blob: 2934345b603589440655ad9018a69e41b5dad6e0 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000029#include "llvm/CodeGen/Collector.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000033#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038#include "llvm/Target/MRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54 cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57 cl::desc("Pop up a window to show sched dags as they are processed"));
Dan Gohman134c5b62007-08-28 20:32:58 +000058static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60 cl::desc("Pop up a window to show SUnit dags after they are processed"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061#else
Dan Gohman134c5b62007-08-28 20:32:58 +000062static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000063#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78 cl::opt<RegisterScheduler::FunctionPassCtor, false,
79 RegisterPassParser<RegisterScheduler> >
80 ISHeuristic("pre-RA-sched",
81 cl::init(&createDefaultScheduler),
82 cl::desc("Instruction schedulers available (before register allocation):"));
83
84 static RegisterScheduler
85 defaultListDAGScheduler("default", " Best scheduler for the target",
86 createDefaultScheduler);
87} // namespace
88
89namespace { struct AsmOperandInfo; }
90
91namespace {
92 /// RegsForValue - This struct represents the physical registers that a
93 /// particular value is assigned and the type information about the value.
94 /// This is needed because values can be promoted into larger registers and
95 /// expanded into multiple smaller registers than the value.
96 struct VISIBILITY_HIDDEN RegsForValue {
97 /// Regs - This list holds the register (for legal and promoted values)
98 /// or register set (for expanded values) that the value should be assigned
99 /// to.
100 std::vector<unsigned> Regs;
101
102 /// RegVT - The value type of each register.
103 ///
104 MVT::ValueType RegVT;
105
106 /// ValueVT - The value type of the LLVM value, which may be promoted from
107 /// RegVT or made from merging the two expanded parts.
108 MVT::ValueType ValueVT;
109
110 RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
111
112 RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
113 : RegVT(regvt), ValueVT(valuevt) {
114 Regs.push_back(Reg);
115 }
116 RegsForValue(const std::vector<unsigned> &regs,
117 MVT::ValueType regvt, MVT::ValueType valuevt)
118 : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
119 }
120
121 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
122 /// this value and returns the result as a ValueVT value. This uses
123 /// Chain/Flag as the input and updates them for the output Chain/Flag.
124 /// If the Flag pointer is NULL, no flag is used.
125 SDOperand getCopyFromRegs(SelectionDAG &DAG,
126 SDOperand &Chain, SDOperand *Flag) const;
127
128 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
129 /// specified value into the registers specified by this object. This uses
130 /// Chain/Flag as the input and updates them for the output Chain/Flag.
131 /// If the Flag pointer is NULL, no flag is used.
132 void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
133 SDOperand &Chain, SDOperand *Flag) const;
134
135 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
136 /// operand list. This adds the code marker and includes the number of
137 /// values added into it.
138 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
139 std::vector<SDOperand> &Ops) const;
140 };
141}
142
143namespace llvm {
144 //===--------------------------------------------------------------------===//
145 /// createDefaultScheduler - This creates an instruction scheduler appropriate
146 /// for the target.
147 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
148 SelectionDAG *DAG,
149 MachineBasicBlock *BB) {
150 TargetLowering &TLI = IS->getTargetLowering();
151
152 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
153 return createTDListDAGScheduler(IS, DAG, BB);
154 } else {
155 assert(TLI.getSchedulingPreference() ==
156 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
157 return createBURRListDAGScheduler(IS, DAG, BB);
158 }
159 }
160
161
162 //===--------------------------------------------------------------------===//
163 /// FunctionLoweringInfo - This contains information that is global to a
164 /// function that is used when lowering a region of the function.
165 class FunctionLoweringInfo {
166 public:
167 TargetLowering &TLI;
168 Function &Fn;
169 MachineFunction &MF;
Chris Lattner1b989192007-12-31 04:13:23 +0000170 MachineRegisterInfo &RegInfo;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000171
172 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
173
174 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
175 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
176
177 /// ValueMap - Since we emit code for the function a basic block at a time,
178 /// we must remember which virtual registers hold the values for
179 /// cross-basic-block values.
180 DenseMap<const Value*, unsigned> ValueMap;
181
182 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
183 /// the entry block. This allows the allocas to be efficiently referenced
184 /// anywhere in the function.
185 std::map<const AllocaInst*, int> StaticAllocaMap;
186
187#ifndef NDEBUG
188 SmallSet<Instruction*, 8> CatchInfoLost;
189 SmallSet<Instruction*, 8> CatchInfoFound;
190#endif
191
192 unsigned MakeReg(MVT::ValueType VT) {
Chris Lattner1b989192007-12-31 04:13:23 +0000193 return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000194 }
195
196 /// isExportedInst - Return true if the specified value is an instruction
197 /// exported from its block.
198 bool isExportedInst(const Value *V) {
199 return ValueMap.count(V);
200 }
201
202 unsigned CreateRegForValue(const Value *V);
203
204 unsigned InitializeRegForValue(const Value *V) {
205 unsigned &R = ValueMap[V];
206 assert(R == 0 && "Already initialized this value register!");
207 return R = CreateRegForValue(V);
208 }
209 };
210}
211
212/// isSelector - Return true if this instruction is a call to the
213/// eh.selector intrinsic.
214static bool isSelector(Instruction *I) {
215 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Anton Korobeynikov94c46a02007-09-07 11:39:35 +0000216 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
217 II->getIntrinsicID() == Intrinsic::eh_selector_i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000218 return false;
219}
220
221/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
222/// PHI nodes or outside of the basic block that defines it, or used by a
223/// switch instruction, which may expand to multiple basic blocks.
224static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
225 if (isa<PHINode>(I)) return true;
226 BasicBlock *BB = I->getParent();
227 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
228 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
229 // FIXME: Remove switchinst special case.
230 isa<SwitchInst>(*UI))
231 return true;
232 return false;
233}
234
235/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
236/// entry block, return true. This includes arguments used by switches, since
237/// the switch may expand into multiple basic blocks.
238static bool isOnlyUsedInEntryBlock(Argument *A) {
239 BasicBlock *Entry = A->getParent()->begin();
240 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
241 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
242 return false; // Use not in entry block.
243 return true;
244}
245
246FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
247 Function &fn, MachineFunction &mf)
Chris Lattner1b989192007-12-31 04:13:23 +0000248 : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249
250 // Create a vreg for each argument register that is not dead and is used
251 // outside of the entry block for the function.
252 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
253 AI != E; ++AI)
254 if (!isOnlyUsedInEntryBlock(AI))
255 InitializeRegForValue(AI);
256
257 // Initialize the mapping of values to registers. This is only set up for
258 // instruction values that are used outside of the block that defines
259 // them.
260 Function::iterator BB = Fn.begin(), EB = Fn.end();
261 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
262 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
263 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
264 const Type *Ty = AI->getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000265 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266 unsigned Align =
267 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
268 AI->getAlignment());
269
270 TySize *= CUI->getZExtValue(); // Get total allocated size.
271 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
272 StaticAllocaMap[AI] =
273 MF.getFrameInfo()->CreateStackObject(TySize, Align);
274 }
275
276 for (; BB != EB; ++BB)
277 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
278 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
279 if (!isa<AllocaInst>(I) ||
280 !StaticAllocaMap.count(cast<AllocaInst>(I)))
281 InitializeRegForValue(I);
282
283 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
284 // also creates the initial PHI MachineInstrs, though none of the input
285 // operands are populated.
286 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
287 MachineBasicBlock *MBB = new MachineBasicBlock(BB);
288 MBBMap[BB] = MBB;
289 MF.getBasicBlockList().push_back(MBB);
290
291 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
292 // appropriate.
293 PHINode *PN;
294 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
295 if (PN->use_empty()) continue;
296
297 MVT::ValueType VT = TLI.getValueType(PN->getType());
298 unsigned NumRegisters = TLI.getNumRegisters(VT);
299 unsigned PHIReg = ValueMap[PN];
300 assert(PHIReg && "PHI node does not have an assigned virtual register!");
301 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
302 for (unsigned i = 0; i != NumRegisters; ++i)
303 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
304 }
305 }
306}
307
308/// CreateRegForValue - Allocate the appropriate number of virtual registers of
309/// the correctly promoted or expanded types. Assign these registers
310/// consecutive vreg numbers and return the first assigned number.
311unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
312 MVT::ValueType VT = TLI.getValueType(V->getType());
313
314 unsigned NumRegisters = TLI.getNumRegisters(VT);
315 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
316
317 unsigned R = MakeReg(RegisterVT);
318 for (unsigned i = 1; i != NumRegisters; ++i)
319 MakeReg(RegisterVT);
320
321 return R;
322}
323
324//===----------------------------------------------------------------------===//
325/// SelectionDAGLowering - This is the common target-independent lowering
326/// implementation that is parameterized by a TargetLowering object.
327/// Also, targets can overload any lowering method.
328///
329namespace llvm {
330class SelectionDAGLowering {
331 MachineBasicBlock *CurMBB;
332
333 DenseMap<const Value*, SDOperand> NodeMap;
334
335 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
336 /// them up and then emit token factor nodes when possible. This allows us to
337 /// get simple disambiguation between loads without worrying about alias
338 /// analysis.
339 std::vector<SDOperand> PendingLoads;
340
341 /// Case - A struct to record the Value for a switch case, and the
342 /// case's target basic block.
343 struct Case {
344 Constant* Low;
345 Constant* High;
346 MachineBasicBlock* BB;
347
348 Case() : Low(0), High(0), BB(0) { }
349 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
350 Low(low), High(high), BB(bb) { }
351 uint64_t size() const {
352 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
353 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
354 return (rHigh - rLow + 1ULL);
355 }
356 };
357
358 struct CaseBits {
359 uint64_t Mask;
360 MachineBasicBlock* BB;
361 unsigned Bits;
362
363 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
364 Mask(mask), BB(bb), Bits(bits) { }
365 };
366
367 typedef std::vector<Case> CaseVector;
368 typedef std::vector<CaseBits> CaseBitsVector;
369 typedef CaseVector::iterator CaseItr;
370 typedef std::pair<CaseItr, CaseItr> CaseRange;
371
372 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
373 /// of conditional branches.
374 struct CaseRec {
375 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
376 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
377
378 /// CaseBB - The MBB in which to emit the compare and branch
379 MachineBasicBlock *CaseBB;
380 /// LT, GE - If nonzero, we know the current case value must be less-than or
381 /// greater-than-or-equal-to these Constants.
382 Constant *LT;
383 Constant *GE;
384 /// Range - A pair of iterators representing the range of case values to be
385 /// processed at this point in the binary search tree.
386 CaseRange Range;
387 };
388
389 typedef std::vector<CaseRec> CaseRecVector;
390
391 /// The comparison function for sorting the switch case values in the vector.
392 /// WARNING: Case ranges should be disjoint!
393 struct CaseCmp {
394 bool operator () (const Case& C1, const Case& C2) {
395 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
396 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
397 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
398 return CI1->getValue().slt(CI2->getValue());
399 }
400 };
401
402 struct CaseBitsCmp {
403 bool operator () (const CaseBits& C1, const CaseBits& C2) {
404 return C1.Bits > C2.Bits;
405 }
406 };
407
408 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
409
410public:
411 // TLI - This is information that describes the available target features we
412 // need for lowering. This indicates when operations are unavailable,
413 // implemented with a libcall, etc.
414 TargetLowering &TLI;
415 SelectionDAG &DAG;
416 const TargetData *TD;
Dan Gohmancc863aa2007-08-27 16:26:13 +0000417 AliasAnalysis &AA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418
419 /// SwitchCases - Vector of CaseBlock structures used to communicate
420 /// SwitchInst code generation information.
421 std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
422 /// JTCases - Vector of JumpTable structures used to communicate
423 /// SwitchInst code generation information.
424 std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
425 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
426
427 /// FuncInfo - Information about the function as a whole.
428 ///
429 FunctionLoweringInfo &FuncInfo;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +0000430
431 /// GCI - Garbage collection metadata for the function.
432 CollectorMetadata *GCI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433
434 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
Dan Gohmancc863aa2007-08-27 16:26:13 +0000435 AliasAnalysis &aa,
Gordon Henriksendf87fdc2008-01-07 01:30:38 +0000436 FunctionLoweringInfo &funcinfo,
437 CollectorMetadata *gci)
Dan Gohmancc863aa2007-08-27 16:26:13 +0000438 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
Gordon Henriksendf87fdc2008-01-07 01:30:38 +0000439 FuncInfo(funcinfo), GCI(gci) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 }
441
442 /// getRoot - Return the current virtual root of the Selection DAG.
443 ///
444 SDOperand getRoot() {
445 if (PendingLoads.empty())
446 return DAG.getRoot();
447
448 if (PendingLoads.size() == 1) {
449 SDOperand Root = PendingLoads[0];
450 DAG.setRoot(Root);
451 PendingLoads.clear();
452 return Root;
453 }
454
455 // Otherwise, we have to make a token factor node.
456 SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
457 &PendingLoads[0], PendingLoads.size());
458 PendingLoads.clear();
459 DAG.setRoot(Root);
460 return Root;
461 }
462
463 SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
464
465 void visit(Instruction &I) { visit(I.getOpcode(), I); }
466
467 void visit(unsigned Opcode, User &I) {
468 // Note: this doesn't use InstVisitor, because it has to work with
469 // ConstantExpr's in addition to instructions.
470 switch (Opcode) {
471 default: assert(0 && "Unknown instruction type encountered!");
472 abort();
473 // Build the switch statement using the Instruction.def file.
474#define HANDLE_INST(NUM, OPCODE, CLASS) \
475 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
476#include "llvm/Instruction.def"
477 }
478 }
479
480 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
481
482 SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
483 const Value *SV, SDOperand Root,
484 bool isVolatile, unsigned Alignment);
485
486 SDOperand getIntPtrConstant(uint64_t Val) {
487 return DAG.getConstant(Val, TLI.getPointerTy());
488 }
489
490 SDOperand getValue(const Value *V);
491
492 void setValue(const Value *V, SDOperand NewN) {
493 SDOperand &N = NodeMap[V];
494 assert(N.Val == 0 && "Already set a value for this node!");
495 N = NewN;
496 }
497
498 void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
499 std::set<unsigned> &OutputRegs,
500 std::set<unsigned> &InputRegs);
501
502 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
503 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
504 unsigned Opc);
505 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
506 void ExportFromCurrentBlock(Value *V);
Duncan Sandse9bc9132007-12-19 09:48:52 +0000507 void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 MachineBasicBlock *LandingPad = NULL);
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000509
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510 // Terminator instructions.
511 void visitRet(ReturnInst &I);
512 void visitBr(BranchInst &I);
513 void visitSwitch(SwitchInst &I);
514 void visitUnreachable(UnreachableInst &I) { /* noop */ }
515
516 // Helpers for visitSwitch
517 bool handleSmallSwitchRange(CaseRec& CR,
518 CaseRecVector& WorkList,
519 Value* SV,
520 MachineBasicBlock* Default);
521 bool handleJTSwitchCase(CaseRec& CR,
522 CaseRecVector& WorkList,
523 Value* SV,
524 MachineBasicBlock* Default);
525 bool handleBTSplitSwitchCase(CaseRec& CR,
526 CaseRecVector& WorkList,
527 Value* SV,
528 MachineBasicBlock* Default);
529 bool handleBitTestsSwitchCase(CaseRec& CR,
530 CaseRecVector& WorkList,
531 Value* SV,
532 MachineBasicBlock* Default);
533 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
534 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
535 void visitBitTestCase(MachineBasicBlock* NextMBB,
536 unsigned Reg,
537 SelectionDAGISel::BitTestCase &B);
538 void visitJumpTable(SelectionDAGISel::JumpTable &JT);
539 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
540 SelectionDAGISel::JumpTableHeader &JTH);
541
542 // These all get lowered before this pass.
543 void visitInvoke(InvokeInst &I);
544 void visitUnwind(UnwindInst &I);
545
546 void visitBinary(User &I, unsigned OpCode);
547 void visitShift(User &I, unsigned Opcode);
548 void visitAdd(User &I) {
549 if (I.getType()->isFPOrFPVector())
550 visitBinary(I, ISD::FADD);
551 else
552 visitBinary(I, ISD::ADD);
553 }
554 void visitSub(User &I);
555 void visitMul(User &I) {
556 if (I.getType()->isFPOrFPVector())
557 visitBinary(I, ISD::FMUL);
558 else
559 visitBinary(I, ISD::MUL);
560 }
561 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
562 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
563 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
564 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
565 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
566 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
567 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
568 void visitOr (User &I) { visitBinary(I, ISD::OR); }
569 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
570 void visitShl (User &I) { visitShift(I, ISD::SHL); }
571 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
572 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
573 void visitICmp(User &I);
574 void visitFCmp(User &I);
575 // Visit the conversion instructions
576 void visitTrunc(User &I);
577 void visitZExt(User &I);
578 void visitSExt(User &I);
579 void visitFPTrunc(User &I);
580 void visitFPExt(User &I);
581 void visitFPToUI(User &I);
582 void visitFPToSI(User &I);
583 void visitUIToFP(User &I);
584 void visitSIToFP(User &I);
585 void visitPtrToInt(User &I);
586 void visitIntToPtr(User &I);
587 void visitBitCast(User &I);
588
589 void visitExtractElement(User &I);
590 void visitInsertElement(User &I);
591 void visitShuffleVector(User &I);
592
593 void visitGetElementPtr(User &I);
594 void visitSelect(User &I);
595
596 void visitMalloc(MallocInst &I);
597 void visitFree(FreeInst &I);
598 void visitAlloca(AllocaInst &I);
599 void visitLoad(LoadInst &I);
600 void visitStore(StoreInst &I);
601 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
602 void visitCall(CallInst &I);
Duncan Sands1c5526c2007-12-17 18:08:19 +0000603 void visitInlineAsm(CallSite CS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000604 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
605 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
606
607 void visitVAStart(CallInst &I);
608 void visitVAArg(VAArgInst &I);
609 void visitVAEnd(CallInst &I);
610 void visitVACopy(CallInst &I);
611
612 void visitMemIntrinsic(CallInst &I, unsigned Op);
613
614 void visitUserOp1(Instruction &I) {
615 assert(0 && "UserOp1 should not exist at instruction selection time!");
616 abort();
617 }
618 void visitUserOp2(Instruction &I) {
619 assert(0 && "UserOp2 should not exist at instruction selection time!");
620 abort();
621 }
622};
623} // end namespace llvm
624
625
626/// getCopyFromParts - Create a value that contains the
627/// specified legal parts combined into the value they represent.
628static SDOperand getCopyFromParts(SelectionDAG &DAG,
629 const SDOperand *Parts,
630 unsigned NumParts,
631 MVT::ValueType PartVT,
632 MVT::ValueType ValueVT,
633 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
634 if (!MVT::isVector(ValueVT) || NumParts == 1) {
635 SDOperand Val = Parts[0];
636
637 // If the value was expanded, copy from the top part.
638 if (NumParts > 1) {
639 assert(NumParts == 2 &&
640 "Cannot expand to more than 2 elts yet!");
641 SDOperand Hi = Parts[1];
642 if (!DAG.getTargetLoweringInfo().isLittleEndian())
643 std::swap(Val, Hi);
644 return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
645 }
646
647 // Otherwise, if the value was promoted or extended, truncate it to the
648 // appropriate type.
649 if (PartVT == ValueVT)
650 return Val;
651
652 if (MVT::isVector(PartVT)) {
653 assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000654 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
655 }
656
657 if (MVT::isVector(ValueVT)) {
658 assert(NumParts == 1 &&
659 MVT::getVectorElementType(ValueVT) == PartVT &&
660 MVT::getVectorNumElements(ValueVT) == 1 &&
661 "Only trivial scalar-to-vector conversions should get here!");
662 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000663 }
664
665 if (MVT::isInteger(PartVT) &&
666 MVT::isInteger(ValueVT)) {
667 if (ValueVT < PartVT) {
668 // For a truncate, see if we have any information to
669 // indicate whether the truncated bits will always be
670 // zero or sign-extension.
671 if (AssertOp != ISD::DELETED_NODE)
672 Val = DAG.getNode(AssertOp, PartVT, Val,
673 DAG.getValueType(ValueVT));
674 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
675 } else {
676 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
677 }
678 }
679
680 if (MVT::isFloatingPoint(PartVT) &&
681 MVT::isFloatingPoint(ValueVT))
682 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
683
684 if (MVT::getSizeInBits(PartVT) ==
685 MVT::getSizeInBits(ValueVT))
686 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
687
688 assert(0 && "Unknown mismatch!");
689 }
690
691 // Handle a multi-element vector.
