blob: a350ea95f7a95d303cf26cd975c4099bcfa0a27c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53 cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56 cl::desc("Pop up a window to show sched dags as they are processed"));
Dan Gohman134c5b62007-08-28 20:32:58 +000057static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59 cl::desc("Pop up a window to show SUnit dags after they are processed"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060#else
Dan Gohman134c5b62007-08-28 20:32:58 +000061static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77 cl::opt<RegisterScheduler::FunctionPassCtor, false,
78 RegisterPassParser<RegisterScheduler> >
79 ISHeuristic("pre-RA-sched",
80 cl::init(&createDefaultScheduler),
81 cl::desc("Instruction schedulers available (before register allocation):"));
82
83 static RegisterScheduler
84 defaultListDAGScheduler("default", " Best scheduler for the target",
85 createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91 /// RegsForValue - This struct represents the physical registers that a
92 /// particular value is assigned and the type information about the value.
93 /// This is needed because values can be promoted into larger registers and
94 /// expanded into multiple smaller registers than the value.
95 struct VISIBILITY_HIDDEN RegsForValue {
96 /// Regs - This list holds the register (for legal and promoted values)
97 /// or register set (for expanded values) that the value should be assigned
98 /// to.
99 std::vector<unsigned> Regs;
100
101 /// RegVT - The value type of each register.
102 ///
103 MVT::ValueType RegVT;
104
105 /// ValueVT - The value type of the LLVM value, which may be promoted from
106 /// RegVT or made from merging the two expanded parts.
107 MVT::ValueType ValueVT;
108
109 RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111 RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112 : RegVT(regvt), ValueVT(valuevt) {
113 Regs.push_back(Reg);
114 }
115 RegsForValue(const std::vector<unsigned> &regs,
116 MVT::ValueType regvt, MVT::ValueType valuevt)
117 : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118 }
119
120 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121 /// this value and returns the result as a ValueVT value. This uses
122 /// Chain/Flag as the input and updates them for the output Chain/Flag.
123 /// If the Flag pointer is NULL, no flag is used.
124 SDOperand getCopyFromRegs(SelectionDAG &DAG,
125 SDOperand &Chain, SDOperand *Flag) const;
126
127 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128 /// specified value into the registers specified by this object. This uses
129 /// Chain/Flag as the input and updates them for the output Chain/Flag.
130 /// If the Flag pointer is NULL, no flag is used.
131 void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132 SDOperand &Chain, SDOperand *Flag) const;
133
134 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135 /// operand list. This adds the code marker and includes the number of
136 /// values added into it.
137 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138 std::vector<SDOperand> &Ops) const;
139 };
140}
141
142namespace llvm {
143 //===--------------------------------------------------------------------===//
144 /// createDefaultScheduler - This creates an instruction scheduler appropriate
145 /// for the target.
146 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147 SelectionDAG *DAG,
148 MachineBasicBlock *BB) {
149 TargetLowering &TLI = IS->getTargetLowering();
150
151 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152 return createTDListDAGScheduler(IS, DAG, BB);
153 } else {
154 assert(TLI.getSchedulingPreference() ==
155 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156 return createBURRListDAGScheduler(IS, DAG, BB);
157 }
158 }
159
160
161 //===--------------------------------------------------------------------===//
162 /// FunctionLoweringInfo - This contains information that is global to a
163 /// function that is used when lowering a region of the function.
164 class FunctionLoweringInfo {
165 public:
166 TargetLowering &TLI;
167 Function &Fn;
168 MachineFunction &MF;
169 SSARegMap *RegMap;
170
171 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176 /// ValueMap - Since we emit code for the function a basic block at a time,
177 /// we must remember which virtual registers hold the values for
178 /// cross-basic-block values.
179 DenseMap<const Value*, unsigned> ValueMap;
180
181 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182 /// the entry block. This allows the allocas to be efficiently referenced
183 /// anywhere in the function.
184 std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187 SmallSet<Instruction*, 8> CatchInfoLost;
188 SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191 unsigned MakeReg(MVT::ValueType VT) {
192 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193 }
194
195 /// isExportedInst - Return true if the specified value is an instruction
196 /// exported from its block.
197 bool isExportedInst(const Value *V) {
198 return ValueMap.count(V);
199 }
200
201 unsigned CreateRegForValue(const Value *V);
202
203 unsigned InitializeRegForValue(const Value *V) {
204 unsigned &R = ValueMap[V];
205 assert(R == 0 && "Already initialized this value register!");
206 return R = CreateRegForValue(V);
207 }
208 };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Anton Korobeynikov94c46a02007-09-07 11:39:35 +0000215 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216 II->getIntrinsicID() == Intrinsic::eh_selector_i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224 if (isa<PHINode>(I)) return true;
225 BasicBlock *BB = I->getParent();
226 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228 // FIXME: Remove switchinst special case.
229 isa<SwitchInst>(*UI))
230 return true;
231 return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true. This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238 BasicBlock *Entry = A->getParent()->begin();
239 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241 return false; // Use not in entry block.
242 return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246 Function &fn, MachineFunction &mf)
247 : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249 // Create a vreg for each argument register that is not dead and is used
250 // outside of the entry block for the function.
251 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252 AI != E; ++AI)
253 if (!isOnlyUsedInEntryBlock(AI))
254 InitializeRegForValue(AI);
255
256 // Initialize the mapping of values to registers. This is only set up for
257 // instruction values that are used outside of the block that defines
258 // them.
259 Function::iterator BB = Fn.begin(), EB = Fn.end();
260 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263 const Type *Ty = AI->getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000264 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265 unsigned Align =
266 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267 AI->getAlignment());
268
269 TySize *= CUI->getZExtValue(); // Get total allocated size.
270 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271 StaticAllocaMap[AI] =
272 MF.getFrameInfo()->CreateStackObject(TySize, Align);
273 }
274
275 for (; BB != EB; ++BB)
276 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278 if (!isa<AllocaInst>(I) ||
279 !StaticAllocaMap.count(cast<AllocaInst>(I)))
280 InitializeRegForValue(I);
281
282 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
283 // also creates the initial PHI MachineInstrs, though none of the input
284 // operands are populated.
285 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286 MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287 MBBMap[BB] = MBB;
288 MF.getBasicBlockList().push_back(MBB);
289
290 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291 // appropriate.
292 PHINode *PN;
293 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294 if (PN->use_empty()) continue;
295
296 MVT::ValueType VT = TLI.getValueType(PN->getType());
297 unsigned NumRegisters = TLI.getNumRegisters(VT);
298 unsigned PHIReg = ValueMap[PN];
299 assert(PHIReg && "PHI node does not have an assigned virtual register!");
300 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301 for (unsigned i = 0; i != NumRegisters; ++i)
302 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303 }
304 }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types. Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311 MVT::ValueType VT = TLI.getValueType(V->getType());
312
313 unsigned NumRegisters = TLI.getNumRegisters(VT);
314 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316 unsigned R = MakeReg(RegisterVT);
317 for (unsigned i = 1; i != NumRegisters; ++i)
318 MakeReg(RegisterVT);
319
320 return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330 MachineBasicBlock *CurMBB;
331
332 DenseMap<const Value*, SDOperand> NodeMap;
333
334 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
335 /// them up and then emit token factor nodes when possible. This allows us to
336 /// get simple disambiguation between loads without worrying about alias
337 /// analysis.
338 std::vector<SDOperand> PendingLoads;
339
340 /// Case - A struct to record the Value for a switch case, and the
341 /// case's target basic block.
342 struct Case {
343 Constant* Low;
344 Constant* High;
345 MachineBasicBlock* BB;
346
347 Case() : Low(0), High(0), BB(0) { }
348 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349 Low(low), High(high), BB(bb) { }
350 uint64_t size() const {
351 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
353 return (rHigh - rLow + 1ULL);
354 }
355 };
356
357 struct CaseBits {
358 uint64_t Mask;
359 MachineBasicBlock* BB;
360 unsigned Bits;
361
362 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363 Mask(mask), BB(bb), Bits(bits) { }
364 };
365
366 typedef std::vector<Case> CaseVector;
367 typedef std::vector<CaseBits> CaseBitsVector;
368 typedef CaseVector::iterator CaseItr;
369 typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372 /// of conditional branches.
373 struct CaseRec {
374 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377 /// CaseBB - The MBB in which to emit the compare and branch
378 MachineBasicBlock *CaseBB;
379 /// LT, GE - If nonzero, we know the current case value must be less-than or
380 /// greater-than-or-equal-to these Constants.
381 Constant *LT;
382 Constant *GE;
383 /// Range - A pair of iterators representing the range of case values to be
384 /// processed at this point in the binary search tree.
385 CaseRange Range;
386 };
387
388 typedef std::vector<CaseRec> CaseRecVector;
389
390 /// The comparison function for sorting the switch case values in the vector.
391 /// WARNING: Case ranges should be disjoint!
392 struct CaseCmp {
393 bool operator () (const Case& C1, const Case& C2) {
394 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397 return CI1->getValue().slt(CI2->getValue());
398 }
399 };
400
401 struct CaseBitsCmp {
402 bool operator () (const CaseBits& C1, const CaseBits& C2) {
403 return C1.Bits > C2.Bits;
404 }
405 };
406
407 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410 // TLI - This is information that describes the available target features we
411 // need for lowering. This indicates when operations are unavailable,
412 // implemented with a libcall, etc.
413 TargetLowering &TLI;
414 SelectionDAG &DAG;
415 const TargetData *TD;
Dan Gohmancc863aa2007-08-27 16:26:13 +0000416 AliasAnalysis &AA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417
418 /// SwitchCases - Vector of CaseBlock structures used to communicate
419 /// SwitchInst code generation information.
420 std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421 /// JTCases - Vector of JumpTable structures used to communicate
422 /// SwitchInst code generation information.
423 std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426 /// FuncInfo - Information about the function as a whole.
427 ///
428 FunctionLoweringInfo &FuncInfo;
429
430 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
Dan Gohmancc863aa2007-08-27 16:26:13 +0000431 AliasAnalysis &aa,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 FunctionLoweringInfo &funcinfo)
Dan Gohmancc863aa2007-08-27 16:26:13 +0000433 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 FuncInfo(funcinfo) {
435 }
436
437 /// getRoot - Return the current virtual root of the Selection DAG.
438 ///
439 SDOperand getRoot() {
440 if (PendingLoads.empty())
441 return DAG.getRoot();
442
443 if (PendingLoads.size() == 1) {
444 SDOperand Root = PendingLoads[0];
445 DAG.setRoot(Root);
446 PendingLoads.clear();
447 return Root;
448 }
449
450 // Otherwise, we have to make a token factor node.
451 SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452 &PendingLoads[0], PendingLoads.size());
453 PendingLoads.clear();
454 DAG.setRoot(Root);
455 return Root;
456 }
457
458 SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460 void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462 void visit(unsigned Opcode, User &I) {
463 // Note: this doesn't use InstVisitor, because it has to work with
464 // ConstantExpr's in addition to instructions.
465 switch (Opcode) {
466 default: assert(0 && "Unknown instruction type encountered!");
467 abort();
468 // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472 }
473 }
474
475 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477 SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478 const Value *SV, SDOperand Root,
479 bool isVolatile, unsigned Alignment);
480
481 SDOperand getIntPtrConstant(uint64_t Val) {
482 return DAG.getConstant(Val, TLI.getPointerTy());
483 }
484
485 SDOperand getValue(const Value *V);
486
487 void setValue(const Value *V, SDOperand NewN) {
488 SDOperand &N = NodeMap[V];
489 assert(N.Val == 0 && "Already set a value for this node!");
490 N = NewN;
491 }
492
493 void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494 std::set<unsigned> &OutputRegs,
495 std::set<unsigned> &InputRegs);
496
497 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499 unsigned Opc);
500 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501 void ExportFromCurrentBlock(Value *V);
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000502 void LowerCallTo(Instruction &I, const Type *CalledValueTy,
503 const ParamAttrsList *PAL, unsigned CallingConv,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 bool IsTailCall, SDOperand Callee, unsigned OpIdx,
505 MachineBasicBlock *LandingPad = NULL);
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000506
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 // Terminator instructions.
508 void visitRet(ReturnInst &I);
509 void visitBr(BranchInst &I);
510 void visitSwitch(SwitchInst &I);
511 void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513 // Helpers for visitSwitch
514 bool handleSmallSwitchRange(CaseRec& CR,
515 CaseRecVector& WorkList,
516 Value* SV,
517 MachineBasicBlock* Default);
518 bool handleJTSwitchCase(CaseRec& CR,
519 CaseRecVector& WorkList,
520 Value* SV,
521 MachineBasicBlock* Default);
522 bool handleBTSplitSwitchCase(CaseRec& CR,
523 CaseRecVector& WorkList,
524 Value* SV,
525 MachineBasicBlock* Default);
526 bool handleBitTestsSwitchCase(CaseRec& CR,
527 CaseRecVector& WorkList,
528 Value* SV,
529 MachineBasicBlock* Default);
530 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532 void visitBitTestCase(MachineBasicBlock* NextMBB,
533 unsigned Reg,
534 SelectionDAGISel::BitTestCase &B);
535 void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537 SelectionDAGISel::JumpTableHeader &JTH);
538
539 // These all get lowered before this pass.
540 void visitInvoke(InvokeInst &I);
541 void visitUnwind(UnwindInst &I);
542
543 void visitBinary(User &I, unsigned OpCode);
544 void visitShift(User &I, unsigned Opcode);
545 void visitAdd(User &I) {
546 if (I.getType()->isFPOrFPVector())
547 visitBinary(I, ISD::FADD);
548 else
549 visitBinary(I, ISD::ADD);
550 }
551 void visitSub(User &I);
552 void visitMul(User &I) {
553 if (I.getType()->isFPOrFPVector())
554 visitBinary(I, ISD::FMUL);
555 else
556 visitBinary(I, ISD::MUL);
557 }
558 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565 void visitOr (User &I) { visitBinary(I, ISD::OR); }
566 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567 void visitShl (User &I) { visitShift(I, ISD::SHL); }
568 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570 void visitICmp(User &I);
571 void visitFCmp(User &I);
572 // Visit the conversion instructions
573 void visitTrunc(User &I);
574 void visitZExt(User &I);
575 void visitSExt(User &I);
576 void visitFPTrunc(User &I);
577 void visitFPExt(User &I);
578 void visitFPToUI(User &I);
579 void visitFPToSI(User &I);
580 void visitUIToFP(User &I);
581 void visitSIToFP(User &I);
582 void visitPtrToInt(User &I);
583 void visitIntToPtr(User &I);
584 void visitBitCast(User &I);
585
586 void visitExtractElement(User &I);
587 void visitInsertElement(User &I);
588 void visitShuffleVector(User &I);
589
590 void visitGetElementPtr(User &I);
591 void visitSelect(User &I);
592
593 void visitMalloc(MallocInst &I);
594 void visitFree(FreeInst &I);
595 void visitAlloca(AllocaInst &I);
596 void visitLoad(LoadInst &I);
597 void visitStore(StoreInst &I);
598 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599 void visitCall(CallInst &I);
600 void visitInlineAsm(CallInst &I);
601 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604 void visitVAStart(CallInst &I);
605 void visitVAArg(VAArgInst &I);
606 void visitVAEnd(CallInst &I);
607 void visitVACopy(CallInst &I);
608
609 void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611 void visitUserOp1(Instruction &I) {
612 assert(0 && "UserOp1 should not exist at instruction selection time!");
613 abort();
614 }
615 void visitUserOp2(Instruction &I) {
616 assert(0 && "UserOp2 should not exist at instruction selection time!");
617 abort();
618 }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626 const SDOperand *Parts,
627 unsigned NumParts,
628 MVT::ValueType PartVT,
629 MVT::ValueType ValueVT,
630 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631 if (!MVT::isVector(ValueVT) || NumParts == 1) {
632 SDOperand Val = Parts[0];
633
634 // If the value was expanded, copy from the top part.
635 if (NumParts > 1) {
636 assert(NumParts == 2 &&
637 "Cannot expand to more than 2 elts yet!");
638 SDOperand Hi = Parts[1];
639 if (!DAG.getTargetLoweringInfo().isLittleEndian())
640 std::swap(Val, Hi);
641 return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642 }
643
644 // Otherwise, if the value was promoted or extended, truncate it to the
645 // appropriate type.
646 if (PartVT == ValueVT)
647 return Val;
648
649 if (MVT::isVector(PartVT)) {
650 assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000651 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
652 }
653
654 if (MVT::isVector(ValueVT)) {
655 assert(NumParts == 1 &&
656 MVT::getVectorElementType(ValueVT) == PartVT &&
657 MVT::getVectorNumElements(ValueVT) == 1 &&
658 "Only trivial scalar-to-vector conversions should get here!");
659 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 }
661
662 if (MVT::isInteger(PartVT) &&
663 MVT::isInteger(ValueVT)) {
664 if (ValueVT < PartVT) {
665 // For a truncate, see if we have any information to
666 // indicate whether the truncated bits will always be
667 // zero or sign-extension.
668 if (AssertOp != ISD::DELETED_NODE)
669 Val = DAG.getNode(AssertOp, PartVT, Val,
670 DAG.getValueType(ValueVT));
671 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
672 } else {
673 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
674 }
675 }
676
677 if (MVT::isFloatingPoint(PartVT) &&
678 MVT::isFloatingPoint(ValueVT))
679 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
680
681 if (MVT::getSizeInBits(PartVT) ==
682 MVT::getSizeInBits(ValueVT))
683 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
684
685 assert(0 && "Unknown mismatch!");
686 }
687
688 // Handle a multi-element vector.
689 MVT::ValueType IntermediateVT, RegisterVT;
690 unsigned NumIntermediates;
691 unsigned NumRegs =
692 DAG.getTargetLoweringInfo()
693 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
694 RegisterVT);
695
696 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
697 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
698 assert(RegisterVT == Parts[0].getValueType() &&
699 "Part type doesn't match part!");
700
701 // Assemble the parts into intermediate operands.
702 SmallVector<SDOperand, 8> Ops(NumIntermediates);
703 if (NumIntermediates == NumParts) {
704 // If the register was not expanded, truncate or copy the value,
705 // as appropriate.
706 for (unsigned i = 0; i != NumParts; ++i)
707 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
708 PartVT, IntermediateVT);
709 } else if (NumParts > 0) {
710 // If the intermediate type was expanded, build the intermediate operands
711 // from the parts.
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000712 assert(NumParts % NumIntermediates == 0 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 "Must expand into a divisible number of parts!");
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000714 unsigned Factor = NumParts / NumIntermediates;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 for (unsigned i = 0; i != NumIntermediates; ++i)
716 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
717 PartVT, IntermediateVT);
718 }
719
720 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
721 // operands.
722 return DAG.getNode(MVT::isVector(IntermediateVT) ?
723 ISD::CONCAT_VECTORS :
724 ISD::BUILD_VECTOR,
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000725 ValueVT, &Ops[0], NumIntermediates);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726}
727
728/// getCopyToParts - Create a series of nodes that contain the
729/// specified value split into legal parts.
730static void getCopyToParts(SelectionDAG &DAG,
731 SDOperand Val,
732 SDOperand *Parts,
733 unsigned NumParts,
734 MVT::ValueType PartVT) {
Dan Gohmanf7b05132007-08-10 14:59:38 +0000735 TargetLowering &TLI = DAG.getTargetLoweringInfo();
736 MVT::ValueType PtrVT = TLI.getPointerTy();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 MVT::ValueType ValueVT = Val.getValueType();
738
739 if (!MVT::isVector(ValueVT) || NumParts == 1) {
740 // If the value was expanded, copy from the parts.
741 if (NumParts > 1) {
742 for (unsigned i = 0; i != NumParts; ++i)
743 Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000744 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 if (!DAG.getTargetLoweringInfo().isLittleEndian())
746 std::reverse(Parts, Parts + NumParts);
747 return;
748 }
749
750 // If there is a single part and the types differ, this must be
751 // a promotion.
