blob: 9ca6035156cda8b63142feb9d719fdd3a083d2fc [file] [log] [blame]
Nick Lewycky9f856342009-04-12 20:47:23 +00001#include "llvm/DerivedTypes.h"
2#include "llvm/ExecutionEngine/ExecutionEngine.h"
Owen Anderson8b477ed2009-07-01 16:58:40 +00003#include "llvm/LLVMContext.h"
Nick Lewycky9f856342009-04-12 20:47:23 +00004#include "llvm/Module.h"
5#include "llvm/ModuleProvider.h"
6#include "llvm/PassManager.h"
7#include "llvm/Analysis/Verifier.h"
8#include "llvm/Target/TargetData.h"
Chris Lattnerda062882009-06-17 16:48:44 +00009#include "llvm/Target/TargetSelect.h"
Nick Lewycky9f856342009-04-12 20:47:23 +000010#include "llvm/Transforms/Scalar.h"
11#include "llvm/Support/IRBuilder.h"
12#include <cstdio>
13#include <string>
14#include <map>
15#include <vector>
16using namespace llvm;
17
18//===----------------------------------------------------------------------===//
19// Lexer
20//===----------------------------------------------------------------------===//
21
22// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
23// of these for known things.
24enum Token {
25 tok_eof = -1,
26
27 // commands
28 tok_def = -2, tok_extern = -3,
29
30 // primary
31 tok_identifier = -4, tok_number = -5,
32
33 // control
34 tok_if = -6, tok_then = -7, tok_else = -8,
35 tok_for = -9, tok_in = -10,
36
37 // operators
38 tok_binary = -11, tok_unary = -12,
39
40 // var definition
41 tok_var = -13
42};
43
44static std::string IdentifierStr; // Filled in if tok_identifier
45static double NumVal; // Filled in if tok_number
46
47/// gettok - Return the next token from standard input.
48static int gettok() {
49 static int LastChar = ' ';
50
51 // Skip any whitespace.
52 while (isspace(LastChar))
53 LastChar = getchar();
54
55 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
56 IdentifierStr = LastChar;
57 while (isalnum((LastChar = getchar())))
58 IdentifierStr += LastChar;
59
60 if (IdentifierStr == "def") return tok_def;
61 if (IdentifierStr == "extern") return tok_extern;
62 if (IdentifierStr == "if") return tok_if;
63 if (IdentifierStr == "then") return tok_then;
64 if (IdentifierStr == "else") return tok_else;
65 if (IdentifierStr == "for") return tok_for;
66 if (IdentifierStr == "in") return tok_in;
67 if (IdentifierStr == "binary") return tok_binary;
68 if (IdentifierStr == "unary") return tok_unary;
69 if (IdentifierStr == "var") return tok_var;
70 return tok_identifier;
71 }
72
73 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
74 std::string NumStr;
75 do {
76 NumStr += LastChar;
77 LastChar = getchar();
78 } while (isdigit(LastChar) || LastChar == '.');
79
80 NumVal = strtod(NumStr.c_str(), 0);
81 return tok_number;
82 }
83
84 if (LastChar == '#') {
85 // Comment until end of line.
86 do LastChar = getchar();
87 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
88
89 if (LastChar != EOF)
90 return gettok();
91 }
92
93 // Check for end of file. Don't eat the EOF.
94 if (LastChar == EOF)
95 return tok_eof;
96
97 // Otherwise, just return the character as its ascii value.
98 int ThisChar = LastChar;
99 LastChar = getchar();
100 return ThisChar;
101}
102
103//===----------------------------------------------------------------------===//
104// Abstract Syntax Tree (aka Parse Tree)
105//===----------------------------------------------------------------------===//
106
107/// ExprAST - Base class for all expression nodes.
108class ExprAST {
109public:
110 virtual ~ExprAST() {}
111 virtual Value *Codegen() = 0;
112};
113
114/// NumberExprAST - Expression class for numeric literals like "1.0".
115class NumberExprAST : public ExprAST {
116 double Val;
117public:
118 NumberExprAST(double val) : Val(val) {}
119 virtual Value *Codegen();
120};
121
122/// VariableExprAST - Expression class for referencing a variable, like "a".
123class VariableExprAST : public ExprAST {
124 std::string Name;
125public:
126 VariableExprAST(const std::string &name) : Name(name) {}
127 const std::string &getName() const { return Name; }
128 virtual Value *Codegen();
129};
130
131/// UnaryExprAST - Expression class for a unary operator.
