blob: 0c0d66d753cf800a9b42ee61f7fbcd620388f511 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
28 string Name = n;
29
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
34 int SpillSize = 0;
35
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
40
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modify the aliased
43 // registers.
44 list<Register> Aliases = [];
45
46 // SubRegs - A list of registers that are parts of this register. Note these
47 // are "immediate" sub-registers and the registers within the list do not
48 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49 // not [AX, AH, AL].
50 list<Register> SubRegs = [];
51
52 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
53 // These values can be determined by locating the <target>.h file in the
54 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
55 // order of these names correspond to the enumeration used by gcc. A value of
56 // -1 indicates that the gcc number is undefined.
57 int DwarfNumber = -1;
58}
59
60// RegisterWithSubRegs - This can be used to define instances of Register which
61// need to specify sub-registers.
62// List "subregs" specifies which registers are sub-registers to this one. This
63// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
64// This allows the code generator to be careful not to put two values with
65// overlapping live ranges into registers which alias.
66class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
67 let SubRegs = subregs;
68}
69
70// SubRegSet - This can be used to define a specific mapping of registers to
71// indices, for use as named subregs of a particular physical register. Each
72// register in 'subregs' becomes an addressable subregister at index 'n' of the
73// corresponding register in 'regs'.
74class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
75 int index = n;
76
77 list<Register> From = regs;
78 list<Register> To = subregs;
79}
80
81// RegisterClass - Now that all of the registers are defined, and aliases
82// between registers are defined, specify which registers belong to which
83// register classes. This also defines the default allocation order of
84// registers by register allocators.
85//
86class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
87 list<Register> regList> {
88 string Namespace = namespace;
89
90 // RegType - Specify the list ValueType of the registers in this register
91 // class. Note that all registers in a register class must have the same
92 // ValueTypes. This is a list because some targets permit storing different
93 // types in same register, for example vector values with 128-bit total size,
94 // but different count/size of items, like SSE on x86.
95 //
96 list<ValueType> RegTypes = regTypes;
97
98 // Size - Specify the spill size in bits of the registers. A default value of
99 // zero lets tablgen pick an appropriate size.
100 int Size = 0;
101
102 // Alignment - Specify the alignment required of the registers when they are
103 // stored or loaded to memory.
104 //
105 int Alignment = alignment;
106
107 // MemberList - Specify which registers are in this class. If the
108 // allocation_order_* method are not specified, this also defines the order of
109 // allocation used by the register allocator.
110 //
111 list<Register> MemberList = regList;
112
113 // SubClassList - Specify which register classes correspond to subregisters
114 // of this class. The order should be by subregister set index.
115 list<RegisterClass> SubRegClassList = [];
116
117 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
118 // code into a generated register class. The normal usage of this is to
119 // overload virtual methods.
120 code MethodProtos = [{}];
121 code MethodBodies = [{}];
122}
123
124
125//===----------------------------------------------------------------------===//
126// DwarfRegNum - This class provides a mapping of the llvm register enumeration
127// to the register numbering used by gcc and gdb. These values are used by a
128// debug information writer (ex. DwarfWriter) to describe where values may be
129// located during execution.
130class DwarfRegNum<int N> {
131 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
132 // These values can be determined by locating the <target>.h file in the
133 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
134 // order of these names correspond to the enumeration used by gcc. A value of
135 // -1 indicates that the gcc number is undefined.
136 int DwarfNumber = N;
137}
138
139//===----------------------------------------------------------------------===//
140// Pull in the common support for scheduling
141//
142include "TargetSchedule.td"
143
144class Predicate; // Forward def
145
146//===----------------------------------------------------------------------===//
147// Instruction set description - These classes correspond to the C++ classes in
148// the Target/TargetInstrInfo.h file.
149//
150class Instruction {
151 string Name = ""; // The opcode string for this instruction
152 string Namespace = "";
153
Evan Chengb783fa32007-07-19 01:14:50 +0000154 dag OutOperandList; // An dag containing the MI def operand list.
155 dag InOperandList; // An dag containing the MI use operand list.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 string AsmString = ""; // The .s format to print the instruction with.
157
158 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
159 // otherwise, uninitialized.
160 list<dag> Pattern;
161
162 // The follow state will eventually be inferred automatically from the
163 // instruction pattern.
