blob: ad4907dca019ee74bdf2299e8f09f8cd49229085 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53 cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56 cl::desc("Pop up a window to show sched dags as they are processed"));
Dan Gohman134c5b62007-08-28 20:32:58 +000057static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59 cl::desc("Pop up a window to show SUnit dags after they are processed"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060#else
Dan Gohman134c5b62007-08-28 20:32:58 +000061static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77 cl::opt<RegisterScheduler::FunctionPassCtor, false,
78 RegisterPassParser<RegisterScheduler> >
79 ISHeuristic("pre-RA-sched",
80 cl::init(&createDefaultScheduler),
81 cl::desc("Instruction schedulers available (before register allocation):"));
82
83 static RegisterScheduler
84 defaultListDAGScheduler("default", " Best scheduler for the target",
85 createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91 /// RegsForValue - This struct represents the physical registers that a
92 /// particular value is assigned and the type information about the value.
93 /// This is needed because values can be promoted into larger registers and
94 /// expanded into multiple smaller registers than the value.
95 struct VISIBILITY_HIDDEN RegsForValue {
96 /// Regs - This list holds the register (for legal and promoted values)
97 /// or register set (for expanded values) that the value should be assigned
98 /// to.
99 std::vector<unsigned> Regs;
100
101 /// RegVT - The value type of each register.
102 ///
103 MVT::ValueType RegVT;
104
105 /// ValueVT - The value type of the LLVM value, which may be promoted from
106 /// RegVT or made from merging the two expanded parts.
107 MVT::ValueType ValueVT;
108
109 RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111 RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112 : RegVT(regvt), ValueVT(valuevt) {
113 Regs.push_back(Reg);
114 }
115 RegsForValue(const std::vector<unsigned> &regs,
116 MVT::ValueType regvt, MVT::ValueType valuevt)
117 : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118 }
119
120 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121 /// this value and returns the result as a ValueVT value. This uses
122 /// Chain/Flag as the input and updates them for the output Chain/Flag.
123 /// If the Flag pointer is NULL, no flag is used.
124 SDOperand getCopyFromRegs(SelectionDAG &DAG,
125 SDOperand &Chain, SDOperand *Flag) const;
126
127 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128 /// specified value into the registers specified by this object. This uses
129 /// Chain/Flag as the input and updates them for the output Chain/Flag.
130 /// If the Flag pointer is NULL, no flag is used.
131 void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132 SDOperand &Chain, SDOperand *Flag) const;
133
134 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135 /// operand list. This adds the code marker and includes the number of
136 /// values added into it.
137 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138 std::vector<SDOperand> &Ops) const;
139 };
140}
141
142namespace llvm {
143 //===--------------------------------------------------------------------===//
144 /// createDefaultScheduler - This creates an instruction scheduler appropriate
145 /// for the target.
146 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147 SelectionDAG *DAG,
148 MachineBasicBlock *BB) {
149 TargetLowering &TLI = IS->getTargetLowering();
150
151 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152 return createTDListDAGScheduler(IS, DAG, BB);
153 } else {
154 assert(TLI.getSchedulingPreference() ==
155 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156 return createBURRListDAGScheduler(IS, DAG, BB);
157 }
158 }
159
160
161 //===--------------------------------------------------------------------===//
162 /// FunctionLoweringInfo - This contains information that is global to a
163 /// function that is used when lowering a region of the function.
164 class FunctionLoweringInfo {
165 public:
166 TargetLowering &TLI;
167 Function &Fn;
168 MachineFunction &MF;
169 SSARegMap *RegMap;
170
171 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176 /// ValueMap - Since we emit code for the function a basic block at a time,
177 /// we must remember which virtual registers hold the values for
178 /// cross-basic-block values.
179 DenseMap<const Value*, unsigned> ValueMap;
180
181 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182 /// the entry block. This allows the allocas to be efficiently referenced
183 /// anywhere in the function.
184 std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187 SmallSet<Instruction*, 8> CatchInfoLost;
188 SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191 unsigned MakeReg(MVT::ValueType VT) {
192 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193 }
194
195 /// isExportedInst - Return true if the specified value is an instruction
196 /// exported from its block.
197 bool isExportedInst(const Value *V) {
198 return ValueMap.count(V);
199 }
200
201 unsigned CreateRegForValue(const Value *V);
202
203 unsigned InitializeRegForValue(const Value *V) {
204 unsigned &R = ValueMap[V];
205 assert(R == 0 && "Already initialized this value register!");
206 return R = CreateRegForValue(V);
207 }
208 };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Anton Korobeynikov94c46a02007-09-07 11:39:35 +0000215 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216 II->getIntrinsicID() == Intrinsic::eh_selector_i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224 if (isa<PHINode>(I)) return true;
225 BasicBlock *BB = I->getParent();
226 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228 // FIXME: Remove switchinst special case.
229 isa<SwitchInst>(*UI))
230 return true;
231 return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true. This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238 BasicBlock *Entry = A->getParent()->begin();
239 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241 return false; // Use not in entry block.
242 return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246 Function &fn, MachineFunction &mf)
247 : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249 // Create a vreg for each argument register that is not dead and is used
250 // outside of the entry block for the function.
251 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252 AI != E; ++AI)
253 if (!isOnlyUsedInEntryBlock(AI))
254 InitializeRegForValue(AI);
255
256 // Initialize the mapping of values to registers. This is only set up for
257 // instruction values that are used outside of the block that defines
258 // them.
259 Function::iterator BB = Fn.begin(), EB = Fn.end();
260 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263 const Type *Ty = AI->getAllocatedType();
264 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
265 unsigned Align =
266 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267 AI->getAlignment());
268
269 TySize *= CUI->getZExtValue(); // Get total allocated size.
270 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271 StaticAllocaMap[AI] =
272 MF.getFrameInfo()->CreateStackObject(TySize, Align);
273 }
274
275 for (; BB != EB; ++BB)
276 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278 if (!isa<AllocaInst>(I) ||
279 !StaticAllocaMap.count(cast<AllocaInst>(I)))
280 InitializeRegForValue(I);
281
282 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
283 // also creates the initial PHI MachineInstrs, though none of the input
284 // operands are populated.
285 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286 MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287 MBBMap[BB] = MBB;
288 MF.getBasicBlockList().push_back(MBB);
289
290 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291 // appropriate.
292 PHINode *PN;
293 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294 if (PN->use_empty()) continue;
295
296 MVT::ValueType VT = TLI.getValueType(PN->getType());
297 unsigned NumRegisters = TLI.getNumRegisters(VT);
298 unsigned PHIReg = ValueMap[PN];
299 assert(PHIReg && "PHI node does not have an assigned virtual register!");
300 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301 for (unsigned i = 0; i != NumRegisters; ++i)
302 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303 }
304 }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types. Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311 MVT::ValueType VT = TLI.getValueType(V->getType());
312
313 unsigned NumRegisters = TLI.getNumRegisters(VT);
314 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316 unsigned R = MakeReg(RegisterVT);
317 for (unsigned i = 1; i != NumRegisters; ++i)
318 MakeReg(RegisterVT);
319
320 return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330 MachineBasicBlock *CurMBB;
331
332 DenseMap<const Value*, SDOperand> NodeMap;
333
334 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
335 /// them up and then emit token factor nodes when possible. This allows us to
336 /// get simple disambiguation between loads without worrying about alias
337 /// analysis.
338 std::vector<SDOperand> PendingLoads;
339
340 /// Case - A struct to record the Value for a switch case, and the
341 /// case's target basic block.
342 struct Case {
343 Constant* Low;
344 Constant* High;
345 MachineBasicBlock* BB;
346
347 Case() : Low(0), High(0), BB(0) { }
348 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349 Low(low), High(high), BB(bb) { }
350 uint64_t size() const {
351 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
353 return (rHigh - rLow + 1ULL);
354 }
355 };
356
357 struct CaseBits {
358 uint64_t Mask;
359 MachineBasicBlock* BB;
360 unsigned Bits;
361
362 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363 Mask(mask), BB(bb), Bits(bits) { }
364 };
365
366 typedef std::vector<Case> CaseVector;
367 typedef std::vector<CaseBits> CaseBitsVector;
368 typedef CaseVector::iterator CaseItr;
369 typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372 /// of conditional branches.
373 struct CaseRec {
374 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377 /// CaseBB - The MBB in which to emit the compare and branch
378 MachineBasicBlock *CaseBB;
379 /// LT, GE - If nonzero, we know the current case value must be less-than or
380 /// greater-than-or-equal-to these Constants.
381 Constant *LT;
382 Constant *GE;
383 /// Range - A pair of iterators representing the range of case values to be
384 /// processed at this point in the binary search tree.
385 CaseRange Range;
386 };
387
388 typedef std::vector<CaseRec> CaseRecVector;
389
390 /// The comparison function for sorting the switch case values in the vector.
391 /// WARNING: Case ranges should be disjoint!
392 struct CaseCmp {
393 bool operator () (const Case& C1, const Case& C2) {
394 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397 return CI1->getValue().slt(CI2->getValue());
398 }
399 };
400
401 struct CaseBitsCmp {
402 bool operator () (const CaseBits& C1, const CaseBits& C2) {
403 return C1.Bits > C2.Bits;
404 }
405 };
406
407 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410 // TLI - This is information that describes the available target features we
411 // need for lowering. This indicates when operations are unavailable,
412 // implemented with a libcall, etc.
413 TargetLowering &TLI;
414 SelectionDAG &DAG;
415 const TargetData *TD;
Dan Gohmancc863aa2007-08-27 16:26:13 +0000416 AliasAnalysis &AA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417
418 /// SwitchCases - Vector of CaseBlock structures used to communicate
419 /// SwitchInst code generation information.
420 std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421 /// JTCases - Vector of JumpTable structures used to communicate
422 /// SwitchInst code generation information.
423 std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426 /// FuncInfo - Information about the function as a whole.
427 ///
428 FunctionLoweringInfo &FuncInfo;
429
430 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
Dan Gohmancc863aa2007-08-27 16:26:13 +0000431 AliasAnalysis &aa,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 FunctionLoweringInfo &funcinfo)
Dan Gohmancc863aa2007-08-27 16:26:13 +0000433 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 FuncInfo(funcinfo) {
435 }
436
437 /// getRoot - Return the current virtual root of the Selection DAG.
438 ///
439 SDOperand getRoot() {
440 if (PendingLoads.empty())
441 return DAG.getRoot();
442
443 if (PendingLoads.size() == 1) {
444 SDOperand Root = PendingLoads[0];
445 DAG.setRoot(Root);
446 PendingLoads.clear();
447 return Root;
448 }
449
450 // Otherwise, we have to make a token factor node.
451 SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452 &PendingLoads[0], PendingLoads.size());
453 PendingLoads.clear();
454 DAG.setRoot(Root);
455 return Root;
456 }
457
458 SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460 void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462 void visit(unsigned Opcode, User &I) {
463 // Note: this doesn't use InstVisitor, because it has to work with
464 // ConstantExpr's in addition to instructions.
465 switch (Opcode) {
466 default: assert(0 && "Unknown instruction type encountered!");
467 abort();
468 // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472 }
473 }
474
475 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477 SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478 const Value *SV, SDOperand Root,
479 bool isVolatile, unsigned Alignment);
480
481 SDOperand getIntPtrConstant(uint64_t Val) {
482 return DAG.getConstant(Val, TLI.getPointerTy());
483 }
484
485 SDOperand getValue(const Value *V);
486
487 void setValue(const Value *V, SDOperand NewN) {
488 SDOperand &N = NodeMap[V];
489 assert(N.Val == 0 && "Already set a value for this node!");
490 N = NewN;
491 }
492
493 void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494 std::set<unsigned> &OutputRegs,
495 std::set<unsigned> &InputRegs);
496
497 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499 unsigned Opc);
500 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501 void ExportFromCurrentBlock(Value *V);
502 void LowerCallTo(Instruction &I,
503 const Type *CalledValueTy, unsigned CallingConv,
504 bool IsTailCall, SDOperand Callee, unsigned OpIdx,
505 MachineBasicBlock *LandingPad = NULL);
506
507 // Terminator instructions.
508 void visitRet(ReturnInst &I);
509 void visitBr(BranchInst &I);
510 void visitSwitch(SwitchInst &I);
511 void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513 // Helpers for visitSwitch
514 bool handleSmallSwitchRange(CaseRec& CR,
515 CaseRecVector& WorkList,
516 Value* SV,
517 MachineBasicBlock* Default);
518 bool handleJTSwitchCase(CaseRec& CR,
519 CaseRecVector& WorkList,
520 Value* SV,
521 MachineBasicBlock* Default);
522 bool handleBTSplitSwitchCase(CaseRec& CR,
523 CaseRecVector& WorkList,
524 Value* SV,
525 MachineBasicBlock* Default);
526 bool handleBitTestsSwitchCase(CaseRec& CR,
527 CaseRecVector& WorkList,
528 Value* SV,
529 MachineBasicBlock* Default);
530 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532 void visitBitTestCase(MachineBasicBlock* NextMBB,
533 unsigned Reg,
534 SelectionDAGISel::BitTestCase &B);
535 void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537 SelectionDAGISel::JumpTableHeader &JTH);
538
539 // These all get lowered before this pass.
540 void visitInvoke(InvokeInst &I);
541 void visitUnwind(UnwindInst &I);
542
543 void visitBinary(User &I, unsigned OpCode);
544 void visitShift(User &I, unsigned Opcode);
545 void visitAdd(User &I) {
546 if (I.getType()->isFPOrFPVector())
547 visitBinary(I, ISD::FADD);
548 else
549 visitBinary(I, ISD::ADD);
550 }
551 void visitSub(User &I);
552 void visitMul(User &I) {
553 if (I.getType()->isFPOrFPVector())
554 visitBinary(I, ISD::FMUL);
555 else
556 visitBinary(I, ISD::MUL);
557 }
558 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565 void visitOr (User &I) { visitBinary(I, ISD::OR); }
566 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567 void visitShl (User &I) { visitShift(I, ISD::SHL); }
568 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570 void visitICmp(User &I);
571 void visitFCmp(User &I);
572 // Visit the conversion instructions
573 void visitTrunc(User &I);
574 void visitZExt(User &I);
575 void visitSExt(User &I);
576 void visitFPTrunc(User &I);
577 void visitFPExt(User &I);
578 void visitFPToUI(User &I);
579 void visitFPToSI(User &I);
580 void visitUIToFP(User &I);
581 void visitSIToFP(User &I);
582 void visitPtrToInt(User &I);
583 void visitIntToPtr(User &I);
584 void visitBitCast(User &I);
585
586 void visitExtractElement(User &I);
587 void visitInsertElement(User &I);
588 void visitShuffleVector(User &I);
589
590 void visitGetElementPtr(User &I);
591 void visitSelect(User &I);
592
593 void visitMalloc(MallocInst &I);
594 void visitFree(FreeInst &I);
595 void visitAlloca(AllocaInst &I);
596 void visitLoad(LoadInst &I);
597 void visitStore(StoreInst &I);
598 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599 void visitCall(CallInst &I);
600 void visitInlineAsm(CallInst &I);
601 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604 void visitVAStart(CallInst &I);
605 void visitVAArg(VAArgInst &I);
606 void visitVAEnd(CallInst &I);
607 void visitVACopy(CallInst &I);
608
609 void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611 void visitUserOp1(Instruction &I) {
612 assert(0 && "UserOp1 should not exist at instruction selection time!");
613 abort();
614 }
615 void visitUserOp2(Instruction &I) {
616 assert(0 && "UserOp2 should not exist at instruction selection time!");
617 abort();
618 }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626 const SDOperand *Parts,
627 unsigned NumParts,
628 MVT::ValueType PartVT,
629 MVT::ValueType ValueVT,
630 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631 if (!MVT::isVector(ValueVT) || NumParts == 1) {
632 SDOperand Val = Parts[0];
633
634 // If the value was expanded, copy from the top part.
635 if (NumParts > 1) {
636 assert(NumParts == 2 &&
637 "Cannot expand to more than 2 elts yet!");
638 SDOperand Hi = Parts[1];
639 if (!DAG.getTargetLoweringInfo().isLittleEndian())
640 std::swap(Val, Hi);
641 return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642 }
643
644 // Otherwise, if the value was promoted or extended, truncate it to the
645 // appropriate type.
646 if (PartVT == ValueVT)
647 return Val;
648
649 if (MVT::isVector(PartVT)) {
650 assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
651 return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
652 }
653
654 if (MVT::isInteger(PartVT) &&
655 MVT::isInteger(ValueVT)) {
656 if (ValueVT < PartVT) {
657 // For a truncate, see if we have any information to
658 // indicate whether the truncated bits will always be
659 // zero or sign-extension.
660 if (AssertOp != ISD::DELETED_NODE)
661 Val = DAG.getNode(AssertOp, PartVT, Val,
662 DAG.getValueType(ValueVT));
663 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
664 } else {
665 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
666 }
667 }
668
669 if (MVT::isFloatingPoint(PartVT) &&
670 MVT::isFloatingPoint(ValueVT))
671 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
672
673 if (MVT::getSizeInBits(PartVT) ==
674 MVT::getSizeInBits(ValueVT))
675 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
676
677 assert(0 && "Unknown mismatch!");
678 }
679
680 // Handle a multi-element vector.
681 MVT::ValueType IntermediateVT, RegisterVT;
682 unsigned NumIntermediates;
683 unsigned NumRegs =
684 DAG.getTargetLoweringInfo()
685 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
686 RegisterVT);
687
688 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
689 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
690 assert(RegisterVT == Parts[0].getValueType() &&
691 "Part type doesn't match part!");
692
693 // Assemble the parts into intermediate operands.
694 SmallVector<SDOperand, 8> Ops(NumIntermediates);
695 if (NumIntermediates == NumParts) {
696 // If the register was not expanded, truncate or copy the value,
697 // as appropriate.
698 for (unsigned i = 0; i != NumParts; ++i)
699 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
700 PartVT, IntermediateVT);
701 } else if (NumParts > 0) {
702 // If the intermediate type was expanded, build the intermediate operands
703 // from the parts.
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000704 assert(NumParts % NumIntermediates == 0 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 "Must expand into a divisible number of parts!");
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000706 unsigned Factor = NumParts / NumIntermediates;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 for (unsigned i = 0; i != NumIntermediates; ++i)
708 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
709 PartVT, IntermediateVT);
710 }
711
712 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
713 // operands.
714 return DAG.getNode(MVT::isVector(IntermediateVT) ?
715 ISD::CONCAT_VECTORS :
716 ISD::BUILD_VECTOR,
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000717 ValueVT, &Ops[0], NumIntermediates);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718}
719
720/// getCopyToParts - Create a series of nodes that contain the
721/// specified value split into legal parts.
722static void getCopyToParts(SelectionDAG &DAG,
723 SDOperand Val,
724 SDOperand *Parts,
725 unsigned NumParts,
726 MVT::ValueType PartVT) {
Dan Gohmanf7b05132007-08-10 14:59:38 +0000727 TargetLowering &TLI = DAG.getTargetLoweringInfo();
728 MVT::ValueType PtrVT = TLI.getPointerTy();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729 MVT::ValueType ValueVT = Val.getValueType();
730
731 if (!MVT::isVector(ValueVT) || NumParts == 1) {
732 // If the value was expanded, copy from the parts.
