blob: 0bcbe44bd4a28a5ae4c5ebe319f279795233c54b [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000153
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
468A variable may be defined as a global "constant," which indicates that
469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
472initialization cannot be marked "constant" as there is a store to the
473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
504An explicit alignment may be specified for a global, which must be a
505power of 2. If not present, or if the alignment is set to zero, the
506alignment of the global is set by the target to whatever it feels
507convenient. If an explicit alignment is specified, the global is forced
508to have exactly that alignment. Targets and optimizers are not allowed
509to over-align the global if the global has an assigned section. In this
510case, the extra alignment could be observable: for example, code could
511assume that the globals are densely packed in their section and try to
512iterate over them as an array, alignment padding would break this
513iteration.
514
515For example, the following defines a global in a numbered address space
516with an initializer, section, and alignment:
517
518.. code-block:: llvm
519
520 @G = addrspace(5) constant float 1.0, section "foo", align 4
521
522The following example defines a thread-local global with the
523``initialexec`` TLS model:
524
525.. code-block:: llvm
526
527 @G = thread_local(initialexec) global i32 0, align 4
528
529.. _functionstructure:
530
531Functions
532---------
533
534LLVM function definitions consist of the "``define``" keyword, an
535optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
536style <visibility>`, an optional :ref:`calling convention <callingconv>`,
537an optional ``unnamed_addr`` attribute, a return type, an optional
538:ref:`parameter attribute <paramattrs>` for the return type, a function
539name, a (possibly empty) argument list (each with optional :ref:`parameter
540attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
541an optional section, an optional alignment, an optional :ref:`garbage
542collector name <gc>`, an opening curly brace, a list of basic blocks,
543and a closing curly brace.
544
545LLVM function declarations consist of the "``declare``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a possibly empty list of arguments, an optional alignment, and an
551optional :ref:`garbage collector name <gc>`.
552
553A function definition contains a list of basic blocks, forming the CFG
554(Control Flow Graph) for the function. Each basic block may optionally
555start with a label (giving the basic block a symbol table entry),
556contains a list of instructions, and ends with a
557:ref:`terminator <terminators>` instruction (such as a branch or function
558return).
559
560The first basic block in a function is special in two ways: it is
561immediately executed on entrance to the function, and it is not allowed
562to have predecessor basic blocks (i.e. there can not be any branches to
563the entry block of a function). Because the block can have no
564predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
565
566LLVM allows an explicit section to be specified for functions. If the
567target supports it, it will emit functions to the section specified.
568
569An explicit alignment may be specified for a function. If not present,
570or if the alignment is set to zero, the alignment of the function is set
571by the target to whatever it feels convenient. If an explicit alignment
572is specified, the function is forced to have at least that much
573alignment. All alignments must be a power of 2.
574
575If the ``unnamed_addr`` attribute is given, the address is know to not
576be significant and two identical functions can be merged.
577
578Syntax::
579
580 define [linkage] [visibility]
581 [cconv] [ret attrs]
582 <ResultType> @<FunctionName> ([argument list])
583 [fn Attrs] [section "name"] [align N]
584 [gc] { ... }
585
586Aliases
587-------
588
589Aliases act as "second name" for the aliasee value (which can be either
590function, global variable, another alias or bitcast of global value).
591Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
592:ref:`visibility style <visibility>`.
593
594Syntax::
595
596 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
597
598.. _namedmetadatastructure:
599
600Named Metadata
601--------------
602
603Named metadata is a collection of metadata. :ref:`Metadata
604nodes <metadata>` (but not metadata strings) are the only valid
605operands for a named metadata.
606
607Syntax::
608
609 ; Some unnamed metadata nodes, which are referenced by the named metadata.
610 !0 = metadata !{metadata !"zero"}
611 !1 = metadata !{metadata !"one"}
612 !2 = metadata !{metadata !"two"}
613 ; A named metadata.
614 !name = !{!0, !1, !2}
615
616.. _paramattrs:
617
618Parameter Attributes
619--------------------
620
621The return type and each parameter of a function type may have a set of
622*parameter attributes* associated with them. Parameter attributes are
623used to communicate additional information about the result or
624parameters of a function. Parameter attributes are considered to be part
625of the function, not of the function type, so functions with different
626parameter attributes can have the same function type.
627
628Parameter attributes are simple keywords that follow the type specified.
629If multiple parameter attributes are needed, they are space separated.
630For example:
631
632.. code-block:: llvm
633
634 declare i32 @printf(i8* noalias nocapture, ...)
635 declare i32 @atoi(i8 zeroext)
636 declare signext i8 @returns_signed_char()
637
638Note that any attributes for the function result (``nounwind``,
639``readonly``) come immediately after the argument list.
640
641Currently, only the following parameter attributes are defined:
642
643``zeroext``
644 This indicates to the code generator that the parameter or return
645 value should be zero-extended to the extent required by the target's
646 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
647 the caller (for a parameter) or the callee (for a return value).
648``signext``
649 This indicates to the code generator that the parameter or return
650 value should be sign-extended to the extent required by the target's
651 ABI (which is usually 32-bits) by the caller (for a parameter) or
652 the callee (for a return value).
653``inreg``
654 This indicates that this parameter or return value should be treated
655 in a special target-dependent fashion during while emitting code for
656 a function call or return (usually, by putting it in a register as
657 opposed to memory, though some targets use it to distinguish between
658 two different kinds of registers). Use of this attribute is
659 target-specific.
660``byval``
661 This indicates that the pointer parameter should really be passed by
662 value to the function. The attribute implies that a hidden copy of
663 the pointee is made between the caller and the callee, so the callee
664 is unable to modify the value in the caller. This attribute is only
665 valid on LLVM pointer arguments. It is generally used to pass
666 structs and arrays by value, but is also valid on pointers to
667 scalars. The copy is considered to belong to the caller not the
668 callee (for example, ``readonly`` functions should not write to
669 ``byval`` parameters). This is not a valid attribute for return
670 values.
671
672 The byval attribute also supports specifying an alignment with the
673 align attribute. It indicates the alignment of the stack slot to
674 form and the known alignment of the pointer specified to the call
675 site. If the alignment is not specified, then the code generator
676 makes a target-specific assumption.
677
678``sret``
679 This indicates that the pointer parameter specifies the address of a
680 structure that is the return value of the function in the source
681 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000682 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000683 not to trap and to be properly aligned. This may only be applied to
684 the first parameter. This is not a valid attribute for return
685 values.
686``noalias``
687 This indicates that pointer values `*based* <pointeraliasing>` on
688 the argument or return value do not alias pointer values which are
689 not *based* on it, ignoring certain "irrelevant" dependencies. For a
690 call to the parent function, dependencies between memory references
691 from before or after the call and from those during the call are
692 "irrelevant" to the ``noalias`` keyword for the arguments and return
693 value used in that call. The caller shares the responsibility with
694 the callee for ensuring that these requirements are met. For further
695 details, please see the discussion of the NoAlias response in `alias
696 analysis <AliasAnalysis.html#MustMayNo>`_.
697
698 Note that this definition of ``noalias`` is intentionally similar
699 to the definition of ``restrict`` in C99 for function arguments,
700 though it is slightly weaker.
701
702 For function return values, C99's ``restrict`` is not meaningful,
703 while LLVM's ``noalias`` is.
704``nocapture``
705 This indicates that the callee does not make any copies of the
706 pointer that outlive the callee itself. This is not a valid
707 attribute for return values.
708
709.. _nest:
710
711``nest``
712 This indicates that the pointer parameter can be excised using the
713 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
714 attribute for return values.
715
716.. _gc:
717
718Garbage Collector Names
719-----------------------
720
721Each function may specify a garbage collector name, which is simply a
722string:
723
724.. code-block:: llvm
725
726 define void @f() gc "name" { ... }
727
728The compiler declares the supported values of *name*. Specifying a
729collector which will cause the compiler to alter its output in order to
730support the named garbage collection algorithm.
731
732.. _fnattrs:
733
734Function Attributes
735-------------------
736
737Function attributes are set to communicate additional information about
738a function. Function attributes are considered to be part of the
739function, not of the function type, so functions with different function
740attributes can have the same function type.
741
742Function attributes are simple keywords that follow the type specified.
743If multiple attributes are needed, they are space separated. For
744example:
745
746.. code-block:: llvm
747
748 define void @f() noinline { ... }
749 define void @f() alwaysinline { ... }
750 define void @f() alwaysinline optsize { ... }
751 define void @f() optsize { ... }
752
753``address_safety``
754 This attribute indicates that the address safety analysis is enabled
755 for this function.
756``alignstack(<n>)``
757 This attribute indicates that, when emitting the prologue and
758 epilogue, the backend should forcibly align the stack pointer.
759 Specify the desired alignment, which must be a power of two, in
760 parentheses.
761``alwaysinline``
762 This attribute indicates that the inliner should attempt to inline
763 this function into callers whenever possible, ignoring any active
764 inlining size threshold for this caller.
765``nonlazybind``
766 This attribute suppresses lazy symbol binding for the function. This
767 may make calls to the function faster, at the cost of extra program
768 startup time if the function is not called during program startup.
769``inlinehint``
770 This attribute indicates that the source code contained a hint that
771 inlining this function is desirable (such as the "inline" keyword in
772 C/C++). It is just a hint; it imposes no requirements on the
773 inliner.
774``naked``
775 This attribute disables prologue / epilogue emission for the
776 function. This can have very system-specific consequences.
777``noimplicitfloat``
778 This attributes disables implicit floating point instructions.
779``noinline``
780 This attribute indicates that the inliner should never inline this
781 function in any situation. This attribute may not be used together
782 with the ``alwaysinline`` attribute.
783``noredzone``
784 This attribute indicates that the code generator should not use a
785 red zone, even if the target-specific ABI normally permits it.
786``noreturn``
787 This function attribute indicates that the function never returns
788 normally. This produces undefined behavior at runtime if the
789 function ever does dynamically return.
790``nounwind``
791 This function attribute indicates that the function never returns
792 with an unwind or exceptional control flow. If the function does
793 unwind, its runtime behavior is undefined.
794``optsize``
795 This attribute suggests that optimization passes and code generator
796 passes make choices that keep the code size of this function low,
797 and otherwise do optimizations specifically to reduce code size.
798``readnone``
799 This attribute indicates that the function computes its result (or
800 decides to unwind an exception) based strictly on its arguments,
801 without dereferencing any pointer arguments or otherwise accessing
802 any mutable state (e.g. memory, control registers, etc) visible to
803 caller functions. It does not write through any pointer arguments
804 (including ``byval`` arguments) and never changes any state visible
805 to callers. This means that it cannot unwind exceptions by calling
806 the ``C++`` exception throwing methods.
807``readonly``
808 This attribute indicates that the function does not write through
809 any pointer arguments (including ``byval`` arguments) or otherwise
810 modify any state (e.g. memory, control registers, etc) visible to
811 caller functions. It may dereference pointer arguments and read
812 state that may be set in the caller. A readonly function always
813 returns the same value (or unwinds an exception identically) when
814 called with the same set of arguments and global state. It cannot
815 unwind an exception by calling the ``C++`` exception throwing
816 methods.
817``returns_twice``
818 This attribute indicates that this function can return twice. The C
819 ``setjmp`` is an example of such a function. The compiler disables
820 some optimizations (like tail calls) in the caller of these
821 functions.
822``ssp``
823 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000824 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000825 placed on the stack before the local variables that's checked upon
826 return from the function to see if it has been overwritten. A
827 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000828 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000829
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000830 - Character arrays larger than ``ssp-buffer-size`` (default 8).
831 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
832 - Calls to alloca() with variable sizes or constant sizes greater than
833 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000834
835 If a function that has an ``ssp`` attribute is inlined into a
836 function that doesn't have an ``ssp`` attribute, then the resulting
837 function will have an ``ssp`` attribute.
838``sspreq``
839 This attribute indicates that the function should *always* emit a
840 stack smashing protector. This overrides the ``ssp`` function
841 attribute.
842
843 If a function that has an ``sspreq`` attribute is inlined into a
844 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000845 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
846 an ``sspreq`` attribute.
847``sspstrong``
848 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000849 protector. This attribute causes a strong heuristic to be used when
850 determining if a function needs stack protectors. The strong heuristic
851 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000852
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000853 - Arrays of any size and type
854 - Aggregates containing an array of any size and type.
855 - Calls to alloca().
856 - Local variables that have had their address taken.
857
858 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000859
860 If a function that has an ``sspstrong`` attribute is inlined into a
861 function that doesn't have an ``sspstrong`` attribute, then the
862 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000863``uwtable``
864 This attribute indicates that the ABI being targeted requires that
865 an unwind table entry be produce for this function even if we can
866 show that no exceptions passes by it. This is normally the case for
867 the ELF x86-64 abi, but it can be disabled for some compilation
868 units.
James Molloy67ae1352012-12-20 16:04:27 +0000869``noduplicate``
870 This attribute indicates that calls to the function cannot be
871 duplicated. A call to a ``noduplicate`` function may be moved
872 within its parent function, but may not be duplicated within
873 its parent function.
874
875 A function containing a ``noduplicate`` call may still
876 be an inlining candidate, provided that the call is not
877 duplicated by inlining. That implies that the function has
878 internal linkage and only has one call site, so the original
879 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000880
881.. _moduleasm:
882
883Module-Level Inline Assembly
884----------------------------
885
886Modules may contain "module-level inline asm" blocks, which corresponds
887to the GCC "file scope inline asm" blocks. These blocks are internally
888concatenated by LLVM and treated as a single unit, but may be separated
889in the ``.ll`` file if desired. The syntax is very simple:
890
891.. code-block:: llvm
892
893 module asm "inline asm code goes here"
894 module asm "more can go here"
895
896The strings can contain any character by escaping non-printable
897characters. The escape sequence used is simply "\\xx" where "xx" is the
898two digit hex code for the number.
899
900The inline asm code is simply printed to the machine code .s file when
901assembly code is generated.
902
903Data Layout
904-----------
905
906A module may specify a target specific data layout string that specifies
907how data is to be laid out in memory. The syntax for the data layout is
908simply:
909
910.. code-block:: llvm
911
912 target datalayout = "layout specification"
913
914The *layout specification* consists of a list of specifications
915separated by the minus sign character ('-'). Each specification starts
916with a letter and may include other information after the letter to
917define some aspect of the data layout. The specifications accepted are
918as follows:
919
920``E``
921 Specifies that the target lays out data in big-endian form. That is,
922 the bits with the most significance have the lowest address
923 location.
924``e``
925 Specifies that the target lays out data in little-endian form. That
926 is, the bits with the least significance have the lowest address
927 location.
928``S<size>``
929 Specifies the natural alignment of the stack in bits. Alignment
930 promotion of stack variables is limited to the natural stack
931 alignment to avoid dynamic stack realignment. The stack alignment
932 must be a multiple of 8-bits. If omitted, the natural stack
933 alignment defaults to "unspecified", which does not prevent any
934 alignment promotions.
935``p[n]:<size>:<abi>:<pref>``
936 This specifies the *size* of a pointer and its ``<abi>`` and
937 ``<pref>``\erred alignments for address space ``n``. All sizes are in
938 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
939 preceding ``:`` should be omitted too. The address space, ``n`` is
940 optional, and if not specified, denotes the default address space 0.
941 The value of ``n`` must be in the range [1,2^23).
942``i<size>:<abi>:<pref>``
943 This specifies the alignment for an integer type of a given bit
944 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
945``v<size>:<abi>:<pref>``
946 This specifies the alignment for a vector type of a given bit
947 ``<size>``.
948``f<size>:<abi>:<pref>``
949 This specifies the alignment for a floating point type of a given bit
950 ``<size>``. Only values of ``<size>`` that are supported by the target
951 will work. 32 (float) and 64 (double) are supported on all targets; 80
952 or 128 (different flavors of long double) are also supported on some
953 targets.
954``a<size>:<abi>:<pref>``
955 This specifies the alignment for an aggregate type of a given bit
956 ``<size>``.
957``s<size>:<abi>:<pref>``
958 This specifies the alignment for a stack object of a given bit
959 ``<size>``.
960``n<size1>:<size2>:<size3>...``
961 This specifies a set of native integer widths for the target CPU in
962 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
963 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
964 this set are considered to support most general arithmetic operations
965 efficiently.
966
967When constructing the data layout for a given target, LLVM starts with a
968default set of specifications which are then (possibly) overridden by
969the specifications in the ``datalayout`` keyword. The default
970specifications are given in this list:
971
972- ``E`` - big endian
973- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000974- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +0000975- ``i1:8:8`` - i1 is 8-bit (byte) aligned
976- ``i8:8:8`` - i8 is 8-bit (byte) aligned
977- ``i16:16:16`` - i16 is 16-bit aligned
978- ``i32:32:32`` - i32 is 32-bit aligned
979- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
980 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000981- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +0000982- ``f32:32:32`` - float is 32-bit aligned
983- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000984- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +0000985- ``v64:64:64`` - 64-bit vector is 64-bit aligned
986- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000987- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +0000988
989When LLVM is determining the alignment for a given type, it uses the
990following rules:
991
992#. If the type sought is an exact match for one of the specifications,
993 that specification is used.
994#. If no match is found, and the type sought is an integer type, then
995 the smallest integer type that is larger than the bitwidth of the
996 sought type is used. If none of the specifications are larger than
997 the bitwidth then the largest integer type is used. For example,
998 given the default specifications above, the i7 type will use the
999 alignment of i8 (next largest) while both i65 and i256 will use the
1000 alignment of i64 (largest specified).
1001#. If no match is found, and the type sought is a vector type, then the
1002 largest vector type that is smaller than the sought vector type will
1003 be used as a fall back. This happens because <128 x double> can be
1004 implemented in terms of 64 <2 x double>, for example.
1005
1006The function of the data layout string may not be what you expect.
1007Notably, this is not a specification from the frontend of what alignment
1008the code generator should use.
1009
1010Instead, if specified, the target data layout is required to match what
1011the ultimate *code generator* expects. This string is used by the
1012mid-level optimizers to improve code, and this only works if it matches
1013what the ultimate code generator uses. If you would like to generate IR
1014that does not embed this target-specific detail into the IR, then you
1015don't have to specify the string. This will disable some optimizations
1016that require precise layout information, but this also prevents those
1017optimizations from introducing target specificity into the IR.
1018
1019.. _pointeraliasing:
1020
1021Pointer Aliasing Rules
1022----------------------
1023
1024Any memory access must be done through a pointer value associated with
1025an address range of the memory access, otherwise the behavior is
1026undefined. Pointer values are associated with address ranges according
1027to the following rules:
1028
1029- A pointer value is associated with the addresses associated with any
1030 value it is *based* on.
1031- An address of a global variable is associated with the address range
1032 of the variable's storage.
1033- The result value of an allocation instruction is associated with the
1034 address range of the allocated storage.
1035- A null pointer in the default address-space is associated with no
1036 address.
1037- An integer constant other than zero or a pointer value returned from
1038 a function not defined within LLVM may be associated with address
1039 ranges allocated through mechanisms other than those provided by
1040 LLVM. Such ranges shall not overlap with any ranges of addresses
1041 allocated by mechanisms provided by LLVM.
1042
1043A pointer value is *based* on another pointer value according to the
1044following rules:
1045
1046- A pointer value formed from a ``getelementptr`` operation is *based*
1047 on the first operand of the ``getelementptr``.
1048- The result value of a ``bitcast`` is *based* on the operand of the
1049 ``bitcast``.
1050- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1051 values that contribute (directly or indirectly) to the computation of
1052 the pointer's value.
1053- The "*based* on" relationship is transitive.
1054
1055Note that this definition of *"based"* is intentionally similar to the
1056definition of *"based"* in C99, though it is slightly weaker.
1057
1058LLVM IR does not associate types with memory. The result type of a
1059``load`` merely indicates the size and alignment of the memory from
1060which to load, as well as the interpretation of the value. The first
1061operand type of a ``store`` similarly only indicates the size and
1062alignment of the store.
1063
1064Consequently, type-based alias analysis, aka TBAA, aka
1065``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1066:ref:`Metadata <metadata>` may be used to encode additional information
1067which specialized optimization passes may use to implement type-based
1068alias analysis.
1069
1070.. _volatile:
1071
1072Volatile Memory Accesses
1073------------------------
1074
1075Certain memory accesses, such as :ref:`load <i_load>`'s,
1076:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1077marked ``volatile``. The optimizers must not change the number of
1078volatile operations or change their order of execution relative to other
1079volatile operations. The optimizers *may* change the order of volatile
1080operations relative to non-volatile operations. This is not Java's
1081"volatile" and has no cross-thread synchronization behavior.
1082
Andrew Trick9a6dd022013-01-30 21:19:35 +00001083IR-level volatile loads and stores cannot safely be optimized into
1084llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1085flagged volatile. Likewise, the backend should never split or merge
1086target-legal volatile load/store instructions.
1087
Andrew Trick946317d2013-01-31 00:49:39 +00001088.. admonition:: Rationale
1089
1090 Platforms may rely on volatile loads and stores of natively supported
1091 data width to be executed as single instruction. For example, in C
1092 this holds for an l-value of volatile primitive type with native
1093 hardware support, but not necessarily for aggregate types. The
1094 frontend upholds these expectations, which are intentionally
1095 unspecified in the IR. The rules above ensure that IR transformation
1096 do not violate the frontend's contract with the language.
1097
Sean Silvaf722b002012-12-07 10:36:55 +00001098.. _memmodel:
1099
1100Memory Model for Concurrent Operations
1101--------------------------------------
1102
1103The LLVM IR does not define any way to start parallel threads of
1104execution or to register signal handlers. Nonetheless, there are
1105platform-specific ways to create them, and we define LLVM IR's behavior
1106in their presence. This model is inspired by the C++0x memory model.
1107
1108For a more informal introduction to this model, see the :doc:`Atomics`.
1109
1110We define a *happens-before* partial order as the least partial order
1111that
1112
1113- Is a superset of single-thread program order, and
1114- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1115 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1116 techniques, like pthread locks, thread creation, thread joining,
1117 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1118 Constraints <ordering>`).
1119
1120Note that program order does not introduce *happens-before* edges
1121between a thread and signals executing inside that thread.
1122
1123Every (defined) read operation (load instructions, memcpy, atomic
1124loads/read-modify-writes, etc.) R reads a series of bytes written by
1125(defined) write operations (store instructions, atomic
1126stores/read-modify-writes, memcpy, etc.). For the purposes of this
1127section, initialized globals are considered to have a write of the
1128initializer which is atomic and happens before any other read or write
1129of the memory in question. For each byte of a read R, R\ :sub:`byte`
1130may see any write to the same byte, except:
1131
1132- If write\ :sub:`1` happens before write\ :sub:`2`, and
1133 write\ :sub:`2` happens before R\ :sub:`byte`, then
1134 R\ :sub:`byte` does not see write\ :sub:`1`.
1135- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1136 R\ :sub:`byte` does not see write\ :sub:`3`.
1137
1138Given that definition, R\ :sub:`byte` is defined as follows:
1139
1140- If R is volatile, the result is target-dependent. (Volatile is
1141 supposed to give guarantees which can support ``sig_atomic_t`` in
1142 C/C++, and may be used for accesses to addresses which do not behave
1143 like normal memory. It does not generally provide cross-thread
1144 synchronization.)
