blob: 4e495fb75cd562803bce8b3212d51c4f58e6cffd [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
28 string Name = n;
29
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
34 int SpillSize = 0;
35
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
40
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modify the aliased
43 // registers.
44 list<Register> Aliases = [];
45
46 // SubRegs - A list of registers that are parts of this register. Note these
47 // are "immediate" sub-registers and the registers within the list do not
48 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49 // not [AX, AH, AL].
50 list<Register> SubRegs = [];
51
52 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
53 // These values can be determined by locating the <target>.h file in the
54 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
55 // order of these names correspond to the enumeration used by gcc. A value of
56 // -1 indicates that the gcc number is undefined.
57 int DwarfNumber = -1;
58}
59
60// RegisterWithSubRegs - This can be used to define instances of Register which
61// need to specify sub-registers.
62// List "subregs" specifies which registers are sub-registers to this one. This
63// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
64// This allows the code generator to be careful not to put two values with
65// overlapping live ranges into registers which alias.
66class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
67 let SubRegs = subregs;
68}
69
70// SubRegSet - This can be used to define a specific mapping of registers to
71// indices, for use as named subregs of a particular physical register. Each
72// register in 'subregs' becomes an addressable subregister at index 'n' of the
73// corresponding register in 'regs'.
74class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
75 int index = n;
76
77 list<Register> From = regs;
78 list<Register> To = subregs;
79}
80
81// RegisterClass - Now that all of the registers are defined, and aliases
82// between registers are defined, specify which registers belong to which
83// register classes. This also defines the default allocation order of
84// registers by register allocators.
85//
86class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
87 list<Register> regList> {
88 string Namespace = namespace;
89
90 // RegType - Specify the list ValueType of the registers in this register
91 // class. Note that all registers in a register class must have the same
92 // ValueTypes. This is a list because some targets permit storing different
93 // types in same register, for example vector values with 128-bit total size,
94 // but different count/size of items, like SSE on x86.
95 //
96 list<ValueType> RegTypes = regTypes;
97
98 // Size - Specify the spill size in bits of the registers. A default value of
99 // zero lets tablgen pick an appropriate size.
100 int Size = 0;
101
102 // Alignment - Specify the alignment required of the registers when they are
103 // stored or loaded to memory.
104 //
105 int Alignment = alignment;
106
107 // MemberList - Specify which registers are in this class. If the
108 // allocation_order_* method are not specified, this also defines the order of
109 // allocation used by the register allocator.
110 //
111 list<Register> MemberList = regList;
112
113 // SubClassList - Specify which register classes correspond to subregisters
114 // of this class. The order should be by subregister set index.
115 list<RegisterClass> SubRegClassList = [];
116
117 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
118 // code into a generated register class. The normal usage of this is to
119 // overload virtual methods.
120 code MethodProtos = [{}];
121 code MethodBodies = [{}];
122}
123
124
125//===----------------------------------------------------------------------===//
126// DwarfRegNum - This class provides a mapping of the llvm register enumeration
127// to the register numbering used by gcc and gdb. These values are used by a
128// debug information writer (ex. DwarfWriter) to describe where values may be
129// located during execution.
130class DwarfRegNum<int N> {
131 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
132 // These values can be determined by locating the <target>.h file in the
133 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
134 // order of these names correspond to the enumeration used by gcc. A value of
135 // -1 indicates that the gcc number is undefined.
136 int DwarfNumber = N;
137}
138
139//===----------------------------------------------------------------------===//
140// Pull in the common support for scheduling
141//
142include "TargetSchedule.td"
143
144class Predicate; // Forward def
145
146//===----------------------------------------------------------------------===//
147// Instruction set description - These classes correspond to the C++ classes in
148// the Target/TargetInstrInfo.h file.
149//
150class Instruction {
151 string Name = ""; // The opcode string for this instruction
152 string Namespace = "";
153
Evan Chengb783fa32007-07-19 01:14:50 +0000154 dag OutOperandList; // An dag containing the MI def operand list.
155 dag InOperandList; // An dag containing the MI use operand list.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 string AsmString = ""; // The .s format to print the instruction with.
157
158 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
159 // otherwise, uninitialized.
160 list<dag> Pattern;
161
162 // The follow state will eventually be inferred automatically from the
163 // instruction pattern.
