blob: d2331ba33867fd2e44e7799ce4d6511cb34f5fe8 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000066#include "llvm/Instructions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Analysis/LoopInfo.h"
68#include "llvm/Assembly/Writer.h"
69#include "llvm/Transforms/Scalar.h"
Chris Lattner7980fb92004-04-17 18:36:24 +000070#include "llvm/Transforms/Utils/Local.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000071#include "llvm/Support/CFG.h"
72#include "llvm/Support/ConstantRange.h"
73#include "llvm/Support/InstIterator.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000074#include "llvm/Support/CommandLine.h"
75#include "llvm/ADT/Statistic.h"
Brian Gaekec5985172004-04-16 15:57:32 +000076#include <cmath>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000077#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000078using namespace llvm;
79
80namespace {
81 RegisterAnalysis<ScalarEvolution>
Chris Lattner45a1cf82004-04-19 03:42:32 +000082 R("scalar-evolution", "Scalar Evolution Analysis");
Chris Lattner53e677a2004-04-02 20:23:17 +000083
84 Statistic<>
85 NumBruteForceEvaluations("scalar-evolution",
Chris Lattner673e02b2004-10-12 01:49:27 +000086 "Number of brute force evaluations needed to "
87 "calculate high-order polynomial exit values");
88 Statistic<>
89 NumArrayLenItCounts("scalar-evolution",
90 "Number of trip counts computed with array length");
Chris Lattner53e677a2004-04-02 20:23:17 +000091 Statistic<>
92 NumTripCountsComputed("scalar-evolution",
93 "Number of loops with predictable loop counts");
94 Statistic<>
95 NumTripCountsNotComputed("scalar-evolution",
96 "Number of loops without predictable loop counts");
Chris Lattner7980fb92004-04-17 18:36:24 +000097 Statistic<>
98 NumBruteForceTripCountsComputed("scalar-evolution",
99 "Number of loops with trip counts computed by force");
100
101 cl::opt<unsigned>
102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
104 cl::init(100));
Chris Lattner53e677a2004-04-02 20:23:17 +0000105}
106
107//===----------------------------------------------------------------------===//
108// SCEV class definitions
109//===----------------------------------------------------------------------===//
110
111//===----------------------------------------------------------------------===//
112// Implementation of the SCEV class.
113//
Chris Lattner53e677a2004-04-02 20:23:17 +0000114SCEV::~SCEV() {}
115void SCEV::dump() const {
116 print(std::cerr);
117}
118
119/// getValueRange - Return the tightest constant bounds that this value is
120/// known to have. This method is only valid on integer SCEV objects.
121ConstantRange SCEV::getValueRange() const {
122 const Type *Ty = getType();
123 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
124 Ty = Ty->getUnsignedVersion();
125 // Default to a full range if no better information is available.
126 return ConstantRange(getType());
127}
128
129
130SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
131
132bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
133 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000134 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000135}
136
137const Type *SCEVCouldNotCompute::getType() const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000139 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000140}
141
142bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144 return false;
145}
146
Chris Lattner4dc534c2005-02-13 04:37:18 +0000147SCEVHandle SCEVCouldNotCompute::
148replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
149 const SCEVHandle &Conc) const {
150 return this;
151}
152
Chris Lattner53e677a2004-04-02 20:23:17 +0000153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154 OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158 return S->getSCEVType() == scCouldNotCompute;
159}
160
161
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value. Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
166
Chris Lattner53e677a2004-04-02 20:23:17 +0000167
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000168SCEVConstant::~SCEVConstant() {
169 SCEVConstants.erase(V);
170}
Chris Lattner53e677a2004-04-02 20:23:17 +0000171
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000172SCEVHandle SCEVConstant::get(ConstantInt *V) {
173 // Make sure that SCEVConstant instances are all unsigned.
174 if (V->getType()->isSigned()) {
175 const Type *NewTy = V->getType()->getUnsignedVersion();
176 V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
177 }
178
179 SCEVConstant *&R = SCEVConstants[V];
180 if (R == 0) R = new SCEVConstant(V);
181 return R;
182}
Chris Lattner53e677a2004-04-02 20:23:17 +0000183
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000184ConstantRange SCEVConstant::getValueRange() const {
185 return ConstantRange(V);
186}
Chris Lattner53e677a2004-04-02 20:23:17 +0000187
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000188const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000189
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000190void SCEVConstant::print(std::ostream &OS) const {
191 WriteAsOperand(OS, V, false);
192}
Chris Lattner53e677a2004-04-02 20:23:17 +0000193
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000194// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
195// particular input. Don't use a SCEVHandle here, or else the object will
196// never be deleted!
197static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000198
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
200 : SCEV(scTruncate), Op(op), Ty(ty) {
201 assert(Op->getType()->isInteger() && Ty->isInteger() &&
202 Ty->isUnsigned() &&
203 "Cannot truncate non-integer value!");
204 assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
205 "This is not a truncating conversion!");
206}
Chris Lattner53e677a2004-04-02 20:23:17 +0000207
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000208SCEVTruncateExpr::~SCEVTruncateExpr() {
209 SCEVTruncates.erase(std::make_pair(Op, Ty));
210}
Chris Lattner53e677a2004-04-02 20:23:17 +0000211
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000212ConstantRange SCEVTruncateExpr::getValueRange() const {
213 return getOperand()->getValueRange().truncate(getType());
214}
Chris Lattner53e677a2004-04-02 20:23:17 +0000215
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000216void SCEVTruncateExpr::print(std::ostream &OS) const {
217 OS << "(truncate " << *Op << " to " << *Ty << ")";
218}
219
220// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
221// particular input. Don't use a SCEVHandle here, or else the object will never
222// be deleted!
223static std::map<std::pair<SCEV*, const Type*>,
224 SCEVZeroExtendExpr*> SCEVZeroExtends;
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Chris Lattner2352fec2005-02-17 16:54:16 +0000227 : SCEV(scTruncate), Op(op), Ty(ty) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000228 assert(Op->getType()->isInteger() && Ty->isInteger() &&
229 Ty->isUnsigned() &&
230 "Cannot zero extend non-integer value!");
231 assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
232 "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236 SCEVZeroExtends.erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240 return getOperand()->getValueRange().zeroExtend(getType());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input. Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static std::map<std::pair<unsigned, std::vector<SCEV*> >,
251 SCEVCommutativeExpr*> SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254 SCEVCommExprs.erase(std::make_pair(getSCEVType(),
255 std::vector<SCEV*>(Operands.begin(),
256 Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261 const char *OpStr = getOperationStr();
262 OS << "(" << *Operands[0];
263 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264 OS << OpStr << *Operands[i];
265 OS << ")";
266}
267
Chris Lattner4dc534c2005-02-13 04:37:18 +0000268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270 const SCEVHandle &Conc) const {
271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273 if (H != getOperand(i)) {
274 std::vector<SCEVHandle> NewOps;
275 NewOps.reserve(getNumOperands());
276 for (unsigned j = 0; j != i; ++j)
277 NewOps.push_back(getOperand(j));
278 NewOps.push_back(H);
279 for (++i; i != e; ++i)
280 NewOps.push_back(getOperand(i)->
281 replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283 if (isa<SCEVAddExpr>(this))
284 return SCEVAddExpr::get(NewOps);
285 else if (isa<SCEVMulExpr>(this))
286 return SCEVMulExpr::get(NewOps);
287 else
288 assert(0 && "Unknown commutative expr!");
289 }
290 }
291 return this;
292}
293
294
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
296// input. Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
299
300SCEVUDivExpr::~SCEVUDivExpr() {
301 SCEVUDivs.erase(std::make_pair(LHS, RHS));
302}
303
304void SCEVUDivExpr::print(std::ostream &OS) const {
305 OS << "(" << *LHS << " /u " << *RHS << ")";
306}
307
308const Type *SCEVUDivExpr::getType() const {
309 const Type *Ty = LHS->getType();
310 if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
311 return Ty;
312}
313
314// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
315// particular input. Don't use a SCEVHandle here, or else the object will never
316// be deleted!
317static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
318 SCEVAddRecExpr*> SCEVAddRecExprs;
319
320SCEVAddRecExpr::~SCEVAddRecExpr() {
321 SCEVAddRecExprs.erase(std::make_pair(L,
322 std::vector<SCEV*>(Operands.begin(),
323 Operands.end())));
324}
325
Chris Lattner4dc534c2005-02-13 04:37:18 +0000326SCEVHandle SCEVAddRecExpr::
327replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
328 const SCEVHandle &Conc) const {
329 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
330 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
331 if (H != getOperand(i)) {
332 std::vector<SCEVHandle> NewOps;
333 NewOps.reserve(getNumOperands());
334 for (unsigned j = 0; j != i; ++j)
335 NewOps.push_back(getOperand(j));
336 NewOps.push_back(H);
337 for (++i; i != e; ++i)
338 NewOps.push_back(getOperand(i)->
339 replaceSymbolicValuesWithConcrete(Sym, Conc));
340
341 return get(NewOps, L);
342 }
343 }
344 return this;
345}
346
347
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000348bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
349 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
350 // contain L.
351 return !QueryLoop->contains(L->getHeader());
Chris Lattner53e677a2004-04-02 20:23:17 +0000352}
353
354
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000355void SCEVAddRecExpr::print(std::ostream &OS) const {
356 OS << "{" << *Operands[0];
357 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358 OS << ",+," << *Operands[i];
359 OS << "}<" << L->getHeader()->getName() + ">";
360}
Chris Lattner53e677a2004-04-02 20:23:17 +0000361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value. Don't use a SCEVHandle here, or else the object will never be
364// deleted!
