extension, and then perform a umax operation
2145/// with them.
2146SCEVHandle ScalarEvolution::getUMaxFromMismatchedTypes(const SCEVHandle &LHS,
2147 const SCEVHandle &RHS) {
2148 SCEVHandle PromotedLHS = LHS;
2149 SCEVHandle PromotedRHS = RHS;
2150
2151 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2152 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2153 else
2154 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2155
2156 return getUMaxExpr(PromotedLHS, PromotedRHS);
2157}
2158
Dan Gohmanc9759e82009-06-22 15:03:27 +00002159/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2160/// the types using zero-extension, and then perform a umin operation
2161/// with them.
2162SCEVHandle ScalarEvolution::getUMinFromMismatchedTypes(const SCEVHandle &LHS,
2163 const SCEVHandle &RHS) {
2164 SCEVHandle PromotedLHS = LHS;
2165 SCEVHandle PromotedRHS = RHS;
2166
2167 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2168 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2169 else
2170 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2171
2172 return getUMinExpr(PromotedLHS, PromotedRHS);
2173}
2174
Chris Lattner4dc534c2005-02-13 04:37:18 +00002175/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2176/// the specified instruction and replaces any references to the symbolic value
2177/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002178void ScalarEvolution::
Chris Lattner4dc534c2005-02-13 04:37:18 +00002179ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
2180 const SCEVHandle &NewVal) {
Dan Gohman35738ac2009-05-04 22:30:44 +00002181 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
2182 Scalars.find(SCEVCallbackVH(I, this));
Chris Lattner4dc534c2005-02-13 04:37:18 +00002183 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00002184
Chris Lattner4dc534c2005-02-13 04:37:18 +00002185 SCEVHandle NV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002186 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Chris Lattner4dc534c2005-02-13 04:37:18 +00002187 if (NV == SI->second) return; // No change.
2188
2189 SI->second = NV; // Update the scalars map!
2190
2191 // Any instruction values that use this instruction might also need to be
2192 // updated!
2193 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2194 UI != E; ++UI)
2195 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2196}
Chris Lattner53e677a2004-04-02 20:23:17 +00002197
2198/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2199/// a loop header, making it a potential recurrence, or it doesn't.
2200///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002201SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002202 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002203 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002204 if (L->getHeader() == PN->getParent()) {
2205 // If it lives in the loop header, it has two incoming values, one
2206 // from outside the loop, and one from inside.
2207 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2208 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002209
Chris Lattner53e677a2004-04-02 20:23:17 +00002210 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002211 SCEVHandle SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002212 assert(Scalars.find(PN) == Scalars.end() &&
2213 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002214 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002215
2216 // Using this symbolic name for the PHI, analyze the value coming around
2217 // the back-edge.
2218 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2219
2220 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2221 // has a special value for the first iteration of the loop.
2222
2223 // If the value coming around the backedge is an add with the symbolic
2224 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002225 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002226 // If there is a single occurrence of the symbolic value, replace it
2227 // with a recurrence.
2228 unsigned FoundIndex = Add->getNumOperands();
2229 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2230 if (Add->getOperand(i) == SymbolicName)
2231 if (FoundIndex == e) {
2232 FoundIndex = i;
2233 break;
2234 }
2235
2236 if (FoundIndex != Add->getNumOperands()) {
2237 // Create an add with everything but the specified operand.
Dan Gohmana82752c2009-06-14 22:47:23 +00002238 SmallVector<SCEVHandle, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002239 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2240 if (i != FoundIndex)
2241 Ops.push_back(Add->getOperand(i));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002242 SCEVHandle Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002243
2244 // This is not a valid addrec if the step amount is varying each
2245 // loop iteration, but is not itself an addrec in this loop.
2246 if (Accum->isLoopInvariant(L) ||
2247 (isa<SCEVAddRecExpr>(Accum) &&
2248 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2249 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002250 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002251
2252 // Okay, for the entire analysis of this edge we assumed the PHI
2253 // to be symbolic. We now need to go back and update all of the
2254 // entries for the scalars that use the PHI (except for the PHI
2255 // itself) to use the new analyzed value instead of the "symbolic"
2256 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00002257 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002258 return PHISCEV;
2259 }
2260 }
Dan Gohman622ed672009-05-04 22:02:23 +00002261 } else if (const SCEVAddRecExpr *AddRec =
2262 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002263 // Otherwise, this could be a loop like this:
2264 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2265 // In this case, j = {1,+,1} and BEValue is j.
2266 // Because the other in-value of i (0) fits the evolution of BEValue
2267 // i really is an addrec evolution.
2268 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2269 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2270
2271 // If StartVal = j.start - j.stride, we can use StartVal as the
2272 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002273 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman246b2562007-10-22 18:31:58 +00002274 AddRec->getOperand(1))) {
Chris Lattner97156e72006-04-26 18:34:07 +00002275 SCEVHandle PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002276 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002277
2278 // Okay, for the entire analysis of this edge we assumed the PHI
2279 // to be symbolic. We now need to go back and update all of the
2280 // entries for the scalars that use the PHI (except for the PHI
2281 // itself) to use the new analyzed value instead of the "symbolic"
2282 // value.
2283 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2284 return PHISCEV;
2285 }
2286 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002287 }
2288
2289 return SymbolicName;
2290 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002291
Chris Lattner53e677a2004-04-02 20:23:17 +00002292 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002293 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002294}
2295
Dan Gohman26466c02009-05-08 20:26:55 +00002296/// createNodeForGEP - Expand GEP instructions into add and multiply
2297/// operations. This allows them to be analyzed by regular SCEV code.
2298///
Dan Gohmanfb791602009-05-08 20:58:38 +00002299SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002300
2301 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmane810b0d2009-05-08 20:36:47 +00002302 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002303 // Don't attempt to analyze GEPs over unsized objects.
2304 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2305 return getUnknown(GEP);
Dan Gohman26466c02009-05-08 20:26:55 +00002306 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002307 gep_type_iterator GTI = gep_type_begin(GEP);
2308 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2309 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002310 I != E; ++I) {
2311 Value *Index = *I;
2312 // Compute the (potentially symbolic) offset in bytes for this index.
2313 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2314 // For a struct, add the member offset.
2315 const StructLayout &SL = *TD->getStructLayout(STy);
2316 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2317 uint64_t Offset = SL.getElementOffset(FieldNo);
2318 TotalOffset = getAddExpr(TotalOffset,
2319 getIntegerSCEV(Offset, IntPtrTy));
2320 } else {
2321 // For an array, add the element offset, explicitly scaled.
2322 SCEVHandle LocalOffset = getSCEV(Index);
2323 if (!isa<PointerType>(LocalOffset->getType()))
2324 // Getelementptr indicies are signed.
2325 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2326 IntPtrTy);
2327 LocalOffset =
2328 getMulExpr(LocalOffset,
Duncan Sands777d2302009-05-09 07:06:46 +00002329 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman26466c02009-05-08 20:26:55 +00002330 IntPtrTy));
2331 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2332 }
2333 }
2334 return getAddExpr(getSCEV(Base), TotalOffset);
2335}
2336
Nick Lewycky83bb0052007-11-22 07:59:40 +00002337/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2338/// guaranteed to end in (at every loop iteration). It is, at the same time,
2339/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2340/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002341uint32_t
2342ScalarEvolution::GetMinTrailingZeros(const SCEVHandle &S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002343 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002344 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002345
Dan Gohman622ed672009-05-04 22:02:23 +00002346 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002347 return std::min(GetMinTrailingZeros(T->getOperand()),
2348 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002349
Dan Gohman622ed672009-05-04 22:02:23 +00002350 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002351 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2352 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2353 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002354 }
2355
Dan Gohman622ed672009-05-04 22:02:23 +00002356 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002357 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2358 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2359 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002360 }
2361
Dan Gohman622ed672009-05-04 22:02:23 +00002362 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002363 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002364 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002365 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002366 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002367 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002368 }
2369
Dan Gohman622ed672009-05-04 22:02:23 +00002370 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002371 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002372 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2373 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002374 for (unsigned i = 1, e = M->getNumOperands();
2375 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002376 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002377 BitWidth);
2378 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002379 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002380
Dan Gohman622ed672009-05-04 22:02:23 +00002381 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002382 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002383 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002384 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002385 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002386 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002387 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002388
Dan Gohman622ed672009-05-04 22:02:23 +00002389 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002390 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002391 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002392 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002393 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394 return MinOpRes;
2395 }
2396
Dan Gohman622ed672009-05-04 22:02:23 +00002397 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002398 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002399 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002400 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002401 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002402 return MinOpRes;
2403 }
2404
Dan Gohman2c364ad2009-06-19 23:29:04 +00002405 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2406 // For a SCEVUnknown, ask ValueTracking.
2407 unsigned BitWidth = getTypeSizeInBits(U->getType());
2408 APInt Mask = APInt::getAllOnesValue(BitWidth);
2409 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2410 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2411 return Zeros.countTrailingOnes();
2412 }
2413
2414 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002415 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002416}
Chris Lattner53e677a2004-04-02 20:23:17 +00002417
Dan Gohman2c364ad2009-06-19 23:29:04 +00002418uint32_t
2419ScalarEvolution::GetMinLeadingZeros(const SCEVHandle &S) {
2420 // TODO: Handle other SCEV expression types here.
2421
2422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2423 return C->getValue()->getValue().countLeadingZeros();
2424
2425 if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
2426 // A zero-extension cast adds zero bits.
2427 return GetMinLeadingZeros(C->getOperand()) +
2428 (getTypeSizeInBits(C->getType()) -
2429 getTypeSizeInBits(C->getOperand()->getType()));
2430 }
2431
2432 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2433 // For a SCEVUnknown, ask ValueTracking.