752 if (PartVT != ValueVT) {
753 if (MVT::isVector(PartVT)) {
754 assert(MVT::isVector(ValueVT) &&
755 "Not a vector-vector cast?");
756 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000757 } else if (MVT::isVector(ValueVT)) {
758 assert(NumParts == 1 &&
759 MVT::getVectorElementType(ValueVT) == PartVT &&
760 MVT::getVectorNumElements(ValueVT) == 1 &&
761 "Only trivial vector-to-scalar conversions should get here!");
762 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
763 DAG.getConstant(0, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
765 if (PartVT < ValueVT)
766 Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
767 else
768 Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
769 } else if (MVT::isFloatingPoint(PartVT) &&
770 MVT::isFloatingPoint(ValueVT)) {
771 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
772 } else if (MVT::getSizeInBits(PartVT) ==
773 MVT::getSizeInBits(ValueVT)) {
774 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
775 } else {
776 assert(0 && "Unknown mismatch!");
777 }
778 }
779 Parts[0] = Val;
780 return;
781 }
782
783 // Handle a multi-element vector.
784 MVT::ValueType IntermediateVT, RegisterVT;
785 unsigned NumIntermediates;
786 unsigned NumRegs =
787 DAG.getTargetLoweringInfo()
788 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
789 RegisterVT);
790 unsigned NumElements = MVT::getVectorNumElements(ValueVT);
791
792 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
793 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
794
795 // Split the vector into intermediate operands.
796 SmallVector<SDOperand, 8> Ops(NumIntermediates);
797 for (unsigned i = 0; i != NumIntermediates; ++i)
798 if (MVT::isVector(IntermediateVT))
799 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
800 IntermediateVT, Val,
801 DAG.getConstant(i * (NumElements / NumIntermediates),
Dan Gohmanf7b05132007-08-10 14:59:38 +0000802 PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000803 else
804 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
805 IntermediateVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000806 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000807
808 // Split the intermediate operands into legal parts.
809 if (NumParts == NumIntermediates) {
810 // If the register was not expanded, promote or copy the value,
811 // as appropriate.
812 for (unsigned i = 0; i != NumParts; ++i)
813 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
814 } else if (NumParts > 0) {
815 // If the intermediate type was expanded, split each the value into
816 // legal parts.
817 assert(NumParts % NumIntermediates == 0 &&
818 "Must expand into a divisible number of parts!");
819 unsigned Factor = NumParts / NumIntermediates;
820 for (unsigned i = 0; i != NumIntermediates; ++i)
821 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
822 }
823}
824
825
826SDOperand SelectionDAGLowering::getValue(const Value *V) {
827 SDOperand &N = NodeMap[V];
828 if (N.Val) return N;
829
830 const Type *VTy = V->getType();
831 MVT::ValueType VT = TLI.getValueType(VTy);
832 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
833 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
834 visit(CE->getOpcode(), *CE);
835 SDOperand N1 = NodeMap[V];
836 assert(N1.Val && "visit didn't populate the ValueMap!");
837 return N1;
838 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
839 return N = DAG.getGlobalAddress(GV, VT);
840 } else if (isa<ConstantPointerNull>(C)) {
841 return N = DAG.getConstant(0, TLI.getPointerTy());
842 } else if (isa<UndefValue>(C)) {
843 if (!isa<VectorType>(VTy))
844 return N = DAG.getNode(ISD::UNDEF, VT);
845
846 // Create a BUILD_VECTOR of undef nodes.
847 const VectorType *PTy = cast<VectorType>(VTy);
848 unsigned NumElements = PTy->getNumElements();
849 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
850
851 SmallVector<SDOperand, 8> Ops;
852 Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
853
854 // Create a VConstant node with generic Vector type.
855 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
856 return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
857 &Ops[0], Ops.size());
858 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000859 return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
861 unsigned NumElements = PTy->getNumElements();
862 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
863
864 // Now that we know the number and type of the elements, push a
865 // Constant or ConstantFP node onto the ops list for each element of
866 // the vector constant.
867 SmallVector<SDOperand, 8> Ops;
868 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
869 for (unsigned i = 0; i != NumElements; ++i)
870 Ops.push_back(getValue(CP->getOperand(i)));
871 } else {
872 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
873 SDOperand Op;
874 if (MVT::isFloatingPoint(PVT))
875 Op = DAG.getConstantFP(0, PVT);
876 else
877 Op = DAG.getConstant(0, PVT);
878 Ops.assign(NumElements, Op);
879 }
880
881 // Create a BUILD_VECTOR node.
882 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
883 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
884 Ops.size());
885 } else {
886 // Canonicalize all constant ints to be unsigned.
887 return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
888 }
889 }
890
891 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
892 std::map<const AllocaInst*, int>::iterator SI =
893 FuncInfo.StaticAllocaMap.find(AI);
894 if (SI != FuncInfo.StaticAllocaMap.end())
895 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
896 }
897
898 unsigned InReg = FuncInfo.ValueMap[V];
899 assert(InReg && "Value not in map!");
900
901 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
902 unsigned NumRegs = TLI.getNumRegisters(VT);
903
904 std::vector<unsigned> Regs(NumRegs);
905 for (unsigned i = 0; i != NumRegs; ++i)
906 Regs[i] = InReg + i;
907
908 RegsForValue RFV(Regs, RegisterVT, VT);
909 SDOperand Chain = DAG.getEntryNode();
910
911 return RFV.getCopyFromRegs(DAG, Chain, NULL);
912}
913
914
915void SelectionDAGLowering::visitRet(ReturnInst &I) {
916 if (I.getNumOperands() == 0) {
917 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
918 return;
919 }
920 SmallVector<SDOperand, 8> NewValues;
921 NewValues.push_back(getRoot());
922 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
923 SDOperand RetOp = getValue(I.getOperand(i));
924
925 // If this is an integer return value, we need to promote it ourselves to
926 // the full width of a register, since getCopyToParts and Legalize will use
927 // ANY_EXTEND rather than sign/zero.
928 // FIXME: C calling convention requires the return type to be promoted to
929 // at least 32-bit. But this is not necessary for non-C calling conventions.
930 if (MVT::isInteger(RetOp.getValueType()) &&
931 RetOp.getValueType() < MVT::i64) {
932 MVT::ValueType TmpVT;
933 if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
934 TmpVT = TLI.getTypeToTransformTo(MVT::i32);
935 else
936 TmpVT = MVT::i32;
Duncan Sands637ec552007-11-28 17:07:01 +0000937 const Function *F = I.getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000938 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000939 if (F->paramHasAttr(0, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000940 ExtendKind = ISD::SIGN_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000941 if (F->paramHasAttr(0, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942 ExtendKind = ISD::ZERO_EXTEND;
943 RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
944 NewValues.push_back(RetOp);
945 NewValues.push_back(DAG.getConstant(false, MVT::i32));
946 } else {
947 MVT::ValueType VT = RetOp.getValueType();
948 unsigned NumParts = TLI.getNumRegisters(VT);
949 MVT::ValueType PartVT = TLI.getRegisterType(VT);
950 SmallVector<SDOperand, 4> Parts(NumParts);
951 getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
952 for (unsigned i = 0; i < NumParts; ++i) {
953 NewValues.push_back(Parts[i]);
954 NewValues.push_back(DAG.getConstant(false, MVT::i32));
955 }
956 }
957 }
958 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
959 &NewValues[0], NewValues.size()));
960}
961
962/// ExportFromCurrentBlock - If this condition isn't known to be exported from
963/// the current basic block, add it to ValueMap now so that we'll get a
964/// CopyTo/FromReg.
965void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
966 // No need to export constants.
967 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
968
969 // Already exported?
970 if (FuncInfo.isExportedInst(V)) return;
971
972 unsigned Reg = FuncInfo.InitializeRegForValue(V);
973 PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
974}
975
976bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
977 const BasicBlock *FromBB) {
978 // The operands of the setcc have to be in this block. We don't know
979 // how to export them from some other block.
980 if (Instruction *VI = dyn_cast<Instruction>(V)) {
981 // Can export from current BB.
982 if (VI->getParent() == FromBB)
983 return true;
984
985 // Is already exported, noop.
986 return FuncInfo.isExportedInst(V);
987 }
988
989 // If this is an argument, we can export it if the BB is the entry block or
990 // if it is already exported.
991 if (isa<Argument>(V)) {
992 if (FromBB == &FromBB->getParent()->getEntryBlock())
993 return true;
994
995 // Otherwise, can only export this if it is already exported.
996 return FuncInfo.isExportedInst(V);
997 }
998
999 // Otherwise, constants can always be exported.
1000 return true;
1001}
1002
1003static bool InBlock(const Value *V, const BasicBlock *BB) {
1004 if (const Instruction *I = dyn_cast<Instruction>(V))
1005 return I->getParent() == BB;
1006 return true;
1007}
1008
1009/// FindMergedConditions - If Cond is an expression like
1010void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1011 MachineBasicBlock *TBB,
1012 MachineBasicBlock *FBB,
1013 MachineBasicBlock *CurBB,
1014 unsigned Opc) {
1015 // If this node is not part of the or/and tree, emit it as a branch.
1016 Instruction *BOp = dyn_cast<Instruction>(Cond);
1017
1018 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1019 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1020 BOp->getParent() != CurBB->getBasicBlock() ||
1021 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1022 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1023 const BasicBlock *BB = CurBB->getBasicBlock();
1024
1025 // If the leaf of the tree is a comparison, merge the condition into
1026 // the caseblock.
1027 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1028 // The operands of the cmp have to be in this block. We don't know
1029 // how to export them from some other block. If this is the first block
1030 // of the sequence, no exporting is needed.
1031 (CurBB == CurMBB ||
1032 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1033 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1034 BOp = cast<Instruction>(Cond);
1035 ISD::CondCode Condition;
1036 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1037 switch (IC->getPredicate()) {
1038 default: assert(0 && "Unknown icmp predicate opcode!");
1039 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1040 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1041 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1042 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1043 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1044 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1045 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1046 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1047 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1048 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1049 }
1050 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1051 ISD::CondCode FPC, FOC;
1052 switch (FC->getPredicate()) {
1053 default: assert(0 && "Unknown fcmp predicate opcode!");
1054 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1055 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1056 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1057 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1058 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1059 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1060 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1061 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
1062 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
1063 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1064 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1065 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1066 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1067 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1068 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1069 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1070 }
1071 if (FiniteOnlyFPMath())
1072 Condition = FOC;
1073 else
1074 Condition = FPC;
1075 } else {
1076 Condition = ISD::SETEQ; // silence warning.
1077 assert(0 && "Unknown compare instruction");
1078 }
1079
1080 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1081 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1082 SwitchCases.push_back(CB);
1083 return;
1084 }
1085
1086 // Create a CaseBlock record representing this branch.
1087 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1088 NULL, TBB, FBB, CurBB);
1089 SwitchCases.push_back(CB);
1090 return;
1091 }
1092
1093
1094 // Create TmpBB after CurBB.
1095 MachineFunction::iterator BBI = CurBB;
1096 MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1097 CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1098
1099 if (Opc == Instruction::Or) {
1100 // Codegen X | Y as:
1101 // jmp_if_X TBB
1102 // jmp TmpBB
1103 // TmpBB:
1104 // jmp_if_Y TBB
1105 // jmp FBB
1106 //
1107
1108 // Emit the LHS condition.
1109 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1110
1111 // Emit the RHS condition into TmpBB.
1112 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1113 } else {
1114 assert(Opc == Instruction::And && "Unknown merge op!");
1115 // Codegen X & Y as:
1116 // jmp_if_X TmpBB
1117 // jmp FBB
1118 // TmpBB:
1119 // jmp_if_Y TBB
1120 // jmp FBB
1121 //
1122 // This requires creation of TmpBB after CurBB.
1123
1124 // Emit the LHS condition.
1125 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1126
1127 // Emit the RHS condition into TmpBB.
1128 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1129 }
1130}
1131
1132/// If the set of cases should be emitted as a series of branches, return true.
1133/// If we should emit this as a bunch of and/or'd together conditions, return
1134/// false.
1135static bool
1136ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1137 if (Cases.size() != 2) return true;
1138
1139 // If this is two comparisons of the same values or'd or and'd together, they
1140 // will get folded into a single comparison, so don't emit two blocks.
1141 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1142 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1143 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1144 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1145 return false;
1146 }
1147
1148 return true;
1149}
1150
1151void SelectionDAGLowering::visitBr(BranchInst &I) {
1152 // Update machine-CFG edges.
1153 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1154
1155 // Figure out which block is immediately after the current one.
1156 MachineBasicBlock *NextBlock = 0;
1157 MachineFunction::iterator BBI = CurMBB;
1158 if (++BBI != CurMBB->getParent()->end())
1159 NextBlock = BBI;
1160
1161 if (I.isUnconditional()) {
1162 // If this is not a fall-through branch, emit the branch.
1163 if (Succ0MBB != NextBlock)
1164 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1165 DAG.getBasicBlock(Succ0MBB)));
1166
1167 // Update machine-CFG edges.
1168 CurMBB->addSuccessor(Succ0MBB);
1169
1170 return;
1171 }
1172
1173 // If this condition is one of the special cases we handle, do special stuff
1174 // now.
1175 Value *CondVal = I.getCondition();
1176 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1177
1178 // If this is a series of conditions that are or'd or and'd together, emit
1179 // this as a sequence of branches instead of setcc's with and/or operations.
1180 // For example, instead of something like:
1181 // cmp A, B
1182 // C = seteq
1183 // cmp D, E
1184 // F = setle
1185 // or C, F
1186 // jnz foo
1187 // Emit:
1188 // cmp A, B
1189 // je foo
1190 // cmp D, E
1191 // jle foo
1192 //
1193 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1194 if (BOp->hasOneUse() &&
1195 (BOp->getOpcode() == Instruction::And ||
1196 BOp->getOpcode() == Instruction::Or)) {
1197 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1198 // If the compares in later blocks need to use values not currently
1199 // exported from this block, export them now. This block should always
1200 // be the first entry.
1201 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1202
1203 // Allow some cases to be rejected.
1204 if (ShouldEmitAsBranches(SwitchCases)) {
1205 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1206 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1207 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1208 }
1209
1210 // Emit the branch for this block.
1211 visitSwitchCase(SwitchCases[0]);
1212 SwitchCases.erase(SwitchCases.begin());
1213 return;
1214 }
1215
1216 // Okay, we decided not to do this, remove any inserted MBB's and clear
1217 // SwitchCases.
1218 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1219 CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1220
1221 SwitchCases.clear();
1222 }
1223 }
1224
1225 // Create a CaseBlock record representing this branch.
1226 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1227 NULL, Succ0MBB, Succ1MBB, CurMBB);
1228 // Use visitSwitchCase to actually insert the fast branch sequence for this
1229 // cond branch.
1230 visitSwitchCase(CB);
1231}
1232
1233/// visitSwitchCase - Emits the necessary code to represent a single node in
1234/// the binary search tree resulting from lowering a switch instruction.
1235void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1236 SDOperand Cond;
1237 SDOperand CondLHS = getValue(CB.CmpLHS);
1238
1239 // Build the setcc now.
1240 if (CB.CmpMHS == NULL) {
1241 // Fold "(X == true)" to X and "(X == false)" to !X to
1242 // handle common cases produced by branch lowering.
1243 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1244 Cond = CondLHS;
1245 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1246 SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1247 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1248 } else
1249 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1250 } else {
1251 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1252
1253 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1254 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1255
1256 SDOperand CmpOp = getValue(CB.CmpMHS);
1257 MVT::ValueType VT = CmpOp.getValueType();
1258
1259 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1260 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1261 } else {
1262 SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1263 Cond = DAG.getSetCC(MVT::i1, SUB,
1264 DAG.getConstant(High-Low, VT), ISD::SETULE);
1265 }
1266
1267 }
1268
1269 // Set NextBlock to be the MBB immediately after the current one, if any.
1270 // This is used to avoid emitting unnecessary branches to the next block.
1271 MachineBasicBlock *NextBlock = 0;
1272 MachineFunction::iterator BBI = CurMBB;
1273 if (++BBI != CurMBB->getParent()->end())
1274 NextBlock = BBI;
1275
1276 // If the lhs block is the next block, invert the condition so that we can
1277 // fall through to the lhs instead of the rhs block.
1278 if (CB.TrueBB == NextBlock) {
1279 std::swap(CB.TrueBB, CB.FalseBB);
1280 SDOperand True = DAG.getConstant(1, Cond.getValueType());
1281 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1282 }
1283 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1284 DAG.getBasicBlock(CB.TrueBB));
1285 if (CB.FalseBB == NextBlock)
1286 DAG.setRoot(BrCond);
1287 else
1288 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1289 DAG.getBasicBlock(CB.FalseBB)));
1290 // Update successor info
1291 CurMBB->addSuccessor(CB.TrueBB);
1292 CurMBB->addSuccessor(CB.FalseBB);
1293}
1294
1295/// visitJumpTable - Emit JumpTable node in the current MBB
1296void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1297 // Emit the code for the jump table
1298 assert(JT.Reg != -1U && "Should lower JT Header first!");
1299 MVT::ValueType PTy = TLI.getPointerTy();
1300 SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1301 SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1302 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1303 Table, Index));
1304 return;
1305}
1306
1307/// visitJumpTableHeader - This function emits necessary code to produce index
1308/// in the JumpTable from switch case.
1309void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1310 SelectionDAGISel::JumpTableHeader &JTH) {
1311 // Subtract the lowest switch case value from the value being switched on
1312 // and conditional branch to default mbb if the result is greater than the
1313 // difference between smallest and largest cases.
1314 SDOperand SwitchOp = getValue(JTH.SValue);
1315 MVT::ValueType VT = SwitchOp.getValueType();
1316 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1317 DAG.getConstant(JTH.First, VT));
1318
1319 // The SDNode we just created, which holds the value being switched on
1320 // minus the the smallest case value, needs to be copied to a virtual
1321 // register so it can be used as an index into the jump table in a
1322 // subsequent basic block. This value may be smaller or larger than the
1323 // target's pointer type, and therefore require extension or truncating.
1324 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1325 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1326 else
1327 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1328
1329 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1330 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1331 JT.Reg = JumpTableReg;
1332
1333 // Emit the range check for the jump table, and branch to the default
1334 // block for the switch statement if the value being switched on exceeds
1335 // the largest case in the switch.
1336 SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1337 DAG.getConstant(JTH.Last-JTH.First,VT),
1338 ISD::SETUGT);
1339
1340 // Set NextBlock to be the MBB immediately after the current one, if any.
1341 // This is used to avoid emitting unnecessary branches to the next block.
1342 MachineBasicBlock *NextBlock = 0;
1343 MachineFunction::iterator BBI = CurMBB;
1344 if (++BBI != CurMBB->getParent()->end())
1345 NextBlock = BBI;
1346
1347 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1348 DAG.getBasicBlock(JT.Default));
1349
1350 if (JT.MBB == NextBlock)
1351 DAG.setRoot(BrCond);
1352 else
1353 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1354 DAG.getBasicBlock(JT.MBB)));
1355
1356 return;
1357}
1358
1359/// visitBitTestHeader - This function emits necessary code to produce value
1360/// suitable for "bit tests"
1361void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1362 // Subtract the minimum value
1363 SDOperand SwitchOp = getValue(B.SValue);
1364 MVT::ValueType VT = SwitchOp.getValueType();
1365 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1366 DAG.getConstant(B.First, VT));
1367
1368 // Check range
1369 SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1370 DAG.getConstant(B.Range, VT),
1371 ISD::SETUGT);
1372
1373 SDOperand ShiftOp;
1374 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1375 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1376 else
1377 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1378
1379 // Make desired shift
1380 SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1381 DAG.getConstant(1, TLI.getPointerTy()),
1382 ShiftOp);
1383
1384 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1385 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1386 B.Reg = SwitchReg;
1387
1388 SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1389 DAG.getBasicBlock(B.Default));
1390
1391 // Set NextBlock to be the MBB immediately after the current one, if any.
1392 // This is used to avoid emitting unnecessary branches to the next block.