1145- Otherwise, if there is no write to the same byte that happens before
1146 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1147- Otherwise, if R\ :sub:`byte` may see exactly one write,
1148 R\ :sub:`byte` returns the value written by that write.
1149- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1150 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1151 Memory Ordering Constraints <ordering>` section for additional
1152 constraints on how the choice is made.
1153- Otherwise R\ :sub:`byte` returns ``undef``.
1154
1155R returns the value composed of the series of bytes it read. This
1156implies that some bytes within the value may be ``undef`` **without**
1157the entire value being ``undef``. Note that this only defines the
1158semantics of the operation; it doesn't mean that targets will emit more
1159than one instruction to read the series of bytes.
1160
1161Note that in cases where none of the atomic intrinsics are used, this
1162model places only one restriction on IR transformations on top of what
1163is required for single-threaded execution: introducing a store to a byte
1164which might not otherwise be stored is not allowed in general.
1165(Specifically, in the case where another thread might write to and read
1166from an address, introducing a store can change a load that may see
1167exactly one write into a load that may see multiple writes.)
1168
1169.. _ordering:
1170
1171Atomic Memory Ordering Constraints
1172----------------------------------
1173
1174Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1175:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1176:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1177an ordering parameter that determines which other atomic instructions on
1178the same address they *synchronize with*. These semantics are borrowed
1179from Java and C++0x, but are somewhat more colloquial. If these
1180descriptions aren't precise enough, check those specs (see spec
1181references in the :doc:`atomics guide <Atomics>`).
1182:ref:`fence <i_fence>` instructions treat these orderings somewhat
1183differently since they don't take an address. See that instruction's
1184documentation for details.
1185
1186For a simpler introduction to the ordering constraints, see the
1187:doc:`Atomics`.
1188
1189``unordered``
1190 The set of values that can be read is governed by the happens-before
1191 partial order. A value cannot be read unless some operation wrote
1192 it. This is intended to provide a guarantee strong enough to model
1193 Java's non-volatile shared variables. This ordering cannot be
1194 specified for read-modify-write operations; it is not strong enough
1195 to make them atomic in any interesting way.
1196``monotonic``
1197 In addition to the guarantees of ``unordered``, there is a single
1198 total order for modifications by ``monotonic`` operations on each
1199 address. All modification orders must be compatible with the
1200 happens-before order. There is no guarantee that the modification
1201 orders can be combined to a global total order for the whole program
1202 (and this often will not be possible). The read in an atomic
1203 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1204 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1205 order immediately before the value it writes. If one atomic read
1206 happens before another atomic read of the same address, the later
1207 read must see the same value or a later value in the address's
1208 modification order. This disallows reordering of ``monotonic`` (or
1209 stronger) operations on the same address. If an address is written
1210 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1211 read that address repeatedly, the other threads must eventually see
1212 the write. This corresponds to the C++0x/C1x
1213 ``memory_order_relaxed``.
1214``acquire``
1215 In addition to the guarantees of ``monotonic``, a
1216 *synchronizes-with* edge may be formed with a ``release`` operation.
1217 This is intended to model C++'s ``memory_order_acquire``.
1218``release``
1219 In addition to the guarantees of ``monotonic``, if this operation
1220 writes a value which is subsequently read by an ``acquire``
1221 operation, it *synchronizes-with* that operation. (This isn't a
1222 complete description; see the C++0x definition of a release
1223 sequence.) This corresponds to the C++0x/C1x
1224 ``memory_order_release``.
1225``acq_rel`` (acquire+release)
1226 Acts as both an ``acquire`` and ``release`` operation on its
1227 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1228``seq_cst`` (sequentially consistent)
1229 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1230 operation which only reads, ``release`` for an operation which only
1231 writes), there is a global total order on all
1232 sequentially-consistent operations on all addresses, which is
1233 consistent with the *happens-before* partial order and with the
1234 modification orders of all the affected addresses. Each
1235 sequentially-consistent read sees the last preceding write to the
1236 same address in this global order. This corresponds to the C++0x/C1x
1237 ``memory_order_seq_cst`` and Java volatile.
1238
1239.. _singlethread:
1240
1241If an atomic operation is marked ``singlethread``, it only *synchronizes
1242with* or participates in modification and seq\_cst total orderings with
1243other operations running in the same thread (for example, in signal
1244handlers).
1245
1246.. _fastmath:
1247
1248Fast-Math Flags
1249---------------
1250
1251LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1252:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1253:ref:`frem <i_frem>`) have the following flags that can set to enable
1254otherwise unsafe floating point operations
1255
1256``nnan``
1257 No NaNs - Allow optimizations to assume the arguments and result are not
1258 NaN. Such optimizations are required to retain defined behavior over
1259 NaNs, but the value of the result is undefined.
1260
1261``ninf``
1262 No Infs - Allow optimizations to assume the arguments and result are not
1263 +/-Inf. Such optimizations are required to retain defined behavior over
1264 +/-Inf, but the value of the result is undefined.
1265
1266``nsz``
1267 No Signed Zeros - Allow optimizations to treat the sign of a zero
1268 argument or result as insignificant.
1269
1270``arcp``
1271 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1272 argument rather than perform division.
1273
1274``fast``
1275 Fast - Allow algebraically equivalent transformations that may
1276 dramatically change results in floating point (e.g. reassociate). This
1277 flag implies all the others.
1278
1279.. _typesystem:
1280
1281Type System
1282===========
1283
1284The LLVM type system is one of the most important features of the
1285intermediate representation. Being typed enables a number of
1286optimizations to be performed on the intermediate representation
1287directly, without having to do extra analyses on the side before the
1288transformation. A strong type system makes it easier to read the
1289generated code and enables novel analyses and transformations that are
1290not feasible to perform on normal three address code representations.
1291
1292Type Classifications
1293--------------------
1294
1295The types fall into a few useful classifications:
1296
1297
1298.. list-table::
1299 :header-rows: 1
1300
1301 * - Classification
1302 - Types
1303
1304 * - :ref:`integer <t_integer>`
1305 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1306 ``i64``, ...
1307
1308 * - :ref:`floating point <t_floating>`
1309 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1310 ``ppc_fp128``
1311
1312
1313 * - first class
1314
1315 .. _t_firstclass:
1316
1317 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1318 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1319 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1320 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1321
1322 * - :ref:`primitive <t_primitive>`
1323 - :ref:`label <t_label>`,
1324 :ref:`void <t_void>`,
1325 :ref:`integer <t_integer>`,
1326 :ref:`floating point <t_floating>`,
1327 :ref:`x86mmx <t_x86mmx>`,
1328 :ref:`metadata <t_metadata>`.
1329
1330 * - :ref:`derived <t_derived>`
1331 - :ref:`array <t_array>`,
1332 :ref:`function <t_function>`,
1333 :ref:`pointer <t_pointer>`,
1334 :ref:`structure <t_struct>`,
1335 :ref:`vector <t_vector>`,
1336 :ref:`opaque <t_opaque>`.
1337
1338The :ref:`first class <t_firstclass>` types are perhaps the most important.
1339Values of these types are the only ones which can be produced by
1340instructions.
1341
1342.. _t_primitive:
1343
1344Primitive Types
1345---------------
1346
1347The primitive types are the fundamental building blocks of the LLVM
1348system.
1349
1350.. _t_integer:
1351
1352Integer Type
1353^^^^^^^^^^^^
1354
1355Overview:
1356"""""""""
1357
1358The integer type is a very simple type that simply specifies an
1359arbitrary bit width for the integer type desired. Any bit width from 1
1360bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1361
1362Syntax:
1363"""""""
1364
1365::
1366
1367 iN
1368
1369The number of bits the integer will occupy is specified by the ``N``
1370value.
1371
1372Examples:
1373"""""""""
1374
1375+----------------+------------------------------------------------+
1376| ``i1`` | a single-bit integer. |
1377+----------------+------------------------------------------------+
1378| ``i32`` | a 32-bit integer. |
1379+----------------+------------------------------------------------+
1380| ``i1942652`` | a really big integer of over 1 million bits. |
1381+----------------+------------------------------------------------+
1382
1383.. _t_floating:
1384
1385Floating Point Types
1386^^^^^^^^^^^^^^^^^^^^
1387
1388.. list-table::
1389 :header-rows: 1
1390
1391 * - Type
1392 - Description
1393
1394 * - ``half``
1395 - 16-bit floating point value
1396
1397 * - ``float``
1398 - 32-bit floating point value
1399
1400 * - ``double``
1401 - 64-bit floating point value
1402
1403 * - ``fp128``
1404 - 128-bit floating point value (112-bit mantissa)
1405
1406 * - ``x86_fp80``
1407 - 80-bit floating point value (X87)
1408
1409 * - ``ppc_fp128``
1410 - 128-bit floating point value (two 64-bits)
1411
1412.. _t_x86mmx:
1413
1414X86mmx Type
1415^^^^^^^^^^^
1416
1417Overview:
1418"""""""""
1419
1420The x86mmx type represents a value held in an MMX register on an x86
1421machine. The operations allowed on it are quite limited: parameters and
1422return values, load and store, and bitcast. User-specified MMX
1423instructions are represented as intrinsic or asm calls with arguments
1424and/or results of this type. There are no arrays, vectors or constants
1425of this type.
1426
1427Syntax:
1428"""""""
1429
1430::
1431
1432 x86mmx
1433
1434.. _t_void:
1435
1436Void Type
1437^^^^^^^^^
1438
1439Overview:
1440"""""""""
1441
1442The void type does not represent any value and has no size.
1443
1444Syntax:
1445"""""""
1446
1447::
1448
1449 void
1450
1451.. _t_label:
1452
1453Label Type
1454^^^^^^^^^^
1455
1456Overview:
1457"""""""""
1458
1459The label type represents code labels.
1460
1461Syntax:
1462"""""""
1463
1464::
1465
1466 label
1467
1468.. _t_metadata:
1469
1470Metadata Type
1471^^^^^^^^^^^^^
1472
1473Overview:
1474"""""""""
1475
1476The metadata type represents embedded metadata. No derived types may be
1477created from metadata except for :ref:`function <t_function>` arguments.
1478
1479Syntax:
1480"""""""
1481
1482::
1483
1484 metadata
1485
1486.. _t_derived:
1487
1488Derived Types
1489-------------
1490
1491The real power in LLVM comes from the derived types in the system. This
1492is what allows a programmer to represent arrays, functions, pointers,
1493and other useful types. Each of these types contain one or more element
1494types which may be a primitive type, or another derived type. For
1495example, it is possible to have a two dimensional array, using an array
1496as the element type of another array.
1497
1498.. _t_aggregate:
1499
1500Aggregate Types
1501^^^^^^^^^^^^^^^
1502
1503Aggregate Types are a subset of derived types that can contain multiple
1504member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1505aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1506aggregate types.
1507
1508.. _t_array:
1509
1510Array Type
1511^^^^^^^^^^
1512
1513Overview:
1514"""""""""
1515
1516The array type is a very simple derived type that arranges elements
1517sequentially in memory. The array type requires a size (number of
1518elements) and an underlying data type.
1519
1520Syntax:
1521"""""""
1522
1523::
1524
1525 [<# elements> x <elementtype>]
1526
1527The number of elements is a constant integer value; ``elementtype`` may
1528be any type with a size.
1529
1530Examples:
1531"""""""""
1532
1533+------------------+--------------------------------------+
1534| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1535+------------------+--------------------------------------+
1536| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1537+------------------+--------------------------------------+
1538| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1539+------------------+--------------------------------------+
1540
1541Here are some examples of multidimensional arrays:
1542
1543+-----------------------------+----------------------------------------------------------+
1544| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1545+-----------------------------+----------------------------------------------------------+
1546| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1547+-----------------------------+----------------------------------------------------------+
1548| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1549+-----------------------------+----------------------------------------------------------+
1550
1551There is no restriction on indexing beyond the end of the array implied
1552by a static type (though there are restrictions on indexing beyond the
1553bounds of an allocated object in some cases). This means that
1554single-dimension 'variable sized array' addressing can be implemented in
1555LLVM with a zero length array type. An implementation of 'pascal style
1556arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1557example.
1558
1559.. _t_function:
1560
1561Function Type
1562^^^^^^^^^^^^^
1563
1564Overview:
1565"""""""""
1566
1567The function type can be thought of as a function signature. It consists
1568of a return type and a list of formal parameter types. The return type
1569of a function type is a first class type or a void type.
1570
1571Syntax:
1572"""""""
1573
1574::
1575
1576 <returntype> (<parameter list>)
1577
1578...where '``<parameter list>``' is a comma-separated list of type
1579specifiers. Optionally, the parameter list may include a type ``...``,
1580which indicates that the function takes a variable number of arguments.
1581Variable argument functions can access their arguments with the
1582:ref:`variable argument handling intrinsic <int_varargs>` functions.
1583'``<returntype>``' is any type except :ref:`label <t_label>`.
1584
1585Examples:
1586"""""""""
1587
1588+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1589| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1590+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001591| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001592+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1593| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1594+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1595| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1596+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1597
1598.. _t_struct:
1599
1600Structure Type
1601^^^^^^^^^^^^^^
1602
1603Overview:
1604"""""""""
1605
1606The structure type is used to represent a collection of data members
1607together in memory. The elements of a structure may be any type that has
1608a size.
1609
1610Structures in memory are accessed using '``load``' and '``store``' by
1611getting a pointer to a field with the '``getelementptr``' instruction.
1612Structures in registers are accessed using the '``extractvalue``' and
1613'``insertvalue``' instructions.
1614
1615Structures may optionally be "packed" structures, which indicate that
1616the alignment of the struct is one byte, and that there is no padding
1617between the elements. In non-packed structs, padding between field types
1618is inserted as defined by the DataLayout string in the module, which is
1619required to match what the underlying code generator expects.
1620
1621Structures can either be "literal" or "identified". A literal structure
1622is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1623identified types are always defined at the top level with a name.
1624Literal types are uniqued by their contents and can never be recursive
1625or opaque since there is no way to write one. Identified types can be
1626recursive, can be opaqued, and are never uniqued.
1627
1628Syntax:
1629"""""""
1630
1631::
1632
1633 %T1 = type { <type list> } ; Identified normal struct type
1634 %T2 = type <{ <type list> }> ; Identified packed struct type
1635
1636Examples:
1637"""""""""
1638
1639+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1640| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1641+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001642| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001643+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1644| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1645+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1646
1647.. _t_opaque:
1648
1649Opaque Structure Types
1650^^^^^^^^^^^^^^^^^^^^^^
1651
1652Overview:
1653"""""""""
1654
1655Opaque structure types are used to represent named structure types that
1656do not have a body specified. This corresponds (for example) to the C
1657notion of a forward declared structure.
1658
1659Syntax:
1660"""""""
1661
1662::
1663
1664 %X = type opaque
1665 %52 = type opaque
1666
1667Examples:
1668"""""""""
1669
1670+--------------+-------------------+
1671| ``opaque`` | An opaque type. |
1672+--------------+-------------------+
1673
1674.. _t_pointer:
1675
1676Pointer Type
1677^^^^^^^^^^^^
1678
1679Overview:
1680"""""""""
1681
1682The pointer type is used to specify memory locations. Pointers are
1683commonly used to reference objects in memory.
1684
1685Pointer types may have an optional address space attribute defining the
1686numbered address space where the pointed-to object resides. The default
1687address space is number zero. The semantics of non-zero address spaces
1688are target-specific.
1689
1690Note that LLVM does not permit pointers to void (``void*``) nor does it
1691permit pointers to labels (``label*``). Use ``i8*`` instead.
1692
1693Syntax:
1694"""""""
1695
1696::
1697
1698 <type> *
1699
1700Examples:
1701"""""""""
1702
1703+-------------------------+--------------------------------------------------------------------------------------------------------------+
1704| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1705+-------------------------+--------------------------------------------------------------------------------------------------------------+
1706| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1707+-------------------------+--------------------------------------------------------------------------------------------------------------+
1708| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1709+-------------------------+--------------------------------------------------------------------------------------------------------------+
1710
1711.. _t_vector:
1712
1713Vector Type
1714^^^^^^^^^^^
1715
1716Overview:
1717"""""""""
1718
1719A vector type is a simple derived type that represents a vector of
1720elements. Vector types are used when multiple primitive data are
1721operated in parallel using a single instruction (SIMD). A vector type
1722requires a size (number of elements) and an underlying primitive data
1723type. Vector types are considered :ref:`first class <t_firstclass>`.
1724
1725Syntax:
1726"""""""
1727
1728::
1729
1730 < <# elements> x <elementtype> >
1731
1732The number of elements is a constant integer value larger than 0;
1733elementtype may be any integer or floating point type, or a pointer to
1734these types. Vectors of size zero are not allowed.
1735
1736Examples:
1737"""""""""
1738
1739+-------------------+--------------------------------------------------+
1740| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1741+-------------------+--------------------------------------------------+
1742| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1743+-------------------+--------------------------------------------------+
1744| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1745+-------------------+--------------------------------------------------+
1746| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1747+-------------------+--------------------------------------------------+
1748
1749Constants
1750=========
1751
1752LLVM has several different basic types of constants. This section
1753describes them all and their syntax.
1754
1755Simple Constants
1756----------------
1757
1758**Boolean constants**
1759 The two strings '``true``' and '``false``' are both valid constants
1760 of the ``i1`` type.
1761**Integer constants**
1762 Standard integers (such as '4') are constants of the
1763 :ref:`integer <t_integer>` type. Negative numbers may be used with
1764 integer types.
1765**Floating point constants**
1766 Floating point constants use standard decimal notation (e.g.
1767 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1768 hexadecimal notation (see below). The assembler requires the exact
1769 decimal value of a floating-point constant. For example, the
1770 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1771 decimal in binary. Floating point constants must have a :ref:`floating
1772 point <t_floating>` type.
1773**Null pointer constants**
1774 The identifier '``null``' is recognized as a null pointer constant
1775 and must be of :ref:`pointer type <t_pointer>`.
1776
1777The one non-intuitive notation for constants is the hexadecimal form of
1778floating point constants. For example, the form
1779'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1780than) '``double 4.5e+15``'. The only time hexadecimal floating point
1781constants are required (and the only time that they are generated by the
1782disassembler) is when a floating point constant must be emitted but it
1783cannot be represented as a decimal floating point number in a reasonable
1784number of digits. For example, NaN's, infinities, and other special
1785values are represented in their IEEE hexadecimal format so that assembly
1786and disassembly do not cause any bits to change in the constants.
1787
1788When using the hexadecimal form, constants of types half, float, and
1789double are represented using the 16-digit form shown above (which
1790matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001791must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001792precision, respectively. Hexadecimal format is always used for long
1793double, and there are three forms of long double. The 80-bit format used
1794by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1795128-bit format used by PowerPC (two adjacent doubles) is represented by
1796``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1797represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1798supported target uses this format. Long doubles will only work if they
1799match the long double format on your target. The IEEE 16-bit format
1800(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1801digits. All hexadecimal formats are big-endian (sign bit at the left).
1802
1803There are no constants of type x86mmx.
1804
1805Complex Constants
1806-----------------
1807
1808Complex constants are a (potentially recursive) combination of simple
1809constants and smaller complex constants.
1810
1811**Structure constants**
1812 Structure constants are represented with notation similar to
1813 structure type definitions (a comma separated list of elements,
1814 surrounded by braces (``{}``)). For example:
1815 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1816 "``@G = external global i32``". Structure constants must have
1817 :ref:`structure type <t_struct>`, and the number and types of elements
1818 must match those specified by the type.
1819**Array constants**
1820 Array constants are represented with notation similar to array type
1821 definitions (a comma separated list of elements, surrounded by
1822 square brackets (``[]``)). For example:
1823 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1824 :ref:`array type <t_array>`, and the number and types of elements must
1825 match those specified by the type.
1826**Vector constants**
1827 Vector constants are represented with notation similar to vector
1828 type definitions (a comma separated list of elements, surrounded by
1829 less-than/greater-than's (``<>``)). For example:
1830 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1831 must have :ref:`vector type <t_vector>`, and the number and types of
1832 elements must match those specified by the type.
1833**Zero initialization**
1834 The string '``zeroinitializer``' can be used to zero initialize a
1835 value to zero of *any* type, including scalar and
1836 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1837 having to print large zero initializers (e.g. for large arrays) and
1838 is always exactly equivalent to using explicit zero initializers.
1839**Metadata node**
1840 A metadata node is a structure-like constant with :ref:`metadata
1841 type <t_metadata>`. For example:
1842 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1843 constants that are meant to be interpreted as part of the
1844 instruction stream, metadata is a place to attach additional
1845 information such as debug info.
1846
1847Global Variable and Function Addresses
1848--------------------------------------
1849
1850The addresses of :ref:`global variables <globalvars>` and
1851:ref:`functions <functionstructure>` are always implicitly valid
1852(link-time) constants. These constants are explicitly referenced when
1853the :ref:`identifier for the global <identifiers>` is used and always have
1854:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1855file:
1856
1857.. code-block:: llvm
1858
1859 @X = global i32 17
1860 @Y = global i32 42
1861 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1862
1863.. _undefvalues:
1864
1865Undefined Values
1866----------------
1867
1868The string '``undef``' can be used anywhere a constant is expected, and
1869indicates that the user of the value may receive an unspecified
1870bit-pattern. Undefined values may be of any type (other than '``label``'
1871or '``void``') and be used anywhere a constant is permitted.
1872
1873Undefined values are useful because they indicate to the compiler that
1874the program is well defined no matter what value is used. This gives the
1875compiler more freedom to optimize. Here are some examples of
1876(potentially surprising) transformations that are valid (in pseudo IR):
1877
1878.. code-block:: llvm
1879
1880 %A = add %X, undef
1881 %B = sub %X, undef
1882 %C = xor %X, undef
1883 Safe:
1884 %A = undef
1885 %B = undef
1886 %C = undef
1887
1888This is safe because all of the output bits are affected by the undef
1889bits. Any output bit can have a zero or one depending on the input bits.
1890
1891.. code-block:: llvm
1892
1893 %A = or %X, undef
1894 %B = and %X, undef
1895 Safe:
1896 %A = -1
1897 %B = 0
1898 Unsafe:
1899 %A = undef
1900 %B = undef
1901
1902These logical operations have bits that are not always affected by the
1903input. For example, if ``%X`` has a zero bit, then the output of the
1904'``and``' operation will always be a zero for that bit, no matter what
1905the corresponding bit from the '``undef``' is. As such, it is unsafe to
1906optimize or assume that the result of the '``and``' is '``undef``'.
1907However, it is safe to assume that all bits of the '``undef``' could be
19080, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1909all the bits of the '``undef``' operand to the '``or``' could be set,
1910allowing the '``or``' to be folded to -1.