2434 unsigned BitWidth = getTypeSizeInBits(U->getType());
2435 APInt Mask = APInt::getAllOnesValue(BitWidth);
2436 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2437 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2438 return Zeros.countLeadingOnes();
2439 }
2440
2441 return 1;
2442}
2443
2444uint32_t
2445ScalarEvolution::GetMinSignBits(const SCEVHandle &S) {
2446 // TODO: Handle other SCEV expression types here.
2447
2448 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
2449 const APInt &A = C->getValue()->getValue();
2450 return A.isNegative() ? A.countLeadingOnes() :
2451 A.countLeadingZeros();
2452 }
2453
2454 if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
2455 // A sign-extension cast adds sign bits.
2456 return GetMinSignBits(C->getOperand()) +
2457 (getTypeSizeInBits(C->getType()) -
2458 getTypeSizeInBits(C->getOperand()->getType()));
2459 }
2460
2461 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2462 // For a SCEVUnknown, ask ValueTracking.
2463 return ComputeNumSignBits(U->getValue(), TD);
2464 }
2465
2466 return 1;
2467}
2468
Chris Lattner53e677a2004-04-02 20:23:17 +00002469/// createSCEV - We know that there is no SCEV for the specified value.
2470/// Analyze the expression.
2471///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002472SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002473 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002474 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00002475
Dan Gohman6c459a22008-06-22 19:56:46 +00002476 unsigned Opcode = Instruction::UserOp1;
2477 if (Instruction *I = dyn_cast<Instruction>(V))
2478 Opcode = I->getOpcode();
2479 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2480 Opcode = CE->getOpcode();
2481 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002482 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00002483
Dan Gohman6c459a22008-06-22 19:56:46 +00002484 User *U = cast<User>(V);
2485 switch (Opcode) {
2486 case Instruction::Add:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002487 return getAddExpr(getSCEV(U->getOperand(0)),
2488 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002489 case Instruction::Mul:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002490 return getMulExpr(getSCEV(U->getOperand(0)),
2491 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002492 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002493 return getUDivExpr(getSCEV(U->getOperand(0)),
2494 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002495 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002496 return getMinusSCEV(getSCEV(U->getOperand(0)),
2497 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002498 case Instruction::And:
2499 // For an expression like x&255 that merely masks off the high bits,
2500 // use zext(trunc(x)) as the SCEV expression.
2501 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002502 if (CI->isNullValue())
2503 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00002504 if (CI->isAllOnesValue())
2505 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002506 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00002507
2508 // Instcombine's ShrinkDemandedConstant may strip bits out of
2509 // constants, obscuring what would otherwise be a low-bits mask.
2510 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2511 // knew about to reconstruct a low-bits mask value.
2512 unsigned LZ = A.countLeadingZeros();
2513 unsigned BitWidth = A.getBitWidth();
2514 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2515 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2516 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2517
2518 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2519
Dan Gohmanfc3641b2009-06-17 23:54:37 +00002520 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00002521 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002522 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Dan Gohman61ffa8e2009-06-16 19:52:01 +00002523 IntegerType::get(BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002524 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00002525 }
2526 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00002527
Dan Gohman6c459a22008-06-22 19:56:46 +00002528 case Instruction::Or:
2529 // If the RHS of the Or is a constant, we may have something like:
2530 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2531 // optimizations will transparently handle this case.
2532 //
2533 // In order for this transformation to be safe, the LHS must be of the
2534 // form X*(2^n) and the Or constant must be less than 2^n.
2535 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2536 SCEVHandle LHS = getSCEV(U->getOperand(0));
2537 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00002538 if (GetMinTrailingZeros(LHS) >=
Dan Gohman6c459a22008-06-22 19:56:46 +00002539 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002540 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002541 }
Dan Gohman6c459a22008-06-22 19:56:46 +00002542 break;
2543 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00002544 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00002545 // If the RHS of the xor is a signbit, then this is just an add.
2546 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00002547 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002548 return getAddExpr(getSCEV(U->getOperand(0)),
2549 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00002550
2551 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00002552 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002553 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00002554
2555 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2556 // This is a variant of the check for xor with -1, and it handles
2557 // the case where instcombine has trimmed non-demanded bits out
2558 // of an xor with -1.
2559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2560 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2561 if (BO->getOpcode() == Instruction::And &&
2562 LCI->getValue() == CI->getValue())
2563 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00002564 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00002565 const Type *UTy = U->getType();
2566 SCEVHandle Z0 = Z->getOperand();
2567 const Type *Z0Ty = Z0->getType();
2568 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2569
2570 // If C is a low-bits mask, the zero extend is zerving to
2571 // mask off the high bits. Complement the operand and
2572 // re-apply the zext.
2573 if (APIntOps::isMask(Z0TySize, CI->getValue()))
2574 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2575
2576 // If C is a single bit, it may be in the sign-bit position
2577 // before the zero-extend. In this case, represent the xor
2578 // using an add, which is equivalent, and re-apply the zext.
2579 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2580 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2581 Trunc.isSignBit())
2582 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2583 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00002584 }
Dan Gohman6c459a22008-06-22 19:56:46 +00002585 }
2586 break;
2587
2588 case Instruction::Shl:
2589 // Turn shift left of a constant amount into a multiply.
2590 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2591 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2592 Constant *X = ConstantInt::get(
2593 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002594 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00002595 }
2596 break;
2597
Nick Lewycky01eaf802008-07-07 06:15:49 +00002598 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00002599 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00002600 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2601 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2602 Constant *X = ConstantInt::get(
2603 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002604 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00002605 }
2606 break;
2607
Dan Gohman4ee29af2009-04-21 02:26:00 +00002608 case Instruction::AShr:
2609 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2610 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2611 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2612 if (L->getOpcode() == Instruction::Shl &&
2613 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002614 unsigned BitWidth = getTypeSizeInBits(U->getType());
2615 uint64_t Amt = BitWidth - CI->getZExtValue();
2616 if (Amt == BitWidth)
2617 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2618 if (Amt > BitWidth)
2619 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00002620 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002621 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002622 IntegerType::get(Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00002623 U->getType());
2624 }
2625 break;
2626
Dan Gohman6c459a22008-06-22 19:56:46 +00002627 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002628 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00002629
2630 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002631 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00002632
2633 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002634 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00002635
2636 case Instruction::BitCast:
2637 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002638 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00002639 return getSCEV(U->getOperand(0));
2640 break;
2641
Dan Gohman2d1be872009-04-16 03:18:22 +00002642 case Instruction::IntToPtr:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002643 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman2d1be872009-04-16 03:18:22 +00002644 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002645 TD->getIntPtrType());
Dan Gohman2d1be872009-04-16 03:18:22 +00002646
2647 case Instruction::PtrToInt:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002648 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman2d1be872009-04-16 03:18:22 +00002649 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2650 U->getType());
2651
Dan Gohman26466c02009-05-08 20:26:55 +00002652 case Instruction::GetElementPtr:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002653 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanfb791602009-05-08 20:58:38 +00002654 return createNodeForGEP(U);
Dan Gohman2d1be872009-04-16 03:18:22 +00002655
Dan Gohman6c459a22008-06-22 19:56:46 +00002656 case Instruction::PHI:
2657 return createNodeForPHI(cast<PHINode>(U));
2658
2659 case Instruction::Select:
2660 // This could be a smax or umax that was lowered earlier.
2661 // Try to recover it.
2662 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2663 Value *LHS = ICI->getOperand(0);
2664 Value *RHS = ICI->getOperand(1);
2665 switch (ICI->getPredicate()) {
2666 case ICmpInst::ICMP_SLT:
2667 case ICmpInst::ICMP_SLE:
2668 std::swap(LHS, RHS);
2669 // fall through
2670 case ICmpInst::ICMP_SGT:
2671 case ICmpInst::ICMP_SGE:
2672 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002673 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002674 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002675 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002676 break;
2677 case ICmpInst::ICMP_ULT:
2678 case ICmpInst::ICMP_ULE:
2679 std::swap(LHS, RHS);
2680 // fall through
2681 case ICmpInst::ICMP_UGT:
2682 case ICmpInst::ICMP_UGE:
2683 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002684 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002685 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002686 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002687 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00002688 case ICmpInst::ICMP_NE:
2689 // n != 0 ? n : 1 -> umax(n, 1)
2690 if (LHS == U->getOperand(1) &&
2691 isa<ConstantInt>(U->getOperand(2)) &&
2692 cast<ConstantInt>(U->getOperand(2))->isOne() &&
2693 isa<ConstantInt>(RHS) &&
2694 cast<ConstantInt>(RHS)->isZero())
2695 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2696 break;
2697 case ICmpInst::ICMP_EQ:
2698 // n == 0 ? 1 : n -> umax(n, 1)
2699 if (LHS == U->getOperand(2) &&
2700 isa<ConstantInt>(U->getOperand(1)) &&
2701 cast<ConstantInt>(U->getOperand(1))->isOne() &&
2702 isa<ConstantInt>(RHS) &&
2703 cast<ConstantInt>(RHS)->isZero())
2704 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2705 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00002706 default:
2707 break;
2708 }
2709 }
2710
2711 default: // We cannot analyze this expression.
2712 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00002713 }
2714
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002715 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002716}
2717
2718
2719
2720//===----------------------------------------------------------------------===//
2721// Iteration Count Computation Code
2722//
2723
Dan Gohman46bdfb02009-02-24 18:55:53 +00002724/// getBackedgeTakenCount - If the specified loop has a predictable
2725/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2726/// object. The backedge-taken count is the number of times the loop header
2727/// will be branched to from within the loop. This is one less than the
2728/// trip count of the loop, since it doesn't count the first iteration,
2729/// when the header is branched to from outside the loop.