164
165 list<Register> Uses = []; // Default to using no non-operand registers
166 list<Register> Defs = []; // Default to modifying no non-operand registers
167
168 // Predicates - List of predicates which will be turned into isel matching
169 // code.
170 list<Predicate> Predicates = [];
171
172 // Code size.
173 int CodeSize = 0;
174
175 // Added complexity passed onto matching pattern.
176 int AddedComplexity = 0;
177
178 // These bits capture information about the high-level semantics of the
179 // instruction.
180 bit isReturn = 0; // Is this instruction a return instruction?
181 bit isBranch = 0; // Is this instruction a branch instruction?
182 bit isBarrier = 0; // Can control flow fall through this instruction?
183 bit isCall = 0; // Is this instruction a call instruction?
184 bit isLoad = 0; // Is this instruction a load instruction?
185 bit isStore = 0; // Is this instruction a store instruction?
186 bit isTwoAddress = 0; // Is this a two address instruction?
187 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
188 bit isCommutable = 0; // Is this 3 operand instruction commutable?
189 bit isTerminator = 0; // Is this part of the terminator for a basic block?
190 bit isReMaterializable = 0; // Is this instruction re-materializable?
191 bit isPredicable = 0; // Is this instruction predicable?
192 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
193 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
194 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
195 bit noResults = 0; // Does this instruction produce no results?
196 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
197
198 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
199
200 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
201
202 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
203 /// be encoded into the output machineinstr.
204 string DisableEncoding = "";
205}
206
207/// Imp - Helper class for specifying the implicit uses/defs set for an
208/// instruction.
209class Imp<list<Register> uses, list<Register> defs> {
210 list<Register> Uses = uses;
211 list<Register> Defs = defs;
212}
213
214/// Predicates - These are extra conditionals which are turned into instruction
215/// selector matching code. Currently each predicate is just a string.
216class Predicate<string cond> {
217 string CondString = cond;
218}
219
220/// NoHonorSignDependentRounding - This predicate is true if support for
221/// sign-dependent-rounding is not enabled.
222def NoHonorSignDependentRounding
223 : Predicate<"!HonorSignDependentRoundingFPMath()">;
224
225class Requires<list<Predicate> preds> {
226 list<Predicate> Predicates = preds;
227}
228
229/// ops definition - This is just a simple marker used to identify the operands
Evan Chengb783fa32007-07-19 01:14:50 +0000230/// list for an instruction. outs and ins are identical both syntatically and
231/// semantically, they are used to define def operands and use operands to
232/// improve readibility. This should be used like this:
233/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000234def ops;
Evan Chengb783fa32007-07-19 01:14:50 +0000235def outs;
236def ins;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237
238/// variable_ops definition - Mark this instruction as taking a variable number
239/// of operands.
240def variable_ops;
241
242/// ptr_rc definition - Mark this operand as being a pointer value whose
243/// register class is resolved dynamically via a callback to TargetInstrInfo.
244/// FIXME: We should probably change this to a class which contain a list of
245/// flags. But currently we have but one flag.
246def ptr_rc;
247
248/// Operand Types - These provide the built-in operand types that may be used
249/// by a target. Targets can optionally provide their own operand types as
250/// needed, though this should not be needed for RISC targets.
251class Operand<ValueType ty> {
252 ValueType Type = ty;
253 string PrintMethod = "printOperand";
254 dag MIOperandInfo = (ops);
255}
256
257def i1imm : Operand<i1>;
258def i8imm : Operand<i8>;
259def i16imm : Operand<i16>;
260def i32imm : Operand<i32>;
261def i64imm : Operand<i64>;
262
263/// zero_reg definition - Special node to stand for the zero register.
264///
265def zero_reg;
266
267/// PredicateOperand - This can be used to define a predicate operand for an
268/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
269/// AlwaysVal specifies the value of this predicate when set to "always
270/// execute".
271class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
272 : Operand<ty> {
273 let MIOperandInfo = OpTypes;
274 dag DefaultOps = AlwaysVal;
275}
276
277/// OptionalDefOperand - This is used to define a optional definition operand
278/// for an instruction. DefaultOps is the register the operand represents if none
279/// is supplied, e.g. zero_reg.
280class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
281 : Operand<ty> {
282 let MIOperandInfo = OpTypes;
283 dag DefaultOps = defaultops;
284}
285
286
287// InstrInfo - This class should only be instantiated once to provide parameters
288// which are global to the the target machine.