132class UnaryExprAST : public ExprAST {
133 char Opcode;
134 ExprAST *Operand;
135public:
136 UnaryExprAST(char opcode, ExprAST *operand)
137 : Opcode(opcode), Operand(operand) {}
138 virtual Value *Codegen();
139};
140
141/// BinaryExprAST - Expression class for a binary operator.
142class BinaryExprAST : public ExprAST {
143 char Op;
144 ExprAST *LHS, *RHS;
145public:
146 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
147 : Op(op), LHS(lhs), RHS(rhs) {}
148 virtual Value *Codegen();
149};
150
151/// CallExprAST - Expression class for function calls.
152class CallExprAST : public ExprAST {
153 std::string Callee;
154 std::vector<ExprAST*> Args;
155public:
156 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
157 : Callee(callee), Args(args) {}
158 virtual Value *Codegen();
159};
160
161/// IfExprAST - Expression class for if/then/else.
162class IfExprAST : public ExprAST {
163 ExprAST *Cond, *Then, *Else;
164public:
165 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
166 : Cond(cond), Then(then), Else(_else) {}
167 virtual Value *Codegen();
168};
169
170/// ForExprAST - Expression class for for/in.
171class ForExprAST : public ExprAST {
172 std::string VarName;
173 ExprAST *Start, *End, *Step, *Body;
174public:
175 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
176 ExprAST *step, ExprAST *body)
177 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
178 virtual Value *Codegen();
179};
180
181/// VarExprAST - Expression class for var/in
182class VarExprAST : public ExprAST {
183 std::vector<std::pair<std::string, ExprAST*> > VarNames;
184 ExprAST *Body;
185public:
186 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
187 ExprAST *body)
188 : VarNames(varnames), Body(body) {}
189
190 virtual Value *Codegen();
191};
192
193/// PrototypeAST - This class represents the "prototype" for a function,
194/// which captures its argument names as well as if it is an operator.
195class PrototypeAST {
196 std::string Name;
197 std::vector<std::string> Args;
198 bool isOperator;
199 unsigned Precedence; // Precedence if a binary op.
200public:
201 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
202 bool isoperator = false, unsigned prec = 0)
203 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
204
205 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
206 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
207
208 char getOperatorName() const {
209 assert(isUnaryOp() || isBinaryOp());
210 return Name[Name.size()-1];
211 }
212
213 unsigned getBinaryPrecedence() const { return Precedence; }
214
215 Function *Codegen();
216
217 void CreateArgumentAllocas(Function *F);
218};
219
220/// FunctionAST - This class represents a function definition itself.
221class FunctionAST {
222 PrototypeAST *Proto;
223 ExprAST *Body;
224public:
225 FunctionAST(PrototypeAST *proto, ExprAST *body)
226 : Proto(proto), Body(body) {}
227
228 Function *Codegen();
229};
230
231//===----------------------------------------------------------------------===//
232// Parser
233//===----------------------------------------------------------------------===//
234
235/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
236/// token the parser it looking at. getNextToken reads another token from the
237/// lexer and updates CurTok with its results.
238static int CurTok;
239static int getNextToken() {
240 return CurTok = gettok();
241}
242
243/// BinopPrecedence - This holds the precedence for each binary operator that is
244/// defined.
245static std::map<char, int> BinopPrecedence;
246
247/// GetTokPrecedence - Get the precedence of the pending binary operator token.
248static int GetTokPrecedence() {
249 if (!isascii(CurTok))
250 return -1;
251
252 // Make sure it's a declared binop.
253 int TokPrec = BinopPrecedence[CurTok];
254 if (TokPrec <= 0) return -1;
255 return TokPrec;
256}
257
258/// Error* - These are little helper functions for error handling.
259ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
260PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
261FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
262
263static ExprAST *ParseExpression();
264
265/// identifierexpr
266/// ::= identifier
267/// ::= identifier '(' expression* ')'
268static ExprAST *ParseIdentifierExpr() {
269 std::string IdName = IdentifierStr;
270
271 getNextToken(); // eat identifier.
272
273 if (CurTok != '(') // Simple variable ref.
274 return new VariableExprAST(IdName);
275
276 // Call.
277 getNextToken(); // eat (
278 std::vector<ExprAST*> Args;
279 if (CurTok != ')') {
280 while (1) {
281 ExprAST *Arg = ParseExpression();
282 if (!Arg) return 0;
283 Args.push_back(Arg);
284
285 if (CurTok == ')') break;
286
287 if (CurTok != ',')
288 return Error("Expected ')' or ',' in argument list");
289 getNextToken();
290 }
291 }
292
293 // Eat the ')'.