365static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000366
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000368
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370 // All non-instruction values are loop invariant. All instructions are loop
371 // invariant if they are not contained in the specified loop.
372 if (Instruction *I = dyn_cast<Instruction>(V))
373 return !L->contains(I->getParent());
374 return true;
375}
Chris Lattner53e677a2004-04-02 20:23:17 +0000376
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000377const Type *SCEVUnknown::getType() const {
378 return V->getType();
379}
Chris Lattner53e677a2004-04-02 20:23:17 +0000380
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000381void SCEVUnknown::print(std::ostream &OS) const {
382 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000383}
384
Chris Lattner8d741b82004-06-20 06:23:15 +0000385//===----------------------------------------------------------------------===//
386// SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391 /// than the complexity of the RHS. This comparator is used to canonicalize
392 /// expressions.
393 struct SCEVComplexityCompare {
394 bool operator()(SCEV *LHS, SCEV *RHS) {
395 return LHS->getSCEVType() < RHS->getSCEVType();
396 }
397 };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine. In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411 if (Ops.size() < 2) return; // Noop
412 if (Ops.size() == 2) {
413 // This is the common case, which also happens to be trivially simple.
414 // Special case it.
415 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416 std::swap(Ops[0], Ops[1]);
417 return;
418 }
419
420 // Do the rough sort by complexity.
421 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423 // Now that we are sorted by complexity, group elements of the same
424 // complexity. Note that this is, at worst, N^2, but the vector is likely to
425 // be extremely short in practice. Note that we take this approach because we
426 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000427 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000428 SCEV *S = Ops[i];
429 unsigned Complexity = S->getSCEVType();
430
431 // If there are any objects of the same complexity and same value as this
432 // one, group them.
433 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434 if (Ops[j] == S) { // Found a duplicate.
435 // Move it to immediately after i'th element.
436 std::swap(Ops[i+1], Ops[j]);
437 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000438 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000439 }
440 }
441 }
442}
443
Chris Lattner53e677a2004-04-02 20:23:17 +0000444
Chris Lattner53e677a2004-04-02 20:23:17 +0000445
446//===----------------------------------------------------------------------===//
447// Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000453 Constant *C;
454 if (Val == 0)
455 C = Constant::getNullValue(Ty);
456 else if (Ty->isFloatingPoint())
457 C = ConstantFP::get(Ty, Val);
458 else if (Ty->isSigned())
459 C = ConstantSInt::get(Ty, Val);
460 else {
461 C = ConstantSInt::get(Ty->getSignedVersion(), Val);
462 C = ConstantExpr::getCast(C, Ty);
463 }
464 return SCEVUnknown::get(C);
465}
466
467/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
468/// input value to the specified type. If the type must be extended, it is zero
469/// extended.
470static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
471 const Type *SrcTy = V->getType();
472 assert(SrcTy->isInteger() && Ty->isInteger() &&
473 "Cannot truncate or zero extend with non-integer arguments!");
474 if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
475 return V; // No conversion
476 if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
477 return SCEVTruncateExpr::get(V, Ty);
478 return SCEVZeroExtendExpr::get(V, Ty);
479}
480
481/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
482///
483static SCEVHandle getNegativeSCEV(const SCEVHandle &V) {
484 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
485 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
486
Chris Lattnerb06432c2004-04-23 21:29:03 +0000487 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000488}
489
490/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
491///
492static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
493 // X - Y --> X + -Y
494 return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS));
495}
496
497
498/// Binomial - Evaluate N!/((N-M)!*M!) . Note that N is often large and M is
499/// often very small, so we try to reduce the number of N! terms we need to
500/// evaluate by evaluating this as (N!/(N-M)!)/M!
501static ConstantInt *Binomial(ConstantInt *N, unsigned M) {
502 uint64_t NVal = N->getRawValue();
503 uint64_t FirstTerm = 1;
504 for (unsigned i = 0; i != M; ++i)
505 FirstTerm *= NVal-i;
506
507 unsigned MFactorial = 1;
508 for (; M; --M)
509 MFactorial *= M;
510
511 Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial);
512 Result = ConstantExpr::getCast(Result, N->getType());
513 assert(isa<ConstantInt>(Result) && "Cast of integer not folded??");
514 return cast<ConstantInt>(Result);
515}
516
517/// PartialFact - Compute V!/(V-NumSteps)!
518static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
519 // Handle this case efficiently, it is common to have constant iteration
520 // counts while computing loop exit values.
521 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
522 uint64_t Val = SC->getValue()->getRawValue();
523 uint64_t Result = 1;
524 for (; NumSteps; --NumSteps)
525 Result *= Val-(NumSteps-1);
526 Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
527 return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
528 }
529
530 const Type *Ty = V->getType();
531 if (NumSteps == 0)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000532 return SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000533
534 SCEVHandle Result = V;
535 for (unsigned i = 1; i != NumSteps; ++i)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000536 Result = SCEVMulExpr::get(Result, getMinusSCEV(V,
537 SCEVUnknown::getIntegerSCEV(i, Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000538 return Result;
539}
540
541
542/// evaluateAtIteration - Return the value of this chain of recurrences at
543/// the specified iteration number. We can evaluate this recurrence by
544/// multiplying each element in the chain by the binomial coefficient
545/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
546///
547/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
548///
549/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
550/// Is the binomial equation safe using modular arithmetic??
551///
552SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
553 SCEVHandle Result = getStart();
554 int Divisor = 1;
555 const Type *Ty = It->getType();
556 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
557 SCEVHandle BC = PartialFact(It, i);
558 Divisor *= i;
559 SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
Chris Lattnerb06432c2004-04-23 21:29:03 +0000560 SCEVUnknown::getIntegerSCEV(Divisor,Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000561 Result = SCEVAddExpr::get(Result, Val);
562 }
563 return Result;
564}
565
566
567//===----------------------------------------------------------------------===//
568// SCEV Expression folder implementations
569//===----------------------------------------------------------------------===//
570
571SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
572 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
573 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
574
575 // If the input value is a chrec scev made out of constants, truncate
576 // all of the constants.
577 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
578 std::vector<SCEVHandle> Operands;
579 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
580 // FIXME: This should allow truncation of other expression types!
581 if (isa<SCEVConstant>(AddRec->getOperand(i)))
582 Operands.push_back(get(AddRec->getOperand(i), Ty));
583 else
584 break;
585 if (Operands.size() == AddRec->getNumOperands())
586 return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
587 }
588
589 SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
590 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
591 return Result;
592}
593
594SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
595 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
596 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
597
598 // FIXME: If the input value is a chrec scev, and we can prove that the value
599 // did not overflow the old, smaller, value, we can zero extend all of the
600 // operands (often constants). This would allow analysis of something like
601 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
602
603 SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
604 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
605 return Result;
606}
607
608// get - Get a canonical add expression, or something simpler if possible.
609SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
610 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000611 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000612
613 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000614 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000615
616 // If there are any constants, fold them together.
617 unsigned Idx = 0;
618 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
619 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000620 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000621 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
622 // We found two constants, fold them together!
623 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
624 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
625 Ops[0] = SCEVConstant::get(CI);
626 Ops.erase(Ops.begin()+1); // Erase the folded element
627 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000628 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000629 } else {
630 // If we couldn't fold the expression, move to the next constant. Note
631 // that this is impossible to happen in practice because we always
632 // constant fold constant ints to constant ints.
633 ++Idx;
634 }
635 }
636
637 // If we are left with a constant zero being added, strip it off.
638 if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
639 Ops.erase(Ops.begin());
640 --Idx;
641 }
642 }
643
Chris Lattner627018b2004-04-07 16:16:11 +0000644 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000645
646 // Okay, check to see if the same value occurs in the operand list twice. If
647 // so, merge them together into an multiply expression. Since we sorted the
648 // list, these values are required to be adjacent.
649 const Type *Ty = Ops[0]->getType();
650 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
651 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
652 // Found a match, merge the two values into a multiply, and add any
653 // remaining values to the result.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000654 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000655 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
656 if (Ops.size() == 2)
657 return Mul;
658 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
659 Ops.push_back(Mul);
660 return SCEVAddExpr::get(Ops);
661 }
662
663 // Okay, now we know the first non-constant operand. If there are add
664 // operands they would be next.
665 if (Idx < Ops.size()) {
666 bool DeletedAdd = false;
667 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
668 // If we have an add, expand the add operands onto the end of the operands
669 // list.
670 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
671 Ops.erase(Ops.begin()+Idx);
672 DeletedAdd = true;
673 }
674
675 // If we deleted at least one add, we added operands to the end of the list,
676 // and they are not necessarily sorted. Recurse to resort and resimplify
677 // any operands we just aquired.
678 if (DeletedAdd)
679 return get(Ops);
680 }
681
682 // Skip over the add expression until we get to a multiply.
683 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
684 ++Idx;
685
686 // If we are adding something to a multiply expression, make sure the
687 // something is not already an operand of the multiply. If so, merge it into
688 // the multiply.
689 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
690 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
691 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
692 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
693 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000694 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000695 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
696 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
697 if (Mul->getNumOperands() != 2) {
698 // If the multiply has more than two operands, we must get the
699 // Y*Z term.