733 if (NumParts > 1) {
734 for (unsigned i = 0; i != NumParts; ++i)
735 Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000736 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 if (!DAG.getTargetLoweringInfo().isLittleEndian())
738 std::reverse(Parts, Parts + NumParts);
739 return;
740 }
741
742 // If there is a single part and the types differ, this must be
743 // a promotion.
744 if (PartVT != ValueVT) {
745 if (MVT::isVector(PartVT)) {
746 assert(MVT::isVector(ValueVT) &&
747 "Not a vector-vector cast?");
748 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
749 } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
750 if (PartVT < ValueVT)
751 Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
752 else
753 Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
754 } else if (MVT::isFloatingPoint(PartVT) &&
755 MVT::isFloatingPoint(ValueVT)) {
756 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
757 } else if (MVT::getSizeInBits(PartVT) ==
758 MVT::getSizeInBits(ValueVT)) {
759 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
760 } else {
761 assert(0 && "Unknown mismatch!");
762 }
763 }
764 Parts[0] = Val;
765 return;
766 }
767
768 // Handle a multi-element vector.
769 MVT::ValueType IntermediateVT, RegisterVT;
770 unsigned NumIntermediates;
771 unsigned NumRegs =
772 DAG.getTargetLoweringInfo()
773 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
774 RegisterVT);
775 unsigned NumElements = MVT::getVectorNumElements(ValueVT);
776
777 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
778 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
779
780 // Split the vector into intermediate operands.
781 SmallVector<SDOperand, 8> Ops(NumIntermediates);
782 for (unsigned i = 0; i != NumIntermediates; ++i)
783 if (MVT::isVector(IntermediateVT))
784 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
785 IntermediateVT, Val,
786 DAG.getConstant(i * (NumElements / NumIntermediates),
Dan Gohmanf7b05132007-08-10 14:59:38 +0000787 PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 else
789 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
790 IntermediateVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000791 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792
793 // Split the intermediate operands into legal parts.
794 if (NumParts == NumIntermediates) {
795 // If the register was not expanded, promote or copy the value,
796 // as appropriate.
797 for (unsigned i = 0; i != NumParts; ++i)
798 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
799 } else if (NumParts > 0) {
800 // If the intermediate type was expanded, split each the value into
801 // legal parts.
802 assert(NumParts % NumIntermediates == 0 &&
803 "Must expand into a divisible number of parts!");
804 unsigned Factor = NumParts / NumIntermediates;
805 for (unsigned i = 0; i != NumIntermediates; ++i)
806 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
807 }
808}
809
810
811SDOperand SelectionDAGLowering::getValue(const Value *V) {
812 SDOperand &N = NodeMap[V];
813 if (N.Val) return N;
814
815 const Type *VTy = V->getType();
816 MVT::ValueType VT = TLI.getValueType(VTy);
817 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
818 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
819 visit(CE->getOpcode(), *CE);
820 SDOperand N1 = NodeMap[V];
821 assert(N1.Val && "visit didn't populate the ValueMap!");
822 return N1;
823 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
824 return N = DAG.getGlobalAddress(GV, VT);
825 } else if (isa<ConstantPointerNull>(C)) {
826 return N = DAG.getConstant(0, TLI.getPointerTy());
827 } else if (isa<UndefValue>(C)) {
828 if (!isa<VectorType>(VTy))
829 return N = DAG.getNode(ISD::UNDEF, VT);
830
831 // Create a BUILD_VECTOR of undef nodes.
832 const VectorType *PTy = cast<VectorType>(VTy);
833 unsigned NumElements = PTy->getNumElements();
834 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
835
836 SmallVector<SDOperand, 8> Ops;
837 Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
838
839 // Create a VConstant node with generic Vector type.
840 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
841 return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
842 &Ops[0], Ops.size());
843 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000844 return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000845 } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
846 unsigned NumElements = PTy->getNumElements();
847 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
848
849 // Now that we know the number and type of the elements, push a
850 // Constant or ConstantFP node onto the ops list for each element of
851 // the vector constant.
852 SmallVector<SDOperand, 8> Ops;
853 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
854 for (unsigned i = 0; i != NumElements; ++i)
855 Ops.push_back(getValue(CP->getOperand(i)));
856 } else {
857 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
858 SDOperand Op;
859 if (MVT::isFloatingPoint(PVT))
860 Op = DAG.getConstantFP(0, PVT);
861 else
862 Op = DAG.getConstant(0, PVT);
863 Ops.assign(NumElements, Op);
864 }
865
866 // Create a BUILD_VECTOR node.
867 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
868 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
869 Ops.size());
870 } else {
871 // Canonicalize all constant ints to be unsigned.
872 return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
873 }
874 }
875
876 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
877 std::map<const AllocaInst*, int>::iterator SI =
878 FuncInfo.StaticAllocaMap.find(AI);
879 if (SI != FuncInfo.StaticAllocaMap.end())
880 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
881 }
882
883 unsigned InReg = FuncInfo.ValueMap[V];
884 assert(InReg && "Value not in map!");
885
886 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
887 unsigned NumRegs = TLI.getNumRegisters(VT);
888
889 std::vector<unsigned> Regs(NumRegs);
890 for (unsigned i = 0; i != NumRegs; ++i)
891 Regs[i] = InReg + i;
892
893 RegsForValue RFV(Regs, RegisterVT, VT);
894 SDOperand Chain = DAG.getEntryNode();
895
896 return RFV.getCopyFromRegs(DAG, Chain, NULL);
897}
898
899
900void SelectionDAGLowering::visitRet(ReturnInst &I) {
901 if (I.getNumOperands() == 0) {
902 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
903 return;
904 }
905 SmallVector<SDOperand, 8> NewValues;
906 NewValues.push_back(getRoot());
907 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
908 SDOperand RetOp = getValue(I.getOperand(i));
909
910 // If this is an integer return value, we need to promote it ourselves to
911 // the full width of a register, since getCopyToParts and Legalize will use
912 // ANY_EXTEND rather than sign/zero.
913 // FIXME: C calling convention requires the return type to be promoted to
914 // at least 32-bit. But this is not necessary for non-C calling conventions.
915 if (MVT::isInteger(RetOp.getValueType()) &&
916 RetOp.getValueType() < MVT::i64) {
917 MVT::ValueType TmpVT;
918 if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
919 TmpVT = TLI.getTypeToTransformTo(MVT::i32);
920 else
921 TmpVT = MVT::i32;
922 const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
923 const ParamAttrsList *Attrs = FTy->getParamAttrs();
924 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
925 if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
926 ExtendKind = ISD::SIGN_EXTEND;
927 if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
928 ExtendKind = ISD::ZERO_EXTEND;
929 RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
930 NewValues.push_back(RetOp);
931 NewValues.push_back(DAG.getConstant(false, MVT::i32));
932 } else {
933 MVT::ValueType VT = RetOp.getValueType();
934 unsigned NumParts = TLI.getNumRegisters(VT);
935 MVT::ValueType PartVT = TLI.getRegisterType(VT);
936 SmallVector<SDOperand, 4> Parts(NumParts);
937 getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
938 for (unsigned i = 0; i < NumParts; ++i) {
939 NewValues.push_back(Parts[i]);
940 NewValues.push_back(DAG.getConstant(false, MVT::i32));
941 }
942 }
943 }
944 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
945 &NewValues[0], NewValues.size()));
946}
947
948/// ExportFromCurrentBlock - If this condition isn't known to be exported from
949/// the current basic block, add it to ValueMap now so that we'll get a
950/// CopyTo/FromReg.
951void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
952 // No need to export constants.
953 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
954
955 // Already exported?
956 if (FuncInfo.isExportedInst(V)) return;
957
958 unsigned Reg = FuncInfo.InitializeRegForValue(V);
959 PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
960}
961
962bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
963 const BasicBlock *FromBB) {
964 // The operands of the setcc have to be in this block. We don't know
965 // how to export them from some other block.
966 if (Instruction *VI = dyn_cast<Instruction>(V)) {
967 // Can export from current BB.
968 if (VI->getParent() == FromBB)
969 return true;
970
971 // Is already exported, noop.
972 return FuncInfo.isExportedInst(V);
973 }
974
975 // If this is an argument, we can export it if the BB is the entry block or
976 // if it is already exported.
977 if (isa<Argument>(V)) {
978 if (FromBB == &FromBB->getParent()->getEntryBlock())
979 return true;
980
981 // Otherwise, can only export this if it is already exported.
982 return FuncInfo.isExportedInst(V);
983 }
984
985 // Otherwise, constants can always be exported.
986 return true;
987}
988
989static bool InBlock(const Value *V, const BasicBlock *BB) {
990 if (const Instruction *I = dyn_cast<Instruction>(V))
991 return I->getParent() == BB;
992 return true;
993}
994
995/// FindMergedConditions - If Cond is an expression like
996void SelectionDAGLowering::FindMergedConditions(Value *Cond,
997 MachineBasicBlock *TBB,
998 MachineBasicBlock *FBB,
999 MachineBasicBlock *CurBB,
1000 unsigned Opc) {
1001 // If this node is not part of the or/and tree, emit it as a branch.
1002 Instruction *BOp = dyn_cast<Instruction>(Cond);
1003
1004 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1005 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1006 BOp->getParent() != CurBB->getBasicBlock() ||
1007 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1008 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1009 const BasicBlock *BB = CurBB->getBasicBlock();
1010
1011 // If the leaf of the tree is a comparison, merge the condition into
1012 // the caseblock.
1013 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1014 // The operands of the cmp have to be in this block. We don't know
1015 // how to export them from some other block. If this is the first block
1016 // of the sequence, no exporting is needed.
1017 (CurBB == CurMBB ||
1018 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1019 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1020 BOp = cast<Instruction>(Cond);
1021 ISD::CondCode Condition;
1022 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1023 switch (IC->getPredicate()) {
1024 default: assert(0 && "Unknown icmp predicate opcode!");
1025 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1026 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1027 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1028 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1029 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1030 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1031 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1032 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1033 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1034 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1035 }
1036 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1037 ISD::CondCode FPC, FOC;
1038 switch (FC->getPredicate()) {
1039 default: assert(0 && "Unknown fcmp predicate opcode!");
1040 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1041 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1042 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1043 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1044 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1045 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1046 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1047 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
1048 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
1049 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1050 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1051 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1052 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1053 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1054 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1055 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1056 }
1057 if (FiniteOnlyFPMath())
1058 Condition = FOC;
1059 else
1060 Condition = FPC;
1061 } else {
1062 Condition = ISD::SETEQ; // silence warning.
1063 assert(0 && "Unknown compare instruction");
1064 }
1065
1066 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1067 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1068 SwitchCases.push_back(CB);
1069 return;
1070 }
1071
1072 // Create a CaseBlock record representing this branch.
1073 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1074 NULL, TBB, FBB, CurBB);
1075 SwitchCases.push_back(CB);
1076 return;
1077 }
1078
1079
1080 // Create TmpBB after CurBB.
1081 MachineFunction::iterator BBI = CurBB;
1082 MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1083 CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1084
1085 if (Opc == Instruction::Or) {
1086 // Codegen X | Y as:
1087 // jmp_if_X TBB
1088 // jmp TmpBB
1089 // TmpBB:
1090 // jmp_if_Y TBB
1091 // jmp FBB
1092 //
1093
1094 // Emit the LHS condition.
1095 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1096
1097 // Emit the RHS condition into TmpBB.
1098 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1099 } else {
1100 assert(Opc == Instruction::And && "Unknown merge op!");
1101 // Codegen X & Y as:
1102 // jmp_if_X TmpBB
1103 // jmp FBB
1104 // TmpBB:
1105 // jmp_if_Y TBB
1106 // jmp FBB
1107 //
1108 // This requires creation of TmpBB after CurBB.
1109
1110 // Emit the LHS condition.
1111 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1112
1113 // Emit the RHS condition into TmpBB.
1114 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1115 }
1116}
1117
1118/// If the set of cases should be emitted as a series of branches, return true.
1119/// If we should emit this as a bunch of and/or'd together conditions, return
1120/// false.
1121static bool
1122ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1123 if (Cases.size() != 2) return true;
1124
1125 // If this is two comparisons of the same values or'd or and'd together, they
1126 // will get folded into a single comparison, so don't emit two blocks.
1127 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1128 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1129 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1130 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1131 return false;
1132 }
1133
1134 return true;
1135}
1136
1137void SelectionDAGLowering::visitBr(BranchInst &I) {
1138 // Update machine-CFG edges.
1139 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1140
1141 // Figure out which block is immediately after the current one.
1142 MachineBasicBlock *NextBlock = 0;
1143 MachineFunction::iterator BBI = CurMBB;
1144 if (++BBI != CurMBB->getParent()->end())
1145 NextBlock = BBI;
1146
1147 if (I.isUnconditional()) {
1148 // If this is not a fall-through branch, emit the branch.
1149 if (Succ0MBB != NextBlock)
1150 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1151 DAG.getBasicBlock(Succ0MBB)));
1152
1153 // Update machine-CFG edges.
1154 CurMBB->addSuccessor(Succ0MBB);
1155
1156 return;
1157 }
1158
1159 // If this condition is one of the special cases we handle, do special stuff
1160 // now.
1161 Value *CondVal = I.getCondition();
1162 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1163
1164 // If this is a series of conditions that are or'd or and'd together, emit
1165 // this as a sequence of branches instead of setcc's with and/or operations.
1166 // For example, instead of something like:
1167 // cmp A, B
1168 // C = seteq
1169 // cmp D, E
1170 // F = setle
1171 // or C, F
1172 // jnz foo
1173 // Emit:
1174 // cmp A, B
1175 // je foo
1176 // cmp D, E
1177 // jle foo
1178 //
1179 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1180 if (BOp->hasOneUse() &&
1181 (BOp->getOpcode() == Instruction::And ||
1182 BOp->getOpcode() == Instruction::Or)) {
1183 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1184 // If the compares in later blocks need to use values not currently
1185 // exported from this block, export them now. This block should always
1186 // be the first entry.
1187 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1188
1189 // Allow some cases to be rejected.
1190 if (ShouldEmitAsBranches(SwitchCases)) {
1191 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1192 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1193 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1194 }
1195
1196 // Emit the branch for this block.
1197 visitSwitchCase(SwitchCases[0]);
1198 SwitchCases.erase(SwitchCases.begin());
1199 return;
1200 }
1201
1202 // Okay, we decided not to do this, remove any inserted MBB's and clear
1203 // SwitchCases.
1204 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1205 CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1206
1207 SwitchCases.clear();
1208 }
1209 }
1210
1211 // Create a CaseBlock record representing this branch.
1212 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1213 NULL, Succ0MBB, Succ1MBB, CurMBB);
1214 // Use visitSwitchCase to actually insert the fast branch sequence for this
1215 // cond branch.
1216 visitSwitchCase(CB);
1217}
1218
1219/// visitSwitchCase - Emits the necessary code to represent a single node in
1220/// the binary search tree resulting from lowering a switch instruction.
1221void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1222 SDOperand Cond;
1223 SDOperand CondLHS = getValue(CB.CmpLHS);
1224
1225 // Build the setcc now.
1226 if (CB.CmpMHS == NULL) {
1227 // Fold "(X == true)" to X and "(X == false)" to !X to
1228 // handle common cases produced by branch lowering.
1229 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1230 Cond = CondLHS;
1231 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1232 SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1233 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1234 } else
1235 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1236 } else {
1237 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1238
1239 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1240 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1241
1242 SDOperand CmpOp = getValue(CB.CmpMHS);
1243 MVT::ValueType VT = CmpOp.getValueType();
1244
1245 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1246 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1247 } else {
1248 SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1249 Cond = DAG.getSetCC(MVT::i1, SUB,
1250 DAG.getConstant(High-Low, VT), ISD::SETULE);
1251 }
1252
1253 }
1254
1255 // Set NextBlock to be the MBB immediately after the current one, if any.
1256 // This is used to avoid emitting unnecessary branches to the next block.
1257 MachineBasicBlock *NextBlock = 0;
1258 MachineFunction::iterator BBI = CurMBB;
1259 if (++BBI != CurMBB->getParent()->end())
1260 NextBlock = BBI;
1261
1262 // If the lhs block is the next block, invert the condition so that we can
1263 // fall through to the lhs instead of the rhs block.
1264 if (CB.TrueBB == NextBlock) {
1265 std::swap(CB.TrueBB, CB.FalseBB);
1266 SDOperand True = DAG.getConstant(1, Cond.getValueType());
1267 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1268 }
1269 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1270 DAG.getBasicBlock(CB.TrueBB));
1271 if (CB.FalseBB == NextBlock)
1272 DAG.setRoot(BrCond);
1273 else
1274 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1275 DAG.getBasicBlock(CB.FalseBB)));
1276 // Update successor info
1277 CurMBB->addSuccessor(CB.TrueBB);
1278 CurMBB->addSuccessor(CB.FalseBB);
1279}
1280
1281/// visitJumpTable - Emit JumpTable node in the current MBB
1282void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1283 // Emit the code for the jump table
1284 assert(JT.Reg != -1U && "Should lower JT Header first!");
1285 MVT::ValueType PTy = TLI.getPointerTy();
1286 SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1287 SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1288 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1289 Table, Index));
1290 return;
1291}
1292
1293/// visitJumpTableHeader - This function emits necessary code to produce index
1294/// in the JumpTable from switch case.
1295void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1296 SelectionDAGISel::JumpTableHeader &JTH) {
1297 // Subtract the lowest switch case value from the value being switched on
1298 // and conditional branch to default mbb if the result is greater than the
1299 // difference between smallest and largest cases.
1300 SDOperand SwitchOp = getValue(JTH.SValue);
1301 MVT::ValueType VT = SwitchOp.getValueType();
1302 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1303 DAG.getConstant(JTH.First, VT));
1304
1305 // The SDNode we just created, which holds the value being switched on
1306 // minus the the smallest case value, needs to be copied to a virtual
1307 // register so it can be used as an index into the jump table in a
1308 // subsequent basic block. This value may be smaller or larger than the
1309 // target's pointer type, and therefore require extension or truncating.
1310 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1311 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1312 else
1313 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1314
1315 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1316 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1317 JT.Reg = JumpTableReg;
1318
1319 // Emit the range check for the jump table, and branch to the default
1320 // block for the switch statement if the value being switched on exceeds
1321 // the largest case in the switch.
1322 SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1323 DAG.getConstant(JTH.Last-JTH.First,VT),
1324 ISD::SETUGT);
1325
1326 // Set NextBlock to be the MBB immediately after the current one, if any.
1327 // This is used to avoid emitting unnecessary branches to the next block.
1328 MachineBasicBlock *NextBlock = 0;
1329 MachineFunction::iterator BBI = CurMBB;
1330 if (++BBI != CurMBB->getParent()->end())
1331 NextBlock = BBI;
1332
1333 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1334 DAG.getBasicBlock(JT.Default));
1335
1336 if (JT.MBB == NextBlock)
1337 DAG.setRoot(BrCond);
1338 else
1339 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1340 DAG.getBasicBlock(JT.MBB)));
1341
1342 return;
1343}
1344
1345/// visitBitTestHeader - This function emits necessary code to produce value
1346/// suitable for "bit tests"
1347void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1348 // Subtract the minimum value
1349 SDOperand SwitchOp = getValue(B.SValue);
1350 MVT::ValueType VT = SwitchOp.getValueType();
1351 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1352 DAG.getConstant(B.First, VT));
1353
1354 // Check range
1355 SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1356 DAG.getConstant(B.Range, VT),
1357 ISD::SETUGT);
1358
1359 SDOperand ShiftOp;
1360 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1361 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1362 else
1363 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1364
1365 // Make desired shift
1366 SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1367 DAG.getConstant(1, TLI.getPointerTy()),
1368 ShiftOp);
1369
1370 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1371 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1372 B.Reg = SwitchReg;
1373
1374 SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1375 DAG.getBasicBlock(B.Default));
1376
1377 // Set NextBlock to be the MBB immediately after the current one, if any.