1911
1912.. code-block:: llvm
1913
1914 %A = select undef, %X, %Y
1915 %B = select undef, 42, %Y
1916 %C = select %X, %Y, undef
1917 Safe:
1918 %A = %X (or %Y)
1919 %B = 42 (or %Y)
1920 %C = %Y
1921 Unsafe:
1922 %A = undef
1923 %B = undef
1924 %C = undef
1925
1926This set of examples shows that undefined '``select``' (and conditional
1927branch) conditions can go *either way*, but they have to come from one
1928of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1929both known to have a clear low bit, then ``%A`` would have to have a
1930cleared low bit. However, in the ``%C`` example, the optimizer is
1931allowed to assume that the '``undef``' operand could be the same as
1932``%Y``, allowing the whole '``select``' to be eliminated.
1933
1934.. code-block:: llvm
1935
1936 %A = xor undef, undef
1937
1938 %B = undef
1939 %C = xor %B, %B
1940
1941 %D = undef
1942 %E = icmp lt %D, 4
1943 %F = icmp gte %D, 4
1944
1945 Safe:
1946 %A = undef
1947 %B = undef
1948 %C = undef
1949 %D = undef
1950 %E = undef
1951 %F = undef
1952
1953This example points out that two '``undef``' operands are not
1954necessarily the same. This can be surprising to people (and also matches
1955C semantics) where they assume that "``X^X``" is always zero, even if
1956``X`` is undefined. This isn't true for a number of reasons, but the
1957short answer is that an '``undef``' "variable" can arbitrarily change
1958its value over its "live range". This is true because the variable
1959doesn't actually *have a live range*. Instead, the value is logically
1960read from arbitrary registers that happen to be around when needed, so
1961the value is not necessarily consistent over time. In fact, ``%A`` and
1962``%C`` need to have the same semantics or the core LLVM "replace all
1963uses with" concept would not hold.
1964
1965.. code-block:: llvm
1966
1967 %A = fdiv undef, %X
1968 %B = fdiv %X, undef
1969 Safe:
1970 %A = undef
1971 b: unreachable
1972
1973These examples show the crucial difference between an *undefined value*
1974and *undefined behavior*. An undefined value (like '``undef``') is
1975allowed to have an arbitrary bit-pattern. This means that the ``%A``
1976operation can be constant folded to '``undef``', because the '``undef``'
1977could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1978However, in the second example, we can make a more aggressive
1979assumption: because the ``undef`` is allowed to be an arbitrary value,
1980we are allowed to assume that it could be zero. Since a divide by zero
1981has *undefined behavior*, we are allowed to assume that the operation
1982does not execute at all. This allows us to delete the divide and all
1983code after it. Because the undefined operation "can't happen", the
1984optimizer can assume that it occurs in dead code.
1985
1986.. code-block:: llvm
1987
1988 a: store undef -> %X
1989 b: store %X -> undef
1990 Safe:
1991 a: <deleted>
1992 b: unreachable
1993
1994These examples reiterate the ``fdiv`` example: a store *of* an undefined
1995value can be assumed to not have any effect; we can assume that the
1996value is overwritten with bits that happen to match what was already
1997there. However, a store *to* an undefined location could clobber
1998arbitrary memory, therefore, it has undefined behavior.
1999
2000.. _poisonvalues:
2001
2002Poison Values
2003-------------
2004
2005Poison values are similar to :ref:`undef values <undefvalues>`, however
2006they also represent the fact that an instruction or constant expression
2007which cannot evoke side effects has nevertheless detected a condition
2008which results in undefined behavior.
2009
2010There is currently no way of representing a poison value in the IR; they
2011only exist when produced by operations such as :ref:`add <i_add>` with
2012the ``nsw`` flag.
2013
2014Poison value behavior is defined in terms of value *dependence*:
2015
2016- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2017- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2018 their dynamic predecessor basic block.
2019- Function arguments depend on the corresponding actual argument values
2020 in the dynamic callers of their functions.
2021- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2022 instructions that dynamically transfer control back to them.
2023- :ref:`Invoke <i_invoke>` instructions depend on the
2024 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2025 call instructions that dynamically transfer control back to them.
2026- Non-volatile loads and stores depend on the most recent stores to all
2027 of the referenced memory addresses, following the order in the IR
2028 (including loads and stores implied by intrinsics such as
2029 :ref:`@llvm.memcpy <int_memcpy>`.)
2030- An instruction with externally visible side effects depends on the
2031 most recent preceding instruction with externally visible side
2032 effects, following the order in the IR. (This includes :ref:`volatile
2033 operations <volatile>`.)
2034- An instruction *control-depends* on a :ref:`terminator
2035 instruction <terminators>` if the terminator instruction has
2036 multiple successors and the instruction is always executed when
2037 control transfers to one of the successors, and may not be executed
2038 when control is transferred to another.
2039- Additionally, an instruction also *control-depends* on a terminator
2040 instruction if the set of instructions it otherwise depends on would
2041 be different if the terminator had transferred control to a different
2042 successor.
2043- Dependence is transitive.
2044
2045Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2046with the additional affect that any instruction which has a *dependence*
2047on a poison value has undefined behavior.
2048
2049Here are some examples:
2050
2051.. code-block:: llvm
2052
2053 entry:
2054 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2055 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2056 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2057 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2058
2059 store i32 %poison, i32* @g ; Poison value stored to memory.
2060 %poison2 = load i32* @g ; Poison value loaded back from memory.
2061
2062 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2063
2064 %narrowaddr = bitcast i32* @g to i16*
2065 %wideaddr = bitcast i32* @g to i64*
2066 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2067 %poison4 = load i64* %wideaddr ; Returns a poison value.
2068
2069 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2070 br i1 %cmp, label %true, label %end ; Branch to either destination.
2071
2072 true:
2073 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2074 ; it has undefined behavior.
2075 br label %end
2076
2077 end:
2078 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2079 ; Both edges into this PHI are
2080 ; control-dependent on %cmp, so this
2081 ; always results in a poison value.
2082
2083 store volatile i32 0, i32* @g ; This would depend on the store in %true
2084 ; if %cmp is true, or the store in %entry
2085 ; otherwise, so this is undefined behavior.
2086
2087 br i1 %cmp, label %second_true, label %second_end
2088 ; The same branch again, but this time the
2089 ; true block doesn't have side effects.
2090
2091 second_true:
2092 ; No side effects!
2093 ret void
2094
2095 second_end:
2096 store volatile i32 0, i32* @g ; This time, the instruction always depends
2097 ; on the store in %end. Also, it is
2098 ; control-equivalent to %end, so this is
2099 ; well-defined (ignoring earlier undefined
2100 ; behavior in this example).
2101
2102.. _blockaddress:
2103
2104Addresses of Basic Blocks
2105-------------------------
2106
2107``blockaddress(@function, %block)``
2108
2109The '``blockaddress``' constant computes the address of the specified
2110basic block in the specified function, and always has an ``i8*`` type.
2111Taking the address of the entry block is illegal.
2112
2113This value only has defined behavior when used as an operand to the
2114':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2115against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002116undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002117no label is equal to the null pointer. This may be passed around as an
2118opaque pointer sized value as long as the bits are not inspected. This
2119allows ``ptrtoint`` and arithmetic to be performed on these values so
2120long as the original value is reconstituted before the ``indirectbr``
2121instruction.
2122
2123Finally, some targets may provide defined semantics when using the value
2124as the operand to an inline assembly, but that is target specific.
2125
2126Constant Expressions
2127--------------------
2128
2129Constant expressions are used to allow expressions involving other
2130constants to be used as constants. Constant expressions may be of any
2131:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2132that does not have side effects (e.g. load and call are not supported).
2133The following is the syntax for constant expressions:
2134
2135``trunc (CST to TYPE)``
2136 Truncate a constant to another type. The bit size of CST must be
2137 larger than the bit size of TYPE. Both types must be integers.
2138``zext (CST to TYPE)``
2139 Zero extend a constant to another type. The bit size of CST must be
2140 smaller than the bit size of TYPE. Both types must be integers.
2141``sext (CST to TYPE)``
2142 Sign extend a constant to another type. The bit size of CST must be
2143 smaller than the bit size of TYPE. Both types must be integers.
2144``fptrunc (CST to TYPE)``
2145 Truncate a floating point constant to another floating point type.
2146 The size of CST must be larger than the size of TYPE. Both types
2147 must be floating point.
2148``fpext (CST to TYPE)``
2149 Floating point extend a constant to another type. The size of CST
2150 must be smaller or equal to the size of TYPE. Both types must be
2151 floating point.
2152``fptoui (CST to TYPE)``
2153 Convert a floating point constant to the corresponding unsigned
2154 integer constant. TYPE must be a scalar or vector integer type. CST
2155 must be of scalar or vector floating point type. Both CST and TYPE
2156 must be scalars, or vectors of the same number of elements. If the
2157 value won't fit in the integer type, the results are undefined.
2158``fptosi (CST to TYPE)``
2159 Convert a floating point constant to the corresponding signed
2160 integer constant. TYPE must be a scalar or vector integer type. CST
2161 must be of scalar or vector floating point type. Both CST and TYPE
2162 must be scalars, or vectors of the same number of elements. If the
2163 value won't fit in the integer type, the results are undefined.
2164``uitofp (CST to TYPE)``
2165 Convert an unsigned integer constant to the corresponding floating
2166 point constant. TYPE must be a scalar or vector floating point type.
2167 CST must be of scalar or vector integer type. Both CST and TYPE must
2168 be scalars, or vectors of the same number of elements. If the value
2169 won't fit in the floating point type, the results are undefined.
2170``sitofp (CST to TYPE)``
2171 Convert a signed integer constant to the corresponding floating
2172 point constant. TYPE must be a scalar or vector floating point type.
2173 CST must be of scalar or vector integer type. Both CST and TYPE must
2174 be scalars, or vectors of the same number of elements. If the value
2175 won't fit in the floating point type, the results are undefined.
2176``ptrtoint (CST to TYPE)``
2177 Convert a pointer typed constant to the corresponding integer
2178 constant ``TYPE`` must be an integer type. ``CST`` must be of
2179 pointer type. The ``CST`` value is zero extended, truncated, or
2180 unchanged to make it fit in ``TYPE``.
2181``inttoptr (CST to TYPE)``
2182 Convert an integer constant to a pointer constant. TYPE must be a
2183 pointer type. CST must be of integer type. The CST value is zero
2184 extended, truncated, or unchanged to make it fit in a pointer size.
2185 This one is *really* dangerous!
2186``bitcast (CST to TYPE)``
2187 Convert a constant, CST, to another TYPE. The constraints of the
2188 operands are the same as those for the :ref:`bitcast
2189 instruction <i_bitcast>`.
2190``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2191 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2192 constants. As with the :ref:`getelementptr <i_getelementptr>`
2193 instruction, the index list may have zero or more indexes, which are
2194 required to make sense for the type of "CSTPTR".
2195``select (COND, VAL1, VAL2)``
2196 Perform the :ref:`select operation <i_select>` on constants.
2197``icmp COND (VAL1, VAL2)``
2198 Performs the :ref:`icmp operation <i_icmp>` on constants.
2199``fcmp COND (VAL1, VAL2)``
2200 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2201``extractelement (VAL, IDX)``
2202 Perform the :ref:`extractelement operation <i_extractelement>` on
2203 constants.
2204``insertelement (VAL, ELT, IDX)``
2205 Perform the :ref:`insertelement operation <i_insertelement>` on
2206 constants.
2207``shufflevector (VEC1, VEC2, IDXMASK)``
2208 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2209 constants.
2210``extractvalue (VAL, IDX0, IDX1, ...)``
2211 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2212 constants. The index list is interpreted in a similar manner as
2213 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2214 least one index value must be specified.
2215``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2216 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2217 The index list is interpreted in a similar manner as indices in a
2218 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2219 value must be specified.
2220``OPCODE (LHS, RHS)``
2221 Perform the specified operation of the LHS and RHS constants. OPCODE
2222 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2223 binary <bitwiseops>` operations. The constraints on operands are
2224 the same as those for the corresponding instruction (e.g. no bitwise
2225 operations on floating point values are allowed).
2226
2227Other Values
2228============
2229
2230Inline Assembler Expressions
2231----------------------------
2232
2233LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2234Inline Assembly <moduleasm>`) through the use of a special value. This
2235value represents the inline assembler as a string (containing the
2236instructions to emit), a list of operand constraints (stored as a
2237string), a flag that indicates whether or not the inline asm expression
2238has side effects, and a flag indicating whether the function containing
2239the asm needs to align its stack conservatively. An example inline
2240assembler expression is:
2241
2242.. code-block:: llvm
2243
2244 i32 (i32) asm "bswap $0", "=r,r"
2245
2246Inline assembler expressions may **only** be used as the callee operand
2247of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2248Thus, typically we have:
2249
2250.. code-block:: llvm
2251
2252 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2253
2254Inline asms with side effects not visible in the constraint list must be
2255marked as having side effects. This is done through the use of the
2256'``sideeffect``' keyword, like so:
2257
2258.. code-block:: llvm
2259
2260 call void asm sideeffect "eieio", ""()
2261
2262In some cases inline asms will contain code that will not work unless
2263the stack is aligned in some way, such as calls or SSE instructions on
2264x86, yet will not contain code that does that alignment within the asm.
2265The compiler should make conservative assumptions about what the asm
2266might contain and should generate its usual stack alignment code in the
2267prologue if the '``alignstack``' keyword is present:
2268
2269.. code-block:: llvm
2270
2271 call void asm alignstack "eieio", ""()
2272
2273Inline asms also support using non-standard assembly dialects. The
2274assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2275the inline asm is using the Intel dialect. Currently, ATT and Intel are
2276the only supported dialects. An example is:
2277
2278.. code-block:: llvm
2279
2280 call void asm inteldialect "eieio", ""()
2281
2282If multiple keywords appear the '``sideeffect``' keyword must come
2283first, the '``alignstack``' keyword second and the '``inteldialect``'
2284keyword last.
2285
2286Inline Asm Metadata
2287^^^^^^^^^^^^^^^^^^^
2288
2289The call instructions that wrap inline asm nodes may have a
2290"``!srcloc``" MDNode attached to it that contains a list of constant
2291integers. If present, the code generator will use the integer as the
2292location cookie value when report errors through the ``LLVMContext``
2293error reporting mechanisms. This allows a front-end to correlate backend
2294errors that occur with inline asm back to the source code that produced
2295it. For example:
2296
2297.. code-block:: llvm
2298
2299 call void asm sideeffect "something bad", ""(), !srcloc !42
2300 ...
2301 !42 = !{ i32 1234567 }
2302
2303It is up to the front-end to make sense of the magic numbers it places
2304in the IR. If the MDNode contains multiple constants, the code generator
2305will use the one that corresponds to the line of the asm that the error
2306occurs on.
2307
2308.. _metadata:
2309
2310Metadata Nodes and Metadata Strings
2311-----------------------------------
2312
2313LLVM IR allows metadata to be attached to instructions in the program
2314that can convey extra information about the code to the optimizers and
2315code generator. One example application of metadata is source-level
2316debug information. There are two metadata primitives: strings and nodes.
2317All metadata has the ``metadata`` type and is identified in syntax by a
2318preceding exclamation point ('``!``').
2319
2320A metadata string is a string surrounded by double quotes. It can
2321contain any character by escaping non-printable characters with
2322"``\xx``" where "``xx``" is the two digit hex code. For example:
2323"``!"test\00"``".
2324
2325Metadata nodes are represented with notation similar to structure
2326constants (a comma separated list of elements, surrounded by braces and
2327preceded by an exclamation point). Metadata nodes can have any values as
2328their operand. For example:
2329
2330.. code-block:: llvm
2331
2332 !{ metadata !"test\00", i32 10}
2333
2334A :ref:`named metadata <namedmetadatastructure>` is a collection of
2335metadata nodes, which can be looked up in the module symbol table. For
2336example:
2337
2338.. code-block:: llvm
2339
2340 !foo = metadata !{!4, !3}
2341
2342Metadata can be used as function arguments. Here ``llvm.dbg.value``
2343function is using two metadata arguments:
2344
2345.. code-block:: llvm
2346
2347 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2348
2349Metadata can be attached with an instruction. Here metadata ``!21`` is
2350attached to the ``add`` instruction using the ``!dbg`` identifier:
2351
2352.. code-block:: llvm
2353
2354 %indvar.next = add i64 %indvar, 1, !dbg !21
2355
2356More information about specific metadata nodes recognized by the
2357optimizers and code generator is found below.
2358
2359'``tbaa``' Metadata
2360^^^^^^^^^^^^^^^^^^^
2361
2362In LLVM IR, memory does not have types, so LLVM's own type system is not
2363suitable for doing TBAA. Instead, metadata is added to the IR to
2364describe a type system of a higher level language. This can be used to
2365implement typical C/C++ TBAA, but it can also be used to implement
2366custom alias analysis behavior for other languages.
2367
2368The current metadata format is very simple. TBAA metadata nodes have up
2369to three fields, e.g.:
2370
2371.. code-block:: llvm
2372
2373 !0 = metadata !{ metadata !"an example type tree" }
2374 !1 = metadata !{ metadata !"int", metadata !0 }
2375 !2 = metadata !{ metadata !"float", metadata !0 }
2376 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2377
2378The first field is an identity field. It can be any value, usually a
2379metadata string, which uniquely identifies the type. The most important
2380name in the tree is the name of the root node. Two trees with different
2381root node names are entirely disjoint, even if they have leaves with
2382common names.
2383
2384The second field identifies the type's parent node in the tree, or is
2385null or omitted for a root node. A type is considered to alias all of
2386its descendants and all of its ancestors in the tree. Also, a type is
2387considered to alias all types in other trees, so that bitcode produced
2388from multiple front-ends is handled conservatively.
2389
2390If the third field is present, it's an integer which if equal to 1
2391indicates that the type is "constant" (meaning
2392``pointsToConstantMemory`` should return true; see `other useful
2393AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2394
2395'``tbaa.struct``' Metadata
2396^^^^^^^^^^^^^^^^^^^^^^^^^^
2397
2398The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2399aggregate assignment operations in C and similar languages, however it
2400is defined to copy a contiguous region of memory, which is more than
2401strictly necessary for aggregate types which contain holes due to
2402padding. Also, it doesn't contain any TBAA information about the fields
2403of the aggregate.
2404
2405``!tbaa.struct`` metadata can describe which memory subregions in a
2406memcpy are padding and what the TBAA tags of the struct are.
2407
2408The current metadata format is very simple. ``!tbaa.struct`` metadata
2409nodes are a list of operands which are in conceptual groups of three.
2410For each group of three, the first operand gives the byte offset of a
2411field in bytes, the second gives its size in bytes, and the third gives
2412its tbaa tag. e.g.:
2413
2414.. code-block:: llvm
2415
2416 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2417
2418This describes a struct with two fields. The first is at offset 0 bytes
2419with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2420and has size 4 bytes and has tbaa tag !2.
2421
2422Note that the fields need not be contiguous. In this example, there is a
24234 byte gap between the two fields. This gap represents padding which
2424does not carry useful data and need not be preserved.
2425
2426'``fpmath``' Metadata
2427^^^^^^^^^^^^^^^^^^^^^
2428
2429``fpmath`` metadata may be attached to any instruction of floating point
2430type. It can be used to express the maximum acceptable error in the
2431result of that instruction, in ULPs, thus potentially allowing the
2432compiler to use a more efficient but less accurate method of computing
2433it. ULP is defined as follows:
2434
2435 If ``x`` is a real number that lies between two finite consecutive
2436 floating-point numbers ``a`` and ``b``, without being equal to one
2437 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2438 distance between the two non-equal finite floating-point numbers
2439 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2440
2441The metadata node shall consist of a single positive floating point
2442number representing the maximum relative error, for example:
2443
2444.. code-block:: llvm
2445
2446 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2447
2448'``range``' Metadata
2449^^^^^^^^^^^^^^^^^^^^
2450
2451``range`` metadata may be attached only to loads of integer types. It
2452expresses the possible ranges the loaded value is in. The ranges are
2453represented with a flattened list of integers. The loaded value is known
2454to be in the union of the ranges defined by each consecutive pair. Each
2455pair has the following properties:
2456
2457- The type must match the type loaded by the instruction.
2458- The pair ``a,b`` represents the range ``[a,b)``.
2459- Both ``a`` and ``b`` are constants.
2460- The range is allowed to wrap.
2461- The range should not represent the full or empty set. That is,
2462 ``a!=b``.
2463
2464In addition, the pairs must be in signed order of the lower bound and
2465they must be non-contiguous.
2466
2467Examples:
2468
2469.. code-block:: llvm
2470
2471 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2472 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2473 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2474 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2475 ...
2476 !0 = metadata !{ i8 0, i8 2 }
2477 !1 = metadata !{ i8 255, i8 2 }
2478 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2479 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2480
2481Module Flags Metadata
2482=====================
2483
2484Information about the module as a whole is difficult to convey to LLVM's
2485subsystems. The LLVM IR isn't sufficient to transmit this information.
2486The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002487this. These flags are in the form of key / value pairs --- much like a
2488dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002489look it up.
2490
2491The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2492Each triplet has the following form:
2493
2494- The first element is a *behavior* flag, which specifies the behavior
2495 when two (or more) modules are merged together, and it encounters two
2496 (or more) metadata with the same ID. The supported behaviors are
2497 described below.
2498- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002499 metadata. Each module may only have one flag entry for each unique ID (not
2500 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002501- The third element is the value of the flag.
2502
2503When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002504``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2505each unique metadata ID string, there will be exactly one entry in the merged
2506modules ``llvm.module.flags`` metadata table, and the value for that entry will
2507be determined by the merge behavior flag, as described below. The only exception
2508is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002509
2510The following behaviors are supported:
2511
2512.. list-table::
2513 :header-rows: 1
2514 :widths: 10 90
2515
2516 * - Value
2517 - Behavior
2518
2519 * - 1
2520 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002521 Emits an error if two values disagree, otherwise the resulting value
2522 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002523
2524 * - 2
2525 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002526 Emits a warning if two values disagree. The result value will be the
2527 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002528
2529 * - 3
2530 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002531 Adds a requirement that another module flag be present and have a
2532 specified value after linking is performed. The value must be a
2533 metadata pair, where the first element of the pair is the ID of the
2534 module flag to be restricted, and the second element of the pair is
2535 the value the module flag should be restricted to. This behavior can
2536 be used to restrict the allowable results (via triggering of an
2537 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002538
2539 * - 4
2540 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002541 Uses the specified value, regardless of the behavior or value of the
2542 other module. If both modules specify **Override**, but the values
2543 differ, an error will be emitted.
2544
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002545 * - 5
2546 - **Append**
2547 Appends the two values, which are required to be metadata nodes.
2548
2549 * - 6
2550 - **AppendUnique**
2551 Appends the two values, which are required to be metadata
2552 nodes. However, duplicate entries in the second list are dropped
2553 during the append operation.
2554
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002555It is an error for a particular unique flag ID to have multiple behaviors,
2556except in the case of **Require** (which adds restrictions on another metadata
2557value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002558
2559An example of module flags:
2560
2561.. code-block:: llvm
2562
2563 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2564 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2565 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2566 !3 = metadata !{ i32 3, metadata !"qux",
2567 metadata !{
2568 metadata !"foo", i32 1
2569 }
2570 }
2571 !llvm.module.flags = !{ !0, !1, !2, !3 }
2572
2573- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2574 if two or more ``!"foo"`` flags are seen is to emit an error if their
2575 values are not equal.