700 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
701 MulOps.erase(MulOps.begin()+MulOp);
702 InnerMul = SCEVMulExpr::get(MulOps);
703 }
Chris Lattnerb06432c2004-04-23 21:29:03 +0000704 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000705 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
706 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
707 if (Ops.size() == 2) return OuterMul;
708 if (AddOp < Idx) {
709 Ops.erase(Ops.begin()+AddOp);
710 Ops.erase(Ops.begin()+Idx-1);
711 } else {
712 Ops.erase(Ops.begin()+Idx);
713 Ops.erase(Ops.begin()+AddOp-1);
714 }
715 Ops.push_back(OuterMul);
716 return SCEVAddExpr::get(Ops);
717 }
718
719 // Check this multiply against other multiplies being added together.
720 for (unsigned OtherMulIdx = Idx+1;
721 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
722 ++OtherMulIdx) {
723 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
724 // If MulOp occurs in OtherMul, we can fold the two multiplies
725 // together.
726 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
727 OMulOp != e; ++OMulOp)
728 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
729 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
730 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
731 if (Mul->getNumOperands() != 2) {
732 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
733 MulOps.erase(MulOps.begin()+MulOp);
734 InnerMul1 = SCEVMulExpr::get(MulOps);
735 }
736 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
737 if (OtherMul->getNumOperands() != 2) {
738 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
739 OtherMul->op_end());
740 MulOps.erase(MulOps.begin()+OMulOp);
741 InnerMul2 = SCEVMulExpr::get(MulOps);
742 }
743 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
744 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
745 if (Ops.size() == 2) return OuterMul;
746 Ops.erase(Ops.begin()+Idx);
747 Ops.erase(Ops.begin()+OtherMulIdx-1);
748 Ops.push_back(OuterMul);
749 return SCEVAddExpr::get(Ops);
750 }
751 }
752 }
753 }
754
755 // If there are any add recurrences in the operands list, see if any other
756 // added values are loop invariant. If so, we can fold them into the
757 // recurrence.
758 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
759 ++Idx;
760
761 // Scan over all recurrences, trying to fold loop invariants into them.
762 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
763 // Scan all of the other operands to this add and add them to the vector if
764 // they are loop invariant w.r.t. the recurrence.
765 std::vector<SCEVHandle> LIOps;
766 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
767 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
768 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
769 LIOps.push_back(Ops[i]);
770 Ops.erase(Ops.begin()+i);
771 --i; --e;
772 }
773
774 // If we found some loop invariants, fold them into the recurrence.
775 if (!LIOps.empty()) {
776 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
777 LIOps.push_back(AddRec->getStart());
778
779 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
780 AddRecOps[0] = SCEVAddExpr::get(LIOps);
781
782 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
783 // If all of the other operands were loop invariant, we are done.
784 if (Ops.size() == 1) return NewRec;
785
786 // Otherwise, add the folded AddRec by the non-liv parts.
787 for (unsigned i = 0;; ++i)
788 if (Ops[i] == AddRec) {
789 Ops[i] = NewRec;
790 break;
791 }
792 return SCEVAddExpr::get(Ops);
793 }
794
795 // Okay, if there weren't any loop invariants to be folded, check to see if
796 // there are multiple AddRec's with the same loop induction variable being
797 // added together. If so, we can fold them.
798 for (unsigned OtherIdx = Idx+1;
799 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
800 if (OtherIdx != Idx) {
801 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
802 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
803 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
804 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
805 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
806 if (i >= NewOps.size()) {
807 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
808 OtherAddRec->op_end());
809 break;
810 }
811 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
812 }
813 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
814
815 if (Ops.size() == 2) return NewAddRec;
816
817 Ops.erase(Ops.begin()+Idx);
818 Ops.erase(Ops.begin()+OtherIdx-1);
819 Ops.push_back(NewAddRec);
820 return SCEVAddExpr::get(Ops);
821 }
822 }
823
824 // Otherwise couldn't fold anything into this recurrence. Move onto the
825 // next one.
826 }
827
828 // Okay, it looks like we really DO need an add expr. Check to see if we
829 // already have one, otherwise create a new one.
830 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
831 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
832 SCEVOps)];
833 if (Result == 0) Result = new SCEVAddExpr(Ops);
834 return Result;
835}
836
837
838SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
839 assert(!Ops.empty() && "Cannot get empty mul!");
840
841 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000842 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000843
844 // If there are any constants, fold them together.
845 unsigned Idx = 0;
846 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
847
848 // C1*(C2+V) -> C1*C2 + C1*V
849 if (Ops.size() == 2)
850 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
851 if (Add->getNumOperands() == 2 &&
852 isa<SCEVConstant>(Add->getOperand(0)))
853 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
854 SCEVMulExpr::get(LHSC, Add->getOperand(1)));
855
856
857 ++Idx;
858 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
859 // We found two constants, fold them together!
860 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
861 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
862 Ops[0] = SCEVConstant::get(CI);
863 Ops.erase(Ops.begin()+1); // Erase the folded element
864 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000865 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000866 } else {
867 // If we couldn't fold the expression, move to the next constant. Note
868 // that this is impossible to happen in practice because we always
869 // constant fold constant ints to constant ints.
870 ++Idx;
871 }
872 }
873
874 // If we are left with a constant one being multiplied, strip it off.
875 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
876 Ops.erase(Ops.begin());
877 --Idx;
878 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
879 // If we have a multiply of zero, it will always be zero.
880 return Ops[0];
881 }
882 }
883
884 // Skip over the add expression until we get to a multiply.
885 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
886 ++Idx;
887
888 if (Ops.size() == 1)
889 return Ops[0];
890
891 // If there are mul operands inline them all into this expression.
892 if (Idx < Ops.size()) {
893 bool DeletedMul = false;
894 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
895 // If we have an mul, expand the mul operands onto the end of the operands
896 // list.
897 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
898 Ops.erase(Ops.begin()+Idx);
899 DeletedMul = true;
900 }
901
902 // If we deleted at least one mul, we added operands to the end of the list,
903 // and they are not necessarily sorted. Recurse to resort and resimplify
904 // any operands we just aquired.
905 if (DeletedMul)
906 return get(Ops);
907 }
908
909 // If there are any add recurrences in the operands list, see if any other
910 // added values are loop invariant. If so, we can fold them into the
911 // recurrence.
912 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
913 ++Idx;
914
915 // Scan over all recurrences, trying to fold loop invariants into them.
916 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
917 // Scan all of the other operands to this mul and add them to the vector if
918 // they are loop invariant w.r.t. the recurrence.
919 std::vector<SCEVHandle> LIOps;
920 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
921 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
922 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
923 LIOps.push_back(Ops[i]);
924 Ops.erase(Ops.begin()+i);
925 --i; --e;
926 }
927
928 // If we found some loop invariants, fold them into the recurrence.
929 if (!LIOps.empty()) {
930 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
931 std::vector<SCEVHandle> NewOps;
932 NewOps.reserve(AddRec->getNumOperands());
933 if (LIOps.size() == 1) {
934 SCEV *Scale = LIOps[0];
935 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
936 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
937 } else {
938 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
939 std::vector<SCEVHandle> MulOps(LIOps);
940 MulOps.push_back(AddRec->getOperand(i));
941 NewOps.push_back(SCEVMulExpr::get(MulOps));
942 }
943 }
944
945 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
946
947 // If all of the other operands were loop invariant, we are done.
948 if (Ops.size() == 1) return NewRec;
949
950 // Otherwise, multiply the folded AddRec by the non-liv parts.
951 for (unsigned i = 0;; ++i)
952 if (Ops[i] == AddRec) {
953 Ops[i] = NewRec;
954 break;
955 }
956 return SCEVMulExpr::get(Ops);
957 }
958
959 // Okay, if there weren't any loop invariants to be folded, check to see if
960 // there are multiple AddRec's with the same loop induction variable being
961 // multiplied together. If so, we can fold them.
962 for (unsigned OtherIdx = Idx+1;
963 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
964 if (OtherIdx != Idx) {
965 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
966 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
967 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
968 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
969 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
970 G->getStart());
971 SCEVHandle B = F->getStepRecurrence();
972 SCEVHandle D = G->getStepRecurrence();
973 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
974 SCEVMulExpr::get(G, B),
975 SCEVMulExpr::get(B, D));
976 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
977 F->getLoop());
978 if (Ops.size() == 2) return NewAddRec;
979
980 Ops.erase(Ops.begin()+Idx);
981 Ops.erase(Ops.begin()+OtherIdx-1);
982 Ops.push_back(NewAddRec);
983 return SCEVMulExpr::get(Ops);
984 }
985 }
986
987 // Otherwise couldn't fold anything into this recurrence. Move onto the
988 // next one.
989 }
990
991 // Okay, it looks like we really DO need an mul expr. Check to see if we
992 // already have one, otherwise create a new one.
993 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
994 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
995 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000996 if (Result == 0)
997 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000998 return Result;
999}
1000
1001SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1002 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1003 if (RHSC->getValue()->equalsInt(1))
1004 return LHS; // X /u 1 --> x
1005 if (RHSC->getValue()->isAllOnesValue())
1006 return getNegativeSCEV(LHS); // X /u -1 --> -x
1007
1008 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1009 Constant *LHSCV = LHSC->getValue();
1010 Constant *RHSCV = RHSC->getValue();
1011 if (LHSCV->getType()->isSigned())
1012 LHSCV = ConstantExpr::getCast(LHSCV,
1013 LHSCV->getType()->getUnsignedVersion());
1014 if (RHSCV->getType()->isSigned())
1015 RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
1016 return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
1017 }
1018 }
1019
1020 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1021
1022 SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1023 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1024 return Result;
1025}
1026
1027
1028/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1029/// specified loop. Simplify the expression as much as possible.