1393 MachineBasicBlock *NextBlock = 0;
1394 MachineFunction::iterator BBI = CurMBB;
1395 if (++BBI != CurMBB->getParent()->end())
1396 NextBlock = BBI;
1397
1398 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1399 if (MBB == NextBlock)
1400 DAG.setRoot(BrRange);
1401 else
1402 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1403 DAG.getBasicBlock(MBB)));
1404
1405 CurMBB->addSuccessor(B.Default);
1406 CurMBB->addSuccessor(MBB);
1407
1408 return;
1409}
1410
1411/// visitBitTestCase - this function produces one "bit test"
1412void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1413 unsigned Reg,
1414 SelectionDAGISel::BitTestCase &B) {
1415 // Emit bit tests and jumps
1416 SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1417
1418 SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1419 SwitchVal,
1420 DAG.getConstant(B.Mask,
1421 TLI.getPointerTy()));
1422 SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1423 DAG.getConstant(0, TLI.getPointerTy()),
1424 ISD::SETNE);
1425 SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1426 AndCmp, DAG.getBasicBlock(B.TargetBB));
1427
1428 // Set NextBlock to be the MBB immediately after the current one, if any.
1429 // This is used to avoid emitting unnecessary branches to the next block.
1430 MachineBasicBlock *NextBlock = 0;
1431 MachineFunction::iterator BBI = CurMBB;
1432 if (++BBI != CurMBB->getParent()->end())
1433 NextBlock = BBI;
1434
1435 if (NextMBB == NextBlock)
1436 DAG.setRoot(BrAnd);
1437 else
1438 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1439 DAG.getBasicBlock(NextMBB)));
1440
1441 CurMBB->addSuccessor(B.TargetBB);
1442 CurMBB->addSuccessor(NextMBB);
1443
1444 return;
1445}
1446
1447void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1448 // Retrieve successors.
1449 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1450 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1451
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001452 LowerCallTo(I, I.getCalledValue()->getType(), I.getParamAttrs(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001453 I.getCallingConv(),
1454 false,
1455 getValue(I.getOperand(0)),
1456 3, LandingPad);
1457
1458 // If the value of the invoke is used outside of its defining block, make it
1459 // available as a virtual register.
1460 if (!I.use_empty()) {
1461 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1462 if (VMI != FuncInfo.ValueMap.end())
1463 DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1464 }
1465
1466 // Drop into normal successor.
1467 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1468 DAG.getBasicBlock(Return)));
1469
1470 // Update successor info
1471 CurMBB->addSuccessor(Return);
1472 CurMBB->addSuccessor(LandingPad);
1473}
1474
1475void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1476}
1477
1478/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1479/// small case ranges).
1480bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1481 CaseRecVector& WorkList,
1482 Value* SV,
1483 MachineBasicBlock* Default) {
1484 Case& BackCase = *(CR.Range.second-1);
1485
1486 // Size is the number of Cases represented by this range.
1487 unsigned Size = CR.Range.second - CR.Range.first;
1488 if (Size > 3)
1489 return false;
1490
1491 // Get the MachineFunction which holds the current MBB. This is used when
1492 // inserting any additional MBBs necessary to represent the switch.
1493 MachineFunction *CurMF = CurMBB->getParent();
1494
1495 // Figure out which block is immediately after the current one.
1496 MachineBasicBlock *NextBlock = 0;
1497 MachineFunction::iterator BBI = CR.CaseBB;
1498
1499 if (++BBI != CurMBB->getParent()->end())
1500 NextBlock = BBI;
1501
1502 // TODO: If any two of the cases has the same destination, and if one value
1503 // is the same as the other, but has one bit unset that the other has set,
1504 // use bit manipulation to do two compares at once. For example:
1505 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1506
1507 // Rearrange the case blocks so that the last one falls through if possible.
1508 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1509 // The last case block won't fall through into 'NextBlock' if we emit the
1510 // branches in this order. See if rearranging a case value would help.
1511 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1512 if (I->BB == NextBlock) {
1513 std::swap(*I, BackCase);
1514 break;
1515 }
1516 }
1517 }
1518
1519 // Create a CaseBlock record representing a conditional branch to
1520 // the Case's target mbb if the value being switched on SV is equal
1521 // to C.
1522 MachineBasicBlock *CurBlock = CR.CaseBB;
1523 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1524 MachineBasicBlock *FallThrough;
1525 if (I != E-1) {
1526 FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1527 CurMF->getBasicBlockList().insert(BBI, FallThrough);
1528 } else {
1529 // If the last case doesn't match, go to the default block.
1530 FallThrough = Default;
1531 }
1532
1533 Value *RHS, *LHS, *MHS;
1534 ISD::CondCode CC;
1535 if (I->High == I->Low) {
1536 // This is just small small case range :) containing exactly 1 case
1537 CC = ISD::SETEQ;
1538 LHS = SV; RHS = I->High; MHS = NULL;
1539 } else {
1540 CC = ISD::SETLE;
1541 LHS = I->Low; MHS = SV; RHS = I->High;
1542 }
1543 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1544 I->BB, FallThrough, CurBlock);
1545
1546 // If emitting the first comparison, just call visitSwitchCase to emit the
1547 // code into the current block. Otherwise, push the CaseBlock onto the
1548 // vector to be later processed by SDISel, and insert the node's MBB
1549 // before the next MBB.
1550 if (CurBlock == CurMBB)
1551 visitSwitchCase(CB);
1552 else
1553 SwitchCases.push_back(CB);
1554
1555 CurBlock = FallThrough;
1556 }
1557
1558 return true;
1559}
1560
1561static inline bool areJTsAllowed(const TargetLowering &TLI) {
1562 return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1563 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1564}
1565
1566/// handleJTSwitchCase - Emit jumptable for current switch case range
1567bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1568 CaseRecVector& WorkList,
1569 Value* SV,
1570 MachineBasicBlock* Default) {
1571 Case& FrontCase = *CR.Range.first;
1572 Case& BackCase = *(CR.Range.second-1);
1573
1574 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1575 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1576
1577 uint64_t TSize = 0;
1578 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1579 I!=E; ++I)
1580 TSize += I->size();
1581
1582 if (!areJTsAllowed(TLI) || TSize <= 3)
1583 return false;
1584
1585 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1586 if (Density < 0.4)
1587 return false;
1588
1589 DOUT << "Lowering jump table\n"
1590 << "First entry: " << First << ". Last entry: " << Last << "\n"
1591 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1592
1593 // Get the MachineFunction which holds the current MBB. This is used when
1594 // inserting any additional MBBs necessary to represent the switch.
1595 MachineFunction *CurMF = CurMBB->getParent();
1596
1597 // Figure out which block is immediately after the current one.
1598 MachineBasicBlock *NextBlock = 0;
1599 MachineFunction::iterator BBI = CR.CaseBB;
1600
1601 if (++BBI != CurMBB->getParent()->end())
1602 NextBlock = BBI;
1603
1604 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1605
1606 // Create a new basic block to hold the code for loading the address
1607 // of the jump table, and jumping to it. Update successor information;
1608 // we will either branch to the default case for the switch, or the jump
1609 // table.
1610 MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1611 CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1612 CR.CaseBB->addSuccessor(Default);
1613 CR.CaseBB->addSuccessor(JumpTableBB);
1614
1615 // Build a vector of destination BBs, corresponding to each target
1616 // of the jump table. If the value of the jump table slot corresponds to
1617 // a case statement, push the case's BB onto the vector, otherwise, push
1618 // the default BB.
1619 std::vector<MachineBasicBlock*> DestBBs;
1620 int64_t TEI = First;
1621 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1622 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1623 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1624
1625 if ((Low <= TEI) && (TEI <= High)) {
1626 DestBBs.push_back(I->BB);
1627 if (TEI==High)
1628 ++I;
1629 } else {
1630 DestBBs.push_back(Default);
1631 }
1632 }
1633
1634 // Update successor info. Add one edge to each unique successor.
1635 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1636 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1637 E = DestBBs.end(); I != E; ++I) {
1638 if (!SuccsHandled[(*I)->getNumber()]) {
1639 SuccsHandled[(*I)->getNumber()] = true;
1640 JumpTableBB->addSuccessor(*I);
1641 }
1642 }
1643
1644 // Create a jump table index for this jump table, or return an existing
1645 // one.
1646 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1647
1648 // Set the jump table information so that we can codegen it as a second
1649 // MachineBasicBlock
1650 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1651 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1652 (CR.CaseBB == CurMBB));
1653 if (CR.CaseBB == CurMBB)
1654 visitJumpTableHeader(JT, JTH);
1655
1656 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1657
1658 return true;
1659}
1660
1661/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1662/// 2 subtrees.
1663bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1664 CaseRecVector& WorkList,
1665 Value* SV,
1666 MachineBasicBlock* Default) {
1667 // Get the MachineFunction which holds the current MBB. This is used when
1668 // inserting any additional MBBs necessary to represent the switch.
1669 MachineFunction *CurMF = CurMBB->getParent();
1670
1671 // Figure out which block is immediately after the current one.
1672 MachineBasicBlock *NextBlock = 0;
1673 MachineFunction::iterator BBI = CR.CaseBB;
1674
1675 if (++BBI != CurMBB->getParent()->end())
1676 NextBlock = BBI;
1677
1678 Case& FrontCase = *CR.Range.first;
1679 Case& BackCase = *(CR.Range.second-1);
1680 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1681
1682 // Size is the number of Cases represented by this range.
1683 unsigned Size = CR.Range.second - CR.Range.first;
1684
1685 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1686 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1687 double FMetric = 0;
1688 CaseItr Pivot = CR.Range.first + Size/2;
1689
1690 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1691 // (heuristically) allow us to emit JumpTable's later.
1692 uint64_t TSize = 0;
1693 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1694 I!=E; ++I)
1695 TSize += I->size();
1696
1697 uint64_t LSize = FrontCase.size();
1698 uint64_t RSize = TSize-LSize;
1699 DOUT << "Selecting best pivot: \n"
1700 << "First: " << First << ", Last: " << Last <<"\n"
1701 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1702 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1703 J!=E; ++I, ++J) {
1704 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1705 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1706 assert((RBegin-LEnd>=1) && "Invalid case distance");
1707 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1708 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1709 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1710 // Should always split in some non-trivial place
1711 DOUT <<"=>Step\n"
1712 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1713 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1714 << "Metric: " << Metric << "\n";
1715 if (FMetric < Metric) {
1716 Pivot = J;
1717 FMetric = Metric;
1718 DOUT << "Current metric set to: " << FMetric << "\n";
1719 }
1720
1721 LSize += J->size();
1722 RSize -= J->size();
1723 }
1724 if (areJTsAllowed(TLI)) {
1725 // If our case is dense we *really* should handle it earlier!
1726 assert((FMetric > 0) && "Should handle dense range earlier!");
1727 } else {
1728 Pivot = CR.Range.first + Size/2;
1729 }
1730
1731 CaseRange LHSR(CR.Range.first, Pivot);
1732 CaseRange RHSR(Pivot, CR.Range.second);
1733 Constant *C = Pivot->Low;
1734 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1735
1736 // We know that we branch to the LHS if the Value being switched on is
1737 // less than the Pivot value, C. We use this to optimize our binary
1738 // tree a bit, by recognizing that if SV is greater than or equal to the
1739 // LHS's Case Value, and that Case Value is exactly one less than the
1740 // Pivot's Value, then we can branch directly to the LHS's Target,
1741 // rather than creating a leaf node for it.
1742 if ((LHSR.second - LHSR.first) == 1 &&
1743 LHSR.first->High == CR.GE &&
1744 cast<ConstantInt>(C)->getSExtValue() ==
1745 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1746 TrueBB = LHSR.first->BB;
1747 } else {
1748 TrueBB = new MachineBasicBlock(LLVMBB);
1749 CurMF->getBasicBlockList().insert(BBI, TrueBB);
1750 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1751 }
1752
1753 // Similar to the optimization above, if the Value being switched on is
1754 // known to be less than the Constant CR.LT, and the current Case Value
1755 // is CR.LT - 1, then we can branch directly to the target block for
1756 // the current Case Value, rather than emitting a RHS leaf node for it.
1757 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1758 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1759 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1760 FalseBB = RHSR.first->BB;
1761 } else {
1762 FalseBB = new MachineBasicBlock(LLVMBB);
1763 CurMF->getBasicBlockList().insert(BBI, FalseBB);
1764 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1765 }
1766
1767 // Create a CaseBlock record representing a conditional branch to
1768 // the LHS node if the value being switched on SV is less than C.
1769 // Otherwise, branch to LHS.
1770 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1771 TrueBB, FalseBB, CR.CaseBB);
1772
1773 if (CR.CaseBB == CurMBB)
1774 visitSwitchCase(CB);
1775 else
1776 SwitchCases.push_back(CB);
1777
1778 return true;
1779}
1780
1781/// handleBitTestsSwitchCase - if current case range has few destination and
1782/// range span less, than machine word bitwidth, encode case range into series
1783/// of masks and emit bit tests with these masks.
1784bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1785 CaseRecVector& WorkList,
1786 Value* SV,
1787 MachineBasicBlock* Default){
1788 unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1789
1790 Case& FrontCase = *CR.Range.first;
1791 Case& BackCase = *(CR.Range.second-1);
1792
1793 // Get the MachineFunction which holds the current MBB. This is used when
1794 // inserting any additional MBBs necessary to represent the switch.
1795 MachineFunction *CurMF = CurMBB->getParent();
1796
1797 unsigned numCmps = 0;
1798 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1799 I!=E; ++I) {
1800 // Single case counts one, case range - two.
1801 if (I->Low == I->High)
1802 numCmps +=1;
1803 else
1804 numCmps +=2;
1805 }
1806
1807 // Count unique destinations
1808 SmallSet<MachineBasicBlock*, 4> Dests;
1809 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1810 Dests.insert(I->BB);
1811 if (Dests.size() > 3)
1812 // Don't bother the code below, if there are too much unique destinations
1813 return false;
1814 }
1815 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1816 << "Total number of comparisons: " << numCmps << "\n";
1817
1818 // Compute span of values.
1819 Constant* minValue = FrontCase.Low;
1820 Constant* maxValue = BackCase.High;
1821 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1822 cast<ConstantInt>(minValue)->getSExtValue();
1823 DOUT << "Compare range: " << range << "\n"
1824 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1825 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1826
1827 if (range>=IntPtrBits ||
1828 (!(Dests.size() == 1 && numCmps >= 3) &&
1829 !(Dests.size() == 2 && numCmps >= 5) &&
1830 !(Dests.size() >= 3 && numCmps >= 6)))
1831 return false;
1832
1833 DOUT << "Emitting bit tests\n";
1834 int64_t lowBound = 0;
1835
1836 // Optimize the case where all the case values fit in a
1837 // word without having to subtract minValue. In this case,
1838 // we can optimize away the subtraction.
1839 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1840 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1841 range = cast<ConstantInt>(maxValue)->getSExtValue();
1842 } else {
1843 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1844 }
1845
1846 CaseBitsVector CasesBits;
1847 unsigned i, count = 0;
1848
1849 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1850 MachineBasicBlock* Dest = I->BB;
1851 for (i = 0; i < count; ++i)
1852 if (Dest == CasesBits[i].BB)
1853 break;
1854
1855 if (i == count) {
1856 assert((count < 3) && "Too much destinations to test!");
1857 CasesBits.push_back(CaseBits(0, Dest, 0));
1858 count++;
1859 }
1860
1861 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1862 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1863
1864 for (uint64_t j = lo; j <= hi; j++) {
1865 CasesBits[i].Mask |= 1ULL << j;
1866 CasesBits[i].Bits++;
1867 }
1868
1869 }
1870 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1871
1872 SelectionDAGISel::BitTestInfo BTC;
1873
1874 // Figure out which block is immediately after the current one.
1875 MachineFunction::iterator BBI = CR.CaseBB;
1876 ++BBI;
1877
1878 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1879
1880 DOUT << "Cases:\n";
1881 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1882 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1883 << ", BB: " << CasesBits[i].BB << "\n";
1884
1885 MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1886 CurMF->getBasicBlockList().insert(BBI, CaseBB);
1887 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1888 CaseBB,
1889 CasesBits[i].BB));
1890 }
1891
1892 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1893 -1U, (CR.CaseBB == CurMBB),
1894 CR.CaseBB, Default, BTC);
1895
1896 if (CR.CaseBB == CurMBB)
1897 visitBitTestHeader(BTB);
1898
1899 BitTestCases.push_back(BTB);
1900
1901 return true;
1902}
1903
1904
1905// Clusterify - Transform simple list of Cases into list of CaseRange's
1906unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1907 const SwitchInst& SI) {
1908 unsigned numCmps = 0;
1909
1910 // Start with "simple" cases
1911 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1912 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1913 Cases.push_back(Case(SI.getSuccessorValue(i),
1914 SI.getSuccessorValue(i),
1915 SMBB));
1916 }
Chris Lattner5624ae42007-11-27 06:14:32 +00001917 std::sort(Cases.begin(), Cases.end(), CaseCmp());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001918
1919 // Merge case into clusters
1920 if (Cases.size()>=2)
1921 // Must recompute end() each iteration because it may be
1922 // invalidated by erase if we hold on to it
Chris Lattnerdfb947d2007-11-24 07:07:01 +00001923 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001924 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1925 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1926 MachineBasicBlock* nextBB = J->BB;
1927 MachineBasicBlock* currentBB = I->BB;
1928
1929 // If the two neighboring cases go to the same destination, merge them
1930 // into a single case.
1931 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1932 I->High = J->High;
1933 J = Cases.erase(J);
1934 } else {
1935 I = J++;
1936 }
1937 }
1938
1939 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1940 if (I->Low != I->High)
1941 // A range counts double, since it requires two compares.
1942 ++numCmps;
1943 }
1944
1945 return numCmps;
1946}
1947
1948void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1949 // Figure out which block is immediately after the current one.
1950 MachineBasicBlock *NextBlock = 0;
1951 MachineFunction::iterator BBI = CurMBB;
1952
1953 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1954
1955 // If there is only the default destination, branch to it if it is not the
1956 // next basic block. Otherwise, just fall through.
1957 if (SI.getNumOperands() == 2) {
1958 // Update machine-CFG edges.
1959
1960 // If this is not a fall-through branch, emit the branch.
1961 if (Default != NextBlock)
1962 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1963 DAG.getBasicBlock(Default)));
1964
1965 CurMBB->addSuccessor(Default);
1966 return;
1967 }
1968
1969 // If there are any non-default case statements, create a vector of Cases
1970 // representing each one, and sort the vector so that we can efficiently
1971 // create a binary search tree from them.
1972 CaseVector Cases;
1973 unsigned numCmps = Clusterify(Cases, SI);
1974 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1975 << ". Total compares: " << numCmps << "\n";
1976
1977 // Get the Value to be switched on and default basic blocks, which will be
1978 // inserted into CaseBlock records, representing basic blocks in the binary
1979 // search tree.
1980 Value *SV = SI.getOperand(0);
1981
1982 // Push the initial CaseRec onto the worklist
1983 CaseRecVector WorkList;
1984 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1985
1986 while (!WorkList.empty()) {
1987 // Grab a record representing a case range to process off the worklist
1988 CaseRec CR = WorkList.back();
1989 WorkList.pop_back();
1990
1991 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1992 continue;
1993
1994 // If the range has few cases (two or less) emit a series of specific
1995 // tests.
1996 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1997 continue;
1998
1999 // If the switch has more than 5 blocks, and at least 40% dense, and the
2000 // target supports indirect branches, then emit a jump table rather than
2001 // lowering the switch to a binary tree of conditional branches.