2730///
2731/// Note that it is not valid to call this method on a loop without a
2732/// loop-invariant backedge-taken count (see
2733/// hasLoopInvariantBackedgeTakenCount).
2734///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002735SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00002736 return getBackedgeTakenInfo(L).Exact;
2737}
2738
2739/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2740/// return the least SCEV value that is known never to be less than the
2741/// actual backedge taken count.
2742SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2743 return getBackedgeTakenInfo(L).Max;
2744}
2745
2746const ScalarEvolution::BackedgeTakenInfo &
2747ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00002748 // Initially insert a CouldNotCompute for this loop. If the insertion
2749 // succeeds, procede to actually compute a backedge-taken count and
2750 // update the value. The temporary CouldNotCompute value tells SCEV
2751 // code elsewhere that it shouldn't attempt to request a new
2752 // backedge-taken count, which could result in infinite recursion.
Dan Gohmana1af7572009-04-30 20:47:05 +00002753 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00002754 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2755 if (Pair.second) {
Dan Gohmana1af7572009-04-30 20:47:05 +00002756 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohman86fbf2f2009-06-06 14:37:11 +00002757 if (ItCount.Exact != CouldNotCompute) {
Dan Gohmana1af7572009-04-30 20:47:05 +00002758 assert(ItCount.Exact->isLoopInvariant(L) &&
2759 ItCount.Max->isLoopInvariant(L) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002760 "Computed trip count isn't loop invariant for loop!");
2761 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00002762
Dan Gohman01ecca22009-04-27 20:16:15 +00002763 // Update the value in the map.
2764 Pair.first->second = ItCount;
Dan Gohmana334aa72009-06-22 00:31:57 +00002765 } else {
2766 if (ItCount.Max != CouldNotCompute)
2767 // Update the value in the map.
2768 Pair.first->second = ItCount;
2769 if (isa<PHINode>(L->getHeader()->begin()))
2770 // Only count loops that have phi nodes as not being computable.
2771 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00002772 }
Dan Gohmana1af7572009-04-30 20:47:05 +00002773
2774 // Now that we know more about the trip count for this loop, forget any
2775 // existing SCEV values for PHI nodes in this loop since they are only
2776 // conservative estimates made without the benefit
2777 // of trip count information.
2778 if (ItCount.hasAnyInfo())
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00002779 forgetLoopPHIs(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002780 }
Dan Gohman01ecca22009-04-27 20:16:15 +00002781 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00002782}
2783
Dan Gohman46bdfb02009-02-24 18:55:53 +00002784/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohman60f8a632009-02-17 20:49:49 +00002785/// client when it has changed a loop in a way that may effect
Dan Gohman46bdfb02009-02-24 18:55:53 +00002786/// ScalarEvolution's ability to compute a trip count, or if the loop
2787/// is deleted.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002788void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00002789 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00002790 forgetLoopPHIs(L);
2791}
2792
2793/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2794/// PHI nodes in the given loop. This is used when the trip count of
2795/// the loop may have changed.
2796void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohman35738ac2009-05-04 22:30:44 +00002797 BasicBlock *Header = L->getHeader();
2798
Dan Gohmanefb9fbf2009-05-12 01:27:58 +00002799 // Push all Loop-header PHIs onto the Worklist stack, except those
2800 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2801 // a PHI either means that it has an unrecognized structure, or it's
2802 // a PHI that's in the progress of being computed by createNodeForPHI.
2803 // In the former case, additional loop trip count information isn't
2804 // going to change anything. In the later case, createNodeForPHI will
2805 // perform the necessary updates on its own when it gets to that point.
Dan Gohman35738ac2009-05-04 22:30:44 +00002806 SmallVector<Instruction *, 16> Worklist;
2807 for (BasicBlock::iterator I = Header->begin();
Dan Gohmanefb9fbf2009-05-12 01:27:58 +00002808 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2809 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2810 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2811 Worklist.push_back(PN);
2812 }
Dan Gohman35738ac2009-05-04 22:30:44 +00002813
2814 while (!Worklist.empty()) {
2815 Instruction *I = Worklist.pop_back_val();
2816 if (Scalars.erase(I))
2817 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2818 UI != UE; ++UI)
2819 Worklist.push_back(cast<Instruction>(UI));
2820 }
Dan Gohman60f8a632009-02-17 20:49:49 +00002821}
2822
Dan Gohman46bdfb02009-02-24 18:55:53 +00002823/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2824/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00002825ScalarEvolution::BackedgeTakenInfo
2826ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmana334aa72009-06-22 00:31:57 +00002827 SmallVector<BasicBlock*, 8> ExitingBlocks;
2828 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00002829
Dan Gohmana334aa72009-06-22 00:31:57 +00002830 // Examine all exits and pick the most conservative values.
2831 SCEVHandle BECount = CouldNotCompute;
2832 SCEVHandle MaxBECount = CouldNotCompute;
2833 bool CouldNotComputeBECount = false;
2834 bool CouldNotComputeMaxBECount = false;
2835 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2836 BackedgeTakenInfo NewBTI =
2837 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00002838
Dan Gohmana334aa72009-06-22 00:31:57 +00002839 if (NewBTI.Exact == CouldNotCompute) {
2840 // We couldn't compute an exact value for this exit, so
2841 // we don't be able to compute an exact value for the loop.
2842 CouldNotComputeBECount = true;
2843 BECount = CouldNotCompute;
2844 } else if (!CouldNotComputeBECount) {
2845 if (BECount == CouldNotCompute)
2846 BECount = NewBTI.Exact;
2847 else {
2848 // TODO: More analysis could be done here. For example, a
2849 // loop with a short-circuiting && operator has an exact count
2850 // of the min of both sides.
2851 CouldNotComputeBECount = true;
2852 BECount = CouldNotCompute;
2853 }
2854 }
2855 if (NewBTI.Max == CouldNotCompute) {
2856 // We couldn't compute an maximum value for this exit, so
2857 // we don't be able to compute an maximum value for the loop.
2858 CouldNotComputeMaxBECount = true;
2859 MaxBECount = CouldNotCompute;
2860 } else if (!CouldNotComputeMaxBECount) {
2861 if (MaxBECount == CouldNotCompute)
2862 MaxBECount = NewBTI.Max;
2863 else
2864 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, NewBTI.Max);
2865 }
2866 }
2867
2868 return BackedgeTakenInfo(BECount, MaxBECount);
2869}
2870
2871/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
2872/// of the specified loop will execute if it exits via the specified block.
2873ScalarEvolution::BackedgeTakenInfo
2874ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
2875 BasicBlock *ExitingBlock) {
2876
2877 // Okay, we've chosen an exiting block. See what condition causes us to
2878 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00002879 //
2880 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00002881 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman86fbf2f2009-06-06 14:37:11 +00002882 if (ExitBr == 0) return CouldNotCompute;
Chris Lattner53e677a2004-04-02 20:23:17 +00002883 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Chris Lattner8b0e3602007-01-07 02:24:26 +00002884
2885 // At this point, we know we have a conditional branch that determines whether
2886 // the loop is exited. However, we don't know if the branch is executed each
2887 // time through the loop. If not, then the execution count of the branch will
2888 // not be equal to the trip count of the loop.
2889 //
2890 // Currently we check for this by checking to see if the Exit branch goes to
2891 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00002892 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00002893 // loop header. This is common for un-rotated loops.
2894 //
2895 // If both of those tests fail, walk up the unique predecessor chain to the
2896 // header, stopping if there is an edge that doesn't exit the loop. If the
2897 // header is reached, the execution count of the branch will be equal to the
2898 // trip count of the loop.
2899 //
2900 // More extensive analysis could be done to handle more cases here.
2901 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00002902 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00002903 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00002904 ExitBr->getParent() != L->getHeader()) {
2905 // The simple checks failed, try climbing the unique predecessor chain
2906 // up to the header.
2907 bool Ok = false;
2908 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
2909 BasicBlock *Pred = BB->getUniquePredecessor();
2910 if (!Pred)
2911 return CouldNotCompute;
2912 TerminatorInst *PredTerm = Pred->getTerminator();
2913 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
2914 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
2915 if (PredSucc == BB)
2916 continue;
2917 // If the predecessor has a successor that isn't BB and isn't
2918 // outside the loop, assume the worst.
2919 if (L->contains(PredSucc))
2920 return CouldNotCompute;
2921 }
2922 if (Pred == L->getHeader()) {
2923 Ok = true;
2924 break;
2925 }
2926 BB = Pred;
2927 }
2928 if (!Ok)
2929 return CouldNotCompute;
2930 }
2931
2932 // Procede to the next level to examine the exit condition expression.
2933 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
2934 ExitBr->getSuccessor(0),
2935 ExitBr->getSuccessor(1));
2936}
2937
2938/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
2939/// backedge of the specified loop will execute if its exit condition
2940/// were a conditional branch of ExitCond, TBB, and FBB.
2941ScalarEvolution::BackedgeTakenInfo
2942ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
2943 Value *ExitCond,
2944 BasicBlock *TBB,
2945 BasicBlock *FBB) {
2946 // Check if the controlling expression for this loop is an and or or. In
2947 // such cases, an exact backedge-taken count may be infeasible, but a
2948 // maximum count may still be feasible.
2949 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
2950 if (BO->getOpcode() == Instruction::And) {
2951 // Recurse on the operands of the and.