1030SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1031 const SCEVHandle &Step, const Loop *L) {
1032 std::vector<SCEVHandle> Operands;
1033 Operands.push_back(Start);
1034 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1035 if (StepChrec->getLoop() == L) {
1036 Operands.insert(Operands.end(), StepChrec->op_begin(),
1037 StepChrec->op_end());
1038 return get(Operands, L);
1039 }
1040
1041 Operands.push_back(Step);
1042 return get(Operands, L);
1043}
1044
1045/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1046/// specified loop. Simplify the expression as much as possible.
1047SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1048 const Loop *L) {
1049 if (Operands.size() == 1) return Operands[0];
1050
1051 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1052 if (StepC->getValue()->isNullValue()) {
1053 Operands.pop_back();
1054 return get(Operands, L); // { X,+,0 } --> X
1055 }
1056
1057 SCEVAddRecExpr *&Result =
1058 SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1059 Operands.end()))];
1060 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1061 return Result;
1062}
1063
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001064SCEVHandle SCEVUnknown::get(Value *V) {
1065 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1066 return SCEVConstant::get(CI);
1067 SCEVUnknown *&Result = SCEVUnknowns[V];
1068 if (Result == 0) Result = new SCEVUnknown(V);
1069 return Result;
1070}
1071
Chris Lattner53e677a2004-04-02 20:23:17 +00001072
1073//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001074// ScalarEvolutionsImpl Definition and Implementation
1075//===----------------------------------------------------------------------===//
1076//
1077/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1078/// evolution code.
1079///
1080namespace {
1081 struct ScalarEvolutionsImpl {
1082 /// F - The function we are analyzing.
1083 ///
1084 Function &F;
1085
1086 /// LI - The loop information for the function we are currently analyzing.
1087 ///
1088 LoopInfo &LI;
1089
1090 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1091 /// things.
1092 SCEVHandle UnknownValue;
1093
1094 /// Scalars - This is a cache of the scalars we have analyzed so far.
1095 ///
1096 std::map<Value*, SCEVHandle> Scalars;
1097
1098 /// IterationCounts - Cache the iteration count of the loops for this
1099 /// function as they are computed.
1100 std::map<const Loop*, SCEVHandle> IterationCounts;
1101
Chris Lattner3221ad02004-04-17 22:58:41 +00001102 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1103 /// the PHI instructions that we attempt to compute constant evolutions for.
1104 /// This allows us to avoid potentially expensive recomputation of these
1105 /// properties. An instruction maps to null if we are unable to compute its
1106 /// exit value.
1107 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1108
Chris Lattner53e677a2004-04-02 20:23:17 +00001109 public:
1110 ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1111 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1112
1113 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1114 /// expression and create a new one.
1115 SCEVHandle getSCEV(Value *V);
1116
1117 /// getSCEVAtScope - Compute the value of the specified expression within
1118 /// the indicated loop (which may be null to indicate in no loop). If the
1119 /// expression cannot be evaluated, return UnknownValue itself.
1120 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1121
1122
1123 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1124 /// an analyzable loop-invariant iteration count.
1125 bool hasLoopInvariantIterationCount(const Loop *L);
1126
1127 /// getIterationCount - If the specified loop has a predictable iteration
1128 /// count, return it. Note that it is not valid to call this method on a
1129 /// loop without a loop-invariant iteration count.
1130 SCEVHandle getIterationCount(const Loop *L);
1131
1132 /// deleteInstructionFromRecords - This method should be called by the
1133 /// client before it removes an instruction from the program, to make sure
1134 /// that no dangling references are left around.
1135 void deleteInstructionFromRecords(Instruction *I);
1136
1137 private:
1138 /// createSCEV - We know that there is no SCEV for the specified value.
1139 /// Analyze the expression.
1140 SCEVHandle createSCEV(Value *V);
1141 SCEVHandle createNodeForCast(CastInst *CI);
1142
1143 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1144 /// SCEVs.
1145 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001146
1147 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1148 /// for the specified instruction and replaces any references to the
1149 /// symbolic value SymName with the specified value. This is used during
1150 /// PHI resolution.
1151 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1152 const SCEVHandle &SymName,
1153 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001154
1155 /// ComputeIterationCount - Compute the number of times the specified loop
1156 /// will iterate.
1157 SCEVHandle ComputeIterationCount(const Loop *L);
1158
Chris Lattner673e02b2004-10-12 01:49:27 +00001159 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1160 /// 'setcc load X, cst', try to se if we can compute the trip count.
1161 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1162 Constant *RHS,
1163 const Loop *L,
1164 unsigned SetCCOpcode);
1165
Chris Lattner7980fb92004-04-17 18:36:24 +00001166 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1167 /// constant number of times (the condition evolves only from constants),
1168 /// try to evaluate a few iterations of the loop until we get the exit
1169 /// condition gets a value of ExitWhen (true or false). If we cannot
1170 /// evaluate the trip count of the loop, return UnknownValue.
1171 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1172 bool ExitWhen);
1173
Chris Lattner53e677a2004-04-02 20:23:17 +00001174 /// HowFarToZero - Return the number of times a backedge comparing the
1175 /// specified value to zero will execute. If not computable, return
1176 /// UnknownValue
1177 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1178
1179 /// HowFarToNonZero - Return the number of times a backedge checking the
1180 /// specified value for nonzero will execute. If not computable, return
1181 /// UnknownValue
1182 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001183
1184 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1185 /// in the header of its containing loop, we know the loop executes a
1186 /// constant number of times, and the PHI node is just a recurrence
1187 /// involving constants, fold it.
1188 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1189 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001190 };
1191}
1192
1193//===----------------------------------------------------------------------===//
1194// Basic SCEV Analysis and PHI Idiom Recognition Code
1195//
1196
1197/// deleteInstructionFromRecords - This method should be called by the
1198/// client before it removes an instruction from the program, to make sure
1199/// that no dangling references are left around.
1200void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1201 Scalars.erase(I);
Chris Lattner3221ad02004-04-17 22:58:41 +00001202 if (PHINode *PN = dyn_cast<PHINode>(I))
1203 ConstantEvolutionLoopExitValue.erase(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001204}
1205
1206
1207/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1208/// expression and create a new one.
1209SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1210 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1211
1212 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1213 if (I != Scalars.end()) return I->second;
1214 SCEVHandle S = createSCEV(V);
1215 Scalars.insert(std::make_pair(V, S));
1216 return S;
1217}
1218
Chris Lattner4dc534c2005-02-13 04:37:18 +00001219/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1220/// the specified instruction and replaces any references to the symbolic value
1221/// SymName with the specified value. This is used during PHI resolution.
1222void ScalarEvolutionsImpl::
1223ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1224 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001225 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001226 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001227
Chris Lattner4dc534c2005-02-13 04:37:18 +00001228 SCEVHandle NV =
1229 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1230 if (NV == SI->second) return; // No change.
1231
1232 SI->second = NV; // Update the scalars map!
1233
1234 // Any instruction values that use this instruction might also need to be
1235 // updated!
1236 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1237 UI != E; ++UI)
1238 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1239}
Chris Lattner53e677a2004-04-02 20:23:17 +00001240
1241/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1242/// a loop header, making it a potential recurrence, or it doesn't.
1243///
1244SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1245 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1246 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1247 if (L->getHeader() == PN->getParent()) {
1248 // If it lives in the loop header, it has two incoming values, one
1249 // from outside the loop, and one from inside.
1250 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1251 unsigned BackEdge = IncomingEdge^1;
1252
1253 // While we are analyzing this PHI node, handle its value symbolically.
1254 SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1255 assert(Scalars.find(PN) == Scalars.end() &&
1256 "PHI node already processed?");
1257 Scalars.insert(std::make_pair(PN, SymbolicName));
1258
1259 // Using this symbolic name for the PHI, analyze the value coming around
1260 // the back-edge.
1261 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1262
1263 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1264 // has a special value for the first iteration of the loop.
1265
1266 // If the value coming around the backedge is an add with the symbolic
1267 // value we just inserted, then we found a simple induction variable!
1268 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1269 // If there is a single occurrence of the symbolic value, replace it
1270 // with a recurrence.
1271 unsigned FoundIndex = Add->getNumOperands();
1272 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1273 if (Add->getOperand(i) == SymbolicName)
1274 if (FoundIndex == e) {
1275 FoundIndex = i;
1276 break;
1277 }
1278
1279 if (FoundIndex != Add->getNumOperands()) {
1280 // Create an add with everything but the specified operand.
1281 std::vector<SCEVHandle> Ops;
1282 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1283 if (i != FoundIndex)
1284 Ops.push_back(Add->getOperand(i));
1285 SCEVHandle Accum = SCEVAddExpr::get(Ops);
1286
1287 // This is not a valid addrec if the step amount is varying each
1288 // loop iteration, but is not itself an addrec in this loop.
1289 if (Accum->isLoopInvariant(L) ||
1290 (isa<SCEVAddRecExpr>(Accum) &&
1291 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1292 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1293 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
1294
1295 // Okay, for the entire analysis of this edge we assumed the PHI
1296 // to be symbolic. We now need to go back and update all of the
1297 // entries for the scalars that use the PHI (except for the PHI
1298 // itself) to use the new analyzed value instead of the "symbolic"
1299 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001300 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 return PHISCEV;
1302 }
1303 }
1304 }
1305
1306 return SymbolicName;
1307 }
1308
1309 // If it's not a loop phi, we can't handle it yet.