2002 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2003 continue;
2004
2005 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2006 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2007 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2008 }
2009}
2010
2011
2012void SelectionDAGLowering::visitSub(User &I) {
2013 // -0.0 - X --> fneg
2014 const Type *Ty = I.getType();
2015 if (isa<VectorType>(Ty)) {
2016 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2017 const VectorType *DestTy = cast<VectorType>(I.getType());
2018 const Type *ElTy = DestTy->getElementType();
2019 if (ElTy->isFloatingPoint()) {
2020 unsigned VL = DestTy->getNumElements();
Dale Johannesen2fc20782007-09-14 22:26:36 +00002021 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002022 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2023 if (CV == CNZ) {
2024 SDOperand Op2 = getValue(I.getOperand(1));
2025 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2026 return;
2027 }
2028 }
2029 }
2030 }
2031 if (Ty->isFloatingPoint()) {
2032 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
Dale Johannesen2fc20782007-09-14 22:26:36 +00002033 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002034 SDOperand Op2 = getValue(I.getOperand(1));
2035 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2036 return;
2037 }
2038 }
2039
2040 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2041}
2042
2043void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2044 SDOperand Op1 = getValue(I.getOperand(0));
2045 SDOperand Op2 = getValue(I.getOperand(1));
2046
2047 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2048}
2049
2050void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2051 SDOperand Op1 = getValue(I.getOperand(0));
2052 SDOperand Op2 = getValue(I.getOperand(1));
2053
2054 if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2055 MVT::getSizeInBits(Op2.getValueType()))
2056 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2057 else if (TLI.getShiftAmountTy() > Op2.getValueType())
2058 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2059
2060 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2061}
2062
2063void SelectionDAGLowering::visitICmp(User &I) {
2064 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2065 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2066 predicate = IC->getPredicate();
2067 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2068 predicate = ICmpInst::Predicate(IC->getPredicate());
2069 SDOperand Op1 = getValue(I.getOperand(0));
2070 SDOperand Op2 = getValue(I.getOperand(1));
2071 ISD::CondCode Opcode;
2072 switch (predicate) {
2073 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2074 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2075 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2076 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2077 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2078 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2079 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2080 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2081 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2082 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2083 default:
2084 assert(!"Invalid ICmp predicate value");
2085 Opcode = ISD::SETEQ;
2086 break;
2087 }
2088 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2089}
2090
2091void SelectionDAGLowering::visitFCmp(User &I) {
2092 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2093 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2094 predicate = FC->getPredicate();
2095 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2096 predicate = FCmpInst::Predicate(FC->getPredicate());
2097 SDOperand Op1 = getValue(I.getOperand(0));
2098 SDOperand Op2 = getValue(I.getOperand(1));
2099 ISD::CondCode Condition, FOC, FPC;
2100 switch (predicate) {
2101 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2102 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2103 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2104 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2105 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2106 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2107 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2108 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
2109 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
2110 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2111 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2112 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2113 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2114 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2115 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2116 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2117 default:
2118 assert(!"Invalid FCmp predicate value");
2119 FOC = FPC = ISD::SETFALSE;
2120 break;
2121 }
2122 if (FiniteOnlyFPMath())
2123 Condition = FOC;
2124 else
2125 Condition = FPC;
2126 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2127}
2128
2129void SelectionDAGLowering::visitSelect(User &I) {
2130 SDOperand Cond = getValue(I.getOperand(0));
2131 SDOperand TrueVal = getValue(I.getOperand(1));
2132 SDOperand FalseVal = getValue(I.getOperand(2));
2133 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2134 TrueVal, FalseVal));
2135}
2136
2137
2138void SelectionDAGLowering::visitTrunc(User &I) {
2139 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2140 SDOperand N = getValue(I.getOperand(0));
2141 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2142 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2143}
2144
2145void SelectionDAGLowering::visitZExt(User &I) {
2146 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2147 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2148 SDOperand N = getValue(I.getOperand(0));
2149 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2150 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2151}
2152
2153void SelectionDAGLowering::visitSExt(User &I) {
2154 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2155 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2156 SDOperand N = getValue(I.getOperand(0));
2157 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2158 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2159}
2160
2161void SelectionDAGLowering::visitFPTrunc(User &I) {
2162 // FPTrunc is never a no-op cast, no need to check
2163 SDOperand N = getValue(I.getOperand(0));
2164 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2165 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2166}
2167
2168void SelectionDAGLowering::visitFPExt(User &I){
2169 // FPTrunc is never a no-op cast, no need to check
2170 SDOperand N = getValue(I.getOperand(0));
2171 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2172 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2173}
2174
2175void SelectionDAGLowering::visitFPToUI(User &I) {
2176 // FPToUI is never a no-op cast, no need to check
2177 SDOperand N = getValue(I.getOperand(0));
2178 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2179 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2180}
2181
2182void SelectionDAGLowering::visitFPToSI(User &I) {
2183 // FPToSI is never a no-op cast, no need to check
2184 SDOperand N = getValue(I.getOperand(0));
2185 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2186 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2187}
2188
2189void SelectionDAGLowering::visitUIToFP(User &I) {
2190 // UIToFP is never a no-op cast, no need to check
2191 SDOperand N = getValue(I.getOperand(0));
2192 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2193 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2194}
2195
2196void SelectionDAGLowering::visitSIToFP(User &I){
2197 // UIToFP is never a no-op cast, no need to check
2198 SDOperand N = getValue(I.getOperand(0));
2199 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2200 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2201}
2202
2203void SelectionDAGLowering::visitPtrToInt(User &I) {
2204 // What to do depends on the size of the integer and the size of the pointer.
2205 // We can either truncate, zero extend, or no-op, accordingly.
2206 SDOperand N = getValue(I.getOperand(0));
2207 MVT::ValueType SrcVT = N.getValueType();
2208 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2209 SDOperand Result;
2210 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2211 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2212 else
2213 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2214 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2215 setValue(&I, Result);
2216}
2217
2218void SelectionDAGLowering::visitIntToPtr(User &I) {
2219 // What to do depends on the size of the integer and the size of the pointer.
2220 // We can either truncate, zero extend, or no-op, accordingly.
2221 SDOperand N = getValue(I.getOperand(0));
2222 MVT::ValueType SrcVT = N.getValueType();
2223 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2224 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2225 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2226 else
2227 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2228 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2229}
2230
2231void SelectionDAGLowering::visitBitCast(User &I) {
2232 SDOperand N = getValue(I.getOperand(0));
2233 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2234
2235 // BitCast assures us that source and destination are the same size so this
2236 // is either a BIT_CONVERT or a no-op.
2237 if (DestVT != N.getValueType())
2238 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2239 else
2240 setValue(&I, N); // noop cast.
2241}
2242
2243void SelectionDAGLowering::visitInsertElement(User &I) {
2244 SDOperand InVec = getValue(I.getOperand(0));
2245 SDOperand InVal = getValue(I.getOperand(1));
2246 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2247 getValue(I.getOperand(2)));
2248
2249 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2250 TLI.getValueType(I.getType()),
2251 InVec, InVal, InIdx));
2252}
2253
2254void SelectionDAGLowering::visitExtractElement(User &I) {
2255 SDOperand InVec = getValue(I.getOperand(0));
2256 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2257 getValue(I.getOperand(1)));
2258 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2259 TLI.getValueType(I.getType()), InVec, InIdx));
2260}
2261
2262void SelectionDAGLowering::visitShuffleVector(User &I) {
2263 SDOperand V1 = getValue(I.getOperand(0));
2264 SDOperand V2 = getValue(I.getOperand(1));
2265 SDOperand Mask = getValue(I.getOperand(2));
2266
2267 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2268 TLI.getValueType(I.getType()),
2269 V1, V2, Mask));
2270}
2271
2272
2273void SelectionDAGLowering::visitGetElementPtr(User &I) {
2274 SDOperand N = getValue(I.getOperand(0));
2275 const Type *Ty = I.getOperand(0)->getType();
2276
2277 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2278 OI != E; ++OI) {
2279 Value *Idx = *OI;
2280 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2281 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2282 if (Field) {
2283 // N = N + Offset
2284 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2285 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2286 getIntPtrConstant(Offset));
2287 }
2288 Ty = StTy->getElementType(Field);
2289 } else {
2290 Ty = cast<SequentialType>(Ty)->getElementType();
2291
2292 // If this is a constant subscript, handle it quickly.
2293 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2294 if (CI->getZExtValue() == 0) continue;
2295 uint64_t Offs =
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002296 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002297 N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2298 continue;
2299 }
2300
2301 // N = N + Idx * ElementSize;
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002302 uint64_t ElementSize = TD->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002303 SDOperand IdxN = getValue(Idx);
2304
2305 // If the index is smaller or larger than intptr_t, truncate or extend
2306 // it.
2307 if (IdxN.getValueType() < N.getValueType()) {
2308 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2309 } else if (IdxN.getValueType() > N.getValueType())
2310 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2311
2312 // If this is a multiply by a power of two, turn it into a shl
2313 // immediately. This is a very common case.
2314 if (isPowerOf2_64(ElementSize)) {
2315 unsigned Amt = Log2_64(ElementSize);
2316 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2317 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2318 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2319 continue;
2320 }
2321
2322 SDOperand Scale = getIntPtrConstant(ElementSize);
2323 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2324 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2325 }
2326 }
2327 setValue(&I, N);
2328}
2329
2330void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2331 // If this is a fixed sized alloca in the entry block of the function,
2332 // allocate it statically on the stack.
2333 if (FuncInfo.StaticAllocaMap.count(&I))
2334 return; // getValue will auto-populate this.
2335
2336 const Type *Ty = I.getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00002337 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002338 unsigned Align =
2339 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2340 I.getAlignment());
2341
2342 SDOperand AllocSize = getValue(I.getArraySize());
2343 MVT::ValueType IntPtr = TLI.getPointerTy();
2344 if (IntPtr < AllocSize.getValueType())
2345 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2346 else if (IntPtr > AllocSize.getValueType())
2347 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2348
2349 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2350 getIntPtrConstant(TySize));
2351
Evan Chenga31dc752007-08-16 23:46:29 +00002352 // Handle alignment. If the requested alignment is less than or equal to
2353 // the stack alignment, ignore it. If the size is greater than or equal to
2354 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355 unsigned StackAlign =
2356 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
Evan Chenga31dc752007-08-16 23:46:29 +00002357 if (Align <= StackAlign)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358 Align = 0;
Evan Chenga31dc752007-08-16 23:46:29 +00002359
2360 // Round the size of the allocation up to the stack alignment size
2361 // by add SA-1 to the size.
2362 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2363 getIntPtrConstant(StackAlign-1));
2364 // Mask out the low bits for alignment purposes.
2365 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2366 getIntPtrConstant(~(uint64_t)(StackAlign-1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002367
2368 SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2369 const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2370 MVT::Other);
2371 SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2372 setValue(&I, DSA);
2373 DAG.setRoot(DSA.getValue(1));
2374
2375 // Inform the Frame Information that we have just allocated a variable-sized
2376 // object.
2377 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2378}
2379
2380void SelectionDAGLowering::visitLoad(LoadInst &I) {
2381 SDOperand Ptr = getValue(I.getOperand(0));
2382
2383 SDOperand Root;
2384 if (I.isVolatile())
2385 Root = getRoot();
2386 else {
2387 // Do not serialize non-volatile loads against each other.
2388 Root = DAG.getRoot();
2389 }
2390
2391 setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2392 Root, I.isVolatile(), I.getAlignment()));
2393}
2394
2395SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2396 const Value *SV, SDOperand Root,
2397 bool isVolatile,
2398 unsigned Alignment) {
2399 SDOperand L =
2400 DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2401 isVolatile, Alignment);
2402
2403 if (isVolatile)
2404 DAG.setRoot(L.getValue(1));
2405 else
2406 PendingLoads.push_back(L.getValue(1));
2407
2408 return L;
2409}
2410
2411
2412void SelectionDAGLowering::visitStore(StoreInst &I) {
2413 Value *SrcV = I.getOperand(0);
2414 SDOperand Src = getValue(SrcV);
2415 SDOperand Ptr = getValue(I.getOperand(1));
2416 DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2417 I.isVolatile(), I.getAlignment()));
2418}
2419
2420/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2421/// access memory and has no other side effects at all.
2422static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2423#define GET_NO_MEMORY_INTRINSICS
2424#include "llvm/Intrinsics.gen"
2425#undef GET_NO_MEMORY_INTRINSICS
2426 return false;
2427}
2428
2429// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2430// have any side-effects or if it only reads memory.
2431static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2432#define GET_SIDE_EFFECT_INFO
2433#include "llvm/Intrinsics.gen"
2434#undef GET_SIDE_EFFECT_INFO
2435 return false;
2436}
2437
2438/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2439/// node.
2440void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2441 unsigned Intrinsic) {
2442 bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2443 bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2444
2445 // Build the operand list.
2446 SmallVector<SDOperand, 8> Ops;
2447 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2448 if (OnlyLoad) {
2449 // We don't need to serialize loads against other loads.
2450 Ops.push_back(DAG.getRoot());
2451 } else {
2452 Ops.push_back(getRoot());
2453 }
2454 }
2455
2456 // Add the intrinsic ID as an integer operand.
2457 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2458
2459 // Add all operands of the call to the operand list.
2460 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2461 SDOperand Op = getValue(I.getOperand(i));
2462 assert(TLI.isTypeLegal(Op.getValueType()) &&
2463 "Intrinsic uses a non-legal type?");
2464 Ops.push_back(Op);
2465 }
2466
2467 std::vector<MVT::ValueType> VTs;
2468 if (I.getType() != Type::VoidTy) {
2469 MVT::ValueType VT = TLI.getValueType(I.getType());
2470 if (MVT::isVector(VT)) {
2471 const VectorType *DestTy = cast<VectorType>(I.getType());
2472 MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2473
2474 VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2475 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2476 }
2477
2478 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2479 VTs.push_back(VT);
2480 }
2481 if (HasChain)
2482 VTs.push_back(MVT::Other);
2483
2484 const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2485
2486 // Create the node.
2487 SDOperand Result;
2488 if (!HasChain)
2489 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2490 &Ops[0], Ops.size());
2491 else if (I.getType() != Type::VoidTy)
2492 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2493 &Ops[0], Ops.size());
2494 else
2495 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2496 &Ops[0], Ops.size());
2497
2498 if (HasChain) {
2499 SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2500 if (OnlyLoad)
2501 PendingLoads.push_back(Chain);
2502 else
2503 DAG.setRoot(Chain);
2504 }
2505 if (I.getType() != Type::VoidTy) {
2506 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2507 MVT::ValueType VT = TLI.getValueType(PTy);
2508 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2509 }
2510 setValue(&I, Result);
2511 }
2512}
2513
2514/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2515static GlobalVariable *ExtractTypeInfo (Value *V) {
2516 V = IntrinsicInst::StripPointerCasts(V);
2517 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2518 assert (GV || isa<ConstantPointerNull>(V) &&
2519 "TypeInfo must be a global variable or NULL");
2520 return GV;
2521}
2522
2523/// addCatchInfo - Extract the personality and type infos from an eh.selector
2524/// call, and add them to the specified machine basic block.
2525static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2526 MachineBasicBlock *MBB) {
2527 // Inform the MachineModuleInfo of the personality for this landing pad.
2528 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2529 assert(CE->getOpcode() == Instruction::BitCast &&
2530 isa<Function>(CE->getOperand(0)) &&
2531 "Personality should be a function");
2532 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2533
2534 // Gather all the type infos for this landing pad and pass them along to
2535 // MachineModuleInfo.
2536 std::vector<GlobalVariable *> TyInfo;
2537 unsigned N = I.getNumOperands();
2538
2539 for (unsigned i = N - 1; i > 2; --i) {
2540 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2541 unsigned FilterLength = CI->getZExtValue();
Duncan Sands923fdb12007-08-27 15:47:50 +00002542 unsigned FirstCatch = i + FilterLength + !FilterLength;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002543 assert (FirstCatch <= N && "Invalid filter length");
2544
2545 if (FirstCatch < N) {
2546 TyInfo.reserve(N - FirstCatch);
2547 for (unsigned j = FirstCatch; j < N; ++j)
2548 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2549 MMI->addCatchTypeInfo(MBB, TyInfo);
2550 TyInfo.clear();
2551 }
2552
Duncan Sands923fdb12007-08-27 15:47:50 +00002553 if (!FilterLength) {
2554 // Cleanup.
2555 MMI->addCleanup(MBB);
2556 } else {
2557 // Filter.
2558 TyInfo.reserve(FilterLength - 1);
2559 for (unsigned j = i + 1; j < FirstCatch; ++j)
2560 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2561 MMI->addFilterTypeInfo(MBB, TyInfo);
2562 TyInfo.clear();
2563 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002564
2565 N = i;
2566 }
2567 }
2568
2569 if (N > 3) {
2570 TyInfo.reserve(N - 3);
2571 for (unsigned j = 3; j < N; ++j)
2572 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2573 MMI->addCatchTypeInfo(MBB, TyInfo);
2574 }
2575}
2576
2577/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
2578/// we want to emit this as a call to a named external function, return the name
2579/// otherwise lower it and return null.
2580const char *
2581SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2582 switch (Intrinsic) {
2583 default:
2584 // By default, turn this into a target intrinsic node.
2585 visitTargetIntrinsic(I, Intrinsic);
2586 return 0;
2587 case Intrinsic::vastart: visitVAStart(I); return 0;
2588 case Intrinsic::vaend: visitVAEnd(I); return 0;
2589 case Intrinsic::vacopy: visitVACopy(I); return 0;
2590 case Intrinsic::returnaddress:
2591 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2592 getValue(I.getOperand(1))));
2593 return 0;
2594 case Intrinsic::frameaddress:
2595 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2596 getValue(I.getOperand(1))));
2597 return 0;
2598 case Intrinsic::setjmp:
2599 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2600 break;
2601 case Intrinsic::longjmp:
2602 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2603 break;
2604 case Intrinsic::memcpy_i32:
2605 case Intrinsic::memcpy_i64:
2606 visitMemIntrinsic(I, ISD::MEMCPY);
2607 return 0;
2608 case Intrinsic::memset_i32:
2609 case Intrinsic::memset_i64:
2610 visitMemIntrinsic(I, ISD::MEMSET);
2611 return 0;
2612 case Intrinsic::memmove_i32:
2613 case Intrinsic::memmove_i64:
2614 visitMemIntrinsic(I, ISD::MEMMOVE);
2615 return 0;
2616
2617 case Intrinsic::dbg_stoppoint: {
2618 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2619 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2620 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2621 SDOperand Ops[5];
2622
2623 Ops[0] = getRoot();
2624 Ops[1] = getValue(SPI.getLineValue());
2625 Ops[2] = getValue(SPI.getColumnValue());
2626
2627 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2628 assert(DD && "Not a debug information descriptor");
2629 CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2630
2631 Ops[3] = DAG.getString(CompileUnit->getFileName());
2632 Ops[4] = DAG.getString(CompileUnit->getDirectory());
2633
2634 DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2635 }
2636
2637 return 0;
2638 }
2639 case Intrinsic::dbg_region_start: {
2640 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2641 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2642 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2643 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2644 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2645 DAG.getConstant(LabelID, MVT::i32)));
2646 }
2647
2648 return 0;
2649 }
2650 case Intrinsic::dbg_region_end: {
2651 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2652 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2653 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2654 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2655 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2656 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2657 }
2658
2659 return 0;
2660 }
2661 case Intrinsic::dbg_func_start: {
2662 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2663 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2664 if (MMI && FSI.getSubprogram() &&
2665 MMI->Verify(FSI.getSubprogram())) {
2666 unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2667 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2668 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2669 }
2670
2671 return 0;
2672 }
2673 case Intrinsic::dbg_declare: {
2674 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2675 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2676 if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2677 SDOperand AddressOp = getValue(DI.getAddress());
2678 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2679 MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2680 }
2681
2682 return 0;
2683 }
2684
2685 case Intrinsic::eh_exception: {
2686 if (ExceptionHandling) {
2687 if (!CurMBB->isLandingPad()) {
2688 // FIXME: Mark exception register as live in. Hack for PR1508.
2689 unsigned Reg = TLI.getExceptionAddressRegister();
2690 if (Reg) CurMBB->addLiveIn(Reg);
2691 }
2692 // Insert the EXCEPTIONADDR instruction.