2576
2577- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2578 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002579 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002580
2581- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2582 behavior if two or more ``!"qux"`` flags are seen is to emit a
2583 warning if their values are not equal.
2584
2585- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2586
2587 ::
2588
2589 metadata !{ metadata !"foo", i32 1 }
2590
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002591 The behavior is to emit an error if the ``llvm.module.flags`` does not
2592 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2593 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002594
2595Objective-C Garbage Collection Module Flags Metadata
2596----------------------------------------------------
2597
2598On the Mach-O platform, Objective-C stores metadata about garbage
2599collection in a special section called "image info". The metadata
2600consists of a version number and a bitmask specifying what types of
2601garbage collection are supported (if any) by the file. If two or more
2602modules are linked together their garbage collection metadata needs to
2603be merged rather than appended together.
2604
2605The Objective-C garbage collection module flags metadata consists of the
2606following key-value pairs:
2607
2608.. list-table::
2609 :header-rows: 1
2610 :widths: 30 70
2611
2612 * - Key
2613 - Value
2614
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002615 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002616 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002617
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002618 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002619 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002620 always 0.
2621
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002622 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002623 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002624 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2625 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2626 Objective-C ABI version 2.
2627
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002628 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002629 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002630 not. Valid values are 0, for no garbage collection, and 2, for garbage
2631 collection supported.
2632
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002633 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002634 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002635 If present, its value must be 6. This flag requires that the
2636 ``Objective-C Garbage Collection`` flag have the value 2.
2637
2638Some important flag interactions:
2639
2640- If a module with ``Objective-C Garbage Collection`` set to 0 is
2641 merged with a module with ``Objective-C Garbage Collection`` set to
2642 2, then the resulting module has the
2643 ``Objective-C Garbage Collection`` flag set to 0.
2644- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2645 merged with a module with ``Objective-C GC Only`` set to 6.
2646
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002647Automatic Linker Flags Module Flags Metadata
2648--------------------------------------------
2649
2650Some targets support embedding flags to the linker inside individual object
2651files. Typically this is used in conjunction with language extensions which
2652allow source files to explicitly declare the libraries they depend on, and have
2653these automatically be transmitted to the linker via object files.
2654
2655These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002656using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002657to be ``AppendUnique``, and the value for the key is expected to be a metadata
2658node which should be a list of other metadata nodes, each of which should be a
2659list of metadata strings defining linker options.
2660
2661For example, the following metadata section specifies two separate sets of
2662linker options, presumably to link against ``libz`` and the ``Cocoa``
2663framework::
2664
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002665 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002666 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002667 metadata !{ metadata !"-lz" },
2668 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002669 !llvm.module.flags = !{ !0 }
2670
2671The metadata encoding as lists of lists of options, as opposed to a collapsed
2672list of options, is chosen so that the IR encoding can use multiple option
2673strings to specify e.g., a single library, while still having that specifier be
2674preserved as an atomic element that can be recognized by a target specific
2675assembly writer or object file emitter.
2676
2677Each individual option is required to be either a valid option for the target's
2678linker, or an option that is reserved by the target specific assembly writer or
2679object file emitter. No other aspect of these options is defined by the IR.
2680
Sean Silvaf722b002012-12-07 10:36:55 +00002681Intrinsic Global Variables
2682==========================
2683
2684LLVM has a number of "magic" global variables that contain data that
2685affect code generation or other IR semantics. These are documented here.
2686All globals of this sort should have a section specified as
2687"``llvm.metadata``". This section and all globals that start with
2688"``llvm.``" are reserved for use by LLVM.
2689
2690The '``llvm.used``' Global Variable
2691-----------------------------------
2692
2693The ``@llvm.used`` global is an array with i8\* element type which has
2694:ref:`appending linkage <linkage_appending>`. This array contains a list of
2695pointers to global variables and functions which may optionally have a
2696pointer cast formed of bitcast or getelementptr. For example, a legal
2697use of it is:
2698
2699.. code-block:: llvm
2700
2701 @X = global i8 4
2702 @Y = global i32 123
2703
2704 @llvm.used = appending global [2 x i8*] [
2705 i8* @X,
2706 i8* bitcast (i32* @Y to i8*)
2707 ], section "llvm.metadata"
2708
2709If a global variable appears in the ``@llvm.used`` list, then the
2710compiler, assembler, and linker are required to treat the symbol as if
2711there is a reference to the global that it cannot see. For example, if a
2712variable has internal linkage and no references other than that from the
2713``@llvm.used`` list, it cannot be deleted. This is commonly used to
2714represent references from inline asms and other things the compiler
2715cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2716
2717On some targets, the code generator must emit a directive to the
2718assembler or object file to prevent the assembler and linker from
2719molesting the symbol.
2720
2721The '``llvm.compiler.used``' Global Variable
2722--------------------------------------------
2723
2724The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2725directive, except that it only prevents the compiler from touching the
2726symbol. On targets that support it, this allows an intelligent linker to
2727optimize references to the symbol without being impeded as it would be
2728by ``@llvm.used``.
2729
2730This is a rare construct that should only be used in rare circumstances,
2731and should not be exposed to source languages.
2732
2733The '``llvm.global_ctors``' Global Variable
2734-------------------------------------------
2735
2736.. code-block:: llvm
2737
2738 %0 = type { i32, void ()* }
2739 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2740
2741The ``@llvm.global_ctors`` array contains a list of constructor
2742functions and associated priorities. The functions referenced by this
2743array will be called in ascending order of priority (i.e. lowest first)
2744when the module is loaded. The order of functions with the same priority
2745is not defined.
2746
2747The '``llvm.global_dtors``' Global Variable
2748-------------------------------------------
2749
2750.. code-block:: llvm
2751
2752 %0 = type { i32, void ()* }
2753 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2754
2755The ``@llvm.global_dtors`` array contains a list of destructor functions
2756and associated priorities. The functions referenced by this array will
2757be called in descending order of priority (i.e. highest first) when the
2758module is loaded. The order of functions with the same priority is not
2759defined.
2760
2761Instruction Reference
2762=====================
2763
2764The LLVM instruction set consists of several different classifications
2765of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2766instructions <binaryops>`, :ref:`bitwise binary
2767instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2768:ref:`other instructions <otherops>`.
2769
2770.. _terminators:
2771
2772Terminator Instructions
2773-----------------------
2774
2775As mentioned :ref:`previously <functionstructure>`, every basic block in a
2776program ends with a "Terminator" instruction, which indicates which
2777block should be executed after the current block is finished. These
2778terminator instructions typically yield a '``void``' value: they produce
2779control flow, not values (the one exception being the
2780':ref:`invoke <i_invoke>`' instruction).
2781
2782The terminator instructions are: ':ref:`ret <i_ret>`',
2783':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2784':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2785':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2786
2787.. _i_ret:
2788
2789'``ret``' Instruction
2790^^^^^^^^^^^^^^^^^^^^^
2791
2792Syntax:
2793"""""""
2794
2795::
2796
2797 ret <type> <value> ; Return a value from a non-void function
2798 ret void ; Return from void function
2799
2800Overview:
2801"""""""""
2802
2803The '``ret``' instruction is used to return control flow (and optionally
2804a value) from a function back to the caller.
2805
2806There are two forms of the '``ret``' instruction: one that returns a
2807value and then causes control flow, and one that just causes control
2808flow to occur.
2809
2810Arguments:
2811""""""""""
2812
2813The '``ret``' instruction optionally accepts a single argument, the
2814return value. The type of the return value must be a ':ref:`first
2815class <t_firstclass>`' type.
2816
2817A function is not :ref:`well formed <wellformed>` if it it has a non-void
2818return type and contains a '``ret``' instruction with no return value or
2819a return value with a type that does not match its type, or if it has a
2820void return type and contains a '``ret``' instruction with a return
2821value.
2822
2823Semantics:
2824""""""""""
2825
2826When the '``ret``' instruction is executed, control flow returns back to
2827the calling function's context. If the caller is a
2828":ref:`call <i_call>`" instruction, execution continues at the
2829instruction after the call. If the caller was an
2830":ref:`invoke <i_invoke>`" instruction, execution continues at the
2831beginning of the "normal" destination block. If the instruction returns
2832a value, that value shall set the call or invoke instruction's return
2833value.
2834
2835Example:
2836""""""""
2837
2838.. code-block:: llvm
2839
2840 ret i32 5 ; Return an integer value of 5
2841 ret void ; Return from a void function
2842 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2843
2844.. _i_br:
2845
2846'``br``' Instruction
2847^^^^^^^^^^^^^^^^^^^^
2848
2849Syntax:
2850"""""""
2851
2852::
2853
2854 br i1 <cond>, label <iftrue>, label <iffalse>
2855 br label <dest> ; Unconditional branch
2856
2857Overview:
2858"""""""""
2859
2860The '``br``' instruction is used to cause control flow to transfer to a
2861different basic block in the current function. There are two forms of
2862this instruction, corresponding to a conditional branch and an
2863unconditional branch.
2864
2865Arguments:
2866""""""""""
2867
2868The conditional branch form of the '``br``' instruction takes a single
2869'``i1``' value and two '``label``' values. The unconditional form of the
2870'``br``' instruction takes a single '``label``' value as a target.
2871
2872Semantics:
2873""""""""""
2874
2875Upon execution of a conditional '``br``' instruction, the '``i1``'
2876argument is evaluated. If the value is ``true``, control flows to the
2877'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2878to the '``iffalse``' ``label`` argument.
2879
2880Example:
2881""""""""
2882
2883.. code-block:: llvm
2884
2885 Test:
2886 %cond = icmp eq i32 %a, %b
2887 br i1 %cond, label %IfEqual, label %IfUnequal
2888 IfEqual:
2889 ret i32 1
2890 IfUnequal:
2891 ret i32 0
2892
2893.. _i_switch:
2894
2895'``switch``' Instruction
2896^^^^^^^^^^^^^^^^^^^^^^^^
2897
2898Syntax:
2899"""""""
2900
2901::
2902
2903 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2904
2905Overview:
2906"""""""""
2907
2908The '``switch``' instruction is used to transfer control flow to one of
2909several different places. It is a generalization of the '``br``'
2910instruction, allowing a branch to occur to one of many possible
2911destinations.
2912
2913Arguments:
2914""""""""""
2915
2916The '``switch``' instruction uses three parameters: an integer
2917comparison value '``value``', a default '``label``' destination, and an
2918array of pairs of comparison value constants and '``label``'s. The table
2919is not allowed to contain duplicate constant entries.
2920
2921Semantics:
2922""""""""""
2923
2924The ``switch`` instruction specifies a table of values and destinations.
2925When the '``switch``' instruction is executed, this table is searched
2926for the given value. If the value is found, control flow is transferred
2927to the corresponding destination; otherwise, control flow is transferred
2928to the default destination.
2929
2930Implementation:
2931"""""""""""""""
2932
2933Depending on properties of the target machine and the particular
2934``switch`` instruction, this instruction may be code generated in
2935different ways. For example, it could be generated as a series of
2936chained conditional branches or with a lookup table.
2937
2938Example:
2939""""""""
2940
2941.. code-block:: llvm
2942
2943 ; Emulate a conditional br instruction
2944 %Val = zext i1 %value to i32
2945 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2946
2947 ; Emulate an unconditional br instruction
2948 switch i32 0, label %dest [ ]
2949
2950 ; Implement a jump table:
2951 switch i32 %val, label %otherwise [ i32 0, label %onzero
2952 i32 1, label %onone
2953 i32 2, label %ontwo ]
2954
2955.. _i_indirectbr:
2956
2957'``indirectbr``' Instruction
2958^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2959
2960Syntax:
2961"""""""
2962
2963::
2964
2965 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2966
2967Overview:
2968"""""""""
2969
2970The '``indirectbr``' instruction implements an indirect branch to a
2971label within the current function, whose address is specified by
2972"``address``". Address must be derived from a
2973:ref:`blockaddress <blockaddress>` constant.
2974
2975Arguments:
2976""""""""""
2977
2978The '``address``' argument is the address of the label to jump to. The
2979rest of the arguments indicate the full set of possible destinations
2980that the address may point to. Blocks are allowed to occur multiple
2981times in the destination list, though this isn't particularly useful.
2982
2983This destination list is required so that dataflow analysis has an
2984accurate understanding of the CFG.
2985
2986Semantics:
2987""""""""""
2988
2989Control transfers to the block specified in the address argument. All
2990possible destination blocks must be listed in the label list, otherwise
2991this instruction has undefined behavior. This implies that jumps to
2992labels defined in other functions have undefined behavior as well.
2993
2994Implementation:
2995"""""""""""""""
2996
2997This is typically implemented with a jump through a register.
2998
2999Example:
3000""""""""
3001
3002.. code-block:: llvm
3003
3004 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3005
3006.. _i_invoke:
3007
3008'``invoke``' Instruction
3009^^^^^^^^^^^^^^^^^^^^^^^^
3010
3011Syntax:
3012"""""""
3013
3014::
3015
3016 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3017 to label <normal label> unwind label <exception label>
3018
3019Overview:
3020"""""""""
3021
3022The '``invoke``' instruction causes control to transfer to a specified
3023function, with the possibility of control flow transfer to either the
3024'``normal``' label or the '``exception``' label. If the callee function
3025returns with the "``ret``" instruction, control flow will return to the
3026"normal" label. If the callee (or any indirect callees) returns via the
3027":ref:`resume <i_resume>`" instruction or other exception handling
3028mechanism, control is interrupted and continued at the dynamically
3029nearest "exception" label.
3030
3031The '``exception``' label is a `landing
3032pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3033'``exception``' label is required to have the
3034":ref:`landingpad <i_landingpad>`" instruction, which contains the
3035information about the behavior of the program after unwinding happens,
3036as its first non-PHI instruction. The restrictions on the
3037"``landingpad``" instruction's tightly couples it to the "``invoke``"
3038instruction, so that the important information contained within the
3039"``landingpad``" instruction can't be lost through normal code motion.
3040
3041Arguments:
3042""""""""""
3043
3044This instruction requires several arguments:
3045
3046#. The optional "cconv" marker indicates which :ref:`calling
3047 convention <callingconv>` the call should use. If none is
3048 specified, the call defaults to using C calling conventions.
3049#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3050 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3051 are valid here.
3052#. '``ptr to function ty``': shall be the signature of the pointer to
3053 function value being invoked. In most cases, this is a direct
3054 function invocation, but indirect ``invoke``'s are just as possible,
3055 branching off an arbitrary pointer to function value.
3056#. '``function ptr val``': An LLVM value containing a pointer to a
3057 function to be invoked.
3058#. '``function args``': argument list whose types match the function
3059 signature argument types and parameter attributes. All arguments must
3060 be of :ref:`first class <t_firstclass>` type. If the function signature
3061 indicates the function accepts a variable number of arguments, the
3062 extra arguments can be specified.
3063#. '``normal label``': the label reached when the called function
3064 executes a '``ret``' instruction.
3065#. '``exception label``': the label reached when a callee returns via
3066 the :ref:`resume <i_resume>` instruction or other exception handling
3067 mechanism.
3068#. The optional :ref:`function attributes <fnattrs>` list. Only
3069 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3070 attributes are valid here.
3071
3072Semantics:
3073""""""""""
3074
3075This instruction is designed to operate as a standard '``call``'
3076instruction in most regards. The primary difference is that it
3077establishes an association with a label, which is used by the runtime
3078library to unwind the stack.
3079
3080This instruction is used in languages with destructors to ensure that
3081proper cleanup is performed in the case of either a ``longjmp`` or a
3082thrown exception. Additionally, this is important for implementation of
3083'``catch``' clauses in high-level languages that support them.
3084
3085For the purposes of the SSA form, the definition of the value returned
3086by the '``invoke``' instruction is deemed to occur on the edge from the
3087current block to the "normal" label. If the callee unwinds then no
3088return value is available.
3089
3090Example:
3091""""""""
3092
3093.. code-block:: llvm
3094
3095 %retval = invoke i32 @Test(i32 15) to label %Continue
3096 unwind label %TestCleanup ; {i32}:retval set
3097 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3098 unwind label %TestCleanup ; {i32}:retval set
3099
3100.. _i_resume:
3101
3102'``resume``' Instruction
3103^^^^^^^^^^^^^^^^^^^^^^^^
3104
3105Syntax:
3106"""""""
3107
3108::
3109
3110 resume <type> <value>
3111
3112Overview:
3113"""""""""
3114
3115The '``resume``' instruction is a terminator instruction that has no
3116successors.
3117
3118Arguments:
3119""""""""""
3120
3121The '``resume``' instruction requires one argument, which must have the
3122same type as the result of any '``landingpad``' instruction in the same
3123function.
3124
3125Semantics:
3126""""""""""
3127
3128The '``resume``' instruction resumes propagation of an existing
3129(in-flight) exception whose unwinding was interrupted with a
3130:ref:`landingpad <i_landingpad>` instruction.
3131
3132Example:
3133""""""""
3134
3135.. code-block:: llvm
3136
3137 resume { i8*, i32 } %exn
3138
3139.. _i_unreachable:
3140
3141'``unreachable``' Instruction
3142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3143
3144Syntax:
3145"""""""
3146
3147::
3148
3149 unreachable
3150
3151Overview:
3152"""""""""
3153
3154The '``unreachable``' instruction has no defined semantics. This
3155instruction is used to inform the optimizer that a particular portion of
3156the code is not reachable. This can be used to indicate that the code
3157after a no-return function cannot be reached, and other facts.
3158
3159Semantics:
3160""""""""""
3161
3162The '``unreachable``' instruction has no defined semantics.
3163
3164.. _binaryops:
3165
3166Binary Operations
3167-----------------
3168
3169Binary operators are used to do most of the computation in a program.
3170They require two operands of the same type, execute an operation on
3171them, and produce a single value. The operands might represent multiple
3172data, as is the case with the :ref:`vector <t_vector>` data type. The
3173result value has the same type as its operands.
3174
3175There are several different binary operators:
3176
3177.. _i_add:
3178
3179'``add``' Instruction
3180^^^^^^^^^^^^^^^^^^^^^
3181
3182Syntax:
3183"""""""
3184
3185::
3186
3187 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3188 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3189 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3190 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3191
3192Overview:
3193"""""""""
3194
3195The '``add``' instruction returns the sum of its two operands.
3196
3197Arguments:
3198""""""""""
3199
3200The two arguments to the '``add``' instruction must be
3201:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3202arguments must have identical types.
3203
3204Semantics:
3205""""""""""
3206
3207The value produced is the integer sum of the two operands.
3208
3209If the sum has unsigned overflow, the result returned is the
3210mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3211the result.
3212
3213Because LLVM integers use a two's complement representation, this
3214instruction is appropriate for both signed and unsigned integers.
3215
3216``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3217respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3218result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3219unsigned and/or signed overflow, respectively, occurs.
3220
3221Example:
3222""""""""
3223
3224.. code-block:: llvm
3225
3226 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3227
3228.. _i_fadd:
3229
3230'``fadd``' Instruction
3231^^^^^^^^^^^^^^^^^^^^^^
3232
3233Syntax:
3234"""""""
3235
3236::
3237
3238 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3239
3240Overview:
3241"""""""""
3242
3243The '``fadd``' instruction returns the sum of its two operands.
3244
3245Arguments:
3246""""""""""
3247
3248The two arguments to the '``fadd``' instruction must be :ref:`floating
3249point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3250Both arguments must have identical types.
3251
3252Semantics:
3253""""""""""
3254
3255The value produced is the floating point sum of the two operands. This
3256instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3257which are optimization hints to enable otherwise unsafe floating point
3258optimizations:
3259
3260Example:
3261""""""""
3262
3263.. code-block:: llvm
3264
3265 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3266
3267'``sub``' Instruction
3268^^^^^^^^^^^^^^^^^^^^^
3269
3270Syntax:
3271"""""""
3272
3273::
3274
3275 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3276 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3277 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3278 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3279
3280Overview:
3281"""""""""
3282
3283The '``sub``' instruction returns the difference of its two operands.
3284
3285Note that the '``sub``' instruction is used to represent the '``neg``'
3286instruction present in most other intermediate representations.
3287
3288Arguments:
3289""""""""""
3290
3291The two arguments to the '``sub``' instruction must be
3292:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3293arguments must have identical types.
3294
3295Semantics:
3296""""""""""
3297
3298The value produced is the integer difference of the two operands.
3299
3300If the difference has unsigned overflow, the result returned is the
3301mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3302the result.
3303
3304Because LLVM integers use a two's complement representation, this
3305instruction is appropriate for both signed and unsigned integers.
3306
3307``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3308respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3309result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3310unsigned and/or signed overflow, respectively, occurs.
3311
3312Example:
3313""""""""
3314
3315.. code-block:: llvm
3316
3317 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3318 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3319
3320.. _i_fsub:
3321
3322'``fsub``' Instruction
3323^^^^^^^^^^^^^^^^^^^^^^
3324
3325Syntax:
3326"""""""
3327
3328::
3329
3330 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3331
3332Overview:
3333"""""""""
3334
3335The '``fsub``' instruction returns the difference of its two operands.
3336
3337Note that the '``fsub``' instruction is used to represent the '``fneg``'
3338instruction present in most other intermediate representations.
3339
3340Arguments:
3341""""""""""
3342
3343The two arguments to the '``fsub``' instruction must be :ref:`floating
3344point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3345Both arguments must have identical types.
3346
3347Semantics:
3348""""""""""
3349
3350The value produced is the floating point difference of the two operands.
3351This instruction can also take any number of :ref:`fast-math
3352flags <fastmath>`, which are optimization hints to enable otherwise
3353unsafe floating point optimizations:
3354
3355Example:
3356""""""""
3357
3358.. code-block:: llvm
3359
3360 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3361 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3362
3363'``mul``' Instruction
3364^^^^^^^^^^^^^^^^^^^^^
3365
3366Syntax:
3367"""""""
3368
3369::
3370
3371 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3372 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3373 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3374 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3375
3376Overview:
3377"""""""""
3378
3379The '``mul``' instruction returns the product of its two operands.
3380
3381Arguments:
3382""""""""""
3383
3384The two arguments to the '``mul``' instruction must be
3385:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3386arguments must have identical types.
3387
3388Semantics:
3389""""""""""
3390
3391The value produced is the integer product of the two operands.
3392
3393If the result of the multiplication has unsigned overflow, the result
3394returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3395bit width of the result.
3396
3397Because LLVM integers use a two's complement representation, and the
3398result is the same width as the operands, this instruction returns the
3399correct result for both signed and unsigned integers. If a full product
3400(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3401sign-extended or zero-extended as appropriate to the width of the full
3402product.
3403
3404``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3405respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3406result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3407unsigned and/or signed overflow, respectively, occurs.
3408
3409Example:
3410""""""""
3411
3412.. code-block:: llvm
3413
3414 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3415
3416.. _i_fmul:
3417
3418'``fmul``' Instruction
3419^^^^^^^^^^^^^^^^^^^^^^
3420
3421Syntax:
3422"""""""
3423
3424::
3425
3426 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3427
3428Overview:
3429"""""""""
3430
3431The '``fmul``' instruction returns the product of its two operands.