1310 return SCEVUnknown::get(PN);
1311}
1312
1313/// createNodeForCast - Handle the various forms of casts that we support.
1314///
1315SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1316 const Type *SrcTy = CI->getOperand(0)->getType();
1317 const Type *DestTy = CI->getType();
1318
1319 // If this is a noop cast (ie, conversion from int to uint), ignore it.
1320 if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1321 return getSCEV(CI->getOperand(0));
1322
1323 if (SrcTy->isInteger() && DestTy->isInteger()) {
1324 // Otherwise, if this is a truncating integer cast, we can represent this
1325 // cast.
1326 if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1327 return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1328 CI->getType()->getUnsignedVersion());
1329 if (SrcTy->isUnsigned() &&
1330 SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1331 return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1332 CI->getType()->getUnsignedVersion());
1333 }
1334
1335 // If this is an sign or zero extending cast and we can prove that the value
1336 // will never overflow, we could do similar transformations.
1337
1338 // Otherwise, we can't handle this cast!
1339 return SCEVUnknown::get(CI);
1340}
1341
1342
1343/// createSCEV - We know that there is no SCEV for the specified value.
1344/// Analyze the expression.
1345///
1346SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1347 if (Instruction *I = dyn_cast<Instruction>(V)) {
1348 switch (I->getOpcode()) {
1349 case Instruction::Add:
1350 return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1351 getSCEV(I->getOperand(1)));
1352 case Instruction::Mul:
1353 return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1354 getSCEV(I->getOperand(1)));
1355 case Instruction::Div:
1356 if (V->getType()->isInteger() && V->getType()->isUnsigned())
1357 return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1358 getSCEV(I->getOperand(1)));
1359 break;
1360
1361 case Instruction::Sub:
1362 return getMinusSCEV(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1)));
1363
1364 case Instruction::Shl:
1365 // Turn shift left of a constant amount into a multiply.
1366 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1367 Constant *X = ConstantInt::get(V->getType(), 1);
1368 X = ConstantExpr::getShl(X, SA);
1369 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1370 }
1371 break;
1372
1373 case Instruction::Shr:
1374 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1375 if (V->getType()->isUnsigned()) {
1376 Constant *X = ConstantInt::get(V->getType(), 1);
1377 X = ConstantExpr::getShl(X, SA);
1378 return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1379 }
1380 break;
1381
1382 case Instruction::Cast:
1383 return createNodeForCast(cast<CastInst>(I));
1384
1385 case Instruction::PHI:
1386 return createNodeForPHI(cast<PHINode>(I));
1387
1388 default: // We cannot analyze this expression.
1389 break;
1390 }
1391 }
1392
1393 return SCEVUnknown::get(V);
1394}
1395
1396
1397
1398//===----------------------------------------------------------------------===//
1399// Iteration Count Computation Code
1400//
1401
1402/// getIterationCount - If the specified loop has a predictable iteration
1403/// count, return it. Note that it is not valid to call this method on a
1404/// loop without a loop-invariant iteration count.
1405SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1406 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1407 if (I == IterationCounts.end()) {
1408 SCEVHandle ItCount = ComputeIterationCount(L);
1409 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1410 if (ItCount != UnknownValue) {
1411 assert(ItCount->isLoopInvariant(L) &&
1412 "Computed trip count isn't loop invariant for loop!");
1413 ++NumTripCountsComputed;
1414 } else if (isa<PHINode>(L->getHeader()->begin())) {
1415 // Only count loops that have phi nodes as not being computable.
1416 ++NumTripCountsNotComputed;
1417 }
1418 }
1419 return I->second;
1420}
1421
1422/// ComputeIterationCount - Compute the number of times the specified loop
1423/// will iterate.
1424SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1425 // If the loop has a non-one exit block count, we can't analyze it.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001426 std::vector<BasicBlock*> ExitBlocks;
1427 L->getExitBlocks(ExitBlocks);
1428 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001429
1430 // Okay, there is one exit block. Try to find the condition that causes the
1431 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001432 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001433
1434 BasicBlock *ExitingBlock = 0;
1435 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1436 PI != E; ++PI)
1437 if (L->contains(*PI)) {
1438 if (ExitingBlock == 0)
1439 ExitingBlock = *PI;
1440 else
1441 return UnknownValue; // More than one block exiting!
1442 }
1443 assert(ExitingBlock && "No exits from loop, something is broken!");
1444
1445 // Okay, we've computed the exiting block. See what condition causes us to
1446 // exit.
1447 //
1448 // FIXME: we should be able to handle switch instructions (with a single exit)
1449 // FIXME: We should handle cast of int to bool as well
1450 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1451 if (ExitBr == 0) return UnknownValue;
1452 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1453 SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
Chris Lattner7980fb92004-04-17 18:36:24 +00001454 if (ExitCond == 0) // Not a setcc
1455 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1456 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001457
Chris Lattner673e02b2004-10-12 01:49:27 +00001458 // If the condition was exit on true, convert the condition to exit on false.
1459 Instruction::BinaryOps Cond;
1460 if (ExitBr->getSuccessor(1) == ExitBlock)
1461 Cond = ExitCond->getOpcode();
1462 else
1463 Cond = ExitCond->getInverseCondition();
1464
1465 // Handle common loops like: for (X = "string"; *X; ++X)
1466 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1467 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1468 SCEVHandle ItCnt =
1469 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1470 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1471 }
1472
Chris Lattner53e677a2004-04-02 20:23:17 +00001473 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1474 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1475
1476 // Try to evaluate any dependencies out of the loop.
1477 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1478 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1479 Tmp = getSCEVAtScope(RHS, L);
1480 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1481
Chris Lattner53e677a2004-04-02 20:23:17 +00001482 // At this point, we would like to compute how many iterations of the loop the
1483 // predicate will return true for these inputs.
1484 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1485 // If there is a constant, force it into the RHS.
1486 std::swap(LHS, RHS);
1487 Cond = SetCondInst::getSwappedCondition(Cond);
1488 }
1489
1490 // FIXME: think about handling pointer comparisons! i.e.:
1491 // while (P != P+100) ++P;
1492
1493 // If we have a comparison of a chrec against a constant, try to use value
1494 // ranges to answer this query.
1495 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1496 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1497 if (AddRec->getLoop() == L) {
1498 // Form the comparison range using the constant of the correct type so
1499 // that the ConstantRange class knows to do a signed or unsigned
1500 // comparison.
1501 ConstantInt *CompVal = RHSC->getValue();
1502 const Type *RealTy = ExitCond->getOperand(0)->getType();
1503 CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1504 if (CompVal) {
1505 // Form the constant range.
1506 ConstantRange CompRange(Cond, CompVal);
1507
1508 // Now that we have it, if it's signed, convert it to an unsigned
1509 // range.
1510 if (CompRange.getLower()->getType()->isSigned()) {
1511 const Type *NewTy = RHSC->getValue()->getType();
1512 Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1513 Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1514 CompRange = ConstantRange(NewL, NewU);
1515 }
1516
1517 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1518 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1519 }
1520 }
1521
1522 switch (Cond) {
1523 case Instruction::SetNE: // while (X != Y)
1524 // Convert to: while (X-Y != 0)
Chris Lattner7980fb92004-04-17 18:36:24 +00001525 if (LHS->getType()->isInteger()) {
1526 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
1527 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1528 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001529 break;
1530 case Instruction::SetEQ:
1531 // Convert to: while (X-Y == 0) // while (X == Y)
Chris Lattner7980fb92004-04-17 18:36:24 +00001532 if (LHS->getType()->isInteger()) {
1533 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
1534 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1535 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001536 break;
1537 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001538#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 std::cerr << "ComputeIterationCount ";
1540 if (ExitCond->getOperand(0)->getType()->isUnsigned())
1541 std::cerr << "[unsigned] ";
1542 std::cerr << *LHS << " "
1543 << Instruction::getOpcodeName(Cond) << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001544#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00001545 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001547
1548 return ComputeIterationCountExhaustively(L, ExitCond,
1549 ExitBr->getSuccessor(0) == ExitBlock);
1550}
1551
Chris Lattner673e02b2004-10-12 01:49:27 +00001552static ConstantInt *
1553EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1554 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1555 SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1556 assert(isa<SCEVConstant>(Val) &&
1557 "Evaluation of SCEV at constant didn't fold correctly?");
1558 return cast<SCEVConstant>(Val)->getValue();
1559}
1560
1561/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1562/// and a GEP expression (missing the pointer index) indexing into it, return
1563/// the addressed element of the initializer or null if the index expression is
1564/// invalid.
1565static Constant *
1566GetAddressedElementFromGlobal(GlobalVariable *GV,
1567 const std::vector<ConstantInt*> &Indices) {
1568 Constant *Init = GV->getInitializer();
1569 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1570 uint64_t Idx = Indices[i]->getRawValue();
1571 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1572 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1573 Init = cast<Constant>(CS->getOperand(Idx));
1574 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1575 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1576 Init = cast<Constant>(CA->getOperand(Idx));
1577 } else if (isa<ConstantAggregateZero>(Init)) {
1578 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1579 assert(Idx < STy->getNumElements() && "Bad struct index!");
1580 Init = Constant::getNullValue(STy->getElementType(Idx));
1581 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1582 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1583 Init = Constant::getNullValue(ATy->getElementType());
1584 } else {
1585 assert(0 && "Unknown constant aggregate type!");
1586 }
1587 return 0;
1588 } else {
1589 return 0; // Unknown initializer type
1590 }
1591 }
1592 return Init;
1593}
1594
1595/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1596/// 'setcc load X, cst', try to se if we can compute the trip count.