2693 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2694 SDOperand Ops[1];
2695 Ops[0] = DAG.getRoot();
2696 SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2697 setValue(&I, Op);
2698 DAG.setRoot(Op.getValue(1));
2699 } else {
2700 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2701 }
2702 return 0;
2703 }
2704
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002705 case Intrinsic::eh_selector_i32:
2706 case Intrinsic::eh_selector_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002707 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002708 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2709 MVT::i32 : MVT::i64);
2710
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002711 if (ExceptionHandling && MMI) {
2712 if (CurMBB->isLandingPad())
2713 addCatchInfo(I, MMI, CurMBB);
2714 else {
2715#ifndef NDEBUG
2716 FuncInfo.CatchInfoLost.insert(&I);
2717#endif
2718 // FIXME: Mark exception selector register as live in. Hack for PR1508.
2719 unsigned Reg = TLI.getExceptionSelectorRegister();
2720 if (Reg) CurMBB->addLiveIn(Reg);
2721 }
2722
2723 // Insert the EHSELECTION instruction.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002724 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002725 SDOperand Ops[2];
2726 Ops[0] = getValue(I.getOperand(1));
2727 Ops[1] = getRoot();
2728 SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2729 setValue(&I, Op);
2730 DAG.setRoot(Op.getValue(1));
2731 } else {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002732 setValue(&I, DAG.getConstant(0, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002733 }
2734
2735 return 0;
2736 }
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002737
2738 case Intrinsic::eh_typeid_for_i32:
2739 case Intrinsic::eh_typeid_for_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002740 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002741 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2742 MVT::i32 : MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002743
2744 if (MMI) {
2745 // Find the type id for the given typeinfo.
2746 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2747
2748 unsigned TypeID = MMI->getTypeIDFor(GV);
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002749 setValue(&I, DAG.getConstant(TypeID, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002750 } else {
2751 // Return something different to eh_selector.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002752 setValue(&I, DAG.getConstant(1, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002753 }
2754
2755 return 0;
2756 }
2757
2758 case Intrinsic::eh_return: {
2759 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2760
2761 if (MMI && ExceptionHandling) {
2762 MMI->setCallsEHReturn(true);
2763 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2764 MVT::Other,
2765 getRoot(),
2766 getValue(I.getOperand(1)),
2767 getValue(I.getOperand(2))));
2768 } else {
2769 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2770 }
2771
2772 return 0;
2773 }
2774
2775 case Intrinsic::eh_unwind_init: {
2776 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2777 MMI->setCallsUnwindInit(true);
2778 }
2779
2780 return 0;
2781 }
2782
2783 case Intrinsic::eh_dwarf_cfa: {
2784 if (ExceptionHandling) {
2785 MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002786 SDOperand CfaArg;
2787 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2788 CfaArg = DAG.getNode(ISD::TRUNCATE,
2789 TLI.getPointerTy(), getValue(I.getOperand(1)));
2790 else
2791 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2792 TLI.getPointerTy(), getValue(I.getOperand(1)));
2793
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002794 SDOperand Offset = DAG.getNode(ISD::ADD,
2795 TLI.getPointerTy(),
2796 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002797 TLI.getPointerTy()),
2798 CfaArg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799 setValue(&I, DAG.getNode(ISD::ADD,
2800 TLI.getPointerTy(),
2801 DAG.getNode(ISD::FRAMEADDR,
2802 TLI.getPointerTy(),
2803 DAG.getConstant(0,
2804 TLI.getPointerTy())),
2805 Offset));
2806 } else {
2807 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2808 }
2809
2810 return 0;
2811 }
2812
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002813 case Intrinsic::sqrt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002814 setValue(&I, DAG.getNode(ISD::FSQRT,
2815 getValue(I.getOperand(1)).getValueType(),
2816 getValue(I.getOperand(1))));
2817 return 0;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002818 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819 setValue(&I, DAG.getNode(ISD::FPOWI,
2820 getValue(I.getOperand(1)).getValueType(),
2821 getValue(I.getOperand(1)),
2822 getValue(I.getOperand(2))));
2823 return 0;
Dan Gohmane1bb8c12007-10-12 00:01:22 +00002824 case Intrinsic::sin:
2825 setValue(&I, DAG.getNode(ISD::FSIN,
2826 getValue(I.getOperand(1)).getValueType(),
2827 getValue(I.getOperand(1))));
2828 return 0;
2829 case Intrinsic::cos:
2830 setValue(&I, DAG.getNode(ISD::FCOS,
2831 getValue(I.getOperand(1)).getValueType(),
2832 getValue(I.getOperand(1))));
2833 return 0;
2834 case Intrinsic::pow:
2835 setValue(&I, DAG.getNode(ISD::FPOW,
2836 getValue(I.getOperand(1)).getValueType(),
2837 getValue(I.getOperand(1)),
2838 getValue(I.getOperand(2))));
2839 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002840 case Intrinsic::pcmarker: {
2841 SDOperand Tmp = getValue(I.getOperand(1));
2842 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2843 return 0;
2844 }
2845 case Intrinsic::readcyclecounter: {
2846 SDOperand Op = getRoot();
2847 SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2848 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2849 &Op, 1);
2850 setValue(&I, Tmp);
2851 DAG.setRoot(Tmp.getValue(1));
2852 return 0;
2853 }
2854 case Intrinsic::part_select: {
2855 // Currently not implemented: just abort
2856 assert(0 && "part_select intrinsic not implemented");
2857 abort();
2858 }
2859 case Intrinsic::part_set: {
2860 // Currently not implemented: just abort
2861 assert(0 && "part_set intrinsic not implemented");
2862 abort();
2863 }
2864 case Intrinsic::bswap:
2865 setValue(&I, DAG.getNode(ISD::BSWAP,
2866 getValue(I.getOperand(1)).getValueType(),
2867 getValue(I.getOperand(1))));
2868 return 0;
2869 case Intrinsic::cttz: {
2870 SDOperand Arg = getValue(I.getOperand(1));
2871 MVT::ValueType Ty = Arg.getValueType();
2872 SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002873 setValue(&I, result);
2874 return 0;
2875 }
2876 case Intrinsic::ctlz: {
2877 SDOperand Arg = getValue(I.getOperand(1));
2878 MVT::ValueType Ty = Arg.getValueType();
2879 SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002880 setValue(&I, result);
2881 return 0;
2882 }
2883 case Intrinsic::ctpop: {
2884 SDOperand Arg = getValue(I.getOperand(1));
2885 MVT::ValueType Ty = Arg.getValueType();
2886 SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002887 setValue(&I, result);
2888 return 0;
2889 }
2890 case Intrinsic::stacksave: {
2891 SDOperand Op = getRoot();
2892 SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2893 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2894 setValue(&I, Tmp);
2895 DAG.setRoot(Tmp.getValue(1));
2896 return 0;
2897 }
2898 case Intrinsic::stackrestore: {
2899 SDOperand Tmp = getValue(I.getOperand(1));
2900 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2901 return 0;
2902 }
2903 case Intrinsic::prefetch:
2904 // FIXME: Currently discarding prefetches.
2905 return 0;
2906
2907 case Intrinsic::var_annotation:
2908 // Discard annotate attributes
2909 return 0;
Duncan Sands38947cd2007-07-27 12:58:54 +00002910
Duncan Sands38947cd2007-07-27 12:58:54 +00002911 case Intrinsic::init_trampoline: {
2912 const Function *F =
2913 cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2914
2915 SDOperand Ops[6];
2916 Ops[0] = getRoot();
2917 Ops[1] = getValue(I.getOperand(1));
2918 Ops[2] = getValue(I.getOperand(2));
2919 Ops[3] = getValue(I.getOperand(3));
2920 Ops[4] = DAG.getSrcValue(I.getOperand(1));
2921 Ops[5] = DAG.getSrcValue(F);
2922
Duncan Sands7407a9f2007-09-11 14:10:23 +00002923 SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2924 DAG.getNodeValueTypes(TLI.getPointerTy(),
2925 MVT::Other), 2,
2926 Ops, 6);
2927
2928 setValue(&I, Tmp);
2929 DAG.setRoot(Tmp.getValue(1));
Duncan Sands38947cd2007-07-27 12:58:54 +00002930 return 0;
2931 }
Anton Korobeynikovc915e272007-11-15 23:25:33 +00002932 case Intrinsic::flt_rounds: {
2933 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32));
2934 return 0;
2935 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002936 }
2937}
2938
2939
2940void SelectionDAGLowering::LowerCallTo(Instruction &I,
2941 const Type *CalledValueTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002942 const ParamAttrsList *Attrs,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002943 unsigned CallingConv,
2944 bool IsTailCall,
2945 SDOperand Callee, unsigned OpIdx,
2946 MachineBasicBlock *LandingPad) {
2947 const PointerType *PT = cast<PointerType>(CalledValueTy);
2948 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002949 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2950 unsigned BeginLabel = 0, EndLabel = 0;
2951
2952 TargetLowering::ArgListTy Args;
2953 TargetLowering::ArgListEntry Entry;
2954 Args.reserve(I.getNumOperands());
2955 for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2956 Value *Arg = I.getOperand(i);
2957 SDOperand ArgNode = getValue(Arg);
2958 Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2959
2960 unsigned attrInd = i - OpIdx + 1;
2961 Entry.isSExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2962 Entry.isZExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2963 Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2964 Entry.isSRet = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
Duncan Sands38947cd2007-07-27 12:58:54 +00002965 Entry.isNest = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00002966 Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002967 Args.push_back(Entry);
2968 }
2969
Duncan Sands241a0c92007-09-05 11:27:52 +00002970 if (ExceptionHandling && MMI && LandingPad) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002971 // Insert a label before the invoke call to mark the try range. This can be
2972 // used to detect deletion of the invoke via the MachineModuleInfo.
2973 BeginLabel = MMI->NextLabelID();
2974 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2975 DAG.getConstant(BeginLabel, MVT::i32)));
2976 }
2977
2978 std::pair<SDOperand,SDOperand> Result =
2979 TLI.LowerCallTo(getRoot(), I.getType(),
2980 Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2981 FTy->isVarArg(), CallingConv, IsTailCall,
2982 Callee, Args, DAG);
2983 if (I.getType() != Type::VoidTy)
2984 setValue(&I, Result.first);
2985 DAG.setRoot(Result.second);
2986
Duncan Sands241a0c92007-09-05 11:27:52 +00002987 if (ExceptionHandling && MMI && LandingPad) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002988 // Insert a label at the end of the invoke call to mark the try range. This
2989 // can be used to detect deletion of the invoke via the MachineModuleInfo.
2990 EndLabel = MMI->NextLabelID();
2991 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2992 DAG.getConstant(EndLabel, MVT::i32)));
2993
2994 // Inform MachineModuleInfo of range.
2995 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2996 }
2997}
2998
2999
3000void SelectionDAGLowering::visitCall(CallInst &I) {
3001 const char *RenameFn = 0;
3002 if (Function *F = I.getCalledFunction()) {
Chris Lattner3687e342007-09-10 21:15:22 +00003003 if (F->isDeclaration()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004 if (unsigned IID = F->getIntrinsicID()) {
3005 RenameFn = visitIntrinsicCall(I, IID);
3006 if (!RenameFn)
3007 return;
Chris Lattner3687e342007-09-10 21:15:22 +00003008 }
3009 }
3010
3011 // Check for well-known libc/libm calls. If the function is internal, it
3012 // can't be a library call.
3013 unsigned NameLen = F->getNameLen();
3014 if (!F->hasInternalLinkage() && NameLen) {
3015 const char *NameStr = F->getNameStart();
3016 if (NameStr[0] == 'c' &&
3017 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3018 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3019 if (I.getNumOperands() == 3 && // Basic sanity checks.
3020 I.getOperand(1)->getType()->isFloatingPoint() &&
3021 I.getType() == I.getOperand(1)->getType() &&
3022 I.getType() == I.getOperand(2)->getType()) {
3023 SDOperand LHS = getValue(I.getOperand(1));
3024 SDOperand RHS = getValue(I.getOperand(2));
3025 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3026 LHS, RHS));
3027 return;
3028 }
3029 } else if (NameStr[0] == 'f' &&
3030 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003031 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3032 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003033 if (I.getNumOperands() == 2 && // Basic sanity checks.
3034 I.getOperand(1)->getType()->isFloatingPoint() &&
3035 I.getType() == I.getOperand(1)->getType()) {
3036 SDOperand Tmp = getValue(I.getOperand(1));
3037 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3038 return;
3039 }
3040 } else if (NameStr[0] == 's' &&
3041 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003042 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3043 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003044 if (I.getNumOperands() == 2 && // Basic sanity checks.
3045 I.getOperand(1)->getType()->isFloatingPoint() &&
3046 I.getType() == I.getOperand(1)->getType()) {
3047 SDOperand Tmp = getValue(I.getOperand(1));
3048 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3049 return;
3050 }
3051 } else if (NameStr[0] == 'c' &&
3052 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003053 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3054 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003055 if (I.getNumOperands() == 2 && // Basic sanity checks.
3056 I.getOperand(1)->getType()->isFloatingPoint() &&
3057 I.getType() == I.getOperand(1)->getType()) {
3058 SDOperand Tmp = getValue(I.getOperand(1));
3059 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3060 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003061 }
3062 }
Chris Lattner3687e342007-09-10 21:15:22 +00003063 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003064 } else if (isa<InlineAsm>(I.getOperand(0))) {
3065 visitInlineAsm(I);
3066 return;
3067 }
3068
3069 SDOperand Callee;
3070 if (!RenameFn)
3071 Callee = getValue(I.getOperand(0));
3072 else
3073 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3074
Duncan Sandsf5588dc2007-11-27 13:23:08 +00003075 LowerCallTo(I, I.getCalledValue()->getType(), I.getParamAttrs(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003076 I.getCallingConv(),
3077 I.isTailCall(),
3078 Callee,
3079 1);
3080}
3081
3082
3083/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3084/// this value and returns the result as a ValueVT value. This uses
3085/// Chain/Flag as the input and updates them for the output Chain/Flag.
3086/// If the Flag pointer is NULL, no flag is used.
3087SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3088 SDOperand &Chain, SDOperand *Flag)const{
3089 // Copy the legal parts from the registers.
3090 unsigned NumParts = Regs.size();
3091 SmallVector<SDOperand, 8> Parts(NumParts);
3092 for (unsigned i = 0; i != NumParts; ++i) {
3093 SDOperand Part = Flag ?
3094 DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3095 DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3096 Chain = Part.getValue(1);
3097 if (Flag)
3098 *Flag = Part.getValue(2);
3099 Parts[i] = Part;
3100 }
3101
3102 // Assemble the legal parts into the final value.
3103 return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3104}
3105
3106/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3107/// specified value into the registers specified by this object. This uses
3108/// Chain/Flag as the input and updates them for the output Chain/Flag.
3109/// If the Flag pointer is NULL, no flag is used.
3110void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3111 SDOperand &Chain, SDOperand *Flag) const {
3112 // Get the list of the values's legal parts.
3113 unsigned NumParts = Regs.size();
3114 SmallVector<SDOperand, 8> Parts(NumParts);
3115 getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3116
3117 // Copy the parts into the registers.
3118 for (unsigned i = 0; i != NumParts; ++i) {
3119 SDOperand Part = Flag ?
3120 DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3121 DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3122 Chain = Part.getValue(0);
3123 if (Flag)
3124 *Flag = Part.getValue(1);
3125 }
3126}
3127
3128/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3129/// operand list. This adds the code marker and includes the number of
3130/// values added into it.
3131void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3132 std::vector<SDOperand> &Ops) const {
3133 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3134 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3135 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3136 Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3137}
3138
3139/// isAllocatableRegister - If the specified register is safe to allocate,
3140/// i.e. it isn't a stack pointer or some other special register, return the
3141/// register class for the register. Otherwise, return null.
3142static const TargetRegisterClass *
3143isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3144 const TargetLowering &TLI, const MRegisterInfo *MRI) {
3145 MVT::ValueType FoundVT = MVT::Other;
3146 const TargetRegisterClass *FoundRC = 0;
3147 for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3148 E = MRI->regclass_end(); RCI != E; ++RCI) {
3149 MVT::ValueType ThisVT = MVT::Other;
3150
3151 const TargetRegisterClass *RC = *RCI;
3152 // If none of the the value types for this register class are valid, we
3153 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3154 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3155 I != E; ++I) {
3156 if (TLI.isTypeLegal(*I)) {
3157 // If we have already found this register in a different register class,
3158 // choose the one with the largest VT specified. For example, on
3159 // PowerPC, we favor f64 register classes over f32.
3160 if (FoundVT == MVT::Other ||
3161 MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3162 ThisVT = *I;
3163 break;
3164 }
3165 }
3166 }
3167
3168 if (ThisVT == MVT::Other) continue;
3169
3170 // NOTE: This isn't ideal. In particular, this might allocate the
3171 // frame pointer in functions that need it (due to them not being taken
3172 // out of allocation, because a variable sized allocation hasn't been seen
3173 // yet). This is a slight code pessimization, but should still work.
3174 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3175 E = RC->allocation_order_end(MF); I != E; ++I)
3176 if (*I == Reg) {
3177 // We found a matching register class. Keep looking at others in case
3178 // we find one with larger registers that this physreg is also in.
3179 FoundRC = RC;
3180 FoundVT = ThisVT;
3181 break;
3182 }
3183 }
3184 return FoundRC;
3185}
3186
3187
3188namespace {
3189/// AsmOperandInfo - This contains information for each constraint that we are
3190/// lowering.
3191struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3192 /// ConstraintCode - This contains the actual string for the code, like "m".
3193 std::string ConstraintCode;
3194
3195 /// ConstraintType - Information about the constraint code, e.g. Register,
3196 /// RegisterClass, Memory, Other, Unknown.
3197 TargetLowering::ConstraintType ConstraintType;
3198
3199 /// CallOperand/CallOperandval - If this is the result output operand or a
3200 /// clobber, this is null, otherwise it is the incoming operand to the
3201 /// CallInst. This gets modified as the asm is processed.
3202 SDOperand CallOperand;
3203 Value *CallOperandVal;
3204
3205 /// ConstraintVT - The ValueType for the operand value.
3206 MVT::ValueType ConstraintVT;
3207
3208 /// AssignedRegs - If this is a register or register class operand, this
3209 /// contains the set of register corresponding to the operand.
3210 RegsForValue AssignedRegs;
3211
3212 AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3213 : InlineAsm::ConstraintInfo(info),
3214 ConstraintType(TargetLowering::C_Unknown),
3215 CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3216 }
3217
3218 void ComputeConstraintToUse(const TargetLowering &TLI);
3219
3220 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3221 /// busy in OutputRegs/InputRegs.
3222 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3223 std::set<unsigned> &OutputRegs,
3224 std::set<unsigned> &InputRegs) const {
3225 if (isOutReg)
3226 OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3227 if (isInReg)
3228 InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3229 }
3230};
3231} // end anon namespace.
3232
3233/// getConstraintGenerality - Return an integer indicating how general CT is.
3234static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3235 switch (CT) {
3236 default: assert(0 && "Unknown constraint type!");
3237 case TargetLowering::C_Other:
3238 case TargetLowering::C_Unknown:
3239 return 0;
3240 case TargetLowering::C_Register:
3241 return 1;
3242 case TargetLowering::C_RegisterClass:
3243 return 2;
3244 case TargetLowering::C_Memory:
3245 return 3;
3246 }
3247}
3248
3249void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3250 assert(!Codes.empty() && "Must have at least one constraint");
3251
3252 std::string *Current = &Codes[0];
3253 TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3254 if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
3255 ConstraintCode = *Current;
3256 ConstraintType = CurType;
3257 return;
3258 }
3259
3260 unsigned CurGenerality = getConstraintGenerality(CurType);
3261
3262 // If we have multiple constraints, try to pick the most general one ahead
3263 // of time. This isn't a wonderful solution, but handles common cases.
3264 for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3265 TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3266 unsigned ThisGenerality = getConstraintGenerality(ThisType);
3267 if (ThisGenerality > CurGenerality) {
3268 // This constraint letter is more general than the previous one,
3269 // use it.
3270 CurType = ThisType;
3271 Current = &Codes[j];
3272 CurGenerality = ThisGenerality;
3273 }
3274 }
3275
3276 ConstraintCode = *Current;
3277 ConstraintType = CurType;
3278}
3279
3280
3281void SelectionDAGLowering::
3282GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3283 std::set<unsigned> &OutputRegs,
3284 std::set<unsigned> &InputRegs) {
3285 // Compute whether this value requires an input register, an output register,
3286 // or both.