2952 BackedgeTakenInfo BTI0 =
2953 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2954 BackedgeTakenInfo BTI1 =
2955 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2956 SCEVHandle BECount = CouldNotCompute;
2957 SCEVHandle MaxBECount = CouldNotCompute;
2958 if (L->contains(TBB)) {
2959 // Both conditions must be true for the loop to continue executing.
2960 // Choose the less conservative count.
Dan Gohman60e9b072009-06-22 15:09:28 +00002961 if (BTI0.Exact == CouldNotCompute)
2962 BECount = BTI1.Exact;
2963 else if (BTI1.Exact == CouldNotCompute)
Dan Gohmana334aa72009-06-22 00:31:57 +00002964 BECount = BTI0.Exact;
Dan Gohman60e9b072009-06-22 15:09:28 +00002965 else
2966 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00002967 if (BTI0.Max == CouldNotCompute)
2968 MaxBECount = BTI1.Max;
2969 else if (BTI1.Max == CouldNotCompute)
2970 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00002971 else
2972 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00002973 } else {
2974 // Both conditions must be true for the loop to exit.
2975 assert(L->contains(FBB) && "Loop block has no successor in loop!");
2976 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2977 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2978 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2979 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2980 }
2981
2982 return BackedgeTakenInfo(BECount, MaxBECount);
2983 }
2984 if (BO->getOpcode() == Instruction::Or) {
2985 // Recurse on the operands of the or.
2986 BackedgeTakenInfo BTI0 =
2987 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2988 BackedgeTakenInfo BTI1 =
2989 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2990 SCEVHandle BECount = CouldNotCompute;
2991 SCEVHandle MaxBECount = CouldNotCompute;
2992 if (L->contains(FBB)) {
2993 // Both conditions must be false for the loop to continue executing.
2994 // Choose the less conservative count.
Dan Gohman60e9b072009-06-22 15:09:28 +00002995 if (BTI0.Exact == CouldNotCompute)
2996 BECount = BTI1.Exact;
2997 else if (BTI1.Exact == CouldNotCompute)
Dan Gohmana334aa72009-06-22 00:31:57 +00002998 BECount = BTI0.Exact;
Dan Gohman60e9b072009-06-22 15:09:28 +00002999 else
3000 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003001 if (BTI0.Max == CouldNotCompute)
3002 MaxBECount = BTI1.Max;
3003 else if (BTI1.Max == CouldNotCompute)
3004 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003005 else
3006 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003007 } else {
3008 // Both conditions must be false for the loop to exit.
3009 assert(L->contains(TBB) && "Loop block has no successor in loop!");
3010 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
3011 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3012 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
3013 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3014 }
3015
3016 return BackedgeTakenInfo(BECount, MaxBECount);
3017 }
3018 }
3019
3020 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3021 // Procede to the next level to examine the icmp.
3022 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3023 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003024
Eli Friedman361e54d2009-05-09 12:32:42 +00003025 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003026 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3027}
3028
3029/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3030/// backedge of the specified loop will execute if its exit condition
3031/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3032ScalarEvolution::BackedgeTakenInfo
3033ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3034 ICmpInst *ExitCond,
3035 BasicBlock *TBB,
3036 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003037
Reid Spencere4d87aa2006-12-23 06:05:41 +00003038 // If the condition was exit on true, convert the condition to exit on false
3039 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003040 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003041 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003042 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003043 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003044
3045 // Handle common loops like: for (X = "string"; *X; ++X)
3046 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3047 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3048 SCEVHandle ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003049 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmana334aa72009-06-22 00:31:57 +00003050 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3051 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3052 return BackedgeTakenInfo(ItCnt,
3053 isa<SCEVConstant>(ItCnt) ? ItCnt :
3054 getConstant(APInt::getMaxValue(BitWidth)-1));
3055 }
Chris Lattner673e02b2004-10-12 01:49:27 +00003056 }
3057
Chris Lattner53e677a2004-04-02 20:23:17 +00003058 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
3059 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
3060
3061 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003062 LHS = getSCEVAtScope(LHS, L);
3063 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003064
Reid Spencere4d87aa2006-12-23 06:05:41 +00003065 // At this point, we would like to compute how many iterations of the
3066 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003067 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3068 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003069 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003070 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003071 }
3072
Chris Lattner53e677a2004-04-02 20:23:17 +00003073 // If we have a comparison of a chrec against a constant, try to use value
3074 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003075 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3076 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003077 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003078 // Form the constant range.
3079 ConstantRange CompRange(
3080 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003081
Eli Friedman361e54d2009-05-09 12:32:42 +00003082 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3083 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003084 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003085
Chris Lattner53e677a2004-04-02 20:23:17 +00003086 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003087 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003088 // Convert to: while (X-Y != 0)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003089 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003090 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003091 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003092 }
3093 case ICmpInst::ICMP_EQ: {
Chris Lattner53e677a2004-04-02 20:23:17 +00003094 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003095 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003096 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003097 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003098 }
3099 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003100 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3101 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003102 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003103 }
3104 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003105 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3106 getNotSCEV(RHS), L, true);
3107 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003108 break;
3109 }
3110 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003111 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3112 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003113 break;
3114 }
3115 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003116 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3117 getNotSCEV(RHS), L, false);
3118 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003119 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003120 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003121 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003122#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003123 errs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003124 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003125 errs() << "[unsigned] ";
3126 errs() << *LHS << " "
Reid Spencere4d87aa2006-12-23 06:05:41 +00003127 << Instruction::getOpcodeName(Instruction::ICmp)
3128 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003129#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003130 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003131 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003132 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003133 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003134}
3135
Chris Lattner673e02b2004-10-12 01:49:27 +00003136static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003137EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3138 ScalarEvolution &SE) {
3139 SCEVHandle InVal = SE.getConstant(C);
3140 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003141 assert(isa<SCEVConstant>(Val) &&
3142 "Evaluation of SCEV at constant didn't fold correctly?");
3143 return cast<SCEVConstant>(Val)->getValue();
3144}
3145
3146/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3147/// and a GEP expression (missing the pointer index) indexing into it, return
3148/// the addressed element of the initializer or null if the index expression is
3149/// invalid.
3150static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003151GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003152 const std::vector<ConstantInt*> &Indices) {
3153 Constant *Init = GV->getInitializer();
3154 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003155 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003156 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3157 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3158 Init = cast<Constant>(CS->getOperand(Idx));
3159 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3160 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3161 Init = cast<Constant>(CA->getOperand(Idx));
3162 } else if (isa<ConstantAggregateZero>(Init)) {
3163 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3164 assert(Idx < STy->getNumElements() && "Bad struct index!");
3165 Init = Constant::getNullValue(STy->getElementType(Idx));
3166 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3167 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
3168 Init = Constant::getNullValue(ATy->getElementType());
3169 } else {
3170 assert(0 && "Unknown constant aggregate type!");
3171 }
3172 return 0;
3173 } else {
3174 return 0; // Unknown initializer type
3175 }
3176 }
3177 return Init;
3178}
3179
Dan Gohman46bdfb02009-02-24 18:55:53 +00003180/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3181/// 'icmp op load X, cst', try to see if we can compute the backedge
3182/// execution count.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003183SCEVHandle ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00003184ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
3185 const Loop *L,
3186 ICmpInst::Predicate predicate) {
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003187 if (LI->isVolatile()) return CouldNotCompute;
Chris Lattner673e02b2004-10-12 01:49:27 +00003188
3189 // Check to see if the loaded pointer is a getelementptr of a global.
3190 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003191 if (!GEP) return CouldNotCompute;
Chris Lattner673e02b2004-10-12 01:49:27 +00003192
3193 // Make sure that it is really a constant global we are gepping, with an
3194 // initializer, and make sure the first IDX is really 0.
3195 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3196 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3197 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3198 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003199 return CouldNotCompute;
Chris Lattner673e02b2004-10-12 01:49:27 +00003200
3201 // Okay, we allow one non-constant index into the GEP instruction.
3202 Value *VarIdx = 0;
3203 std::vector<ConstantInt*> Indexes;
3204 unsigned VarIdxNum = 0;
3205 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3206 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3207 Indexes.push_back(CI);
3208 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003209 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003210 VarIdx = GEP->getOperand(i);
3211 VarIdxNum = i-2;
3212 Indexes.push_back(0);
3213 }
3214
3215 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3216 // Check to see if X is a loop variant variable value now.
3217 SCEVHandle Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003218 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003219
3220 // We can only recognize very limited forms of loop index expressions, in
3221 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003222 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003223 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3224 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3225 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003226 return CouldNotCompute;
Chris Lattner673e02b2004-10-12 01:49:27 +00003227
3228 unsigned MaxSteps = MaxBruteForceIterations;
3229 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003230 ConstantInt *ItCst =
Dan Gohman6de29f82009-06-15 22:12:54 +00003231 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003232 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003233
3234 // Form the GEP offset.
3235 Indexes[VarIdxNum] = Val;
3236
3237 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3238 if (Result == 0) break; // Cannot compute!
3239
3240 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003241 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003242 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003243 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003244#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003245 errs() << "\n***\n*** Computed loop count " << *ItCst
3246 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3247 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00003248#endif
3249 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003250 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00003251 }
3252 }
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003253 return CouldNotCompute;
Chris Lattner673e02b2004-10-12 01:49:27 +00003254}
3255
3256
Chris Lattner3221ad02004-04-17 22:58:41 +00003257/// CanConstantFold - Return true if we can constant fold an instruction of the
3258/// specified type, assuming that all operands were constants.