1597SCEVHandle ScalarEvolutionsImpl::
1598ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1599 const Loop *L, unsigned SetCCOpcode) {
1600 if (LI->isVolatile()) return UnknownValue;
1601
1602 // Check to see if the loaded pointer is a getelementptr of a global.
1603 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1604 if (!GEP) return UnknownValue;
1605
1606 // Make sure that it is really a constant global we are gepping, with an
1607 // initializer, and make sure the first IDX is really 0.
1608 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1609 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1610 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1611 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1612 return UnknownValue;
1613
1614 // Okay, we allow one non-constant index into the GEP instruction.
1615 Value *VarIdx = 0;
1616 std::vector<ConstantInt*> Indexes;
1617 unsigned VarIdxNum = 0;
1618 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1619 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1620 Indexes.push_back(CI);
1621 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1622 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1623 VarIdx = GEP->getOperand(i);
1624 VarIdxNum = i-2;
1625 Indexes.push_back(0);
1626 }
1627
1628 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1629 // Check to see if X is a loop variant variable value now.
1630 SCEVHandle Idx = getSCEV(VarIdx);
1631 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1632 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1633
1634 // We can only recognize very limited forms of loop index expressions, in
1635 // particular, only affine AddRec's like {C1,+,C2}.
1636 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1637 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1638 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1639 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1640 return UnknownValue;
1641
1642 unsigned MaxSteps = MaxBruteForceIterations;
1643 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1644 ConstantUInt *ItCst =
1645 ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1646 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1647
1648 // Form the GEP offset.
1649 Indexes[VarIdxNum] = Val;
1650
1651 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1652 if (Result == 0) break; // Cannot compute!
1653
1654 // Evaluate the condition for this iteration.
1655 Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1656 if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure
1657 if (Result == ConstantBool::False) {
1658#if 0
1659 std::cerr << "\n***\n*** Computed loop count " << *ItCst
1660 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1661 << "***\n";
1662#endif
1663 ++NumArrayLenItCounts;
1664 return SCEVConstant::get(ItCst); // Found terminating iteration!
1665 }
1666 }
1667 return UnknownValue;
1668}
1669
1670
Chris Lattner3221ad02004-04-17 22:58:41 +00001671/// CanConstantFold - Return true if we can constant fold an instruction of the
1672/// specified type, assuming that all operands were constants.
1673static bool CanConstantFold(const Instruction *I) {
1674 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1675 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1676 return true;
Chris Lattner7980fb92004-04-17 18:36:24 +00001677
Chris Lattner3221ad02004-04-17 22:58:41 +00001678 if (const CallInst *CI = dyn_cast<CallInst>(I))
1679 if (const Function *F = CI->getCalledFunction())
1680 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1681 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00001682}
1683
Chris Lattner3221ad02004-04-17 22:58:41 +00001684/// ConstantFold - Constant fold an instruction of the specified type with the
1685/// specified constant operands. This function may modify the operands vector.
1686static Constant *ConstantFold(const Instruction *I,
1687 std::vector<Constant*> &Operands) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001688 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1689 return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1690
1691 switch (I->getOpcode()) {
1692 case Instruction::Cast:
1693 return ConstantExpr::getCast(Operands[0], I->getType());
1694 case Instruction::Select:
1695 return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1696 case Instruction::Call:
Reid Spencere8404342004-07-18 00:18:30 +00001697 if (Function *GV = dyn_cast<Function>(Operands[0])) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001698 Operands.erase(Operands.begin());
Reid Spencere8404342004-07-18 00:18:30 +00001699 return ConstantFoldCall(cast<Function>(GV), Operands);
Chris Lattner7980fb92004-04-17 18:36:24 +00001700 }
1701
1702 return 0;
1703 case Instruction::GetElementPtr:
1704 Constant *Base = Operands[0];
1705 Operands.erase(Operands.begin());
1706 return ConstantExpr::getGetElementPtr(Base, Operands);
1707 }
1708 return 0;
1709}
1710
1711
Chris Lattner3221ad02004-04-17 22:58:41 +00001712/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1713/// in the loop that V is derived from. We allow arbitrary operations along the
1714/// way, but the operands of an operation must either be constants or a value
1715/// derived from a constant PHI. If this expression does not fit with these
1716/// constraints, return null.
1717static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1718 // If this is not an instruction, or if this is an instruction outside of the
1719 // loop, it can't be derived from a loop PHI.
1720 Instruction *I = dyn_cast<Instruction>(V);
1721 if (I == 0 || !L->contains(I->getParent())) return 0;
1722
1723 if (PHINode *PN = dyn_cast<PHINode>(I))
1724 if (L->getHeader() == I->getParent())
1725 return PN;
1726 else
1727 // We don't currently keep track of the control flow needed to evaluate
1728 // PHIs, so we cannot handle PHIs inside of loops.
1729 return 0;
1730
1731 // If we won't be able to constant fold this expression even if the operands
1732 // are constants, return early.
1733 if (!CanConstantFold(I)) return 0;
1734
1735 // Otherwise, we can evaluate this instruction if all of its operands are
1736 // constant or derived from a PHI node themselves.
1737 PHINode *PHI = 0;
1738 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1739 if (!(isa<Constant>(I->getOperand(Op)) ||
1740 isa<GlobalValue>(I->getOperand(Op)))) {
1741 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1742 if (P == 0) return 0; // Not evolving from PHI
1743 if (PHI == 0)
1744 PHI = P;
1745 else if (PHI != P)
1746 return 0; // Evolving from multiple different PHIs.
1747 }
1748
1749 // This is a expression evolving from a constant PHI!
1750 return PHI;
1751}
1752
1753/// EvaluateExpression - Given an expression that passes the
1754/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1755/// in the loop has the value PHIVal. If we can't fold this expression for some
1756/// reason, return null.
1757static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1758 if (isa<PHINode>(V)) return PHIVal;
Chris Lattner3221ad02004-04-17 22:58:41 +00001759 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
Reid Spencere8404342004-07-18 00:18:30 +00001760 return GV;
1761 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00001762 Instruction *I = cast<Instruction>(V);
1763
1764 std::vector<Constant*> Operands;
1765 Operands.resize(I->getNumOperands());
1766
1767 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1768 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1769 if (Operands[i] == 0) return 0;
1770 }
1771
1772 return ConstantFold(I, Operands);
1773}
1774
1775/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1776/// in the header of its containing loop, we know the loop executes a
1777/// constant number of times, and the PHI node is just a recurrence
1778/// involving constants, fold it.
1779Constant *ScalarEvolutionsImpl::
1780getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1781 std::map<PHINode*, Constant*>::iterator I =
1782 ConstantEvolutionLoopExitValue.find(PN);
1783 if (I != ConstantEvolutionLoopExitValue.end())
1784 return I->second;
1785
1786 if (Its > MaxBruteForceIterations)
1787 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1788
1789 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1790
1791 // Since the loop is canonicalized, the PHI node must have two entries. One
1792 // entry must be a constant (coming in from outside of the loop), and the
1793 // second must be derived from the same PHI.
1794 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1795 Constant *StartCST =
1796 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1797 if (StartCST == 0)
1798 return RetVal = 0; // Must be a constant.
1799
1800 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1801 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1802 if (PN2 != PN)
1803 return RetVal = 0; // Not derived from same PHI.
1804
1805 // Execute the loop symbolically to determine the exit value.
1806 unsigned IterationNum = 0;
1807 unsigned NumIterations = Its;
1808 if (NumIterations != Its)
1809 return RetVal = 0; // More than 2^32 iterations??
1810
1811 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1812 if (IterationNum == NumIterations)
1813 return RetVal = PHIVal; // Got exit value!
1814
1815 // Compute the value of the PHI node for the next iteration.
1816 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1817 if (NextPHI == PHIVal)
1818 return RetVal = NextPHI; // Stopped evolving!
1819 if (NextPHI == 0)
1820 return 0; // Couldn't evaluate!
1821 PHIVal = NextPHI;
1822 }
1823}
1824
Chris Lattner7980fb92004-04-17 18:36:24 +00001825/// ComputeIterationCountExhaustively - If the trip is known to execute a
1826/// constant number of times (the condition evolves only from constants),
1827/// try to evaluate a few iterations of the loop until we get the exit
1828/// condition gets a value of ExitWhen (true or false). If we cannot
1829/// evaluate the trip count of the loop, return UnknownValue.
1830SCEVHandle ScalarEvolutionsImpl::
1831ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1832 PHINode *PN = getConstantEvolvingPHI(Cond, L);
1833 if (PN == 0) return UnknownValue;
1834
1835 // Since the loop is canonicalized, the PHI node must have two entries. One
1836 // entry must be a constant (coming in from outside of the loop), and the
1837 // second must be derived from the same PHI.
1838 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1839 Constant *StartCST =
1840 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1841 if (StartCST == 0) return UnknownValue; // Must be a constant.
1842
1843 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1844 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1845 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
1846
1847 // Okay, we find a PHI node that defines the trip count of this loop. Execute
1848 // the loop symbolically to determine when the condition gets a value of
1849 // "ExitWhen".