3287 bool isOutReg = false;
3288 bool isInReg = false;
3289 switch (OpInfo.Type) {
3290 case InlineAsm::isOutput:
3291 isOutReg = true;
3292
3293 // If this is an early-clobber output, or if there is an input
3294 // constraint that matches this, we need to reserve the input register
3295 // so no other inputs allocate to it.
3296 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3297 break;
3298 case InlineAsm::isInput:
3299 isInReg = true;
3300 isOutReg = false;
3301 break;
3302 case InlineAsm::isClobber:
3303 isOutReg = true;
3304 isInReg = true;
3305 break;
3306 }
3307
3308
3309 MachineFunction &MF = DAG.getMachineFunction();
3310 std::vector<unsigned> Regs;
3311
3312 // If this is a constraint for a single physreg, or a constraint for a
3313 // register class, find it.
3314 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3315 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3316 OpInfo.ConstraintVT);
3317
3318 unsigned NumRegs = 1;
3319 if (OpInfo.ConstraintVT != MVT::Other)
3320 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3321 MVT::ValueType RegVT;
3322 MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3323
3324
3325 // If this is a constraint for a specific physical register, like {r17},
3326 // assign it now.
3327 if (PhysReg.first) {
3328 if (OpInfo.ConstraintVT == MVT::Other)
3329 ValueVT = *PhysReg.second->vt_begin();
3330
3331 // Get the actual register value type. This is important, because the user
3332 // may have asked for (e.g.) the AX register in i32 type. We need to
3333 // remember that AX is actually i16 to get the right extension.
3334 RegVT = *PhysReg.second->vt_begin();
3335
3336 // This is a explicit reference to a physical register.
3337 Regs.push_back(PhysReg.first);
3338
3339 // If this is an expanded reference, add the rest of the regs to Regs.
3340 if (NumRegs != 1) {
3341 TargetRegisterClass::iterator I = PhysReg.second->begin();
3342 TargetRegisterClass::iterator E = PhysReg.second->end();
3343 for (; *I != PhysReg.first; ++I)
3344 assert(I != E && "Didn't find reg!");
3345
3346 // Already added the first reg.
3347 --NumRegs; ++I;
3348 for (; NumRegs; --NumRegs, ++I) {
3349 assert(I != E && "Ran out of registers to allocate!");
3350 Regs.push_back(*I);
3351 }
3352 }
3353 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3354 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3355 return;
3356 }
3357
3358 // Otherwise, if this was a reference to an LLVM register class, create vregs
3359 // for this reference.
3360 std::vector<unsigned> RegClassRegs;
3361 const TargetRegisterClass *RC = PhysReg.second;
3362 if (RC) {
3363 // If this is an early clobber or tied register, our regalloc doesn't know
3364 // how to maintain the constraint. If it isn't, go ahead and create vreg
3365 // and let the regalloc do the right thing.
3366 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3367 // If there is some other early clobber and this is an input register,
3368 // then we are forced to pre-allocate the input reg so it doesn't
3369 // conflict with the earlyclobber.
3370 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3371 RegVT = *PhysReg.second->vt_begin();
3372
3373 if (OpInfo.ConstraintVT == MVT::Other)
3374 ValueVT = RegVT;
3375
3376 // Create the appropriate number of virtual registers.
3377 SSARegMap *RegMap = MF.getSSARegMap();
3378 for (; NumRegs; --NumRegs)
3379 Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3380
3381 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3382 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3383 return;
3384 }
3385
3386 // Otherwise, we can't allocate it. Let the code below figure out how to
3387 // maintain these constraints.
3388 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3389
3390 } else {
3391 // This is a reference to a register class that doesn't directly correspond
3392 // to an LLVM register class. Allocate NumRegs consecutive, available,
3393 // registers from the class.
3394 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3395 OpInfo.ConstraintVT);
3396 }
3397
3398 const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3399 unsigned NumAllocated = 0;
3400 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3401 unsigned Reg = RegClassRegs[i];
3402 // See if this register is available.
3403 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
3404 (isInReg && InputRegs.count(Reg))) { // Already used.
3405 // Make sure we find consecutive registers.
3406 NumAllocated = 0;
3407 continue;
3408 }
3409
3410 // Check to see if this register is allocatable (i.e. don't give out the
3411 // stack pointer).
3412 if (RC == 0) {
3413 RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3414 if (!RC) { // Couldn't allocate this register.
3415 // Reset NumAllocated to make sure we return consecutive registers.
3416 NumAllocated = 0;
3417 continue;
3418 }
3419 }
3420
3421 // Okay, this register is good, we can use it.
3422 ++NumAllocated;
3423
3424 // If we allocated enough consecutive registers, succeed.
3425 if (NumAllocated == NumRegs) {
3426 unsigned RegStart = (i-NumAllocated)+1;
3427 unsigned RegEnd = i+1;
3428 // Mark all of the allocated registers used.
3429 for (unsigned i = RegStart; i != RegEnd; ++i)
3430 Regs.push_back(RegClassRegs[i]);
3431
3432 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3433 OpInfo.ConstraintVT);
3434 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3435 return;
3436 }
3437 }
3438
3439 // Otherwise, we couldn't allocate enough registers for this.
3440 return;
3441}
3442
3443
3444/// visitInlineAsm - Handle a call to an InlineAsm object.
3445///
3446void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3447 InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3448
3449 /// ConstraintOperands - Information about all of the constraints.
3450 std::vector<AsmOperandInfo> ConstraintOperands;
3451
3452 SDOperand Chain = getRoot();
3453 SDOperand Flag;
3454
3455 std::set<unsigned> OutputRegs, InputRegs;
3456
3457 // Do a prepass over the constraints, canonicalizing them, and building up the
3458 // ConstraintOperands list.
3459 std::vector<InlineAsm::ConstraintInfo>
3460 ConstraintInfos = IA->ParseConstraints();
3461
3462 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3463 // constraint. If so, we can't let the register allocator allocate any input
3464 // registers, because it will not know to avoid the earlyclobbered output reg.
3465 bool SawEarlyClobber = false;
3466
3467 unsigned OpNo = 1; // OpNo - The operand of the CallInst.
3468 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3469 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3470 AsmOperandInfo &OpInfo = ConstraintOperands.back();
3471
3472 MVT::ValueType OpVT = MVT::Other;
3473
3474 // Compute the value type for each operand.
3475 switch (OpInfo.Type) {
3476 case InlineAsm::isOutput:
3477 if (!OpInfo.isIndirect) {
3478 // The return value of the call is this value. As such, there is no
3479 // corresponding argument.
3480 assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3481 OpVT = TLI.getValueType(I.getType());
3482 } else {
3483 OpInfo.CallOperandVal = I.getOperand(OpNo++);
3484 }
3485 break;
3486 case InlineAsm::isInput:
3487 OpInfo.CallOperandVal = I.getOperand(OpNo++);
3488 break;
3489 case InlineAsm::isClobber:
3490 // Nothing to do.
3491 break;
3492 }
3493
3494 // If this is an input or an indirect output, process the call argument.
Dale Johannesencfb19e62007-11-05 21:20:28 +00003495 // BasicBlocks are labels, currently appearing only in asm's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496 if (OpInfo.CallOperandVal) {
Dale Johannesencfb19e62007-11-05 21:20:28 +00003497 if (isa<BasicBlock>(OpInfo.CallOperandVal))
3498 OpInfo.CallOperand =
3499 DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(OpInfo.CallOperandVal)]);
3500 else {
3501 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3502 const Type *OpTy = OpInfo.CallOperandVal->getType();
3503 // If this is an indirect operand, the operand is a pointer to the
3504 // accessed type.
3505 if (OpInfo.isIndirect)
3506 OpTy = cast<PointerType>(OpTy)->getElementType();
3507
3508 // If OpTy is not a first-class value, it may be a struct/union that we
3509 // can tile with integers.
3510 if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3511 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3512 switch (BitSize) {
3513 default: break;
3514 case 1:
3515 case 8:
3516 case 16:
3517 case 32:
3518 case 64:
3519 OpTy = IntegerType::get(BitSize);
3520 break;
3521 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003522 }
Dale Johannesencfb19e62007-11-05 21:20:28 +00003523
3524 OpVT = TLI.getValueType(OpTy, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003525 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003526 }
3527
3528 OpInfo.ConstraintVT = OpVT;
3529
3530 // Compute the constraint code and ConstraintType to use.
3531 OpInfo.ComputeConstraintToUse(TLI);
3532
3533 // Keep track of whether we see an earlyclobber.
3534 SawEarlyClobber |= OpInfo.isEarlyClobber;
3535
3536 // If this is a memory input, and if the operand is not indirect, do what we
3537 // need to to provide an address for the memory input.
3538 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3539 !OpInfo.isIndirect) {
3540 assert(OpInfo.Type == InlineAsm::isInput &&
3541 "Can only indirectify direct input operands!");
3542
3543 // Memory operands really want the address of the value. If we don't have
3544 // an indirect input, put it in the constpool if we can, otherwise spill
3545 // it to a stack slot.
3546
3547 // If the operand is a float, integer, or vector constant, spill to a
3548 // constant pool entry to get its address.
3549 Value *OpVal = OpInfo.CallOperandVal;
3550 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3551 isa<ConstantVector>(OpVal)) {
3552 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3553 TLI.getPointerTy());
3554 } else {
3555 // Otherwise, create a stack slot and emit a store to it before the
3556 // asm.
3557 const Type *Ty = OpVal->getType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003558 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003559 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3560 MachineFunction &MF = DAG.getMachineFunction();
3561 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3562 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3563 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3564 OpInfo.CallOperand = StackSlot;
3565 }
3566
3567 // There is no longer a Value* corresponding to this operand.
3568 OpInfo.CallOperandVal = 0;
3569 // It is now an indirect operand.
3570 OpInfo.isIndirect = true;
3571 }
3572
3573 // If this constraint is for a specific register, allocate it before
3574 // anything else.
3575 if (OpInfo.ConstraintType == TargetLowering::C_Register)
3576 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3577 }
3578 ConstraintInfos.clear();
3579
3580
3581 // Second pass - Loop over all of the operands, assigning virtual or physregs
3582 // to registerclass operands.
3583 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3584 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3585
3586 // C_Register operands have already been allocated, Other/Memory don't need
3587 // to be.
3588 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3589 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3590 }
3591
3592 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3593 std::vector<SDOperand> AsmNodeOperands;
3594 AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
3595 AsmNodeOperands.push_back(
3596 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3597
3598
3599 // Loop over all of the inputs, copying the operand values into the
3600 // appropriate registers and processing the output regs.
3601 RegsForValue RetValRegs;
3602
3603 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3604 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3605
3606 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3607 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3608
3609 switch (OpInfo.Type) {
3610 case InlineAsm::isOutput: {
3611 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3612 OpInfo.ConstraintType != TargetLowering::C_Register) {
3613 // Memory output, or 'other' output (e.g. 'X' constraint).
3614 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3615
3616 // Add information to the INLINEASM node to know about this output.
3617 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3618 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3619 TLI.getPointerTy()));
3620 AsmNodeOperands.push_back(OpInfo.CallOperand);
3621 break;
3622 }
3623
3624 // Otherwise, this is a register or register class output.
3625
3626 // Copy the output from the appropriate register. Find a register that
3627 // we can use.
3628 if (OpInfo.AssignedRegs.Regs.empty()) {
3629 cerr << "Couldn't allocate output reg for contraint '"
3630 << OpInfo.ConstraintCode << "'!\n";
3631 exit(1);
3632 }
3633
3634 if (!OpInfo.isIndirect) {
3635 // This is the result value of the call.
3636 assert(RetValRegs.Regs.empty() &&
3637 "Cannot have multiple output constraints yet!");
3638 assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3639 RetValRegs = OpInfo.AssignedRegs;
3640 } else {
3641 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3642 OpInfo.CallOperandVal));
3643 }
3644
3645 // Add information to the INLINEASM node to know that this register is
3646 // set.
3647 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3648 AsmNodeOperands);
3649 break;
3650 }
3651 case InlineAsm::isInput: {
3652 SDOperand InOperandVal = OpInfo.CallOperand;
3653
3654 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
3655 // If this is required to match an output register we have already set,
3656 // just use its register.
3657 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3658
3659 // Scan until we find the definition we already emitted of this operand.
3660 // When we find it, create a RegsForValue operand.
3661 unsigned CurOp = 2; // The first operand.
3662 for (; OperandNo; --OperandNo) {
3663 // Advance to the next operand.
3664 unsigned NumOps =
3665 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3666 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3667 (NumOps & 7) == 4 /*MEM*/) &&
3668 "Skipped past definitions?");
3669 CurOp += (NumOps>>3)+1;
3670 }
3671
3672 unsigned NumOps =
3673 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3674 if ((NumOps & 7) == 2 /*REGDEF*/) {
3675 // Add NumOps>>3 registers to MatchedRegs.
3676 RegsForValue MatchedRegs;
3677 MatchedRegs.ValueVT = InOperandVal.getValueType();
3678 MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
3679 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3680 unsigned Reg =
3681 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3682 MatchedRegs.Regs.push_back(Reg);
3683 }
3684
3685 // Use the produced MatchedRegs object to
3686 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3687 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3688 break;
3689 } else {
3690 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3691 assert(0 && "matching constraints for memory operands unimp");
3692 }
3693 }
3694
3695 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3696 assert(!OpInfo.isIndirect &&
3697 "Don't know how to handle indirect other inputs yet!");
3698
Chris Lattnera531abc2007-08-25 00:47:38 +00003699 std::vector<SDOperand> Ops;
3700 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3701 Ops, DAG);
3702 if (Ops.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003703 cerr << "Invalid operand for inline asm constraint '"
3704 << OpInfo.ConstraintCode << "'!\n";
3705 exit(1);
3706 }
3707
3708 // Add information to the INLINEASM node to know about this input.
Chris Lattnera531abc2007-08-25 00:47:38 +00003709 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003710 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3711 TLI.getPointerTy()));
Chris Lattnera531abc2007-08-25 00:47:38 +00003712 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003713 break;
3714 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3715 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3716 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3717 "Memory operands expect pointer values");
3718
3719 // Add information to the INLINEASM node to know about this input.
3720 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3721 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3722 TLI.getPointerTy()));
3723 AsmNodeOperands.push_back(InOperandVal);
3724 break;
3725 }
3726
3727 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3728 OpInfo.ConstraintType == TargetLowering::C_Register) &&
3729 "Unknown constraint type!");
3730 assert(!OpInfo.isIndirect &&
3731 "Don't know how to handle indirect register inputs yet!");
3732
3733 // Copy the input into the appropriate registers.
3734 assert(!OpInfo.AssignedRegs.Regs.empty() &&
3735 "Couldn't allocate input reg!");
3736
3737 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3738
3739 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3740 AsmNodeOperands);
3741 break;
3742 }
3743 case InlineAsm::isClobber: {
3744 // Add the clobbered value to the operand list, so that the register
3745 // allocator is aware that the physreg got clobbered.
3746 if (!OpInfo.AssignedRegs.Regs.empty())
3747 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3748 AsmNodeOperands);
3749 break;
3750 }
3751 }
3752 }
3753
3754 // Finish up input operands.
3755 AsmNodeOperands[0] = Chain;
3756 if (Flag.Val) AsmNodeOperands.push_back(Flag);
3757
3758 Chain = DAG.getNode(ISD::INLINEASM,
3759 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3760 &AsmNodeOperands[0], AsmNodeOperands.size());
3761 Flag = Chain.getValue(1);
3762
3763 // If this asm returns a register value, copy the result from that register
3764 // and set it as the value of the call.
3765 if (!RetValRegs.Regs.empty()) {
3766 SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3767
3768 // If the result of the inline asm is a vector, it may have the wrong
3769 // width/num elts. Make sure to convert it to the right type with
3770 // bit_convert.
3771 if (MVT::isVector(Val.getValueType())) {
3772 const VectorType *VTy = cast<VectorType>(I.getType());
3773 MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3774
3775 Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3776 }
3777
3778 setValue(&I, Val);
3779 }
3780
3781 std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3782
3783 // Process indirect outputs, first output all of the flagged copies out of
3784 // physregs.
3785 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3786 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3787 Value *Ptr = IndirectStoresToEmit[i].second;
3788 SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3789 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3790 }
3791
3792 // Emit the non-flagged stores from the physregs.
3793 SmallVector<SDOperand, 8> OutChains;
3794 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3795 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3796 getValue(StoresToEmit[i].second),
3797 StoresToEmit[i].second, 0));
3798 if (!OutChains.empty())
3799 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3800 &OutChains[0], OutChains.size());
3801 DAG.setRoot(Chain);
3802}
3803
3804
3805void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3806 SDOperand Src = getValue(I.getOperand(0));
3807
3808 MVT::ValueType IntPtr = TLI.getPointerTy();
3809
3810 if (IntPtr < Src.getValueType())
3811 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3812 else if (IntPtr > Src.getValueType())
3813 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3814
3815 // Scale the source by the type size.
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003816 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003817 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3818 Src, getIntPtrConstant(ElementSize));
3819
3820 TargetLowering::ArgListTy Args;
3821 TargetLowering::ArgListEntry Entry;
3822 Entry.Node = Src;
3823 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3824 Args.push_back(Entry);
3825
3826 std::pair<SDOperand,SDOperand> Result =
3827 TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3828 DAG.getExternalSymbol("malloc", IntPtr),
3829 Args, DAG);
3830 setValue(&I, Result.first); // Pointers always fit in registers
3831 DAG.setRoot(Result.second);
3832}
3833
3834void SelectionDAGLowering::visitFree(FreeInst &I) {
3835 TargetLowering::ArgListTy Args;
3836 TargetLowering::ArgListEntry Entry;
3837 Entry.Node = getValue(I.getOperand(0));
3838 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3839 Args.push_back(Entry);
3840 MVT::ValueType IntPtr = TLI.getPointerTy();
3841 std::pair<SDOperand,SDOperand> Result =
3842 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3843 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3844 DAG.setRoot(Result.second);
3845}
3846
3847// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3848// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
3849// instructions are special in various ways, which require special support to
3850// insert. The specified MachineInstr is created but not inserted into any
3851// basic blocks, and the scheduler passes ownership of it to this method.
3852MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3853 MachineBasicBlock *MBB) {
3854 cerr << "If a target marks an instruction with "
3855 << "'usesCustomDAGSchedInserter', it must implement "
3856 << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3857 abort();
3858 return 0;
3859}
3860
3861void SelectionDAGLowering::visitVAStart(CallInst &I) {
3862 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3863 getValue(I.getOperand(1)),
3864 DAG.getSrcValue(I.getOperand(1))));
3865}
3866
3867void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3868 SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3869 getValue(I.getOperand(0)),
3870 DAG.getSrcValue(I.getOperand(0)));
3871 setValue(&I, V);
3872 DAG.setRoot(V.getValue(1));
3873}
3874
3875void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3876 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3877 getValue(I.getOperand(1)),
3878 DAG.getSrcValue(I.getOperand(1))));
3879}
3880
3881void SelectionDAGLowering::visitVACopy(CallInst &I) {
3882 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3883 getValue(I.getOperand(1)),
3884 getValue(I.getOperand(2)),
3885 DAG.getSrcValue(I.getOperand(1)),
3886 DAG.getSrcValue(I.getOperand(2))));
3887}
3888
3889/// TargetLowering::LowerArguments - This is the default LowerArguments
3890/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
3891/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3892/// integrated into SDISel.
3893std::vector<SDOperand>
3894TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3896 std::vector<SDOperand> Ops;
3897 Ops.push_back(DAG.getRoot());
3898 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3899 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3900
3901 // Add one result value for each formal argument.
3902 std::vector<MVT::ValueType> RetVals;
3903 unsigned j = 1;
3904 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3905 I != E; ++I, ++j) {
3906 MVT::ValueType VT = getValueType(I->getType());
3907 unsigned Flags = ISD::ParamFlags::NoFlagSet;
3908 unsigned OriginalAlignment =
3909 getTargetData()->getABITypeAlignment(I->getType());
3910
3911 // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3912 // that is zero extended!