3259static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00003260 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00003261 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3262 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003263
Chris Lattner3221ad02004-04-17 22:58:41 +00003264 if (const CallInst *CI = dyn_cast<CallInst>(I))
3265 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00003266 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00003267 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00003268}
3269
Chris Lattner3221ad02004-04-17 22:58:41 +00003270/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3271/// in the loop that V is derived from. We allow arbitrary operations along the
3272/// way, but the operands of an operation must either be constants or a value
3273/// derived from a constant PHI. If this expression does not fit with these
3274/// constraints, return null.
3275static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3276 // If this is not an instruction, or if this is an instruction outside of the
3277 // loop, it can't be derived from a loop PHI.
3278 Instruction *I = dyn_cast<Instruction>(V);
3279 if (I == 0 || !L->contains(I->getParent())) return 0;
3280
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003281 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003282 if (L->getHeader() == I->getParent())
3283 return PN;
3284 else
3285 // We don't currently keep track of the control flow needed to evaluate
3286 // PHIs, so we cannot handle PHIs inside of loops.
3287 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003288 }
Chris Lattner3221ad02004-04-17 22:58:41 +00003289
3290 // If we won't be able to constant fold this expression even if the operands
3291 // are constants, return early.
3292 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003293
Chris Lattner3221ad02004-04-17 22:58:41 +00003294 // Otherwise, we can evaluate this instruction if all of its operands are
3295 // constant or derived from a PHI node themselves.
3296 PHINode *PHI = 0;
3297 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3298 if (!(isa<Constant>(I->getOperand(Op)) ||
3299 isa<GlobalValue>(I->getOperand(Op)))) {
3300 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3301 if (P == 0) return 0; // Not evolving from PHI
3302 if (PHI == 0)
3303 PHI = P;
3304 else if (PHI != P)
3305 return 0; // Evolving from multiple different PHIs.
3306 }
3307
3308 // This is a expression evolving from a constant PHI!
3309 return PHI;
3310}
3311
3312/// EvaluateExpression - Given an expression that passes the
3313/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3314/// in the loop has the value PHIVal. If we can't fold this expression for some
3315/// reason, return null.
3316static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3317 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00003318 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00003319 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00003320 Instruction *I = cast<Instruction>(V);
3321
3322 std::vector<Constant*> Operands;
3323 Operands.resize(I->getNumOperands());
3324
3325 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3326 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3327 if (Operands[i] == 0) return 0;
3328 }
3329
Chris Lattnerf286f6f2007-12-10 22:53:04 +00003330 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3331 return ConstantFoldCompareInstOperands(CI->getPredicate(),
3332 &Operands[0], Operands.size());
3333 else
3334 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3335 &Operands[0], Operands.size());
Chris Lattner3221ad02004-04-17 22:58:41 +00003336}
3337
3338/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3339/// in the header of its containing loop, we know the loop executes a
3340/// constant number of times, and the PHI node is just a recurrence
3341/// involving constants, fold it.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003342Constant *ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00003343getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Chris Lattner3221ad02004-04-17 22:58:41 +00003344 std::map<PHINode*, Constant*>::iterator I =
3345 ConstantEvolutionLoopExitValue.find(PN);
3346 if (I != ConstantEvolutionLoopExitValue.end())
3347 return I->second;
3348
Dan Gohman46bdfb02009-02-24 18:55:53 +00003349 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00003350 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3351
3352 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3353
3354 // Since the loop is canonicalized, the PHI node must have two entries. One
3355 // entry must be a constant (coming in from outside of the loop), and the
3356 // second must be derived from the same PHI.
3357 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3358 Constant *StartCST =
3359 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3360 if (StartCST == 0)
3361 return RetVal = 0; // Must be a constant.
3362
3363 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3364 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3365 if (PN2 != PN)
3366 return RetVal = 0; // Not derived from same PHI.
3367
3368 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003369 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00003370 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00003371
Dan Gohman46bdfb02009-02-24 18:55:53 +00003372 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00003373 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00003374 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3375 if (IterationNum == NumIterations)
3376 return RetVal = PHIVal; // Got exit value!
3377
3378 // Compute the value of the PHI node for the next iteration.
3379 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3380 if (NextPHI == PHIVal)
3381 return RetVal = NextPHI; // Stopped evolving!
3382 if (NextPHI == 0)
3383 return 0; // Couldn't evaluate!
3384 PHIVal = NextPHI;
3385 }
3386}
3387
Dan Gohman46bdfb02009-02-24 18:55:53 +00003388/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00003389/// constant number of times (the condition evolves only from constants),
3390/// try to evaluate a few iterations of the loop until we get the exit
3391/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003392/// evaluate the trip count of the loop, return CouldNotCompute.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003393SCEVHandle ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00003394ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00003395 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003396 if (PN == 0) return CouldNotCompute;
Chris Lattner7980fb92004-04-17 18:36:24 +00003397
3398 // Since the loop is canonicalized, the PHI node must have two entries. One
3399 // entry must be a constant (coming in from outside of the loop), and the
3400 // second must be derived from the same PHI.
3401 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3402 Constant *StartCST =
3403 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003404 if (StartCST == 0) return CouldNotCompute; // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00003405
3406 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3407 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003408 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00003409
3410 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3411 // the loop symbolically to determine when the condition gets a value of
3412 // "ExitWhen".
3413 unsigned IterationNum = 0;
3414 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3415 for (Constant *PHIVal = StartCST;
3416 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003417 ConstantInt *CondVal =
3418 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00003419
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003420 // Couldn't symbolically evaluate.
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003421 if (!CondVal) return CouldNotCompute;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003422
Reid Spencere8019bb2007-03-01 07:25:48 +00003423 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003424 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00003425 ++NumBruteForceTripCountsComputed;
Dan Gohman6de29f82009-06-15 22:12:54 +00003426 return getConstant(Type::Int32Ty, IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00003427 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003428
Chris Lattner3221ad02004-04-17 22:58:41 +00003429 // Compute the value of the PHI node for the next iteration.
3430 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3431 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003432 return CouldNotCompute; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00003433 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00003434 }
3435
3436 // Too many iterations were needed to evaluate.
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003437 return CouldNotCompute;
Chris Lattner53e677a2004-04-02 20:23:17 +00003438}
3439
Dan Gohman66a7e852009-05-08 20:38:54 +00003440/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3441/// at the specified scope in the program. The L value specifies a loop
3442/// nest to evaluate the expression at, where null is the top-level or a
3443/// specified loop is immediately inside of the loop.
3444///
3445/// This method can be used to compute the exit value for a variable defined
3446/// in a loop by querying what the value will hold in the parent loop.
3447///
Dan Gohmand594e6f2009-05-24 23:25:42 +00003448/// In the case that a relevant loop exit value cannot be computed, the
3449/// original value V is returned.
Dan Gohman35738ac2009-05-04 22:30:44 +00003450SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003451 // FIXME: this should be turned into a virtual method on SCEV!
3452
Chris Lattner3221ad02004-04-17 22:58:41 +00003453 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003454
Nick Lewycky3e630762008-02-20 06:48:22 +00003455 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00003456 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00003457 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003458 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003459 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00003460 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3461 if (PHINode *PN = dyn_cast<PHINode>(I))
3462 if (PN->getParent() == LI->getHeader()) {
3463 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00003464 // to see if the loop that contains it has a known backedge-taken
3465 // count. If so, we may be able to force computation of the exit
3466 // value.
3467 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00003468 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003469 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003470 // Okay, we know how many times the containing loop executes. If
3471 // this is a constant evolving PHI node, get the final value at
3472 // the specified iteration number.
3473 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00003474 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00003475 LI);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003476 if (RV) return getUnknown(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00003477 }
3478 }
3479
Reid Spencer09906f32006-12-04 21:33:23 +00003480 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00003481 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00003482 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00003483 // result. This is particularly useful for computing loop exit values.
3484 if (CanConstantFold(I)) {
Dan Gohman6bce6432009-05-08 20:47:27 +00003485 // Check to see if we've folded this instruction at this loop before.
3486 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3487 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3488 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3489 if (!Pair.second)
3490 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
3491
Chris Lattner3221ad02004-04-17 22:58:41 +00003492 std::vector<Constant*> Operands;
3493 Operands.reserve(I->getNumOperands());
3494 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3495 Value *Op = I->getOperand(i);
3496 if (Constant *C = dyn_cast<Constant>(Op)) {
3497 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00003498 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00003499 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00003500 // non-integer and non-pointer, don't even try to analyze them
3501 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00003502 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00003503 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00003504
Chris Lattner3221ad02004-04-17 22:58:41 +00003505 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohman622ed672009-05-04 22:02:23 +00003506 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00003507 Constant *C = SC->getValue();
3508 if (C->getType() != Op->getType())
3509 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3510 Op->getType(),
3511 false),
3512 C, Op->getType());
3513 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00003514 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00003515 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3516 if (C->getType() != Op->getType())
3517 C =
3518 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3519 Op->getType(),
3520 false),
3521 C, Op->getType());
3522 Operands.push_back(C);
3523 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00003524 return V;
3525 } else {
3526 return V;
3527 }
3528 }
3529 }
Chris Lattnerf286f6f2007-12-10 22:53:04 +00003530
3531 Constant *C;
3532 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3533 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3534 &Operands[0], Operands.size());
3535 else
3536 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3537 &Operands[0], Operands.size());
Dan Gohman6bce6432009-05-08 20:47:27 +00003538 Pair.first->second = C;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003539 return getUnknown(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00003540 }
3541 }
3542
3543 // This is some other type of SCEVUnknown, just return it.
3544 return V;
3545 }
3546
Dan Gohman622ed672009-05-04 22:02:23 +00003547 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003548 // Avoid performing the look-up in the common case where the specified
3549 // expression has no loop-variant portions.