1378 // This is used to avoid emitting unnecessary branches to the next block.
1379 MachineBasicBlock *NextBlock = 0;
1380 MachineFunction::iterator BBI = CurMBB;
1381 if (++BBI != CurMBB->getParent()->end())
1382 NextBlock = BBI;
1383
1384 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1385 if (MBB == NextBlock)
1386 DAG.setRoot(BrRange);
1387 else
1388 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1389 DAG.getBasicBlock(MBB)));
1390
1391 CurMBB->addSuccessor(B.Default);
1392 CurMBB->addSuccessor(MBB);
1393
1394 return;
1395}
1396
1397/// visitBitTestCase - this function produces one "bit test"
1398void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1399 unsigned Reg,
1400 SelectionDAGISel::BitTestCase &B) {
1401 // Emit bit tests and jumps
1402 SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1403
1404 SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1405 SwitchVal,
1406 DAG.getConstant(B.Mask,
1407 TLI.getPointerTy()));
1408 SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1409 DAG.getConstant(0, TLI.getPointerTy()),
1410 ISD::SETNE);
1411 SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1412 AndCmp, DAG.getBasicBlock(B.TargetBB));
1413
1414 // Set NextBlock to be the MBB immediately after the current one, if any.
1415 // This is used to avoid emitting unnecessary branches to the next block.
1416 MachineBasicBlock *NextBlock = 0;
1417 MachineFunction::iterator BBI = CurMBB;
1418 if (++BBI != CurMBB->getParent()->end())
1419 NextBlock = BBI;
1420
1421 if (NextMBB == NextBlock)
1422 DAG.setRoot(BrAnd);
1423 else
1424 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1425 DAG.getBasicBlock(NextMBB)));
1426
1427 CurMBB->addSuccessor(B.TargetBB);
1428 CurMBB->addSuccessor(NextMBB);
1429
1430 return;
1431}
1432
1433void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1434 // Retrieve successors.
1435 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1436 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1437
1438 LowerCallTo(I, I.getCalledValue()->getType(),
1439 I.getCallingConv(),
1440 false,
1441 getValue(I.getOperand(0)),
1442 3, LandingPad);
1443
1444 // If the value of the invoke is used outside of its defining block, make it
1445 // available as a virtual register.
1446 if (!I.use_empty()) {
1447 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1448 if (VMI != FuncInfo.ValueMap.end())
1449 DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1450 }
1451
1452 // Drop into normal successor.
1453 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1454 DAG.getBasicBlock(Return)));
1455
1456 // Update successor info
1457 CurMBB->addSuccessor(Return);
1458 CurMBB->addSuccessor(LandingPad);
1459}
1460
1461void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1462}
1463
1464/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1465/// small case ranges).
1466bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1467 CaseRecVector& WorkList,
1468 Value* SV,
1469 MachineBasicBlock* Default) {
1470 Case& BackCase = *(CR.Range.second-1);
1471
1472 // Size is the number of Cases represented by this range.
1473 unsigned Size = CR.Range.second - CR.Range.first;
1474 if (Size > 3)
1475 return false;
1476
1477 // Get the MachineFunction which holds the current MBB. This is used when
1478 // inserting any additional MBBs necessary to represent the switch.
1479 MachineFunction *CurMF = CurMBB->getParent();
1480
1481 // Figure out which block is immediately after the current one.
1482 MachineBasicBlock *NextBlock = 0;
1483 MachineFunction::iterator BBI = CR.CaseBB;
1484
1485 if (++BBI != CurMBB->getParent()->end())
1486 NextBlock = BBI;
1487
1488 // TODO: If any two of the cases has the same destination, and if one value
1489 // is the same as the other, but has one bit unset that the other has set,
1490 // use bit manipulation to do two compares at once. For example:
1491 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1492
1493 // Rearrange the case blocks so that the last one falls through if possible.
1494 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1495 // The last case block won't fall through into 'NextBlock' if we emit the
1496 // branches in this order. See if rearranging a case value would help.
1497 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1498 if (I->BB == NextBlock) {
1499 std::swap(*I, BackCase);
1500 break;
1501 }
1502 }
1503 }
1504
1505 // Create a CaseBlock record representing a conditional branch to
1506 // the Case's target mbb if the value being switched on SV is equal
1507 // to C.
1508 MachineBasicBlock *CurBlock = CR.CaseBB;
1509 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1510 MachineBasicBlock *FallThrough;
1511 if (I != E-1) {
1512 FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1513 CurMF->getBasicBlockList().insert(BBI, FallThrough);
1514 } else {
1515 // If the last case doesn't match, go to the default block.
1516 FallThrough = Default;
1517 }
1518
1519 Value *RHS, *LHS, *MHS;
1520 ISD::CondCode CC;
1521 if (I->High == I->Low) {
1522 // This is just small small case range :) containing exactly 1 case
1523 CC = ISD::SETEQ;
1524 LHS = SV; RHS = I->High; MHS = NULL;
1525 } else {
1526 CC = ISD::SETLE;
1527 LHS = I->Low; MHS = SV; RHS = I->High;
1528 }
1529 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1530 I->BB, FallThrough, CurBlock);
1531
1532 // If emitting the first comparison, just call visitSwitchCase to emit the
1533 // code into the current block. Otherwise, push the CaseBlock onto the
1534 // vector to be later processed by SDISel, and insert the node's MBB
1535 // before the next MBB.
1536 if (CurBlock == CurMBB)
1537 visitSwitchCase(CB);
1538 else
1539 SwitchCases.push_back(CB);
1540
1541 CurBlock = FallThrough;
1542 }
1543
1544 return true;
1545}
1546
1547static inline bool areJTsAllowed(const TargetLowering &TLI) {
1548 return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1549 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1550}
1551
1552/// handleJTSwitchCase - Emit jumptable for current switch case range
1553bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1554 CaseRecVector& WorkList,
1555 Value* SV,
1556 MachineBasicBlock* Default) {
1557 Case& FrontCase = *CR.Range.first;
1558 Case& BackCase = *(CR.Range.second-1);
1559
1560 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1561 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1562
1563 uint64_t TSize = 0;
1564 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1565 I!=E; ++I)
1566 TSize += I->size();
1567
1568 if (!areJTsAllowed(TLI) || TSize <= 3)
1569 return false;
1570
1571 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1572 if (Density < 0.4)
1573 return false;
1574
1575 DOUT << "Lowering jump table\n"
1576 << "First entry: " << First << ". Last entry: " << Last << "\n"
1577 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1578
1579 // Get the MachineFunction which holds the current MBB. This is used when
1580 // inserting any additional MBBs necessary to represent the switch.
1581 MachineFunction *CurMF = CurMBB->getParent();
1582
1583 // Figure out which block is immediately after the current one.
1584 MachineBasicBlock *NextBlock = 0;
1585 MachineFunction::iterator BBI = CR.CaseBB;
1586
1587 if (++BBI != CurMBB->getParent()->end())
1588 NextBlock = BBI;
1589
1590 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1591
1592 // Create a new basic block to hold the code for loading the address
1593 // of the jump table, and jumping to it. Update successor information;
1594 // we will either branch to the default case for the switch, or the jump
1595 // table.
1596 MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1597 CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1598 CR.CaseBB->addSuccessor(Default);
1599 CR.CaseBB->addSuccessor(JumpTableBB);
1600
1601 // Build a vector of destination BBs, corresponding to each target
1602 // of the jump table. If the value of the jump table slot corresponds to
1603 // a case statement, push the case's BB onto the vector, otherwise, push
1604 // the default BB.
1605 std::vector<MachineBasicBlock*> DestBBs;
1606 int64_t TEI = First;
1607 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1608 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1609 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1610
1611 if ((Low <= TEI) && (TEI <= High)) {
1612 DestBBs.push_back(I->BB);
1613 if (TEI==High)
1614 ++I;
1615 } else {
1616 DestBBs.push_back(Default);
1617 }
1618 }
1619
1620 // Update successor info. Add one edge to each unique successor.
1621 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1622 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1623 E = DestBBs.end(); I != E; ++I) {
1624 if (!SuccsHandled[(*I)->getNumber()]) {
1625 SuccsHandled[(*I)->getNumber()] = true;
1626 JumpTableBB->addSuccessor(*I);
1627 }
1628 }
1629
1630 // Create a jump table index for this jump table, or return an existing
1631 // one.
1632 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1633
1634 // Set the jump table information so that we can codegen it as a second
1635 // MachineBasicBlock
1636 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1637 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1638 (CR.CaseBB == CurMBB));
1639 if (CR.CaseBB == CurMBB)
1640 visitJumpTableHeader(JT, JTH);
1641
1642 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1643
1644 return true;
1645}
1646
1647/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1648/// 2 subtrees.
1649bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1650 CaseRecVector& WorkList,
1651 Value* SV,
1652 MachineBasicBlock* Default) {
1653 // Get the MachineFunction which holds the current MBB. This is used when
1654 // inserting any additional MBBs necessary to represent the switch.
1655 MachineFunction *CurMF = CurMBB->getParent();
1656
1657 // Figure out which block is immediately after the current one.
1658 MachineBasicBlock *NextBlock = 0;
1659 MachineFunction::iterator BBI = CR.CaseBB;
1660
1661 if (++BBI != CurMBB->getParent()->end())
1662 NextBlock = BBI;
1663
1664 Case& FrontCase = *CR.Range.first;
1665 Case& BackCase = *(CR.Range.second-1);
1666 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1667
1668 // Size is the number of Cases represented by this range.
1669 unsigned Size = CR.Range.second - CR.Range.first;
1670
1671 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1672 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1673 double FMetric = 0;
1674 CaseItr Pivot = CR.Range.first + Size/2;
1675
1676 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1677 // (heuristically) allow us to emit JumpTable's later.
1678 uint64_t TSize = 0;
1679 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1680 I!=E; ++I)
1681 TSize += I->size();
1682
1683 uint64_t LSize = FrontCase.size();
1684 uint64_t RSize = TSize-LSize;
1685 DOUT << "Selecting best pivot: \n"
1686 << "First: " << First << ", Last: " << Last <<"\n"
1687 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1688 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1689 J!=E; ++I, ++J) {
1690 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1691 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1692 assert((RBegin-LEnd>=1) && "Invalid case distance");
1693 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1694 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1695 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1696 // Should always split in some non-trivial place
1697 DOUT <<"=>Step\n"
1698 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1699 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1700 << "Metric: " << Metric << "\n";
1701 if (FMetric < Metric) {
1702 Pivot = J;
1703 FMetric = Metric;
1704 DOUT << "Current metric set to: " << FMetric << "\n";
1705 }
1706
1707 LSize += J->size();
1708 RSize -= J->size();
1709 }
1710 if (areJTsAllowed(TLI)) {
1711 // If our case is dense we *really* should handle it earlier!
1712 assert((FMetric > 0) && "Should handle dense range earlier!");
1713 } else {
1714 Pivot = CR.Range.first + Size/2;
1715 }
1716
1717 CaseRange LHSR(CR.Range.first, Pivot);
1718 CaseRange RHSR(Pivot, CR.Range.second);
1719 Constant *C = Pivot->Low;
1720 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1721
1722 // We know that we branch to the LHS if the Value being switched on is
1723 // less than the Pivot value, C. We use this to optimize our binary
1724 // tree a bit, by recognizing that if SV is greater than or equal to the
1725 // LHS's Case Value, and that Case Value is exactly one less than the
1726 // Pivot's Value, then we can branch directly to the LHS's Target,
1727 // rather than creating a leaf node for it.
1728 if ((LHSR.second - LHSR.first) == 1 &&
1729 LHSR.first->High == CR.GE &&
1730 cast<ConstantInt>(C)->getSExtValue() ==
1731 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1732 TrueBB = LHSR.first->BB;
1733 } else {
1734 TrueBB = new MachineBasicBlock(LLVMBB);
1735 CurMF->getBasicBlockList().insert(BBI, TrueBB);
1736 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1737 }
1738
1739 // Similar to the optimization above, if the Value being switched on is
1740 // known to be less than the Constant CR.LT, and the current Case Value
1741 // is CR.LT - 1, then we can branch directly to the target block for
1742 // the current Case Value, rather than emitting a RHS leaf node for it.
1743 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1744 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1745 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1746 FalseBB = RHSR.first->BB;
1747 } else {
1748 FalseBB = new MachineBasicBlock(LLVMBB);
1749 CurMF->getBasicBlockList().insert(BBI, FalseBB);
1750 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1751 }
1752
1753 // Create a CaseBlock record representing a conditional branch to
1754 // the LHS node if the value being switched on SV is less than C.
1755 // Otherwise, branch to LHS.
1756 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1757 TrueBB, FalseBB, CR.CaseBB);
1758
1759 if (CR.CaseBB == CurMBB)
1760 visitSwitchCase(CB);
1761 else
1762 SwitchCases.push_back(CB);
1763
1764 return true;
1765}
1766
1767/// handleBitTestsSwitchCase - if current case range has few destination and
1768/// range span less, than machine word bitwidth, encode case range into series
1769/// of masks and emit bit tests with these masks.
1770bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1771 CaseRecVector& WorkList,
1772 Value* SV,
1773 MachineBasicBlock* Default){
1774 unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1775
1776 Case& FrontCase = *CR.Range.first;
1777 Case& BackCase = *(CR.Range.second-1);
1778
1779 // Get the MachineFunction which holds the current MBB. This is used when
1780 // inserting any additional MBBs necessary to represent the switch.
1781 MachineFunction *CurMF = CurMBB->getParent();
1782
1783 unsigned numCmps = 0;
1784 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1785 I!=E; ++I) {
1786 // Single case counts one, case range - two.
1787 if (I->Low == I->High)
1788 numCmps +=1;
1789 else
1790 numCmps +=2;
1791 }
1792
1793 // Count unique destinations
1794 SmallSet<MachineBasicBlock*, 4> Dests;
1795 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1796 Dests.insert(I->BB);
1797 if (Dests.size() > 3)
1798 // Don't bother the code below, if there are too much unique destinations
1799 return false;
1800 }
1801 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1802 << "Total number of comparisons: " << numCmps << "\n";
1803
1804 // Compute span of values.
1805 Constant* minValue = FrontCase.Low;
1806 Constant* maxValue = BackCase.High;
1807 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1808 cast<ConstantInt>(minValue)->getSExtValue();
1809 DOUT << "Compare range: " << range << "\n"
1810 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1811 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1812
1813 if (range>=IntPtrBits ||
1814 (!(Dests.size() == 1 && numCmps >= 3) &&
1815 !(Dests.size() == 2 && numCmps >= 5) &&
1816 !(Dests.size() >= 3 && numCmps >= 6)))
1817 return false;
1818
1819 DOUT << "Emitting bit tests\n";
1820 int64_t lowBound = 0;
1821
1822 // Optimize the case where all the case values fit in a
1823 // word without having to subtract minValue. In this case,
1824 // we can optimize away the subtraction.
1825 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1826 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1827 range = cast<ConstantInt>(maxValue)->getSExtValue();
1828 } else {
1829 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1830 }
1831
1832 CaseBitsVector CasesBits;
1833 unsigned i, count = 0;
1834
1835 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1836 MachineBasicBlock* Dest = I->BB;
1837 for (i = 0; i < count; ++i)
1838 if (Dest == CasesBits[i].BB)
1839 break;
1840
1841 if (i == count) {
1842 assert((count < 3) && "Too much destinations to test!");
1843 CasesBits.push_back(CaseBits(0, Dest, 0));
1844 count++;
1845 }
1846
1847 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1848 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1849
1850 for (uint64_t j = lo; j <= hi; j++) {
1851 CasesBits[i].Mask |= 1ULL << j;
1852 CasesBits[i].Bits++;
1853 }
1854
1855 }
1856 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1857
1858 SelectionDAGISel::BitTestInfo BTC;
1859
1860 // Figure out which block is immediately after the current one.
1861 MachineFunction::iterator BBI = CR.CaseBB;
1862 ++BBI;
1863
1864 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1865
1866 DOUT << "Cases:\n";
1867 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1868 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1869 << ", BB: " << CasesBits[i].BB << "\n";
1870
1871 MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1872 CurMF->getBasicBlockList().insert(BBI, CaseBB);
1873 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1874 CaseBB,
1875 CasesBits[i].BB));
1876 }
1877
1878 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1879 -1U, (CR.CaseBB == CurMBB),
1880 CR.CaseBB, Default, BTC);
1881
1882 if (CR.CaseBB == CurMBB)
1883 visitBitTestHeader(BTB);
1884
1885 BitTestCases.push_back(BTB);
1886
1887 return true;
1888}
1889
1890
1891// Clusterify - Transform simple list of Cases into list of CaseRange's
1892unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1893 const SwitchInst& SI) {
1894 unsigned numCmps = 0;
1895
1896 // Start with "simple" cases
1897 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1898 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1899 Cases.push_back(Case(SI.getSuccessorValue(i),
1900 SI.getSuccessorValue(i),
1901 SMBB));
1902 }
1903 sort(Cases.begin(), Cases.end(), CaseCmp());
1904
1905 // Merge case into clusters
1906 if (Cases.size()>=2)
1907 // Must recompute end() each iteration because it may be
1908 // invalidated by erase if we hold on to it
1909 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1910 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1911 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1912 MachineBasicBlock* nextBB = J->BB;
1913 MachineBasicBlock* currentBB = I->BB;
1914
1915 // If the two neighboring cases go to the same destination, merge them
1916 // into a single case.
1917 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1918 I->High = J->High;
1919 J = Cases.erase(J);
1920 } else {
1921 I = J++;
1922 }
1923 }
1924
1925 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1926 if (I->Low != I->High)
1927 // A range counts double, since it requires two compares.
1928 ++numCmps;
1929 }
1930
1931 return numCmps;
1932}
1933
1934void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1935 // Figure out which block is immediately after the current one.
1936 MachineBasicBlock *NextBlock = 0;
1937 MachineFunction::iterator BBI = CurMBB;
1938
1939 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1940
1941 // If there is only the default destination, branch to it if it is not the
1942 // next basic block. Otherwise, just fall through.
1943 if (SI.getNumOperands() == 2) {
1944 // Update machine-CFG edges.
1945
1946 // If this is not a fall-through branch, emit the branch.
1947 if (Default != NextBlock)
1948 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1949 DAG.getBasicBlock(Default)));
1950
1951 CurMBB->addSuccessor(Default);
1952 return;
1953 }
1954
1955 // If there are any non-default case statements, create a vector of Cases
1956 // representing each one, and sort the vector so that we can efficiently
1957 // create a binary search tree from them.
1958 CaseVector Cases;
1959 unsigned numCmps = Clusterify(Cases, SI);
1960 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1961 << ". Total compares: " << numCmps << "\n";
1962
1963 // Get the Value to be switched on and default basic blocks, which will be
1964 // inserted into CaseBlock records, representing basic blocks in the binary
1965 // search tree.