692 MVT::ValueType IntermediateVT, RegisterVT;
693 unsigned NumIntermediates;
694 unsigned NumRegs =
695 DAG.getTargetLoweringInfo()
696 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
697 RegisterVT);
698
699 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
700 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
701 assert(RegisterVT == Parts[0].getValueType() &&
702 "Part type doesn't match part!");
703
704 // Assemble the parts into intermediate operands.
705 SmallVector<SDOperand, 8> Ops(NumIntermediates);
706 if (NumIntermediates == NumParts) {
707 // If the register was not expanded, truncate or copy the value,
708 // as appropriate.
709 for (unsigned i = 0; i != NumParts; ++i)
710 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
711 PartVT, IntermediateVT);
712 } else if (NumParts > 0) {
713 // If the intermediate type was expanded, build the intermediate operands
714 // from the parts.
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000715 assert(NumParts % NumIntermediates == 0 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716 "Must expand into a divisible number of parts!");
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000717 unsigned Factor = NumParts / NumIntermediates;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718 for (unsigned i = 0; i != NumIntermediates; ++i)
719 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
720 PartVT, IntermediateVT);
721 }
722
723 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
724 // operands.
725 return DAG.getNode(MVT::isVector(IntermediateVT) ?
726 ISD::CONCAT_VECTORS :
727 ISD::BUILD_VECTOR,
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000728 ValueVT, &Ops[0], NumIntermediates);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729}
730
731/// getCopyToParts - Create a series of nodes that contain the
732/// specified value split into legal parts.
733static void getCopyToParts(SelectionDAG &DAG,
734 SDOperand Val,
735 SDOperand *Parts,
736 unsigned NumParts,
737 MVT::ValueType PartVT) {
Dan Gohmanf7b05132007-08-10 14:59:38 +0000738 TargetLowering &TLI = DAG.getTargetLoweringInfo();
739 MVT::ValueType PtrVT = TLI.getPointerTy();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 MVT::ValueType ValueVT = Val.getValueType();
741
742 if (!MVT::isVector(ValueVT) || NumParts == 1) {
743 // If the value was expanded, copy from the parts.
744 if (NumParts > 1) {
745 for (unsigned i = 0; i != NumParts; ++i)
746 Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000747 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 if (!DAG.getTargetLoweringInfo().isLittleEndian())
749 std::reverse(Parts, Parts + NumParts);
750 return;
751 }
752
753 // If there is a single part and the types differ, this must be
754 // a promotion.
755 if (PartVT != ValueVT) {
756 if (MVT::isVector(PartVT)) {
757 assert(MVT::isVector(ValueVT) &&
758 "Not a vector-vector cast?");
759 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000760 } else if (MVT::isVector(ValueVT)) {
761 assert(NumParts == 1 &&
762 MVT::getVectorElementType(ValueVT) == PartVT &&
763 MVT::getVectorNumElements(ValueVT) == 1 &&
764 "Only trivial vector-to-scalar conversions should get here!");
765 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
766 DAG.getConstant(0, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000767 } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
768 if (PartVT < ValueVT)
769 Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
770 else
771 Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
772 } else if (MVT::isFloatingPoint(PartVT) &&
773 MVT::isFloatingPoint(ValueVT)) {
774 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
775 } else if (MVT::getSizeInBits(PartVT) ==
776 MVT::getSizeInBits(ValueVT)) {
777 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
778 } else {
779 assert(0 && "Unknown mismatch!");
780 }
781 }
782 Parts[0] = Val;
783 return;
784 }
785
786 // Handle a multi-element vector.
787 MVT::ValueType IntermediateVT, RegisterVT;
788 unsigned NumIntermediates;
789 unsigned NumRegs =
790 DAG.getTargetLoweringInfo()
791 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
792 RegisterVT);
793 unsigned NumElements = MVT::getVectorNumElements(ValueVT);
794
795 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
796 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
797
798 // Split the vector into intermediate operands.
799 SmallVector<SDOperand, 8> Ops(NumIntermediates);
800 for (unsigned i = 0; i != NumIntermediates; ++i)
801 if (MVT::isVector(IntermediateVT))
802 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
803 IntermediateVT, Val,
804 DAG.getConstant(i * (NumElements / NumIntermediates),
Dan Gohmanf7b05132007-08-10 14:59:38 +0000805 PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000806 else
807 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
808 IntermediateVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000809 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810
811 // Split the intermediate operands into legal parts.
812 if (NumParts == NumIntermediates) {
813 // If the register was not expanded, promote or copy the value,
814 // as appropriate.
815 for (unsigned i = 0; i != NumParts; ++i)
816 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
817 } else if (NumParts > 0) {
818 // If the intermediate type was expanded, split each the value into
819 // legal parts.
820 assert(NumParts % NumIntermediates == 0 &&
821 "Must expand into a divisible number of parts!");
822 unsigned Factor = NumParts / NumIntermediates;
823 for (unsigned i = 0; i != NumIntermediates; ++i)
824 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
825 }
826}
827
828
829SDOperand SelectionDAGLowering::getValue(const Value *V) {
830 SDOperand &N = NodeMap[V];
831 if (N.Val) return N;
832
833 const Type *VTy = V->getType();
834 MVT::ValueType VT = TLI.getValueType(VTy);
835 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
836 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
837 visit(CE->getOpcode(), *CE);
838 SDOperand N1 = NodeMap[V];
839 assert(N1.Val && "visit didn't populate the ValueMap!");
840 return N1;
841 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
842 return N = DAG.getGlobalAddress(GV, VT);
843 } else if (isa<ConstantPointerNull>(C)) {
844 return N = DAG.getConstant(0, TLI.getPointerTy());
845 } else if (isa<UndefValue>(C)) {
846 if (!isa<VectorType>(VTy))
847 return N = DAG.getNode(ISD::UNDEF, VT);
848
849 // Create a BUILD_VECTOR of undef nodes.
850 const VectorType *PTy = cast<VectorType>(VTy);
851 unsigned NumElements = PTy->getNumElements();
852 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
853
854 SmallVector<SDOperand, 8> Ops;
855 Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
856
857 // Create a VConstant node with generic Vector type.
858 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
859 return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
860 &Ops[0], Ops.size());
861 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000862 return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000863 } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
864 unsigned NumElements = PTy->getNumElements();
865 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
866
867 // Now that we know the number and type of the elements, push a
868 // Constant or ConstantFP node onto the ops list for each element of
869 // the vector constant.
870 SmallVector<SDOperand, 8> Ops;
871 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
872 for (unsigned i = 0; i != NumElements; ++i)
873 Ops.push_back(getValue(CP->getOperand(i)));
874 } else {
875 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
876 SDOperand Op;
877 if (MVT::isFloatingPoint(PVT))
878 Op = DAG.getConstantFP(0, PVT);
879 else
880 Op = DAG.getConstant(0, PVT);
881 Ops.assign(NumElements, Op);
882 }
883
884 // Create a BUILD_VECTOR node.
885 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
886 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
887 Ops.size());
888 } else {
889 // Canonicalize all constant ints to be unsigned.
890 return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
891 }
892 }
893
894 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
895 std::map<const AllocaInst*, int>::iterator SI =
896 FuncInfo.StaticAllocaMap.find(AI);
897 if (SI != FuncInfo.StaticAllocaMap.end())
898 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
899 }
900
901 unsigned InReg = FuncInfo.ValueMap[V];
902 assert(InReg && "Value not in map!");
903
904 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
905 unsigned NumRegs = TLI.getNumRegisters(VT);
906
907 std::vector<unsigned> Regs(NumRegs);
908 for (unsigned i = 0; i != NumRegs; ++i)
909 Regs[i] = InReg + i;
910
911 RegsForValue RFV(Regs, RegisterVT, VT);
912 SDOperand Chain = DAG.getEntryNode();
913
914 return RFV.getCopyFromRegs(DAG, Chain, NULL);
915}
916
917
918void SelectionDAGLowering::visitRet(ReturnInst &I) {
919 if (I.getNumOperands() == 0) {
920 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
921 return;
922 }
923 SmallVector<SDOperand, 8> NewValues;
924 NewValues.push_back(getRoot());
925 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
926 SDOperand RetOp = getValue(I.getOperand(i));
927
928 // If this is an integer return value, we need to promote it ourselves to
929 // the full width of a register, since getCopyToParts and Legalize will use
930 // ANY_EXTEND rather than sign/zero.
931 // FIXME: C calling convention requires the return type to be promoted to
932 // at least 32-bit. But this is not necessary for non-C calling conventions.
933 if (MVT::isInteger(RetOp.getValueType()) &&
934 RetOp.getValueType() < MVT::i64) {
935 MVT::ValueType TmpVT;
936 if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
937 TmpVT = TLI.getTypeToTransformTo(MVT::i32);
938 else
939 TmpVT = MVT::i32;
Duncan Sands637ec552007-11-28 17:07:01 +0000940 const Function *F = I.getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000941 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000942 if (F->paramHasAttr(0, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 ExtendKind = ISD::SIGN_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000944 if (F->paramHasAttr(0, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000945 ExtendKind = ISD::ZERO_EXTEND;
946 RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
947 NewValues.push_back(RetOp);
948 NewValues.push_back(DAG.getConstant(false, MVT::i32));
949 } else {
950 MVT::ValueType VT = RetOp.getValueType();
951 unsigned NumParts = TLI.getNumRegisters(VT);
952 MVT::ValueType PartVT = TLI.getRegisterType(VT);
953 SmallVector<SDOperand, 4> Parts(NumParts);
954 getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
955 for (unsigned i = 0; i < NumParts; ++i) {
956 NewValues.push_back(Parts[i]);
957 NewValues.push_back(DAG.getConstant(false, MVT::i32));
958 }
959 }
960 }
961 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
962 &NewValues[0], NewValues.size()));
963}
964
965/// ExportFromCurrentBlock - If this condition isn't known to be exported from
966/// the current basic block, add it to ValueMap now so that we'll get a
967/// CopyTo/FromReg.
968void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
969 // No need to export constants.
970 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
971
972 // Already exported?
973 if (FuncInfo.isExportedInst(V)) return;
974
975 unsigned Reg = FuncInfo.InitializeRegForValue(V);
976 PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
977}
978
979bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
980 const BasicBlock *FromBB) {
981 // The operands of the setcc have to be in this block. We don't know
982 // how to export them from some other block.
983 if (Instruction *VI = dyn_cast<Instruction>(V)) {
984 // Can export from current BB.
985 if (VI->getParent() == FromBB)
986 return true;
987
988 // Is already exported, noop.
989 return FuncInfo.isExportedInst(V);
990 }
991
992 // If this is an argument, we can export it if the BB is the entry block or
993 // if it is already exported.
994 if (isa<Argument>(V)) {
995 if (FromBB == &FromBB->getParent()->getEntryBlock())
996 return true;
997
998 // Otherwise, can only export this if it is already exported.
999 return FuncInfo.isExportedInst(V);
1000 }
1001
1002 // Otherwise, constants can always be exported.
1003 return true;
1004}
1005
1006static bool InBlock(const Value *V, const BasicBlock *BB) {
1007 if (const Instruction *I = dyn_cast<Instruction>(V))
1008 return I->getParent() == BB;
1009 return true;
1010}
1011
1012/// FindMergedConditions - If Cond is an expression like
1013void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1014 MachineBasicBlock *TBB,
1015 MachineBasicBlock *FBB,
1016 MachineBasicBlock *CurBB,
1017 unsigned Opc) {
1018 // If this node is not part of the or/and tree, emit it as a branch.
1019 Instruction *BOp = dyn_cast<Instruction>(Cond);
1020
1021 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1022 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1023 BOp->getParent() != CurBB->getBasicBlock() ||
1024 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1025 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1026 const BasicBlock *BB = CurBB->getBasicBlock();
1027
1028 // If the leaf of the tree is a comparison, merge the condition into
1029 // the caseblock.
1030 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1031 // The operands of the cmp have to be in this block. We don't know
1032 // how to export them from some other block. If this is the first block
1033 // of the sequence, no exporting is needed.
1034 (CurBB == CurMBB ||
1035 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1036 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1037 BOp = cast<Instruction>(Cond);
1038 ISD::CondCode Condition;
1039 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1040 switch (IC->getPredicate()) {
1041 default: assert(0 && "Unknown icmp predicate opcode!");
1042 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1043 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1044 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1045 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1046 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1047 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1048 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1049 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1050 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1051 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1052 }
1053 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1054 ISD::CondCode FPC, FOC;
1055 switch (FC->getPredicate()) {
1056 default: assert(0 && "Unknown fcmp predicate opcode!");
1057 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1058 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1059 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1060 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1061 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1062 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1063 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1064 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
1065 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
1066 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1067 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1068 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1069 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1070 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1071 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1072 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1073 }
1074 if (FiniteOnlyFPMath())
1075 Condition = FOC;
1076 else
1077 Condition = FPC;
1078 } else {
1079 Condition = ISD::SETEQ; // silence warning.
1080 assert(0 && "Unknown compare instruction");
1081 }
1082
1083 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1084 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1085 SwitchCases.push_back(CB);
1086 return;
1087 }
1088
1089 // Create a CaseBlock record representing this branch.
1090 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1091 NULL, TBB, FBB, CurBB);
1092 SwitchCases.push_back(CB);
1093 return;
1094 }
1095
1096
1097 // Create TmpBB after CurBB.
1098 MachineFunction::iterator BBI = CurBB;
1099 MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1100 CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1101
1102 if (Opc == Instruction::Or) {
1103 // Codegen X | Y as:
1104 // jmp_if_X TBB
1105 // jmp TmpBB
1106 // TmpBB:
1107 // jmp_if_Y TBB
1108 // jmp FBB
1109 //
1110
1111 // Emit the LHS condition.
1112 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1113
1114 // Emit the RHS condition into TmpBB.
1115 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1116 } else {
1117 assert(Opc == Instruction::And && "Unknown merge op!");
1118 // Codegen X & Y as:
1119 // jmp_if_X TmpBB
1120 // jmp FBB
1121 // TmpBB:
1122 // jmp_if_Y TBB
1123 // jmp FBB
1124 //
1125 // This requires creation of TmpBB after CurBB.
1126
1127 // Emit the LHS condition.
1128 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1129
1130 // Emit the RHS condition into TmpBB.
1131 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1132 }
1133}
1134
1135/// If the set of cases should be emitted as a series of branches, return true.
1136/// If we should emit this as a bunch of and/or'd together conditions, return
1137/// false.
1138static bool
1139ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1140 if (Cases.size() != 2) return true;
1141
1142 // If this is two comparisons of the same values or'd or and'd together, they
1143 // will get folded into a single comparison, so don't emit two blocks.
1144 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1145 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1146 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1147 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1148 return false;
1149 }
1150
1151 return true;
1152}
1153
1154void SelectionDAGLowering::visitBr(BranchInst &I) {
1155 // Update machine-CFG edges.
1156 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1157
1158 // Figure out which block is immediately after the current one.
1159 MachineBasicBlock *NextBlock = 0;
1160 MachineFunction::iterator BBI = CurMBB;
1161 if (++BBI != CurMBB->getParent()->end())
1162 NextBlock = BBI;
1163
1164 if (I.isUnconditional()) {
1165 // If this is not a fall-through branch, emit the branch.
1166 if (Succ0MBB != NextBlock)
1167 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1168 DAG.getBasicBlock(Succ0MBB)));
1169
1170 // Update machine-CFG edges.
1171 CurMBB->addSuccessor(Succ0MBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001172 return;
1173 }
1174
1175 // If this condition is one of the special cases we handle, do special stuff
1176 // now.
1177 Value *CondVal = I.getCondition();
1178 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1179
1180 // If this is a series of conditions that are or'd or and'd together, emit
1181 // this as a sequence of branches instead of setcc's with and/or operations.
1182 // For example, instead of something like:
1183 // cmp A, B
1184 // C = seteq
1185 // cmp D, E
1186 // F = setle
1187 // or C, F
1188 // jnz foo
1189 // Emit:
1190 // cmp A, B
1191 // je foo
1192 // cmp D, E
1193 // jle foo
1194 //
1195 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1196 if (BOp->hasOneUse() &&
1197 (BOp->getOpcode() == Instruction::And ||
1198 BOp->getOpcode() == Instruction::Or)) {
1199 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1200 // If the compares in later blocks need to use values not currently
1201 // exported from this block, export them now. This block should always
1202 // be the first entry.
1203 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1204
1205 // Allow some cases to be rejected.
1206 if (ShouldEmitAsBranches(SwitchCases)) {
1207 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1208 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1209 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1210 }
1211
1212 // Emit the branch for this block.
1213 visitSwitchCase(SwitchCases[0]);
1214 SwitchCases.erase(SwitchCases.begin());
1215 return;
1216 }
1217
1218 // Okay, we decided not to do this, remove any inserted MBB's and clear
1219 // SwitchCases.
1220 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1221 CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1222
1223 SwitchCases.clear();
1224 }
1225 }
1226
1227 // Create a CaseBlock record representing this branch.
1228 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1229 NULL, Succ0MBB, Succ1MBB, CurMBB);
1230 // Use visitSwitchCase to actually insert the fast branch sequence for this
1231 // cond branch.
1232 visitSwitchCase(CB);
1233}
1234
1235/// visitSwitchCase - Emits the necessary code to represent a single node in
1236/// the binary search tree resulting from lowering a switch instruction.
1237void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1238 SDOperand Cond;
1239 SDOperand CondLHS = getValue(CB.CmpLHS);
1240
1241 // Build the setcc now.
1242 if (CB.CmpMHS == NULL) {
1243 // Fold "(X == true)" to X and "(X == false)" to !X to
1244 // handle common cases produced by branch lowering.
1245 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1246 Cond = CondLHS;
1247 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1248 SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1249 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1250 } else
1251 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1252 } else {
1253 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1254
1255 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1256 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1257
1258 SDOperand CmpOp = getValue(CB.CmpMHS);
1259 MVT::ValueType VT = CmpOp.getValueType();
1260
1261 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1262 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1263 } else {
1264 SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1265 Cond = DAG.getSetCC(MVT::i1, SUB,
1266 DAG.getConstant(High-Low, VT), ISD::SETULE);
1267 }
1268
1269 }
1270
1271 // Set NextBlock to be the MBB immediately after the current one, if any.
1272 // This is used to avoid emitting unnecessary branches to the next block.
1273 MachineBasicBlock *NextBlock = 0;
1274 MachineFunction::iterator BBI = CurMBB;
1275 if (++BBI != CurMBB->getParent()->end())
1276 NextBlock = BBI;
1277
1278 // If the lhs block is the next block, invert the condition so that we can
1279 // fall through to the lhs instead of the rhs block.
1280 if (CB.TrueBB == NextBlock) {
1281 std::swap(CB.TrueBB, CB.FalseBB);
1282 SDOperand True = DAG.getConstant(1, Cond.getValueType());
1283 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1284 }
1285 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1286 DAG.getBasicBlock(CB.TrueBB));
1287 if (CB.FalseBB == NextBlock)
1288 DAG.setRoot(BrCond);
1289 else
1290 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1291 DAG.getBasicBlock(CB.FalseBB)));
1292 // Update successor info
1293 CurMBB->addSuccessor(CB.TrueBB);
1294 CurMBB->addSuccessor(CB.FalseBB);
1295}
1296
1297/// visitJumpTable - Emit JumpTable node in the current MBB
1298void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1299 // Emit the code for the jump table
1300 assert(JT.Reg != -1U && "Should lower JT Header first!");
1301 MVT::ValueType PTy = TLI.getPointerTy();
1302 SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1303 SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1304 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1305 Table, Index));
1306 return;
1307}
1308
1309/// visitJumpTableHeader - This function emits necessary code to produce index
1310/// in the JumpTable from switch case.
1311void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1312 SelectionDAGISel::JumpTableHeader &JTH) {
1313 // Subtract the lowest switch case value from the value being switched on
1314 // and conditional branch to default mbb if the result is greater than the
1315 // difference between smallest and largest cases.
1316 SDOperand SwitchOp = getValue(JTH.SValue);
1317 MVT::ValueType VT = SwitchOp.getValueType();
1318 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1319 DAG.getConstant(JTH.First, VT));
1320
1321 // The SDNode we just created, which holds the value being switched on
1322 // minus the the smallest case value, needs to be copied to a virtual
1323 // register so it can be used as an index into the jump table in a
1324 // subsequent basic block. This value may be smaller or larger than the
1325 // target's pointer type, and therefore require extension or truncating.
1326 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1327 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1328 else
1329 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1330
1331 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1332 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1333 JT.Reg = JumpTableReg;
1334
1335 // Emit the range check for the jump table, and branch to the default
1336 // block for the switch statement if the value being switched on exceeds
1337 // the largest case in the switch.