3550 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3551 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3552 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003553 // Okay, at least one of these operands is loop variant but might be
3554 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmana82752c2009-06-14 22:47:23 +00003555 SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00003556 NewOps.push_back(OpAtScope);
3557
3558 for (++i; i != e; ++i) {
3559 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003560 NewOps.push_back(OpAtScope);
3561 }
3562 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003563 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003564 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003565 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003566 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003567 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00003568 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003569 return getUMaxExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003570 assert(0 && "Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003571 }
3572 }
3573 // If we got here, all operands are loop invariant.
3574 return Comm;
3575 }
3576
Dan Gohman622ed672009-05-04 22:02:23 +00003577 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky789558d2009-01-13 09:18:58 +00003578 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00003579 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00003580 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3581 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003582 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00003583 }
3584
3585 // If this is a loop recurrence for a loop that does not contain L, then we
3586 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00003587 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003588 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3589 // To evaluate this recurrence, we need to know how many times the AddRec
3590 // loop iterates. Compute this now.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003591 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003592 if (BackedgeTakenCount == CouldNotCompute) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003593
Eli Friedmanb42a6262008-08-04 23:49:06 +00003594 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003595 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00003596 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00003597 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00003598 }
3599
Dan Gohman622ed672009-05-04 22:02:23 +00003600 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003601 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003602 if (Op == Cast->getOperand())
3603 return Cast; // must be loop invariant
3604 return getZeroExtendExpr(Op, Cast->getType());
3605 }
3606
Dan Gohman622ed672009-05-04 22:02:23 +00003607 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003608 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003609 if (Op == Cast->getOperand())
3610 return Cast; // must be loop invariant
3611 return getSignExtendExpr(Op, Cast->getType());
3612 }
3613
Dan Gohman622ed672009-05-04 22:02:23 +00003614 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003615 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003616 if (Op == Cast->getOperand())
3617 return Cast; // must be loop invariant
3618 return getTruncateExpr(Op, Cast->getType());
3619 }
3620
3621 assert(0 && "Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00003622 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00003623}
3624
Dan Gohman66a7e852009-05-08 20:38:54 +00003625/// getSCEVAtScope - This is a convenience function which does
3626/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003627SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3628 return getSCEVAtScope(getSCEV(V), L);
3629}
3630
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003631/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3632/// following equation:
3633///
3634/// A * X = B (mod N)
3635///
3636/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3637/// A and B isn't important.
3638///
3639/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3640static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3641 ScalarEvolution &SE) {
3642 uint32_t BW = A.getBitWidth();
3643 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3644 assert(A != 0 && "A must be non-zero.");
3645
3646 // 1. D = gcd(A, N)
3647 //
3648 // The gcd of A and N may have only one prime factor: 2. The number of
3649 // trailing zeros in A is its multiplicity
3650 uint32_t Mult2 = A.countTrailingZeros();
3651 // D = 2^Mult2
3652
3653 // 2. Check if B is divisible by D.
3654 //
3655 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3656 // is not less than multiplicity of this prime factor for D.
3657 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003658 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003659
3660 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3661 // modulo (N / D).
3662 //
3663 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3664 // bit width during computations.
3665 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3666 APInt Mod(BW + 1, 0);
3667 Mod.set(BW - Mult2); // Mod = N / D
3668 APInt I = AD.multiplicativeInverse(Mod);
3669
3670 // 4. Compute the minimum unsigned root of the equation:
3671 // I * (B / D) mod (N / D)
3672 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3673
3674 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3675 // bits.
3676 return SE.getConstant(Result.trunc(BW));
3677}
Chris Lattner53e677a2004-04-02 20:23:17 +00003678
3679/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3680/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3681/// might be the same) or two SCEVCouldNotCompute objects.
3682///
3683static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman246b2562007-10-22 18:31:58 +00003684SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003685 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00003686 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3687 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3688 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003689
Chris Lattner53e677a2004-04-02 20:23:17 +00003690 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00003691 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00003692 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003693 return std::make_pair(CNC, CNC);
3694 }
3695
Reid Spencere8019bb2007-03-01 07:25:48 +00003696 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00003697 const APInt &L = LC->getValue()->getValue();
3698 const APInt &M = MC->getValue()->getValue();
3699 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00003700 APInt Two(BitWidth, 2);
3701 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003702
Reid Spencere8019bb2007-03-01 07:25:48 +00003703 {
3704 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00003705 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00003706 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3707 // The B coefficient is M-N/2
3708 APInt B(M);
3709 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003710
Reid Spencere8019bb2007-03-01 07:25:48 +00003711 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00003712 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00003713
Reid Spencere8019bb2007-03-01 07:25:48 +00003714 // Compute the B^2-4ac term.
3715 APInt SqrtTerm(B);
3716 SqrtTerm *= B;
3717 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00003718
Reid Spencere8019bb2007-03-01 07:25:48 +00003719 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3720 // integer value or else APInt::sqrt() will assert.
3721 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003722
Reid Spencere8019bb2007-03-01 07:25:48 +00003723 // Compute the two solutions for the quadratic formula.
3724 // The divisions must be performed as signed divisions.
3725 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00003726 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00003727 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00003728 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00003729 return std::make_pair(CNC, CNC);
3730 }
3731
Reid Spencere8019bb2007-03-01 07:25:48 +00003732 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3733 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003734
Dan Gohman246b2562007-10-22 18:31:58 +00003735 return std::make_pair(SE.getConstant(Solution1),
3736 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00003737 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00003738}
3739
3740/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003741/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohman35738ac2009-05-04 22:30:44 +00003742SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003743 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00003744 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003745 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00003746 if (C->getValue()->isZero()) return C;
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003747 return CouldNotCompute; // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00003748 }
3749
Dan Gohman35738ac2009-05-04 22:30:44 +00003750 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003751 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003752 return CouldNotCompute;
Chris Lattner53e677a2004-04-02 20:23:17 +00003753
3754 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003755 // If this is an affine expression, the execution count of this branch is
3756 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00003757 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003758 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00003759 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003760 // equivalent to:
3761 //
3762 // Step*N = -Start (mod 2^BW)
3763 //
3764 // where BW is the common bit width of Start and Step.
3765
Chris Lattner53e677a2004-04-02 20:23:17 +00003766 // Get the initial value for the loop.
3767 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003768 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00003769
Dan Gohman622ed672009-05-04 22:02:23 +00003770 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003771 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00003772
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003773 // First, handle unitary steps.
3774 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003775 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003776 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3777 return Start; // N = Start (as unsigned)
3778
3779 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00003780 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003781 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003782 -StartC->getValue()->getValue(),
3783 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00003784 }
Chris Lattner42a75512007-01-15 02:27:26 +00003785 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003786 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3787 // the quadratic equation to solve it.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003788 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3789 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00003790 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3791 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00003792 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003793#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003794 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3795 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003796#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00003797 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003798 if (ConstantInt *CB =
3799 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00003800 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00003801 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00003802 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003803
Chris Lattner53e677a2004-04-02 20:23:17 +00003804 // We can only use this value if the chrec ends up with an exact zero
3805 // value at this index. When solving for "X*X != 5", for example, we
3806 // should not accept a root of 2.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003807 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00003808 if (Val->isZero())
3809 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00003810 }
3811 }
3812 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003813
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003814 return CouldNotCompute;
Chris Lattner53e677a2004-04-02 20:23:17 +00003815}
3816
3817/// HowFarToNonZero - Return the number of times a backedge checking the
3818/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003819/// CouldNotCompute
Dan Gohman35738ac2009-05-04 22:30:44 +00003820SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003821 // Loops that look like: while (X == 0) are very strange indeed. We don't
3822 // handle them yet except for the trivial case. This could be expanded in the
3823 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003824
Chris Lattner53e677a2004-04-02 20:23:17 +00003825 // If the value is a constant, check to see if it is known to be non-zero
3826 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00003827 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00003828 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003829 return getIntegerSCEV(0, C->getType());
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003830 return CouldNotCompute; // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00003831 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003832
Chris Lattner53e677a2004-04-02 20:23:17 +00003833 // We could implement others, but I really doubt anyone writes loops like
3834 // this, and if they did, they would already be constant folded.
Dan Gohman86fbf2f2009-06-06 14:37:11 +00003835 return CouldNotCompute;
Chris Lattner53e677a2004-04-02 20:23:17 +00003836}
3837
Dan Gohman859b4822009-05-18 15:36:09 +00003838/// getLoopPredecessor - If the given loop's header has exactly one unique
3839/// predecessor outside the loop, return it. Otherwise return null.
3840///
3841BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3842 BasicBlock *Header = L->getHeader();
3843 BasicBlock *Pred = 0;
3844 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3845 PI != E; ++PI)
3846 if (!L->contains(*PI)) {
3847 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3848 Pred = *PI;
3849 }
3850 return Pred;
3851}
3852
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003853/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3854/// (which may not be an immediate predecessor) which has exactly one
3855/// successor from which BB is reachable, or null if no such block is
3856/// found.
3857///
3858BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003859ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00003860 // If the block has a unique predecessor, then there is no path from the
3861 // predecessor to the block that does not go through the direct edge
3862 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003863 if (BasicBlock *Pred = BB->getSinglePredecessor())
3864 return Pred;
3865
3866 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00003867 // If the header has a unique predecessor outside the loop, it must be
3868 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003869 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00003870 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003871
3872 return 0;
3873}
3874
Dan Gohman763bad12009-06-20 00:35:32 +00003875/// HasSameValue - SCEV structural equivalence is usually sufficient for
3876/// testing whether two expressions are equal, however for the purposes of
3877/// looking for a condition guarding a loop, it can be useful to be a little
3878/// more general, since a front-end may have replicated the controlling
3879/// expression.