3432
3433Arguments:
3434""""""""""
3435
3436The two arguments to the '``fmul``' instruction must be :ref:`floating
3437point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3438Both arguments must have identical types.
3439
3440Semantics:
3441""""""""""
3442
3443The value produced is the floating point product of the two operands.
3444This instruction can also take any number of :ref:`fast-math
3445flags <fastmath>`, which are optimization hints to enable otherwise
3446unsafe floating point optimizations:
3447
3448Example:
3449""""""""
3450
3451.. code-block:: llvm
3452
3453 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3454
3455'``udiv``' Instruction
3456^^^^^^^^^^^^^^^^^^^^^^
3457
3458Syntax:
3459"""""""
3460
3461::
3462
3463 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3464 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3465
3466Overview:
3467"""""""""
3468
3469The '``udiv``' instruction returns the quotient of its two operands.
3470
3471Arguments:
3472""""""""""
3473
3474The two arguments to the '``udiv``' instruction must be
3475:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3476arguments must have identical types.
3477
3478Semantics:
3479""""""""""
3480
3481The value produced is the unsigned integer quotient of the two operands.
3482
3483Note that unsigned integer division and signed integer division are
3484distinct operations; for signed integer division, use '``sdiv``'.
3485
3486Division by zero leads to undefined behavior.
3487
3488If the ``exact`` keyword is present, the result value of the ``udiv`` is
3489a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3490such, "((a udiv exact b) mul b) == a").
3491
3492Example:
3493""""""""
3494
3495.. code-block:: llvm
3496
3497 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3498
3499'``sdiv``' Instruction
3500^^^^^^^^^^^^^^^^^^^^^^
3501
3502Syntax:
3503"""""""
3504
3505::
3506
3507 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3508 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3509
3510Overview:
3511"""""""""
3512
3513The '``sdiv``' instruction returns the quotient of its two operands.
3514
3515Arguments:
3516""""""""""
3517
3518The two arguments to the '``sdiv``' instruction must be
3519:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3520arguments must have identical types.
3521
3522Semantics:
3523""""""""""
3524
3525The value produced is the signed integer quotient of the two operands
3526rounded towards zero.
3527
3528Note that signed integer division and unsigned integer division are
3529distinct operations; for unsigned integer division, use '``udiv``'.
3530
3531Division by zero leads to undefined behavior. Overflow also leads to
3532undefined behavior; this is a rare case, but can occur, for example, by
3533doing a 32-bit division of -2147483648 by -1.
3534
3535If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3536a :ref:`poison value <poisonvalues>` if the result would be rounded.
3537
3538Example:
3539""""""""
3540
3541.. code-block:: llvm
3542
3543 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3544
3545.. _i_fdiv:
3546
3547'``fdiv``' Instruction
3548^^^^^^^^^^^^^^^^^^^^^^
3549
3550Syntax:
3551"""""""
3552
3553::
3554
3555 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3556
3557Overview:
3558"""""""""
3559
3560The '``fdiv``' instruction returns the quotient of its two operands.
3561
3562Arguments:
3563""""""""""
3564
3565The two arguments to the '``fdiv``' instruction must be :ref:`floating
3566point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3567Both arguments must have identical types.
3568
3569Semantics:
3570""""""""""
3571
3572The value produced is the floating point quotient of the two operands.
3573This instruction can also take any number of :ref:`fast-math
3574flags <fastmath>`, which are optimization hints to enable otherwise
3575unsafe floating point optimizations:
3576
3577Example:
3578""""""""
3579
3580.. code-block:: llvm
3581
3582 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3583
3584'``urem``' Instruction
3585^^^^^^^^^^^^^^^^^^^^^^
3586
3587Syntax:
3588"""""""
3589
3590::
3591
3592 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3593
3594Overview:
3595"""""""""
3596
3597The '``urem``' instruction returns the remainder from the unsigned
3598division of its two arguments.
3599
3600Arguments:
3601""""""""""
3602
3603The two arguments to the '``urem``' instruction must be
3604:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3605arguments must have identical types.
3606
3607Semantics:
3608""""""""""
3609
3610This instruction returns the unsigned integer *remainder* of a division.
3611This instruction always performs an unsigned division to get the
3612remainder.
3613
3614Note that unsigned integer remainder and signed integer remainder are
3615distinct operations; for signed integer remainder, use '``srem``'.
3616
3617Taking the remainder of a division by zero leads to undefined behavior.
3618
3619Example:
3620""""""""
3621
3622.. code-block:: llvm
3623
3624 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3625
3626'``srem``' Instruction
3627^^^^^^^^^^^^^^^^^^^^^^
3628
3629Syntax:
3630"""""""
3631
3632::
3633
3634 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3635
3636Overview:
3637"""""""""
3638
3639The '``srem``' instruction returns the remainder from the signed
3640division of its two operands. This instruction can also take
3641:ref:`vector <t_vector>` versions of the values in which case the elements
3642must be integers.
3643
3644Arguments:
3645""""""""""
3646
3647The two arguments to the '``srem``' instruction must be
3648:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3649arguments must have identical types.
3650
3651Semantics:
3652""""""""""
3653
3654This instruction returns the *remainder* of a division (where the result
3655is either zero or has the same sign as the dividend, ``op1``), not the
3656*modulo* operator (where the result is either zero or has the same sign
3657as the divisor, ``op2``) of a value. For more information about the
3658difference, see `The Math
3659Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3660table of how this is implemented in various languages, please see
3661`Wikipedia: modulo
3662operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3663
3664Note that signed integer remainder and unsigned integer remainder are
3665distinct operations; for unsigned integer remainder, use '``urem``'.
3666
3667Taking the remainder of a division by zero leads to undefined behavior.
3668Overflow also leads to undefined behavior; this is a rare case, but can
3669occur, for example, by taking the remainder of a 32-bit division of
3670-2147483648 by -1. (The remainder doesn't actually overflow, but this
3671rule lets srem be implemented using instructions that return both the
3672result of the division and the remainder.)
3673
3674Example:
3675""""""""
3676
3677.. code-block:: llvm
3678
3679 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3680
3681.. _i_frem:
3682
3683'``frem``' Instruction
3684^^^^^^^^^^^^^^^^^^^^^^
3685
3686Syntax:
3687"""""""
3688
3689::
3690
3691 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3692
3693Overview:
3694"""""""""
3695
3696The '``frem``' instruction returns the remainder from the division of
3697its two operands.
3698
3699Arguments:
3700""""""""""
3701
3702The two arguments to the '``frem``' instruction must be :ref:`floating
3703point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3704Both arguments must have identical types.
3705
3706Semantics:
3707""""""""""
3708
3709This instruction returns the *remainder* of a division. The remainder
3710has the same sign as the dividend. This instruction can also take any
3711number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3712to enable otherwise unsafe floating point optimizations:
3713
3714Example:
3715""""""""
3716
3717.. code-block:: llvm
3718
3719 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3720
3721.. _bitwiseops:
3722
3723Bitwise Binary Operations
3724-------------------------
3725
3726Bitwise binary operators are used to do various forms of bit-twiddling
3727in a program. They are generally very efficient instructions and can
3728commonly be strength reduced from other instructions. They require two
3729operands of the same type, execute an operation on them, and produce a
3730single value. The resulting value is the same type as its operands.
3731
3732'``shl``' Instruction
3733^^^^^^^^^^^^^^^^^^^^^
3734
3735Syntax:
3736"""""""
3737
3738::
3739
3740 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3741 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3742 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3743 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3744
3745Overview:
3746"""""""""
3747
3748The '``shl``' instruction returns the first operand shifted to the left
3749a specified number of bits.
3750
3751Arguments:
3752""""""""""
3753
3754Both arguments to the '``shl``' instruction must be the same
3755:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3756'``op2``' is treated as an unsigned value.
3757
3758Semantics:
3759""""""""""
3760
3761The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3762where ``n`` is the width of the result. If ``op2`` is (statically or
3763dynamically) negative or equal to or larger than the number of bits in
3764``op1``, the result is undefined. If the arguments are vectors, each
3765vector element of ``op1`` is shifted by the corresponding shift amount
3766in ``op2``.
3767
3768If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3769value <poisonvalues>` if it shifts out any non-zero bits. If the
3770``nsw`` keyword is present, then the shift produces a :ref:`poison
3771value <poisonvalues>` if it shifts out any bits that disagree with the
3772resultant sign bit. As such, NUW/NSW have the same semantics as they
3773would if the shift were expressed as a mul instruction with the same
3774nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3775
3776Example:
3777""""""""
3778
3779.. code-block:: llvm
3780
3781 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3782 <result> = shl i32 4, 2 ; yields {i32}: 16
3783 <result> = shl i32 1, 10 ; yields {i32}: 1024
3784 <result> = shl i32 1, 32 ; undefined
3785 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3786
3787'``lshr``' Instruction
3788^^^^^^^^^^^^^^^^^^^^^^
3789
3790Syntax:
3791"""""""
3792
3793::
3794
3795 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3796 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3797
3798Overview:
3799"""""""""
3800
3801The '``lshr``' instruction (logical shift right) returns the first
3802operand shifted to the right a specified number of bits with zero fill.
3803
3804Arguments:
3805""""""""""
3806
3807Both arguments to the '``lshr``' instruction must be the same
3808:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3809'``op2``' is treated as an unsigned value.
3810
3811Semantics:
3812""""""""""
3813
3814This instruction always performs a logical shift right operation. The
3815most significant bits of the result will be filled with zero bits after
3816the shift. If ``op2`` is (statically or dynamically) equal to or larger
3817than the number of bits in ``op1``, the result is undefined. If the
3818arguments are vectors, each vector element of ``op1`` is shifted by the
3819corresponding shift amount in ``op2``.
3820
3821If the ``exact`` keyword is present, the result value of the ``lshr`` is
3822a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3823non-zero.
3824
3825Example:
3826""""""""
3827
3828.. code-block:: llvm
3829
3830 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3831 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3832 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3833 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3834 <result> = lshr i32 1, 32 ; undefined
3835 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3836
3837'``ashr``' Instruction
3838^^^^^^^^^^^^^^^^^^^^^^
3839
3840Syntax:
3841"""""""
3842
3843::
3844
3845 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3846 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3847
3848Overview:
3849"""""""""
3850
3851The '``ashr``' instruction (arithmetic shift right) returns the first
3852operand shifted to the right a specified number of bits with sign
3853extension.
3854
3855Arguments:
3856""""""""""
3857
3858Both arguments to the '``ashr``' instruction must be the same
3859:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3860'``op2``' is treated as an unsigned value.
3861
3862Semantics:
3863""""""""""
3864
3865This instruction always performs an arithmetic shift right operation,
3866The most significant bits of the result will be filled with the sign bit
3867of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3868than the number of bits in ``op1``, the result is undefined. If the
3869arguments are vectors, each vector element of ``op1`` is shifted by the
3870corresponding shift amount in ``op2``.
3871
3872If the ``exact`` keyword is present, the result value of the ``ashr`` is
3873a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3874non-zero.
3875
3876Example:
3877""""""""
3878
3879.. code-block:: llvm
3880
3881 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3882 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3883 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3884 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3885 <result> = ashr i32 1, 32 ; undefined
3886 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3887
3888'``and``' Instruction
3889^^^^^^^^^^^^^^^^^^^^^
3890
3891Syntax:
3892"""""""
3893
3894::
3895
3896 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3897
3898Overview:
3899"""""""""
3900
3901The '``and``' instruction returns the bitwise logical and of its two
3902operands.
3903
3904Arguments:
3905""""""""""
3906
3907The two arguments to the '``and``' instruction must be
3908:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3909arguments must have identical types.
3910
3911Semantics:
3912""""""""""
3913
3914The truth table used for the '``and``' instruction is:
3915
3916+-----+-----+-----+
3917| In0 | In1 | Out |
3918+-----+-----+-----+
3919| 0 | 0 | 0 |
3920+-----+-----+-----+
3921| 0 | 1 | 0 |
3922+-----+-----+-----+
3923| 1 | 0 | 0 |
3924+-----+-----+-----+
3925| 1 | 1 | 1 |
3926+-----+-----+-----+
3927
3928Example:
3929""""""""
3930
3931.. code-block:: llvm
3932
3933 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3934 <result> = and i32 15, 40 ; yields {i32}:result = 8
3935 <result> = and i32 4, 8 ; yields {i32}:result = 0
3936
3937'``or``' Instruction
3938^^^^^^^^^^^^^^^^^^^^
3939
3940Syntax:
3941"""""""
3942
3943::
3944
3945 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3946
3947Overview:
3948"""""""""
3949
3950The '``or``' instruction returns the bitwise logical inclusive or of its
3951two operands.
3952
3953Arguments:
3954""""""""""
3955
3956The two arguments to the '``or``' instruction must be
3957:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3958arguments must have identical types.
3959
3960Semantics:
3961""""""""""
3962
3963The truth table used for the '``or``' instruction is:
3964
3965+-----+-----+-----+
3966| In0 | In1 | Out |
3967+-----+-----+-----+
3968| 0 | 0 | 0 |
3969+-----+-----+-----+
3970| 0 | 1 | 1 |
3971+-----+-----+-----+
3972| 1 | 0 | 1 |
3973+-----+-----+-----+
3974| 1 | 1 | 1 |
3975+-----+-----+-----+
3976
3977Example:
3978""""""""
3979
3980::
3981
3982 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3983 <result> = or i32 15, 40 ; yields {i32}:result = 47
3984 <result> = or i32 4, 8 ; yields {i32}:result = 12
3985
3986'``xor``' Instruction
3987^^^^^^^^^^^^^^^^^^^^^
3988
3989Syntax:
3990"""""""
3991
3992::
3993
3994 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
3995
3996Overview:
3997"""""""""
3998
3999The '``xor``' instruction returns the bitwise logical exclusive or of
4000its two operands. The ``xor`` is used to implement the "one's
4001complement" operation, which is the "~" operator in C.
4002
4003Arguments:
4004""""""""""
4005
4006The two arguments to the '``xor``' instruction must be
4007:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4008arguments must have identical types.
4009
4010Semantics:
4011""""""""""
4012
4013The truth table used for the '``xor``' instruction is:
4014
4015+-----+-----+-----+
4016| In0 | In1 | Out |
4017+-----+-----+-----+
4018| 0 | 0 | 0 |
4019+-----+-----+-----+
4020| 0 | 1 | 1 |
4021+-----+-----+-----+
4022| 1 | 0 | 1 |
4023+-----+-----+-----+
4024| 1 | 1 | 0 |
4025+-----+-----+-----+
4026
4027Example:
4028""""""""
4029
4030.. code-block:: llvm
4031
4032 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4033 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4034 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4035 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4036
4037Vector Operations
4038-----------------
4039
4040LLVM supports several instructions to represent vector operations in a
4041target-independent manner. These instructions cover the element-access
4042and vector-specific operations needed to process vectors effectively.
4043While LLVM does directly support these vector operations, many
4044sophisticated algorithms will want to use target-specific intrinsics to
4045take full advantage of a specific target.
4046
4047.. _i_extractelement:
4048
4049'``extractelement``' Instruction
4050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4051
4052Syntax:
4053"""""""
4054
4055::
4056
4057 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4058
4059Overview:
4060"""""""""
4061
4062The '``extractelement``' instruction extracts a single scalar element
4063from a vector at a specified index.
4064
4065Arguments:
4066""""""""""
4067
4068The first operand of an '``extractelement``' instruction is a value of
4069:ref:`vector <t_vector>` type. The second operand is an index indicating
4070the position from which to extract the element. The index may be a
4071variable.
4072
4073Semantics:
4074""""""""""
4075
4076The result is a scalar of the same type as the element type of ``val``.
4077Its value is the value at position ``idx`` of ``val``. If ``idx``
4078exceeds the length of ``val``, the results are undefined.
4079
4080Example:
4081""""""""
4082
4083.. code-block:: llvm
4084
4085 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4086
4087.. _i_insertelement:
4088
4089'``insertelement``' Instruction
4090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4091
4092Syntax:
4093"""""""
4094
4095::
4096
4097 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4098
4099Overview:
4100"""""""""
4101
4102The '``insertelement``' instruction inserts a scalar element into a
4103vector at a specified index.
4104
4105Arguments:
4106""""""""""
4107
4108The first operand of an '``insertelement``' instruction is a value of
4109:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4110type must equal the element type of the first operand. The third operand
4111is an index indicating the position at which to insert the value. The
4112index may be a variable.
4113
4114Semantics:
4115""""""""""
4116
4117The result is a vector of the same type as ``val``. Its element values
4118are those of ``val`` except at position ``idx``, where it gets the value
4119``elt``. If ``idx`` exceeds the length of ``val``, the results are
4120undefined.
4121
4122Example:
4123""""""""
4124
4125.. code-block:: llvm
4126
4127 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4128
4129.. _i_shufflevector:
4130
4131'``shufflevector``' Instruction
4132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4133
4134Syntax:
4135"""""""
4136
4137::
4138
4139 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4140
4141Overview:
4142"""""""""
4143
4144The '``shufflevector``' instruction constructs a permutation of elements
4145from two input vectors, returning a vector with the same element type as
4146the input and length that is the same as the shuffle mask.
4147
4148Arguments:
4149""""""""""
4150
4151The first two operands of a '``shufflevector``' instruction are vectors
4152with the same type. The third argument is a shuffle mask whose element
4153type is always 'i32'. The result of the instruction is a vector whose
4154length is the same as the shuffle mask and whose element type is the
4155same as the element type of the first two operands.
4156
4157The shuffle mask operand is required to be a constant vector with either
4158constant integer or undef values.
4159
4160Semantics:
4161""""""""""
4162
4163The elements of the two input vectors are numbered from left to right
4164across both of the vectors. The shuffle mask operand specifies, for each
4165element of the result vector, which element of the two input vectors the
4166result element gets. The element selector may be undef (meaning "don't
4167care") and the second operand may be undef if performing a shuffle from
4168only one vector.
4169
4170Example:
4171""""""""
4172
4173.. code-block:: llvm
4174
4175 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4176 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4177 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4178 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4179 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4180 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4181 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4182 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4183
4184Aggregate Operations
4185--------------------
4186
4187LLVM supports several instructions for working with
4188:ref:`aggregate <t_aggregate>` values.
4189
4190.. _i_extractvalue:
4191
4192'``extractvalue``' Instruction
4193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4194
4195Syntax:
4196"""""""
4197
4198::
4199
4200 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4201
4202Overview:
4203"""""""""
4204
4205The '``extractvalue``' instruction extracts the value of a member field
4206from an :ref:`aggregate <t_aggregate>` value.
4207
4208Arguments:
4209""""""""""
4210
4211The first operand of an '``extractvalue``' instruction is a value of
4212:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4213constant indices to specify which value to extract in a similar manner
4214as indices in a '``getelementptr``' instruction.
4215
4216The major differences to ``getelementptr`` indexing are:
4217
4218- Since the value being indexed is not a pointer, the first index is
4219 omitted and assumed to be zero.
4220- At least one index must be specified.
4221- Not only struct indices but also array indices must be in bounds.
4222
4223Semantics:
4224""""""""""
4225
4226The result is the value at the position in the aggregate specified by
4227the index operands.
4228
4229Example:
4230""""""""
4231
4232.. code-block:: llvm
4233
4234 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4235
4236.. _i_insertvalue:
4237
4238'``insertvalue``' Instruction
4239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4240
4241Syntax:
4242"""""""
4243
4244::
4245
4246 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4247
4248Overview:
4249"""""""""
4250
4251The '``insertvalue``' instruction inserts a value into a member field in
4252an :ref:`aggregate <t_aggregate>` value.
4253
4254Arguments:
4255""""""""""
4256
4257The first operand of an '``insertvalue``' instruction is a value of
4258:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4259a first-class value to insert. The following operands are constant
4260indices indicating the position at which to insert the value in a
4261similar manner as indices in a '``extractvalue``' instruction. The value
4262to insert must have the same type as the value identified by the
4263indices.
4264
4265Semantics:
4266""""""""""
4267
4268The result is an aggregate of the same type as ``val``. Its value is
4269that of ``val`` except that the value at the position specified by the
4270indices is that of ``elt``.
4271
4272Example:
4273""""""""
4274
4275.. code-block:: llvm
4276
4277 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4278 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4279 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4280
4281.. _memoryops:
4282
4283Memory Access and Addressing Operations
4284---------------------------------------
4285
4286A key design point of an SSA-based representation is how it represents
4287memory. In LLVM, no memory locations are in SSA form, which makes things
4288very simple. This section describes how to read, write, and allocate
4289memory in LLVM.
4290
4291.. _i_alloca:
4292
4293'``alloca``' Instruction
4294^^^^^^^^^^^^^^^^^^^^^^^^
4295
4296Syntax:
4297"""""""
4298
4299::
4300
4301 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4302
4303Overview:
4304"""""""""
4305
4306The '``alloca``' instruction allocates memory on the stack frame of the
4307currently executing function, to be automatically released when this
4308function returns to its caller. The object is always allocated in the
4309generic address space (address space zero).
4310
4311Arguments:
4312""""""""""
4313
4314The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4315bytes of memory on the runtime stack, returning a pointer of the
4316appropriate type to the program. If "NumElements" is specified, it is
4317the number of elements allocated, otherwise "NumElements" is defaulted
4318to be one. If a constant alignment is specified, the value result of the
4319allocation is guaranteed to be aligned to at least that boundary. If not
4320specified, or if zero, the target can choose to align the allocation on
4321any convenient boundary compatible with the type.
4322
4323'``type``' may be any sized type.
4324
4325Semantics:
4326""""""""""
4327
4328Memory is allocated; a pointer is returned. The operation is undefined
4329if there is insufficient stack space for the allocation. '``alloca``'d
4330memory is automatically released when the function returns. The
4331'``alloca``' instruction is commonly used to represent automatic
4332variables that must have an address available. When the function returns
4333(either with the ``ret`` or ``resume`` instructions), the memory is
4334reclaimed. Allocating zero bytes is legal, but the result is undefined.
4335The order in which memory is allocated (ie., which way the stack grows)
4336is not specified.
4337
4338Example:
4339""""""""
4340
4341.. code-block:: llvm
4342
4343 %ptr = alloca i32 ; yields {i32*}:ptr
4344 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4345 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4346 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4347
4348.. _i_load:
4349
4350'``load``' Instruction
4351^^^^^^^^^^^^^^^^^^^^^^
4352
4353Syntax:
4354"""""""
4355
4356::
4357
4358 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4359 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4360 !<index> = !{ i32 1 }
4361
4362Overview:
4363"""""""""
4364
4365The '``load``' instruction is used to read from memory.
4366
4367Arguments:
4368""""""""""
4369
4370The argument to the '``load``' instruction specifies the memory address
4371from which to load. The pointer must point to a :ref:`first
4372class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4373then the optimizer is not allowed to modify the number or order of
4374execution of this ``load`` with other :ref:`volatile
4375operations <volatile>`.
4376
4377If the ``load`` is marked as ``atomic``, it takes an extra
4378:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4379``release`` and ``acq_rel`` orderings are not valid on ``load``
4380instructions. Atomic loads produce :ref:`defined <memmodel>` results
4381when they may see multiple atomic stores. The type of the pointee must
4382be an integer type whose bit width is a power of two greater than or
4383equal to eight and less than or equal to a target-specific size limit.