289//
290class InstrInfo {
291 // If the target wants to associate some target-specific information with each
292 // instruction, it should provide these two lists to indicate how to assemble
293 // the target specific information into the 32 bits available.
294 //
295 list<string> TSFlagsFields = [];
296 list<int> TSFlagsShifts = [];
297
298 // Target can specify its instructions in either big or little-endian formats.
299 // For instance, while both Sparc and PowerPC are big-endian platforms, the
300 // Sparc manual specifies its instructions in the format [31..0] (big), while
301 // PowerPC specifies them using the format [0..31] (little).
302 bit isLittleEndianEncoding = 0;
303}
304
305// Standard Instructions.
306def PHI : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000307 let OutOperandList = (ops);
308 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309 let AsmString = "PHINODE";
310 let Namespace = "TargetInstrInfo";
311}
312def INLINEASM : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000313 let OutOperandList = (ops);
314 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315 let AsmString = "";
316 let Namespace = "TargetInstrInfo";
317}
318def LABEL : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000319 let OutOperandList = (ops);
320 let InOperandList = (ops i32imm:$id);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321 let AsmString = "";
322 let Namespace = "TargetInstrInfo";
323 let hasCtrlDep = 1;
324}
325
326//===----------------------------------------------------------------------===//
327// AsmWriter - This class can be implemented by targets that need to customize
328// the format of the .s file writer.
329//
330// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
331// on X86 for example).
332//
333class AsmWriter {
334 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
335 // class. Generated AsmWriter classes are always prefixed with the target
336 // name.
337 string AsmWriterClassName = "AsmPrinter";
338
339 // InstFormatName - AsmWriters can specify the name of the format string to
340 // print instructions with.
341 string InstFormatName = "AsmString";
342
343 // Variant - AsmWriters can be of multiple different variants. Variants are
344 // used to support targets that need to emit assembly code in ways that are
345 // mostly the same for different targets, but have minor differences in
346 // syntax. If the asmstring contains {|} characters in them, this integer
347 // will specify which alternative to use. For example "{x|y|z}" with Variant
348 // == 1, will expand to "y".
349 int Variant = 0;
350}
351def DefaultAsmWriter : AsmWriter;
352
353
354//===----------------------------------------------------------------------===//
355// Target - This class contains the "global" target information
356//
357class Target {
358 // InstructionSet - Instruction set description for this target.
359 InstrInfo InstructionSet;
360
361 // AssemblyWriters - The AsmWriter instances available for this target.
362 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
363}
364
365//===----------------------------------------------------------------------===//
366// SubtargetFeature - A characteristic of the chip set.
367//
368class SubtargetFeature<string n, string a, string v, string d,
369 list<SubtargetFeature> i = []> {
370 // Name - Feature name. Used by command line (-mattr=) to determine the
371 // appropriate target chip.
372 //
373 string Name = n;
374
375 // Attribute - Attribute to be set by feature.
376 //
377 string Attribute = a;
378
379 // Value - Value the attribute to be set to by feature.
380 //
381 string Value = v;
382
383 // Desc - Feature description. Used by command line (-mattr=) to display help
384 // information.
385 //
386 string Desc = d;
387
388 // Implies - Features that this feature implies are present. If one of those
389 // features isn't set, then this one shouldn't be set either.
390 //
391 list<SubtargetFeature> Implies = i;
392}
393
394//===----------------------------------------------------------------------===//
395// Processor chip sets - These values represent each of the chip sets supported
396// by the scheduler. Each Processor definition requires corresponding
397// instruction itineraries.
398//
399class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
400 // Name - Chip set name. Used by command line (-mcpu=) to determine the
401 // appropriate target chip.
402 //
403 string Name = n;
404
405 // ProcItin - The scheduling information for the target processor.
406 //
407 ProcessorItineraries ProcItin = pi;
408
409 // Features - list of
410 list<SubtargetFeature> Features = f;
411}
412
413//===----------------------------------------------------------------------===//
414// Pull in the common support for calling conventions.
415//
416include "TargetCallingConv.td"
417
418//===----------------------------------------------------------------------===//
419// Pull in the common support for DAG isel generation.
420//
421include "TargetSelectionDAG.td"