1338 SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1339 DAG.getConstant(JTH.Last-JTH.First,VT),
1340 ISD::SETUGT);
1341
1342 // Set NextBlock to be the MBB immediately after the current one, if any.
1343 // This is used to avoid emitting unnecessary branches to the next block.
1344 MachineBasicBlock *NextBlock = 0;
1345 MachineFunction::iterator BBI = CurMBB;
1346 if (++BBI != CurMBB->getParent()->end())
1347 NextBlock = BBI;
1348
1349 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1350 DAG.getBasicBlock(JT.Default));
1351
1352 if (JT.MBB == NextBlock)
1353 DAG.setRoot(BrCond);
1354 else
1355 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1356 DAG.getBasicBlock(JT.MBB)));
1357
1358 return;
1359}
1360
1361/// visitBitTestHeader - This function emits necessary code to produce value
1362/// suitable for "bit tests"
1363void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1364 // Subtract the minimum value
1365 SDOperand SwitchOp = getValue(B.SValue);
1366 MVT::ValueType VT = SwitchOp.getValueType();
1367 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1368 DAG.getConstant(B.First, VT));
1369
1370 // Check range
1371 SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1372 DAG.getConstant(B.Range, VT),
1373 ISD::SETUGT);
1374
1375 SDOperand ShiftOp;
1376 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1377 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1378 else
1379 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1380
1381 // Make desired shift
1382 SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1383 DAG.getConstant(1, TLI.getPointerTy()),
1384 ShiftOp);
1385
1386 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1387 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1388 B.Reg = SwitchReg;
1389
1390 SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1391 DAG.getBasicBlock(B.Default));
1392
1393 // Set NextBlock to be the MBB immediately after the current one, if any.
1394 // This is used to avoid emitting unnecessary branches to the next block.
1395 MachineBasicBlock *NextBlock = 0;
1396 MachineFunction::iterator BBI = CurMBB;
1397 if (++BBI != CurMBB->getParent()->end())
1398 NextBlock = BBI;
1399
1400 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1401 if (MBB == NextBlock)
1402 DAG.setRoot(BrRange);
1403 else
1404 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1405 DAG.getBasicBlock(MBB)));
1406
1407 CurMBB->addSuccessor(B.Default);
1408 CurMBB->addSuccessor(MBB);
1409
1410 return;
1411}
1412
1413/// visitBitTestCase - this function produces one "bit test"
1414void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1415 unsigned Reg,
1416 SelectionDAGISel::BitTestCase &B) {
1417 // Emit bit tests and jumps
1418 SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1419
1420 SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1421 SwitchVal,
1422 DAG.getConstant(B.Mask,
1423 TLI.getPointerTy()));
1424 SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1425 DAG.getConstant(0, TLI.getPointerTy()),
1426 ISD::SETNE);
1427 SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1428 AndCmp, DAG.getBasicBlock(B.TargetBB));
1429
1430 // Set NextBlock to be the MBB immediately after the current one, if any.
1431 // This is used to avoid emitting unnecessary branches to the next block.
1432 MachineBasicBlock *NextBlock = 0;
1433 MachineFunction::iterator BBI = CurMBB;
1434 if (++BBI != CurMBB->getParent()->end())
1435 NextBlock = BBI;
1436
1437 if (NextMBB == NextBlock)
1438 DAG.setRoot(BrAnd);
1439 else
1440 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1441 DAG.getBasicBlock(NextMBB)));
1442
1443 CurMBB->addSuccessor(B.TargetBB);
1444 CurMBB->addSuccessor(NextMBB);
1445
1446 return;
1447}
1448
1449void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1450 // Retrieve successors.
1451 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1452 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1453
Duncan Sands1c5526c2007-12-17 18:08:19 +00001454 if (isa<InlineAsm>(I.getCalledValue()))
1455 visitInlineAsm(&I);
1456 else
Duncan Sandse9bc9132007-12-19 09:48:52 +00001457 LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001458
1459 // If the value of the invoke is used outside of its defining block, make it
1460 // available as a virtual register.
1461 if (!I.use_empty()) {
1462 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1463 if (VMI != FuncInfo.ValueMap.end())
1464 DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1465 }
1466
1467 // Drop into normal successor.
1468 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1469 DAG.getBasicBlock(Return)));
1470
1471 // Update successor info
1472 CurMBB->addSuccessor(Return);
1473 CurMBB->addSuccessor(LandingPad);
1474}
1475
1476void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1477}
1478
1479/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1480/// small case ranges).
1481bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1482 CaseRecVector& WorkList,
1483 Value* SV,
1484 MachineBasicBlock* Default) {
1485 Case& BackCase = *(CR.Range.second-1);
1486
1487 // Size is the number of Cases represented by this range.
1488 unsigned Size = CR.Range.second - CR.Range.first;
1489 if (Size > 3)
1490 return false;
1491
1492 // Get the MachineFunction which holds the current MBB. This is used when
1493 // inserting any additional MBBs necessary to represent the switch.
1494 MachineFunction *CurMF = CurMBB->getParent();
1495
1496 // Figure out which block is immediately after the current one.
1497 MachineBasicBlock *NextBlock = 0;
1498 MachineFunction::iterator BBI = CR.CaseBB;
1499
1500 if (++BBI != CurMBB->getParent()->end())
1501 NextBlock = BBI;
1502
1503 // TODO: If any two of the cases has the same destination, and if one value
1504 // is the same as the other, but has one bit unset that the other has set,
1505 // use bit manipulation to do two compares at once. For example:
1506 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1507
1508 // Rearrange the case blocks so that the last one falls through if possible.
1509 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1510 // The last case block won't fall through into 'NextBlock' if we emit the
1511 // branches in this order. See if rearranging a case value would help.
1512 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1513 if (I->BB == NextBlock) {
1514 std::swap(*I, BackCase);
1515 break;
1516 }
1517 }
1518 }
1519
1520 // Create a CaseBlock record representing a conditional branch to
1521 // the Case's target mbb if the value being switched on SV is equal
1522 // to C.
1523 MachineBasicBlock *CurBlock = CR.CaseBB;
1524 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1525 MachineBasicBlock *FallThrough;
1526 if (I != E-1) {
1527 FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1528 CurMF->getBasicBlockList().insert(BBI, FallThrough);
1529 } else {
1530 // If the last case doesn't match, go to the default block.
1531 FallThrough = Default;
1532 }
1533
1534 Value *RHS, *LHS, *MHS;
1535 ISD::CondCode CC;
1536 if (I->High == I->Low) {
1537 // This is just small small case range :) containing exactly 1 case
1538 CC = ISD::SETEQ;
1539 LHS = SV; RHS = I->High; MHS = NULL;
1540 } else {
1541 CC = ISD::SETLE;
1542 LHS = I->Low; MHS = SV; RHS = I->High;
1543 }
1544 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1545 I->BB, FallThrough, CurBlock);
1546
1547 // If emitting the first comparison, just call visitSwitchCase to emit the
1548 // code into the current block. Otherwise, push the CaseBlock onto the
1549 // vector to be later processed by SDISel, and insert the node's MBB
1550 // before the next MBB.
1551 if (CurBlock == CurMBB)
1552 visitSwitchCase(CB);
1553 else
1554 SwitchCases.push_back(CB);
1555
1556 CurBlock = FallThrough;
1557 }
1558
1559 return true;
1560}
1561
1562static inline bool areJTsAllowed(const TargetLowering &TLI) {
1563 return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1564 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1565}
1566
1567/// handleJTSwitchCase - Emit jumptable for current switch case range
1568bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1569 CaseRecVector& WorkList,
1570 Value* SV,
1571 MachineBasicBlock* Default) {
1572 Case& FrontCase = *CR.Range.first;
1573 Case& BackCase = *(CR.Range.second-1);
1574
1575 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1576 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1577
1578 uint64_t TSize = 0;
1579 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1580 I!=E; ++I)
1581 TSize += I->size();
1582
1583 if (!areJTsAllowed(TLI) || TSize <= 3)
1584 return false;
1585
1586 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1587 if (Density < 0.4)
1588 return false;
1589
1590 DOUT << "Lowering jump table\n"
1591 << "First entry: " << First << ". Last entry: " << Last << "\n"
1592 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1593
1594 // Get the MachineFunction which holds the current MBB. This is used when
1595 // inserting any additional MBBs necessary to represent the switch.
1596 MachineFunction *CurMF = CurMBB->getParent();
1597
1598 // Figure out which block is immediately after the current one.
1599 MachineBasicBlock *NextBlock = 0;
1600 MachineFunction::iterator BBI = CR.CaseBB;
1601
1602 if (++BBI != CurMBB->getParent()->end())
1603 NextBlock = BBI;
1604
1605 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1606
1607 // Create a new basic block to hold the code for loading the address
1608 // of the jump table, and jumping to it. Update successor information;
1609 // we will either branch to the default case for the switch, or the jump
1610 // table.
1611 MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1612 CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1613 CR.CaseBB->addSuccessor(Default);
1614 CR.CaseBB->addSuccessor(JumpTableBB);
1615
1616 // Build a vector of destination BBs, corresponding to each target
1617 // of the jump table. If the value of the jump table slot corresponds to
1618 // a case statement, push the case's BB onto the vector, otherwise, push
1619 // the default BB.
1620 std::vector<MachineBasicBlock*> DestBBs;
1621 int64_t TEI = First;
1622 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1623 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1624 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1625
1626 if ((Low <= TEI) && (TEI <= High)) {
1627 DestBBs.push_back(I->BB);
1628 if (TEI==High)
1629 ++I;
1630 } else {
1631 DestBBs.push_back(Default);
1632 }
1633 }
1634
1635 // Update successor info. Add one edge to each unique successor.
1636 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1637 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1638 E = DestBBs.end(); I != E; ++I) {
1639 if (!SuccsHandled[(*I)->getNumber()]) {
1640 SuccsHandled[(*I)->getNumber()] = true;
1641 JumpTableBB->addSuccessor(*I);
1642 }
1643 }
1644
1645 // Create a jump table index for this jump table, or return an existing
1646 // one.
1647 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1648
1649 // Set the jump table information so that we can codegen it as a second
1650 // MachineBasicBlock
1651 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1652 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1653 (CR.CaseBB == CurMBB));
1654 if (CR.CaseBB == CurMBB)
1655 visitJumpTableHeader(JT, JTH);
1656
1657 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1658
1659 return true;
1660}
1661
1662/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1663/// 2 subtrees.
1664bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1665 CaseRecVector& WorkList,
1666 Value* SV,
1667 MachineBasicBlock* Default) {
1668 // Get the MachineFunction which holds the current MBB. This is used when
1669 // inserting any additional MBBs necessary to represent the switch.
1670 MachineFunction *CurMF = CurMBB->getParent();
1671
1672 // Figure out which block is immediately after the current one.
1673 MachineBasicBlock *NextBlock = 0;
1674 MachineFunction::iterator BBI = CR.CaseBB;
1675
1676 if (++BBI != CurMBB->getParent()->end())
1677 NextBlock = BBI;
1678
1679 Case& FrontCase = *CR.Range.first;
1680 Case& BackCase = *(CR.Range.second-1);
1681 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1682
1683 // Size is the number of Cases represented by this range.
1684 unsigned Size = CR.Range.second - CR.Range.first;
1685
1686 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1687 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1688 double FMetric = 0;
1689 CaseItr Pivot = CR.Range.first + Size/2;
1690
1691 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1692 // (heuristically) allow us to emit JumpTable's later.
1693 uint64_t TSize = 0;
1694 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1695 I!=E; ++I)
1696 TSize += I->size();
1697
1698 uint64_t LSize = FrontCase.size();
1699 uint64_t RSize = TSize-LSize;
1700 DOUT << "Selecting best pivot: \n"
1701 << "First: " << First << ", Last: " << Last <<"\n"
1702 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1703 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1704 J!=E; ++I, ++J) {
1705 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1706 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1707 assert((RBegin-LEnd>=1) && "Invalid case distance");
1708 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1709 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1710 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1711 // Should always split in some non-trivial place
1712 DOUT <<"=>Step\n"
1713 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1714 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1715 << "Metric: " << Metric << "\n";
1716 if (FMetric < Metric) {
1717 Pivot = J;
1718 FMetric = Metric;
1719 DOUT << "Current metric set to: " << FMetric << "\n";
1720 }
1721
1722 LSize += J->size();
1723 RSize -= J->size();
1724 }
1725 if (areJTsAllowed(TLI)) {
1726 // If our case is dense we *really* should handle it earlier!
1727 assert((FMetric > 0) && "Should handle dense range earlier!");
1728 } else {
1729 Pivot = CR.Range.first + Size/2;
1730 }
1731
1732 CaseRange LHSR(CR.Range.first, Pivot);
1733 CaseRange RHSR(Pivot, CR.Range.second);
1734 Constant *C = Pivot->Low;
1735 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1736
1737 // We know that we branch to the LHS if the Value being switched on is
1738 // less than the Pivot value, C. We use this to optimize our binary
1739 // tree a bit, by recognizing that if SV is greater than or equal to the
1740 // LHS's Case Value, and that Case Value is exactly one less than the
1741 // Pivot's Value, then we can branch directly to the LHS's Target,
1742 // rather than creating a leaf node for it.
1743 if ((LHSR.second - LHSR.first) == 1 &&
1744 LHSR.first->High == CR.GE &&
1745 cast<ConstantInt>(C)->getSExtValue() ==
1746 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1747 TrueBB = LHSR.first->BB;
1748 } else {
1749 TrueBB = new MachineBasicBlock(LLVMBB);
1750 CurMF->getBasicBlockList().insert(BBI, TrueBB);
1751 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1752 }
1753
1754 // Similar to the optimization above, if the Value being switched on is
1755 // known to be less than the Constant CR.LT, and the current Case Value
1756 // is CR.LT - 1, then we can branch directly to the target block for
1757 // the current Case Value, rather than emitting a RHS leaf node for it.
1758 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1759 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1760 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1761 FalseBB = RHSR.first->BB;
1762 } else {
1763 FalseBB = new MachineBasicBlock(LLVMBB);
1764 CurMF->getBasicBlockList().insert(BBI, FalseBB);
1765 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1766 }
1767
1768 // Create a CaseBlock record representing a conditional branch to
1769 // the LHS node if the value being switched on SV is less than C.
1770 // Otherwise, branch to LHS.
1771 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1772 TrueBB, FalseBB, CR.CaseBB);
1773
1774 if (CR.CaseBB == CurMBB)
1775 visitSwitchCase(CB);
1776 else
1777 SwitchCases.push_back(CB);
1778
1779 return true;
1780}
1781
1782/// handleBitTestsSwitchCase - if current case range has few destination and
1783/// range span less, than machine word bitwidth, encode case range into series
1784/// of masks and emit bit tests with these masks.
1785bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1786 CaseRecVector& WorkList,
1787 Value* SV,
1788 MachineBasicBlock* Default){
1789 unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1790
1791 Case& FrontCase = *CR.Range.first;
1792 Case& BackCase = *(CR.Range.second-1);
1793
1794 // Get the MachineFunction which holds the current MBB. This is used when
1795 // inserting any additional MBBs necessary to represent the switch.
1796 MachineFunction *CurMF = CurMBB->getParent();
1797
1798 unsigned numCmps = 0;
1799 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1800 I!=E; ++I) {
1801 // Single case counts one, case range - two.
1802 if (I->Low == I->High)
1803 numCmps +=1;
1804 else
1805 numCmps +=2;
1806 }
1807
1808 // Count unique destinations
1809 SmallSet<MachineBasicBlock*, 4> Dests;
1810 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1811 Dests.insert(I->BB);
1812 if (Dests.size() > 3)
1813 // Don't bother the code below, if there are too much unique destinations
1814 return false;
1815 }
1816 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1817 << "Total number of comparisons: " << numCmps << "\n";
1818
1819 // Compute span of values.
1820 Constant* minValue = FrontCase.Low;
1821 Constant* maxValue = BackCase.High;
1822 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1823 cast<ConstantInt>(minValue)->getSExtValue();
1824 DOUT << "Compare range: " << range << "\n"
1825 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1826 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1827
1828 if (range>=IntPtrBits ||
1829 (!(Dests.size() == 1 && numCmps >= 3) &&
1830 !(Dests.size() == 2 && numCmps >= 5) &&
1831 !(Dests.size() >= 3 && numCmps >= 6)))
1832 return false;
1833
1834 DOUT << "Emitting bit tests\n";
1835 int64_t lowBound = 0;
1836
1837 // Optimize the case where all the case values fit in a
1838 // word without having to subtract minValue. In this case,
1839 // we can optimize away the subtraction.
1840 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1841 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1842 range = cast<ConstantInt>(maxValue)->getSExtValue();
1843 } else {
1844 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1845 }
1846
1847 CaseBitsVector CasesBits;
1848 unsigned i, count = 0;
1849
1850 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1851 MachineBasicBlock* Dest = I->BB;
1852 for (i = 0; i < count; ++i)
1853 if (Dest == CasesBits[i].BB)
1854 break;
1855
1856 if (i == count) {
1857 assert((count < 3) && "Too much destinations to test!");
1858 CasesBits.push_back(CaseBits(0, Dest, 0));
1859 count++;
1860 }
1861
1862 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1863 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1864
1865 for (uint64_t j = lo; j <= hi; j++) {
1866 CasesBits[i].Mask |= 1ULL << j;
1867 CasesBits[i].Bits++;
1868 }
1869
1870 }
1871 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1872
1873 SelectionDAGISel::BitTestInfo BTC;
1874
1875 // Figure out which block is immediately after the current one.
1876 MachineFunction::iterator BBI = CR.CaseBB;
1877 ++BBI;
1878
1879 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1880
1881 DOUT << "Cases:\n";
1882 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1883 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1884 << ", BB: " << CasesBits[i].BB << "\n";
1885
1886 MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1887 CurMF->getBasicBlockList().insert(BBI, CaseBB);
1888 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1889 CaseBB,
1890 CasesBits[i].BB));
1891 }
1892
1893 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1894 -1U, (CR.CaseBB == CurMBB),
1895 CR.CaseBB, Default, BTC);
1896
1897 if (CR.CaseBB == CurMBB)
1898 visitBitTestHeader(BTB);
1899
1900 BitTestCases.push_back(BTB);
1901
1902 return true;
1903}
1904
1905
1906// Clusterify - Transform simple list of Cases into list of CaseRange's
1907unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1908 const SwitchInst& SI) {
1909 unsigned numCmps = 0;
1910
1911 // Start with "simple" cases
1912 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1913 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1914 Cases.push_back(Case(SI.getSuccessorValue(i),
1915 SI.getSuccessorValue(i),
1916 SMBB));
1917 }
Chris Lattner5624ae42007-11-27 06:14:32 +00001918 std::sort(Cases.begin(), Cases.end(), CaseCmp());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001919
1920 // Merge case into clusters
1921 if (Cases.size()>=2)
1922 // Must recompute end() each iteration because it may be
1923 // invalidated by erase if we hold on to it
Chris Lattnerdfb947d2007-11-24 07:07:01 +00001924 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001925 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1926 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1927 MachineBasicBlock* nextBB = J->BB;
1928 MachineBasicBlock* currentBB = I->BB;
1929
1930 // If the two neighboring cases go to the same destination, merge them
1931 // into a single case.
1932 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1933 I->High = J->High;
1934 J = Cases.erase(J);
1935 } else {
1936 I = J++;
1937 }
1938 }
1939
1940 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1941 if (I->Low != I->High)
1942 // A range counts double, since it requires two compares.
1943 ++numCmps;
1944 }
1945
1946 return numCmps;
1947}
1948
1949void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1950 // Figure out which block is immediately after the current one.
1951 MachineBasicBlock *NextBlock = 0;
1952 MachineFunction::iterator BBI = CurMBB;
1953
1954 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1955
1956 // If there is only the default destination, branch to it if it is not the
1957 // next basic block. Otherwise, just fall through.
1958 if (SI.getNumOperands() == 2) {
1959 // Update machine-CFG edges.
1960
1961 // If this is not a fall-through branch, emit the branch.
1962 if (Default != NextBlock)
1963 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1964 DAG.getBasicBlock(Default)));
1965
1966 CurMBB->addSuccessor(Default);
1967 return;
1968 }
1969
1970 // If there are any non-default case statements, create a vector of Cases
1971 // representing each one, and sort the vector so that we can efficiently
1972 // create a binary search tree from them.
1973 CaseVector Cases;
1974 unsigned numCmps = Clusterify(Cases, SI);
1975 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1976 << ". Total compares: " << numCmps << "\n";
1977
1978 // Get the Value to be switched on and default basic blocks, which will be
1979 // inserted into CaseBlock records, representing basic blocks in the binary
1980 // search tree.