3880///
3881static bool HasSameValue(const SCEVHandle &A, const SCEVHandle &B) {
3882 // Quick check to see if they are the same SCEV.
3883 if (A == B) return true;
3884
3885 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
3886 // two different instructions with the same value. Check for this case.
3887 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
3888 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
3889 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
3890 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
3891 if (AI->isIdenticalTo(BI))
3892 return true;
3893
3894 // Otherwise assume they may have a different value.
3895 return false;
3896}
3897
Dan Gohmanc2390b12009-02-12 22:19:27 +00003898/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman3d739fe2009-04-30 20:48:53 +00003899/// a conditional between LHS and RHS. This is used to help avoid max
3900/// expressions in loop trip counts.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003901bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman3d739fe2009-04-30 20:48:53 +00003902 ICmpInst::Predicate Pred,
Dan Gohman35738ac2009-05-04 22:30:44 +00003903 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00003904 // Interpret a null as meaning no loop, where there is obviously no guard
3905 // (interprocedural conditions notwithstanding).
3906 if (!L) return false;
3907
Dan Gohman859b4822009-05-18 15:36:09 +00003908 BasicBlock *Predecessor = getLoopPredecessor(L);
3909 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00003910
Dan Gohman859b4822009-05-18 15:36:09 +00003911 // Starting at the loop predecessor, climb up the predecessor chain, as long
3912 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003913 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00003914 for (; Predecessor;
3915 PredecessorDest = Predecessor,
3916 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00003917
3918 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00003919 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00003920 if (!LoopEntryPredicate ||
3921 LoopEntryPredicate->isUnconditional())
3922 continue;
3923
3924 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3925 if (!ICI) continue;
3926
3927 // Now that we found a conditional branch that dominates the loop, check to
3928 // see if it is the comparison we are looking for.
3929 Value *PreCondLHS = ICI->getOperand(0);
3930 Value *PreCondRHS = ICI->getOperand(1);
3931 ICmpInst::Predicate Cond;
Dan Gohman859b4822009-05-18 15:36:09 +00003932 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
Dan Gohman38372182008-08-12 20:17:31 +00003933 Cond = ICI->getPredicate();
3934 else
3935 Cond = ICI->getInversePredicate();
3936
Dan Gohmanc2390b12009-02-12 22:19:27 +00003937 if (Cond == Pred)
3938 ; // An exact match.
3939 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3940 ; // The actual condition is beyond sufficient.
3941 else
3942 // Check a few special cases.
3943 switch (Cond) {
3944 case ICmpInst::ICMP_UGT:
3945 if (Pred == ICmpInst::ICMP_ULT) {
3946 std::swap(PreCondLHS, PreCondRHS);
3947 Cond = ICmpInst::ICMP_ULT;
3948 break;
3949 }
3950 continue;
3951 case ICmpInst::ICMP_SGT:
3952 if (Pred == ICmpInst::ICMP_SLT) {
3953 std::swap(PreCondLHS, PreCondRHS);
3954 Cond = ICmpInst::ICMP_SLT;
3955 break;
3956 }
3957 continue;
3958 case ICmpInst::ICMP_NE:
3959 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3960 // so check for this case by checking if the NE is comparing against
3961 // a minimum or maximum constant.
3962 if (!ICmpInst::isTrueWhenEqual(Pred))
3963 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3964 const APInt &A = CI->getValue();
3965 switch (Pred) {
3966 case ICmpInst::ICMP_SLT:
3967 if (A.isMaxSignedValue()) break;
3968 continue;
3969 case ICmpInst::ICMP_SGT:
3970 if (A.isMinSignedValue()) break;
3971 continue;
3972 case ICmpInst::ICMP_ULT:
3973 if (A.isMaxValue()) break;
3974 continue;
3975 case ICmpInst::ICMP_UGT:
3976 if (A.isMinValue()) break;
3977 continue;
3978 default:
3979 continue;
3980 }
3981 Cond = ICmpInst::ICMP_NE;
3982 // NE is symmetric but the original comparison may not be. Swap
3983 // the operands if necessary so that they match below.
3984 if (isa<SCEVConstant>(LHS))
3985 std::swap(PreCondLHS, PreCondRHS);
3986 break;
3987 }
3988 continue;
3989 default:
3990 // We weren't able to reconcile the condition.
3991 continue;
3992 }
Dan Gohman38372182008-08-12 20:17:31 +00003993
3994 if (!PreCondLHS->getType()->isInteger()) continue;
3995
3996 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3997 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
Dan Gohman763bad12009-06-20 00:35:32 +00003998 if ((HasSameValue(LHS, PreCondLHSSCEV) &&
3999 HasSameValue(RHS, PreCondRHSSCEV)) ||
4000 (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
4001 HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV))))
Dan Gohman38372182008-08-12 20:17:31 +00004002 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00004003 }
4004
Dan Gohman38372182008-08-12 20:17:31 +00004005 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00004006}
4007
Dan Gohman51f53b72009-06-21 23:46:38 +00004008/// getBECount - Subtract the end and start values and divide by the step,
4009/// rounding up, to get the number of times the backedge is executed. Return
4010/// CouldNotCompute if an intermediate computation overflows.
4011SCEVHandle ScalarEvolution::getBECount(const SCEVHandle &Start,
4012 const SCEVHandle &End,
4013 const SCEVHandle &Step) {
4014 const Type *Ty = Start->getType();
4015 SCEVHandle NegOne = getIntegerSCEV(-1, Ty);
4016 SCEVHandle Diff = getMinusSCEV(End, Start);
4017 SCEVHandle RoundUp = getAddExpr(Step, NegOne);
4018
4019 // Add an adjustment to the difference between End and Start so that
4020 // the division will effectively round up.
4021 SCEVHandle Add = getAddExpr(Diff, RoundUp);
4022
4023 // Check Add for unsigned overflow.
4024 // TODO: More sophisticated things could be done here.
4025 const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
4026 SCEVHandle OperandExtendedAdd =
4027 getAddExpr(getZeroExtendExpr(Diff, WideTy),
4028 getZeroExtendExpr(RoundUp, WideTy));
4029 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4030 return CouldNotCompute;
4031
4032 return getUDivExpr(Add, Step);
4033}
4034
Chris Lattnerdb25de42005-08-15 23:33:51 +00004035/// HowManyLessThans - Return the number of times a backedge containing the
4036/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004037/// CouldNotCompute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004038ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohman35738ac2009-05-04 22:30:44 +00004039HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4040 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00004041 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004042 if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004043
Dan Gohman35738ac2009-05-04 22:30:44 +00004044 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004045 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004046 return CouldNotCompute;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004047
4048 if (AddRec->isAffine()) {
Nick Lewycky789558d2009-01-13 09:18:58 +00004049 // FORNOW: We only support unit strides.
Dan Gohmana1af7572009-04-30 20:47:05 +00004050 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4051 SCEVHandle Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004052
4053 // TODO: handle non-constant strides.
4054 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4055 if (!CStep || CStep->isZero())
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004056 return CouldNotCompute;
Dan Gohman70a1fe72009-05-18 15:22:39 +00004057 if (CStep->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00004058 // With unit stride, the iteration never steps past the limit value.
4059 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4060 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4061 // Test whether a positive iteration iteration can step past the limit
4062 // value and past the maximum value for its type in a single step.
4063 if (isSigned) {
4064 APInt Max = APInt::getSignedMaxValue(BitWidth);
4065 if ((Max - CStep->getValue()->getValue())
4066 .slt(CLimit->getValue()->getValue()))
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004067 return CouldNotCompute;
Dan Gohmana1af7572009-04-30 20:47:05 +00004068 } else {
4069 APInt Max = APInt::getMaxValue(BitWidth);
4070 if ((Max - CStep->getValue()->getValue())
4071 .ult(CLimit->getValue()->getValue()))
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004072 return CouldNotCompute;
Dan Gohmana1af7572009-04-30 20:47:05 +00004073 }
4074 } else
4075 // TODO: handle non-constant limit values below.
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004076 return CouldNotCompute;
Dan Gohmana1af7572009-04-30 20:47:05 +00004077 } else
4078 // TODO: handle negative strides below.
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004079 return CouldNotCompute;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004080
Dan Gohmana1af7572009-04-30 20:47:05 +00004081 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4082 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4083 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00004084 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00004085
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004086 // First, we get the value of the LHS in the first iteration: n
4087 SCEVHandle Start = AddRec->getOperand(0);
4088
Dan Gohmana1af7572009-04-30 20:47:05 +00004089 // Determine the minimum constant start value.
4090 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
4091 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
4092 APInt::getMinValue(BitWidth));
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004093
Dan Gohmana1af7572009-04-30 20:47:05 +00004094 // If we know that the condition is true in order to enter the loop,
4095 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00004096 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4097 // the division must round up.
Dan Gohmana1af7572009-04-30 20:47:05 +00004098 SCEVHandle End = RHS;
4099 if (!isLoopGuardedByCond(L,
4100 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
4101 getMinusSCEV(Start, Step), RHS))
4102 End = isSigned ? getSMaxExpr(RHS, Start)
4103 : getUMaxExpr(RHS, Start);
4104
4105 // Determine the maximum constant end value.
Dan Gohman3964acc2009-06-20 00:32:22 +00004106 SCEVHandle MaxEnd =
4107 isa<SCEVConstant>(End) ? End :
4108 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
4109 .ashr(GetMinSignBits(End) - 1) :
4110 APInt::getMaxValue(BitWidth)
4111 .lshr(GetMinLeadingZeros(End)));
Dan Gohmana1af7572009-04-30 20:47:05 +00004112
4113 // Finally, we subtract these two values and divide, rounding up, to get
4114 // the number of times the backedge is executed.