294 getNextToken();
295
296 return new CallExprAST(IdName, Args);
297}
298
299/// numberexpr ::= number
300static ExprAST *ParseNumberExpr() {
301 ExprAST *Result = new NumberExprAST(NumVal);
302 getNextToken(); // consume the number
303 return Result;
304}
305
306/// parenexpr ::= '(' expression ')'
307static ExprAST *ParseParenExpr() {
308 getNextToken(); // eat (.
309 ExprAST *V = ParseExpression();
310 if (!V) return 0;
311
312 if (CurTok != ')')
313 return Error("expected ')'");
314 getNextToken(); // eat ).
315 return V;
316}
317
318/// ifexpr ::= 'if' expression 'then' expression 'else' expression
319static ExprAST *ParseIfExpr() {
320 getNextToken(); // eat the if.
321
322 // condition.
323 ExprAST *Cond = ParseExpression();
324 if (!Cond) return 0;
325
326 if (CurTok != tok_then)
327 return Error("expected then");
328 getNextToken(); // eat the then
329
330 ExprAST *Then = ParseExpression();
331 if (Then == 0) return 0;
332
333 if (CurTok != tok_else)
334 return Error("expected else");
335
336 getNextToken();
337
338 ExprAST *Else = ParseExpression();
339 if (!Else) return 0;
340
341 return new IfExprAST(Cond, Then, Else);
342}
343
344/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
345static ExprAST *ParseForExpr() {
346 getNextToken(); // eat the for.
347
348 if (CurTok != tok_identifier)
349 return Error("expected identifier after for");
350
351 std::string IdName = IdentifierStr;
352 getNextToken(); // eat identifier.
353
354 if (CurTok != '=')
355 return Error("expected '=' after for");
356 getNextToken(); // eat '='.
357
358
359 ExprAST *Start = ParseExpression();
360 if (Start == 0) return 0;
361 if (CurTok != ',')
362 return Error("expected ',' after for start value");
363 getNextToken();
364
365 ExprAST *End = ParseExpression();
366 if (End == 0) return 0;
367
368 // The step value is optional.
369 ExprAST *Step = 0;
370 if (CurTok == ',') {
371 getNextToken();
372 Step = ParseExpression();
373 if (Step == 0) return 0;
374 }
375
376 if (CurTok != tok_in)
377 return Error("expected 'in' after for");
378 getNextToken(); // eat 'in'.
379
380 ExprAST *Body = ParseExpression();
381 if (Body == 0) return 0;
382
383 return new ForExprAST(IdName, Start, End, Step, Body);
384}
385
386/// varexpr ::= 'var' identifier ('=' expression)?
387// (',' identifier ('=' expression)?)* 'in' expression
388static ExprAST *ParseVarExpr() {
389 getNextToken(); // eat the var.
390
391 std::vector<std::pair<std::string, ExprAST*> > VarNames;
392
393 // At least one variable name is required.
394 if (CurTok != tok_identifier)
395 return Error("expected identifier after var");
396
397 while (1) {
398 std::string Name = IdentifierStr;
399 getNextToken(); // eat identifier.
400
401 // Read the optional initializer.
402 ExprAST *Init = 0;
403 if (CurTok == '=') {
404 getNextToken(); // eat the '='.
405
406 Init = ParseExpression();
407 if (Init == 0) return 0;
408 }
409
410 VarNames.push_back(std::make_pair(Name, Init));
411
412 // End of var list, exit loop.
413 if (CurTok != ',') break;
414 getNextToken(); // eat the ','.
415
416 if (CurTok != tok_identifier)
417 return Error("expected identifier list after var");
418 }
419
420 // At this point, we have to have 'in'.
421 if (CurTok != tok_in)
422 return Error("expected 'in' keyword after 'var'");
423 getNextToken(); // eat 'in'.
424
425 ExprAST *Body = ParseExpression();
426 if (Body == 0) return 0;
427
428 return new VarExprAST(VarNames, Body);
429}
430
431
432/// primary
433/// ::= identifierexpr
434/// ::= numberexpr
435/// ::= parenexpr
436/// ::= ifexpr
437/// ::= forexpr
438/// ::= varexpr
439static ExprAST *ParsePrimary() {
440 switch (CurTok) {
441 default: return Error("unknown token when expecting an expression");
442 case tok_identifier: return ParseIdentifierExpr();
443 case tok_number: return ParseNumberExpr();
444 case '(': return ParseParenExpr();
445 case tok_if: return ParseIfExpr();
446 case tok_for: return ParseForExpr();
447 case tok_var: return ParseVarExpr();
448 }
449}
450
451/// unary
452/// ::= primary
453/// ::= '!' unary
454static ExprAST *ParseUnary() {
455 // If the current token is not an operator, it must be a primary expr.