1981 Value *SV = SI.getOperand(0);
1982
1983 // Push the initial CaseRec onto the worklist
1984 CaseRecVector WorkList;
1985 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1986
1987 while (!WorkList.empty()) {
1988 // Grab a record representing a case range to process off the worklist
1989 CaseRec CR = WorkList.back();
1990 WorkList.pop_back();
1991
1992 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1993 continue;
1994
1995 // If the range has few cases (two or less) emit a series of specific
1996 // tests.
1997 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1998 continue;
1999
2000 // If the switch has more than 5 blocks, and at least 40% dense, and the
2001 // target supports indirect branches, then emit a jump table rather than
2002 // lowering the switch to a binary tree of conditional branches.
2003 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2004 continue;
2005
2006 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2007 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2008 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2009 }
2010}
2011
2012
2013void SelectionDAGLowering::visitSub(User &I) {
2014 // -0.0 - X --> fneg
2015 const Type *Ty = I.getType();
2016 if (isa<VectorType>(Ty)) {
2017 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2018 const VectorType *DestTy = cast<VectorType>(I.getType());
2019 const Type *ElTy = DestTy->getElementType();
2020 if (ElTy->isFloatingPoint()) {
2021 unsigned VL = DestTy->getNumElements();
Dale Johannesen2fc20782007-09-14 22:26:36 +00002022 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002023 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2024 if (CV == CNZ) {
2025 SDOperand Op2 = getValue(I.getOperand(1));
2026 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2027 return;
2028 }
2029 }
2030 }
2031 }
2032 if (Ty->isFloatingPoint()) {
2033 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
Dale Johannesen2fc20782007-09-14 22:26:36 +00002034 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002035 SDOperand Op2 = getValue(I.getOperand(1));
2036 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2037 return;
2038 }
2039 }
2040
2041 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2042}
2043
2044void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2045 SDOperand Op1 = getValue(I.getOperand(0));
2046 SDOperand Op2 = getValue(I.getOperand(1));
2047
2048 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2049}
2050
2051void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2052 SDOperand Op1 = getValue(I.getOperand(0));
2053 SDOperand Op2 = getValue(I.getOperand(1));
2054
2055 if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2056 MVT::getSizeInBits(Op2.getValueType()))
2057 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2058 else if (TLI.getShiftAmountTy() > Op2.getValueType())
2059 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2060
2061 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2062}
2063
2064void SelectionDAGLowering::visitICmp(User &I) {
2065 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2066 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2067 predicate = IC->getPredicate();
2068 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2069 predicate = ICmpInst::Predicate(IC->getPredicate());
2070 SDOperand Op1 = getValue(I.getOperand(0));
2071 SDOperand Op2 = getValue(I.getOperand(1));
2072 ISD::CondCode Opcode;
2073 switch (predicate) {
2074 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2075 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2076 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2077 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2078 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2079 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2080 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2081 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2082 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2083 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2084 default:
2085 assert(!"Invalid ICmp predicate value");
2086 Opcode = ISD::SETEQ;
2087 break;
2088 }
2089 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2090}
2091
2092void SelectionDAGLowering::visitFCmp(User &I) {
2093 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2094 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2095 predicate = FC->getPredicate();
2096 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2097 predicate = FCmpInst::Predicate(FC->getPredicate());
2098 SDOperand Op1 = getValue(I.getOperand(0));
2099 SDOperand Op2 = getValue(I.getOperand(1));
2100 ISD::CondCode Condition, FOC, FPC;
2101 switch (predicate) {
2102 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2103 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2104 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2105 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2106 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2107 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2108 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2109 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
2110 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
2111 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2112 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2113 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2114 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2115 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2116 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2117 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2118 default:
2119 assert(!"Invalid FCmp predicate value");
2120 FOC = FPC = ISD::SETFALSE;
2121 break;
2122 }
2123 if (FiniteOnlyFPMath())
2124 Condition = FOC;
2125 else
2126 Condition = FPC;
2127 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2128}
2129
2130void SelectionDAGLowering::visitSelect(User &I) {
2131 SDOperand Cond = getValue(I.getOperand(0));
2132 SDOperand TrueVal = getValue(I.getOperand(1));
2133 SDOperand FalseVal = getValue(I.getOperand(2));
2134 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2135 TrueVal, FalseVal));
2136}
2137
2138
2139void SelectionDAGLowering::visitTrunc(User &I) {
2140 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2141 SDOperand N = getValue(I.getOperand(0));
2142 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2143 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2144}
2145
2146void SelectionDAGLowering::visitZExt(User &I) {
2147 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2148 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2149 SDOperand N = getValue(I.getOperand(0));
2150 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2151 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2152}
2153
2154void SelectionDAGLowering::visitSExt(User &I) {
2155 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2156 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2157 SDOperand N = getValue(I.getOperand(0));
2158 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2159 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2160}
2161
2162void SelectionDAGLowering::visitFPTrunc(User &I) {
2163 // FPTrunc is never a no-op cast, no need to check
2164 SDOperand N = getValue(I.getOperand(0));
2165 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2166 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2167}
2168
2169void SelectionDAGLowering::visitFPExt(User &I){
2170 // FPTrunc is never a no-op cast, no need to check
2171 SDOperand N = getValue(I.getOperand(0));
2172 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2173 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2174}
2175
2176void SelectionDAGLowering::visitFPToUI(User &I) {
2177 // FPToUI is never a no-op cast, no need to check
2178 SDOperand N = getValue(I.getOperand(0));
2179 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2180 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2181}
2182
2183void SelectionDAGLowering::visitFPToSI(User &I) {
2184 // FPToSI is never a no-op cast, no need to check
2185 SDOperand N = getValue(I.getOperand(0));
2186 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2187 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2188}
2189
2190void SelectionDAGLowering::visitUIToFP(User &I) {
2191 // UIToFP is never a no-op cast, no need to check
2192 SDOperand N = getValue(I.getOperand(0));
2193 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2194 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2195}
2196
2197void SelectionDAGLowering::visitSIToFP(User &I){
2198 // UIToFP is never a no-op cast, no need to check
2199 SDOperand N = getValue(I.getOperand(0));
2200 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2201 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2202}
2203
2204void SelectionDAGLowering::visitPtrToInt(User &I) {
2205 // What to do depends on the size of the integer and the size of the pointer.
2206 // We can either truncate, zero extend, or no-op, accordingly.
2207 SDOperand N = getValue(I.getOperand(0));
2208 MVT::ValueType SrcVT = N.getValueType();
2209 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2210 SDOperand Result;
2211 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2212 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2213 else
2214 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2215 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2216 setValue(&I, Result);
2217}
2218
2219void SelectionDAGLowering::visitIntToPtr(User &I) {
2220 // What to do depends on the size of the integer and the size of the pointer.
2221 // We can either truncate, zero extend, or no-op, accordingly.
2222 SDOperand N = getValue(I.getOperand(0));
2223 MVT::ValueType SrcVT = N.getValueType();
2224 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2225 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2226 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2227 else
2228 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2229 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2230}
2231
2232void SelectionDAGLowering::visitBitCast(User &I) {
2233 SDOperand N = getValue(I.getOperand(0));
2234 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2235
2236 // BitCast assures us that source and destination are the same size so this
2237 // is either a BIT_CONVERT or a no-op.
2238 if (DestVT != N.getValueType())
2239 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2240 else
2241 setValue(&I, N); // noop cast.
2242}
2243
2244void SelectionDAGLowering::visitInsertElement(User &I) {
2245 SDOperand InVec = getValue(I.getOperand(0));
2246 SDOperand InVal = getValue(I.getOperand(1));
2247 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2248 getValue(I.getOperand(2)));
2249
2250 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2251 TLI.getValueType(I.getType()),
2252 InVec, InVal, InIdx));
2253}
2254
2255void SelectionDAGLowering::visitExtractElement(User &I) {
2256 SDOperand InVec = getValue(I.getOperand(0));
2257 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2258 getValue(I.getOperand(1)));
2259 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2260 TLI.getValueType(I.getType()), InVec, InIdx));
2261}
2262
2263void SelectionDAGLowering::visitShuffleVector(User &I) {
2264 SDOperand V1 = getValue(I.getOperand(0));
2265 SDOperand V2 = getValue(I.getOperand(1));
2266 SDOperand Mask = getValue(I.getOperand(2));
2267
2268 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2269 TLI.getValueType(I.getType()),
2270 V1, V2, Mask));
2271}
2272
2273
2274void SelectionDAGLowering::visitGetElementPtr(User &I) {
2275 SDOperand N = getValue(I.getOperand(0));
2276 const Type *Ty = I.getOperand(0)->getType();
2277
2278 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2279 OI != E; ++OI) {
2280 Value *Idx = *OI;
2281 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2282 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2283 if (Field) {
2284 // N = N + Offset
2285 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2286 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2287 getIntPtrConstant(Offset));
2288 }
2289 Ty = StTy->getElementType(Field);
2290 } else {
2291 Ty = cast<SequentialType>(Ty)->getElementType();
2292
2293 // If this is a constant subscript, handle it quickly.
2294 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2295 if (CI->getZExtValue() == 0) continue;
2296 uint64_t Offs =
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002297 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002298 N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2299 continue;
2300 }
2301
2302 // N = N + Idx * ElementSize;
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002303 uint64_t ElementSize = TD->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002304 SDOperand IdxN = getValue(Idx);
2305
2306 // If the index is smaller or larger than intptr_t, truncate or extend
2307 // it.
2308 if (IdxN.getValueType() < N.getValueType()) {
2309 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2310 } else if (IdxN.getValueType() > N.getValueType())
2311 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2312
2313 // If this is a multiply by a power of two, turn it into a shl
2314 // immediately. This is a very common case.
2315 if (isPowerOf2_64(ElementSize)) {
2316 unsigned Amt = Log2_64(ElementSize);
2317 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2318 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2319 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2320 continue;
2321 }
2322
2323 SDOperand Scale = getIntPtrConstant(ElementSize);
2324 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2325 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2326 }
2327 }
2328 setValue(&I, N);
2329}
2330
2331void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2332 // If this is a fixed sized alloca in the entry block of the function,
2333 // allocate it statically on the stack.
2334 if (FuncInfo.StaticAllocaMap.count(&I))
2335 return; // getValue will auto-populate this.
2336
2337 const Type *Ty = I.getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00002338 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339 unsigned Align =
2340 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2341 I.getAlignment());
2342
2343 SDOperand AllocSize = getValue(I.getArraySize());
2344 MVT::ValueType IntPtr = TLI.getPointerTy();
2345 if (IntPtr < AllocSize.getValueType())
2346 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2347 else if (IntPtr > AllocSize.getValueType())
2348 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2349
2350 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2351 getIntPtrConstant(TySize));
2352
Evan Chenga31dc752007-08-16 23:46:29 +00002353 // Handle alignment. If the requested alignment is less than or equal to
2354 // the stack alignment, ignore it. If the size is greater than or equal to
2355 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356 unsigned StackAlign =
2357 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
Evan Chenga31dc752007-08-16 23:46:29 +00002358 if (Align <= StackAlign)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359 Align = 0;
Evan Chenga31dc752007-08-16 23:46:29 +00002360
2361 // Round the size of the allocation up to the stack alignment size
2362 // by add SA-1 to the size.
2363 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2364 getIntPtrConstant(StackAlign-1));
2365 // Mask out the low bits for alignment purposes.
2366 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2367 getIntPtrConstant(~(uint64_t)(StackAlign-1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002368
2369 SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2370 const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2371 MVT::Other);
2372 SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2373 setValue(&I, DSA);
2374 DAG.setRoot(DSA.getValue(1));
2375
2376 // Inform the Frame Information that we have just allocated a variable-sized
2377 // object.
2378 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2379}
2380
2381void SelectionDAGLowering::visitLoad(LoadInst &I) {
2382 SDOperand Ptr = getValue(I.getOperand(0));
2383
2384 SDOperand Root;
2385 if (I.isVolatile())
2386 Root = getRoot();
2387 else {
2388 // Do not serialize non-volatile loads against each other.
2389 Root = DAG.getRoot();
2390 }
2391
2392 setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2393 Root, I.isVolatile(), I.getAlignment()));
2394}
2395
2396SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2397 const Value *SV, SDOperand Root,
2398 bool isVolatile,
2399 unsigned Alignment) {
2400 SDOperand L =
2401 DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2402 isVolatile, Alignment);
2403
2404 if (isVolatile)
2405 DAG.setRoot(L.getValue(1));
2406 else
2407 PendingLoads.push_back(L.getValue(1));
2408
2409 return L;
2410}
2411
2412
2413void SelectionDAGLowering::visitStore(StoreInst &I) {
2414 Value *SrcV = I.getOperand(0);
2415 SDOperand Src = getValue(SrcV);
2416 SDOperand Ptr = getValue(I.getOperand(1));
2417 DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2418 I.isVolatile(), I.getAlignment()));
2419}
2420
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2422/// node.
2423void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2424 unsigned Intrinsic) {
Duncan Sands79d28872007-12-03 20:06:50 +00002425 bool HasChain = !I.doesNotAccessMemory();
2426 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2427
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428 // Build the operand list.
2429 SmallVector<SDOperand, 8> Ops;
2430 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2431 if (OnlyLoad) {
2432 // We don't need to serialize loads against other loads.
2433 Ops.push_back(DAG.getRoot());
2434 } else {
2435 Ops.push_back(getRoot());
2436 }
2437 }
2438
2439 // Add the intrinsic ID as an integer operand.
2440 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2441
2442 // Add all operands of the call to the operand list.
2443 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2444 SDOperand Op = getValue(I.getOperand(i));
2445 assert(TLI.isTypeLegal(Op.getValueType()) &&
2446 "Intrinsic uses a non-legal type?");
2447 Ops.push_back(Op);
2448 }
2449
2450 std::vector<MVT::ValueType> VTs;
2451 if (I.getType() != Type::VoidTy) {
2452 MVT::ValueType VT = TLI.getValueType(I.getType());
2453 if (MVT::isVector(VT)) {
2454 const VectorType *DestTy = cast<VectorType>(I.getType());
2455 MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2456
2457 VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2458 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2459 }
2460
2461 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2462 VTs.push_back(VT);
2463 }
2464 if (HasChain)
2465 VTs.push_back(MVT::Other);
2466
2467 const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2468
2469 // Create the node.
2470 SDOperand Result;
2471 if (!HasChain)
2472 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2473 &Ops[0], Ops.size());
2474 else if (I.getType() != Type::VoidTy)
2475 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2476 &Ops[0], Ops.size());
2477 else
2478 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2479 &Ops[0], Ops.size());
2480
2481 if (HasChain) {
2482 SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2483 if (OnlyLoad)
2484 PendingLoads.push_back(Chain);
2485 else
2486 DAG.setRoot(Chain);
2487 }
2488 if (I.getType() != Type::VoidTy) {
2489 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2490 MVT::ValueType VT = TLI.getValueType(PTy);
2491 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2492 }
2493 setValue(&I, Result);
2494 }
2495}
2496
2497/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2498static GlobalVariable *ExtractTypeInfo (Value *V) {
2499 V = IntrinsicInst::StripPointerCasts(V);
2500 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2501 assert (GV || isa<ConstantPointerNull>(V) &&
2502 "TypeInfo must be a global variable or NULL");
2503 return GV;
2504}
2505
2506/// addCatchInfo - Extract the personality and type infos from an eh.selector
2507/// call, and add them to the specified machine basic block.
2508static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2509 MachineBasicBlock *MBB) {
2510 // Inform the MachineModuleInfo of the personality for this landing pad.
2511 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2512 assert(CE->getOpcode() == Instruction::BitCast &&
2513 isa<Function>(CE->getOperand(0)) &&
2514 "Personality should be a function");
2515 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2516
2517 // Gather all the type infos for this landing pad and pass them along to
2518 // MachineModuleInfo.
2519 std::vector<GlobalVariable *> TyInfo;
2520 unsigned N = I.getNumOperands();
2521
2522 for (unsigned i = N - 1; i > 2; --i) {
2523 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2524 unsigned FilterLength = CI->getZExtValue();
Duncan Sands923fdb12007-08-27 15:47:50 +00002525 unsigned FirstCatch = i + FilterLength + !FilterLength;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002526 assert (FirstCatch <= N && "Invalid filter length");
2527
2528 if (FirstCatch < N) {
2529 TyInfo.reserve(N - FirstCatch);
2530 for (unsigned j = FirstCatch; j < N; ++j)
2531 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2532 MMI->addCatchTypeInfo(MBB, TyInfo);
2533 TyInfo.clear();
2534 }
2535
Duncan Sands923fdb12007-08-27 15:47:50 +00002536 if (!FilterLength) {
2537 // Cleanup.
2538 MMI->addCleanup(MBB);
2539 } else {
2540 // Filter.
2541 TyInfo.reserve(FilterLength - 1);
2542 for (unsigned j = i + 1; j < FirstCatch; ++j)
2543 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2544 MMI->addFilterTypeInfo(MBB, TyInfo);
2545 TyInfo.clear();
2546 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002547
2548 N = i;
2549 }
2550 }
2551
2552 if (N > 3) {
2553 TyInfo.reserve(N - 3);
2554 for (unsigned j = 3; j < N; ++j)
2555 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2556 MMI->addCatchTypeInfo(MBB, TyInfo);
2557 }
2558}
2559
2560/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
2561/// we want to emit this as a call to a named external function, return the name
2562/// otherwise lower it and return null.
2563const char *
2564SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2565 switch (Intrinsic) {
2566 default:
2567 // By default, turn this into a target intrinsic node.
2568 visitTargetIntrinsic(I, Intrinsic);
2569 return 0;
2570 case Intrinsic::vastart: visitVAStart(I); return 0;
2571 case Intrinsic::vaend: visitVAEnd(I); return 0;
2572 case Intrinsic::vacopy: visitVACopy(I); return 0;
2573 case Intrinsic::returnaddress:
2574 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2575 getValue(I.getOperand(1))));
2576 return 0;
2577 case Intrinsic::frameaddress:
2578 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2579 getValue(I.getOperand(1))));
2580 return 0;
2581 case Intrinsic::setjmp:
2582 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2583 break;
2584 case Intrinsic::longjmp:
2585 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2586 break;
2587 case Intrinsic::memcpy_i32:
2588 case Intrinsic::memcpy_i64:
2589 visitMemIntrinsic(I, ISD::MEMCPY);
2590 return 0;
2591 case Intrinsic::memset_i32:
2592 case Intrinsic::memset_i64:
2593 visitMemIntrinsic(I, ISD::MEMSET);
2594 return 0;
2595 case Intrinsic::memmove_i32:
2596 case Intrinsic::memmove_i64:
2597 visitMemIntrinsic(I, ISD::MEMMOVE);
2598 return 0;
2599
2600 case Intrinsic::dbg_stoppoint: {
2601 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2602 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2603 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2604 SDOperand Ops[5];
2605
2606 Ops[0] = getRoot();
2607 Ops[1] = getValue(SPI.getLineValue());
2608 Ops[2] = getValue(SPI.getColumnValue());
2609
2610 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2611 assert(DD && "Not a debug information descriptor");
2612 CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2613
2614 Ops[3] = DAG.getString(CompileUnit->getFileName());
2615 Ops[4] = DAG.getString(CompileUnit->getDirectory());
2616
2617 DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2618 }
2619
2620 return 0;
2621 }
2622 case Intrinsic::dbg_region_start: {
2623 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2624 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2625 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2626 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2627 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2628 DAG.getConstant(LabelID, MVT::i32)));
2629 }
2630
2631 return 0;
2632 }
2633 case Intrinsic::dbg_region_end: {
2634 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2635 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2636 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2637 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2638 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2639 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2640 }
2641
2642 return 0;
2643 }
2644 case Intrinsic::dbg_func_start: {
2645 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2646 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2647 if (MMI && FSI.getSubprogram() &&
2648 MMI->Verify(FSI.getSubprogram())) {
2649 unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2650 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2651 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2652 }
2653
2654 return 0;
2655 }
2656 case Intrinsic::dbg_declare: {
2657 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2658 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2659 if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2660 SDOperand AddressOp = getValue(DI.getAddress());
2661 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2662 MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2663 }
2664
2665 return 0;
2666 }
2667
2668 case Intrinsic::eh_exception: {
2669 if (ExceptionHandling) {
2670 if (!CurMBB->isLandingPad()) {
2671 // FIXME: Mark exception register as live in. Hack for PR1508.
2672 unsigned Reg = TLI.getExceptionAddressRegister();
2673 if (Reg) CurMBB->addLiveIn(Reg);
2674 }
2675 // Insert the EXCEPTIONADDR instruction.