Dan Gohman51f53b72009-06-21 23:46:38 +00004115 SCEVHandle BECount = getBECount(Start, End, Step);
Dan Gohmana1af7572009-04-30 20:47:05 +00004116
4117 // The maximum backedge count is similar, except using the minimum start
4118 // value and the maximum end value.
Dan Gohman51f53b72009-06-21 23:46:38 +00004119 SCEVHandle MaxBECount = getBECount(MinStart, MaxEnd, Step);;
Dan Gohmana1af7572009-04-30 20:47:05 +00004120
4121 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004122 }
4123
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004124 return CouldNotCompute;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004125}
4126
Chris Lattner53e677a2004-04-02 20:23:17 +00004127/// getNumIterationsInRange - Return the number of iterations of this loop that
4128/// produce values in the specified constant range. Another way of looking at
4129/// this is that it returns the first iteration number where the value is not in
4130/// the condition, thus computing the exit count. If the iteration count can't
4131/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman246b2562007-10-22 18:31:58 +00004132SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4133 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00004134 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004135 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004136
4137 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00004138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00004139 if (!SC->getValue()->isZero()) {
Dan Gohmana82752c2009-06-14 22:47:23 +00004140 SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00004141 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4142 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00004143 if (const SCEVAddRecExpr *ShiftedAddRec =
4144 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00004145 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00004146 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00004147 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004148 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004149 }
4150
4151 // The only time we can solve this is when we have all constant indices.
4152 // Otherwise, we cannot determine the overflow conditions.
4153 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4154 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004155 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004156
4157
4158 // Okay at this point we know that all elements of the chrec are constants and
4159 // that the start element is zero.
4160
4161 // First check to see if the range contains zero. If not, the first
4162 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00004163 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00004164 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00004165 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004166
Chris Lattner53e677a2004-04-02 20:23:17 +00004167 if (isAffine()) {
4168 // If this is an affine expression then we have this situation:
4169 // Solve {0,+,A} in Range === Ax in Range
4170
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00004171 // We know that zero is in the range. If A is positive then we know that
4172 // the upper value of the range must be the first possible exit value.
4173 // If A is negative then the lower of the range is the last possible loop
4174 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00004175 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00004176 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4177 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00004178
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00004179 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00004180 APInt ExitVal = (End + A).udiv(A);
Reid Spencerc7cd7a02007-03-01 19:32:33 +00004181 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00004182
4183 // Evaluate at the exit value. If we really did fall out of the valid
4184 // range, then we computed our trip count, otherwise wrap around or other
4185 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00004186 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00004187 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004188 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00004189
4190 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00004191 assert(Range.contains(
4192 EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00004193 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00004194 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00004195 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00004196 } else if (isQuadratic()) {
4197 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4198 // quadratic equation to solve it. To do this, we must frame our problem in
4199 // terms of figuring out when zero is crossed, instead of when
4200 // Range.getUpper() is crossed.
Dan Gohmana82752c2009-06-14 22:47:23 +00004201 SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00004202 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4203 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004204
4205 // Next, solve the constructed addrec
4206 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00004207 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00004208 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4209 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004210 if (R1) {
4211 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004212 if (ConstantInt *CB =
4213 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004214 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004215 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004216 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004217
Chris Lattner53e677a2004-04-02 20:23:17 +00004218 // Make sure the root is not off by one. The returned iteration should
4219 // not be in the range, but the previous one should be. When solving
4220 // for "X*X < 5", for example, we should not return a root of 2.
4221 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00004222 R1->getValue(),
4223 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00004224 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004225 // The next iteration must be out of the range...
Dan Gohman9a6ae962007-07-09 15:25:17 +00004226 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004227
Dan Gohman246b2562007-10-22 18:31:58 +00004228 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00004229 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00004230 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004231 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00004232 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004233
Chris Lattner53e677a2004-04-02 20:23:17 +00004234 // If R1 was not in the range, then it is a good return value. Make
4235 // sure that R1-1 WAS in the range though, just in case.
Dan Gohman9a6ae962007-07-09 15:25:17 +00004236 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00004237 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00004238 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00004239 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004240 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00004241 }
4242 }
4243 }
4244
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004245 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004246}
4247
4248
4249
4250//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00004251// SCEVCallbackVH Class Implementation
4252//===----------------------------------------------------------------------===//
4253
Dan Gohman1959b752009-05-19 19:22:47 +00004254void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohman35738ac2009-05-04 22:30:44 +00004255 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4256 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4257 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman6bce6432009-05-08 20:47:27 +00004258 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4259 SE->ValuesAtScopes.erase(I);
Dan Gohman35738ac2009-05-04 22:30:44 +00004260 SE->Scalars.erase(getValPtr());
4261 // this now dangles!
4262}
4263
Dan Gohman1959b752009-05-19 19:22:47 +00004264void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004265 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4266
4267 // Forget all the expressions associated with users of the old value,
4268 // so that future queries will recompute the expressions using the new
4269 // value.
4270 SmallVector<User *, 16> Worklist;
4271 Value *Old = getValPtr();
4272 bool DeleteOld = false;
4273 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4274 UI != UE; ++UI)
4275 Worklist.push_back(*UI);
4276 while (!Worklist.empty()) {
4277 User *U = Worklist.pop_back_val();
4278 // Deleting the Old value will cause this to dangle. Postpone
4279 // that until everything else is done.
4280 if (U == Old) {
4281 DeleteOld = true;
4282 continue;
4283 }
4284 if (PHINode *PN = dyn_cast<PHINode>(U))
4285 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman6bce6432009-05-08 20:47:27 +00004286 if (Instruction *I = dyn_cast<Instruction>(U))
4287 SE->ValuesAtScopes.erase(I);
Dan Gohman35738ac2009-05-04 22:30:44 +00004288 if (SE->Scalars.erase(U))
4289 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4290 UI != UE; ++UI)
4291 Worklist.push_back(*UI);
4292 }
4293 if (DeleteOld) {
4294 if (PHINode *PN = dyn_cast<PHINode>(Old))
4295 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman6bce6432009-05-08 20:47:27 +00004296 if (Instruction *I = dyn_cast<Instruction>(Old))
4297 SE->ValuesAtScopes.erase(I);
Dan Gohman35738ac2009-05-04 22:30:44 +00004298 SE->Scalars.erase(Old);
4299 // this now dangles!
4300 }
4301 // this may dangle!
4302}
4303
Dan Gohman1959b752009-05-19 19:22:47 +00004304ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00004305 : CallbackVH(V), SE(se) {}
4306
4307//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00004308// ScalarEvolution Class Implementation
4309//===----------------------------------------------------------------------===//
4310
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004311ScalarEvolution::ScalarEvolution()
Owen Anderson4a7893b2009-06-18 22:25:12 +00004312 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute(0)) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004313}
4314
Chris Lattner53e677a2004-04-02 20:23:17 +00004315bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004316 this->F = &F;
4317 LI = &getAnalysis<LoopInfo>();
4318 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattner53e677a2004-04-02 20:23:17 +00004319 return false;
4320}
4321
4322void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004323 Scalars.clear();
4324 BackedgeTakenCounts.clear();
4325 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00004326 ValuesAtScopes.clear();
Chris Lattner53e677a2004-04-02 20:23:17 +00004327}
4328
4329void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4330 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00004331 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00004332}
4333
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004334bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00004335 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00004336}
4337
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004338static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00004339 const Loop *L) {
4340 // Print all inner loops first
4341 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4342 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004343
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00004344 OS << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00004345
Devang Patelb7211a22007-08-21 00:31:24 +00004346 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00004347 L->getExitBlocks(ExitBlocks);
4348 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00004349 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004350
Dan Gohman46bdfb02009-02-24 18:55:53 +00004351 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4352 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004353 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00004354 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004355 }
4356
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00004357 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00004358}
4359
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004360void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004361 // ScalarEvolution's implementaiton of the print method is to print
4362 // out SCEV values of all instructions that are interesting. Doing
4363 // this potentially causes it to create new SCEV objects though,
4364 // which technically conflicts with the const qualifier. This isn't
4365 // observable from outside the class though (the hasSCEV function
4366 // notwithstanding), so casting away the const isn't dangerous.
4367 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004368
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004369 OS << "Classifying expressions for: " << F->getName() << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00004370 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00004371 if (isSCEVable(I->getType())) {
Chris Lattner6ffe5512004-04-27 15:13:33 +00004372 OS << *I;
Dan Gohman8dae1382008-09-14 17:21:12 +00004373 OS << " --> ";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004374 SCEVHandle SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00004375 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004376
Dan Gohman0c689c52009-06-19 17:49:54 +00004377 const Loop *L = LI->getLoopFor((*I).getParent());
4378
4379 SCEVHandle AtUse = SE.getSCEVAtScope(SV, L);
4380 if (AtUse != SV) {
4381 OS << " --> ";
4382 AtUse->print(OS);
4383 }
4384
4385 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00004386 OS << "\t\t" "Exits: ";
Dan Gohman0c689c52009-06-19 17:49:54 +00004387 SCEVHandle ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00004388 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004389 OS << "<<Unknown>>";
4390 } else {
4391 OS << *ExitValue;
4392 }
4393 }
4394
Chris Lattner53e677a2004-04-02 20:23:17 +00004395 OS << "\n";
4396 }
4397
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004398 OS << "Determining loop execution counts for: " << F->getName() << "\n";
4399 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4400 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00004401}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004402
4403void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4404 raw_os_ostream OS(o);
4405 print(OS, M);
4406}