456 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
457 return ParsePrimary();
458
459 // If this is a unary operator, read it.
460 int Opc = CurTok;
461 getNextToken();
462 if (ExprAST *Operand = ParseUnary())
463 return new UnaryExprAST(Opc, Operand);
464 return 0;
465}
466
467/// binoprhs
468/// ::= ('+' unary)*
469static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
470 // If this is a binop, find its precedence.
471 while (1) {
472 int TokPrec = GetTokPrecedence();
473
474 // If this is a binop that binds at least as tightly as the current binop,
475 // consume it, otherwise we are done.
476 if (TokPrec < ExprPrec)
477 return LHS;
478
479 // Okay, we know this is a binop.
480 int BinOp = CurTok;
481 getNextToken(); // eat binop
482
483 // Parse the unary expression after the binary operator.
484 ExprAST *RHS = ParseUnary();
485 if (!RHS) return 0;
486
487 // If BinOp binds less tightly with RHS than the operator after RHS, let
488 // the pending operator take RHS as its LHS.
489 int NextPrec = GetTokPrecedence();
490 if (TokPrec < NextPrec) {
491 RHS = ParseBinOpRHS(TokPrec+1, RHS);
492 if (RHS == 0) return 0;
493 }
494
495 // Merge LHS/RHS.
496 LHS = new BinaryExprAST(BinOp, LHS, RHS);
497 }
498}
499
500/// expression
501/// ::= unary binoprhs
502///
503static ExprAST *ParseExpression() {
504 ExprAST *LHS = ParseUnary();
505 if (!LHS) return 0;
506
507 return ParseBinOpRHS(0, LHS);
508}
509
510/// prototype
511/// ::= id '(' id* ')'
512/// ::= binary LETTER number? (id, id)
513/// ::= unary LETTER (id)
514static PrototypeAST *ParsePrototype() {
515 std::string FnName;
516
Bill Wendling71267022009-04-13 19:45:05 +0000517 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
Nick Lewycky9f856342009-04-12 20:47:23 +0000518 unsigned BinaryPrecedence = 30;
519
520 switch (CurTok) {
521 default:
522 return ErrorP("Expected function name in prototype");
523 case tok_identifier:
524 FnName = IdentifierStr;
525 Kind = 0;
526 getNextToken();
527 break;
528 case tok_unary:
529 getNextToken();
530 if (!isascii(CurTok))
531 return ErrorP("Expected unary operator");
532 FnName = "unary";
533 FnName += (char)CurTok;
534 Kind = 1;
535 getNextToken();
536 break;
537 case tok_binary:
538 getNextToken();
539 if (!isascii(CurTok))
540 return ErrorP("Expected binary operator");
541 FnName = "binary";
542 FnName += (char)CurTok;
543 Kind = 2;
544 getNextToken();
545
546 // Read the precedence if present.
547 if (CurTok == tok_number) {
548 if (NumVal < 1 || NumVal > 100)
549 return ErrorP("Invalid precedecnce: must be 1..100");
550 BinaryPrecedence = (unsigned)NumVal;
551 getNextToken();
552 }
553 break;
554 }
555
556 if (CurTok != '(')
557 return ErrorP("Expected '(' in prototype");
558
559 std::vector<std::string> ArgNames;
560 while (getNextToken() == tok_identifier)
561 ArgNames.push_back(IdentifierStr);
562 if (CurTok != ')')
563 return ErrorP("Expected ')' in prototype");
564
565 // success.
566 getNextToken(); // eat ')'.
567
568 // Verify right number of names for operator.
569 if (Kind && ArgNames.size() != Kind)
570 return ErrorP("Invalid number of operands for operator");
571
572 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
573}
574
575/// definition ::= 'def' prototype expression
576static FunctionAST *ParseDefinition() {
577 getNextToken(); // eat def.
578 PrototypeAST *Proto = ParsePrototype();
579 if (Proto == 0) return 0;
580
581 if (ExprAST *E = ParseExpression())
582 return new FunctionAST(Proto, E);
583 return 0;
584}
585
586/// toplevelexpr ::= expression
587static FunctionAST *ParseTopLevelExpr() {
588 if (ExprAST *E = ParseExpression()) {
589 // Make an anonymous proto.