1966 Value *SV = SI.getOperand(0);
1967
1968 // Push the initial CaseRec onto the worklist
1969 CaseRecVector WorkList;
1970 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1971
1972 while (!WorkList.empty()) {
1973 // Grab a record representing a case range to process off the worklist
1974 CaseRec CR = WorkList.back();
1975 WorkList.pop_back();
1976
1977 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1978 continue;
1979
1980 // If the range has few cases (two or less) emit a series of specific
1981 // tests.
1982 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1983 continue;
1984
1985 // If the switch has more than 5 blocks, and at least 40% dense, and the
1986 // target supports indirect branches, then emit a jump table rather than
1987 // lowering the switch to a binary tree of conditional branches.
1988 if (handleJTSwitchCase(CR, WorkList, SV, Default))
1989 continue;
1990
1991 // Emit binary tree. We need to pick a pivot, and push left and right ranges
1992 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1993 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1994 }
1995}
1996
1997
1998void SelectionDAGLowering::visitSub(User &I) {
1999 // -0.0 - X --> fneg
2000 const Type *Ty = I.getType();
2001 if (isa<VectorType>(Ty)) {
2002 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2003 const VectorType *DestTy = cast<VectorType>(I.getType());
2004 const Type *ElTy = DestTy->getElementType();
2005 if (ElTy->isFloatingPoint()) {
2006 unsigned VL = DestTy->getNumElements();
Dale Johannesen2fc20782007-09-14 22:26:36 +00002007 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002008 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2009 if (CV == CNZ) {
2010 SDOperand Op2 = getValue(I.getOperand(1));
2011 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2012 return;
2013 }
2014 }
2015 }
2016 }
2017 if (Ty->isFloatingPoint()) {
2018 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
Dale Johannesen2fc20782007-09-14 22:26:36 +00002019 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002020 SDOperand Op2 = getValue(I.getOperand(1));
2021 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2022 return;
2023 }
2024 }
2025
2026 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2027}
2028
2029void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2030 SDOperand Op1 = getValue(I.getOperand(0));
2031 SDOperand Op2 = getValue(I.getOperand(1));
2032
2033 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2034}
2035
2036void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2037 SDOperand Op1 = getValue(I.getOperand(0));
2038 SDOperand Op2 = getValue(I.getOperand(1));
2039
2040 if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2041 MVT::getSizeInBits(Op2.getValueType()))
2042 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2043 else if (TLI.getShiftAmountTy() > Op2.getValueType())
2044 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2045
2046 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2047}
2048
2049void SelectionDAGLowering::visitICmp(User &I) {
2050 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2051 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2052 predicate = IC->getPredicate();
2053 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2054 predicate = ICmpInst::Predicate(IC->getPredicate());
2055 SDOperand Op1 = getValue(I.getOperand(0));
2056 SDOperand Op2 = getValue(I.getOperand(1));
2057 ISD::CondCode Opcode;
2058 switch (predicate) {
2059 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2060 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2061 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2062 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2063 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2064 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2065 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2066 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2067 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2068 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2069 default:
2070 assert(!"Invalid ICmp predicate value");
2071 Opcode = ISD::SETEQ;
2072 break;
2073 }
2074 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2075}
2076
2077void SelectionDAGLowering::visitFCmp(User &I) {
2078 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2079 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2080 predicate = FC->getPredicate();
2081 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2082 predicate = FCmpInst::Predicate(FC->getPredicate());
2083 SDOperand Op1 = getValue(I.getOperand(0));
2084 SDOperand Op2 = getValue(I.getOperand(1));
2085 ISD::CondCode Condition, FOC, FPC;
2086 switch (predicate) {
2087 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2088 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2089 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2090 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2091 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2092 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2093 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2094 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
2095 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
2096 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2097 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2098 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2099 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2100 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2101 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2102 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2103 default:
2104 assert(!"Invalid FCmp predicate value");
2105 FOC = FPC = ISD::SETFALSE;
2106 break;
2107 }
2108 if (FiniteOnlyFPMath())
2109 Condition = FOC;
2110 else
2111 Condition = FPC;
2112 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2113}
2114
2115void SelectionDAGLowering::visitSelect(User &I) {
2116 SDOperand Cond = getValue(I.getOperand(0));
2117 SDOperand TrueVal = getValue(I.getOperand(1));
2118 SDOperand FalseVal = getValue(I.getOperand(2));
2119 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2120 TrueVal, FalseVal));
2121}
2122
2123
2124void SelectionDAGLowering::visitTrunc(User &I) {
2125 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2126 SDOperand N = getValue(I.getOperand(0));
2127 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2128 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2129}
2130
2131void SelectionDAGLowering::visitZExt(User &I) {
2132 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2133 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2134 SDOperand N = getValue(I.getOperand(0));
2135 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2136 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2137}
2138
2139void SelectionDAGLowering::visitSExt(User &I) {
2140 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2141 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2142 SDOperand N = getValue(I.getOperand(0));
2143 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2144 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2145}
2146
2147void SelectionDAGLowering::visitFPTrunc(User &I) {
2148 // FPTrunc is never a no-op cast, no need to check
2149 SDOperand N = getValue(I.getOperand(0));
2150 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2151 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2152}
2153
2154void SelectionDAGLowering::visitFPExt(User &I){
2155 // FPTrunc is never a no-op cast, no need to check
2156 SDOperand N = getValue(I.getOperand(0));
2157 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2158 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2159}
2160
2161void SelectionDAGLowering::visitFPToUI(User &I) {
2162 // FPToUI is never a no-op cast, no need to check
2163 SDOperand N = getValue(I.getOperand(0));
2164 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2165 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2166}
2167
2168void SelectionDAGLowering::visitFPToSI(User &I) {
2169 // FPToSI is never a no-op cast, no need to check
2170 SDOperand N = getValue(I.getOperand(0));
2171 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2172 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2173}
2174
2175void SelectionDAGLowering::visitUIToFP(User &I) {
2176 // UIToFP is never a no-op cast, no need to check
2177 SDOperand N = getValue(I.getOperand(0));
2178 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2179 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2180}
2181
2182void SelectionDAGLowering::visitSIToFP(User &I){
2183 // UIToFP is never a no-op cast, no need to check
2184 SDOperand N = getValue(I.getOperand(0));
2185 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2186 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2187}
2188
2189void SelectionDAGLowering::visitPtrToInt(User &I) {
2190 // What to do depends on the size of the integer and the size of the pointer.
2191 // We can either truncate, zero extend, or no-op, accordingly.
2192 SDOperand N = getValue(I.getOperand(0));
2193 MVT::ValueType SrcVT = N.getValueType();
2194 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2195 SDOperand Result;
2196 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2197 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2198 else
2199 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2200 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2201 setValue(&I, Result);
2202}
2203
2204void SelectionDAGLowering::visitIntToPtr(User &I) {
2205 // What to do depends on the size of the integer and the size of the pointer.
2206 // We can either truncate, zero extend, or no-op, accordingly.
2207 SDOperand N = getValue(I.getOperand(0));
2208 MVT::ValueType SrcVT = N.getValueType();
2209 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2210 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2211 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2212 else
2213 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2214 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2215}
2216
2217void SelectionDAGLowering::visitBitCast(User &I) {
2218 SDOperand N = getValue(I.getOperand(0));
2219 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2220
2221 // BitCast assures us that source and destination are the same size so this
2222 // is either a BIT_CONVERT or a no-op.
2223 if (DestVT != N.getValueType())
2224 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2225 else
2226 setValue(&I, N); // noop cast.
2227}
2228
2229void SelectionDAGLowering::visitInsertElement(User &I) {
2230 SDOperand InVec = getValue(I.getOperand(0));
2231 SDOperand InVal = getValue(I.getOperand(1));
2232 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2233 getValue(I.getOperand(2)));
2234
2235 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2236 TLI.getValueType(I.getType()),
2237 InVec, InVal, InIdx));
2238}
2239
2240void SelectionDAGLowering::visitExtractElement(User &I) {
2241 SDOperand InVec = getValue(I.getOperand(0));
2242 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2243 getValue(I.getOperand(1)));
2244 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2245 TLI.getValueType(I.getType()), InVec, InIdx));
2246}
2247
2248void SelectionDAGLowering::visitShuffleVector(User &I) {
2249 SDOperand V1 = getValue(I.getOperand(0));
2250 SDOperand V2 = getValue(I.getOperand(1));
2251 SDOperand Mask = getValue(I.getOperand(2));
2252
2253 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2254 TLI.getValueType(I.getType()),
2255 V1, V2, Mask));
2256}
2257
2258
2259void SelectionDAGLowering::visitGetElementPtr(User &I) {
2260 SDOperand N = getValue(I.getOperand(0));
2261 const Type *Ty = I.getOperand(0)->getType();
2262
2263 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2264 OI != E; ++OI) {
2265 Value *Idx = *OI;
2266 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2267 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2268 if (Field) {
2269 // N = N + Offset
2270 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2271 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2272 getIntPtrConstant(Offset));
2273 }
2274 Ty = StTy->getElementType(Field);
2275 } else {
2276 Ty = cast<SequentialType>(Ty)->getElementType();
2277
2278 // If this is a constant subscript, handle it quickly.
2279 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2280 if (CI->getZExtValue() == 0) continue;
2281 uint64_t Offs =
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002282 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002283 N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2284 continue;
2285 }
2286
2287 // N = N + Idx * ElementSize;
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002288 uint64_t ElementSize = TD->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002289 SDOperand IdxN = getValue(Idx);
2290
2291 // If the index is smaller or larger than intptr_t, truncate or extend
2292 // it.
2293 if (IdxN.getValueType() < N.getValueType()) {
2294 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2295 } else if (IdxN.getValueType() > N.getValueType())
2296 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2297
2298 // If this is a multiply by a power of two, turn it into a shl
2299 // immediately. This is a very common case.
2300 if (isPowerOf2_64(ElementSize)) {
2301 unsigned Amt = Log2_64(ElementSize);
2302 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2303 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2304 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2305 continue;
2306 }
2307
2308 SDOperand Scale = getIntPtrConstant(ElementSize);
2309 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2310 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2311 }
2312 }
2313 setValue(&I, N);
2314}
2315
2316void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2317 // If this is a fixed sized alloca in the entry block of the function,
2318 // allocate it statically on the stack.
2319 if (FuncInfo.StaticAllocaMap.count(&I))
2320 return; // getValue will auto-populate this.
2321
2322 const Type *Ty = I.getAllocatedType();
2323 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2324 unsigned Align =
2325 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2326 I.getAlignment());
2327
2328 SDOperand AllocSize = getValue(I.getArraySize());
2329 MVT::ValueType IntPtr = TLI.getPointerTy();
2330 if (IntPtr < AllocSize.getValueType())
2331 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2332 else if (IntPtr > AllocSize.getValueType())
2333 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2334
2335 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2336 getIntPtrConstant(TySize));
2337
Evan Chenga31dc752007-08-16 23:46:29 +00002338 // Handle alignment. If the requested alignment is less than or equal to
2339 // the stack alignment, ignore it. If the size is greater than or equal to
2340 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002341 unsigned StackAlign =
2342 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
Evan Chenga31dc752007-08-16 23:46:29 +00002343 if (Align <= StackAlign)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002344 Align = 0;
Evan Chenga31dc752007-08-16 23:46:29 +00002345
2346 // Round the size of the allocation up to the stack alignment size
2347 // by add SA-1 to the size.
2348 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2349 getIntPtrConstant(StackAlign-1));
2350 // Mask out the low bits for alignment purposes.
2351 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2352 getIntPtrConstant(~(uint64_t)(StackAlign-1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353
2354 SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2355 const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2356 MVT::Other);
2357 SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2358 setValue(&I, DSA);
2359 DAG.setRoot(DSA.getValue(1));
2360
2361 // Inform the Frame Information that we have just allocated a variable-sized
2362 // object.
2363 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2364}
2365
2366void SelectionDAGLowering::visitLoad(LoadInst &I) {
2367 SDOperand Ptr = getValue(I.getOperand(0));
2368
2369 SDOperand Root;
2370 if (I.isVolatile())
2371 Root = getRoot();
2372 else {
2373 // Do not serialize non-volatile loads against each other.
2374 Root = DAG.getRoot();
2375 }
2376
2377 setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2378 Root, I.isVolatile(), I.getAlignment()));
2379}
2380
2381SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2382 const Value *SV, SDOperand Root,
2383 bool isVolatile,
2384 unsigned Alignment) {
2385 SDOperand L =
2386 DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2387 isVolatile, Alignment);
2388
2389 if (isVolatile)
2390 DAG.setRoot(L.getValue(1));
2391 else
2392 PendingLoads.push_back(L.getValue(1));
2393
2394 return L;
2395}
2396
2397
2398void SelectionDAGLowering::visitStore(StoreInst &I) {
2399 Value *SrcV = I.getOperand(0);
2400 SDOperand Src = getValue(SrcV);
2401 SDOperand Ptr = getValue(I.getOperand(1));
2402 DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2403 I.isVolatile(), I.getAlignment()));
2404}
2405
2406/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2407/// access memory and has no other side effects at all.
2408static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2409#define GET_NO_MEMORY_INTRINSICS
2410#include "llvm/Intrinsics.gen"
2411#undef GET_NO_MEMORY_INTRINSICS
2412 return false;
2413}
2414
2415// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2416// have any side-effects or if it only reads memory.
2417static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2418#define GET_SIDE_EFFECT_INFO
2419#include "llvm/Intrinsics.gen"
2420#undef GET_SIDE_EFFECT_INFO
2421 return false;
2422}
2423
2424/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2425/// node.
2426void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2427 unsigned Intrinsic) {
2428 bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2429 bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2430
2431 // Build the operand list.
2432 SmallVector<SDOperand, 8> Ops;
2433 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2434 if (OnlyLoad) {
2435 // We don't need to serialize loads against other loads.
2436 Ops.push_back(DAG.getRoot());
2437 } else {
2438 Ops.push_back(getRoot());
2439 }
2440 }
2441
2442 // Add the intrinsic ID as an integer operand.
2443 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2444
2445 // Add all operands of the call to the operand list.
2446 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2447 SDOperand Op = getValue(I.getOperand(i));
2448 assert(TLI.isTypeLegal(Op.getValueType()) &&
2449 "Intrinsic uses a non-legal type?");
2450 Ops.push_back(Op);
2451 }
2452
2453 std::vector<MVT::ValueType> VTs;
2454 if (I.getType() != Type::VoidTy) {
2455 MVT::ValueType VT = TLI.getValueType(I.getType());
2456 if (MVT::isVector(VT)) {
2457 const VectorType *DestTy = cast<VectorType>(I.getType());
2458 MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2459
2460 VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2461 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2462 }
2463
2464 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2465 VTs.push_back(VT);
2466 }
2467 if (HasChain)
2468 VTs.push_back(MVT::Other);
2469
2470 const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2471
2472 // Create the node.
2473 SDOperand Result;
2474 if (!HasChain)
2475 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2476 &Ops[0], Ops.size());
2477 else if (I.getType() != Type::VoidTy)
2478 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2479 &Ops[0], Ops.size());
2480 else
2481 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2482 &Ops[0], Ops.size());
2483
2484 if (HasChain) {
2485 SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2486 if (OnlyLoad)
2487 PendingLoads.push_back(Chain);
2488 else
2489 DAG.setRoot(Chain);
2490 }
2491 if (I.getType() != Type::VoidTy) {
2492 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2493 MVT::ValueType VT = TLI.getValueType(PTy);
2494 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2495 }
2496 setValue(&I, Result);
2497 }
2498}
2499
2500/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2501static GlobalVariable *ExtractTypeInfo (Value *V) {
2502 V = IntrinsicInst::StripPointerCasts(V);
2503 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2504 assert (GV || isa<ConstantPointerNull>(V) &&
2505 "TypeInfo must be a global variable or NULL");
2506 return GV;
2507}
2508
2509/// addCatchInfo - Extract the personality and type infos from an eh.selector
2510/// call, and add them to the specified machine basic block.
2511static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2512 MachineBasicBlock *MBB) {
2513 // Inform the MachineModuleInfo of the personality for this landing pad.
2514 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2515 assert(CE->getOpcode() == Instruction::BitCast &&
2516 isa<Function>(CE->getOperand(0)) &&
2517 "Personality should be a function");
2518 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2519
2520 // Gather all the type infos for this landing pad and pass them along to
2521 // MachineModuleInfo.
2522 std::vector<GlobalVariable *> TyInfo;
2523 unsigned N = I.getNumOperands();
2524
2525 for (unsigned i = N - 1; i > 2; --i) {
2526 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2527 unsigned FilterLength = CI->getZExtValue();
Duncan Sands923fdb12007-08-27 15:47:50 +00002528 unsigned FirstCatch = i + FilterLength + !FilterLength;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002529 assert (FirstCatch <= N && "Invalid filter length");
2530
2531 if (FirstCatch < N) {
2532 TyInfo.reserve(N - FirstCatch);
2533 for (unsigned j = FirstCatch; j < N; ++j)
2534 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2535 MMI->addCatchTypeInfo(MBB, TyInfo);
2536 TyInfo.clear();
2537 }
2538
Duncan Sands923fdb12007-08-27 15:47:50 +00002539 if (!FilterLength) {
2540 // Cleanup.
2541 MMI->addCleanup(MBB);
2542 } else {
2543 // Filter.
2544 TyInfo.reserve(FilterLength - 1);
2545 for (unsigned j = i + 1; j < FirstCatch; ++j)
2546 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2547 MMI->addFilterTypeInfo(MBB, TyInfo);
2548 TyInfo.clear();
2549 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002550
2551 N = i;
2552 }
2553 }
2554
2555 if (N > 3) {
2556 TyInfo.reserve(N - 3);
2557 for (unsigned j = 3; j < N; ++j)
2558 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2559 MMI->addCatchTypeInfo(MBB, TyInfo);
2560 }
2561}
2562
2563/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
2564/// we want to emit this as a call to a named external function, return the name
2565/// otherwise lower it and return null.
2566const char *
2567SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2568 switch (Intrinsic) {
2569 default:
2570 // By default, turn this into a target intrinsic node.