2676 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2677 SDOperand Ops[1];
2678 Ops[0] = DAG.getRoot();
2679 SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2680 setValue(&I, Op);
2681 DAG.setRoot(Op.getValue(1));
2682 } else {
2683 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2684 }
2685 return 0;
2686 }
2687
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002688 case Intrinsic::eh_selector_i32:
2689 case Intrinsic::eh_selector_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002690 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002691 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2692 MVT::i32 : MVT::i64);
2693
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002694 if (ExceptionHandling && MMI) {
2695 if (CurMBB->isLandingPad())
2696 addCatchInfo(I, MMI, CurMBB);
2697 else {
2698#ifndef NDEBUG
2699 FuncInfo.CatchInfoLost.insert(&I);
2700#endif
2701 // FIXME: Mark exception selector register as live in. Hack for PR1508.
2702 unsigned Reg = TLI.getExceptionSelectorRegister();
2703 if (Reg) CurMBB->addLiveIn(Reg);
2704 }
2705
2706 // Insert the EHSELECTION instruction.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002707 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002708 SDOperand Ops[2];
2709 Ops[0] = getValue(I.getOperand(1));
2710 Ops[1] = getRoot();
2711 SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2712 setValue(&I, Op);
2713 DAG.setRoot(Op.getValue(1));
2714 } else {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002715 setValue(&I, DAG.getConstant(0, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002716 }
2717
2718 return 0;
2719 }
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002720
2721 case Intrinsic::eh_typeid_for_i32:
2722 case Intrinsic::eh_typeid_for_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002723 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002724 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2725 MVT::i32 : MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002726
2727 if (MMI) {
2728 // Find the type id for the given typeinfo.
2729 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2730
2731 unsigned TypeID = MMI->getTypeIDFor(GV);
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002732 setValue(&I, DAG.getConstant(TypeID, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002733 } else {
2734 // Return something different to eh_selector.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002735 setValue(&I, DAG.getConstant(1, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002736 }
2737
2738 return 0;
2739 }
2740
2741 case Intrinsic::eh_return: {
2742 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2743
2744 if (MMI && ExceptionHandling) {
2745 MMI->setCallsEHReturn(true);
2746 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2747 MVT::Other,
2748 getRoot(),
2749 getValue(I.getOperand(1)),
2750 getValue(I.getOperand(2))));
2751 } else {
2752 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2753 }
2754
2755 return 0;
2756 }
2757
2758 case Intrinsic::eh_unwind_init: {
2759 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2760 MMI->setCallsUnwindInit(true);
2761 }
2762
2763 return 0;
2764 }
2765
2766 case Intrinsic::eh_dwarf_cfa: {
2767 if (ExceptionHandling) {
2768 MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002769 SDOperand CfaArg;
2770 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2771 CfaArg = DAG.getNode(ISD::TRUNCATE,
2772 TLI.getPointerTy(), getValue(I.getOperand(1)));
2773 else
2774 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2775 TLI.getPointerTy(), getValue(I.getOperand(1)));
2776
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002777 SDOperand Offset = DAG.getNode(ISD::ADD,
2778 TLI.getPointerTy(),
2779 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002780 TLI.getPointerTy()),
2781 CfaArg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002782 setValue(&I, DAG.getNode(ISD::ADD,
2783 TLI.getPointerTy(),
2784 DAG.getNode(ISD::FRAMEADDR,
2785 TLI.getPointerTy(),
2786 DAG.getConstant(0,
2787 TLI.getPointerTy())),
2788 Offset));
2789 } else {
2790 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2791 }
2792
2793 return 0;
2794 }
2795
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002796 case Intrinsic::sqrt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002797 setValue(&I, DAG.getNode(ISD::FSQRT,
2798 getValue(I.getOperand(1)).getValueType(),
2799 getValue(I.getOperand(1))));
2800 return 0;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002801 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002802 setValue(&I, DAG.getNode(ISD::FPOWI,
2803 getValue(I.getOperand(1)).getValueType(),
2804 getValue(I.getOperand(1)),
2805 getValue(I.getOperand(2))));
2806 return 0;
Dan Gohmane1bb8c12007-10-12 00:01:22 +00002807 case Intrinsic::sin:
2808 setValue(&I, DAG.getNode(ISD::FSIN,
2809 getValue(I.getOperand(1)).getValueType(),
2810 getValue(I.getOperand(1))));
2811 return 0;
2812 case Intrinsic::cos:
2813 setValue(&I, DAG.getNode(ISD::FCOS,
2814 getValue(I.getOperand(1)).getValueType(),
2815 getValue(I.getOperand(1))));
2816 return 0;
2817 case Intrinsic::pow:
2818 setValue(&I, DAG.getNode(ISD::FPOW,
2819 getValue(I.getOperand(1)).getValueType(),
2820 getValue(I.getOperand(1)),
2821 getValue(I.getOperand(2))));
2822 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002823 case Intrinsic::pcmarker: {
2824 SDOperand Tmp = getValue(I.getOperand(1));
2825 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2826 return 0;
2827 }
2828 case Intrinsic::readcyclecounter: {
2829 SDOperand Op = getRoot();
2830 SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2831 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2832 &Op, 1);
2833 setValue(&I, Tmp);
2834 DAG.setRoot(Tmp.getValue(1));
2835 return 0;
2836 }
2837 case Intrinsic::part_select: {
2838 // Currently not implemented: just abort
2839 assert(0 && "part_select intrinsic not implemented");
2840 abort();
2841 }
2842 case Intrinsic::part_set: {
2843 // Currently not implemented: just abort
2844 assert(0 && "part_set intrinsic not implemented");
2845 abort();
2846 }
2847 case Intrinsic::bswap:
2848 setValue(&I, DAG.getNode(ISD::BSWAP,
2849 getValue(I.getOperand(1)).getValueType(),
2850 getValue(I.getOperand(1))));
2851 return 0;
2852 case Intrinsic::cttz: {
2853 SDOperand Arg = getValue(I.getOperand(1));
2854 MVT::ValueType Ty = Arg.getValueType();
2855 SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002856 setValue(&I, result);
2857 return 0;
2858 }
2859 case Intrinsic::ctlz: {
2860 SDOperand Arg = getValue(I.getOperand(1));
2861 MVT::ValueType Ty = Arg.getValueType();
2862 SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 setValue(&I, result);
2864 return 0;
2865 }
2866 case Intrinsic::ctpop: {
2867 SDOperand Arg = getValue(I.getOperand(1));
2868 MVT::ValueType Ty = Arg.getValueType();
2869 SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002870 setValue(&I, result);
2871 return 0;
2872 }
2873 case Intrinsic::stacksave: {
2874 SDOperand Op = getRoot();
2875 SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2876 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2877 setValue(&I, Tmp);
2878 DAG.setRoot(Tmp.getValue(1));
2879 return 0;
2880 }
2881 case Intrinsic::stackrestore: {
2882 SDOperand Tmp = getValue(I.getOperand(1));
2883 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2884 return 0;
2885 }
2886 case Intrinsic::prefetch:
2887 // FIXME: Currently discarding prefetches.
2888 return 0;
2889
2890 case Intrinsic::var_annotation:
2891 // Discard annotate attributes
2892 return 0;
Duncan Sands38947cd2007-07-27 12:58:54 +00002893
Duncan Sands38947cd2007-07-27 12:58:54 +00002894 case Intrinsic::init_trampoline: {
2895 const Function *F =
2896 cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2897
2898 SDOperand Ops[6];
2899 Ops[0] = getRoot();
2900 Ops[1] = getValue(I.getOperand(1));
2901 Ops[2] = getValue(I.getOperand(2));
2902 Ops[3] = getValue(I.getOperand(3));
2903 Ops[4] = DAG.getSrcValue(I.getOperand(1));
2904 Ops[5] = DAG.getSrcValue(F);
2905
Duncan Sands7407a9f2007-09-11 14:10:23 +00002906 SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2907 DAG.getNodeValueTypes(TLI.getPointerTy(),
2908 MVT::Other), 2,
2909 Ops, 6);
2910
2911 setValue(&I, Tmp);
2912 DAG.setRoot(Tmp.getValue(1));
Duncan Sands38947cd2007-07-27 12:58:54 +00002913 return 0;
2914 }
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00002915
2916 case Intrinsic::gcroot:
2917 if (GCI) {
2918 Value *Alloca = I.getOperand(1);
2919 Constant *TypeMap = cast<Constant>(I.getOperand(2));
2920
2921 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
2922 GCI->addStackRoot(FI->getIndex(), TypeMap);
2923 }
2924 return 0;
2925
2926 case Intrinsic::gcread:
2927 case Intrinsic::gcwrite:
2928 assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
2929 return 0;
2930
Anton Korobeynikovc915e272007-11-15 23:25:33 +00002931 case Intrinsic::flt_rounds: {
2932 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32));
2933 return 0;
2934 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002935 }
2936}
2937
2938
Duncan Sandse9bc9132007-12-19 09:48:52 +00002939void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002940 bool IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002941 MachineBasicBlock *LandingPad) {
Duncan Sandse9bc9132007-12-19 09:48:52 +00002942 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002943 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002944 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2945 unsigned BeginLabel = 0, EndLabel = 0;
Duncan Sandse9bc9132007-12-19 09:48:52 +00002946
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002947 TargetLowering::ArgListTy Args;
2948 TargetLowering::ArgListEntry Entry;
Duncan Sandse9bc9132007-12-19 09:48:52 +00002949 Args.reserve(CS.arg_size());
2950 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2951 i != e; ++i) {
2952 SDOperand ArgNode = getValue(*i);
2953 Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002954
Duncan Sandse9bc9132007-12-19 09:48:52 +00002955 unsigned attrInd = i - CS.arg_begin() + 1;
2956 Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt);
2957 Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
2958 Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
2959 Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
2960 Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest);
2961 Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002962 Args.push_back(Entry);
2963 }
2964
Duncan Sands4ff179f2007-12-19 07:36:31 +00002965 bool MarkTryRange = LandingPad ||
2966 // C++ requires special handling of 'nounwind' calls.
Duncan Sandse9bc9132007-12-19 09:48:52 +00002967 (CS.doesNotThrow());
Duncan Sands4ff179f2007-12-19 07:36:31 +00002968
2969 if (MarkTryRange && ExceptionHandling && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002970 // Insert a label before the invoke call to mark the try range. This can be
2971 // used to detect deletion of the invoke via the MachineModuleInfo.
2972 BeginLabel = MMI->NextLabelID();
2973 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2974 DAG.getConstant(BeginLabel, MVT::i32)));
2975 }
Duncan Sandse9bc9132007-12-19 09:48:52 +00002976
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977 std::pair<SDOperand,SDOperand> Result =
Duncan Sandse9bc9132007-12-19 09:48:52 +00002978 TLI.LowerCallTo(getRoot(), CS.getType(),
2979 CS.paramHasAttr(0, ParamAttr::SExt),
2980 FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002981 Callee, Args, DAG);
Duncan Sandse9bc9132007-12-19 09:48:52 +00002982 if (CS.getType() != Type::VoidTy)
2983 setValue(CS.getInstruction(), Result.first);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002984 DAG.setRoot(Result.second);
2985
Duncan Sands4ff179f2007-12-19 07:36:31 +00002986 if (MarkTryRange && ExceptionHandling && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002987 // Insert a label at the end of the invoke call to mark the try range. This
2988 // can be used to detect deletion of the invoke via the MachineModuleInfo.
2989 EndLabel = MMI->NextLabelID();
2990 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2991 DAG.getConstant(EndLabel, MVT::i32)));
2992
Duncan Sandse9bc9132007-12-19 09:48:52 +00002993 // Inform MachineModuleInfo of range.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002994 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2995 }
2996}
2997
2998
2999void SelectionDAGLowering::visitCall(CallInst &I) {
3000 const char *RenameFn = 0;
3001 if (Function *F = I.getCalledFunction()) {
Chris Lattner3687e342007-09-10 21:15:22 +00003002 if (F->isDeclaration()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 if (unsigned IID = F->getIntrinsicID()) {
3004 RenameFn = visitIntrinsicCall(I, IID);
3005 if (!RenameFn)
3006 return;
Chris Lattner3687e342007-09-10 21:15:22 +00003007 }
3008 }
3009
3010 // Check for well-known libc/libm calls. If the function is internal, it
3011 // can't be a library call.
3012 unsigned NameLen = F->getNameLen();
3013 if (!F->hasInternalLinkage() && NameLen) {
3014 const char *NameStr = F->getNameStart();
3015 if (NameStr[0] == 'c' &&
3016 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3017 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3018 if (I.getNumOperands() == 3 && // Basic sanity checks.
3019 I.getOperand(1)->getType()->isFloatingPoint() &&
3020 I.getType() == I.getOperand(1)->getType() &&
3021 I.getType() == I.getOperand(2)->getType()) {
3022 SDOperand LHS = getValue(I.getOperand(1));
3023 SDOperand RHS = getValue(I.getOperand(2));
3024 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3025 LHS, RHS));
3026 return;
3027 }
3028 } else if (NameStr[0] == 'f' &&
3029 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003030 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3031 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003032 if (I.getNumOperands() == 2 && // Basic sanity checks.
3033 I.getOperand(1)->getType()->isFloatingPoint() &&
3034 I.getType() == I.getOperand(1)->getType()) {
3035 SDOperand Tmp = getValue(I.getOperand(1));
3036 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3037 return;
3038 }
3039 } else if (NameStr[0] == 's' &&
3040 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003041 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3042 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003043 if (I.getNumOperands() == 2 && // Basic sanity checks.
3044 I.getOperand(1)->getType()->isFloatingPoint() &&
3045 I.getType() == I.getOperand(1)->getType()) {
3046 SDOperand Tmp = getValue(I.getOperand(1));
3047 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3048 return;
3049 }
3050 } else if (NameStr[0] == 'c' &&
3051 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003052 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3053 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003054 if (I.getNumOperands() == 2 && // Basic sanity checks.
3055 I.getOperand(1)->getType()->isFloatingPoint() &&
3056 I.getType() == I.getOperand(1)->getType()) {
3057 SDOperand Tmp = getValue(I.getOperand(1));
3058 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3059 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003060 }
3061 }
Chris Lattner3687e342007-09-10 21:15:22 +00003062 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003063 } else if (isa<InlineAsm>(I.getOperand(0))) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003064 visitInlineAsm(&I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003065 return;
3066 }
3067
3068 SDOperand Callee;
3069 if (!RenameFn)
3070 Callee = getValue(I.getOperand(0));
3071 else
3072 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3073
Duncan Sandse9bc9132007-12-19 09:48:52 +00003074 LowerCallTo(&I, Callee, I.isTailCall());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003075}
3076
3077
3078/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3079/// this value and returns the result as a ValueVT value. This uses
3080/// Chain/Flag as the input and updates them for the output Chain/Flag.
3081/// If the Flag pointer is NULL, no flag is used.
3082SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3083 SDOperand &Chain, SDOperand *Flag)const{
3084 // Copy the legal parts from the registers.
3085 unsigned NumParts = Regs.size();
3086 SmallVector<SDOperand, 8> Parts(NumParts);
3087 for (unsigned i = 0; i != NumParts; ++i) {
3088 SDOperand Part = Flag ?
3089 DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3090 DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3091 Chain = Part.getValue(1);
3092 if (Flag)
3093 *Flag = Part.getValue(2);
3094 Parts[i] = Part;
3095 }
3096
3097 // Assemble the legal parts into the final value.
3098 return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3099}
3100
3101/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3102/// specified value into the registers specified by this object. This uses
3103/// Chain/Flag as the input and updates them for the output Chain/Flag.
3104/// If the Flag pointer is NULL, no flag is used.
3105void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3106 SDOperand &Chain, SDOperand *Flag) const {
3107 // Get the list of the values's legal parts.
3108 unsigned NumParts = Regs.size();
3109 SmallVector<SDOperand, 8> Parts(NumParts);
3110 getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3111
3112 // Copy the parts into the registers.
3113 for (unsigned i = 0; i != NumParts; ++i) {
3114 SDOperand Part = Flag ?
3115 DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3116 DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3117 Chain = Part.getValue(0);
3118 if (Flag)
3119 *Flag = Part.getValue(1);
3120 }
3121}
3122
3123/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3124/// operand list. This adds the code marker and includes the number of
3125/// values added into it.
3126void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3127 std::vector<SDOperand> &Ops) const {
3128 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3129 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3130 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3131 Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3132}
3133
3134/// isAllocatableRegister - If the specified register is safe to allocate,
3135/// i.e. it isn't a stack pointer or some other special register, return the
3136/// register class for the register. Otherwise, return null.
3137static const TargetRegisterClass *
3138isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3139 const TargetLowering &TLI, const MRegisterInfo *MRI) {
3140 MVT::ValueType FoundVT = MVT::Other;
3141 const TargetRegisterClass *FoundRC = 0;
3142 for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3143 E = MRI->regclass_end(); RCI != E; ++RCI) {
3144 MVT::ValueType ThisVT = MVT::Other;
3145
3146 const TargetRegisterClass *RC = *RCI;
3147 // If none of the the value types for this register class are valid, we
3148 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3149 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3150 I != E; ++I) {
3151 if (TLI.isTypeLegal(*I)) {
3152 // If we have already found this register in a different register class,
3153 // choose the one with the largest VT specified. For example, on
3154 // PowerPC, we favor f64 register classes over f32.
3155 if (FoundVT == MVT::Other ||
3156 MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3157 ThisVT = *I;
3158 break;
3159 }
3160 }
3161 }
3162
3163 if (ThisVT == MVT::Other) continue;
3164
3165 // NOTE: This isn't ideal. In particular, this might allocate the
3166 // frame pointer in functions that need it (due to them not being taken
3167 // out of allocation, because a variable sized allocation hasn't been seen
3168 // yet). This is a slight code pessimization, but should still work.
3169 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3170 E = RC->allocation_order_end(MF); I != E; ++I)
3171 if (*I == Reg) {
3172 // We found a matching register class. Keep looking at others in case
3173 // we find one with larger registers that this physreg is also in.
3174 FoundRC = RC;
3175 FoundVT = ThisVT;
3176 break;
3177 }
3178 }
3179 return FoundRC;
3180}
3181
3182
3183namespace {
3184/// AsmOperandInfo - This contains information for each constraint that we are
3185/// lowering.
3186struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3187 /// ConstraintCode - This contains the actual string for the code, like "m".
3188 std::string ConstraintCode;
3189
3190 /// ConstraintType - Information about the constraint code, e.g. Register,
3191 /// RegisterClass, Memory, Other, Unknown.
3192 TargetLowering::ConstraintType ConstraintType;
3193
3194 /// CallOperand/CallOperandval - If this is the result output operand or a
3195 /// clobber, this is null, otherwise it is the incoming operand to the
3196 /// CallInst. This gets modified as the asm is processed.
3197 SDOperand CallOperand;
3198 Value *CallOperandVal;
3199
3200 /// ConstraintVT - The ValueType for the operand value.
3201 MVT::ValueType ConstraintVT;
3202
3203 /// AssignedRegs - If this is a register or register class operand, this
3204 /// contains the set of register corresponding to the operand.
3205 RegsForValue AssignedRegs;
3206
3207 AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3208 : InlineAsm::ConstraintInfo(info),
3209 ConstraintType(TargetLowering::C_Unknown),
3210 CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3211 }
3212
3213 void ComputeConstraintToUse(const TargetLowering &TLI);
3214
3215 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3216 /// busy in OutputRegs/InputRegs.
3217 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3218 std::set<unsigned> &OutputRegs,
3219 std::set<unsigned> &InputRegs) const {
3220 if (isOutReg)
3221 OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3222 if (isInReg)
3223 InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3224 }
3225};
3226} // end anon namespace.
3227
3228/// getConstraintGenerality - Return an integer indicating how general CT is.
3229static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3230 switch (CT) {
3231 default: assert(0 && "Unknown constraint type!");
3232 case TargetLowering::C_Other:
3233 case TargetLowering::C_Unknown:
3234 return 0;
3235 case TargetLowering::C_Register:
3236 return 1;
3237 case TargetLowering::C_RegisterClass:
3238 return 2;
3239 case TargetLowering::C_Memory:
3240 return 3;
3241 }
3242}
3243
3244void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3245 assert(!Codes.empty() && "Must have at least one constraint");
3246
3247 std::string *Current = &Codes[0];
3248 TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3249 if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
3250 ConstraintCode = *Current;
3251 ConstraintType = CurType;
3252 return;
3253 }
3254
3255 unsigned CurGenerality = getConstraintGenerality(CurType);
3256
3257 // If we have multiple constraints, try to pick the most general one ahead
3258 // of time. This isn't a wonderful solution, but handles common cases.