590 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
591 return new FunctionAST(Proto, E);
592 }
593 return 0;
594}
595
596/// external ::= 'extern' prototype
597static PrototypeAST *ParseExtern() {
598 getNextToken(); // eat extern.
599 return ParsePrototype();
600}
601
602//===----------------------------------------------------------------------===//
603// Code Generation
604//===----------------------------------------------------------------------===//
605
606static Module *TheModule;
607static IRBuilder<> Builder;
608static std::map<std::string, AllocaInst*> NamedValues;
609static FunctionPassManager *TheFPM;
610
611Value *ErrorV(const char *Str) { Error(Str); return 0; }
612
613/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
614/// the function. This is used for mutable variables etc.
615static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
616 const std::string &VarName) {
617 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
618 TheFunction->getEntryBlock().begin());
619 return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
620}
621
622
623Value *NumberExprAST::Codegen() {
624 return ConstantFP::get(APFloat(Val));
625}
626
627Value *VariableExprAST::Codegen() {
628 // Look this variable up in the function.
629 Value *V = NamedValues[Name];
630 if (V == 0) return ErrorV("Unknown variable name");
631
632 // Load the value.
633 return Builder.CreateLoad(V, Name.c_str());
634}
635
636Value *UnaryExprAST::Codegen() {
637 Value *OperandV = Operand->Codegen();
638 if (OperandV == 0) return 0;
639
640 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
641 if (F == 0)
642 return ErrorV("Unknown unary operator");
643
644 return Builder.CreateCall(F, OperandV, "unop");
645}
646
647
648Value *BinaryExprAST::Codegen() {
649 // Special case '=' because we don't want to emit the LHS as an expression.
650 if (Op == '=') {
651 // Assignment requires the LHS to be an identifier.
652 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
653 if (!LHSE)
654 return ErrorV("destination of '=' must be a variable");
655 // Codegen the RHS.
656 Value *Val = RHS->Codegen();
657 if (Val == 0) return 0;
658
659 // Look up the name.
660 Value *Variable = NamedValues[LHSE->getName()];
661 if (Variable == 0) return ErrorV("Unknown variable name");
662
663 Builder.CreateStore(Val, Variable);
664 return Val;
665 }
666
667
668 Value *L = LHS->Codegen();
669 Value *R = RHS->Codegen();
670 if (L == 0 || R == 0) return 0;
671
672 switch (Op) {
673 case '+': return Builder.CreateAdd(L, R, "addtmp");
674 case '-': return Builder.CreateSub(L, R, "subtmp");
675 case '*': return Builder.CreateMul(L, R, "multmp");
676 case '<':
677 L = Builder.CreateFCmpULT(L, R, "cmptmp");
678 // Convert bool 0/1 to double 0.0 or 1.0
679 return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
680 default: break;
681 }
682
683 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
684 // a call to it.
685 Function *F = TheModule->getFunction(std::string("binary")+Op);
686 assert(F && "binary operator not found!");
687
688 Value *Ops[] = { L, R };
689 return Builder.CreateCall(F, Ops, Ops+2, "binop");
690}
691
692Value *CallExprAST::Codegen() {
693 // Look up the name in the global module table.
694 Function *CalleeF = TheModule->getFunction(Callee);
695 if (CalleeF == 0)
696 return ErrorV("Unknown function referenced");
697
698 // If argument mismatch error.
699 if (CalleeF->arg_size() != Args.size())
700 return ErrorV("Incorrect # arguments passed");
701
702 std::vector<Value*> ArgsV;
703 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
704 ArgsV.push_back(Args[i]->Codegen());
705 if (ArgsV.back() == 0) return 0;
706 }
707
708 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
709}
710
711Value *IfExprAST::Codegen() {
712 Value *CondV = Cond->Codegen();
713 if (CondV == 0) return 0;
714
715 // Convert condition to a bool by comparing equal to 0.0.
716 CondV = Builder.CreateFCmpONE(CondV,
717 ConstantFP::get(APFloat(0.0)),
718 "ifcond");
719
720 Function *TheFunction = Builder.GetInsertBlock()->getParent();
721
722 // Create blocks for the then and else cases. Insert the 'then' block at the
723 // end of the function.
724 BasicBlock *ThenBB = BasicBlock::Create("then", TheFunction);
725 BasicBlock *ElseBB = BasicBlock::Create("else");
726 BasicBlock *MergeBB = BasicBlock::Create("ifcont");
727
728 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
729
730 // Emit then value.