2571 visitTargetIntrinsic(I, Intrinsic);
2572 return 0;
2573 case Intrinsic::vastart: visitVAStart(I); return 0;
2574 case Intrinsic::vaend: visitVAEnd(I); return 0;
2575 case Intrinsic::vacopy: visitVACopy(I); return 0;
2576 case Intrinsic::returnaddress:
2577 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2578 getValue(I.getOperand(1))));
2579 return 0;
2580 case Intrinsic::frameaddress:
2581 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2582 getValue(I.getOperand(1))));
2583 return 0;
2584 case Intrinsic::setjmp:
2585 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2586 break;
2587 case Intrinsic::longjmp:
2588 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2589 break;
2590 case Intrinsic::memcpy_i32:
2591 case Intrinsic::memcpy_i64:
2592 visitMemIntrinsic(I, ISD::MEMCPY);
2593 return 0;
2594 case Intrinsic::memset_i32:
2595 case Intrinsic::memset_i64:
2596 visitMemIntrinsic(I, ISD::MEMSET);
2597 return 0;
2598 case Intrinsic::memmove_i32:
2599 case Intrinsic::memmove_i64:
2600 visitMemIntrinsic(I, ISD::MEMMOVE);
2601 return 0;
2602
2603 case Intrinsic::dbg_stoppoint: {
2604 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2605 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2606 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2607 SDOperand Ops[5];
2608
2609 Ops[0] = getRoot();
2610 Ops[1] = getValue(SPI.getLineValue());
2611 Ops[2] = getValue(SPI.getColumnValue());
2612
2613 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2614 assert(DD && "Not a debug information descriptor");
2615 CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2616
2617 Ops[3] = DAG.getString(CompileUnit->getFileName());
2618 Ops[4] = DAG.getString(CompileUnit->getDirectory());
2619
2620 DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2621 }
2622
2623 return 0;
2624 }
2625 case Intrinsic::dbg_region_start: {
2626 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2627 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2628 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2629 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2630 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2631 DAG.getConstant(LabelID, MVT::i32)));
2632 }
2633
2634 return 0;
2635 }
2636 case Intrinsic::dbg_region_end: {
2637 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2638 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2639 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2640 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2641 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2642 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2643 }
2644
2645 return 0;
2646 }
2647 case Intrinsic::dbg_func_start: {
2648 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2649 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2650 if (MMI && FSI.getSubprogram() &&
2651 MMI->Verify(FSI.getSubprogram())) {
2652 unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2653 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2654 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2655 }
2656
2657 return 0;
2658 }
2659 case Intrinsic::dbg_declare: {
2660 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2661 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2662 if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2663 SDOperand AddressOp = getValue(DI.getAddress());
2664 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2665 MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2666 }
2667
2668 return 0;
2669 }
2670
2671 case Intrinsic::eh_exception: {
2672 if (ExceptionHandling) {
2673 if (!CurMBB->isLandingPad()) {
2674 // FIXME: Mark exception register as live in. Hack for PR1508.
2675 unsigned Reg = TLI.getExceptionAddressRegister();
2676 if (Reg) CurMBB->addLiveIn(Reg);
2677 }
2678 // Insert the EXCEPTIONADDR instruction.
2679 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2680 SDOperand Ops[1];
2681 Ops[0] = DAG.getRoot();
2682 SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2683 setValue(&I, Op);
2684 DAG.setRoot(Op.getValue(1));
2685 } else {
2686 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2687 }
2688 return 0;
2689 }
2690
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002691 case Intrinsic::eh_selector_i32:
2692 case Intrinsic::eh_selector_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002693 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002694 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2695 MVT::i32 : MVT::i64);
2696
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002697 if (ExceptionHandling && MMI) {
2698 if (CurMBB->isLandingPad())
2699 addCatchInfo(I, MMI, CurMBB);
2700 else {
2701#ifndef NDEBUG
2702 FuncInfo.CatchInfoLost.insert(&I);
2703#endif
2704 // FIXME: Mark exception selector register as live in. Hack for PR1508.
2705 unsigned Reg = TLI.getExceptionSelectorRegister();
2706 if (Reg) CurMBB->addLiveIn(Reg);
2707 }
2708
2709 // Insert the EHSELECTION instruction.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002710 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002711 SDOperand Ops[2];
2712 Ops[0] = getValue(I.getOperand(1));
2713 Ops[1] = getRoot();
2714 SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2715 setValue(&I, Op);
2716 DAG.setRoot(Op.getValue(1));
2717 } else {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002718 setValue(&I, DAG.getConstant(0, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002719 }
2720
2721 return 0;
2722 }
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002723
2724 case Intrinsic::eh_typeid_for_i32:
2725 case Intrinsic::eh_typeid_for_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002726 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002727 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2728 MVT::i32 : MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002729
2730 if (MMI) {
2731 // Find the type id for the given typeinfo.
2732 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2733
2734 unsigned TypeID = MMI->getTypeIDFor(GV);
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002735 setValue(&I, DAG.getConstant(TypeID, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002736 } else {
2737 // Return something different to eh_selector.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002738 setValue(&I, DAG.getConstant(1, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002739 }
2740
2741 return 0;
2742 }
2743
2744 case Intrinsic::eh_return: {
2745 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2746
2747 if (MMI && ExceptionHandling) {
2748 MMI->setCallsEHReturn(true);
2749 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2750 MVT::Other,
2751 getRoot(),
2752 getValue(I.getOperand(1)),
2753 getValue(I.getOperand(2))));
2754 } else {
2755 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2756 }
2757
2758 return 0;
2759 }
2760
2761 case Intrinsic::eh_unwind_init: {
2762 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2763 MMI->setCallsUnwindInit(true);
2764 }
2765
2766 return 0;
2767 }
2768
2769 case Intrinsic::eh_dwarf_cfa: {
2770 if (ExceptionHandling) {
2771 MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002772 SDOperand CfaArg;
2773 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2774 CfaArg = DAG.getNode(ISD::TRUNCATE,
2775 TLI.getPointerTy(), getValue(I.getOperand(1)));
2776 else
2777 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2778 TLI.getPointerTy(), getValue(I.getOperand(1)));
2779
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002780 SDOperand Offset = DAG.getNode(ISD::ADD,
2781 TLI.getPointerTy(),
2782 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002783 TLI.getPointerTy()),
2784 CfaArg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002785 setValue(&I, DAG.getNode(ISD::ADD,
2786 TLI.getPointerTy(),
2787 DAG.getNode(ISD::FRAMEADDR,
2788 TLI.getPointerTy(),
2789 DAG.getConstant(0,
2790 TLI.getPointerTy())),
2791 Offset));
2792 } else {
2793 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2794 }
2795
2796 return 0;
2797 }
2798
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002799 case Intrinsic::sqrt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002800 setValue(&I, DAG.getNode(ISD::FSQRT,
2801 getValue(I.getOperand(1)).getValueType(),
2802 getValue(I.getOperand(1))));
2803 return 0;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002804 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002805 setValue(&I, DAG.getNode(ISD::FPOWI,
2806 getValue(I.getOperand(1)).getValueType(),
2807 getValue(I.getOperand(1)),
2808 getValue(I.getOperand(2))));
2809 return 0;
2810 case Intrinsic::pcmarker: {
2811 SDOperand Tmp = getValue(I.getOperand(1));
2812 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2813 return 0;
2814 }
2815 case Intrinsic::readcyclecounter: {
2816 SDOperand Op = getRoot();
2817 SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2818 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2819 &Op, 1);
2820 setValue(&I, Tmp);
2821 DAG.setRoot(Tmp.getValue(1));
2822 return 0;
2823 }
2824 case Intrinsic::part_select: {
2825 // Currently not implemented: just abort
2826 assert(0 && "part_select intrinsic not implemented");
2827 abort();
2828 }
2829 case Intrinsic::part_set: {
2830 // Currently not implemented: just abort
2831 assert(0 && "part_set intrinsic not implemented");
2832 abort();
2833 }
2834 case Intrinsic::bswap:
2835 setValue(&I, DAG.getNode(ISD::BSWAP,
2836 getValue(I.getOperand(1)).getValueType(),
2837 getValue(I.getOperand(1))));
2838 return 0;
2839 case Intrinsic::cttz: {
2840 SDOperand Arg = getValue(I.getOperand(1));
2841 MVT::ValueType Ty = Arg.getValueType();
2842 SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002843 setValue(&I, result);
2844 return 0;
2845 }
2846 case Intrinsic::ctlz: {
2847 SDOperand Arg = getValue(I.getOperand(1));
2848 MVT::ValueType Ty = Arg.getValueType();
2849 SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002850 setValue(&I, result);
2851 return 0;
2852 }
2853 case Intrinsic::ctpop: {
2854 SDOperand Arg = getValue(I.getOperand(1));
2855 MVT::ValueType Ty = Arg.getValueType();
2856 SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002857 setValue(&I, result);
2858 return 0;
2859 }
2860 case Intrinsic::stacksave: {
2861 SDOperand Op = getRoot();
2862 SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2863 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2864 setValue(&I, Tmp);
2865 DAG.setRoot(Tmp.getValue(1));
2866 return 0;
2867 }
2868 case Intrinsic::stackrestore: {
2869 SDOperand Tmp = getValue(I.getOperand(1));
2870 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2871 return 0;
2872 }
2873 case Intrinsic::prefetch:
2874 // FIXME: Currently discarding prefetches.
2875 return 0;
2876
2877 case Intrinsic::var_annotation:
2878 // Discard annotate attributes
2879 return 0;
Duncan Sands38947cd2007-07-27 12:58:54 +00002880
Duncan Sands38947cd2007-07-27 12:58:54 +00002881 case Intrinsic::init_trampoline: {
2882 const Function *F =
2883 cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2884
2885 SDOperand Ops[6];
2886 Ops[0] = getRoot();
2887 Ops[1] = getValue(I.getOperand(1));
2888 Ops[2] = getValue(I.getOperand(2));
2889 Ops[3] = getValue(I.getOperand(3));
2890 Ops[4] = DAG.getSrcValue(I.getOperand(1));
2891 Ops[5] = DAG.getSrcValue(F);
2892
Duncan Sands7407a9f2007-09-11 14:10:23 +00002893 SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2894 DAG.getNodeValueTypes(TLI.getPointerTy(),
2895 MVT::Other), 2,
2896 Ops, 6);
2897
2898 setValue(&I, Tmp);
2899 DAG.setRoot(Tmp.getValue(1));
Duncan Sands38947cd2007-07-27 12:58:54 +00002900 return 0;
2901 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002902 }
2903}
2904
2905
2906void SelectionDAGLowering::LowerCallTo(Instruction &I,
2907 const Type *CalledValueTy,
2908 unsigned CallingConv,
2909 bool IsTailCall,
2910 SDOperand Callee, unsigned OpIdx,
2911 MachineBasicBlock *LandingPad) {
2912 const PointerType *PT = cast<PointerType>(CalledValueTy);
2913 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2914 const ParamAttrsList *Attrs = FTy->getParamAttrs();
2915 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2916 unsigned BeginLabel = 0, EndLabel = 0;
2917
2918 TargetLowering::ArgListTy Args;
2919 TargetLowering::ArgListEntry Entry;
2920 Args.reserve(I.getNumOperands());
2921 for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2922 Value *Arg = I.getOperand(i);
2923 SDOperand ArgNode = getValue(Arg);
2924 Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2925
2926 unsigned attrInd = i - OpIdx + 1;
2927 Entry.isSExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2928 Entry.isZExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2929 Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2930 Entry.isSRet = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
Duncan Sands38947cd2007-07-27 12:58:54 +00002931 Entry.isNest = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00002932 Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002933 Args.push_back(Entry);
2934 }
2935
Duncan Sands241a0c92007-09-05 11:27:52 +00002936 if (ExceptionHandling && MMI && LandingPad) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002937 // Insert a label before the invoke call to mark the try range. This can be
2938 // used to detect deletion of the invoke via the MachineModuleInfo.
2939 BeginLabel = MMI->NextLabelID();
2940 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2941 DAG.getConstant(BeginLabel, MVT::i32)));
2942 }
2943
2944 std::pair<SDOperand,SDOperand> Result =
2945 TLI.LowerCallTo(getRoot(), I.getType(),
2946 Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2947 FTy->isVarArg(), CallingConv, IsTailCall,
2948 Callee, Args, DAG);
2949 if (I.getType() != Type::VoidTy)
2950 setValue(&I, Result.first);
2951 DAG.setRoot(Result.second);
2952
Duncan Sands241a0c92007-09-05 11:27:52 +00002953 if (ExceptionHandling && MMI && LandingPad) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002954 // Insert a label at the end of the invoke call to mark the try range. This
2955 // can be used to detect deletion of the invoke via the MachineModuleInfo.
2956 EndLabel = MMI->NextLabelID();
2957 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2958 DAG.getConstant(EndLabel, MVT::i32)));
2959
2960 // Inform MachineModuleInfo of range.
2961 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2962 }
2963}
2964
2965
2966void SelectionDAGLowering::visitCall(CallInst &I) {
2967 const char *RenameFn = 0;
2968 if (Function *F = I.getCalledFunction()) {
Chris Lattner3687e342007-09-10 21:15:22 +00002969 if (F->isDeclaration()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002970 if (unsigned IID = F->getIntrinsicID()) {
2971 RenameFn = visitIntrinsicCall(I, IID);
2972 if (!RenameFn)
2973 return;
Chris Lattner3687e342007-09-10 21:15:22 +00002974 }
2975 }
2976
2977 // Check for well-known libc/libm calls. If the function is internal, it
2978 // can't be a library call.
2979 unsigned NameLen = F->getNameLen();
2980 if (!F->hasInternalLinkage() && NameLen) {
2981 const char *NameStr = F->getNameStart();
2982 if (NameStr[0] == 'c' &&
2983 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
2984 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
2985 if (I.getNumOperands() == 3 && // Basic sanity checks.
2986 I.getOperand(1)->getType()->isFloatingPoint() &&
2987 I.getType() == I.getOperand(1)->getType() &&
2988 I.getType() == I.getOperand(2)->getType()) {
2989 SDOperand LHS = getValue(I.getOperand(1));
2990 SDOperand RHS = getValue(I.getOperand(2));
2991 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2992 LHS, RHS));
2993 return;
2994 }
2995 } else if (NameStr[0] == 'f' &&
2996 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00002997 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
2998 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00002999 if (I.getNumOperands() == 2 && // Basic sanity checks.
3000 I.getOperand(1)->getType()->isFloatingPoint() &&
3001 I.getType() == I.getOperand(1)->getType()) {
3002 SDOperand Tmp = getValue(I.getOperand(1));
3003 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3004 return;
3005 }
3006 } else if (NameStr[0] == 's' &&
3007 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003008 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3009 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003010 if (I.getNumOperands() == 2 && // Basic sanity checks.
3011 I.getOperand(1)->getType()->isFloatingPoint() &&
3012 I.getType() == I.getOperand(1)->getType()) {
3013 SDOperand Tmp = getValue(I.getOperand(1));
3014 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3015 return;
3016 }
3017 } else if (NameStr[0] == 'c' &&
3018 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003019 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3020 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003021 if (I.getNumOperands() == 2 && // Basic sanity checks.
3022 I.getOperand(1)->getType()->isFloatingPoint() &&
3023 I.getType() == I.getOperand(1)->getType()) {
3024 SDOperand Tmp = getValue(I.getOperand(1));
3025 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3026 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003027 }
3028 }
Chris Lattner3687e342007-09-10 21:15:22 +00003029 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030 } else if (isa<InlineAsm>(I.getOperand(0))) {
3031 visitInlineAsm(I);
3032 return;
3033 }
3034
3035 SDOperand Callee;
3036 if (!RenameFn)
3037 Callee = getValue(I.getOperand(0));
3038 else
3039 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3040
3041 LowerCallTo(I, I.getCalledValue()->getType(),
3042 I.getCallingConv(),
3043 I.isTailCall(),
3044 Callee,
3045 1);
3046}
3047
3048
3049/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3050/// this value and returns the result as a ValueVT value. This uses
3051/// Chain/Flag as the input and updates them for the output Chain/Flag.
3052/// If the Flag pointer is NULL, no flag is used.
3053SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3054 SDOperand &Chain, SDOperand *Flag)const{
3055 // Copy the legal parts from the registers.
3056 unsigned NumParts = Regs.size();
3057 SmallVector<SDOperand, 8> Parts(NumParts);
3058 for (unsigned i = 0; i != NumParts; ++i) {
3059 SDOperand Part = Flag ?
3060 DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3061 DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3062 Chain = Part.getValue(1);
3063 if (Flag)
3064 *Flag = Part.getValue(2);
3065 Parts[i] = Part;
3066 }
3067
3068 // Assemble the legal parts into the final value.
3069 return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3070}
3071
3072/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3073/// specified value into the registers specified by this object. This uses
3074/// Chain/Flag as the input and updates them for the output Chain/Flag.
3075/// If the Flag pointer is NULL, no flag is used.
3076void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3077 SDOperand &Chain, SDOperand *Flag) const {
3078 // Get the list of the values's legal parts.
3079 unsigned NumParts = Regs.size();
3080 SmallVector<SDOperand, 8> Parts(NumParts);
3081 getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3082
3083 // Copy the parts into the registers.
3084 for (unsigned i = 0; i != NumParts; ++i) {
3085 SDOperand Part = Flag ?
3086 DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3087 DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3088 Chain = Part.getValue(0);
3089 if (Flag)
3090 *Flag = Part.getValue(1);
3091 }
3092}
3093
3094/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3095/// operand list. This adds the code marker and includes the number of
3096/// values added into it.
3097void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3098 std::vector<SDOperand> &Ops) const {
3099 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3100 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3101 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3102 Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3103}
3104
3105/// isAllocatableRegister - If the specified register is safe to allocate,
3106/// i.e. it isn't a stack pointer or some other special register, return the
3107/// register class for the register. Otherwise, return null.
3108static const TargetRegisterClass *
3109isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3110 const TargetLowering &TLI, const MRegisterInfo *MRI) {
3111 MVT::ValueType FoundVT = MVT::Other;
3112 const TargetRegisterClass *FoundRC = 0;
3113 for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3114 E = MRI->regclass_end(); RCI != E; ++RCI) {
3115 MVT::ValueType ThisVT = MVT::Other;
3116
3117 const TargetRegisterClass *RC = *RCI;
3118 // If none of the the value types for this register class are valid, we
3119 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3120 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3121 I != E; ++I) {
3122 if (TLI.isTypeLegal(*I)) {
3123 // If we have already found this register in a different register class,
3124 // choose the one with the largest VT specified. For example, on
3125 // PowerPC, we favor f64 register classes over f32.
3126 if (FoundVT == MVT::Other ||
3127 MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3128 ThisVT = *I;
3129 break;
3130 }
3131 }
3132 }
3133
3134 if (ThisVT == MVT::Other) continue;
3135
3136 // NOTE: This isn't ideal. In particular, this might allocate the
3137 // frame pointer in functions that need it (due to them not being taken
3138 // out of allocation, because a variable sized allocation hasn't been seen
3139 // yet). This is a slight code pessimization, but should still work.
3140 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3141 E = RC->allocation_order_end(MF); I != E; ++I)
3142 if (*I == Reg) {
3143 // We found a matching register class. Keep looking at others in case
3144 // we find one with larger registers that this physreg is also in.
3145 FoundRC = RC;
3146 FoundVT = ThisVT;
3147 break;
3148 }
3149 }
3150 return FoundRC;
3151}
3152
3153
3154namespace {
3155/// AsmOperandInfo - This contains information for each constraint that we are
3156/// lowering.
3157struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3158 /// ConstraintCode - This contains the actual string for the code, like "m".
3159 std::string ConstraintCode;
3160
3161 /// ConstraintType - Information about the constraint code, e.g. Register,
3162 /// RegisterClass, Memory, Other, Unknown.
3163 TargetLowering::ConstraintType ConstraintType;
3164
3165 /// CallOperand/CallOperandval - If this is the result output operand or a
3166 /// clobber, this is null, otherwise it is the incoming operand to the
3167 /// CallInst. This gets modified as the asm is processed.
3168 SDOperand CallOperand;
3169 Value *CallOperandVal;
3170
3171 /// ConstraintVT - The ValueType for the operand value.
3172 MVT::ValueType ConstraintVT;
3173
3174 /// AssignedRegs - If this is a register or register class operand, this
3175 /// contains the set of register corresponding to the operand.
3176 RegsForValue AssignedRegs;
3177
3178 AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3179 : InlineAsm::ConstraintInfo(info),
3180 ConstraintType(TargetLowering::C_Unknown),
3181 CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3182 }
3183
3184 void ComputeConstraintToUse(const TargetLowering &TLI);
3185
3186 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3187 /// busy in OutputRegs/InputRegs.