4384``align`` must be explicitly specified on atomic loads, and the load has
4385undefined behavior if the alignment is not set to a value which is at
4386least the size in bytes of the pointee. ``!nontemporal`` does not have
4387any defined semantics for atomic loads.
4388
4389The optional constant ``align`` argument specifies the alignment of the
4390operation (that is, the alignment of the memory address). A value of 0
4391or an omitted ``align`` argument means that the operation has the abi
4392alignment for the target. It is the responsibility of the code emitter
4393to ensure that the alignment information is correct. Overestimating the
4394alignment results in undefined behavior. Underestimating the alignment
4395may produce less efficient code. An alignment of 1 is always safe.
4396
4397The optional ``!nontemporal`` metadata must reference a single
4398metatadata name <index> corresponding to a metadata node with one
4399``i32`` entry of value 1. The existence of the ``!nontemporal``
4400metatadata on the instruction tells the optimizer and code generator
4401that this load is not expected to be reused in the cache. The code
4402generator may select special instructions to save cache bandwidth, such
4403as the ``MOVNT`` instruction on x86.
4404
4405The optional ``!invariant.load`` metadata must reference a single
4406metatadata name <index> corresponding to a metadata node with no
4407entries. The existence of the ``!invariant.load`` metatadata on the
4408instruction tells the optimizer and code generator that this load
4409address points to memory which does not change value during program
4410execution. The optimizer may then move this load around, for example, by
4411hoisting it out of loops using loop invariant code motion.
4412
4413Semantics:
4414""""""""""
4415
4416The location of memory pointed to is loaded. If the value being loaded
4417is of scalar type then the number of bytes read does not exceed the
4418minimum number of bytes needed to hold all bits of the type. For
4419example, loading an ``i24`` reads at most three bytes. When loading a
4420value of a type like ``i20`` with a size that is not an integral number
4421of bytes, the result is undefined if the value was not originally
4422written using a store of the same type.
4423
4424Examples:
4425"""""""""
4426
4427.. code-block:: llvm
4428
4429 %ptr = alloca i32 ; yields {i32*}:ptr
4430 store i32 3, i32* %ptr ; yields {void}
4431 %val = load i32* %ptr ; yields {i32}:val = i32 3
4432
4433.. _i_store:
4434
4435'``store``' Instruction
4436^^^^^^^^^^^^^^^^^^^^^^^
4437
4438Syntax:
4439"""""""
4440
4441::
4442
4443 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4444 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4445
4446Overview:
4447"""""""""
4448
4449The '``store``' instruction is used to write to memory.
4450
4451Arguments:
4452""""""""""
4453
4454There are two arguments to the '``store``' instruction: a value to store
4455and an address at which to store it. The type of the '``<pointer>``'
4456operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4457the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4458then the optimizer is not allowed to modify the number or order of
4459execution of this ``store`` with other :ref:`volatile
4460operations <volatile>`.
4461
4462If the ``store`` is marked as ``atomic``, it takes an extra
4463:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4464``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4465instructions. Atomic loads produce :ref:`defined <memmodel>` results
4466when they may see multiple atomic stores. The type of the pointee must
4467be an integer type whose bit width is a power of two greater than or
4468equal to eight and less than or equal to a target-specific size limit.
4469``align`` must be explicitly specified on atomic stores, and the store
4470has undefined behavior if the alignment is not set to a value which is
4471at least the size in bytes of the pointee. ``!nontemporal`` does not
4472have any defined semantics for atomic stores.
4473
4474The optional constant "align" argument specifies the alignment of the
4475operation (that is, the alignment of the memory address). A value of 0
4476or an omitted "align" argument means that the operation has the abi
4477alignment for the target. It is the responsibility of the code emitter
4478to ensure that the alignment information is correct. Overestimating the
4479alignment results in an undefined behavior. Underestimating the
4480alignment may produce less efficient code. An alignment of 1 is always
4481safe.
4482
4483The optional !nontemporal metadata must reference a single metatadata
4484name <index> corresponding to a metadata node with one i32 entry of
4485value 1. The existence of the !nontemporal metatadata on the instruction
4486tells the optimizer and code generator that this load is not expected to
4487be reused in the cache. The code generator may select special
4488instructions to save cache bandwidth, such as the MOVNT instruction on
4489x86.
4490
4491Semantics:
4492""""""""""
4493
4494The contents of memory are updated to contain '``<value>``' at the
4495location specified by the '``<pointer>``' operand. If '``<value>``' is
4496of scalar type then the number of bytes written does not exceed the
4497minimum number of bytes needed to hold all bits of the type. For
4498example, storing an ``i24`` writes at most three bytes. When writing a
4499value of a type like ``i20`` with a size that is not an integral number
4500of bytes, it is unspecified what happens to the extra bits that do not
4501belong to the type, but they will typically be overwritten.
4502
4503Example:
4504""""""""
4505
4506.. code-block:: llvm
4507
4508 %ptr = alloca i32 ; yields {i32*}:ptr
4509 store i32 3, i32* %ptr ; yields {void}
4510 %val = load i32* %ptr ; yields {i32}:val = i32 3
4511
4512.. _i_fence:
4513
4514'``fence``' Instruction
4515^^^^^^^^^^^^^^^^^^^^^^^
4516
4517Syntax:
4518"""""""
4519
4520::
4521
4522 fence [singlethread] <ordering> ; yields {void}
4523
4524Overview:
4525"""""""""
4526
4527The '``fence``' instruction is used to introduce happens-before edges
4528between operations.
4529
4530Arguments:
4531""""""""""
4532
4533'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4534defines what *synchronizes-with* edges they add. They can only be given
4535``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4536
4537Semantics:
4538""""""""""
4539
4540A fence A which has (at least) ``release`` ordering semantics
4541*synchronizes with* a fence B with (at least) ``acquire`` ordering
4542semantics if and only if there exist atomic operations X and Y, both
4543operating on some atomic object M, such that A is sequenced before X, X
4544modifies M (either directly or through some side effect of a sequence
4545headed by X), Y is sequenced before B, and Y observes M. This provides a
4546*happens-before* dependency between A and B. Rather than an explicit
4547``fence``, one (but not both) of the atomic operations X or Y might
4548provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4549still *synchronize-with* the explicit ``fence`` and establish the
4550*happens-before* edge.
4551
4552A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4553``acquire`` and ``release`` semantics specified above, participates in
4554the global program order of other ``seq_cst`` operations and/or fences.
4555
4556The optional ":ref:`singlethread <singlethread>`" argument specifies
4557that the fence only synchronizes with other fences in the same thread.
4558(This is useful for interacting with signal handlers.)
4559
4560Example:
4561""""""""
4562
4563.. code-block:: llvm
4564
4565 fence acquire ; yields {void}
4566 fence singlethread seq_cst ; yields {void}
4567
4568.. _i_cmpxchg:
4569
4570'``cmpxchg``' Instruction
4571^^^^^^^^^^^^^^^^^^^^^^^^^
4572
4573Syntax:
4574"""""""
4575
4576::
4577
4578 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4579
4580Overview:
4581"""""""""
4582
4583The '``cmpxchg``' instruction is used to atomically modify memory. It
4584loads a value in memory and compares it to a given value. If they are
4585equal, it stores a new value into the memory.
4586
4587Arguments:
4588""""""""""
4589
4590There are three arguments to the '``cmpxchg``' instruction: an address
4591to operate on, a value to compare to the value currently be at that
4592address, and a new value to place at that address if the compared values
4593are equal. The type of '<cmp>' must be an integer type whose bit width
4594is a power of two greater than or equal to eight and less than or equal
4595to a target-specific size limit. '<cmp>' and '<new>' must have the same
4596type, and the type of '<pointer>' must be a pointer to that type. If the
4597``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4598to modify the number or order of execution of this ``cmpxchg`` with
4599other :ref:`volatile operations <volatile>`.
4600
4601The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4602synchronizes with other atomic operations.
4603
4604The optional "``singlethread``" argument declares that the ``cmpxchg``
4605is only atomic with respect to code (usually signal handlers) running in
4606the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4607respect to all other code in the system.
4608
4609The pointer passed into cmpxchg must have alignment greater than or
4610equal to the size in memory of the operand.
4611
4612Semantics:
4613""""""""""
4614
4615The contents of memory at the location specified by the '``<pointer>``'
4616operand is read and compared to '``<cmp>``'; if the read value is the
4617equal, '``<new>``' is written. The original value at the location is
4618returned.
4619
4620A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4621of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4622atomic load with an ordering parameter determined by dropping any
4623``release`` part of the ``cmpxchg``'s ordering.
4624
4625Example:
4626""""""""
4627
4628.. code-block:: llvm
4629
4630 entry:
4631 %orig = atomic load i32* %ptr unordered ; yields {i32}
4632 br label %loop
4633
4634 loop:
4635 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4636 %squared = mul i32 %cmp, %cmp
4637 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4638 %success = icmp eq i32 %cmp, %old
4639 br i1 %success, label %done, label %loop
4640
4641 done:
4642 ...
4643
4644.. _i_atomicrmw:
4645
4646'``atomicrmw``' Instruction
4647^^^^^^^^^^^^^^^^^^^^^^^^^^^
4648
4649Syntax:
4650"""""""
4651
4652::
4653
4654 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4655
4656Overview:
4657"""""""""
4658
4659The '``atomicrmw``' instruction is used to atomically modify memory.
4660
4661Arguments:
4662""""""""""
4663
4664There are three arguments to the '``atomicrmw``' instruction: an
4665operation to apply, an address whose value to modify, an argument to the
4666operation. The operation must be one of the following keywords:
4667
4668- xchg
4669- add
4670- sub
4671- and
4672- nand
4673- or
4674- xor
4675- max
4676- min
4677- umax
4678- umin
4679
4680The type of '<value>' must be an integer type whose bit width is a power
4681of two greater than or equal to eight and less than or equal to a
4682target-specific size limit. The type of the '``<pointer>``' operand must
4683be a pointer to that type. If the ``atomicrmw`` is marked as
4684``volatile``, then the optimizer is not allowed to modify the number or
4685order of execution of this ``atomicrmw`` with other :ref:`volatile
4686operations <volatile>`.
4687
4688Semantics:
4689""""""""""
4690
4691The contents of memory at the location specified by the '``<pointer>``'
4692operand are atomically read, modified, and written back. The original
4693value at the location is returned. The modification is specified by the
4694operation argument:
4695
4696- xchg: ``*ptr = val``
4697- add: ``*ptr = *ptr + val``
4698- sub: ``*ptr = *ptr - val``
4699- and: ``*ptr = *ptr & val``
4700- nand: ``*ptr = ~(*ptr & val)``
4701- or: ``*ptr = *ptr | val``
4702- xor: ``*ptr = *ptr ^ val``
4703- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4704- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4705- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4706 comparison)
4707- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4708 comparison)
4709
4710Example:
4711""""""""
4712
4713.. code-block:: llvm
4714
4715 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4716
4717.. _i_getelementptr:
4718
4719'``getelementptr``' Instruction
4720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4721
4722Syntax:
4723"""""""
4724
4725::
4726
4727 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4728 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4729 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4730
4731Overview:
4732"""""""""
4733
4734The '``getelementptr``' instruction is used to get the address of a
4735subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4736address calculation only and does not access memory.
4737
4738Arguments:
4739""""""""""
4740
4741The first argument is always a pointer or a vector of pointers, and
4742forms the basis of the calculation. The remaining arguments are indices
4743that indicate which of the elements of the aggregate object are indexed.
4744The interpretation of each index is dependent on the type being indexed
4745into. The first index always indexes the pointer value given as the
4746first argument, the second index indexes a value of the type pointed to
4747(not necessarily the value directly pointed to, since the first index
4748can be non-zero), etc. The first type indexed into must be a pointer
4749value, subsequent types can be arrays, vectors, and structs. Note that
4750subsequent types being indexed into can never be pointers, since that
4751would require loading the pointer before continuing calculation.
4752
4753The type of each index argument depends on the type it is indexing into.
4754When indexing into a (optionally packed) structure, only ``i32`` integer
4755**constants** are allowed (when using a vector of indices they must all
4756be the **same** ``i32`` integer constant). When indexing into an array,
4757pointer or vector, integers of any width are allowed, and they are not
4758required to be constant. These integers are treated as signed values
4759where relevant.
4760
4761For example, let's consider a C code fragment and how it gets compiled
4762to LLVM:
4763
4764.. code-block:: c
4765
4766 struct RT {
4767 char A;
4768 int B[10][20];
4769 char C;
4770 };
4771 struct ST {
4772 int X;
4773 double Y;
4774 struct RT Z;
4775 };
4776
4777 int *foo(struct ST *s) {
4778 return &s[1].Z.B[5][13];
4779 }
4780
4781The LLVM code generated by Clang is:
4782
4783.. code-block:: llvm
4784
4785 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4786 %struct.ST = type { i32, double, %struct.RT }
4787
4788 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4789 entry:
4790 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4791 ret i32* %arrayidx
4792 }
4793
4794Semantics:
4795""""""""""
4796
4797In the example above, the first index is indexing into the
4798'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4799= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4800indexes into the third element of the structure, yielding a
4801'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4802structure. The third index indexes into the second element of the
4803structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4804dimensions of the array are subscripted into, yielding an '``i32``'
4805type. The '``getelementptr``' instruction returns a pointer to this
4806element, thus computing a value of '``i32*``' type.
4807
4808Note that it is perfectly legal to index partially through a structure,
4809returning a pointer to an inner element. Because of this, the LLVM code
4810for the given testcase is equivalent to:
4811
4812.. code-block:: llvm
4813
4814 define i32* @foo(%struct.ST* %s) {
4815 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4816 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4817 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4818 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4819 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4820 ret i32* %t5
4821 }
4822
4823If the ``inbounds`` keyword is present, the result value of the
4824``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4825pointer is not an *in bounds* address of an allocated object, or if any
4826of the addresses that would be formed by successive addition of the
4827offsets implied by the indices to the base address with infinitely
4828precise signed arithmetic are not an *in bounds* address of that
4829allocated object. The *in bounds* addresses for an allocated object are
4830all the addresses that point into the object, plus the address one byte
4831past the end. In cases where the base is a vector of pointers the
4832``inbounds`` keyword applies to each of the computations element-wise.
4833
4834If the ``inbounds`` keyword is not present, the offsets are added to the
4835base address with silently-wrapping two's complement arithmetic. If the
4836offsets have a different width from the pointer, they are sign-extended
4837or truncated to the width of the pointer. The result value of the
4838``getelementptr`` may be outside the object pointed to by the base
4839pointer. The result value may not necessarily be used to access memory
4840though, even if it happens to point into allocated storage. See the
4841:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4842information.
4843
4844The getelementptr instruction is often confusing. For some more insight
4845into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4846
4847Example:
4848""""""""
4849
4850.. code-block:: llvm
4851
4852 ; yields [12 x i8]*:aptr
4853 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4854 ; yields i8*:vptr
4855 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4856 ; yields i8*:eptr
4857 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4858 ; yields i32*:iptr
4859 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4860
4861In cases where the pointer argument is a vector of pointers, each index
4862must be a vector with the same number of elements. For example:
4863
4864.. code-block:: llvm
4865
4866 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4867
4868Conversion Operations
4869---------------------
4870
4871The instructions in this category are the conversion instructions
4872(casting) which all take a single operand and a type. They perform
4873various bit conversions on the operand.
4874
4875'``trunc .. to``' Instruction
4876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4877
4878Syntax:
4879"""""""
4880
4881::
4882
4883 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4884
4885Overview:
4886"""""""""
4887
4888The '``trunc``' instruction truncates its operand to the type ``ty2``.
4889
4890Arguments:
4891""""""""""
4892
4893The '``trunc``' instruction takes a value to trunc, and a type to trunc
4894it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4895of the same number of integers. The bit size of the ``value`` must be
4896larger than the bit size of the destination type, ``ty2``. Equal sized
4897types are not allowed.
4898
4899Semantics:
4900""""""""""
4901
4902The '``trunc``' instruction truncates the high order bits in ``value``
4903and converts the remaining bits to ``ty2``. Since the source size must
4904be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4905It will always truncate bits.
4906
4907Example:
4908""""""""
4909
4910.. code-block:: llvm
4911
4912 %X = trunc i32 257 to i8 ; yields i8:1
4913 %Y = trunc i32 123 to i1 ; yields i1:true
4914 %Z = trunc i32 122 to i1 ; yields i1:false
4915 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4916
4917'``zext .. to``' Instruction
4918^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4919
4920Syntax:
4921"""""""
4922
4923::
4924
4925 <result> = zext <ty> <value> to <ty2> ; yields ty2
4926
4927Overview:
4928"""""""""
4929
4930The '``zext``' instruction zero extends its operand to type ``ty2``.
4931
4932Arguments:
4933""""""""""
4934
4935The '``zext``' instruction takes a value to cast, and a type to cast it
4936to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4937the same number of integers. The bit size of the ``value`` must be
4938smaller than the bit size of the destination type, ``ty2``.
4939
4940Semantics:
4941""""""""""
4942
4943The ``zext`` fills the high order bits of the ``value`` with zero bits
4944until it reaches the size of the destination type, ``ty2``.
4945
4946When zero extending from i1, the result will always be either 0 or 1.
4947
4948Example:
4949""""""""
4950
4951.. code-block:: llvm
4952
4953 %X = zext i32 257 to i64 ; yields i64:257
4954 %Y = zext i1 true to i32 ; yields i32:1
4955 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4956
4957'``sext .. to``' Instruction
4958^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4959
4960Syntax:
4961"""""""
4962
4963::
4964
4965 <result> = sext <ty> <value> to <ty2> ; yields ty2
4966
4967Overview:
4968"""""""""
4969
4970The '``sext``' sign extends ``value`` to the type ``ty2``.
4971
4972Arguments:
4973""""""""""
4974
4975The '``sext``' instruction takes a value to cast, and a type to cast it
4976to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4977the same number of integers. The bit size of the ``value`` must be
4978smaller than the bit size of the destination type, ``ty2``.
4979
4980Semantics:
4981""""""""""
4982
4983The '``sext``' instruction performs a sign extension by copying the sign
4984bit (highest order bit) of the ``value`` until it reaches the bit size
4985of the type ``ty2``.
4986
4987When sign extending from i1, the extension always results in -1 or 0.
4988
4989Example:
4990""""""""
4991
4992.. code-block:: llvm
4993
4994 %X = sext i8 -1 to i16 ; yields i16 :65535
4995 %Y = sext i1 true to i32 ; yields i32:-1
4996 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4997
4998'``fptrunc .. to``' Instruction
4999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5000
5001Syntax:
5002"""""""
5003
5004::
5005
5006 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5007
5008Overview:
5009"""""""""
5010
5011The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5012
5013Arguments:
5014""""""""""
5015
5016The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5017value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5018The size of ``value`` must be larger than the size of ``ty2``. This
5019implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5020
5021Semantics:
5022""""""""""
5023
5024The '``fptrunc``' instruction truncates a ``value`` from a larger
5025:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5026point <t_floating>` type. If the value cannot fit within the
5027destination type, ``ty2``, then the results are undefined.
5028
5029Example:
5030""""""""
5031
5032.. code-block:: llvm
5033
5034 %X = fptrunc double 123.0 to float ; yields float:123.0
5035 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5036
5037'``fpext .. to``' Instruction
5038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5039
5040Syntax:
5041"""""""
5042
5043::
5044
5045 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5046
5047Overview:
5048"""""""""
5049
5050The '``fpext``' extends a floating point ``value`` to a larger floating
5051point value.
5052
5053Arguments:
5054""""""""""
5055
5056The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5057``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5058to. The source type must be smaller than the destination type.
5059
5060Semantics:
5061""""""""""
5062
5063The '``fpext``' instruction extends the ``value`` from a smaller
5064:ref:`floating point <t_floating>` type to a larger :ref:`floating
5065point <t_floating>` type. The ``fpext`` cannot be used to make a
5066*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5067*no-op cast* for a floating point cast.
5068
5069Example:
5070""""""""
5071
5072.. code-block:: llvm
5073
5074 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5075 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5076
5077'``fptoui .. to``' Instruction
5078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5079
5080Syntax:
5081"""""""
5082
5083::
5084
5085 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5086
5087Overview:
5088"""""""""
5089
5090The '``fptoui``' converts a floating point ``value`` to its unsigned
5091integer equivalent of type ``ty2``.
5092
5093Arguments:
5094""""""""""
5095
5096The '``fptoui``' instruction takes a value to cast, which must be a
5097scalar or vector :ref:`floating point <t_floating>` value, and a type to
5098cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5099``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5100type with the same number of elements as ``ty``
5101
5102Semantics:
5103""""""""""
5104
5105The '``fptoui``' instruction converts its :ref:`floating
5106point <t_floating>` operand into the nearest (rounding towards zero)
5107unsigned integer value. If the value cannot fit in ``ty2``, the results
5108are undefined.
5109
5110Example:
5111""""""""
5112
5113.. code-block:: llvm
5114
5115 %X = fptoui double 123.0 to i32 ; yields i32:123
5116 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5117 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5118
5119'``fptosi .. to``' Instruction
5120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5121
5122Syntax:
5123"""""""
5124
5125::
5126
5127 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5128
5129Overview:
5130"""""""""
5131
5132The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5133``value`` to type ``ty2``.
5134
5135Arguments:
5136""""""""""
5137
5138The '``fptosi``' instruction takes a value to cast, which must be a
5139scalar or vector :ref:`floating point <t_floating>` value, and a type to
5140cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5141``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5142type with the same number of elements as ``ty``
5143
5144Semantics:
5145""""""""""
5146
5147The '``fptosi``' instruction converts its :ref:`floating
5148point <t_floating>` operand into the nearest (rounding towards zero)
5149signed integer value. If the value cannot fit in ``ty2``, the results
5150are undefined.
5151
5152Example:
5153""""""""
5154
5155.. code-block:: llvm
5156
5157 %X = fptosi double -123.0 to i32 ; yields i32:-123
5158 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5159 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5160
5161'``uitofp .. to``' Instruction
5162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5163
5164Syntax:
5165"""""""
5166
5167::
5168
5169 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5170
5171Overview:
5172"""""""""
5173
5174The '``uitofp``' instruction regards ``value`` as an unsigned integer
5175and converts that value to the ``ty2`` type.
5176
5177Arguments:
5178""""""""""
5179
5180The '``uitofp``' instruction takes a value to cast, which must be a
5181scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5182``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5183``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5184type with the same number of elements as ``ty``
5185
5186Semantics:
5187""""""""""
5188
5189The '``uitofp``' instruction interprets its operand as an unsigned
5190integer quantity and converts it to the corresponding floating point
5191value. If the value cannot fit in the floating point value, the results
5192are undefined.
5193
5194Example:
5195""""""""
5196
5197.. code-block:: llvm
5198
5199 %X = uitofp i32 257 to float ; yields float:257.0
5200 %Y = uitofp i8 -1 to double ; yields double:255.0
5201
5202'``sitofp .. to``' Instruction
5203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5204
5205Syntax:
5206"""""""
5207
5208::
5209
5210 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5211
5212Overview:
5213"""""""""
5214
5215The '``sitofp``' instruction regards ``value`` as a signed integer and
5216converts that value to the ``ty2`` type.