731 Builder.SetInsertPoint(ThenBB);
732
733 Value *ThenV = Then->Codegen();
734 if (ThenV == 0) return 0;
735
736 Builder.CreateBr(MergeBB);
737 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
738 ThenBB = Builder.GetInsertBlock();
739
740 // Emit else block.
741 TheFunction->getBasicBlockList().push_back(ElseBB);
742 Builder.SetInsertPoint(ElseBB);
743
744 Value *ElseV = Else->Codegen();
745 if (ElseV == 0) return 0;
746
747 Builder.CreateBr(MergeBB);
748 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
749 ElseBB = Builder.GetInsertBlock();
750
751 // Emit merge block.
752 TheFunction->getBasicBlockList().push_back(MergeBB);
753 Builder.SetInsertPoint(MergeBB);
754 PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
755
756 PN->addIncoming(ThenV, ThenBB);
757 PN->addIncoming(ElseV, ElseBB);
758 return PN;
759}
760
761Value *ForExprAST::Codegen() {
762 // Output this as:
763 // var = alloca double
764 // ...
765 // start = startexpr
766 // store start -> var
767 // goto loop
768 // loop:
769 // ...
770 // bodyexpr
771 // ...
772 // loopend:
773 // step = stepexpr
774 // endcond = endexpr
775 //
776 // curvar = load var
777 // nextvar = curvar + step
778 // store nextvar -> var
779 // br endcond, loop, endloop
780 // outloop:
781
782 Function *TheFunction = Builder.GetInsertBlock()->getParent();
783
784 // Create an alloca for the variable in the entry block.
785 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
786
787 // Emit the start code first, without 'variable' in scope.
788 Value *StartVal = Start->Codegen();
789 if (StartVal == 0) return 0;
790
791 // Store the value into the alloca.
792 Builder.CreateStore(StartVal, Alloca);
793
794 // Make the new basic block for the loop header, inserting after current
795 // block.
Nick Lewycky9f856342009-04-12 20:47:23 +0000796 BasicBlock *LoopBB = BasicBlock::Create("loop", TheFunction);
797
798 // Insert an explicit fall through from the current block to the LoopBB.
799 Builder.CreateBr(LoopBB);
800
801 // Start insertion in LoopBB.
802 Builder.SetInsertPoint(LoopBB);
803
804 // Within the loop, the variable is defined equal to the PHI node. If it
805 // shadows an existing variable, we have to restore it, so save it now.
806 AllocaInst *OldVal = NamedValues[VarName];
807 NamedValues[VarName] = Alloca;
808
809 // Emit the body of the loop. This, like any other expr, can change the
810 // current BB. Note that we ignore the value computed by the body, but don't
811 // allow an error.
812 if (Body->Codegen() == 0)
813 return 0;
814
815 // Emit the step value.
816 Value *StepVal;
817 if (Step) {
818 StepVal = Step->Codegen();
819 if (StepVal == 0) return 0;
820 } else {
821 // If not specified, use 1.0.
822 StepVal = ConstantFP::get(APFloat(1.0));
823 }
824
825 // Compute the end condition.
826 Value *EndCond = End->Codegen();
827 if (EndCond == 0) return EndCond;
828
829 // Reload, increment, and restore the alloca. This handles the case where
830 // the body of the loop mutates the variable.
831 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
832 Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
833 Builder.CreateStore(NextVar, Alloca);
834
835 // Convert condition to a bool by comparing equal to 0.0.
836 EndCond = Builder.CreateFCmpONE(EndCond,
837 ConstantFP::get(APFloat(0.0)),
838 "loopcond");
839
840 // Create the "after loop" block and insert it.
Nick Lewycky9f856342009-04-12 20:47:23 +0000841 BasicBlock *AfterBB = BasicBlock::Create("afterloop", TheFunction);
842
843 // Insert the conditional branch into the end of LoopEndBB.
844 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
845
846 // Any new code will be inserted in AfterBB.
847 Builder.SetInsertPoint(AfterBB);
848
849 // Restore the unshadowed variable.
850 if (OldVal)
851 NamedValues[VarName] = OldVal;
852 else
853 NamedValues.erase(VarName);
854
855
856 // for expr always returns 0.0.
857 return Constant::getNullValue(Type::DoubleTy);
858}
859
860Value *VarExprAST::Codegen() {
861 std::vector<AllocaInst *> OldBindings;
862
863 Function *TheFunction = Builder.GetInsertBlock()->getParent();
864
865 // Register all variables and emit their initializer.