1850 unsigned IterationNum = 0;
1851 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
1852 for (Constant *PHIVal = StartCST;
1853 IterationNum != MaxIterations; ++IterationNum) {
1854 ConstantBool *CondVal =
1855 dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1856 if (!CondVal) return UnknownValue; // Couldn't symbolically evaluate.
Chris Lattner3221ad02004-04-17 22:58:41 +00001857
Chris Lattner7980fb92004-04-17 18:36:24 +00001858 if (CondVal->getValue() == ExitWhen) {
Chris Lattner3221ad02004-04-17 22:58:41 +00001859 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00001860 ++NumBruteForceTripCountsComputed;
1861 return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1862 }
1863
Chris Lattner3221ad02004-04-17 22:58:41 +00001864 // Compute the value of the PHI node for the next iteration.
1865 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1866 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00001867 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00001868 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00001869 }
1870
1871 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00001872 return UnknownValue;
1873}
1874
1875/// getSCEVAtScope - Compute the value of the specified expression within the
1876/// indicated loop (which may be null to indicate in no loop). If the
1877/// expression cannot be evaluated, return UnknownValue.
1878SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1879 // FIXME: this should be turned into a virtual method on SCEV!
1880
Chris Lattner3221ad02004-04-17 22:58:41 +00001881 if (isa<SCEVConstant>(V)) return V;
1882
1883 // If this instruction is evolves from a constant-evolving PHI, compute the
1884 // exit value from the loop without using SCEVs.
1885 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1886 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1887 const Loop *LI = this->LI[I->getParent()];
1888 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
1889 if (PHINode *PN = dyn_cast<PHINode>(I))
1890 if (PN->getParent() == LI->getHeader()) {
1891 // Okay, there is no closed form solution for the PHI node. Check
1892 // to see if the loop that contains it has a known iteration count.
1893 // If so, we may be able to force computation of the exit value.
1894 SCEVHandle IterationCount = getIterationCount(LI);
1895 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1896 // Okay, we know how many times the containing loop executes. If
1897 // this is a constant evolving PHI node, get the final value at
1898 // the specified iteration number.
1899 Constant *RV = getConstantEvolutionLoopExitValue(PN,
1900 ICC->getValue()->getRawValue(),
1901 LI);
1902 if (RV) return SCEVUnknown::get(RV);
1903 }
1904 }
1905
1906 // Okay, this is a some expression that we cannot symbolically evaluate
1907 // into a SCEV. Check to see if it's possible to symbolically evaluate
1908 // the arguments into constants, and if see, try to constant propagate the
1909 // result. This is particularly useful for computing loop exit values.
1910 if (CanConstantFold(I)) {
1911 std::vector<Constant*> Operands;
1912 Operands.reserve(I->getNumOperands());
1913 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1914 Value *Op = I->getOperand(i);
1915 if (Constant *C = dyn_cast<Constant>(Op)) {
1916 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001917 } else {
1918 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1919 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1920 Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1921 Op->getType()));
1922 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1923 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1924 Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1925 else
1926 return V;
1927 } else {
1928 return V;
1929 }
1930 }
1931 }
1932 return SCEVUnknown::get(ConstantFold(I, Operands));
1933 }
1934 }
1935
1936 // This is some other type of SCEVUnknown, just return it.
1937 return V;
1938 }
1939
Chris Lattner53e677a2004-04-02 20:23:17 +00001940 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1941 // Avoid performing the look-up in the common case where the specified
1942 // expression has no loop-variant portions.
1943 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1944 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1945 if (OpAtScope != Comm->getOperand(i)) {
1946 if (OpAtScope == UnknownValue) return UnknownValue;
1947 // Okay, at least one of these operands is loop variant but might be
1948 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00001949 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00001950 NewOps.push_back(OpAtScope);
1951
1952 for (++i; i != e; ++i) {
1953 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1954 if (OpAtScope == UnknownValue) return UnknownValue;
1955 NewOps.push_back(OpAtScope);
1956 }
1957 if (isa<SCEVAddExpr>(Comm))
1958 return SCEVAddExpr::get(NewOps);
1959 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1960 return SCEVMulExpr::get(NewOps);
1961 }
1962 }
1963 // If we got here, all operands are loop invariant.
1964 return Comm;
1965 }
1966
1967 if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1968 SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1969 if (LHS == UnknownValue) return LHS;
1970 SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1971 if (RHS == UnknownValue) return RHS;
1972 if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1973 return UDiv; // must be loop invariant
1974 return SCEVUDivExpr::get(LHS, RHS);
1975 }
1976
1977 // If this is a loop recurrence for a loop that does not contain L, then we
1978 // are dealing with the final value computed by the loop.
1979 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1980 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1981 // To evaluate this recurrence, we need to know how many times the AddRec
1982 // loop iterates. Compute this now.
1983 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
1984 if (IterationCount == UnknownValue) return UnknownValue;
1985 IterationCount = getTruncateOrZeroExtend(IterationCount,
1986 AddRec->getType());
1987
1988 // If the value is affine, simplify the expression evaluation to just
1989 // Start + Step*IterationCount.
1990 if (AddRec->isAffine())
1991 return SCEVAddExpr::get(AddRec->getStart(),
1992 SCEVMulExpr::get(IterationCount,
1993 AddRec->getOperand(1)));
1994
1995 // Otherwise, evaluate it the hard way.
1996 return AddRec->evaluateAtIteration(IterationCount);
1997 }
1998 return UnknownValue;
1999 }
2000
2001 //assert(0 && "Unknown SCEV type!");
2002 return UnknownValue;
2003}
2004
2005
2006/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2007/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2008/// might be the same) or two SCEVCouldNotCompute objects.
2009///
2010static std::pair<SCEVHandle,SCEVHandle>
2011SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2012 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2013 SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2014 SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2015 SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2016
2017 // We currently can only solve this if the coefficients are constants.
2018 if (!L || !M || !N) {
2019 SCEV *CNC = new SCEVCouldNotCompute();
2020 return std::make_pair(CNC, CNC);
2021 }
2022
2023 Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
2024
2025 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2026 Constant *C = L->getValue();
2027 // The B coefficient is M-N/2
2028 Constant *B = ConstantExpr::getSub(M->getValue(),
2029 ConstantExpr::getDiv(N->getValue(),
2030 Two));
2031 // The A coefficient is N/2
2032 Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
2033
2034 // Compute the B^2-4ac term.
2035 Constant *SqrtTerm =
2036 ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2037 ConstantExpr::getMul(A, C));
2038 SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2039
2040 // Compute floor(sqrt(B^2-4ac))
2041 ConstantUInt *SqrtVal =
2042 cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2043 SqrtTerm->getType()->getUnsignedVersion()));
2044 uint64_t SqrtValV = SqrtVal->getValue();
Chris Lattner219c1412004-10-25 18:40:08 +00002045 uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002046 // The square root might not be precise for arbitrary 64-bit integer
2047 // values. Do some sanity checks to ensure it's correct.
2048 if (SqrtValV2*SqrtValV2 > SqrtValV ||
2049 (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2050 SCEV *CNC = new SCEVCouldNotCompute();
2051 return std::make_pair(CNC, CNC);
2052 }
2053
2054 SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2055 SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
2056
2057 Constant *NegB = ConstantExpr::getNeg(B);
2058 Constant *TwoA = ConstantExpr::getMul(A, Two);
2059
2060 // The divisions must be performed as signed divisions.
2061 const Type *SignedTy = NegB->getType()->getSignedVersion();
2062 NegB = ConstantExpr::getCast(NegB, SignedTy);
2063 TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2064 SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
2065
2066 Constant *Solution1 =
2067 ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2068 Constant *Solution2 =
2069 ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2070 return std::make_pair(SCEVUnknown::get(Solution1),
2071 SCEVUnknown::get(Solution2));
2072}
2073
2074/// HowFarToZero - Return the number of times a backedge comparing the specified
2075/// value to zero will execute. If not computable, return UnknownValue
2076SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2077 // If the value is a constant
2078 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2079 // If the value is already zero, the branch will execute zero times.
2080 if (C->getValue()->isNullValue()) return C;
2081 return UnknownValue; // Otherwise it will loop infinitely.
2082 }
2083
2084 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2085 if (!AddRec || AddRec->getLoop() != L)
2086 return UnknownValue;
2087
2088 if (AddRec->isAffine()) {
2089 // If this is an affine expression the execution count of this branch is
2090 // equal to:
2091 //
2092 // (0 - Start/Step) iff Start % Step == 0
2093 //
2094 // Get the initial value for the loop.
2095 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002096 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002097 SCEVHandle Step = AddRec->getOperand(1);
2098
2099 Step = getSCEVAtScope(Step, L->getParentLoop());
2100
2101 // Figure out if Start % Step == 0.
2102 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2103 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2104 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
2105 return getNegativeSCEV(Start); // 0 - Start/1 == -Start
2106 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2107 return Start; // 0 - Start/-1 == Start
2108
2109 // Check to see if Start is divisible by SC with no remainder.
2110 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2111 ConstantInt *StartCC = StartC->getValue();
2112 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2113 Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2114 if (Rem->isNullValue()) {
2115 Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2116 return SCEVUnknown::get(Result);
2117 }
2118 }
2119 }
2120 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2121 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2122 // the quadratic equation to solve it.
2123 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2124 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2125 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2126 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002127#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00002128 std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2129 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002130#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002131 // Pick the smallest positive root value.