3188 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3189 std::set<unsigned> &OutputRegs,
3190 std::set<unsigned> &InputRegs) const {
3191 if (isOutReg)
3192 OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3193 if (isInReg)
3194 InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3195 }
3196};
3197} // end anon namespace.
3198
3199/// getConstraintGenerality - Return an integer indicating how general CT is.
3200static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3201 switch (CT) {
3202 default: assert(0 && "Unknown constraint type!");
3203 case TargetLowering::C_Other:
3204 case TargetLowering::C_Unknown:
3205 return 0;
3206 case TargetLowering::C_Register:
3207 return 1;
3208 case TargetLowering::C_RegisterClass:
3209 return 2;
3210 case TargetLowering::C_Memory:
3211 return 3;
3212 }
3213}
3214
3215void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3216 assert(!Codes.empty() && "Must have at least one constraint");
3217
3218 std::string *Current = &Codes[0];
3219 TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3220 if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
3221 ConstraintCode = *Current;
3222 ConstraintType = CurType;
3223 return;
3224 }
3225
3226 unsigned CurGenerality = getConstraintGenerality(CurType);
3227
3228 // If we have multiple constraints, try to pick the most general one ahead
3229 // of time. This isn't a wonderful solution, but handles common cases.
3230 for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3231 TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3232 unsigned ThisGenerality = getConstraintGenerality(ThisType);
3233 if (ThisGenerality > CurGenerality) {
3234 // This constraint letter is more general than the previous one,
3235 // use it.
3236 CurType = ThisType;
3237 Current = &Codes[j];
3238 CurGenerality = ThisGenerality;
3239 }
3240 }
3241
3242 ConstraintCode = *Current;
3243 ConstraintType = CurType;
3244}
3245
3246
3247void SelectionDAGLowering::
3248GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3249 std::set<unsigned> &OutputRegs,
3250 std::set<unsigned> &InputRegs) {
3251 // Compute whether this value requires an input register, an output register,
3252 // or both.
3253 bool isOutReg = false;
3254 bool isInReg = false;
3255 switch (OpInfo.Type) {
3256 case InlineAsm::isOutput:
3257 isOutReg = true;
3258
3259 // If this is an early-clobber output, or if there is an input
3260 // constraint that matches this, we need to reserve the input register
3261 // so no other inputs allocate to it.
3262 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3263 break;
3264 case InlineAsm::isInput:
3265 isInReg = true;
3266 isOutReg = false;
3267 break;
3268 case InlineAsm::isClobber:
3269 isOutReg = true;
3270 isInReg = true;
3271 break;
3272 }
3273
3274
3275 MachineFunction &MF = DAG.getMachineFunction();
3276 std::vector<unsigned> Regs;
3277
3278 // If this is a constraint for a single physreg, or a constraint for a
3279 // register class, find it.
3280 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3281 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3282 OpInfo.ConstraintVT);
3283
3284 unsigned NumRegs = 1;
3285 if (OpInfo.ConstraintVT != MVT::Other)
3286 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3287 MVT::ValueType RegVT;
3288 MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3289
3290
3291 // If this is a constraint for a specific physical register, like {r17},
3292 // assign it now.
3293 if (PhysReg.first) {
3294 if (OpInfo.ConstraintVT == MVT::Other)
3295 ValueVT = *PhysReg.second->vt_begin();
3296
3297 // Get the actual register value type. This is important, because the user
3298 // may have asked for (e.g.) the AX register in i32 type. We need to
3299 // remember that AX is actually i16 to get the right extension.
3300 RegVT = *PhysReg.second->vt_begin();
3301
3302 // This is a explicit reference to a physical register.
3303 Regs.push_back(PhysReg.first);
3304
3305 // If this is an expanded reference, add the rest of the regs to Regs.
3306 if (NumRegs != 1) {
3307 TargetRegisterClass::iterator I = PhysReg.second->begin();
3308 TargetRegisterClass::iterator E = PhysReg.second->end();
3309 for (; *I != PhysReg.first; ++I)
3310 assert(I != E && "Didn't find reg!");
3311
3312 // Already added the first reg.
3313 --NumRegs; ++I;
3314 for (; NumRegs; --NumRegs, ++I) {
3315 assert(I != E && "Ran out of registers to allocate!");
3316 Regs.push_back(*I);
3317 }
3318 }
3319 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3320 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3321 return;
3322 }
3323
3324 // Otherwise, if this was a reference to an LLVM register class, create vregs
3325 // for this reference.
3326 std::vector<unsigned> RegClassRegs;
3327 const TargetRegisterClass *RC = PhysReg.second;
3328 if (RC) {
3329 // If this is an early clobber or tied register, our regalloc doesn't know
3330 // how to maintain the constraint. If it isn't, go ahead and create vreg
3331 // and let the regalloc do the right thing.
3332 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3333 // If there is some other early clobber and this is an input register,
3334 // then we are forced to pre-allocate the input reg so it doesn't
3335 // conflict with the earlyclobber.
3336 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3337 RegVT = *PhysReg.second->vt_begin();
3338
3339 if (OpInfo.ConstraintVT == MVT::Other)
3340 ValueVT = RegVT;
3341
3342 // Create the appropriate number of virtual registers.
3343 SSARegMap *RegMap = MF.getSSARegMap();
3344 for (; NumRegs; --NumRegs)
3345 Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3346
3347 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3348 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3349 return;
3350 }
3351
3352 // Otherwise, we can't allocate it. Let the code below figure out how to
3353 // maintain these constraints.
3354 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3355
3356 } else {
3357 // This is a reference to a register class that doesn't directly correspond
3358 // to an LLVM register class. Allocate NumRegs consecutive, available,
3359 // registers from the class.
3360 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3361 OpInfo.ConstraintVT);
3362 }
3363
3364 const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3365 unsigned NumAllocated = 0;
3366 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3367 unsigned Reg = RegClassRegs[i];
3368 // See if this register is available.
3369 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
3370 (isInReg && InputRegs.count(Reg))) { // Already used.
3371 // Make sure we find consecutive registers.
3372 NumAllocated = 0;
3373 continue;
3374 }
3375
3376 // Check to see if this register is allocatable (i.e. don't give out the
3377 // stack pointer).
3378 if (RC == 0) {
3379 RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3380 if (!RC) { // Couldn't allocate this register.
3381 // Reset NumAllocated to make sure we return consecutive registers.
3382 NumAllocated = 0;
3383 continue;
3384 }
3385 }
3386
3387 // Okay, this register is good, we can use it.
3388 ++NumAllocated;
3389
3390 // If we allocated enough consecutive registers, succeed.
3391 if (NumAllocated == NumRegs) {
3392 unsigned RegStart = (i-NumAllocated)+1;
3393 unsigned RegEnd = i+1;
3394 // Mark all of the allocated registers used.
3395 for (unsigned i = RegStart; i != RegEnd; ++i)
3396 Regs.push_back(RegClassRegs[i]);
3397
3398 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3399 OpInfo.ConstraintVT);
3400 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3401 return;
3402 }
3403 }
3404
3405 // Otherwise, we couldn't allocate enough registers for this.
3406 return;
3407}
3408
3409
3410/// visitInlineAsm - Handle a call to an InlineAsm object.
3411///
3412void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3413 InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3414
3415 /// ConstraintOperands - Information about all of the constraints.
3416 std::vector<AsmOperandInfo> ConstraintOperands;
3417
3418 SDOperand Chain = getRoot();
3419 SDOperand Flag;
3420
3421 std::set<unsigned> OutputRegs, InputRegs;
3422
3423 // Do a prepass over the constraints, canonicalizing them, and building up the
3424 // ConstraintOperands list.
3425 std::vector<InlineAsm::ConstraintInfo>
3426 ConstraintInfos = IA->ParseConstraints();
3427
3428 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3429 // constraint. If so, we can't let the register allocator allocate any input
3430 // registers, because it will not know to avoid the earlyclobbered output reg.
3431 bool SawEarlyClobber = false;
3432
3433 unsigned OpNo = 1; // OpNo - The operand of the CallInst.
3434 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3435 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3436 AsmOperandInfo &OpInfo = ConstraintOperands.back();
3437
3438 MVT::ValueType OpVT = MVT::Other;
3439
3440 // Compute the value type for each operand.
3441 switch (OpInfo.Type) {
3442 case InlineAsm::isOutput:
3443 if (!OpInfo.isIndirect) {
3444 // The return value of the call is this value. As such, there is no
3445 // corresponding argument.
3446 assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3447 OpVT = TLI.getValueType(I.getType());
3448 } else {
3449 OpInfo.CallOperandVal = I.getOperand(OpNo++);
3450 }
3451 break;
3452 case InlineAsm::isInput:
3453 OpInfo.CallOperandVal = I.getOperand(OpNo++);
3454 break;
3455 case InlineAsm::isClobber:
3456 // Nothing to do.
3457 break;
3458 }
3459
3460 // If this is an input or an indirect output, process the call argument.
3461 if (OpInfo.CallOperandVal) {
3462 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3463 const Type *OpTy = OpInfo.CallOperandVal->getType();
3464 // If this is an indirect operand, the operand is a pointer to the
3465 // accessed type.
3466 if (OpInfo.isIndirect)
3467 OpTy = cast<PointerType>(OpTy)->getElementType();
3468
3469 // If OpTy is not a first-class value, it may be a struct/union that we
3470 // can tile with integers.
3471 if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3472 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3473 switch (BitSize) {
3474 default: break;
3475 case 1:
3476 case 8:
3477 case 16:
3478 case 32:
3479 case 64:
3480 OpTy = IntegerType::get(BitSize);
3481 break;
3482 }
3483 }
3484
3485 OpVT = TLI.getValueType(OpTy, true);
3486 }
3487
3488 OpInfo.ConstraintVT = OpVT;
3489
3490 // Compute the constraint code and ConstraintType to use.
3491 OpInfo.ComputeConstraintToUse(TLI);
3492
3493 // Keep track of whether we see an earlyclobber.
3494 SawEarlyClobber |= OpInfo.isEarlyClobber;
3495
3496 // If this is a memory input, and if the operand is not indirect, do what we
3497 // need to to provide an address for the memory input.
3498 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3499 !OpInfo.isIndirect) {
3500 assert(OpInfo.Type == InlineAsm::isInput &&
3501 "Can only indirectify direct input operands!");
3502
3503 // Memory operands really want the address of the value. If we don't have
3504 // an indirect input, put it in the constpool if we can, otherwise spill
3505 // it to a stack slot.
3506
3507 // If the operand is a float, integer, or vector constant, spill to a
3508 // constant pool entry to get its address.
3509 Value *OpVal = OpInfo.CallOperandVal;
3510 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3511 isa<ConstantVector>(OpVal)) {
3512 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3513 TLI.getPointerTy());
3514 } else {
3515 // Otherwise, create a stack slot and emit a store to it before the
3516 // asm.
3517 const Type *Ty = OpVal->getType();
3518 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3519 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3520 MachineFunction &MF = DAG.getMachineFunction();
3521 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3522 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3523 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3524 OpInfo.CallOperand = StackSlot;
3525 }
3526
3527 // There is no longer a Value* corresponding to this operand.
3528 OpInfo.CallOperandVal = 0;
3529 // It is now an indirect operand.
3530 OpInfo.isIndirect = true;
3531 }
3532
3533 // If this constraint is for a specific register, allocate it before
3534 // anything else.
3535 if (OpInfo.ConstraintType == TargetLowering::C_Register)
3536 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3537 }
3538 ConstraintInfos.clear();
3539
3540
3541 // Second pass - Loop over all of the operands, assigning virtual or physregs
3542 // to registerclass operands.
3543 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3544 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3545
3546 // C_Register operands have already been allocated, Other/Memory don't need
3547 // to be.
3548 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3549 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3550 }
3551
3552 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3553 std::vector<SDOperand> AsmNodeOperands;
3554 AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
3555 AsmNodeOperands.push_back(
3556 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3557
3558
3559 // Loop over all of the inputs, copying the operand values into the
3560 // appropriate registers and processing the output regs.
3561 RegsForValue RetValRegs;
3562
3563 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3564 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3565
3566 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3567 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3568
3569 switch (OpInfo.Type) {
3570 case InlineAsm::isOutput: {
3571 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3572 OpInfo.ConstraintType != TargetLowering::C_Register) {
3573 // Memory output, or 'other' output (e.g. 'X' constraint).
3574 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3575
3576 // Add information to the INLINEASM node to know about this output.
3577 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3578 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3579 TLI.getPointerTy()));
3580 AsmNodeOperands.push_back(OpInfo.CallOperand);
3581 break;
3582 }
3583
3584 // Otherwise, this is a register or register class output.
3585
3586 // Copy the output from the appropriate register. Find a register that
3587 // we can use.
3588 if (OpInfo.AssignedRegs.Regs.empty()) {
3589 cerr << "Couldn't allocate output reg for contraint '"
3590 << OpInfo.ConstraintCode << "'!\n";
3591 exit(1);
3592 }
3593
3594 if (!OpInfo.isIndirect) {
3595 // This is the result value of the call.
3596 assert(RetValRegs.Regs.empty() &&
3597 "Cannot have multiple output constraints yet!");
3598 assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3599 RetValRegs = OpInfo.AssignedRegs;
3600 } else {
3601 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3602 OpInfo.CallOperandVal));
3603 }
3604
3605 // Add information to the INLINEASM node to know that this register is
3606 // set.
3607 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3608 AsmNodeOperands);
3609 break;
3610 }
3611 case InlineAsm::isInput: {
3612 SDOperand InOperandVal = OpInfo.CallOperand;
3613
3614 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
3615 // If this is required to match an output register we have already set,
3616 // just use its register.
3617 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3618
3619 // Scan until we find the definition we already emitted of this operand.
3620 // When we find it, create a RegsForValue operand.
3621 unsigned CurOp = 2; // The first operand.
3622 for (; OperandNo; --OperandNo) {
3623 // Advance to the next operand.
3624 unsigned NumOps =
3625 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3626 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3627 (NumOps & 7) == 4 /*MEM*/) &&
3628 "Skipped past definitions?");
3629 CurOp += (NumOps>>3)+1;
3630 }
3631
3632 unsigned NumOps =
3633 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3634 if ((NumOps & 7) == 2 /*REGDEF*/) {
3635 // Add NumOps>>3 registers to MatchedRegs.
3636 RegsForValue MatchedRegs;
3637 MatchedRegs.ValueVT = InOperandVal.getValueType();
3638 MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
3639 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3640 unsigned Reg =
3641 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3642 MatchedRegs.Regs.push_back(Reg);
3643 }
3644
3645 // Use the produced MatchedRegs object to
3646 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3647 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3648 break;
3649 } else {
3650 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3651 assert(0 && "matching constraints for memory operands unimp");
3652 }
3653 }
3654
3655 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3656 assert(!OpInfo.isIndirect &&
3657 "Don't know how to handle indirect other inputs yet!");
3658
Chris Lattnera531abc2007-08-25 00:47:38 +00003659 std::vector<SDOperand> Ops;
3660 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3661 Ops, DAG);
3662 if (Ops.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003663 cerr << "Invalid operand for inline asm constraint '"
3664 << OpInfo.ConstraintCode << "'!\n";
3665 exit(1);
3666 }
3667
3668 // Add information to the INLINEASM node to know about this input.
Chris Lattnera531abc2007-08-25 00:47:38 +00003669 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003670 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3671 TLI.getPointerTy()));
Chris Lattnera531abc2007-08-25 00:47:38 +00003672 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003673 break;
3674 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3675 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3676 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3677 "Memory operands expect pointer values");
3678
3679 // Add information to the INLINEASM node to know about this input.
3680 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3681 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3682 TLI.getPointerTy()));
3683 AsmNodeOperands.push_back(InOperandVal);
3684 break;
3685 }
3686
3687 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3688 OpInfo.ConstraintType == TargetLowering::C_Register) &&
3689 "Unknown constraint type!");
3690 assert(!OpInfo.isIndirect &&
3691 "Don't know how to handle indirect register inputs yet!");
3692
3693 // Copy the input into the appropriate registers.
3694 assert(!OpInfo.AssignedRegs.Regs.empty() &&
3695 "Couldn't allocate input reg!");
3696
3697 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3698
3699 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3700 AsmNodeOperands);
3701 break;
3702 }
3703 case InlineAsm::isClobber: {
3704 // Add the clobbered value to the operand list, so that the register
3705 // allocator is aware that the physreg got clobbered.
3706 if (!OpInfo.AssignedRegs.Regs.empty())
3707 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3708 AsmNodeOperands);
3709 break;
3710 }
3711 }
3712 }
3713
3714 // Finish up input operands.
3715 AsmNodeOperands[0] = Chain;
3716 if (Flag.Val) AsmNodeOperands.push_back(Flag);
3717
3718 Chain = DAG.getNode(ISD::INLINEASM,
3719 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3720 &AsmNodeOperands[0], AsmNodeOperands.size());
3721 Flag = Chain.getValue(1);
3722
3723 // If this asm returns a register value, copy the result from that register
3724 // and set it as the value of the call.
3725 if (!RetValRegs.Regs.empty()) {
3726 SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3727
3728 // If the result of the inline asm is a vector, it may have the wrong
3729 // width/num elts. Make sure to convert it to the right type with
3730 // bit_convert.
3731 if (MVT::isVector(Val.getValueType())) {
3732 const VectorType *VTy = cast<VectorType>(I.getType());
3733 MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3734
3735 Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3736 }
3737
3738 setValue(&I, Val);
3739 }
3740
3741 std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3742
3743 // Process indirect outputs, first output all of the flagged copies out of
3744 // physregs.
3745 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3746 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3747 Value *Ptr = IndirectStoresToEmit[i].second;
3748 SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3749 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3750 }
3751
3752 // Emit the non-flagged stores from the physregs.
3753 SmallVector<SDOperand, 8> OutChains;
3754 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3755 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3756 getValue(StoresToEmit[i].second),
3757 StoresToEmit[i].second, 0));
3758 if (!OutChains.empty())
3759 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3760 &OutChains[0], OutChains.size());
3761 DAG.setRoot(Chain);
3762}
3763
3764
3765void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3766 SDOperand Src = getValue(I.getOperand(0));
3767
3768 MVT::ValueType IntPtr = TLI.getPointerTy();
3769
3770 if (IntPtr < Src.getValueType())
3771 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3772 else if (IntPtr > Src.getValueType())
3773 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3774
3775 // Scale the source by the type size.
3776 uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3777 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3778 Src, getIntPtrConstant(ElementSize));
3779
3780 TargetLowering::ArgListTy Args;
3781 TargetLowering::ArgListEntry Entry;
3782 Entry.Node = Src;
3783 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3784 Args.push_back(Entry);
3785
3786 std::pair<SDOperand,SDOperand> Result =
3787 TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3788 DAG.getExternalSymbol("malloc", IntPtr),
3789 Args, DAG);
3790 setValue(&I, Result.first); // Pointers always fit in registers
3791 DAG.setRoot(Result.second);
3792}
3793
3794void SelectionDAGLowering::visitFree(FreeInst &I) {
3795 TargetLowering::ArgListTy Args;
3796 TargetLowering::ArgListEntry Entry;
3797 Entry.Node = getValue(I.getOperand(0));
3798 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3799 Args.push_back(Entry);
3800 MVT::ValueType IntPtr = TLI.getPointerTy();
3801 std::pair<SDOperand,SDOperand> Result =
3802 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3803 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3804 DAG.setRoot(Result.second);
3805}
3806
3807// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3808// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
3809// instructions are special in various ways, which require special support to
3810// insert. The specified MachineInstr is created but not inserted into any
3811// basic blocks, and the scheduler passes ownership of it to this method.