3259 for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3260 TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3261 unsigned ThisGenerality = getConstraintGenerality(ThisType);
3262 if (ThisGenerality > CurGenerality) {
3263 // This constraint letter is more general than the previous one,
3264 // use it.
3265 CurType = ThisType;
3266 Current = &Codes[j];
3267 CurGenerality = ThisGenerality;
3268 }
3269 }
3270
3271 ConstraintCode = *Current;
3272 ConstraintType = CurType;
3273}
3274
3275
3276void SelectionDAGLowering::
3277GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3278 std::set<unsigned> &OutputRegs,
3279 std::set<unsigned> &InputRegs) {
3280 // Compute whether this value requires an input register, an output register,
3281 // or both.
3282 bool isOutReg = false;
3283 bool isInReg = false;
3284 switch (OpInfo.Type) {
3285 case InlineAsm::isOutput:
3286 isOutReg = true;
3287
3288 // If this is an early-clobber output, or if there is an input
3289 // constraint that matches this, we need to reserve the input register
3290 // so no other inputs allocate to it.
3291 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3292 break;
3293 case InlineAsm::isInput:
3294 isInReg = true;
3295 isOutReg = false;
3296 break;
3297 case InlineAsm::isClobber:
3298 isOutReg = true;
3299 isInReg = true;
3300 break;
3301 }
3302
3303
3304 MachineFunction &MF = DAG.getMachineFunction();
3305 std::vector<unsigned> Regs;
3306
3307 // If this is a constraint for a single physreg, or a constraint for a
3308 // register class, find it.
3309 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3310 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3311 OpInfo.ConstraintVT);
3312
3313 unsigned NumRegs = 1;
3314 if (OpInfo.ConstraintVT != MVT::Other)
3315 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3316 MVT::ValueType RegVT;
3317 MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3318
3319
3320 // If this is a constraint for a specific physical register, like {r17},
3321 // assign it now.
3322 if (PhysReg.first) {
3323 if (OpInfo.ConstraintVT == MVT::Other)
3324 ValueVT = *PhysReg.second->vt_begin();
3325
3326 // Get the actual register value type. This is important, because the user
3327 // may have asked for (e.g.) the AX register in i32 type. We need to
3328 // remember that AX is actually i16 to get the right extension.
3329 RegVT = *PhysReg.second->vt_begin();
3330
3331 // This is a explicit reference to a physical register.
3332 Regs.push_back(PhysReg.first);
3333
3334 // If this is an expanded reference, add the rest of the regs to Regs.
3335 if (NumRegs != 1) {
3336 TargetRegisterClass::iterator I = PhysReg.second->begin();
3337 TargetRegisterClass::iterator E = PhysReg.second->end();
3338 for (; *I != PhysReg.first; ++I)
3339 assert(I != E && "Didn't find reg!");
3340
3341 // Already added the first reg.
3342 --NumRegs; ++I;
3343 for (; NumRegs; --NumRegs, ++I) {
3344 assert(I != E && "Ran out of registers to allocate!");
3345 Regs.push_back(*I);
3346 }
3347 }
3348 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3349 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3350 return;
3351 }
3352
3353 // Otherwise, if this was a reference to an LLVM register class, create vregs
3354 // for this reference.
3355 std::vector<unsigned> RegClassRegs;
3356 const TargetRegisterClass *RC = PhysReg.second;
3357 if (RC) {
3358 // If this is an early clobber or tied register, our regalloc doesn't know
3359 // how to maintain the constraint. If it isn't, go ahead and create vreg
3360 // and let the regalloc do the right thing.
3361 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3362 // If there is some other early clobber and this is an input register,
3363 // then we are forced to pre-allocate the input reg so it doesn't
3364 // conflict with the earlyclobber.
3365 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3366 RegVT = *PhysReg.second->vt_begin();
3367
3368 if (OpInfo.ConstraintVT == MVT::Other)
3369 ValueVT = RegVT;
3370
3371 // Create the appropriate number of virtual registers.
Chris Lattner1b989192007-12-31 04:13:23 +00003372 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003373 for (; NumRegs; --NumRegs)
Chris Lattner1b989192007-12-31 04:13:23 +00003374 Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003375
3376 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3377 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3378 return;
3379 }
3380
3381 // Otherwise, we can't allocate it. Let the code below figure out how to
3382 // maintain these constraints.
3383 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3384
3385 } else {
3386 // This is a reference to a register class that doesn't directly correspond
3387 // to an LLVM register class. Allocate NumRegs consecutive, available,
3388 // registers from the class.
3389 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3390 OpInfo.ConstraintVT);
3391 }
3392
3393 const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3394 unsigned NumAllocated = 0;
3395 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3396 unsigned Reg = RegClassRegs[i];
3397 // See if this register is available.
3398 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
3399 (isInReg && InputRegs.count(Reg))) { // Already used.
3400 // Make sure we find consecutive registers.
3401 NumAllocated = 0;
3402 continue;
3403 }
3404
3405 // Check to see if this register is allocatable (i.e. don't give out the
3406 // stack pointer).
3407 if (RC == 0) {
3408 RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3409 if (!RC) { // Couldn't allocate this register.
3410 // Reset NumAllocated to make sure we return consecutive registers.
3411 NumAllocated = 0;
3412 continue;
3413 }
3414 }
3415
3416 // Okay, this register is good, we can use it.
3417 ++NumAllocated;
3418
3419 // If we allocated enough consecutive registers, succeed.
3420 if (NumAllocated == NumRegs) {
3421 unsigned RegStart = (i-NumAllocated)+1;
3422 unsigned RegEnd = i+1;
3423 // Mark all of the allocated registers used.
3424 for (unsigned i = RegStart; i != RegEnd; ++i)
3425 Regs.push_back(RegClassRegs[i]);
3426
3427 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3428 OpInfo.ConstraintVT);
3429 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3430 return;
3431 }
3432 }
3433
3434 // Otherwise, we couldn't allocate enough registers for this.
3435 return;
3436}
3437
3438
3439/// visitInlineAsm - Handle a call to an InlineAsm object.
3440///
Duncan Sands1c5526c2007-12-17 18:08:19 +00003441void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3442 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003443
3444 /// ConstraintOperands - Information about all of the constraints.
3445 std::vector<AsmOperandInfo> ConstraintOperands;
3446
3447 SDOperand Chain = getRoot();
3448 SDOperand Flag;
3449
3450 std::set<unsigned> OutputRegs, InputRegs;
3451
3452 // Do a prepass over the constraints, canonicalizing them, and building up the
3453 // ConstraintOperands list.
3454 std::vector<InlineAsm::ConstraintInfo>
3455 ConstraintInfos = IA->ParseConstraints();
3456
3457 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3458 // constraint. If so, we can't let the register allocator allocate any input
3459 // registers, because it will not know to avoid the earlyclobbered output reg.
3460 bool SawEarlyClobber = false;
3461
Duncan Sands1c5526c2007-12-17 18:08:19 +00003462 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003463 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3464 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3465 AsmOperandInfo &OpInfo = ConstraintOperands.back();
3466
3467 MVT::ValueType OpVT = MVT::Other;
3468
3469 // Compute the value type for each operand.
3470 switch (OpInfo.Type) {
3471 case InlineAsm::isOutput:
3472 if (!OpInfo.isIndirect) {
3473 // The return value of the call is this value. As such, there is no
3474 // corresponding argument.
Duncan Sands1c5526c2007-12-17 18:08:19 +00003475 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3476 OpVT = TLI.getValueType(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003477 } else {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003478 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003479 }
3480 break;
3481 case InlineAsm::isInput:
Duncan Sands1c5526c2007-12-17 18:08:19 +00003482 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003483 break;
3484 case InlineAsm::isClobber:
3485 // Nothing to do.
3486 break;
3487 }
3488
3489 // If this is an input or an indirect output, process the call argument.
Dale Johannesencfb19e62007-11-05 21:20:28 +00003490 // BasicBlocks are labels, currently appearing only in asm's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003491 if (OpInfo.CallOperandVal) {
Dale Johannesencfb19e62007-11-05 21:20:28 +00003492 if (isa<BasicBlock>(OpInfo.CallOperandVal))
3493 OpInfo.CallOperand =
3494 DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(OpInfo.CallOperandVal)]);
3495 else {
3496 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3497 const Type *OpTy = OpInfo.CallOperandVal->getType();
3498 // If this is an indirect operand, the operand is a pointer to the
3499 // accessed type.
3500 if (OpInfo.isIndirect)
3501 OpTy = cast<PointerType>(OpTy)->getElementType();
3502
3503 // If OpTy is not a first-class value, it may be a struct/union that we
3504 // can tile with integers.
3505 if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3506 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3507 switch (BitSize) {
3508 default: break;
3509 case 1:
3510 case 8:
3511 case 16:
3512 case 32:
3513 case 64:
3514 OpTy = IntegerType::get(BitSize);
3515 break;
3516 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003517 }
Dale Johannesencfb19e62007-11-05 21:20:28 +00003518
3519 OpVT = TLI.getValueType(OpTy, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003520 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003521 }
3522
3523 OpInfo.ConstraintVT = OpVT;
3524
3525 // Compute the constraint code and ConstraintType to use.
3526 OpInfo.ComputeConstraintToUse(TLI);
3527
3528 // Keep track of whether we see an earlyclobber.
3529 SawEarlyClobber |= OpInfo.isEarlyClobber;
3530
3531 // If this is a memory input, and if the operand is not indirect, do what we
3532 // need to to provide an address for the memory input.
3533 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3534 !OpInfo.isIndirect) {
3535 assert(OpInfo.Type == InlineAsm::isInput &&
3536 "Can only indirectify direct input operands!");
3537
3538 // Memory operands really want the address of the value. If we don't have
3539 // an indirect input, put it in the constpool if we can, otherwise spill
3540 // it to a stack slot.
3541
3542 // If the operand is a float, integer, or vector constant, spill to a
3543 // constant pool entry to get its address.
3544 Value *OpVal = OpInfo.CallOperandVal;
3545 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3546 isa<ConstantVector>(OpVal)) {
3547 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3548 TLI.getPointerTy());
3549 } else {
3550 // Otherwise, create a stack slot and emit a store to it before the
3551 // asm.
3552 const Type *Ty = OpVal->getType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003553 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003554 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3555 MachineFunction &MF = DAG.getMachineFunction();
3556 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3557 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3558 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3559 OpInfo.CallOperand = StackSlot;
3560 }
3561
3562 // There is no longer a Value* corresponding to this operand.
3563 OpInfo.CallOperandVal = 0;
3564 // It is now an indirect operand.
3565 OpInfo.isIndirect = true;
3566 }
3567
3568 // If this constraint is for a specific register, allocate it before
3569 // anything else.
3570 if (OpInfo.ConstraintType == TargetLowering::C_Register)
3571 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3572 }
3573 ConstraintInfos.clear();
3574
3575
3576 // Second pass - Loop over all of the operands, assigning virtual or physregs
3577 // to registerclass operands.
3578 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3579 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3580
3581 // C_Register operands have already been allocated, Other/Memory don't need
3582 // to be.
3583 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3584 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3585 }
3586
3587 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3588 std::vector<SDOperand> AsmNodeOperands;
3589 AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
3590 AsmNodeOperands.push_back(
3591 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3592
3593
3594 // Loop over all of the inputs, copying the operand values into the
3595 // appropriate registers and processing the output regs.
3596 RegsForValue RetValRegs;
3597
3598 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3599 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3600
3601 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3602 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3603
3604 switch (OpInfo.Type) {
3605 case InlineAsm::isOutput: {
3606 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3607 OpInfo.ConstraintType != TargetLowering::C_Register) {
3608 // Memory output, or 'other' output (e.g. 'X' constraint).
3609 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3610
3611 // Add information to the INLINEASM node to know about this output.
3612 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3613 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3614 TLI.getPointerTy()));
3615 AsmNodeOperands.push_back(OpInfo.CallOperand);
3616 break;
3617 }
3618
3619 // Otherwise, this is a register or register class output.
3620
3621 // Copy the output from the appropriate register. Find a register that
3622 // we can use.
3623 if (OpInfo.AssignedRegs.Regs.empty()) {
3624 cerr << "Couldn't allocate output reg for contraint '"
3625 << OpInfo.ConstraintCode << "'!\n";
3626 exit(1);
3627 }
3628
3629 if (!OpInfo.isIndirect) {
3630 // This is the result value of the call.
3631 assert(RetValRegs.Regs.empty() &&
3632 "Cannot have multiple output constraints yet!");
Duncan Sands1c5526c2007-12-17 18:08:19 +00003633 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003634 RetValRegs = OpInfo.AssignedRegs;
3635 } else {
3636 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3637 OpInfo.CallOperandVal));
3638 }
3639
3640 // Add information to the INLINEASM node to know that this register is
3641 // set.
3642 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3643 AsmNodeOperands);
3644 break;
3645 }
3646 case InlineAsm::isInput: {
3647 SDOperand InOperandVal = OpInfo.CallOperand;
3648
3649 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
3650 // If this is required to match an output register we have already set,
3651 // just use its register.
3652 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3653
3654 // Scan until we find the definition we already emitted of this operand.
3655 // When we find it, create a RegsForValue operand.
3656 unsigned CurOp = 2; // The first operand.
3657 for (; OperandNo; --OperandNo) {
3658 // Advance to the next operand.
3659 unsigned NumOps =
3660 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3661 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3662 (NumOps & 7) == 4 /*MEM*/) &&
3663 "Skipped past definitions?");
3664 CurOp += (NumOps>>3)+1;
3665 }
3666
3667 unsigned NumOps =
3668 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3669 if ((NumOps & 7) == 2 /*REGDEF*/) {
3670 // Add NumOps>>3 registers to MatchedRegs.
3671 RegsForValue MatchedRegs;
3672 MatchedRegs.ValueVT = InOperandVal.getValueType();
3673 MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
3674 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3675 unsigned Reg =
3676 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3677 MatchedRegs.Regs.push_back(Reg);
3678 }
3679
3680 // Use the produced MatchedRegs object to
3681 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3682 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3683 break;
3684 } else {
3685 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3686 assert(0 && "matching constraints for memory operands unimp");
3687 }
3688 }
3689
3690 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3691 assert(!OpInfo.isIndirect &&
3692 "Don't know how to handle indirect other inputs yet!");
3693
Chris Lattnera531abc2007-08-25 00:47:38 +00003694 std::vector<SDOperand> Ops;
3695 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3696 Ops, DAG);
3697 if (Ops.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003698 cerr << "Invalid operand for inline asm constraint '"
3699 << OpInfo.ConstraintCode << "'!\n";
3700 exit(1);
3701 }
3702
3703 // Add information to the INLINEASM node to know about this input.
Chris Lattnera531abc2007-08-25 00:47:38 +00003704 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003705 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3706 TLI.getPointerTy()));
Chris Lattnera531abc2007-08-25 00:47:38 +00003707 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003708 break;
3709 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3710 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3711 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3712 "Memory operands expect pointer values");
3713
3714 // Add information to the INLINEASM node to know about this input.
3715 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3716 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3717 TLI.getPointerTy()));
3718 AsmNodeOperands.push_back(InOperandVal);
3719 break;
3720 }
3721
3722 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3723 OpInfo.ConstraintType == TargetLowering::C_Register) &&
3724 "Unknown constraint type!");
3725 assert(!OpInfo.isIndirect &&
3726 "Don't know how to handle indirect register inputs yet!");
3727
3728 // Copy the input into the appropriate registers.
3729 assert(!OpInfo.AssignedRegs.Regs.empty() &&
3730 "Couldn't allocate input reg!");
3731
3732 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3733
3734 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3735 AsmNodeOperands);
3736 break;
3737 }
3738 case InlineAsm::isClobber: {
3739 // Add the clobbered value to the operand list, so that the register
3740 // allocator is aware that the physreg got clobbered.
3741 if (!OpInfo.AssignedRegs.Regs.empty())
3742 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3743 AsmNodeOperands);
3744 break;
3745 }
3746 }
3747 }
3748
3749 // Finish up input operands.
3750 AsmNodeOperands[0] = Chain;
3751 if (Flag.Val) AsmNodeOperands.push_back(Flag);
3752
3753 Chain = DAG.getNode(ISD::INLINEASM,
3754 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3755 &AsmNodeOperands[0], AsmNodeOperands.size());
3756 Flag = Chain.getValue(1);
3757
3758 // If this asm returns a register value, copy the result from that register
3759 // and set it as the value of the call.
3760 if (!RetValRegs.Regs.empty()) {
3761 SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3762
3763 // If the result of the inline asm is a vector, it may have the wrong
3764 // width/num elts. Make sure to convert it to the right type with
3765 // bit_convert.
3766 if (MVT::isVector(Val.getValueType())) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003767 const VectorType *VTy = cast<VectorType>(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768 MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3769
3770 Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3771 }
3772
Duncan Sands1c5526c2007-12-17 18:08:19 +00003773 setValue(CS.getInstruction(), Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774 }
3775
3776 std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3777
3778 // Process indirect outputs, first output all of the flagged copies out of
3779 // physregs.
3780 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3781 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3782 Value *Ptr = IndirectStoresToEmit[i].second;
3783 SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3784 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3785 }
3786
3787 // Emit the non-flagged stores from the physregs.
3788 SmallVector<SDOperand, 8> OutChains;
3789 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3790 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3791 getValue(StoresToEmit[i].second),
3792 StoresToEmit[i].second, 0));
3793 if (!OutChains.empty())
3794 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3795 &OutChains[0], OutChains.size());
3796 DAG.setRoot(Chain);
3797}
3798
3799
3800void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3801 SDOperand Src = getValue(I.getOperand(0));
3802
3803 MVT::ValueType IntPtr = TLI.getPointerTy();
3804
3805 if (IntPtr < Src.getValueType())
3806 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3807 else if (IntPtr > Src.getValueType())
3808 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3809
3810 // Scale the source by the type size.
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003811 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003812 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3813 Src, getIntPtrConstant(ElementSize));
3814
3815 TargetLowering::ArgListTy Args;
3816 TargetLowering::ArgListEntry Entry;
3817 Entry.Node = Src;
3818 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3819 Args.push_back(Entry);
3820
3821 std::pair<SDOperand,SDOperand> Result =
3822 TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3823 DAG.getExternalSymbol("malloc", IntPtr),
3824 Args, DAG);
3825 setValue(&I, Result.first); // Pointers always fit in registers
3826 DAG.setRoot(Result.second);
3827}
3828
3829void SelectionDAGLowering::visitFree(FreeInst &I) {
3830 TargetLowering::ArgListTy Args;
3831 TargetLowering::ArgListEntry Entry;
3832 Entry.Node = getValue(I.getOperand(0));
3833 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3834 Args.push_back(Entry);
3835 MVT::ValueType IntPtr = TLI.getPointerTy();
3836 std::pair<SDOperand,SDOperand> Result =
3837 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3838 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3839 DAG.setRoot(Result.second);
3840}
3841
3842// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3843// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
3844// instructions are special in various ways, which require special support to
3845// insert. The specified MachineInstr is created but not inserted into any
3846// basic blocks, and the scheduler passes ownership of it to this method.
3847MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3848 MachineBasicBlock *MBB) {
3849 cerr << "If a target marks an instruction with "
3850 << "'usesCustomDAGSchedInserter', it must implement "
3851 << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3852 abort();
3853 return 0;
3854}
3855
3856void SelectionDAGLowering::visitVAStart(CallInst &I) {
3857 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3858 getValue(I.getOperand(1)),
3859 DAG.getSrcValue(I.getOperand(1))));
3860}
3861
3862void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3863 SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3864 getValue(I.getOperand(0)),
3865 DAG.getSrcValue(I.getOperand(0)));
3866 setValue(&I, V);
3867 DAG.setRoot(V.getValue(1));
3868}
3869
3870void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3871 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3872 getValue(I.getOperand(1)),
3873 DAG.getSrcValue(I.getOperand(1))));
3874}
3875
3876void SelectionDAGLowering::visitVACopy(CallInst &I) {
3877 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3878 getValue(I.getOperand(1)),
3879 getValue(I.getOperand(2)),
3880 DAG.getSrcValue(I.getOperand(1)),
3881 DAG.getSrcValue(I.getOperand(2))));
3882}
3883
3884/// TargetLowering::LowerArguments - This is the default LowerArguments
3885/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
3886/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3887/// integrated into SDISel.
3888std::vector<SDOperand>
3889TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003890 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3891 std::vector<SDOperand> Ops;
3892 Ops.push_back(DAG.getRoot());
3893 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3894 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3895
3896 // Add one result value for each formal argument.