5217
5218Arguments:
5219""""""""""
5220
5221The '``sitofp``' instruction takes a value to cast, which must be a
5222scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5223``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5224``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5225type with the same number of elements as ``ty``
5226
5227Semantics:
5228""""""""""
5229
5230The '``sitofp``' instruction interprets its operand as a signed integer
5231quantity and converts it to the corresponding floating point value. If
5232the value cannot fit in the floating point value, the results are
5233undefined.
5234
5235Example:
5236""""""""
5237
5238.. code-block:: llvm
5239
5240 %X = sitofp i32 257 to float ; yields float:257.0
5241 %Y = sitofp i8 -1 to double ; yields double:-1.0
5242
5243.. _i_ptrtoint:
5244
5245'``ptrtoint .. to``' Instruction
5246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5247
5248Syntax:
5249"""""""
5250
5251::
5252
5253 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5254
5255Overview:
5256"""""""""
5257
5258The '``ptrtoint``' instruction converts the pointer or a vector of
5259pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5260
5261Arguments:
5262""""""""""
5263
5264The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5265a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5266type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5267a vector of integers type.
5268
5269Semantics:
5270""""""""""
5271
5272The '``ptrtoint``' instruction converts ``value`` to integer type
5273``ty2`` by interpreting the pointer value as an integer and either
5274truncating or zero extending that value to the size of the integer type.
5275If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5276``value`` is larger than ``ty2`` then a truncation is done. If they are
5277the same size, then nothing is done (*no-op cast*) other than a type
5278change.
5279
5280Example:
5281""""""""
5282
5283.. code-block:: llvm
5284
5285 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5286 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5287 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5288
5289.. _i_inttoptr:
5290
5291'``inttoptr .. to``' Instruction
5292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5293
5294Syntax:
5295"""""""
5296
5297::
5298
5299 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5300
5301Overview:
5302"""""""""
5303
5304The '``inttoptr``' instruction converts an integer ``value`` to a
5305pointer type, ``ty2``.
5306
5307Arguments:
5308""""""""""
5309
5310The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5311cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5312type.
5313
5314Semantics:
5315""""""""""
5316
5317The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5318applying either a zero extension or a truncation depending on the size
5319of the integer ``value``. If ``value`` is larger than the size of a
5320pointer then a truncation is done. If ``value`` is smaller than the size
5321of a pointer then a zero extension is done. If they are the same size,
5322nothing is done (*no-op cast*).
5323
5324Example:
5325""""""""
5326
5327.. code-block:: llvm
5328
5329 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5330 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5331 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5332 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5333
5334.. _i_bitcast:
5335
5336'``bitcast .. to``' Instruction
5337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5338
5339Syntax:
5340"""""""
5341
5342::
5343
5344 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5345
5346Overview:
5347"""""""""
5348
5349The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5350changing any bits.
5351
5352Arguments:
5353""""""""""
5354
5355The '``bitcast``' instruction takes a value to cast, which must be a
5356non-aggregate first class value, and a type to cast it to, which must
5357also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5358sizes of ``value`` and the destination type, ``ty2``, must be identical.
5359If the source type is a pointer, the destination type must also be a
5360pointer. This instruction supports bitwise conversion of vectors to
5361integers and to vectors of other types (as long as they have the same
5362size).
5363
5364Semantics:
5365""""""""""
5366
5367The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5368always a *no-op cast* because no bits change with this conversion. The
5369conversion is done as if the ``value`` had been stored to memory and
5370read back as type ``ty2``. Pointer (or vector of pointers) types may
5371only be converted to other pointer (or vector of pointers) types with
5372this instruction. To convert pointers to other types, use the
5373:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5374first.
5375
5376Example:
5377""""""""
5378
5379.. code-block:: llvm
5380
5381 %X = bitcast i8 255 to i8 ; yields i8 :-1
5382 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5383 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5384 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5385
5386.. _otherops:
5387
5388Other Operations
5389----------------
5390
5391The instructions in this category are the "miscellaneous" instructions,
5392which defy better classification.
5393
5394.. _i_icmp:
5395
5396'``icmp``' Instruction
5397^^^^^^^^^^^^^^^^^^^^^^
5398
5399Syntax:
5400"""""""
5401
5402::
5403
5404 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5405
5406Overview:
5407"""""""""
5408
5409The '``icmp``' instruction returns a boolean value or a vector of
5410boolean values based on comparison of its two integer, integer vector,
5411pointer, or pointer vector operands.
5412
5413Arguments:
5414""""""""""
5415
5416The '``icmp``' instruction takes three operands. The first operand is
5417the condition code indicating the kind of comparison to perform. It is
5418not a value, just a keyword. The possible condition code are:
5419
5420#. ``eq``: equal
5421#. ``ne``: not equal
5422#. ``ugt``: unsigned greater than
5423#. ``uge``: unsigned greater or equal
5424#. ``ult``: unsigned less than
5425#. ``ule``: unsigned less or equal
5426#. ``sgt``: signed greater than
5427#. ``sge``: signed greater or equal
5428#. ``slt``: signed less than
5429#. ``sle``: signed less or equal
5430
5431The remaining two arguments must be :ref:`integer <t_integer>` or
5432:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5433must also be identical types.
5434
5435Semantics:
5436""""""""""
5437
5438The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5439code given as ``cond``. The comparison performed always yields either an
5440:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5441
5442#. ``eq``: yields ``true`` if the operands are equal, ``false``
5443 otherwise. No sign interpretation is necessary or performed.
5444#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5445 otherwise. No sign interpretation is necessary or performed.
5446#. ``ugt``: interprets the operands as unsigned values and yields
5447 ``true`` if ``op1`` is greater than ``op2``.
5448#. ``uge``: interprets the operands as unsigned values and yields
5449 ``true`` if ``op1`` is greater than or equal to ``op2``.
5450#. ``ult``: interprets the operands as unsigned values and yields
5451 ``true`` if ``op1`` is less than ``op2``.
5452#. ``ule``: interprets the operands as unsigned values and yields
5453 ``true`` if ``op1`` is less than or equal to ``op2``.
5454#. ``sgt``: interprets the operands as signed values and yields ``true``
5455 if ``op1`` is greater than ``op2``.
5456#. ``sge``: interprets the operands as signed values and yields ``true``
5457 if ``op1`` is greater than or equal to ``op2``.
5458#. ``slt``: interprets the operands as signed values and yields ``true``
5459 if ``op1`` is less than ``op2``.
5460#. ``sle``: interprets the operands as signed values and yields ``true``
5461 if ``op1`` is less than or equal to ``op2``.
5462
5463If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5464are compared as if they were integers.
5465
5466If the operands are integer vectors, then they are compared element by
5467element. The result is an ``i1`` vector with the same number of elements
5468as the values being compared. Otherwise, the result is an ``i1``.
5469
5470Example:
5471""""""""
5472
5473.. code-block:: llvm
5474
5475 <result> = icmp eq i32 4, 5 ; yields: result=false
5476 <result> = icmp ne float* %X, %X ; yields: result=false
5477 <result> = icmp ult i16 4, 5 ; yields: result=true
5478 <result> = icmp sgt i16 4, 5 ; yields: result=false
5479 <result> = icmp ule i16 -4, 5 ; yields: result=false
5480 <result> = icmp sge i16 4, 5 ; yields: result=false
5481
5482Note that the code generator does not yet support vector types with the
5483``icmp`` instruction.
5484
5485.. _i_fcmp:
5486
5487'``fcmp``' Instruction
5488^^^^^^^^^^^^^^^^^^^^^^
5489
5490Syntax:
5491"""""""
5492
5493::
5494
5495 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5496
5497Overview:
5498"""""""""
5499
5500The '``fcmp``' instruction returns a boolean value or vector of boolean
5501values based on comparison of its operands.
5502
5503If the operands are floating point scalars, then the result type is a
5504boolean (:ref:`i1 <t_integer>`).
5505
5506If the operands are floating point vectors, then the result type is a
5507vector of boolean with the same number of elements as the operands being
5508compared.
5509
5510Arguments:
5511""""""""""
5512
5513The '``fcmp``' instruction takes three operands. The first operand is
5514the condition code indicating the kind of comparison to perform. It is
5515not a value, just a keyword. The possible condition code are:
5516
5517#. ``false``: no comparison, always returns false
5518#. ``oeq``: ordered and equal
5519#. ``ogt``: ordered and greater than
5520#. ``oge``: ordered and greater than or equal
5521#. ``olt``: ordered and less than
5522#. ``ole``: ordered and less than or equal
5523#. ``one``: ordered and not equal
5524#. ``ord``: ordered (no nans)
5525#. ``ueq``: unordered or equal
5526#. ``ugt``: unordered or greater than
5527#. ``uge``: unordered or greater than or equal
5528#. ``ult``: unordered or less than
5529#. ``ule``: unordered or less than or equal
5530#. ``une``: unordered or not equal
5531#. ``uno``: unordered (either nans)
5532#. ``true``: no comparison, always returns true
5533
5534*Ordered* means that neither operand is a QNAN while *unordered* means
5535that either operand may be a QNAN.
5536
5537Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5538point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5539type. They must have identical types.
5540
5541Semantics:
5542""""""""""
5543
5544The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5545condition code given as ``cond``. If the operands are vectors, then the
5546vectors are compared element by element. Each comparison performed
5547always yields an :ref:`i1 <t_integer>` result, as follows:
5548
5549#. ``false``: always yields ``false``, regardless of operands.
5550#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5551 is equal to ``op2``.
5552#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5553 is greater than ``op2``.
5554#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5555 is greater than or equal to ``op2``.
5556#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5557 is less than ``op2``.
5558#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5559 is less than or equal to ``op2``.
5560#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5561 is not equal to ``op2``.
5562#. ``ord``: yields ``true`` if both operands are not a QNAN.
5563#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5564 equal to ``op2``.
5565#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5566 greater than ``op2``.
5567#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5568 greater than or equal to ``op2``.
5569#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5570 less than ``op2``.
5571#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5572 less than or equal to ``op2``.
5573#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5574 not equal to ``op2``.
5575#. ``uno``: yields ``true`` if either operand is a QNAN.
5576#. ``true``: always yields ``true``, regardless of operands.
5577
5578Example:
5579""""""""
5580
5581.. code-block:: llvm
5582
5583 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5584 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5585 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5586 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5587
5588Note that the code generator does not yet support vector types with the
5589``fcmp`` instruction.
5590
5591.. _i_phi:
5592
5593'``phi``' Instruction
5594^^^^^^^^^^^^^^^^^^^^^
5595
5596Syntax:
5597"""""""
5598
5599::
5600
5601 <result> = phi <ty> [ <val0>, <label0>], ...
5602
5603Overview:
5604"""""""""
5605
5606The '``phi``' instruction is used to implement the φ node in the SSA
5607graph representing the function.
5608
5609Arguments:
5610""""""""""
5611
5612The type of the incoming values is specified with the first type field.
5613After this, the '``phi``' instruction takes a list of pairs as
5614arguments, with one pair for each predecessor basic block of the current
5615block. Only values of :ref:`first class <t_firstclass>` type may be used as
5616the value arguments to the PHI node. Only labels may be used as the
5617label arguments.
5618
5619There must be no non-phi instructions between the start of a basic block
5620and the PHI instructions: i.e. PHI instructions must be first in a basic
5621block.
5622
5623For the purposes of the SSA form, the use of each incoming value is
5624deemed to occur on the edge from the corresponding predecessor block to
5625the current block (but after any definition of an '``invoke``'
5626instruction's return value on the same edge).
5627
5628Semantics:
5629""""""""""
5630
5631At runtime, the '``phi``' instruction logically takes on the value
5632specified by the pair corresponding to the predecessor basic block that
5633executed just prior to the current block.
5634
5635Example:
5636""""""""
5637
5638.. code-block:: llvm
5639
5640 Loop: ; Infinite loop that counts from 0 on up...
5641 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5642 %nextindvar = add i32 %indvar, 1
5643 br label %Loop
5644
5645.. _i_select:
5646
5647'``select``' Instruction
5648^^^^^^^^^^^^^^^^^^^^^^^^
5649
5650Syntax:
5651"""""""
5652
5653::
5654
5655 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5656
5657 selty is either i1 or {<N x i1>}
5658
5659Overview:
5660"""""""""
5661
5662The '``select``' instruction is used to choose one value based on a
5663condition, without branching.
5664
5665Arguments:
5666""""""""""
5667
5668The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5669values indicating the condition, and two values of the same :ref:`first
5670class <t_firstclass>` type. If the val1/val2 are vectors and the
5671condition is a scalar, then entire vectors are selected, not individual
5672elements.
5673
5674Semantics:
5675""""""""""
5676
5677If the condition is an i1 and it evaluates to 1, the instruction returns
5678the first value argument; otherwise, it returns the second value
5679argument.
5680
5681If the condition is a vector of i1, then the value arguments must be
5682vectors of the same size, and the selection is done element by element.
5683
5684Example:
5685""""""""
5686
5687.. code-block:: llvm
5688
5689 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5690
5691.. _i_call:
5692
5693'``call``' Instruction
5694^^^^^^^^^^^^^^^^^^^^^^
5695
5696Syntax:
5697"""""""
5698
5699::
5700
5701 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5702
5703Overview:
5704"""""""""
5705
5706The '``call``' instruction represents a simple function call.
5707
5708Arguments:
5709""""""""""
5710
5711This instruction requires several arguments:
5712
5713#. The optional "tail" marker indicates that the callee function does
5714 not access any allocas or varargs in the caller. Note that calls may
5715 be marked "tail" even if they do not occur before a
5716 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5717 function call is eligible for tail call optimization, but `might not
5718 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5719 The code generator may optimize calls marked "tail" with either 1)
5720 automatic `sibling call
5721 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5722 callee have matching signatures, or 2) forced tail call optimization
5723 when the following extra requirements are met:
5724
5725 - Caller and callee both have the calling convention ``fastcc``.
5726 - The call is in tail position (ret immediately follows call and ret
5727 uses value of call or is void).
5728 - Option ``-tailcallopt`` is enabled, or
5729 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5730 - `Platform specific constraints are
5731 met. <CodeGenerator.html#tailcallopt>`_
5732
5733#. The optional "cconv" marker indicates which :ref:`calling
5734 convention <callingconv>` the call should use. If none is
5735 specified, the call defaults to using C calling conventions. The
5736 calling convention of the call must match the calling convention of
5737 the target function, or else the behavior is undefined.
5738#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5739 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5740 are valid here.
5741#. '``ty``': the type of the call instruction itself which is also the
5742 type of the return value. Functions that return no value are marked
5743 ``void``.
5744#. '``fnty``': shall be the signature of the pointer to function value
5745 being invoked. The argument types must match the types implied by
5746 this signature. This type can be omitted if the function is not
5747 varargs and if the function type does not return a pointer to a
5748 function.
5749#. '``fnptrval``': An LLVM value containing a pointer to a function to
5750 be invoked. In most cases, this is a direct function invocation, but
5751 indirect ``call``'s are just as possible, calling an arbitrary pointer
5752 to function value.
5753#. '``function args``': argument list whose types match the function
5754 signature argument types and parameter attributes. All arguments must
5755 be of :ref:`first class <t_firstclass>` type. If the function signature
5756 indicates the function accepts a variable number of arguments, the
5757 extra arguments can be specified.
5758#. The optional :ref:`function attributes <fnattrs>` list. Only
5759 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5760 attributes are valid here.
5761
5762Semantics:
5763""""""""""
5764
5765The '``call``' instruction is used to cause control flow to transfer to
5766a specified function, with its incoming arguments bound to the specified
5767values. Upon a '``ret``' instruction in the called function, control
5768flow continues with the instruction after the function call, and the
5769return value of the function is bound to the result argument.
5770
5771Example:
5772""""""""
5773
5774.. code-block:: llvm
5775
5776 %retval = call i32 @test(i32 %argc)
5777 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5778 %X = tail call i32 @foo() ; yields i32
5779 %Y = tail call fastcc i32 @foo() ; yields i32
5780 call void %foo(i8 97 signext)
5781
5782 %struct.A = type { i32, i8 }
5783 %r = call %struct.A @foo() ; yields { 32, i8 }
5784 %gr = extractvalue %struct.A %r, 0 ; yields i32
5785 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5786 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5787 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5788
5789llvm treats calls to some functions with names and arguments that match
5790the standard C99 library as being the C99 library functions, and may
5791perform optimizations or generate code for them under that assumption.
5792This is something we'd like to change in the future to provide better
5793support for freestanding environments and non-C-based languages.
5794
5795.. _i_va_arg:
5796
5797'``va_arg``' Instruction
5798^^^^^^^^^^^^^^^^^^^^^^^^
5799
5800Syntax:
5801"""""""
5802
5803::
5804
5805 <resultval> = va_arg <va_list*> <arglist>, <argty>
5806
5807Overview:
5808"""""""""
5809
5810The '``va_arg``' instruction is used to access arguments passed through
5811the "variable argument" area of a function call. It is used to implement
5812the ``va_arg`` macro in C.
5813
5814Arguments:
5815""""""""""
5816
5817This instruction takes a ``va_list*`` value and the type of the
5818argument. It returns a value of the specified argument type and
5819increments the ``va_list`` to point to the next argument. The actual
5820type of ``va_list`` is target specific.
5821
5822Semantics:
5823""""""""""
5824
5825The '``va_arg``' instruction loads an argument of the specified type
5826from the specified ``va_list`` and causes the ``va_list`` to point to
5827the next argument. For more information, see the variable argument
5828handling :ref:`Intrinsic Functions <int_varargs>`.
5829
5830It is legal for this instruction to be called in a function which does
5831not take a variable number of arguments, for example, the ``vfprintf``
5832function.
5833
5834``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5835function <intrinsics>` because it takes a type as an argument.
5836
5837Example:
5838""""""""
5839
5840See the :ref:`variable argument processing <int_varargs>` section.
5841
5842Note that the code generator does not yet fully support va\_arg on many
5843targets. Also, it does not currently support va\_arg with aggregate
5844types on any target.
5845
5846.. _i_landingpad:
5847
5848'``landingpad``' Instruction
5849^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5850
5851Syntax:
5852"""""""
5853
5854::
5855
5856 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5857 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5858
5859 <clause> := catch <type> <value>
5860 <clause> := filter <array constant type> <array constant>
5861
5862Overview:
5863"""""""""
5864
5865The '``landingpad``' instruction is used by `LLVM's exception handling
5866system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005867is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00005868code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5869defines values supplied by the personality function (``pers_fn``) upon
5870re-entry to the function. The ``resultval`` has the type ``resultty``.
5871
5872Arguments:
5873""""""""""
5874
5875This instruction takes a ``pers_fn`` value. This is the personality
5876function associated with the unwinding mechanism. The optional
5877``cleanup`` flag indicates that the landing pad block is a cleanup.
5878
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005879A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00005880contains the global variable representing the "type" that may be caught
5881or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5882clause takes an array constant as its argument. Use
5883"``[0 x i8**] undef``" for a filter which cannot throw. The
5884'``landingpad``' instruction must contain *at least* one ``clause`` or
5885the ``cleanup`` flag.
5886
5887Semantics:
5888""""""""""
5889
5890The '``landingpad``' instruction defines the values which are set by the
5891personality function (``pers_fn``) upon re-entry to the function, and
5892therefore the "result type" of the ``landingpad`` instruction. As with
5893calling conventions, how the personality function results are
5894represented in LLVM IR is target specific.
5895
5896The clauses are applied in order from top to bottom. If two
5897``landingpad`` instructions are merged together through inlining, the
5898clauses from the calling function are appended to the list of clauses.
5899When the call stack is being unwound due to an exception being thrown,
5900the exception is compared against each ``clause`` in turn. If it doesn't
5901match any of the clauses, and the ``cleanup`` flag is not set, then
5902unwinding continues further up the call stack.
5903
5904The ``landingpad`` instruction has several restrictions:
5905
5906- A landing pad block is a basic block which is the unwind destination
5907 of an '``invoke``' instruction.
5908- A landing pad block must have a '``landingpad``' instruction as its
5909 first non-PHI instruction.
5910- There can be only one '``landingpad``' instruction within the landing
5911 pad block.
5912- A basic block that is not a landing pad block may not include a
5913 '``landingpad``' instruction.
5914- All '``landingpad``' instructions in a function must have the same
5915 personality function.
5916
5917Example:
5918""""""""
5919
5920.. code-block:: llvm
5921
5922 ;; A landing pad which can catch an integer.
5923 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5924 catch i8** @_ZTIi
5925 ;; A landing pad that is a cleanup.
5926 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5927 cleanup
5928 ;; A landing pad which can catch an integer and can only throw a double.
5929 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5930 catch i8** @_ZTIi
5931 filter [1 x i8**] [@_ZTId]
5932
5933.. _intrinsics:
5934
5935Intrinsic Functions
5936===================
5937
5938LLVM supports the notion of an "intrinsic function". These functions
5939have well known names and semantics and are required to follow certain
5940restrictions. Overall, these intrinsics represent an extension mechanism
5941for the LLVM language that does not require changing all of the
5942transformations in LLVM when adding to the language (or the bitcode
5943reader/writer, the parser, etc...).
5944
5945Intrinsic function names must all start with an "``llvm.``" prefix. This
5946prefix is reserved in LLVM for intrinsic names; thus, function names may
5947not begin with this prefix. Intrinsic functions must always be external
5948functions: you cannot define the body of intrinsic functions. Intrinsic
5949functions may only be used in call or invoke instructions: it is illegal
5950to take the address of an intrinsic function. Additionally, because
5951intrinsic functions are part of the LLVM language, it is required if any
5952are added that they be documented here.
5953
5954Some intrinsic functions can be overloaded, i.e., the intrinsic
5955represents a family of functions that perform the same operation but on
5956different data types. Because LLVM can represent over 8 million
5957different integer types, overloading is used commonly to allow an
5958intrinsic function to operate on any integer type. One or more of the
5959argument types or the result type can be overloaded to accept any
5960integer type. Argument types may also be defined as exactly matching a
5961previous argument's type or the result type. This allows an intrinsic
5962function which accepts multiple arguments, but needs all of them to be
5963of the same type, to only be overloaded with respect to a single
5964argument or the result.
5965
5966Overloaded intrinsics will have the names of its overloaded argument
5967types encoded into its function name, each preceded by a period. Only
5968those types which are overloaded result in a name suffix. Arguments
5969whose type is matched against another type do not. For example, the
5970``llvm.ctpop`` function can take an integer of any width and returns an
5971integer of exactly the same integer width. This leads to a family of
5972functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5973``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5974overloaded, and only one type suffix is required. Because the argument's
5975type is matched against the return type, it does not require its own
5976name suffix.
5977
5978To learn how to add an intrinsic function, please see the `Extending
5979LLVM Guide <ExtendingLLVM.html>`_.
5980
5981.. _int_varargs:
5982
5983Variable Argument Handling Intrinsics
5984-------------------------------------
5985
5986Variable argument support is defined in LLVM with the
5987:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5988functions. These functions are related to the similarly named macros
5989defined in the ``<stdarg.h>`` header file.