Duncan Sands637ec552007-11-28 17:07:01 +00003913 if (F.paramHasAttr(j, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003914 Flags &= ~(ISD::ParamFlags::SExt);
Duncan Sands637ec552007-11-28 17:07:01 +00003915 if (F.paramHasAttr(j, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003916 Flags |= ISD::ParamFlags::SExt;
Duncan Sands637ec552007-11-28 17:07:01 +00003917 if (F.paramHasAttr(j, ParamAttr::InReg))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003918 Flags |= ISD::ParamFlags::InReg;
Duncan Sands637ec552007-11-28 17:07:01 +00003919 if (F.paramHasAttr(j, ParamAttr::StructRet))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003920 Flags |= ISD::ParamFlags::StructReturn;
Duncan Sands637ec552007-11-28 17:07:01 +00003921 if (F.paramHasAttr(j, ParamAttr::ByVal)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003922 Flags |= ISD::ParamFlags::ByVal;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003923 const PointerType *Ty = cast<PointerType>(I->getType());
3924 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00003925 unsigned StructAlign =
3926 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003927 unsigned StructSize = getTargetData()->getABITypeSize(STy);
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003928 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3929 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
3930 }
Duncan Sands637ec552007-11-28 17:07:01 +00003931 if (F.paramHasAttr(j, ParamAttr::Nest))
Duncan Sands38947cd2007-07-27 12:58:54 +00003932 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003933 Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3934
3935 switch (getTypeAction(VT)) {
3936 default: assert(0 && "Unknown type action!");
3937 case Legal:
3938 RetVals.push_back(VT);
3939 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3940 break;
3941 case Promote:
3942 RetVals.push_back(getTypeToTransformTo(VT));
3943 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3944 break;
3945 case Expand: {
3946 // If this is an illegal type, it needs to be broken up to fit into
3947 // registers.
3948 MVT::ValueType RegisterVT = getRegisterType(VT);
3949 unsigned NumRegs = getNumRegisters(VT);
3950 for (unsigned i = 0; i != NumRegs; ++i) {
3951 RetVals.push_back(RegisterVT);
3952 // if it isn't first piece, alignment must be 1
3953 if (i > 0)
3954 Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3955 (1 << ISD::ParamFlags::OrigAlignmentOffs);
3956 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3957 }
3958 break;
3959 }
3960 }
3961 }
3962
3963 RetVals.push_back(MVT::Other);
3964
3965 // Create the node.
3966 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3967 DAG.getNodeValueTypes(RetVals), RetVals.size(),
3968 &Ops[0], Ops.size()).Val;
3969 unsigned NumArgRegs = Result->getNumValues() - 1;
3970 DAG.setRoot(SDOperand(Result, NumArgRegs));
3971
3972 // Set up the return result vector.
3973 Ops.clear();
3974 unsigned i = 0;
3975 unsigned Idx = 1;
3976 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3977 ++I, ++Idx) {
3978 MVT::ValueType VT = getValueType(I->getType());
3979
3980 switch (getTypeAction(VT)) {
3981 default: assert(0 && "Unknown type action!");
3982 case Legal:
3983 Ops.push_back(SDOperand(Result, i++));
3984 break;
3985 case Promote: {
3986 SDOperand Op(Result, i++);
3987 if (MVT::isInteger(VT)) {
Duncan Sands637ec552007-11-28 17:07:01 +00003988 if (F.paramHasAttr(Idx, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003989 Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3990 DAG.getValueType(VT));
Duncan Sands637ec552007-11-28 17:07:01 +00003991 else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003992 Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3993 DAG.getValueType(VT));
3994 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3995 } else {
3996 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3997 Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3998 }
3999 Ops.push_back(Op);
4000 break;
4001 }
4002 case Expand: {
4003 MVT::ValueType PartVT = getRegisterType(VT);
4004 unsigned NumParts = getNumRegisters(VT);
4005 SmallVector<SDOperand, 4> Parts(NumParts);
4006 for (unsigned j = 0; j != NumParts; ++j)
4007 Parts[j] = SDOperand(Result, i++);
4008 Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
4009 break;
4010 }
4011 }
4012 }
4013 assert(i == NumArgRegs && "Argument register count mismatch!");
4014 return Ops;
4015}
4016
4017
4018/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4019/// implementation, which just inserts an ISD::CALL node, which is later custom
4020/// lowered by the target to something concrete. FIXME: When all targets are
4021/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4022std::pair<SDOperand, SDOperand>
4023TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4024 bool RetTyIsSigned, bool isVarArg,
4025 unsigned CallingConv, bool isTailCall,
4026 SDOperand Callee,
4027 ArgListTy &Args, SelectionDAG &DAG) {
4028 SmallVector<SDOperand, 32> Ops;
4029 Ops.push_back(Chain); // Op#0 - Chain
4030 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4031 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
4032 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
4033 Ops.push_back(Callee);
4034
4035 // Handle all of the outgoing arguments.
4036 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4037 MVT::ValueType VT = getValueType(Args[i].Ty);
4038 SDOperand Op = Args[i].Node;
4039 unsigned Flags = ISD::ParamFlags::NoFlagSet;
4040 unsigned OriginalAlignment =
4041 getTargetData()->getABITypeAlignment(Args[i].Ty);
4042
4043 if (Args[i].isSExt)
4044 Flags |= ISD::ParamFlags::SExt;
4045 if (Args[i].isZExt)
4046 Flags |= ISD::ParamFlags::ZExt;
4047 if (Args[i].isInReg)
4048 Flags |= ISD::ParamFlags::InReg;
4049 if (Args[i].isSRet)
4050 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004051 if (Args[i].isByVal) {
4052 Flags |= ISD::ParamFlags::ByVal;
4053 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4054 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00004055 unsigned StructAlign =
4056 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004057 unsigned StructSize = getTargetData()->getABITypeSize(STy);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004058 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4059 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
4060 }
Duncan Sands38947cd2007-07-27 12:58:54 +00004061 if (Args[i].isNest)
4062 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004063 Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4064
4065 switch (getTypeAction(VT)) {
4066 default: assert(0 && "Unknown type action!");
4067 case Legal:
4068 Ops.push_back(Op);
4069 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4070 break;
4071 case Promote:
4072 if (MVT::isInteger(VT)) {
4073 unsigned ExtOp;
4074 if (Args[i].isSExt)
4075 ExtOp = ISD::SIGN_EXTEND;
4076 else if (Args[i].isZExt)
4077 ExtOp = ISD::ZERO_EXTEND;
4078 else
4079 ExtOp = ISD::ANY_EXTEND;
4080 Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4081 } else {
4082 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4083 Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4084 }
4085 Ops.push_back(Op);
4086 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4087 break;
4088 case Expand: {
4089 MVT::ValueType PartVT = getRegisterType(VT);
4090 unsigned NumParts = getNumRegisters(VT);
4091 SmallVector<SDOperand, 4> Parts(NumParts);
4092 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4093 for (unsigned i = 0; i != NumParts; ++i) {
4094 // if it isn't first piece, alignment must be 1
4095 unsigned MyFlags = Flags;
4096 if (i != 0)
4097 MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4098 (1 << ISD::ParamFlags::OrigAlignmentOffs);
4099
4100 Ops.push_back(Parts[i]);
4101 Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4102 }
4103 break;
4104 }
4105 }
4106 }
4107
4108 // Figure out the result value types.
4109 MVT::ValueType VT = getValueType(RetTy);
4110 MVT::ValueType RegisterVT = getRegisterType(VT);
4111 unsigned NumRegs = getNumRegisters(VT);
4112 SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4113 for (unsigned i = 0; i != NumRegs; ++i)
4114 RetTys[i] = RegisterVT;
4115
4116 RetTys.push_back(MVT::Other); // Always has a chain.
4117
4118 // Create the CALL node.
4119 SDOperand Res = DAG.getNode(ISD::CALL,
4120 DAG.getVTList(&RetTys[0], NumRegs + 1),
4121 &Ops[0], Ops.size());
Chris Lattnerbc1200c2007-08-02 18:08:16 +00004122 Chain = Res.getValue(NumRegs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004123
4124 // Gather up the call result into a single value.
4125 if (RetTy != Type::VoidTy) {
4126 ISD::NodeType AssertOp = ISD::AssertSext;
4127 if (!RetTyIsSigned)
4128 AssertOp = ISD::AssertZext;
4129 SmallVector<SDOperand, 4> Results(NumRegs);
4130 for (unsigned i = 0; i != NumRegs; ++i)
4131 Results[i] = Res.getValue(i);
4132 Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4133 }
4134
4135 return std::make_pair(Res, Chain);
4136}
4137
4138SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4139 assert(0 && "LowerOperation not implemented for this target!");
4140 abort();
4141 return SDOperand();
4142}
4143
4144SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4145 SelectionDAG &DAG) {
4146 assert(0 && "CustomPromoteOperation not implemented for this target!");
4147 abort();
4148 return SDOperand();
4149}
4150
4151/// getMemsetValue - Vectorized representation of the memset value
4152/// operand.
4153static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4154 SelectionDAG &DAG) {
4155 MVT::ValueType CurVT = VT;
4156 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4157 uint64_t Val = C->getValue() & 255;
4158 unsigned Shift = 8;
4159 while (CurVT != MVT::i8) {
4160 Val = (Val << Shift) | Val;
4161 Shift <<= 1;
4162 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4163 }
4164 return DAG.getConstant(Val, VT);
4165 } else {
4166 Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4167 unsigned Shift = 8;
4168 while (CurVT != MVT::i8) {
4169 Value =
4170 DAG.getNode(ISD::OR, VT,
4171 DAG.getNode(ISD::SHL, VT, Value,
4172 DAG.getConstant(Shift, MVT::i8)), Value);
4173 Shift <<= 1;
4174 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4175 }
4176
4177 return Value;
4178 }
4179}
4180
4181/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4182/// used when a memcpy is turned into a memset when the source is a constant
4183/// string ptr.
4184static SDOperand getMemsetStringVal(MVT::ValueType VT,
4185 SelectionDAG &DAG, TargetLowering &TLI,
4186 std::string &Str, unsigned Offset) {
4187 uint64_t Val = 0;
4188 unsigned MSB = MVT::getSizeInBits(VT) / 8;
4189 if (TLI.isLittleEndian())
4190 Offset = Offset + MSB - 1;
4191 for (unsigned i = 0; i != MSB; ++i) {
4192 Val = (Val << 8) | (unsigned char)Str[Offset];
4193 Offset += TLI.isLittleEndian() ? -1 : 1;
4194 }
4195 return DAG.getConstant(Val, VT);
4196}
4197
4198/// getMemBasePlusOffset - Returns base and offset node for the
4199static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4200 SelectionDAG &DAG, TargetLowering &TLI) {
4201 MVT::ValueType VT = Base.getValueType();
4202 return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4203}
4204
4205/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4206/// to replace the memset / memcpy is below the threshold. It also returns the
4207/// types of the sequence of memory ops to perform memset / memcpy.
4208static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4209 unsigned Limit, uint64_t Size,
4210 unsigned Align, TargetLowering &TLI) {
4211 MVT::ValueType VT;
4212
4213 if (TLI.allowsUnalignedMemoryAccesses()) {
4214 VT = MVT::i64;
4215 } else {
4216 switch (Align & 7) {
4217 case 0:
4218 VT = MVT::i64;
4219 break;
4220 case 4:
4221 VT = MVT::i32;
4222 break;
4223 case 2:
4224 VT = MVT::i16;
4225 break;
4226 default:
4227 VT = MVT::i8;
4228 break;
4229 }
4230 }
4231
4232 MVT::ValueType LVT = MVT::i64;
4233 while (!TLI.isTypeLegal(LVT))
4234 LVT = (MVT::ValueType)((unsigned)LVT - 1);
4235 assert(MVT::isInteger(LVT));
4236
4237 if (VT > LVT)
4238 VT = LVT;
4239
4240 unsigned NumMemOps = 0;
4241 while (Size != 0) {
4242 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4243 while (VTSize > Size) {
4244 VT = (MVT::ValueType)((unsigned)VT - 1);
4245 VTSize >>= 1;
4246 }
4247 assert(MVT::isInteger(VT));
4248
4249 if (++NumMemOps > Limit)
4250 return false;
4251 MemOps.push_back(VT);
4252 Size -= VTSize;
4253 }
4254
4255 return true;
4256}
4257
4258void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4259 SDOperand Op1 = getValue(I.getOperand(1));
4260 SDOperand Op2 = getValue(I.getOperand(2));
4261 SDOperand Op3 = getValue(I.getOperand(3));
4262 SDOperand Op4 = getValue(I.getOperand(4));
4263 unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4264 if (Align == 0) Align = 1;
4265
Dan Gohmancc863aa2007-08-27 16:26:13 +00004266 // If the source and destination are known to not be aliases, we can
4267 // lower memmove as memcpy.
4268 if (Op == ISD::MEMMOVE) {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00004269 uint64_t Size = -1ULL;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004270 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4271 Size = C->getValue();
4272 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4273 AliasAnalysis::NoAlias)
4274 Op = ISD::MEMCPY;
4275 }
4276
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004277 if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4278 std::vector<MVT::ValueType> MemOps;
4279
4280 // Expand memset / memcpy to a series of load / store ops
4281 // if the size operand falls below a certain threshold.
4282 SmallVector<SDOperand, 8> OutChains;
4283 switch (Op) {
4284 default: break; // Do nothing for now.
4285 case ISD::MEMSET: {
4286 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4287 Size->getValue(), Align, TLI)) {
4288 unsigned NumMemOps = MemOps.size();
4289 unsigned Offset = 0;
4290 for (unsigned i = 0; i < NumMemOps; i++) {
4291 MVT::ValueType VT = MemOps[i];
4292 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4293 SDOperand Value = getMemsetValue(Op2, VT, DAG);
4294 SDOperand Store = DAG.getStore(getRoot(), Value,
4295 getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4296 I.getOperand(1), Offset);
4297 OutChains.push_back(Store);
4298 Offset += VTSize;
4299 }
4300 }
4301 break;
4302 }
4303 case ISD::MEMCPY: {
4304 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4305 Size->getValue(), Align, TLI)) {
4306 unsigned NumMemOps = MemOps.size();
4307 unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4308 GlobalAddressSDNode *G = NULL;
4309 std::string Str;
4310 bool CopyFromStr = false;
4311
4312 if (Op2.getOpcode() == ISD::GlobalAddress)
4313 G = cast<GlobalAddressSDNode>(Op2);
4314 else if (Op2.getOpcode() == ISD::ADD &&
4315 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4316 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4317 G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4318 SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4319 }
4320 if (G) {
4321 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4322 if (GV && GV->isConstant()) {
4323 Str = GV->getStringValue(false);
4324 if (!Str.empty()) {
4325 CopyFromStr = true;
4326 SrcOff += SrcDelta;
4327 }
4328 }
4329 }
4330
4331 for (unsigned i = 0; i < NumMemOps; i++) {
4332 MVT::ValueType VT = MemOps[i];
4333 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4334 SDOperand Value, Chain, Store;
4335
4336 if (CopyFromStr) {
4337 Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4338 Chain = getRoot();
4339 Store =
4340 DAG.getStore(Chain, Value,
4341 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4342 I.getOperand(1), DstOff);
4343 } else {
4344 Value = DAG.getLoad(VT, getRoot(),
Bill Wendling84ebece2007-10-26 20:24:42 +00004345 getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4346 I.getOperand(2), SrcOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004347 Chain = Value.getValue(1);
4348 Store =
4349 DAG.getStore(Chain, Value,
4350 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
Bill Wendling84ebece2007-10-26 20:24:42 +00004351 I.getOperand(1), DstOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004352 }
4353 OutChains.push_back(Store);
4354 SrcOff += VTSize;
4355 DstOff += VTSize;
4356 }
4357 }
4358 break;
4359 }
4360 }
4361
4362 if (!OutChains.empty()) {
4363 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4364 &OutChains[0], OutChains.size()));
4365 return;
4366 }
4367 }
4368
Rafael Espindola80825902007-10-19 10:41:11 +00004369 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4370 SDOperand Node;
4371 switch(Op) {
4372 default:
4373 assert(0 && "Unknown Op");
4374 case ISD::MEMCPY:
4375 Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4376 break;
4377 case ISD::MEMMOVE:
4378 Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4379 break;
4380 case ISD::MEMSET:
4381 Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4382 break;
4383 }
4384 DAG.setRoot(Node);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004385}
4386
4387//===----------------------------------------------------------------------===//
4388// SelectionDAGISel code
4389//===----------------------------------------------------------------------===//
4390
4391unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4392 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4393}
4394
4395void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4396 AU.addRequired<AliasAnalysis>();
4397 AU.setPreservesAll();
4398}
4399
4400
4401
4402bool SelectionDAGISel::runOnFunction(Function &Fn) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004403 // Get alias analysis for load/store combining.
4404 AA = &getAnalysis<AliasAnalysis>();
4405
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004406 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4407 RegMap = MF.getSSARegMap();
4408 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4409
4410 FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4411
4412 if (ExceptionHandling)
4413 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4414 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4415 // Mark landing pad.
4416 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4417
4418 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4419 SelectBasicBlock(I, MF, FuncInfo);
4420
4421 // Add function live-ins to entry block live-in set.
4422 BasicBlock *EntryBB = &Fn.getEntryBlock();
4423 BB = FuncInfo.MBBMap[EntryBB];
4424 if (!MF.livein_empty())
4425 for (MachineFunction::livein_iterator I = MF.livein_begin(),
4426 E = MF.livein_end(); I != E; ++I)
4427 BB->addLiveIn(I->first);
4428
4429#ifndef NDEBUG
4430 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4431 "Not all catch info was assigned to a landing pad!");
4432#endif
4433
4434 return true;
4435}
4436
4437SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4438 unsigned Reg) {
4439 SDOperand Op = getValue(V);
4440 assert((Op.getOpcode() != ISD::CopyFromReg ||
4441 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4442 "Copy from a reg to the same reg!");
4443
4444 MVT::ValueType SrcVT = Op.getValueType();
4445 MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4446 unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4447 SmallVector<SDOperand, 8> Regs(NumRegs);
4448 SmallVector<SDOperand, 8> Chains(NumRegs);
4449
4450 // Copy the value by legal parts into sequential virtual registers.
4451 getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4452 for (unsigned i = 0; i != NumRegs; ++i)
4453 Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4454 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4455}
4456
4457void SelectionDAGISel::
4458LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4459 std::vector<SDOperand> &UnorderedChains) {
4460 // If this is the entry block, emit arguments.
4461 Function &F = *LLVMBB->getParent();
4462 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4463 SDOperand OldRoot = SDL.DAG.getRoot();
4464 std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4465
4466 unsigned a = 0;
4467 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4468 AI != E; ++AI, ++a)
4469 if (!AI->use_empty()) {
4470 SDL.setValue(AI, Args[a]);
4471
4472 // If this argument is live outside of the entry block, insert a copy from
4473 // whereever we got it to the vreg that other BB's will reference it as.
4474 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4475 if (VMI != FuncInfo.ValueMap.end()) {
4476 SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4477 UnorderedChains.push_back(Copy);
4478 }
4479 }
4480
4481 // Finally, if the target has anything special to do, allow it to do so.
4482 // FIXME: this should insert code into the DAG!
4483 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4484}
4485
4486static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4487 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004488 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4489 if (isSelector(I)) {
4490 // Apply the catch info to DestBB.
4491 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4492#ifndef NDEBUG
Duncan Sands9b7e1482007-11-15 09:54:37 +00004493 if (!FLI.MBBMap[SrcBB]->isLandingPad())
4494 FLI.CatchInfoFound.insert(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004495#endif
4496 }
4497}
4498
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004499/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004500/// DAG and fixes their tailcall attribute operand.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004501static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4502 TargetLowering& TLI) {
4503 SDNode * Ret = NULL;
4504 SDOperand Terminator = DAG.getRoot();
4505
4506 // Find RET node.