3897 std::vector<MVT::ValueType> RetVals;
3898 unsigned j = 1;
3899 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3900 I != E; ++I, ++j) {
3901 MVT::ValueType VT = getValueType(I->getType());
3902 unsigned Flags = ISD::ParamFlags::NoFlagSet;
3903 unsigned OriginalAlignment =
3904 getTargetData()->getABITypeAlignment(I->getType());
3905
3906 // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3907 // that is zero extended!
Duncan Sands637ec552007-11-28 17:07:01 +00003908 if (F.paramHasAttr(j, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 Flags &= ~(ISD::ParamFlags::SExt);
Duncan Sands637ec552007-11-28 17:07:01 +00003910 if (F.paramHasAttr(j, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 Flags |= ISD::ParamFlags::SExt;
Duncan Sands637ec552007-11-28 17:07:01 +00003912 if (F.paramHasAttr(j, ParamAttr::InReg))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003913 Flags |= ISD::ParamFlags::InReg;
Duncan Sands637ec552007-11-28 17:07:01 +00003914 if (F.paramHasAttr(j, ParamAttr::StructRet))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003915 Flags |= ISD::ParamFlags::StructReturn;
Duncan Sands637ec552007-11-28 17:07:01 +00003916 if (F.paramHasAttr(j, ParamAttr::ByVal)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003917 Flags |= ISD::ParamFlags::ByVal;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003918 const PointerType *Ty = cast<PointerType>(I->getType());
Duncan Sands8b98c4d2008-01-13 21:19:59 +00003919 const Type *ElementTy = Ty->getElementType();
3920 unsigned FrameAlign =
3921 Log2_32(getTargetData()->getCallFrameTypeAlignment(ElementTy));
3922 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
3923 Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
3924 Flags |= (FrameSize << ISD::ParamFlags::ByValSizeOffs);
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003925 }
Duncan Sands637ec552007-11-28 17:07:01 +00003926 if (F.paramHasAttr(j, ParamAttr::Nest))
Duncan Sands38947cd2007-07-27 12:58:54 +00003927 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003928 Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3929
3930 switch (getTypeAction(VT)) {
3931 default: assert(0 && "Unknown type action!");
3932 case Legal:
3933 RetVals.push_back(VT);
3934 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3935 break;
3936 case Promote:
3937 RetVals.push_back(getTypeToTransformTo(VT));
3938 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3939 break;
3940 case Expand: {
3941 // If this is an illegal type, it needs to be broken up to fit into
3942 // registers.
3943 MVT::ValueType RegisterVT = getRegisterType(VT);
3944 unsigned NumRegs = getNumRegisters(VT);
3945 for (unsigned i = 0; i != NumRegs; ++i) {
3946 RetVals.push_back(RegisterVT);
3947 // if it isn't first piece, alignment must be 1
3948 if (i > 0)
3949 Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3950 (1 << ISD::ParamFlags::OrigAlignmentOffs);
3951 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3952 }
3953 break;
3954 }
3955 }
3956 }
3957
3958 RetVals.push_back(MVT::Other);
3959
3960 // Create the node.
3961 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3962 DAG.getNodeValueTypes(RetVals), RetVals.size(),
3963 &Ops[0], Ops.size()).Val;
3964 unsigned NumArgRegs = Result->getNumValues() - 1;
3965 DAG.setRoot(SDOperand(Result, NumArgRegs));
3966
3967 // Set up the return result vector.
3968 Ops.clear();
3969 unsigned i = 0;
3970 unsigned Idx = 1;
3971 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3972 ++I, ++Idx) {
3973 MVT::ValueType VT = getValueType(I->getType());
3974
3975 switch (getTypeAction(VT)) {
3976 default: assert(0 && "Unknown type action!");
3977 case Legal:
3978 Ops.push_back(SDOperand(Result, i++));
3979 break;
3980 case Promote: {
3981 SDOperand Op(Result, i++);
3982 if (MVT::isInteger(VT)) {
Duncan Sands637ec552007-11-28 17:07:01 +00003983 if (F.paramHasAttr(Idx, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003984 Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3985 DAG.getValueType(VT));
Duncan Sands637ec552007-11-28 17:07:01 +00003986 else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003987 Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3988 DAG.getValueType(VT));
3989 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3990 } else {
3991 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3992 Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3993 }
3994 Ops.push_back(Op);
3995 break;
3996 }
3997 case Expand: {
3998 MVT::ValueType PartVT = getRegisterType(VT);
3999 unsigned NumParts = getNumRegisters(VT);
4000 SmallVector<SDOperand, 4> Parts(NumParts);
4001 for (unsigned j = 0; j != NumParts; ++j)
4002 Parts[j] = SDOperand(Result, i++);
4003 Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
4004 break;
4005 }
4006 }
4007 }
4008 assert(i == NumArgRegs && "Argument register count mismatch!");
4009 return Ops;
4010}
4011
4012
4013/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4014/// implementation, which just inserts an ISD::CALL node, which is later custom
4015/// lowered by the target to something concrete. FIXME: When all targets are
4016/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4017std::pair<SDOperand, SDOperand>
4018TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4019 bool RetTyIsSigned, bool isVarArg,
4020 unsigned CallingConv, bool isTailCall,
4021 SDOperand Callee,
4022 ArgListTy &Args, SelectionDAG &DAG) {
4023 SmallVector<SDOperand, 32> Ops;
4024 Ops.push_back(Chain); // Op#0 - Chain
4025 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4026 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
4027 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
4028 Ops.push_back(Callee);
4029
4030 // Handle all of the outgoing arguments.
4031 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4032 MVT::ValueType VT = getValueType(Args[i].Ty);
4033 SDOperand Op = Args[i].Node;
4034 unsigned Flags = ISD::ParamFlags::NoFlagSet;
4035 unsigned OriginalAlignment =
4036 getTargetData()->getABITypeAlignment(Args[i].Ty);
4037
4038 if (Args[i].isSExt)
4039 Flags |= ISD::ParamFlags::SExt;
4040 if (Args[i].isZExt)
4041 Flags |= ISD::ParamFlags::ZExt;
4042 if (Args[i].isInReg)
4043 Flags |= ISD::ParamFlags::InReg;
4044 if (Args[i].isSRet)
4045 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004046 if (Args[i].isByVal) {
4047 Flags |= ISD::ParamFlags::ByVal;
4048 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
Duncan Sands8b98c4d2008-01-13 21:19:59 +00004049 const Type *ElementTy = Ty->getElementType();
4050 unsigned FrameAlign =
4051 Log2_32(getTargetData()->getCallFrameTypeAlignment(ElementTy));
4052 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
4053 Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
4054 Flags |= (FrameSize << ISD::ParamFlags::ByValSizeOffs);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004055 }
Duncan Sands38947cd2007-07-27 12:58:54 +00004056 if (Args[i].isNest)
4057 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004058 Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4059
4060 switch (getTypeAction(VT)) {
4061 default: assert(0 && "Unknown type action!");
4062 case Legal:
4063 Ops.push_back(Op);
4064 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4065 break;
4066 case Promote:
4067 if (MVT::isInteger(VT)) {
4068 unsigned ExtOp;
4069 if (Args[i].isSExt)
4070 ExtOp = ISD::SIGN_EXTEND;
4071 else if (Args[i].isZExt)
4072 ExtOp = ISD::ZERO_EXTEND;
4073 else
4074 ExtOp = ISD::ANY_EXTEND;
4075 Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4076 } else {
4077 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4078 Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4079 }
4080 Ops.push_back(Op);
4081 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4082 break;
4083 case Expand: {
4084 MVT::ValueType PartVT = getRegisterType(VT);
4085 unsigned NumParts = getNumRegisters(VT);
4086 SmallVector<SDOperand, 4> Parts(NumParts);
4087 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4088 for (unsigned i = 0; i != NumParts; ++i) {
4089 // if it isn't first piece, alignment must be 1
4090 unsigned MyFlags = Flags;
4091 if (i != 0)
4092 MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4093 (1 << ISD::ParamFlags::OrigAlignmentOffs);
4094
4095 Ops.push_back(Parts[i]);
4096 Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4097 }
4098 break;
4099 }
4100 }
4101 }
4102
4103 // Figure out the result value types.
4104 MVT::ValueType VT = getValueType(RetTy);
4105 MVT::ValueType RegisterVT = getRegisterType(VT);
4106 unsigned NumRegs = getNumRegisters(VT);
4107 SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4108 for (unsigned i = 0; i != NumRegs; ++i)
4109 RetTys[i] = RegisterVT;
4110
4111 RetTys.push_back(MVT::Other); // Always has a chain.
4112
4113 // Create the CALL node.
4114 SDOperand Res = DAG.getNode(ISD::CALL,
4115 DAG.getVTList(&RetTys[0], NumRegs + 1),
4116 &Ops[0], Ops.size());
Chris Lattnerbc1200c2007-08-02 18:08:16 +00004117 Chain = Res.getValue(NumRegs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004118
4119 // Gather up the call result into a single value.
4120 if (RetTy != Type::VoidTy) {
4121 ISD::NodeType AssertOp = ISD::AssertSext;
4122 if (!RetTyIsSigned)
4123 AssertOp = ISD::AssertZext;
4124 SmallVector<SDOperand, 4> Results(NumRegs);
4125 for (unsigned i = 0; i != NumRegs; ++i)
4126 Results[i] = Res.getValue(i);
4127 Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4128 }
4129
4130 return std::make_pair(Res, Chain);
4131}
4132
4133SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4134 assert(0 && "LowerOperation not implemented for this target!");
4135 abort();
4136 return SDOperand();
4137}
4138
4139SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4140 SelectionDAG &DAG) {
4141 assert(0 && "CustomPromoteOperation not implemented for this target!");
4142 abort();
4143 return SDOperand();
4144}
4145
4146/// getMemsetValue - Vectorized representation of the memset value
4147/// operand.
4148static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4149 SelectionDAG &DAG) {
4150 MVT::ValueType CurVT = VT;
4151 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4152 uint64_t Val = C->getValue() & 255;
4153 unsigned Shift = 8;
4154 while (CurVT != MVT::i8) {
4155 Val = (Val << Shift) | Val;
4156 Shift <<= 1;
4157 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4158 }
4159 return DAG.getConstant(Val, VT);
4160 } else {
4161 Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4162 unsigned Shift = 8;
4163 while (CurVT != MVT::i8) {
4164 Value =
4165 DAG.getNode(ISD::OR, VT,
4166 DAG.getNode(ISD::SHL, VT, Value,
4167 DAG.getConstant(Shift, MVT::i8)), Value);
4168 Shift <<= 1;
4169 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4170 }
4171
4172 return Value;
4173 }
4174}
4175
4176/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4177/// used when a memcpy is turned into a memset when the source is a constant
4178/// string ptr.
4179static SDOperand getMemsetStringVal(MVT::ValueType VT,
4180 SelectionDAG &DAG, TargetLowering &TLI,
4181 std::string &Str, unsigned Offset) {
4182 uint64_t Val = 0;
4183 unsigned MSB = MVT::getSizeInBits(VT) / 8;
4184 if (TLI.isLittleEndian())
4185 Offset = Offset + MSB - 1;
4186 for (unsigned i = 0; i != MSB; ++i) {
4187 Val = (Val << 8) | (unsigned char)Str[Offset];
4188 Offset += TLI.isLittleEndian() ? -1 : 1;
4189 }
4190 return DAG.getConstant(Val, VT);
4191}
4192
4193/// getMemBasePlusOffset - Returns base and offset node for the
4194static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4195 SelectionDAG &DAG, TargetLowering &TLI) {
4196 MVT::ValueType VT = Base.getValueType();
4197 return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4198}
4199
4200/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4201/// to replace the memset / memcpy is below the threshold. It also returns the
4202/// types of the sequence of memory ops to perform memset / memcpy.
4203static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4204 unsigned Limit, uint64_t Size,
4205 unsigned Align, TargetLowering &TLI) {
4206 MVT::ValueType VT;
4207
4208 if (TLI.allowsUnalignedMemoryAccesses()) {
4209 VT = MVT::i64;
4210 } else {
4211 switch (Align & 7) {
4212 case 0:
4213 VT = MVT::i64;
4214 break;
4215 case 4:
4216 VT = MVT::i32;
4217 break;
4218 case 2:
4219 VT = MVT::i16;
4220 break;
4221 default:
4222 VT = MVT::i8;
4223 break;
4224 }
4225 }
4226
4227 MVT::ValueType LVT = MVT::i64;
4228 while (!TLI.isTypeLegal(LVT))
4229 LVT = (MVT::ValueType)((unsigned)LVT - 1);
4230 assert(MVT::isInteger(LVT));
4231
4232 if (VT > LVT)
4233 VT = LVT;
4234
4235 unsigned NumMemOps = 0;
4236 while (Size != 0) {
4237 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4238 while (VTSize > Size) {
4239 VT = (MVT::ValueType)((unsigned)VT - 1);
4240 VTSize >>= 1;
4241 }
4242 assert(MVT::isInteger(VT));
4243
4244 if (++NumMemOps > Limit)
4245 return false;
4246 MemOps.push_back(VT);
4247 Size -= VTSize;
4248 }
4249
4250 return true;
4251}
4252
4253void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4254 SDOperand Op1 = getValue(I.getOperand(1));
4255 SDOperand Op2 = getValue(I.getOperand(2));
4256 SDOperand Op3 = getValue(I.getOperand(3));
4257 SDOperand Op4 = getValue(I.getOperand(4));
4258 unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4259 if (Align == 0) Align = 1;
4260
Dan Gohmancc863aa2007-08-27 16:26:13 +00004261 // If the source and destination are known to not be aliases, we can
4262 // lower memmove as memcpy.
4263 if (Op == ISD::MEMMOVE) {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00004264 uint64_t Size = -1ULL;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004265 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4266 Size = C->getValue();
4267 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4268 AliasAnalysis::NoAlias)
4269 Op = ISD::MEMCPY;
4270 }
4271
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004272 if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4273 std::vector<MVT::ValueType> MemOps;
4274
4275 // Expand memset / memcpy to a series of load / store ops
4276 // if the size operand falls below a certain threshold.
4277 SmallVector<SDOperand, 8> OutChains;
4278 switch (Op) {
4279 default: break; // Do nothing for now.
4280 case ISD::MEMSET: {
4281 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4282 Size->getValue(), Align, TLI)) {
4283 unsigned NumMemOps = MemOps.size();
4284 unsigned Offset = 0;
4285 for (unsigned i = 0; i < NumMemOps; i++) {
4286 MVT::ValueType VT = MemOps[i];
4287 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4288 SDOperand Value = getMemsetValue(Op2, VT, DAG);
4289 SDOperand Store = DAG.getStore(getRoot(), Value,
4290 getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4291 I.getOperand(1), Offset);
4292 OutChains.push_back(Store);
4293 Offset += VTSize;
4294 }
4295 }
4296 break;
4297 }
4298 case ISD::MEMCPY: {
4299 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4300 Size->getValue(), Align, TLI)) {
4301 unsigned NumMemOps = MemOps.size();
4302 unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4303 GlobalAddressSDNode *G = NULL;
4304 std::string Str;
4305 bool CopyFromStr = false;
4306
4307 if (Op2.getOpcode() == ISD::GlobalAddress)
4308 G = cast<GlobalAddressSDNode>(Op2);
4309 else if (Op2.getOpcode() == ISD::ADD &&
4310 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4311 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4312 G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4313 SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4314 }
4315 if (G) {
4316 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4317 if (GV && GV->isConstant()) {
4318 Str = GV->getStringValue(false);
4319 if (!Str.empty()) {
4320 CopyFromStr = true;
4321 SrcOff += SrcDelta;
4322 }
4323 }
4324 }
4325
4326 for (unsigned i = 0; i < NumMemOps; i++) {
4327 MVT::ValueType VT = MemOps[i];
4328 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4329 SDOperand Value, Chain, Store;
4330
4331 if (CopyFromStr) {
4332 Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4333 Chain = getRoot();
4334 Store =
4335 DAG.getStore(Chain, Value,
4336 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4337 I.getOperand(1), DstOff);
4338 } else {
4339 Value = DAG.getLoad(VT, getRoot(),
Bill Wendling84ebece2007-10-26 20:24:42 +00004340 getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4341 I.getOperand(2), SrcOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004342 Chain = Value.getValue(1);
4343 Store =
4344 DAG.getStore(Chain, Value,
4345 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
Bill Wendling84ebece2007-10-26 20:24:42 +00004346 I.getOperand(1), DstOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004347 }
4348 OutChains.push_back(Store);
4349 SrcOff += VTSize;
4350 DstOff += VTSize;
4351 }
4352 }
4353 break;
4354 }
4355 }
4356
4357 if (!OutChains.empty()) {
4358 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4359 &OutChains[0], OutChains.size()));
4360 return;
4361 }
4362 }
4363
Rafael Espindola80825902007-10-19 10:41:11 +00004364 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4365 SDOperand Node;
4366 switch(Op) {
4367 default:
4368 assert(0 && "Unknown Op");
4369 case ISD::MEMCPY:
4370 Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4371 break;
4372 case ISD::MEMMOVE:
4373 Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4374 break;
4375 case ISD::MEMSET:
4376 Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4377 break;
4378 }
4379 DAG.setRoot(Node);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004380}
4381
4382//===----------------------------------------------------------------------===//
4383// SelectionDAGISel code
4384//===----------------------------------------------------------------------===//
4385
4386unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
Chris Lattner1b989192007-12-31 04:13:23 +00004387 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004388}
4389
4390void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4391 AU.addRequired<AliasAnalysis>();
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004392 AU.addRequired<CollectorModuleMetadata>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004393 AU.setPreservesAll();
4394}
4395
4396
4397
4398bool SelectionDAGISel::runOnFunction(Function &Fn) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004399 // Get alias analysis for load/store combining.
4400 AA = &getAnalysis<AliasAnalysis>();
4401
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004402 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004403 if (MF.getFunction()->hasCollector())
4404 GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4405 else
4406 GCI = 0;
Chris Lattner1b989192007-12-31 04:13:23 +00004407 RegInfo = &MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004408 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4409
4410 FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4411
4412 if (ExceptionHandling)
4413 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4414 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4415 // Mark landing pad.
4416 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4417
4418 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4419 SelectBasicBlock(I, MF, FuncInfo);
4420
4421 // Add function live-ins to entry block live-in set.
4422 BasicBlock *EntryBB = &Fn.getEntryBlock();
4423 BB = FuncInfo.MBBMap[EntryBB];
Chris Lattner1b989192007-12-31 04:13:23 +00004424 if (!RegInfo->livein_empty())
4425 for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4426 E = RegInfo->livein_end(); I != E; ++I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004427 BB->addLiveIn(I->first);
4428
4429#ifndef NDEBUG
4430 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4431 "Not all catch info was assigned to a landing pad!");
4432#endif
4433
4434 return true;
4435}
4436
4437SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4438 unsigned Reg) {
4439 SDOperand Op = getValue(V);
4440 assert((Op.getOpcode() != ISD::CopyFromReg ||
4441 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4442 "Copy from a reg to the same reg!");
4443
4444 MVT::ValueType SrcVT = Op.getValueType();
4445 MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4446 unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4447 SmallVector<SDOperand, 8> Regs(NumRegs);
4448 SmallVector<SDOperand, 8> Chains(NumRegs);
4449
4450 // Copy the value by legal parts into sequential virtual registers.
4451 getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4452 for (unsigned i = 0; i != NumRegs; ++i)
4453 Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4454 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4455}
4456
4457void SelectionDAGISel::
4458LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4459 std::vector<SDOperand> &UnorderedChains) {
4460 // If this is the entry block, emit arguments.
4461 Function &F = *LLVMBB->getParent();
4462 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4463 SDOperand OldRoot = SDL.DAG.getRoot();
4464 std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4465
4466 unsigned a = 0;
4467 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4468 AI != E; ++AI, ++a)
4469 if (!AI->use_empty()) {
4470 SDL.setValue(AI, Args[a]);
4471
4472 // If this argument is live outside of the entry block, insert a copy from
4473 // whereever we got it to the vreg that other BB's will reference it as.
4474 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4475 if (VMI != FuncInfo.ValueMap.end()) {
4476 SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4477 UnorderedChains.push_back(Copy);
4478 }
4479 }
4480
4481 // Finally, if the target has anything special to do, allow it to do so.
4482 // FIXME: this should insert code into the DAG!
4483 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4484}
4485
4486static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4487 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004488 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4489 if (isSelector(I)) {
4490 // Apply the catch info to DestBB.
4491 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4492#ifndef NDEBUG
Duncan Sands9b7e1482007-11-15 09:54:37 +00004493 if (!FLI.MBBMap[SrcBB]->isLandingPad())
4494 FLI.CatchInfoFound.insert(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004495#endif
4496 }
4497}
4498
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004499/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004500/// DAG and fixes their tailcall attribute operand.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004501static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4502 TargetLowering& TLI) {
4503 SDNode * Ret = NULL;
4504 SDOperand Terminator = DAG.getRoot();
4505
4506 // Find RET node.