164
165 list<Register> Uses = []; // Default to using no non-operand registers
166 list<Register> Defs = []; // Default to modifying no non-operand registers
167
168 // Predicates - List of predicates which will be turned into isel matching
169 // code.
170 list<Predicate> Predicates = [];
171
172 // Code size.
173 int CodeSize = 0;
174
175 // Added complexity passed onto matching pattern.
176 int AddedComplexity = 0;
177
178 // These bits capture information about the high-level semantics of the
179 // instruction.
180 bit isReturn = 0; // Is this instruction a return instruction?
181 bit isBranch = 0; // Is this instruction a branch instruction?
182 bit isBarrier = 0; // Can control flow fall through this instruction?
183 bit isCall = 0; // Is this instruction a call instruction?
184 bit isLoad = 0; // Is this instruction a load instruction?
185 bit isStore = 0; // Is this instruction a store instruction?
186 bit isTwoAddress = 0; // Is this a two address instruction?
187 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
188 bit isCommutable = 0; // Is this 3 operand instruction commutable?
189 bit isTerminator = 0; // Is this part of the terminator for a basic block?
190 bit isReMaterializable = 0; // Is this instruction re-materializable?
191 bit isPredicable = 0; // Is this instruction predicable?
192 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
193 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
194 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
196
197 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
198
199 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
200
201 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
202 /// be encoded into the output machineinstr.
203 string DisableEncoding = "";
204}
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206/// Predicates - These are extra conditionals which are turned into instruction
207/// selector matching code. Currently each predicate is just a string.
208class Predicate<string cond> {
209 string CondString = cond;
210}
211
212/// NoHonorSignDependentRounding - This predicate is true if support for
213/// sign-dependent-rounding is not enabled.
214def NoHonorSignDependentRounding
215 : Predicate<"!HonorSignDependentRoundingFPMath()">;
216
217class Requires<list<Predicate> preds> {
218 list<Predicate> Predicates = preds;
219}
220
221/// ops definition - This is just a simple marker used to identify the operands
Evan Chengb783fa32007-07-19 01:14:50 +0000222/// list for an instruction. outs and ins are identical both syntatically and
223/// semantically, they are used to define def operands and use operands to
224/// improve readibility. This should be used like this:
225/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226def ops;
Evan Chengb783fa32007-07-19 01:14:50 +0000227def outs;
228def ins;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000229
230/// variable_ops definition - Mark this instruction as taking a variable number
231/// of operands.
232def variable_ops;
233
234/// ptr_rc definition - Mark this operand as being a pointer value whose
235/// register class is resolved dynamically via a callback to TargetInstrInfo.
236/// FIXME: We should probably change this to a class which contain a list of
237/// flags. But currently we have but one flag.
238def ptr_rc;
239
240/// Operand Types - These provide the built-in operand types that may be used
241/// by a target. Targets can optionally provide their own operand types as
242/// needed, though this should not be needed for RISC targets.
243class Operand<ValueType ty> {
244 ValueType Type = ty;
245 string PrintMethod = "printOperand";
246 dag MIOperandInfo = (ops);
247}
248
249def i1imm : Operand<i1>;
250def i8imm : Operand<i8>;
251def i16imm : Operand<i16>;
252def i32imm : Operand<i32>;
253def i64imm : Operand<i64>;
254
255/// zero_reg definition - Special node to stand for the zero register.
256///
257def zero_reg;
258
259/// PredicateOperand - This can be used to define a predicate operand for an
260/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
261/// AlwaysVal specifies the value of this predicate when set to "always
262/// execute".
263class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
264 : Operand<ty> {
265 let MIOperandInfo = OpTypes;
266 dag DefaultOps = AlwaysVal;
267}
268
269/// OptionalDefOperand - This is used to define a optional definition operand
270/// for an instruction. DefaultOps is the register the operand represents if none
271/// is supplied, e.g. zero_reg.
272class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
273 : Operand<ty> {
274 let MIOperandInfo = OpTypes;
275 dag DefaultOps = defaultops;
276}
277
278
279// InstrInfo - This class should only be instantiated once to provide parameters
280// which are global to the the target machine.
281//
282class InstrInfo {
283 // If the target wants to associate some target-specific information with each
284 // instruction, it should provide these two lists to indicate how to assemble
285 // the target specific information into the 32 bits available.
286 //
287 list<string> TSFlagsFields = [];
288 list<int> TSFlagsShifts = [];
289
290 // Target can specify its instructions in either big or little-endian formats.