4507 if (Terminator.getOpcode() == ISD::RET) {
4508 Ret = Terminator.Val;
4509 }
4510
4511 // Fix tail call attribute of CALL nodes.
4512 for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4513 BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4514 if (BI->getOpcode() == ISD::CALL) {
4515 SDOperand OpRet(Ret, 0);
4516 SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4517 bool isMarkedTailCall =
4518 cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4519 // If CALL node has tail call attribute set to true and the call is not
4520 // eligible (no RET or the target rejects) the attribute is fixed to
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004521 // false. The TargetLowering::IsEligibleForTailCallOptimization function
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004522 // must correctly identify tail call optimizable calls.
4523 if (isMarkedTailCall &&
4524 (Ret==NULL ||
4525 !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4526 SmallVector<SDOperand, 32> Ops;
4527 unsigned idx=0;
4528 for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4529 E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4530 if (idx!=3)
4531 Ops.push_back(*I);
4532 else
4533 Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4534 }
4535 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4536 }
4537 }
4538 }
4539}
4540
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004541void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4542 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4543 FunctionLoweringInfo &FuncInfo) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004544 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004545
4546 std::vector<SDOperand> UnorderedChains;
4547
4548 // Lower any arguments needed in this block if this is the entry block.
4549 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4550 LowerArguments(LLVMBB, SDL, UnorderedChains);
4551
4552 BB = FuncInfo.MBBMap[LLVMBB];
4553 SDL.setCurrentBasicBlock(BB);
4554
4555 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4556
4557 if (ExceptionHandling && MMI && BB->isLandingPad()) {
4558 // Add a label to mark the beginning of the landing pad. Deletion of the
4559 // landing pad can thus be detected via the MachineModuleInfo.
4560 unsigned LabelID = MMI->addLandingPad(BB);
4561 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4562 DAG.getConstant(LabelID, MVT::i32)));
4563
4564 // Mark exception register as live in.
4565 unsigned Reg = TLI.getExceptionAddressRegister();
4566 if (Reg) BB->addLiveIn(Reg);
4567
4568 // Mark exception selector register as live in.
4569 Reg = TLI.getExceptionSelectorRegister();
4570 if (Reg) BB->addLiveIn(Reg);
4571
4572 // FIXME: Hack around an exception handling flaw (PR1508): the personality
4573 // function and list of typeids logically belong to the invoke (or, if you
4574 // like, the basic block containing the invoke), and need to be associated
4575 // with it in the dwarf exception handling tables. Currently however the
4576 // information is provided by an intrinsic (eh.selector) that can be moved
4577 // to unexpected places by the optimizers: if the unwind edge is critical,
4578 // then breaking it can result in the intrinsics being in the successor of
4579 // the landing pad, not the landing pad itself. This results in exceptions
4580 // not being caught because no typeids are associated with the invoke.
4581 // This may not be the only way things can go wrong, but it is the only way
4582 // we try to work around for the moment.
4583 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4584
4585 if (Br && Br->isUnconditional()) { // Critical edge?
4586 BasicBlock::iterator I, E;
4587 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4588 if (isSelector(I))
4589 break;
4590
4591 if (I == E)
4592 // No catch info found - try to extract some from the successor.
4593 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4594 }
4595 }
4596
4597 // Lower all of the non-terminator instructions.
4598 for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4599 I != E; ++I)
4600 SDL.visit(*I);
4601
4602 // Ensure that all instructions which are used outside of their defining
4603 // blocks are available as virtual registers. Invoke is handled elsewhere.
4604 for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4605 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4606 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4607 if (VMI != FuncInfo.ValueMap.end())
4608 UnorderedChains.push_back(
4609 SDL.CopyValueToVirtualRegister(I, VMI->second));
4610 }
4611
4612 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
4613 // ensure constants are generated when needed. Remember the virtual registers
4614 // that need to be added to the Machine PHI nodes as input. We cannot just
4615 // directly add them, because expansion might result in multiple MBB's for one
4616 // BB. As such, the start of the BB might correspond to a different MBB than
4617 // the end.
4618 //
4619 TerminatorInst *TI = LLVMBB->getTerminator();
4620
4621 // Emit constants only once even if used by multiple PHI nodes.
4622 std::map<Constant*, unsigned> ConstantsOut;
4623
4624 // Vector bool would be better, but vector<bool> is really slow.
4625 std::vector<unsigned char> SuccsHandled;
4626 if (TI->getNumSuccessors())
4627 SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4628
4629 // Check successor nodes' PHI nodes that expect a constant to be available
4630 // from this block.
4631 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4632 BasicBlock *SuccBB = TI->getSuccessor(succ);
4633 if (!isa<PHINode>(SuccBB->begin())) continue;
4634 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4635
4636 // If this terminator has multiple identical successors (common for
4637 // switches), only handle each succ once.
4638 unsigned SuccMBBNo = SuccMBB->getNumber();
4639 if (SuccsHandled[SuccMBBNo]) continue;
4640 SuccsHandled[SuccMBBNo] = true;
4641
4642 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4643 PHINode *PN;
4644
4645 // At this point we know that there is a 1-1 correspondence between LLVM PHI
4646 // nodes and Machine PHI nodes, but the incoming operands have not been
4647 // emitted yet.
4648 for (BasicBlock::iterator I = SuccBB->begin();
4649 (PN = dyn_cast<PHINode>(I)); ++I) {
4650 // Ignore dead phi's.
4651 if (PN->use_empty()) continue;
4652
4653 unsigned Reg;
4654 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4655
4656 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4657 unsigned &RegOut = ConstantsOut[C];
4658 if (RegOut == 0) {
4659 RegOut = FuncInfo.CreateRegForValue(C);
4660 UnorderedChains.push_back(
4661 SDL.CopyValueToVirtualRegister(C, RegOut));
4662 }
4663 Reg = RegOut;
4664 } else {
4665 Reg = FuncInfo.ValueMap[PHIOp];
4666 if (Reg == 0) {
4667 assert(isa<AllocaInst>(PHIOp) &&
4668 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4669 "Didn't codegen value into a register!??");
4670 Reg = FuncInfo.CreateRegForValue(PHIOp);
4671 UnorderedChains.push_back(
4672 SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4673 }
4674 }
4675
4676 // Remember that this register needs to added to the machine PHI node as
4677 // the input for this MBB.
4678 MVT::ValueType VT = TLI.getValueType(PN->getType());
4679 unsigned NumRegisters = TLI.getNumRegisters(VT);
4680 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4681 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4682 }
4683 }
4684 ConstantsOut.clear();
4685
4686 // Turn all of the unordered chains into one factored node.
4687 if (!UnorderedChains.empty()) {
4688 SDOperand Root = SDL.getRoot();
4689 if (Root.getOpcode() != ISD::EntryToken) {
4690 unsigned i = 0, e = UnorderedChains.size();
4691 for (; i != e; ++i) {
4692 assert(UnorderedChains[i].Val->getNumOperands() > 1);
4693 if (UnorderedChains[i].Val->getOperand(0) == Root)
4694 break; // Don't add the root if we already indirectly depend on it.
4695 }
4696
4697 if (i == e)
4698 UnorderedChains.push_back(Root);
4699 }
4700 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4701 &UnorderedChains[0], UnorderedChains.size()));
4702 }
4703
4704 // Lower the terminator after the copies are emitted.
4705 SDL.visit(*LLVMBB->getTerminator());
4706
4707 // Copy over any CaseBlock records that may now exist due to SwitchInst
4708 // lowering, as well as any jump table information.
4709 SwitchCases.clear();
4710 SwitchCases = SDL.SwitchCases;
4711 JTCases.clear();
4712 JTCases = SDL.JTCases;
4713 BitTestCases.clear();
4714 BitTestCases = SDL.BitTestCases;
4715
4716 // Make sure the root of the DAG is up-to-date.
4717 DAG.setRoot(SDL.getRoot());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004718
4719 // Check whether calls in this block are real tail calls. Fix up CALL nodes
4720 // with correct tailcall attribute so that the target can rely on the tailcall
4721 // attribute indicating whether the call is really eligible for tail call
4722 // optimization.
4723 CheckDAGForTailCallsAndFixThem(DAG, TLI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004724}
4725
4726void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004727 DOUT << "Lowered selection DAG:\n";
4728 DEBUG(DAG.dump());
4729
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004730 // Run the DAG combiner in pre-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004731 DAG.Combine(false, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004732
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004733 DOUT << "Optimized lowered selection DAG:\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004734 DEBUG(DAG.dump());
4735
4736 // Second step, hack on the DAG until it only uses operations and types that
4737 // the target supports.
Chris Lattner8a258202007-10-15 06:10:22 +00004738#if 0 // Enable this some day.
4739 DAG.LegalizeTypes();
4740 // Someday even later, enable a dag combine pass here.
4741#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004742 DAG.Legalize();
4743
4744 DOUT << "Legalized selection DAG:\n";
4745 DEBUG(DAG.dump());
4746
4747 // Run the DAG combiner in post-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004748 DAG.Combine(true, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004749
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004750 DOUT << "Optimized legalized selection DAG:\n";
4751 DEBUG(DAG.dump());
4752
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004753 if (ViewISelDAGs) DAG.viewGraph();
4754
4755 // Third, instruction select all of the operations to machine code, adding the
4756 // code to the MachineBasicBlock.
4757 InstructionSelectBasicBlock(DAG);
4758
4759 DOUT << "Selected machine code:\n";
4760 DEBUG(BB->dump());
4761}
4762
4763void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4764 FunctionLoweringInfo &FuncInfo) {
4765 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4766 {
4767 SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4768 CurDAG = &DAG;
4769
4770 // First step, lower LLVM code to some DAG. This DAG may use operations and
4771 // types that are not supported by the target.
4772 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4773
4774 // Second step, emit the lowered DAG as machine code.
4775 CodeGenAndEmitDAG(DAG);
4776 }
4777
4778 DOUT << "Total amount of phi nodes to update: "
4779 << PHINodesToUpdate.size() << "\n";
4780 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4781 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4782 << ", " << PHINodesToUpdate[i].second << ")\n";);
4783
4784 // Next, now that we know what the last MBB the LLVM BB expanded is, update
4785 // PHI nodes in successors.
4786 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4787 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4788 MachineInstr *PHI = PHINodesToUpdate[i].first;
4789 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4790 "This is not a machine PHI node that we are updating!");
4791 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4792 PHI->addMachineBasicBlockOperand(BB);
4793 }
4794 return;
4795 }
4796
4797 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4798 // Lower header first, if it wasn't already lowered
4799 if (!BitTestCases[i].Emitted) {
4800 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4801 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004802 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004803 // Set the current basic block to the mbb we wish to insert the code into
4804 BB = BitTestCases[i].Parent;
4805 HSDL.setCurrentBasicBlock(BB);
4806 // Emit the code
4807 HSDL.visitBitTestHeader(BitTestCases[i]);
4808 HSDAG.setRoot(HSDL.getRoot());
4809 CodeGenAndEmitDAG(HSDAG);
4810 }
4811
4812 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4813 SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4814 CurDAG = &BSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004815 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004816 // Set the current basic block to the mbb we wish to insert the code into
4817 BB = BitTestCases[i].Cases[j].ThisBB;
4818 BSDL.setCurrentBasicBlock(BB);
4819 // Emit the code
4820 if (j+1 != ej)
4821 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4822 BitTestCases[i].Reg,
4823 BitTestCases[i].Cases[j]);
4824 else
4825 BSDL.visitBitTestCase(BitTestCases[i].Default,
4826 BitTestCases[i].Reg,
4827 BitTestCases[i].Cases[j]);
4828
4829
4830 BSDAG.setRoot(BSDL.getRoot());
4831 CodeGenAndEmitDAG(BSDAG);
4832 }
4833
4834 // Update PHI Nodes
4835 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4836 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4837 MachineBasicBlock *PHIBB = PHI->getParent();
4838 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4839 "This is not a machine PHI node that we are updating!");
4840 // This is "default" BB. We have two jumps to it. From "header" BB and
4841 // from last "case" BB.
4842 if (PHIBB == BitTestCases[i].Default) {
4843 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4844 PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4845 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4846 PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4847 }
4848 // One of "cases" BB.
4849 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4850 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4851 if (cBB->succ_end() !=
4852 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4853 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4854 PHI->addMachineBasicBlockOperand(cBB);
4855 }
4856 }
4857 }
4858 }
4859
4860 // If the JumpTable record is filled in, then we need to emit a jump table.
4861 // Updating the PHI nodes is tricky in this case, since we need to determine
4862 // whether the PHI is a successor of the range check MBB or the jump table MBB
4863 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4864 // Lower header first, if it wasn't already lowered
4865 if (!JTCases[i].first.Emitted) {
4866 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4867 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004868 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004869 // Set the current basic block to the mbb we wish to insert the code into
4870 BB = JTCases[i].first.HeaderBB;
4871 HSDL.setCurrentBasicBlock(BB);
4872 // Emit the code
4873 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4874 HSDAG.setRoot(HSDL.getRoot());
4875 CodeGenAndEmitDAG(HSDAG);
4876 }
4877
4878 SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4879 CurDAG = &JSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004880 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004881 // Set the current basic block to the mbb we wish to insert the code into
4882 BB = JTCases[i].second.MBB;
4883 JSDL.setCurrentBasicBlock(BB);
4884 // Emit the code
4885 JSDL.visitJumpTable(JTCases[i].second);
4886 JSDAG.setRoot(JSDL.getRoot());
4887 CodeGenAndEmitDAG(JSDAG);
4888
4889 // Update PHI Nodes
4890 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4891 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4892 MachineBasicBlock *PHIBB = PHI->getParent();
4893 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4894 "This is not a machine PHI node that we are updating!");
4895 // "default" BB. We can go there only from header BB.
4896 if (PHIBB == JTCases[i].second.Default) {
4897 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4898 PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4899 }
4900 // JT BB. Just iterate over successors here
4901 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4902 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4903 PHI->addMachineBasicBlockOperand(BB);
4904 }
4905 }
4906 }
4907
4908 // If the switch block involved a branch to one of the actual successors, we
4909 // need to update PHI nodes in that block.
4910 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4911 MachineInstr *PHI = PHINodesToUpdate[i].first;
4912 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4913 "This is not a machine PHI node that we are updating!");
4914 if (BB->isSuccessor(PHI->getParent())) {
4915 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4916 PHI->addMachineBasicBlockOperand(BB);
4917 }
4918 }
4919
4920 // If we generated any switch lowering information, build and codegen any
4921 // additional DAGs necessary.
4922 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4923 SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4924 CurDAG = &SDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004925 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004926
4927 // Set the current basic block to the mbb we wish to insert the code into
4928 BB = SwitchCases[i].ThisBB;
4929 SDL.setCurrentBasicBlock(BB);
4930
4931 // Emit the code
4932 SDL.visitSwitchCase(SwitchCases[i]);
4933 SDAG.setRoot(SDL.getRoot());
4934 CodeGenAndEmitDAG(SDAG);
4935
4936 // Handle any PHI nodes in successors of this chunk, as if we were coming
4937 // from the original BB before switch expansion. Note that PHI nodes can
4938 // occur multiple times in PHINodesToUpdate. We have to be very careful to
4939 // handle them the right number of times.
4940 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
4941 for (MachineBasicBlock::iterator Phi = BB->begin();
4942 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4943 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4944 for (unsigned pn = 0; ; ++pn) {
4945 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4946 if (PHINodesToUpdate[pn].first == Phi) {
4947 Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4948 Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4949 break;
4950 }
4951 }
4952 }
4953
4954 // Don't process RHS if same block as LHS.
4955 if (BB == SwitchCases[i].FalseBB)
4956 SwitchCases[i].FalseBB = 0;
4957
4958 // If we haven't handled the RHS, do so now. Otherwise, we're done.
4959 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4960 SwitchCases[i].FalseBB = 0;
4961 }
4962 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4963 }
4964}
4965
4966
4967//===----------------------------------------------------------------------===//
4968/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4969/// target node in the graph.
4970void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4971 if (ViewSchedDAGs) DAG.viewGraph();
4972
4973 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4974
4975 if (!Ctor) {
4976 Ctor = ISHeuristic;
4977 RegisterScheduler::setDefault(Ctor);
4978 }
4979
4980 ScheduleDAG *SL = Ctor(this, &DAG, BB);
4981 BB = SL->Run();
Dan Gohman134c5b62007-08-28 20:32:58 +00004982
4983 if (ViewSUnitDAGs) SL->viewGraph();
4984
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004985 delete SL;
4986}
4987
4988
4989HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4990 return new HazardRecognizer();
4991}
4992
4993//===----------------------------------------------------------------------===//
4994// Helper functions used by the generated instruction selector.
4995//===----------------------------------------------------------------------===//
4996// Calls to these methods are generated by tblgen.
4997
4998/// CheckAndMask - The isel is trying to match something like (and X, 255). If
4999/// the dag combiner simplified the 255, we still want to match. RHS is the
5000/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5001/// specified in the .td file (e.g. 255).
5002bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00005003 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005004 uint64_t ActualMask = RHS->getValue();
5005 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5006
5007 // If the actual mask exactly matches, success!
5008 if (ActualMask == DesiredMask)
5009 return true;
5010
5011 // If the actual AND mask is allowing unallowed bits, this doesn't match.
5012 if (ActualMask & ~DesiredMask)
5013 return false;
5014
5015 // Otherwise, the DAG Combiner may have proven that the value coming in is
5016 // either already zero or is not demanded. Check for known zero input bits.
5017 uint64_t NeededMask = DesiredMask & ~ActualMask;
5018 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5019 return true;
5020
5021 // TODO: check to see if missing bits are just not demanded.
5022
5023 // Otherwise, this pattern doesn't match.
5024 return false;
5025}
5026
5027/// CheckOrMask - The isel is trying to match something like (or X, 255). If
5028/// the dag combiner simplified the 255, we still want to match. RHS is the
5029/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5030/// specified in the .td file (e.g. 255).
5031bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00005032 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005033 uint64_t ActualMask = RHS->getValue();
5034 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5035
5036 // If the actual mask exactly matches, success!
5037 if (ActualMask == DesiredMask)
5038 return true;
5039
5040 // If the actual AND mask is allowing unallowed bits, this doesn't match.
5041 if (ActualMask & ~DesiredMask)
5042 return false;
5043
5044 // Otherwise, the DAG Combiner may have proven that the value coming in is
5045 // either already zero or is not demanded. Check for known zero input bits.
5046 uint64_t NeededMask = DesiredMask & ~ActualMask;
5047
5048 uint64_t KnownZero, KnownOne;
5049 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5050
5051 // If all the missing bits in the or are already known to be set, match!
5052 if ((NeededMask & KnownOne) == NeededMask)
5053 return true;
5054
5055 // TODO: check to see if missing bits are just not demanded.
5056
5057 // Otherwise, this pattern doesn't match.
5058 return false;
5059}
5060
5061
5062/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5063/// by tblgen. Others should not call it.
5064void SelectionDAGISel::
5065SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5066 std::vector<SDOperand> InOps;
5067 std::swap(InOps, Ops);
5068
5069 Ops.push_back(InOps[0]); // input chain.
5070 Ops.push_back(InOps[1]); // input asm string.
5071
5072 unsigned i = 2, e = InOps.size();
5073 if (InOps[e-1].getValueType() == MVT::Flag)
5074 --e; // Don't process a flag operand if it is here.
5075
5076 while (i != e) {
5077 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5078 if ((Flags & 7) != 4 /*MEM*/) {
5079 // Just skip over this operand, copying the operands verbatim.
5080 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5081 i += (Flags >> 3) + 1;
5082 } else {
5083 assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5084 // Otherwise, this is a memory operand. Ask the target to select it.
5085 std::vector<SDOperand> SelOps;
5086 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5087 cerr << "Could not match memory address. Inline asm failure!\n";
5088 exit(1);
5089 }
5090
5091 // Add this to the output node.
5092 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5093 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5094 IntPtrTy));
5095 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5096 i += 2;
5097 }
5098 }
5099
5100 // Add the flag input back if present.
5101 if (e != InOps.size())
5102 Ops.push_back(InOps.back());
5103}
5104
5105char SelectionDAGISel::ID = 0;