3812MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3813 MachineBasicBlock *MBB) {
3814 cerr << "If a target marks an instruction with "
3815 << "'usesCustomDAGSchedInserter', it must implement "
3816 << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3817 abort();
3818 return 0;
3819}
3820
3821void SelectionDAGLowering::visitVAStart(CallInst &I) {
3822 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3823 getValue(I.getOperand(1)),
3824 DAG.getSrcValue(I.getOperand(1))));
3825}
3826
3827void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3828 SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3829 getValue(I.getOperand(0)),
3830 DAG.getSrcValue(I.getOperand(0)));
3831 setValue(&I, V);
3832 DAG.setRoot(V.getValue(1));
3833}
3834
3835void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3836 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3837 getValue(I.getOperand(1)),
3838 DAG.getSrcValue(I.getOperand(1))));
3839}
3840
3841void SelectionDAGLowering::visitVACopy(CallInst &I) {
3842 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3843 getValue(I.getOperand(1)),
3844 getValue(I.getOperand(2)),
3845 DAG.getSrcValue(I.getOperand(1)),
3846 DAG.getSrcValue(I.getOperand(2))));
3847}
3848
3849/// TargetLowering::LowerArguments - This is the default LowerArguments
3850/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
3851/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3852/// integrated into SDISel.
3853std::vector<SDOperand>
3854TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3855 const FunctionType *FTy = F.getFunctionType();
3856 const ParamAttrsList *Attrs = FTy->getParamAttrs();
3857 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3858 std::vector<SDOperand> Ops;
3859 Ops.push_back(DAG.getRoot());
3860 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3861 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3862
3863 // Add one result value for each formal argument.
3864 std::vector<MVT::ValueType> RetVals;
3865 unsigned j = 1;
3866 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3867 I != E; ++I, ++j) {
3868 MVT::ValueType VT = getValueType(I->getType());
3869 unsigned Flags = ISD::ParamFlags::NoFlagSet;
3870 unsigned OriginalAlignment =
3871 getTargetData()->getABITypeAlignment(I->getType());
3872
3873 // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3874 // that is zero extended!
3875 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3876 Flags &= ~(ISD::ParamFlags::SExt);
3877 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3878 Flags |= ISD::ParamFlags::SExt;
3879 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3880 Flags |= ISD::ParamFlags::InReg;
3881 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3882 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003883 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003884 Flags |= ISD::ParamFlags::ByVal;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003885 const PointerType *Ty = cast<PointerType>(I->getType());
3886 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00003887 unsigned StructAlign =
3888 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003889 unsigned StructSize = getTargetData()->getTypeSize(STy);
3890 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3891 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
3892 }
Duncan Sands38947cd2007-07-27 12:58:54 +00003893 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::Nest))
3894 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3896
3897 switch (getTypeAction(VT)) {
3898 default: assert(0 && "Unknown type action!");
3899 case Legal:
3900 RetVals.push_back(VT);
3901 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3902 break;
3903 case Promote:
3904 RetVals.push_back(getTypeToTransformTo(VT));
3905 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3906 break;
3907 case Expand: {
3908 // If this is an illegal type, it needs to be broken up to fit into
3909 // registers.
3910 MVT::ValueType RegisterVT = getRegisterType(VT);
3911 unsigned NumRegs = getNumRegisters(VT);
3912 for (unsigned i = 0; i != NumRegs; ++i) {
3913 RetVals.push_back(RegisterVT);
3914 // if it isn't first piece, alignment must be 1
3915 if (i > 0)
3916 Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3917 (1 << ISD::ParamFlags::OrigAlignmentOffs);
3918 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3919 }
3920 break;
3921 }
3922 }
3923 }
3924
3925 RetVals.push_back(MVT::Other);
3926
3927 // Create the node.
3928 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3929 DAG.getNodeValueTypes(RetVals), RetVals.size(),
3930 &Ops[0], Ops.size()).Val;
3931 unsigned NumArgRegs = Result->getNumValues() - 1;
3932 DAG.setRoot(SDOperand(Result, NumArgRegs));
3933
3934 // Set up the return result vector.
3935 Ops.clear();
3936 unsigned i = 0;
3937 unsigned Idx = 1;
3938 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3939 ++I, ++Idx) {
3940 MVT::ValueType VT = getValueType(I->getType());
3941
3942 switch (getTypeAction(VT)) {
3943 default: assert(0 && "Unknown type action!");
3944 case Legal:
3945 Ops.push_back(SDOperand(Result, i++));
3946 break;
3947 case Promote: {
3948 SDOperand Op(Result, i++);
3949 if (MVT::isInteger(VT)) {
3950 if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3951 Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3952 DAG.getValueType(VT));
3953 else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3954 Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3955 DAG.getValueType(VT));
3956 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3957 } else {
3958 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3959 Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3960 }
3961 Ops.push_back(Op);
3962 break;
3963 }
3964 case Expand: {
3965 MVT::ValueType PartVT = getRegisterType(VT);
3966 unsigned NumParts = getNumRegisters(VT);
3967 SmallVector<SDOperand, 4> Parts(NumParts);
3968 for (unsigned j = 0; j != NumParts; ++j)
3969 Parts[j] = SDOperand(Result, i++);
3970 Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3971 break;
3972 }
3973 }
3974 }
3975 assert(i == NumArgRegs && "Argument register count mismatch!");
3976 return Ops;
3977}
3978
3979
3980/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3981/// implementation, which just inserts an ISD::CALL node, which is later custom
3982/// lowered by the target to something concrete. FIXME: When all targets are
3983/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3984std::pair<SDOperand, SDOperand>
3985TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3986 bool RetTyIsSigned, bool isVarArg,
3987 unsigned CallingConv, bool isTailCall,
3988 SDOperand Callee,
3989 ArgListTy &Args, SelectionDAG &DAG) {
3990 SmallVector<SDOperand, 32> Ops;
3991 Ops.push_back(Chain); // Op#0 - Chain
3992 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3993 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
3994 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
3995 Ops.push_back(Callee);
3996
3997 // Handle all of the outgoing arguments.
3998 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3999 MVT::ValueType VT = getValueType(Args[i].Ty);
4000 SDOperand Op = Args[i].Node;
4001 unsigned Flags = ISD::ParamFlags::NoFlagSet;
4002 unsigned OriginalAlignment =
4003 getTargetData()->getABITypeAlignment(Args[i].Ty);
4004
4005 if (Args[i].isSExt)
4006 Flags |= ISD::ParamFlags::SExt;
4007 if (Args[i].isZExt)
4008 Flags |= ISD::ParamFlags::ZExt;
4009 if (Args[i].isInReg)
4010 Flags |= ISD::ParamFlags::InReg;
4011 if (Args[i].isSRet)
4012 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004013 if (Args[i].isByVal) {
4014 Flags |= ISD::ParamFlags::ByVal;
4015 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4016 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00004017 unsigned StructAlign =
4018 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004019 unsigned StructSize = getTargetData()->getTypeSize(STy);
4020 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4021 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
4022 }
Duncan Sands38947cd2007-07-27 12:58:54 +00004023 if (Args[i].isNest)
4024 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004025 Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4026
4027 switch (getTypeAction(VT)) {
4028 default: assert(0 && "Unknown type action!");
4029 case Legal:
4030 Ops.push_back(Op);
4031 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4032 break;
4033 case Promote:
4034 if (MVT::isInteger(VT)) {
4035 unsigned ExtOp;
4036 if (Args[i].isSExt)
4037 ExtOp = ISD::SIGN_EXTEND;
4038 else if (Args[i].isZExt)
4039 ExtOp = ISD::ZERO_EXTEND;
4040 else
4041 ExtOp = ISD::ANY_EXTEND;
4042 Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4043 } else {
4044 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4045 Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4046 }
4047 Ops.push_back(Op);
4048 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4049 break;
4050 case Expand: {
4051 MVT::ValueType PartVT = getRegisterType(VT);
4052 unsigned NumParts = getNumRegisters(VT);
4053 SmallVector<SDOperand, 4> Parts(NumParts);
4054 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4055 for (unsigned i = 0; i != NumParts; ++i) {
4056 // if it isn't first piece, alignment must be 1
4057 unsigned MyFlags = Flags;
4058 if (i != 0)
4059 MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4060 (1 << ISD::ParamFlags::OrigAlignmentOffs);
4061
4062 Ops.push_back(Parts[i]);
4063 Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4064 }
4065 break;
4066 }
4067 }
4068 }
4069
4070 // Figure out the result value types.
4071 MVT::ValueType VT = getValueType(RetTy);
4072 MVT::ValueType RegisterVT = getRegisterType(VT);
4073 unsigned NumRegs = getNumRegisters(VT);
4074 SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4075 for (unsigned i = 0; i != NumRegs; ++i)
4076 RetTys[i] = RegisterVT;
4077
4078 RetTys.push_back(MVT::Other); // Always has a chain.
4079
4080 // Create the CALL node.
4081 SDOperand Res = DAG.getNode(ISD::CALL,
4082 DAG.getVTList(&RetTys[0], NumRegs + 1),
4083 &Ops[0], Ops.size());
Chris Lattnerbc1200c2007-08-02 18:08:16 +00004084 Chain = Res.getValue(NumRegs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004085
4086 // Gather up the call result into a single value.
4087 if (RetTy != Type::VoidTy) {
4088 ISD::NodeType AssertOp = ISD::AssertSext;
4089 if (!RetTyIsSigned)
4090 AssertOp = ISD::AssertZext;
4091 SmallVector<SDOperand, 4> Results(NumRegs);
4092 for (unsigned i = 0; i != NumRegs; ++i)
4093 Results[i] = Res.getValue(i);
4094 Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4095 }
4096
4097 return std::make_pair(Res, Chain);
4098}
4099
4100SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4101 assert(0 && "LowerOperation not implemented for this target!");
4102 abort();
4103 return SDOperand();
4104}
4105
4106SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4107 SelectionDAG &DAG) {
4108 assert(0 && "CustomPromoteOperation not implemented for this target!");
4109 abort();
4110 return SDOperand();
4111}
4112
4113/// getMemsetValue - Vectorized representation of the memset value
4114/// operand.
4115static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4116 SelectionDAG &DAG) {
4117 MVT::ValueType CurVT = VT;
4118 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4119 uint64_t Val = C->getValue() & 255;
4120 unsigned Shift = 8;
4121 while (CurVT != MVT::i8) {
4122 Val = (Val << Shift) | Val;
4123 Shift <<= 1;
4124 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4125 }
4126 return DAG.getConstant(Val, VT);
4127 } else {
4128 Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4129 unsigned Shift = 8;
4130 while (CurVT != MVT::i8) {
4131 Value =
4132 DAG.getNode(ISD::OR, VT,
4133 DAG.getNode(ISD::SHL, VT, Value,
4134 DAG.getConstant(Shift, MVT::i8)), Value);
4135 Shift <<= 1;
4136 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4137 }
4138
4139 return Value;
4140 }
4141}
4142
4143/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4144/// used when a memcpy is turned into a memset when the source is a constant
4145/// string ptr.
4146static SDOperand getMemsetStringVal(MVT::ValueType VT,
4147 SelectionDAG &DAG, TargetLowering &TLI,
4148 std::string &Str, unsigned Offset) {
4149 uint64_t Val = 0;
4150 unsigned MSB = MVT::getSizeInBits(VT) / 8;
4151 if (TLI.isLittleEndian())
4152 Offset = Offset + MSB - 1;
4153 for (unsigned i = 0; i != MSB; ++i) {
4154 Val = (Val << 8) | (unsigned char)Str[Offset];
4155 Offset += TLI.isLittleEndian() ? -1 : 1;
4156 }
4157 return DAG.getConstant(Val, VT);
4158}
4159
4160/// getMemBasePlusOffset - Returns base and offset node for the
4161static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4162 SelectionDAG &DAG, TargetLowering &TLI) {
4163 MVT::ValueType VT = Base.getValueType();
4164 return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4165}
4166
4167/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4168/// to replace the memset / memcpy is below the threshold. It also returns the
4169/// types of the sequence of memory ops to perform memset / memcpy.
4170static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4171 unsigned Limit, uint64_t Size,
4172 unsigned Align, TargetLowering &TLI) {
4173 MVT::ValueType VT;
4174
4175 if (TLI.allowsUnalignedMemoryAccesses()) {
4176 VT = MVT::i64;
4177 } else {
4178 switch (Align & 7) {
4179 case 0:
4180 VT = MVT::i64;
4181 break;
4182 case 4:
4183 VT = MVT::i32;
4184 break;
4185 case 2:
4186 VT = MVT::i16;
4187 break;
4188 default:
4189 VT = MVT::i8;
4190 break;
4191 }
4192 }
4193
4194 MVT::ValueType LVT = MVT::i64;
4195 while (!TLI.isTypeLegal(LVT))
4196 LVT = (MVT::ValueType)((unsigned)LVT - 1);
4197 assert(MVT::isInteger(LVT));
4198
4199 if (VT > LVT)
4200 VT = LVT;
4201
4202 unsigned NumMemOps = 0;
4203 while (Size != 0) {
4204 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4205 while (VTSize > Size) {
4206 VT = (MVT::ValueType)((unsigned)VT - 1);
4207 VTSize >>= 1;
4208 }
4209 assert(MVT::isInteger(VT));
4210
4211 if (++NumMemOps > Limit)
4212 return false;
4213 MemOps.push_back(VT);
4214 Size -= VTSize;
4215 }
4216
4217 return true;
4218}
4219
4220void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4221 SDOperand Op1 = getValue(I.getOperand(1));
4222 SDOperand Op2 = getValue(I.getOperand(2));
4223 SDOperand Op3 = getValue(I.getOperand(3));
4224 SDOperand Op4 = getValue(I.getOperand(4));
4225 unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4226 if (Align == 0) Align = 1;
4227
Dan Gohmancc863aa2007-08-27 16:26:13 +00004228 // If the source and destination are known to not be aliases, we can
4229 // lower memmove as memcpy.
4230 if (Op == ISD::MEMMOVE) {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00004231 uint64_t Size = -1ULL;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004232 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4233 Size = C->getValue();
4234 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4235 AliasAnalysis::NoAlias)
4236 Op = ISD::MEMCPY;
4237 }
4238
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004239 if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4240 std::vector<MVT::ValueType> MemOps;
4241
4242 // Expand memset / memcpy to a series of load / store ops
4243 // if the size operand falls below a certain threshold.
4244 SmallVector<SDOperand, 8> OutChains;
4245 switch (Op) {
4246 default: break; // Do nothing for now.
4247 case ISD::MEMSET: {
4248 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4249 Size->getValue(), Align, TLI)) {
4250 unsigned NumMemOps = MemOps.size();
4251 unsigned Offset = 0;
4252 for (unsigned i = 0; i < NumMemOps; i++) {
4253 MVT::ValueType VT = MemOps[i];
4254 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4255 SDOperand Value = getMemsetValue(Op2, VT, DAG);
4256 SDOperand Store = DAG.getStore(getRoot(), Value,
4257 getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4258 I.getOperand(1), Offset);
4259 OutChains.push_back(Store);
4260 Offset += VTSize;
4261 }
4262 }
4263 break;
4264 }
4265 case ISD::MEMCPY: {
4266 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4267 Size->getValue(), Align, TLI)) {
4268 unsigned NumMemOps = MemOps.size();
4269 unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4270 GlobalAddressSDNode *G = NULL;
4271 std::string Str;
4272 bool CopyFromStr = false;
4273
4274 if (Op2.getOpcode() == ISD::GlobalAddress)
4275 G = cast<GlobalAddressSDNode>(Op2);
4276 else if (Op2.getOpcode() == ISD::ADD &&
4277 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4278 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4279 G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4280 SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4281 }
4282 if (G) {
4283 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4284 if (GV && GV->isConstant()) {
4285 Str = GV->getStringValue(false);
4286 if (!Str.empty()) {
4287 CopyFromStr = true;
4288 SrcOff += SrcDelta;
4289 }
4290 }
4291 }
4292
4293 for (unsigned i = 0; i < NumMemOps; i++) {
4294 MVT::ValueType VT = MemOps[i];
4295 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4296 SDOperand Value, Chain, Store;
4297
4298 if (CopyFromStr) {
4299 Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4300 Chain = getRoot();
4301 Store =
4302 DAG.getStore(Chain, Value,
4303 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4304 I.getOperand(1), DstOff);
4305 } else {
4306 Value = DAG.getLoad(VT, getRoot(),
4307 getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4308 I.getOperand(2), SrcOff);
4309 Chain = Value.getValue(1);
4310 Store =
4311 DAG.getStore(Chain, Value,
4312 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4313 I.getOperand(1), DstOff);
4314 }
4315 OutChains.push_back(Store);
4316 SrcOff += VTSize;
4317 DstOff += VTSize;
4318 }
4319 }
4320 break;
4321 }
4322 }
4323
4324 if (!OutChains.empty()) {
4325 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4326 &OutChains[0], OutChains.size()));
4327 return;
4328 }
4329 }
4330
4331 DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4332}
4333
4334//===----------------------------------------------------------------------===//
4335// SelectionDAGISel code
4336//===----------------------------------------------------------------------===//
4337
4338unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4339 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4340}
4341
4342void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4343 AU.addRequired<AliasAnalysis>();
4344 AU.setPreservesAll();
4345}
4346
4347
4348
4349bool SelectionDAGISel::runOnFunction(Function &Fn) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004350 // Get alias analysis for load/store combining.
4351 AA = &getAnalysis<AliasAnalysis>();
4352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004353 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4354 RegMap = MF.getSSARegMap();
4355 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4356
4357 FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4358
4359 if (ExceptionHandling)
4360 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4361 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4362 // Mark landing pad.
4363 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4364
4365 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4366 SelectBasicBlock(I, MF, FuncInfo);
4367
4368 // Add function live-ins to entry block live-in set.
4369 BasicBlock *EntryBB = &Fn.getEntryBlock();
4370 BB = FuncInfo.MBBMap[EntryBB];
4371 if (!MF.livein_empty())
4372 for (MachineFunction::livein_iterator I = MF.livein_begin(),
4373 E = MF.livein_end(); I != E; ++I)
4374 BB->addLiveIn(I->first);
4375
4376#ifndef NDEBUG
4377 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4378 "Not all catch info was assigned to a landing pad!");
4379#endif
4380
4381 return true;
4382}
4383
4384SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4385 unsigned Reg) {
4386 SDOperand Op = getValue(V);
4387 assert((Op.getOpcode() != ISD::CopyFromReg ||
4388 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4389 "Copy from a reg to the same reg!");
4390
4391 MVT::ValueType SrcVT = Op.getValueType();
4392 MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4393 unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4394 SmallVector<SDOperand, 8> Regs(NumRegs);
4395 SmallVector<SDOperand, 8> Chains(NumRegs);
4396
4397 // Copy the value by legal parts into sequential virtual registers.
4398 getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4399 for (unsigned i = 0; i != NumRegs; ++i)
4400 Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4401 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4402}
4403
4404void SelectionDAGISel::
4405LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4406 std::vector<SDOperand> &UnorderedChains) {
4407 // If this is the entry block, emit arguments.