291 // For instance, while both Sparc and PowerPC are big-endian platforms, the
292 // Sparc manual specifies its instructions in the format [31..0] (big), while
293 // PowerPC specifies them using the format [0..31] (little).
294 bit isLittleEndianEncoding = 0;
295}
296
297// Standard Instructions.
298def PHI : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000299 let OutOperandList = (ops);
300 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000301 let AsmString = "PHINODE";
302 let Namespace = "TargetInstrInfo";
303}
304def INLINEASM : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000305 let OutOperandList = (ops);
306 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 let AsmString = "";
308 let Namespace = "TargetInstrInfo";
309}
310def LABEL : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000311 let OutOperandList = (ops);
312 let InOperandList = (ops i32imm:$id);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313 let AsmString = "";
314 let Namespace = "TargetInstrInfo";
315 let hasCtrlDep = 1;
316}
Christopher Lamb071a2a72007-07-26 07:48:21 +0000317def EXTRACT_SUBREG : Instruction {
318 let OutOperandList = (ops variable_ops);
319 let InOperandList = (ops variable_ops);
320 let AsmString = "";
321 let Namespace = "TargetInstrInfo";
322}
323def INSERT_SUBREG : Instruction {
324 let OutOperandList = (ops variable_ops);
325 let InOperandList = (ops variable_ops);
326 let AsmString = "";
327 let Namespace = "TargetInstrInfo";
328}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329
330//===----------------------------------------------------------------------===//
331// AsmWriter - This class can be implemented by targets that need to customize
332// the format of the .s file writer.
333//
334// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
335// on X86 for example).
336//
337class AsmWriter {
338 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
339 // class. Generated AsmWriter classes are always prefixed with the target
340 // name.
341 string AsmWriterClassName = "AsmPrinter";
342
343 // InstFormatName - AsmWriters can specify the name of the format string to
344 // print instructions with.
345 string InstFormatName = "AsmString";
346
347 // Variant - AsmWriters can be of multiple different variants. Variants are
348 // used to support targets that need to emit assembly code in ways that are
349 // mostly the same for different targets, but have minor differences in
350 // syntax. If the asmstring contains {|} characters in them, this integer
351 // will specify which alternative to use. For example "{x|y|z}" with Variant
352 // == 1, will expand to "y".
353 int Variant = 0;
354}
355def DefaultAsmWriter : AsmWriter;
356
357
358//===----------------------------------------------------------------------===//
359// Target - This class contains the "global" target information
360//
361class Target {
362 // InstructionSet - Instruction set description for this target.
363 InstrInfo InstructionSet;
364
365 // AssemblyWriters - The AsmWriter instances available for this target.
366 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
367}
368
369//===----------------------------------------------------------------------===//
370// SubtargetFeature - A characteristic of the chip set.
371//
372class SubtargetFeature<string n, string a, string v, string d,
373 list<SubtargetFeature> i = []> {
374 // Name - Feature name. Used by command line (-mattr=) to determine the
375 // appropriate target chip.
376 //
377 string Name = n;
378
379 // Attribute - Attribute to be set by feature.
380 //
381 string Attribute = a;
382
383 // Value - Value the attribute to be set to by feature.
384 //
385 string Value = v;
386
387 // Desc - Feature description. Used by command line (-mattr=) to display help
388 // information.
389 //
390 string Desc = d;
391
392 // Implies - Features that this feature implies are present. If one of those
393 // features isn't set, then this one shouldn't be set either.
394 //
395 list<SubtargetFeature> Implies = i;
396}
397
398//===----------------------------------------------------------------------===//
399// Processor chip sets - These values represent each of the chip sets supported
400// by the scheduler. Each Processor definition requires corresponding
401// instruction itineraries.
402//
403class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
404 // Name - Chip set name. Used by command line (-mcpu=) to determine the
405 // appropriate target chip.
406 //
407 string Name = n;
408
409 // ProcItin - The scheduling information for the target processor.
410 //
411 ProcessorItineraries ProcItin = pi;
412
413 // Features - list of
414 list<SubtargetFeature> Features = f;
415}
416
417//===----------------------------------------------------------------------===//
418// Pull in the common support for calling conventions.
419//
420include "TargetCallingConv.td"
421
422//===----------------------------------------------------------------------===//
423// Pull in the common support for DAG isel generation.
424//
425include "TargetSelectionDAG.td"