866 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
867 const std::string &VarName = VarNames[i].first;
868 ExprAST *Init = VarNames[i].second;
869
870 // Emit the initializer before adding the variable to scope, this prevents
871 // the initializer from referencing the variable itself, and permits stuff
872 // like this:
873 // var a = 1 in
874 // var a = a in ... # refers to outer 'a'.
875 Value *InitVal;
876 if (Init) {
877 InitVal = Init->Codegen();
878 if (InitVal == 0) return 0;
879 } else { // If not specified, use 0.0.
880 InitVal = ConstantFP::get(APFloat(0.0));
881 }
882
883 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
884 Builder.CreateStore(InitVal, Alloca);
885
886 // Remember the old variable binding so that we can restore the binding when
887 // we unrecurse.
888 OldBindings.push_back(NamedValues[VarName]);
889
890 // Remember this binding.
891 NamedValues[VarName] = Alloca;
892 }
893
894 // Codegen the body, now that all vars are in scope.
895 Value *BodyVal = Body->Codegen();
896 if (BodyVal == 0) return 0;
897
898 // Pop all our variables from scope.
899 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
900 NamedValues[VarNames[i].first] = OldBindings[i];
901
902 // Return the body computation.
903 return BodyVal;
904}
905
906
907Function *PrototypeAST::Codegen() {
908 // Make the function type: double(double,double) etc.
909 std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
910 FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
911
912 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
913
914 // If F conflicted, there was already something named 'Name'. If it has a
915 // body, don't allow redefinition or reextern.
916 if (F->getName() != Name) {
917 // Delete the one we just made and get the existing one.
918 F->eraseFromParent();
919 F = TheModule->getFunction(Name);
920
921 // If F already has a body, reject this.
922 if (!F->empty()) {
923 ErrorF("redefinition of function");
924 return 0;
925 }
926
927 // If F took a different number of args, reject.
928 if (F->arg_size() != Args.size()) {
929 ErrorF("redefinition of function with different # args");
930 return 0;
931 }
932 }
933
934 // Set names for all arguments.
935 unsigned Idx = 0;
936 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
937 ++AI, ++Idx)
938 AI->setName(Args[Idx]);
939
940 return F;
941}
942
943/// CreateArgumentAllocas - Create an alloca for each argument and register the
944/// argument in the symbol table so that references to it will succeed.
945void PrototypeAST::CreateArgumentAllocas(Function *F) {
946 Function::arg_iterator AI = F->arg_begin();
947 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
948 // Create an alloca for this variable.
949 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
950
951 // Store the initial value into the alloca.
952 Builder.CreateStore(AI, Alloca);
953
954 // Add arguments to variable symbol table.
955 NamedValues[Args[Idx]] = Alloca;
956 }
957}
958
959
960Function *FunctionAST::Codegen() {
961 NamedValues.clear();
962
963 Function *TheFunction = Proto->Codegen();
964 if (TheFunction == 0)
965 return 0;
966
967 // If this is an operator, install it.
968 if (Proto->isBinaryOp())
969 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
970
971 // Create a new basic block to start insertion into.
972 BasicBlock *BB = BasicBlock::Create("entry", TheFunction);
973 Builder.SetInsertPoint(BB);
974
975 // Add all arguments to the symbol table and create their allocas.
976 Proto->CreateArgumentAllocas(TheFunction);
977
978 if (Value *RetVal = Body->Codegen()) {
979 // Finish off the function.
980 Builder.CreateRet(RetVal);
981
982 // Validate the generated code, checking for consistency.
983 verifyFunction(*TheFunction);
984
985 // Optimize the function.
986 TheFPM->run(*TheFunction);
987
988 return TheFunction;
989 }
990
991 // Error reading body, remove function.
992 TheFunction->eraseFromParent();
993
994 if (Proto->isBinaryOp())
995 BinopPrecedence.erase(Proto->getOperatorName());
996 return 0;
997}
998
999//===----------------------------------------------------------------------===//
1000// Top-Level parsing and JIT Driver
1001//===----------------------------------------------------------------------===//
1002
1003static ExecutionEngine *TheExecutionEngine;
1004
1005static void HandleDefinition() {
1006 if (FunctionAST *F = ParseDefinition()) {
1007 if (Function *LF = F->Codegen()) {
1008 fprintf(stderr, "Read function definition:");
1009 LF->dump();
1010 }
1011 } else {
1012 // Skip token for error recovery.
1013 getNextToken();
1014 }
1015}
1016
1017static void HandleExtern() {
1018 if (PrototypeAST *P = ParseExtern()) {
1019 if (Function *F = P->Codegen()) {
1020 fprintf(stderr, "Read extern: ");
1021 F->dump();
1022 }
1023 } else {
1024 // Skip token for error recovery.