2132 assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2133 if (ConstantBool *CB =
2134 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2135 R2->getValue()))) {
2136 if (CB != ConstantBool::True)
2137 std::swap(R1, R2); // R1 is the minimum root now.
2138
2139 // We can only use this value if the chrec ends up with an exact zero
2140 // value at this index. When solving for "X*X != 5", for example, we
2141 // should not accept a root of 2.
2142 SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2143 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2144 if (EvalVal->getValue()->isNullValue())
2145 return R1; // We found a quadratic root!
2146 }
2147 }
2148 }
2149
2150 return UnknownValue;
2151}
2152
2153/// HowFarToNonZero - Return the number of times a backedge checking the
2154/// specified value for nonzero will execute. If not computable, return
2155/// UnknownValue
2156SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2157 // Loops that look like: while (X == 0) are very strange indeed. We don't
2158 // handle them yet except for the trivial case. This could be expanded in the
2159 // future as needed.
2160
2161 // If the value is a constant, check to see if it is known to be non-zero
2162 // already. If so, the backedge will execute zero times.
2163 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2164 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2165 Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2166 if (NonZero == ConstantBool::True)
2167 return getSCEV(Zero);
2168 return UnknownValue; // Otherwise it will loop infinitely.
2169 }
2170
2171 // We could implement others, but I really doubt anyone writes loops like
2172 // this, and if they did, they would already be constant folded.
2173 return UnknownValue;
2174}
2175
Chris Lattner53e677a2004-04-02 20:23:17 +00002176/// getNumIterationsInRange - Return the number of iterations of this loop that
2177/// produce values in the specified constant range. Another way of looking at
2178/// this is that it returns the first iteration number where the value is not in
2179/// the condition, thus computing the exit count. If the iteration count can't
2180/// be computed, an instance of SCEVCouldNotCompute is returned.
2181SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2182 if (Range.isFullSet()) // Infinite loop.
2183 return new SCEVCouldNotCompute();
2184
2185 // If the start is a non-zero constant, shift the range to simplify things.
2186 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2187 if (!SC->getValue()->isNullValue()) {
2188 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Chris Lattnerb06432c2004-04-23 21:29:03 +00002189 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002190 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2191 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2192 return ShiftedAddRec->getNumIterationsInRange(
2193 Range.subtract(SC->getValue()));
2194 // This is strange and shouldn't happen.
2195 return new SCEVCouldNotCompute();
2196 }
2197
2198 // The only time we can solve this is when we have all constant indices.
2199 // Otherwise, we cannot determine the overflow conditions.
2200 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2201 if (!isa<SCEVConstant>(getOperand(i)))
2202 return new SCEVCouldNotCompute();
2203
2204
2205 // Okay at this point we know that all elements of the chrec are constants and
2206 // that the start element is zero.
2207
2208 // First check to see if the range contains zero. If not, the first
2209 // iteration exits.
2210 ConstantInt *Zero = ConstantInt::get(getType(), 0);
2211 if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2212
2213 if (isAffine()) {
2214 // If this is an affine expression then we have this situation:
2215 // Solve {0,+,A} in Range === Ax in Range
2216
2217 // Since we know that zero is in the range, we know that the upper value of
2218 // the range must be the first possible exit value. Also note that we
2219 // already checked for a full range.
2220 ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2221 ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue();
2222 ConstantInt *One = ConstantInt::get(getType(), 1);
2223
2224 // The exit value should be (Upper+A-1)/A.
2225 Constant *ExitValue = Upper;
2226 if (A != One) {
2227 ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2228 ExitValue = ConstantExpr::getDiv(ExitValue, A);
2229 }
2230 assert(isa<ConstantInt>(ExitValue) &&
2231 "Constant folding of integers not implemented?");
2232
2233 // Evaluate at the exit value. If we really did fall out of the valid
2234 // range, then we computed our trip count, otherwise wrap around or other
2235 // things must have happened.
2236 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2237 if (Range.contains(Val))
2238 return new SCEVCouldNotCompute(); // Something strange happened
2239
2240 // Ensure that the previous value is in the range. This is a sanity check.
2241 assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2242 ConstantExpr::getSub(ExitValue, One))) &&
2243 "Linear scev computation is off in a bad way!");
2244 return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2245 } else if (isQuadratic()) {
2246 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2247 // quadratic equation to solve it. To do this, we must frame our problem in
2248 // terms of figuring out when zero is crossed, instead of when
2249 // Range.getUpper() is crossed.
2250 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2251 NewOps[0] = getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2252 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2253
2254 // Next, solve the constructed addrec
2255 std::pair<SCEVHandle,SCEVHandle> Roots =
2256 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2257 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2258 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2259 if (R1) {
2260 // Pick the smallest positive root value.
2261 assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2262 if (ConstantBool *CB =
2263 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2264 R2->getValue()))) {
2265 if (CB != ConstantBool::True)
2266 std::swap(R1, R2); // R1 is the minimum root now.
2267
2268 // Make sure the root is not off by one. The returned iteration should
2269 // not be in the range, but the previous one should be. When solving
2270 // for "X*X < 5", for example, we should not return a root of 2.
2271 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2272 R1->getValue());
2273 if (Range.contains(R1Val)) {
2274 // The next iteration must be out of the range...
2275 Constant *NextVal =
2276 ConstantExpr::getAdd(R1->getValue(),
2277 ConstantInt::get(R1->getType(), 1));
2278
2279 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2280 if (!Range.contains(R1Val))
2281 return SCEVUnknown::get(NextVal);
2282 return new SCEVCouldNotCompute(); // Something strange happened
2283 }
2284
2285 // If R1 was not in the range, then it is a good return value. Make
2286 // sure that R1-1 WAS in the range though, just in case.
2287 Constant *NextVal =
2288 ConstantExpr::getSub(R1->getValue(),
2289 ConstantInt::get(R1->getType(), 1));
2290 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2291 if (Range.contains(R1Val))
2292 return R1;
2293 return new SCEVCouldNotCompute(); // Something strange happened
2294 }
2295 }
2296 }
2297
2298 // Fallback, if this is a general polynomial, figure out the progression
2299 // through brute force: evaluate until we find an iteration that fails the
2300 // test. This is likely to be slow, but getting an accurate trip count is
2301 // incredibly important, we will be able to simplify the exit test a lot, and
2302 // we are almost guaranteed to get a trip count in this case.
2303 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2304 ConstantInt *One = ConstantInt::get(getType(), 1);
2305 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2306 do {
2307 ++NumBruteForceEvaluations;
2308 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2309 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2310 return new SCEVCouldNotCompute();
2311
2312 // Check to see if we found the value!
2313 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2314 return SCEVConstant::get(TestVal);
2315
2316 // Increment to test the next index.
2317 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2318 } while (TestVal != EndVal);
2319
2320 return new SCEVCouldNotCompute();
2321}
2322
2323
2324
2325//===----------------------------------------------------------------------===//
2326// ScalarEvolution Class Implementation
2327//===----------------------------------------------------------------------===//
2328
2329bool ScalarEvolution::runOnFunction(Function &F) {
2330 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2331 return false;
2332}
2333
2334void ScalarEvolution::releaseMemory() {
2335 delete (ScalarEvolutionsImpl*)Impl;
2336 Impl = 0;
2337}
2338
2339void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2340 AU.setPreservesAll();
2341 AU.addRequiredID(LoopSimplifyID);
2342 AU.addRequiredTransitive<LoopInfo>();
2343}
2344
2345SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2346 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2347}
2348
2349SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2350 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2351}
2352
2353bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2354 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2355}
2356
2357SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2358 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2359}
2360
2361void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2362 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2363}
2364
Chris Lattner53e677a2004-04-02 20:23:17 +00002365static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2366 const Loop *L) {
2367 // Print all inner loops first
2368 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2369 PrintLoopInfo(OS, SE, *I);
2370
2371 std::cerr << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002372
2373 std::vector<BasicBlock*> ExitBlocks;
2374 L->getExitBlocks(ExitBlocks);
2375 if (ExitBlocks.size() != 1)
Chris Lattner53e677a2004-04-02 20:23:17 +00002376 std::cerr << "<multiple exits> ";
2377
2378 if (SE->hasLoopInvariantIterationCount(L)) {
2379 std::cerr << *SE->getIterationCount(L) << " iterations! ";
2380 } else {
2381 std::cerr << "Unpredictable iteration count. ";
2382 }
2383
2384 std::cerr << "\n";
2385}
2386
Reid Spencerce9653c2004-12-07 04:03:45 +00002387void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002388 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2389 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2390
2391 OS << "Classifying expressions for: " << F.getName() << "\n";
2392 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner6ffe5512004-04-27 15:13:33 +00002393 if (I->getType()->isInteger()) {
2394 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00002395 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002396 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00002397 SV->print(OS);
2398 OS << "\t\t";
2399
Chris Lattner6ffe5512004-04-27 15:13:33 +00002400 if ((*I).getType()->isIntegral()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002401 ConstantRange Bounds = SV->getValueRange();
2402 if (!Bounds.isFullSet())
2403 OS << "Bounds: " << Bounds << " ";
2404 }
2405
Chris Lattner6ffe5512004-04-27 15:13:33 +00002406 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002407 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002408 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002409 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2410 OS << "<<Unknown>>";
2411 } else {
2412 OS << *ExitValue;
2413 }
2414 }
2415
2416
2417 OS << "\n";
2418 }
2419
2420 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2421 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2422 PrintLoopInfo(OS, this, *I);
2423}
2424