4408 Function &F = *LLVMBB->getParent();
4409 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4410 SDOperand OldRoot = SDL.DAG.getRoot();
4411 std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4412
4413 unsigned a = 0;
4414 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4415 AI != E; ++AI, ++a)
4416 if (!AI->use_empty()) {
4417 SDL.setValue(AI, Args[a]);
4418
4419 // If this argument is live outside of the entry block, insert a copy from
4420 // whereever we got it to the vreg that other BB's will reference it as.
4421 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4422 if (VMI != FuncInfo.ValueMap.end()) {
4423 SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4424 UnorderedChains.push_back(Copy);
4425 }
4426 }
4427
4428 // Finally, if the target has anything special to do, allow it to do so.
4429 // FIXME: this should insert code into the DAG!
4430 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4431}
4432
4433static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4434 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4435 assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4436 "Copying catch info out of a landing pad!");
4437 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4438 if (isSelector(I)) {
4439 // Apply the catch info to DestBB.
4440 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4441#ifndef NDEBUG
4442 FLI.CatchInfoFound.insert(I);
4443#endif
4444 }
4445}
4446
4447void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4448 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4449 FunctionLoweringInfo &FuncInfo) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004450 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004451
4452 std::vector<SDOperand> UnorderedChains;
4453
4454 // Lower any arguments needed in this block if this is the entry block.
4455 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4456 LowerArguments(LLVMBB, SDL, UnorderedChains);
4457
4458 BB = FuncInfo.MBBMap[LLVMBB];
4459 SDL.setCurrentBasicBlock(BB);
4460
4461 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4462
4463 if (ExceptionHandling && MMI && BB->isLandingPad()) {
4464 // Add a label to mark the beginning of the landing pad. Deletion of the
4465 // landing pad can thus be detected via the MachineModuleInfo.
4466 unsigned LabelID = MMI->addLandingPad(BB);
4467 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4468 DAG.getConstant(LabelID, MVT::i32)));
4469
4470 // Mark exception register as live in.
4471 unsigned Reg = TLI.getExceptionAddressRegister();
4472 if (Reg) BB->addLiveIn(Reg);
4473
4474 // Mark exception selector register as live in.
4475 Reg = TLI.getExceptionSelectorRegister();
4476 if (Reg) BB->addLiveIn(Reg);
4477
4478 // FIXME: Hack around an exception handling flaw (PR1508): the personality
4479 // function and list of typeids logically belong to the invoke (or, if you
4480 // like, the basic block containing the invoke), and need to be associated
4481 // with it in the dwarf exception handling tables. Currently however the
4482 // information is provided by an intrinsic (eh.selector) that can be moved
4483 // to unexpected places by the optimizers: if the unwind edge is critical,
4484 // then breaking it can result in the intrinsics being in the successor of
4485 // the landing pad, not the landing pad itself. This results in exceptions
4486 // not being caught because no typeids are associated with the invoke.
4487 // This may not be the only way things can go wrong, but it is the only way
4488 // we try to work around for the moment.
4489 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4490
4491 if (Br && Br->isUnconditional()) { // Critical edge?
4492 BasicBlock::iterator I, E;
4493 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4494 if (isSelector(I))
4495 break;
4496
4497 if (I == E)
4498 // No catch info found - try to extract some from the successor.
4499 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4500 }
4501 }
4502
4503 // Lower all of the non-terminator instructions.
4504 for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4505 I != E; ++I)
4506 SDL.visit(*I);
4507
4508 // Ensure that all instructions which are used outside of their defining
4509 // blocks are available as virtual registers. Invoke is handled elsewhere.
4510 for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4511 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4512 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4513 if (VMI != FuncInfo.ValueMap.end())
4514 UnorderedChains.push_back(
4515 SDL.CopyValueToVirtualRegister(I, VMI->second));
4516 }
4517
4518 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
4519 // ensure constants are generated when needed. Remember the virtual registers
4520 // that need to be added to the Machine PHI nodes as input. We cannot just
4521 // directly add them, because expansion might result in multiple MBB's for one
4522 // BB. As such, the start of the BB might correspond to a different MBB than
4523 // the end.
4524 //
4525 TerminatorInst *TI = LLVMBB->getTerminator();
4526
4527 // Emit constants only once even if used by multiple PHI nodes.
4528 std::map<Constant*, unsigned> ConstantsOut;
4529
4530 // Vector bool would be better, but vector<bool> is really slow.
4531 std::vector<unsigned char> SuccsHandled;
4532 if (TI->getNumSuccessors())
4533 SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4534
4535 // Check successor nodes' PHI nodes that expect a constant to be available
4536 // from this block.
4537 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4538 BasicBlock *SuccBB = TI->getSuccessor(succ);
4539 if (!isa<PHINode>(SuccBB->begin())) continue;
4540 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4541
4542 // If this terminator has multiple identical successors (common for
4543 // switches), only handle each succ once.
4544 unsigned SuccMBBNo = SuccMBB->getNumber();
4545 if (SuccsHandled[SuccMBBNo]) continue;
4546 SuccsHandled[SuccMBBNo] = true;
4547
4548 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4549 PHINode *PN;
4550
4551 // At this point we know that there is a 1-1 correspondence between LLVM PHI
4552 // nodes and Machine PHI nodes, but the incoming operands have not been
4553 // emitted yet.
4554 for (BasicBlock::iterator I = SuccBB->begin();
4555 (PN = dyn_cast<PHINode>(I)); ++I) {
4556 // Ignore dead phi's.
4557 if (PN->use_empty()) continue;
4558
4559 unsigned Reg;
4560 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4561
4562 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4563 unsigned &RegOut = ConstantsOut[C];
4564 if (RegOut == 0) {
4565 RegOut = FuncInfo.CreateRegForValue(C);
4566 UnorderedChains.push_back(
4567 SDL.CopyValueToVirtualRegister(C, RegOut));
4568 }
4569 Reg = RegOut;
4570 } else {
4571 Reg = FuncInfo.ValueMap[PHIOp];
4572 if (Reg == 0) {
4573 assert(isa<AllocaInst>(PHIOp) &&
4574 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4575 "Didn't codegen value into a register!??");
4576 Reg = FuncInfo.CreateRegForValue(PHIOp);
4577 UnorderedChains.push_back(
4578 SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4579 }
4580 }
4581
4582 // Remember that this register needs to added to the machine PHI node as
4583 // the input for this MBB.
4584 MVT::ValueType VT = TLI.getValueType(PN->getType());
4585 unsigned NumRegisters = TLI.getNumRegisters(VT);
4586 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4587 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4588 }
4589 }
4590 ConstantsOut.clear();
4591
4592 // Turn all of the unordered chains into one factored node.
4593 if (!UnorderedChains.empty()) {
4594 SDOperand Root = SDL.getRoot();
4595 if (Root.getOpcode() != ISD::EntryToken) {
4596 unsigned i = 0, e = UnorderedChains.size();
4597 for (; i != e; ++i) {
4598 assert(UnorderedChains[i].Val->getNumOperands() > 1);
4599 if (UnorderedChains[i].Val->getOperand(0) == Root)
4600 break; // Don't add the root if we already indirectly depend on it.
4601 }
4602
4603 if (i == e)
4604 UnorderedChains.push_back(Root);
4605 }
4606 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4607 &UnorderedChains[0], UnorderedChains.size()));
4608 }
4609
4610 // Lower the terminator after the copies are emitted.
4611 SDL.visit(*LLVMBB->getTerminator());
4612
4613 // Copy over any CaseBlock records that may now exist due to SwitchInst
4614 // lowering, as well as any jump table information.
4615 SwitchCases.clear();
4616 SwitchCases = SDL.SwitchCases;
4617 JTCases.clear();
4618 JTCases = SDL.JTCases;
4619 BitTestCases.clear();
4620 BitTestCases = SDL.BitTestCases;
4621
4622 // Make sure the root of the DAG is up-to-date.
4623 DAG.setRoot(SDL.getRoot());
4624}
4625
4626void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004627 // Run the DAG combiner in pre-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004628 DAG.Combine(false, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004629
4630 DOUT << "Lowered selection DAG:\n";
4631 DEBUG(DAG.dump());
4632
4633 // Second step, hack on the DAG until it only uses operations and types that
4634 // the target supports.
4635 DAG.Legalize();
4636
4637 DOUT << "Legalized selection DAG:\n";
4638 DEBUG(DAG.dump());
4639
4640 // Run the DAG combiner in post-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004641 DAG.Combine(true, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004642
4643 if (ViewISelDAGs) DAG.viewGraph();
4644
4645 // Third, instruction select all of the operations to machine code, adding the
4646 // code to the MachineBasicBlock.
4647 InstructionSelectBasicBlock(DAG);
4648
4649 DOUT << "Selected machine code:\n";
4650 DEBUG(BB->dump());
4651}
4652
4653void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4654 FunctionLoweringInfo &FuncInfo) {
4655 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4656 {
4657 SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4658 CurDAG = &DAG;
4659
4660 // First step, lower LLVM code to some DAG. This DAG may use operations and
4661 // types that are not supported by the target.
4662 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4663
4664 // Second step, emit the lowered DAG as machine code.
4665 CodeGenAndEmitDAG(DAG);
4666 }
4667
4668 DOUT << "Total amount of phi nodes to update: "
4669 << PHINodesToUpdate.size() << "\n";
4670 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4671 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4672 << ", " << PHINodesToUpdate[i].second << ")\n";);
4673
4674 // Next, now that we know what the last MBB the LLVM BB expanded is, update
4675 // PHI nodes in successors.
4676 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4677 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4678 MachineInstr *PHI = PHINodesToUpdate[i].first;
4679 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4680 "This is not a machine PHI node that we are updating!");
4681 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4682 PHI->addMachineBasicBlockOperand(BB);
4683 }
4684 return;
4685 }
4686
4687 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4688 // Lower header first, if it wasn't already lowered
4689 if (!BitTestCases[i].Emitted) {
4690 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4691 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004692 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004693 // Set the current basic block to the mbb we wish to insert the code into
4694 BB = BitTestCases[i].Parent;
4695 HSDL.setCurrentBasicBlock(BB);
4696 // Emit the code
4697 HSDL.visitBitTestHeader(BitTestCases[i]);
4698 HSDAG.setRoot(HSDL.getRoot());
4699 CodeGenAndEmitDAG(HSDAG);
4700 }
4701
4702 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4703 SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4704 CurDAG = &BSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004705 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004706 // Set the current basic block to the mbb we wish to insert the code into
4707 BB = BitTestCases[i].Cases[j].ThisBB;
4708 BSDL.setCurrentBasicBlock(BB);
4709 // Emit the code
4710 if (j+1 != ej)
4711 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4712 BitTestCases[i].Reg,
4713 BitTestCases[i].Cases[j]);
4714 else
4715 BSDL.visitBitTestCase(BitTestCases[i].Default,
4716 BitTestCases[i].Reg,
4717 BitTestCases[i].Cases[j]);
4718
4719
4720 BSDAG.setRoot(BSDL.getRoot());
4721 CodeGenAndEmitDAG(BSDAG);
4722 }
4723
4724 // Update PHI Nodes
4725 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4726 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4727 MachineBasicBlock *PHIBB = PHI->getParent();
4728 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4729 "This is not a machine PHI node that we are updating!");
4730 // This is "default" BB. We have two jumps to it. From "header" BB and
4731 // from last "case" BB.
4732 if (PHIBB == BitTestCases[i].Default) {
4733 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4734 PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4735 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4736 PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4737 }
4738 // One of "cases" BB.
4739 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4740 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4741 if (cBB->succ_end() !=
4742 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4743 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4744 PHI->addMachineBasicBlockOperand(cBB);
4745 }
4746 }
4747 }
4748 }
4749
4750 // If the JumpTable record is filled in, then we need to emit a jump table.
4751 // Updating the PHI nodes is tricky in this case, since we need to determine
4752 // whether the PHI is a successor of the range check MBB or the jump table MBB
4753 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4754 // Lower header first, if it wasn't already lowered
4755 if (!JTCases[i].first.Emitted) {
4756 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4757 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004758 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004759 // Set the current basic block to the mbb we wish to insert the code into
4760 BB = JTCases[i].first.HeaderBB;
4761 HSDL.setCurrentBasicBlock(BB);
4762 // Emit the code
4763 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4764 HSDAG.setRoot(HSDL.getRoot());
4765 CodeGenAndEmitDAG(HSDAG);
4766 }
4767
4768 SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4769 CurDAG = &JSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004770 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004771 // Set the current basic block to the mbb we wish to insert the code into
4772 BB = JTCases[i].second.MBB;
4773 JSDL.setCurrentBasicBlock(BB);
4774 // Emit the code
4775 JSDL.visitJumpTable(JTCases[i].second);
4776 JSDAG.setRoot(JSDL.getRoot());
4777 CodeGenAndEmitDAG(JSDAG);
4778
4779 // Update PHI Nodes
4780 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4781 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4782 MachineBasicBlock *PHIBB = PHI->getParent();
4783 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4784 "This is not a machine PHI node that we are updating!");
4785 // "default" BB. We can go there only from header BB.
4786 if (PHIBB == JTCases[i].second.Default) {
4787 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4788 PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4789 }
4790 // JT BB. Just iterate over successors here
4791 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4792 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4793 PHI->addMachineBasicBlockOperand(BB);
4794 }
4795 }
4796 }
4797
4798 // If the switch block involved a branch to one of the actual successors, we
4799 // need to update PHI nodes in that block.
4800 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4801 MachineInstr *PHI = PHINodesToUpdate[i].first;
4802 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4803 "This is not a machine PHI node that we are updating!");
4804 if (BB->isSuccessor(PHI->getParent())) {
4805 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4806 PHI->addMachineBasicBlockOperand(BB);
4807 }
4808 }
4809
4810 // If we generated any switch lowering information, build and codegen any
4811 // additional DAGs necessary.
4812 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4813 SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4814 CurDAG = &SDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004815 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004816
4817 // Set the current basic block to the mbb we wish to insert the code into
4818 BB = SwitchCases[i].ThisBB;
4819 SDL.setCurrentBasicBlock(BB);
4820
4821 // Emit the code
4822 SDL.visitSwitchCase(SwitchCases[i]);
4823 SDAG.setRoot(SDL.getRoot());
4824 CodeGenAndEmitDAG(SDAG);
4825
4826 // Handle any PHI nodes in successors of this chunk, as if we were coming
4827 // from the original BB before switch expansion. Note that PHI nodes can
4828 // occur multiple times in PHINodesToUpdate. We have to be very careful to
4829 // handle them the right number of times.
4830 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
4831 for (MachineBasicBlock::iterator Phi = BB->begin();
4832 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4833 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4834 for (unsigned pn = 0; ; ++pn) {
4835 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4836 if (PHINodesToUpdate[pn].first == Phi) {
4837 Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4838 Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4839 break;
4840 }
4841 }
4842 }
4843
4844 // Don't process RHS if same block as LHS.
4845 if (BB == SwitchCases[i].FalseBB)
4846 SwitchCases[i].FalseBB = 0;
4847
4848 // If we haven't handled the RHS, do so now. Otherwise, we're done.
4849 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4850 SwitchCases[i].FalseBB = 0;
4851 }
4852 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4853 }
4854}
4855
4856
4857//===----------------------------------------------------------------------===//
4858/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4859/// target node in the graph.
4860void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4861 if (ViewSchedDAGs) DAG.viewGraph();
4862
4863 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4864
4865 if (!Ctor) {
4866 Ctor = ISHeuristic;
4867 RegisterScheduler::setDefault(Ctor);
4868 }
4869
4870 ScheduleDAG *SL = Ctor(this, &DAG, BB);
4871 BB = SL->Run();
Dan Gohman134c5b62007-08-28 20:32:58 +00004872
4873 if (ViewSUnitDAGs) SL->viewGraph();
4874
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004875 delete SL;
4876}
4877
4878
4879HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4880 return new HazardRecognizer();
4881}
4882
4883//===----------------------------------------------------------------------===//
4884// Helper functions used by the generated instruction selector.
4885//===----------------------------------------------------------------------===//
4886// Calls to these methods are generated by tblgen.
4887
4888/// CheckAndMask - The isel is trying to match something like (and X, 255). If
4889/// the dag combiner simplified the 255, we still want to match. RHS is the
4890/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4891/// specified in the .td file (e.g. 255).
4892bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00004893 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004894 uint64_t ActualMask = RHS->getValue();
4895 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4896
4897 // If the actual mask exactly matches, success!
4898 if (ActualMask == DesiredMask)
4899 return true;
4900
4901 // If the actual AND mask is allowing unallowed bits, this doesn't match.
4902 if (ActualMask & ~DesiredMask)
4903 return false;
4904
4905 // Otherwise, the DAG Combiner may have proven that the value coming in is
4906 // either already zero or is not demanded. Check for known zero input bits.
4907 uint64_t NeededMask = DesiredMask & ~ActualMask;
4908 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4909 return true;
4910
4911 // TODO: check to see if missing bits are just not demanded.
4912
4913 // Otherwise, this pattern doesn't match.
4914 return false;
4915}
4916
4917/// CheckOrMask - The isel is trying to match something like (or X, 255). If
4918/// the dag combiner simplified the 255, we still want to match. RHS is the
4919/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4920/// specified in the .td file (e.g. 255).
4921bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00004922 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004923 uint64_t ActualMask = RHS->getValue();
4924 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4925
4926 // If the actual mask exactly matches, success!
4927 if (ActualMask == DesiredMask)
4928 return true;
4929
4930 // If the actual AND mask is allowing unallowed bits, this doesn't match.
4931 if (ActualMask & ~DesiredMask)
4932 return false;
4933
4934 // Otherwise, the DAG Combiner may have proven that the value coming in is
4935 // either already zero or is not demanded. Check for known zero input bits.
4936 uint64_t NeededMask = DesiredMask & ~ActualMask;
4937
4938 uint64_t KnownZero, KnownOne;
4939 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4940
4941 // If all the missing bits in the or are already known to be set, match!
4942 if ((NeededMask & KnownOne) == NeededMask)
4943 return true;
4944
4945 // TODO: check to see if missing bits are just not demanded.
4946
4947 // Otherwise, this pattern doesn't match.
4948 return false;
4949}
4950
4951
4952/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4953/// by tblgen. Others should not call it.
4954void SelectionDAGISel::
4955SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4956 std::vector<SDOperand> InOps;
4957 std::swap(InOps, Ops);
4958
4959 Ops.push_back(InOps[0]); // input chain.
4960 Ops.push_back(InOps[1]); // input asm string.
4961
4962 unsigned i = 2, e = InOps.size();
4963 if (InOps[e-1].getValueType() == MVT::Flag)
4964 --e; // Don't process a flag operand if it is here.
4965
4966 while (i != e) {
4967 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4968 if ((Flags & 7) != 4 /*MEM*/) {
4969 // Just skip over this operand, copying the operands verbatim.
4970 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4971 i += (Flags >> 3) + 1;
4972 } else {
4973 assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4974 // Otherwise, this is a memory operand. Ask the target to select it.
4975 std::vector<SDOperand> SelOps;
4976 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4977 cerr << "Could not match memory address. Inline asm failure!\n";
4978 exit(1);
4979 }
4980
4981 // Add this to the output node.
4982 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4983 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4984 IntPtrTy));
4985 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4986 i += 2;
4987 }
4988 }
4989
4990 // Add the flag input back if present.
4991 if (e != InOps.size())
4992 Ops.push_back(InOps.back());
4993}
4994
4995char SelectionDAGISel::ID = 0;