1025 getNextToken();
1026 }
1027}
1028
1029static void HandleTopLevelExpression() {
1030 // Evaluate a top level expression into an anonymous function.
1031 if (FunctionAST *F = ParseTopLevelExpr()) {
1032 if (Function *LF = F->Codegen()) {
1033 // JIT the function, returning a function pointer.
1034 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1035
1036 // Cast it to the right type (takes no arguments, returns a double) so we
1037 // can call it as a native function.
Chris Lattnerd25bff62009-04-15 00:16:05 +00001038 double (*FP)() = (double (*)())(intptr_t)FPtr;
Nick Lewycky9f856342009-04-12 20:47:23 +00001039 fprintf(stderr, "Evaluated to %f\n", FP());
1040 }
1041 } else {
1042 // Skip token for error recovery.
1043 getNextToken();
1044 }
1045}
1046
1047/// top ::= definition | external | expression | ';'
1048static void MainLoop() {
1049 while (1) {
1050 fprintf(stderr, "ready> ");
1051 switch (CurTok) {
1052 case tok_eof: return;
1053 case ';': getNextToken(); break; // ignore top level semicolons.
1054 case tok_def: HandleDefinition(); break;
1055 case tok_extern: HandleExtern(); break;
1056 default: HandleTopLevelExpression(); break;
1057 }
1058 }
1059}
1060
1061
1062
1063//===----------------------------------------------------------------------===//
1064// "Library" functions that can be "extern'd" from user code.
1065//===----------------------------------------------------------------------===//
1066
1067/// putchard - putchar that takes a double and returns 0.
1068extern "C"
1069double putchard(double X) {
1070 putchar((char)X);
1071 return 0;
1072}
1073
1074/// printd - printf that takes a double prints it as "%f\n", returning 0.
1075extern "C"
1076double printd(double X) {
1077 printf("%f\n", X);
1078 return 0;
1079}
1080
1081//===----------------------------------------------------------------------===//
1082// Main driver code.
1083//===----------------------------------------------------------------------===//
1084
1085int main() {
Chris Lattnerda062882009-06-17 16:48:44 +00001086 InitializeNativeTarget();
Owen Anderson8b477ed2009-07-01 16:58:40 +00001087 LLVMContext Context;
Chris Lattnerda062882009-06-17 16:48:44 +00001088
Nick Lewycky9f856342009-04-12 20:47:23 +00001089 // Install standard binary operators.
1090 // 1 is lowest precedence.
1091 BinopPrecedence['='] = 2;
1092 BinopPrecedence['<'] = 10;
1093 BinopPrecedence['+'] = 20;
1094 BinopPrecedence['-'] = 20;
1095 BinopPrecedence['*'] = 40; // highest.
1096
1097 // Prime the first token.
1098 fprintf(stderr, "ready> ");
1099 getNextToken();
1100
1101 // Make the module, which holds all the code.
Owen Anderson8b477ed2009-07-01 16:58:40 +00001102 TheModule = new Module("my cool jit", &Context);
Nick Lewycky9f856342009-04-12 20:47:23 +00001103
1104 // Create the JIT.
1105 TheExecutionEngine = ExecutionEngine::create(TheModule);
1106
1107 {
1108 ExistingModuleProvider OurModuleProvider(TheModule);
1109 FunctionPassManager OurFPM(&OurModuleProvider);
1110
1111 // Set up the optimizer pipeline. Start with registering info about how the
1112 // target lays out data structures.
1113 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
1114 // Promote allocas to registers.
1115 OurFPM.add(createPromoteMemoryToRegisterPass());
1116 // Do simple "peephole" optimizations and bit-twiddling optzns.
1117 OurFPM.add(createInstructionCombiningPass());
1118 // Reassociate expressions.
1119 OurFPM.add(createReassociatePass());
1120 // Eliminate Common SubExpressions.
1121 OurFPM.add(createGVNPass());
1122 // Simplify the control flow graph (deleting unreachable blocks, etc).
1123 OurFPM.add(createCFGSimplificationPass());
1124
1125 // Set the global so the code gen can use this.
1126 TheFPM = &OurFPM;
1127
1128 // Run the main "interpreter loop" now.
1129 MainLoop();
1130
1131 TheFPM = 0;
1132
1133 // Print out all of the generated code.
1134 TheModule->dump();
1135
1136 } // Free module provider (and thus the module) and pass manager.
1137
1138 return 0;
1139}
1140