4507 if (Terminator.getOpcode() == ISD::RET) {
4508 Ret = Terminator.Val;
4509 }
4510
4511 // Fix tail call attribute of CALL nodes.
4512 for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4513 BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4514 if (BI->getOpcode() == ISD::CALL) {
4515 SDOperand OpRet(Ret, 0);
4516 SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4517 bool isMarkedTailCall =
4518 cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4519 // If CALL node has tail call attribute set to true and the call is not
4520 // eligible (no RET or the target rejects) the attribute is fixed to
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004521 // false. The TargetLowering::IsEligibleForTailCallOptimization function
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004522 // must correctly identify tail call optimizable calls.
4523 if (isMarkedTailCall &&
4524 (Ret==NULL ||
4525 !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4526 SmallVector<SDOperand, 32> Ops;
4527 unsigned idx=0;
4528 for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4529 E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4530 if (idx!=3)
4531 Ops.push_back(*I);
4532 else
4533 Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4534 }
4535 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4536 }
4537 }
4538 }
4539}
4540
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004541void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4542 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4543 FunctionLoweringInfo &FuncInfo) {
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004544 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004545
4546 std::vector<SDOperand> UnorderedChains;
4547
4548 // Lower any arguments needed in this block if this is the entry block.
4549 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4550 LowerArguments(LLVMBB, SDL, UnorderedChains);
4551
4552 BB = FuncInfo.MBBMap[LLVMBB];
4553 SDL.setCurrentBasicBlock(BB);
4554
4555 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4556
4557 if (ExceptionHandling && MMI && BB->isLandingPad()) {
4558 // Add a label to mark the beginning of the landing pad. Deletion of the
4559 // landing pad can thus be detected via the MachineModuleInfo.
4560 unsigned LabelID = MMI->addLandingPad(BB);
4561 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4562 DAG.getConstant(LabelID, MVT::i32)));
4563
4564 // Mark exception register as live in.
4565 unsigned Reg = TLI.getExceptionAddressRegister();
4566 if (Reg) BB->addLiveIn(Reg);
4567
4568 // Mark exception selector register as live in.
4569 Reg = TLI.getExceptionSelectorRegister();
4570 if (Reg) BB->addLiveIn(Reg);
4571
4572 // FIXME: Hack around an exception handling flaw (PR1508): the personality
4573 // function and list of typeids logically belong to the invoke (or, if you
4574 // like, the basic block containing the invoke), and need to be associated
4575 // with it in the dwarf exception handling tables. Currently however the
4576 // information is provided by an intrinsic (eh.selector) that can be moved
4577 // to unexpected places by the optimizers: if the unwind edge is critical,
4578 // then breaking it can result in the intrinsics being in the successor of
4579 // the landing pad, not the landing pad itself. This results in exceptions
4580 // not being caught because no typeids are associated with the invoke.
4581 // This may not be the only way things can go wrong, but it is the only way
4582 // we try to work around for the moment.
4583 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4584
4585 if (Br && Br->isUnconditional()) { // Critical edge?
4586 BasicBlock::iterator I, E;
4587 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4588 if (isSelector(I))
4589 break;
4590
4591 if (I == E)
4592 // No catch info found - try to extract some from the successor.
4593 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4594 }
4595 }
4596
4597 // Lower all of the non-terminator instructions.
4598 for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4599 I != E; ++I)
4600 SDL.visit(*I);
4601
4602 // Ensure that all instructions which are used outside of their defining
4603 // blocks are available as virtual registers. Invoke is handled elsewhere.
4604 for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4605 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4606 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4607 if (VMI != FuncInfo.ValueMap.end())
4608 UnorderedChains.push_back(
4609 SDL.CopyValueToVirtualRegister(I, VMI->second));
4610 }
4611
4612 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
4613 // ensure constants are generated when needed. Remember the virtual registers
4614 // that need to be added to the Machine PHI nodes as input. We cannot just
4615 // directly add them, because expansion might result in multiple MBB's for one
4616 // BB. As such, the start of the BB might correspond to a different MBB than
4617 // the end.
4618 //
4619 TerminatorInst *TI = LLVMBB->getTerminator();
4620
4621 // Emit constants only once even if used by multiple PHI nodes.
4622 std::map<Constant*, unsigned> ConstantsOut;
4623
4624 // Vector bool would be better, but vector<bool> is really slow.
4625 std::vector<unsigned char> SuccsHandled;
4626 if (TI->getNumSuccessors())
4627 SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4628
4629 // Check successor nodes' PHI nodes that expect a constant to be available
4630 // from this block.
4631 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4632 BasicBlock *SuccBB = TI->getSuccessor(succ);
4633 if (!isa<PHINode>(SuccBB->begin())) continue;
4634 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4635
4636 // If this terminator has multiple identical successors (common for
4637 // switches), only handle each succ once.
4638 unsigned SuccMBBNo = SuccMBB->getNumber();
4639 if (SuccsHandled[SuccMBBNo]) continue;
4640 SuccsHandled[SuccMBBNo] = true;
4641
4642 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4643 PHINode *PN;
4644
4645 // At this point we know that there is a 1-1 correspondence between LLVM PHI
4646 // nodes and Machine PHI nodes, but the incoming operands have not been
4647 // emitted yet.
4648 for (BasicBlock::iterator I = SuccBB->begin();
4649 (PN = dyn_cast<PHINode>(I)); ++I) {
4650 // Ignore dead phi's.
4651 if (PN->use_empty()) continue;
4652
4653 unsigned Reg;
4654 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4655
4656 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4657 unsigned &RegOut = ConstantsOut[C];
4658 if (RegOut == 0) {
4659 RegOut = FuncInfo.CreateRegForValue(C);
4660 UnorderedChains.push_back(
4661 SDL.CopyValueToVirtualRegister(C, RegOut));
4662 }
4663 Reg = RegOut;
4664 } else {
4665 Reg = FuncInfo.ValueMap[PHIOp];
4666 if (Reg == 0) {
4667 assert(isa<AllocaInst>(PHIOp) &&
4668 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4669 "Didn't codegen value into a register!??");
4670 Reg = FuncInfo.CreateRegForValue(PHIOp);
4671 UnorderedChains.push_back(
4672 SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4673 }
4674 }
4675
4676 // Remember that this register needs to added to the machine PHI node as
4677 // the input for this MBB.
4678 MVT::ValueType VT = TLI.getValueType(PN->getType());
4679 unsigned NumRegisters = TLI.getNumRegisters(VT);
4680 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4681 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4682 }
4683 }
4684 ConstantsOut.clear();
4685
4686 // Turn all of the unordered chains into one factored node.
4687 if (!UnorderedChains.empty()) {
4688 SDOperand Root = SDL.getRoot();
4689 if (Root.getOpcode() != ISD::EntryToken) {
4690 unsigned i = 0, e = UnorderedChains.size();
4691 for (; i != e; ++i) {
4692 assert(UnorderedChains[i].Val->getNumOperands() > 1);
4693 if (UnorderedChains[i].Val->getOperand(0) == Root)
4694 break; // Don't add the root if we already indirectly depend on it.
4695 }
4696
4697 if (i == e)
4698 UnorderedChains.push_back(Root);
4699 }
4700 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4701 &UnorderedChains[0], UnorderedChains.size()));
4702 }
4703
4704 // Lower the terminator after the copies are emitted.
4705 SDL.visit(*LLVMBB->getTerminator());
4706
4707 // Copy over any CaseBlock records that may now exist due to SwitchInst
4708 // lowering, as well as any jump table information.
4709 SwitchCases.clear();
4710 SwitchCases = SDL.SwitchCases;
4711 JTCases.clear();
4712 JTCases = SDL.JTCases;
4713 BitTestCases.clear();
4714 BitTestCases = SDL.BitTestCases;
4715
4716 // Make sure the root of the DAG is up-to-date.
4717 DAG.setRoot(SDL.getRoot());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004718
4719 // Check whether calls in this block are real tail calls. Fix up CALL nodes
4720 // with correct tailcall attribute so that the target can rely on the tailcall
4721 // attribute indicating whether the call is really eligible for tail call
4722 // optimization.
4723 CheckDAGForTailCallsAndFixThem(DAG, TLI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004724}
4725
4726void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004727 DOUT << "Lowered selection DAG:\n";
4728 DEBUG(DAG.dump());
4729
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004730 // Run the DAG combiner in pre-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004731 DAG.Combine(false, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004732
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004733 DOUT << "Optimized lowered selection DAG:\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004734 DEBUG(DAG.dump());
4735
4736 // Second step, hack on the DAG until it only uses operations and types that
4737 // the target supports.
Chris Lattner8a258202007-10-15 06:10:22 +00004738#if 0 // Enable this some day.
4739 DAG.LegalizeTypes();
4740 // Someday even later, enable a dag combine pass here.
4741#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004742 DAG.Legalize();
4743
4744 DOUT << "Legalized selection DAG:\n";
4745 DEBUG(DAG.dump());
4746
4747 // Run the DAG combiner in post-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004748 DAG.Combine(true, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004749
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004750 DOUT << "Optimized legalized selection DAG:\n";
4751 DEBUG(DAG.dump());
4752
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004753 if (ViewISelDAGs) DAG.viewGraph();
4754
4755 // Third, instruction select all of the operations to machine code, adding the
4756 // code to the MachineBasicBlock.
4757 InstructionSelectBasicBlock(DAG);
4758
4759 DOUT << "Selected machine code:\n";
4760 DEBUG(BB->dump());
4761}
4762
4763void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4764 FunctionLoweringInfo &FuncInfo) {
4765 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4766 {
4767 SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4768 CurDAG = &DAG;
4769
4770 // First step, lower LLVM code to some DAG. This DAG may use operations and
4771 // types that are not supported by the target.
4772 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4773
4774 // Second step, emit the lowered DAG as machine code.
4775 CodeGenAndEmitDAG(DAG);
4776 }
4777
4778 DOUT << "Total amount of phi nodes to update: "
4779 << PHINodesToUpdate.size() << "\n";
4780 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4781 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4782 << ", " << PHINodesToUpdate[i].second << ")\n";);
4783
4784 // Next, now that we know what the last MBB the LLVM BB expanded is, update
4785 // PHI nodes in successors.
4786 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4787 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4788 MachineInstr *PHI = PHINodesToUpdate[i].first;
4789 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4790 "This is not a machine PHI node that we are updating!");
Chris Lattnere44906f2007-12-30 00:57:42 +00004791 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4792 false));
4793 PHI->addOperand(MachineOperand::CreateMBB(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004794 }
4795 return;
4796 }
4797
4798 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4799 // Lower header first, if it wasn't already lowered
4800 if (!BitTestCases[i].Emitted) {
4801 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4802 CurDAG = &HSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004803 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004804 // Set the current basic block to the mbb we wish to insert the code into
4805 BB = BitTestCases[i].Parent;
4806 HSDL.setCurrentBasicBlock(BB);
4807 // Emit the code
4808 HSDL.visitBitTestHeader(BitTestCases[i]);
4809 HSDAG.setRoot(HSDL.getRoot());
4810 CodeGenAndEmitDAG(HSDAG);
4811 }
4812
4813 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4814 SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4815 CurDAG = &BSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004816 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004817 // Set the current basic block to the mbb we wish to insert the code into
4818 BB = BitTestCases[i].Cases[j].ThisBB;
4819 BSDL.setCurrentBasicBlock(BB);
4820 // Emit the code
4821 if (j+1 != ej)
4822 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4823 BitTestCases[i].Reg,
4824 BitTestCases[i].Cases[j]);
4825 else
4826 BSDL.visitBitTestCase(BitTestCases[i].Default,
4827 BitTestCases[i].Reg,
4828 BitTestCases[i].Cases[j]);
4829
4830
4831 BSDAG.setRoot(BSDL.getRoot());
4832 CodeGenAndEmitDAG(BSDAG);
4833 }
4834
4835 // Update PHI Nodes
4836 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4837 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4838 MachineBasicBlock *PHIBB = PHI->getParent();
4839 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4840 "This is not a machine PHI node that we are updating!");
4841 // This is "default" BB. We have two jumps to it. From "header" BB and
4842 // from last "case" BB.
4843 if (PHIBB == BitTestCases[i].Default) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004844 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4845 false));
4846 PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4847 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4848 false));
4849 PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4850 back().ThisBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004851 }
4852 // One of "cases" BB.
4853 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4854 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4855 if (cBB->succ_end() !=
4856 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004857 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4858 false));
4859 PHI->addOperand(MachineOperand::CreateMBB(cBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004860 }
4861 }
4862 }
4863 }
4864
4865 // If the JumpTable record is filled in, then we need to emit a jump table.
4866 // Updating the PHI nodes is tricky in this case, since we need to determine
4867 // whether the PHI is a successor of the range check MBB or the jump table MBB
4868 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4869 // Lower header first, if it wasn't already lowered
4870 if (!JTCases[i].first.Emitted) {
4871 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4872 CurDAG = &HSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004873 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004874 // Set the current basic block to the mbb we wish to insert the code into
4875 BB = JTCases[i].first.HeaderBB;
4876 HSDL.setCurrentBasicBlock(BB);
4877 // Emit the code
4878 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4879 HSDAG.setRoot(HSDL.getRoot());
4880 CodeGenAndEmitDAG(HSDAG);
4881 }
4882
4883 SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4884 CurDAG = &JSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004885 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004886 // Set the current basic block to the mbb we wish to insert the code into
4887 BB = JTCases[i].second.MBB;
4888 JSDL.setCurrentBasicBlock(BB);
4889 // Emit the code
4890 JSDL.visitJumpTable(JTCases[i].second);
4891 JSDAG.setRoot(JSDL.getRoot());
4892 CodeGenAndEmitDAG(JSDAG);
4893
4894 // Update PHI Nodes
4895 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4896 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4897 MachineBasicBlock *PHIBB = PHI->getParent();
4898 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4899 "This is not a machine PHI node that we are updating!");
4900 // "default" BB. We can go there only from header BB.
4901 if (PHIBB == JTCases[i].second.Default) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004902 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4903 false));
4904 PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004905 }
4906 // JT BB. Just iterate over successors here
4907 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004908 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4909 false));
4910 PHI->addOperand(MachineOperand::CreateMBB(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004911 }
4912 }
4913 }
4914
4915 // If the switch block involved a branch to one of the actual successors, we
4916 // need to update PHI nodes in that block.
4917 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4918 MachineInstr *PHI = PHINodesToUpdate[i].first;
4919 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4920 "This is not a machine PHI node that we are updating!");
4921 if (BB->isSuccessor(PHI->getParent())) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004922 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4923 false));
4924 PHI->addOperand(MachineOperand::CreateMBB(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004925 }
4926 }
4927
4928 // If we generated any switch lowering information, build and codegen any
4929 // additional DAGs necessary.
4930 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4931 SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4932 CurDAG = &SDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004933 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004934
4935 // Set the current basic block to the mbb we wish to insert the code into
4936 BB = SwitchCases[i].ThisBB;
4937 SDL.setCurrentBasicBlock(BB);
4938
4939 // Emit the code
4940 SDL.visitSwitchCase(SwitchCases[i]);
4941 SDAG.setRoot(SDL.getRoot());
4942 CodeGenAndEmitDAG(SDAG);
4943
4944 // Handle any PHI nodes in successors of this chunk, as if we were coming
4945 // from the original BB before switch expansion. Note that PHI nodes can
4946 // occur multiple times in PHINodesToUpdate. We have to be very careful to
4947 // handle them the right number of times.
4948 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
4949 for (MachineBasicBlock::iterator Phi = BB->begin();
4950 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4951 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4952 for (unsigned pn = 0; ; ++pn) {
4953 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4954 if (PHINodesToUpdate[pn].first == Phi) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004955 Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
4956 second, false));
4957 Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004958 break;
4959 }
4960 }
4961 }
4962
4963 // Don't process RHS if same block as LHS.
4964 if (BB == SwitchCases[i].FalseBB)
4965 SwitchCases[i].FalseBB = 0;
4966
4967 // If we haven't handled the RHS, do so now. Otherwise, we're done.
4968 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4969 SwitchCases[i].FalseBB = 0;
4970 }
4971 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4972 }
4973}
4974
4975
4976//===----------------------------------------------------------------------===//
4977/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4978/// target node in the graph.
4979void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4980 if (ViewSchedDAGs) DAG.viewGraph();
4981
4982 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4983
4984 if (!Ctor) {
4985 Ctor = ISHeuristic;
4986 RegisterScheduler::setDefault(Ctor);
4987 }
4988
4989 ScheduleDAG *SL = Ctor(this, &DAG, BB);
4990 BB = SL->Run();
Dan Gohman134c5b62007-08-28 20:32:58 +00004991
4992 if (ViewSUnitDAGs) SL->viewGraph();
4993
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004994 delete SL;
4995}
4996
4997
4998HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4999 return new HazardRecognizer();
5000}
5001
5002//===----------------------------------------------------------------------===//
5003// Helper functions used by the generated instruction selector.
5004//===----------------------------------------------------------------------===//
5005// Calls to these methods are generated by tblgen.
5006
5007/// CheckAndMask - The isel is trying to match something like (and X, 255). If
5008/// the dag combiner simplified the 255, we still want to match. RHS is the
5009/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5010/// specified in the .td file (e.g. 255).
5011bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00005012 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005013 uint64_t ActualMask = RHS->getValue();
5014 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5015
5016 // If the actual mask exactly matches, success!
5017 if (ActualMask == DesiredMask)
5018 return true;
5019
5020 // If the actual AND mask is allowing unallowed bits, this doesn't match.
5021 if (ActualMask & ~DesiredMask)
5022 return false;
5023
5024 // Otherwise, the DAG Combiner may have proven that the value coming in is
5025 // either already zero or is not demanded. Check for known zero input bits.
5026 uint64_t NeededMask = DesiredMask & ~ActualMask;
5027 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5028 return true;
5029
5030 // TODO: check to see if missing bits are just not demanded.
5031
5032 // Otherwise, this pattern doesn't match.
5033 return false;
5034}
5035
5036/// CheckOrMask - The isel is trying to match something like (or X, 255). If
5037/// the dag combiner simplified the 255, we still want to match. RHS is the
5038/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5039/// specified in the .td file (e.g. 255).
5040bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00005041 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005042 uint64_t ActualMask = RHS->getValue();
5043 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5044
5045 // If the actual mask exactly matches, success!
5046 if (ActualMask == DesiredMask)
5047 return true;
5048
5049 // If the actual AND mask is allowing unallowed bits, this doesn't match.
5050 if (ActualMask & ~DesiredMask)
5051 return false;
5052
5053 // Otherwise, the DAG Combiner may have proven that the value coming in is
5054 // either already zero or is not demanded. Check for known zero input bits.
5055 uint64_t NeededMask = DesiredMask & ~ActualMask;
5056
5057 uint64_t KnownZero, KnownOne;
5058 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5059
5060 // If all the missing bits in the or are already known to be set, match!
5061 if ((NeededMask & KnownOne) == NeededMask)
5062 return true;
5063
5064 // TODO: check to see if missing bits are just not demanded.
5065
5066 // Otherwise, this pattern doesn't match.
5067 return false;
5068}
5069
5070
5071/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5072/// by tblgen. Others should not call it.
5073void SelectionDAGISel::
5074SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5075 std::vector<SDOperand> InOps;
5076 std::swap(InOps, Ops);
5077
5078 Ops.push_back(InOps[0]); // input chain.
5079 Ops.push_back(InOps[1]); // input asm string.
5080
5081 unsigned i = 2, e = InOps.size();
5082 if (InOps[e-1].getValueType() == MVT::Flag)
5083 --e; // Don't process a flag operand if it is here.
5084
5085 while (i != e) {
5086 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5087 if ((Flags & 7) != 4 /*MEM*/) {
5088 // Just skip over this operand, copying the operands verbatim.
5089 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5090 i += (Flags >> 3) + 1;
5091 } else {
5092 assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5093 // Otherwise, this is a memory operand. Ask the target to select it.
5094 std::vector<SDOperand> SelOps;
5095 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5096 cerr << "Could not match memory address. Inline asm failure!\n";
5097 exit(1);
5098 }
5099
5100 // Add this to the output node.
5101 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5102 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5103 IntPtrTy));
5104 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5105 i += 2;
5106 }
5107 }
5108
5109 // Add the flag input back if present.
5110 if (e != InOps.size())
5111 Ops.push_back(InOps.back());
5112}
5113
5114char SelectionDAGISel::ID = 0;