5990
5991All of these functions operate on arguments that use a target-specific
5992value type "``va_list``". The LLVM assembly language reference manual
5993does not define what this type is, so all transformations should be
5994prepared to handle these functions regardless of the type used.
5995
5996This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
5997variable argument handling intrinsic functions are used.
5998
5999.. code-block:: llvm
6000
6001 define i32 @test(i32 %X, ...) {
6002 ; Initialize variable argument processing
6003 %ap = alloca i8*
6004 %ap2 = bitcast i8** %ap to i8*
6005 call void @llvm.va_start(i8* %ap2)
6006
6007 ; Read a single integer argument
6008 %tmp = va_arg i8** %ap, i32
6009
6010 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6011 %aq = alloca i8*
6012 %aq2 = bitcast i8** %aq to i8*
6013 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6014 call void @llvm.va_end(i8* %aq2)
6015
6016 ; Stop processing of arguments.
6017 call void @llvm.va_end(i8* %ap2)
6018 ret i32 %tmp
6019 }
6020
6021 declare void @llvm.va_start(i8*)
6022 declare void @llvm.va_copy(i8*, i8*)
6023 declare void @llvm.va_end(i8*)
6024
6025.. _int_va_start:
6026
6027'``llvm.va_start``' Intrinsic
6028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6029
6030Syntax:
6031"""""""
6032
6033::
6034
6035 declare void %llvm.va_start(i8* <arglist>)
6036
6037Overview:
6038"""""""""
6039
6040The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6041subsequent use by ``va_arg``.
6042
6043Arguments:
6044""""""""""
6045
6046The argument is a pointer to a ``va_list`` element to initialize.
6047
6048Semantics:
6049""""""""""
6050
6051The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6052available in C. In a target-dependent way, it initializes the
6053``va_list`` element to which the argument points, so that the next call
6054to ``va_arg`` will produce the first variable argument passed to the
6055function. Unlike the C ``va_start`` macro, this intrinsic does not need
6056to know the last argument of the function as the compiler can figure
6057that out.
6058
6059'``llvm.va_end``' Intrinsic
6060^^^^^^^^^^^^^^^^^^^^^^^^^^^
6061
6062Syntax:
6063"""""""
6064
6065::
6066
6067 declare void @llvm.va_end(i8* <arglist>)
6068
6069Overview:
6070"""""""""
6071
6072The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6073initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6074
6075Arguments:
6076""""""""""
6077
6078The argument is a pointer to a ``va_list`` to destroy.
6079
6080Semantics:
6081""""""""""
6082
6083The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6084available in C. In a target-dependent way, it destroys the ``va_list``
6085element to which the argument points. Calls to
6086:ref:`llvm.va_start <int_va_start>` and
6087:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6088``llvm.va_end``.
6089
6090.. _int_va_copy:
6091
6092'``llvm.va_copy``' Intrinsic
6093^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6094
6095Syntax:
6096"""""""
6097
6098::
6099
6100 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6101
6102Overview:
6103"""""""""
6104
6105The '``llvm.va_copy``' intrinsic copies the current argument position
6106from the source argument list to the destination argument list.
6107
6108Arguments:
6109""""""""""
6110
6111The first argument is a pointer to a ``va_list`` element to initialize.
6112The second argument is a pointer to a ``va_list`` element to copy from.
6113
6114Semantics:
6115""""""""""
6116
6117The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6118available in C. In a target-dependent way, it copies the source
6119``va_list`` element into the destination ``va_list`` element. This
6120intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6121arbitrarily complex and require, for example, memory allocation.
6122
6123Accurate Garbage Collection Intrinsics
6124--------------------------------------
6125
6126LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6127(GC) requires the implementation and generation of these intrinsics.
6128These intrinsics allow identification of :ref:`GC roots on the
6129stack <int_gcroot>`, as well as garbage collector implementations that
6130require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6131Front-ends for type-safe garbage collected languages should generate
6132these intrinsics to make use of the LLVM garbage collectors. For more
6133details, see `Accurate Garbage Collection with
6134LLVM <GarbageCollection.html>`_.
6135
6136The garbage collection intrinsics only operate on objects in the generic
6137address space (address space zero).
6138
6139.. _int_gcroot:
6140
6141'``llvm.gcroot``' Intrinsic
6142^^^^^^^^^^^^^^^^^^^^^^^^^^^
6143
6144Syntax:
6145"""""""
6146
6147::
6148
6149 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6150
6151Overview:
6152"""""""""
6153
6154The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6155the code generator, and allows some metadata to be associated with it.
6156
6157Arguments:
6158""""""""""
6159
6160The first argument specifies the address of a stack object that contains
6161the root pointer. The second pointer (which must be either a constant or
6162a global value address) contains the meta-data to be associated with the
6163root.
6164
6165Semantics:
6166""""""""""
6167
6168At runtime, a call to this intrinsic stores a null pointer into the
6169"ptrloc" location. At compile-time, the code generator generates
6170information to allow the runtime to find the pointer at GC safe points.
6171The '``llvm.gcroot``' intrinsic may only be used in a function which
6172:ref:`specifies a GC algorithm <gc>`.
6173
6174.. _int_gcread:
6175
6176'``llvm.gcread``' Intrinsic
6177^^^^^^^^^^^^^^^^^^^^^^^^^^^
6178
6179Syntax:
6180"""""""
6181
6182::
6183
6184 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6185
6186Overview:
6187"""""""""
6188
6189The '``llvm.gcread``' intrinsic identifies reads of references from heap
6190locations, allowing garbage collector implementations that require read
6191barriers.
6192
6193Arguments:
6194""""""""""
6195
6196The second argument is the address to read from, which should be an
6197address allocated from the garbage collector. The first object is a
6198pointer to the start of the referenced object, if needed by the language
6199runtime (otherwise null).
6200
6201Semantics:
6202""""""""""
6203
6204The '``llvm.gcread``' intrinsic has the same semantics as a load
6205instruction, but may be replaced with substantially more complex code by
6206the garbage collector runtime, as needed. The '``llvm.gcread``'
6207intrinsic may only be used in a function which :ref:`specifies a GC
6208algorithm <gc>`.
6209
6210.. _int_gcwrite:
6211
6212'``llvm.gcwrite``' Intrinsic
6213^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6214
6215Syntax:
6216"""""""
6217
6218::
6219
6220 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6221
6222Overview:
6223"""""""""
6224
6225The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6226locations, allowing garbage collector implementations that require write
6227barriers (such as generational or reference counting collectors).
6228
6229Arguments:
6230""""""""""
6231
6232The first argument is the reference to store, the second is the start of
6233the object to store it to, and the third is the address of the field of
6234Obj to store to. If the runtime does not require a pointer to the
6235object, Obj may be null.
6236
6237Semantics:
6238""""""""""
6239
6240The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6241instruction, but may be replaced with substantially more complex code by
6242the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6243intrinsic may only be used in a function which :ref:`specifies a GC
6244algorithm <gc>`.
6245
6246Code Generator Intrinsics
6247-------------------------
6248
6249These intrinsics are provided by LLVM to expose special features that
6250may only be implemented with code generator support.
6251
6252'``llvm.returnaddress``' Intrinsic
6253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6254
6255Syntax:
6256"""""""
6257
6258::
6259
6260 declare i8 *@llvm.returnaddress(i32 <level>)
6261
6262Overview:
6263"""""""""
6264
6265The '``llvm.returnaddress``' intrinsic attempts to compute a
6266target-specific value indicating the return address of the current
6267function or one of its callers.
6268
6269Arguments:
6270""""""""""
6271
6272The argument to this intrinsic indicates which function to return the
6273address for. Zero indicates the calling function, one indicates its
6274caller, etc. The argument is **required** to be a constant integer
6275value.
6276
6277Semantics:
6278""""""""""
6279
6280The '``llvm.returnaddress``' intrinsic either returns a pointer
6281indicating the return address of the specified call frame, or zero if it
6282cannot be identified. The value returned by this intrinsic is likely to
6283be incorrect or 0 for arguments other than zero, so it should only be
6284used for debugging purposes.
6285
6286Note that calling this intrinsic does not prevent function inlining or
6287other aggressive transformations, so the value returned may not be that
6288of the obvious source-language caller.
6289
6290'``llvm.frameaddress``' Intrinsic
6291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6292
6293Syntax:
6294"""""""
6295
6296::
6297
6298 declare i8* @llvm.frameaddress(i32 <level>)
6299
6300Overview:
6301"""""""""
6302
6303The '``llvm.frameaddress``' intrinsic attempts to return the
6304target-specific frame pointer value for the specified stack frame.
6305
6306Arguments:
6307""""""""""
6308
6309The argument to this intrinsic indicates which function to return the
6310frame pointer for. Zero indicates the calling function, one indicates
6311its caller, etc. The argument is **required** to be a constant integer
6312value.
6313
6314Semantics:
6315""""""""""
6316
6317The '``llvm.frameaddress``' intrinsic either returns a pointer
6318indicating the frame address of the specified call frame, or zero if it
6319cannot be identified. The value returned by this intrinsic is likely to
6320be incorrect or 0 for arguments other than zero, so it should only be
6321used for debugging purposes.
6322
6323Note that calling this intrinsic does not prevent function inlining or
6324other aggressive transformations, so the value returned may not be that
6325of the obvious source-language caller.
6326
6327.. _int_stacksave:
6328
6329'``llvm.stacksave``' Intrinsic
6330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6331
6332Syntax:
6333"""""""
6334
6335::
6336
6337 declare i8* @llvm.stacksave()
6338
6339Overview:
6340"""""""""
6341
6342The '``llvm.stacksave``' intrinsic is used to remember the current state
6343of the function stack, for use with
6344:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6345implementing language features like scoped automatic variable sized
6346arrays in C99.
6347
6348Semantics:
6349""""""""""
6350
6351This intrinsic returns a opaque pointer value that can be passed to
6352:ref:`llvm.stackrestore <int_stackrestore>`. When an
6353``llvm.stackrestore`` intrinsic is executed with a value saved from
6354``llvm.stacksave``, it effectively restores the state of the stack to
6355the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6356practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6357were allocated after the ``llvm.stacksave`` was executed.
6358
6359.. _int_stackrestore:
6360
6361'``llvm.stackrestore``' Intrinsic
6362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6363
6364Syntax:
6365"""""""
6366
6367::
6368
6369 declare void @llvm.stackrestore(i8* %ptr)
6370
6371Overview:
6372"""""""""
6373
6374The '``llvm.stackrestore``' intrinsic is used to restore the state of
6375the function stack to the state it was in when the corresponding
6376:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6377useful for implementing language features like scoped automatic variable
6378sized arrays in C99.
6379
6380Semantics:
6381""""""""""
6382
6383See the description for :ref:`llvm.stacksave <int_stacksave>`.
6384
6385'``llvm.prefetch``' Intrinsic
6386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
6393 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6394
6395Overview:
6396"""""""""
6397
6398The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6399insert a prefetch instruction if supported; otherwise, it is a noop.
6400Prefetches have no effect on the behavior of the program but can change
6401its performance characteristics.
6402
6403Arguments:
6404""""""""""
6405
6406``address`` is the address to be prefetched, ``rw`` is the specifier
6407determining if the fetch should be for a read (0) or write (1), and
6408``locality`` is a temporal locality specifier ranging from (0) - no
6409locality, to (3) - extremely local keep in cache. The ``cache type``
6410specifies whether the prefetch is performed on the data (1) or
6411instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6412arguments must be constant integers.
6413
6414Semantics:
6415""""""""""
6416
6417This intrinsic does not modify the behavior of the program. In
6418particular, prefetches cannot trap and do not produce a value. On
6419targets that support this intrinsic, the prefetch can provide hints to
6420the processor cache for better performance.
6421
6422'``llvm.pcmarker``' Intrinsic
6423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6424
6425Syntax:
6426"""""""
6427
6428::
6429
6430 declare void @llvm.pcmarker(i32 <id>)
6431
6432Overview:
6433"""""""""
6434
6435The '``llvm.pcmarker``' intrinsic is a method to export a Program
6436Counter (PC) in a region of code to simulators and other tools. The
6437method is target specific, but it is expected that the marker will use
6438exported symbols to transmit the PC of the marker. The marker makes no
6439guarantees that it will remain with any specific instruction after
6440optimizations. It is possible that the presence of a marker will inhibit
6441optimizations. The intended use is to be inserted after optimizations to
6442allow correlations of simulation runs.
6443
6444Arguments:
6445""""""""""
6446
6447``id`` is a numerical id identifying the marker.
6448
6449Semantics:
6450""""""""""
6451
6452This intrinsic does not modify the behavior of the program. Backends
6453that do not support this intrinsic may ignore it.
6454
6455'``llvm.readcyclecounter``' Intrinsic
6456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6457
6458Syntax:
6459"""""""
6460
6461::
6462
6463 declare i64 @llvm.readcyclecounter()
6464
6465Overview:
6466"""""""""
6467
6468The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6469counter register (or similar low latency, high accuracy clocks) on those
6470targets that support it. On X86, it should map to RDTSC. On Alpha, it
6471should map to RPCC. As the backing counters overflow quickly (on the
6472order of 9 seconds on alpha), this should only be used for small
6473timings.
6474
6475Semantics:
6476""""""""""
6477
6478When directly supported, reading the cycle counter should not modify any
6479memory. Implementations are allowed to either return a application
6480specific value or a system wide value. On backends without support, this
6481is lowered to a constant 0.
6482
6483Standard C Library Intrinsics
6484-----------------------------
6485
6486LLVM provides intrinsics for a few important standard C library
6487functions. These intrinsics allow source-language front-ends to pass
6488information about the alignment of the pointer arguments to the code
6489generator, providing opportunity for more efficient code generation.
6490
6491.. _int_memcpy:
6492
6493'``llvm.memcpy``' Intrinsic
6494^^^^^^^^^^^^^^^^^^^^^^^^^^^
6495
6496Syntax:
6497"""""""
6498
6499This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6500integer bit width and for different address spaces. Not all targets
6501support all bit widths however.
6502
6503::
6504
6505 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6506 i32 <len>, i32 <align>, i1 <isvolatile>)
6507 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6508 i64 <len>, i32 <align>, i1 <isvolatile>)
6509
6510Overview:
6511"""""""""
6512
6513The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6514source location to the destination location.
6515
6516Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6517intrinsics do not return a value, takes extra alignment/isvolatile
6518arguments and the pointers can be in specified address spaces.
6519
6520Arguments:
6521""""""""""
6522
6523The first argument is a pointer to the destination, the second is a
6524pointer to the source. The third argument is an integer argument
6525specifying the number of bytes to copy, the fourth argument is the
6526alignment of the source and destination locations, and the fifth is a
6527boolean indicating a volatile access.
6528
6529If the call to this intrinsic has an alignment value that is not 0 or 1,
6530then the caller guarantees that both the source and destination pointers
6531are aligned to that boundary.
6532
6533If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6534a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6535very cleanly specified and it is unwise to depend on it.
6536
6537Semantics:
6538""""""""""
6539
6540The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6541source location to the destination location, which are not allowed to
6542overlap. It copies "len" bytes of memory over. If the argument is known
6543to be aligned to some boundary, this can be specified as the fourth
6544argument, otherwise it should be set to 0 or 1.
6545
6546'``llvm.memmove``' Intrinsic
6547^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6548
6549Syntax:
6550"""""""
6551
6552This is an overloaded intrinsic. You can use llvm.memmove on any integer
6553bit width and for different address space. Not all targets support all
6554bit widths however.
6555
6556::
6557
6558 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6559 i32 <len>, i32 <align>, i1 <isvolatile>)
6560 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6561 i64 <len>, i32 <align>, i1 <isvolatile>)
6562
6563Overview:
6564"""""""""
6565
6566The '``llvm.memmove.*``' intrinsics move a block of memory from the
6567source location to the destination location. It is similar to the
6568'``llvm.memcpy``' intrinsic but allows the two memory locations to
6569overlap.
6570
6571Note that, unlike the standard libc function, the ``llvm.memmove.*``
6572intrinsics do not return a value, takes extra alignment/isvolatile
6573arguments and the pointers can be in specified address spaces.
6574
6575Arguments:
6576""""""""""
6577
6578The first argument is a pointer to the destination, the second is a
6579pointer to the source. The third argument is an integer argument
6580specifying the number of bytes to copy, the fourth argument is the
6581alignment of the source and destination locations, and the fifth is a
6582boolean indicating a volatile access.
6583
6584If the call to this intrinsic has an alignment value that is not 0 or 1,
6585then the caller guarantees that the source and destination pointers are
6586aligned to that boundary.
6587
6588If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6589is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6590not very cleanly specified and it is unwise to depend on it.
6591
6592Semantics:
6593""""""""""
6594
6595The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6596source location to the destination location, which may overlap. It
6597copies "len" bytes of memory over. If the argument is known to be
6598aligned to some boundary, this can be specified as the fourth argument,
6599otherwise it should be set to 0 or 1.
6600
6601'``llvm.memset.*``' Intrinsics
6602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6603
6604Syntax:
6605"""""""
6606
6607This is an overloaded intrinsic. You can use llvm.memset on any integer
6608bit width and for different address spaces. However, not all targets
6609support all bit widths.
6610
6611::
6612
6613 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6614 i32 <len>, i32 <align>, i1 <isvolatile>)
6615 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6616 i64 <len>, i32 <align>, i1 <isvolatile>)
6617
6618Overview:
6619"""""""""
6620
6621The '``llvm.memset.*``' intrinsics fill a block of memory with a
6622particular byte value.
6623
6624Note that, unlike the standard libc function, the ``llvm.memset``
6625intrinsic does not return a value and takes extra alignment/volatile
6626arguments. Also, the destination can be in an arbitrary address space.
6627
6628Arguments:
6629""""""""""
6630
6631The first argument is a pointer to the destination to fill, the second
6632is the byte value with which to fill it, the third argument is an
6633integer argument specifying the number of bytes to fill, and the fourth
6634argument is the known alignment of the destination location.
6635
6636If the call to this intrinsic has an alignment value that is not 0 or 1,
6637then the caller guarantees that the destination pointer is aligned to
6638that boundary.
6639
6640If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6641a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6642very cleanly specified and it is unwise to depend on it.
6643
6644Semantics:
6645""""""""""
6646
6647The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6648at the destination location. If the argument is known to be aligned to
6649some boundary, this can be specified as the fourth argument, otherwise
6650it should be set to 0 or 1.
6651
6652'``llvm.sqrt.*``' Intrinsic
6653^^^^^^^^^^^^^^^^^^^^^^^^^^^
6654
6655Syntax:
6656"""""""
6657
6658This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6659floating point or vector of floating point type. Not all targets support
6660all types however.
6661
6662::
6663
6664 declare float @llvm.sqrt.f32(float %Val)
6665 declare double @llvm.sqrt.f64(double %Val)
6666 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6667 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6668 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6669
6670Overview:
6671"""""""""
6672
6673The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6674returning the same value as the libm '``sqrt``' functions would. Unlike
6675``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6676negative numbers other than -0.0 (which allows for better optimization,
6677because there is no need to worry about errno being set).
6678``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6679
6680Arguments:
6681""""""""""
6682
6683The argument and return value are floating point numbers of the same
6684type.
6685
6686Semantics:
6687""""""""""
6688
6689This function returns the sqrt of the specified operand if it is a
6690nonnegative floating point number.
6691
6692'``llvm.powi.*``' Intrinsic
6693^^^^^^^^^^^^^^^^^^^^^^^^^^^
6694
6695Syntax:
6696"""""""
6697
6698This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6699floating point or vector of floating point type. Not all targets support
6700all types however.
6701
6702::
6703
6704 declare float @llvm.powi.f32(float %Val, i32 %power)
6705 declare double @llvm.powi.f64(double %Val, i32 %power)
6706 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6707 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6708 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6709
6710Overview:
6711"""""""""
6712
6713The '``llvm.powi.*``' intrinsics return the first operand raised to the
6714specified (positive or negative) power. The order of evaluation of
6715multiplications is not defined. When a vector of floating point type is
6716used, the second argument remains a scalar integer value.
6717
6718Arguments:
6719""""""""""
6720
6721The second argument is an integer power, and the first is a value to
6722raise to that power.
6723
6724Semantics:
6725""""""""""
6726
6727This function returns the first value raised to the second power with an
6728unspecified sequence of rounding operations.
6729
6730'``llvm.sin.*``' Intrinsic
6731^^^^^^^^^^^^^^^^^^^^^^^^^^
6732
6733Syntax:
6734"""""""
6735
6736This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6737floating point or vector of floating point type. Not all targets support
6738all types however.
6739
6740::
6741
6742 declare float @llvm.sin.f32(float %Val)
6743 declare double @llvm.sin.f64(double %Val)
6744 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6745 declare fp128 @llvm.sin.f128(fp128 %Val)
6746 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6747
6748Overview:
6749"""""""""
6750
6751The '``llvm.sin.*``' intrinsics return the sine of the operand.
6752
6753Arguments:
6754""""""""""
6755
6756The argument and return value are floating point numbers of the same
6757type.
6758
6759Semantics:
6760""""""""""
6761
6762This function returns the sine of the specified operand, returning the
6763same values as the libm ``sin`` functions would, and handles error
6764conditions in the same way.
6765
6766'``llvm.cos.*``' Intrinsic
6767^^^^^^^^^^^^^^^^^^^^^^^^^^
6768
6769Syntax:
6770"""""""
6771
6772This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6773floating point or vector of floating point type. Not all targets support
6774all types however.
6775
6776::
6777
6778 declare float @llvm.cos.f32(float %Val)
6779 declare double @llvm.cos.f64(double %Val)
6780 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6781 declare fp128 @llvm.cos.f128(fp128 %Val)
6782 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6783
6784Overview:
6785"""""""""
6786
6787The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6788
6789Arguments:
6790""""""""""
6791
6792The argument and return value are floating point numbers of the same
6793type.
6794
6795Semantics:
6796""""""""""
6797
6798This function returns the cosine of the specified operand, returning the
6799same values as the libm ``cos`` functions would, and handles error
6800conditions in the same way.
6801
6802'``llvm.pow.*``' Intrinsic
6803^^^^^^^^^^^^^^^^^^^^^^^^^^
6804
6805Syntax:
6806"""""""
6807
6808This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6809floating point or vector of floating point type. Not all targets support
6810all types however.
6811
6812::
6813
6814 declare float @llvm.pow.f32(float %Val, float %Power)
6815 declare double @llvm.pow.f64(double %Val, double %Power)
6816 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6817 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6818 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6819
6820Overview:
6821"""""""""
6822
6823The '``llvm.pow.*``' intrinsics return the first operand raised to the
6824specified (positive or negative) power.
6825
6826Arguments:
6827""""""""""
6828
6829The second argument is a floating point power, and the first is a value
6830to raise to that power.
6831
6832Semantics:
6833""""""""""
6834
6835This function returns the first value raised to the second power,
6836returning the same values as the libm ``pow`` functions would, and
6837handles error conditions in the same way.
6838
6839'``llvm.exp.*``' Intrinsic
6840^^^^^^^^^^^^^^^^^^^^^^^^^^
6841
6842Syntax:
6843"""""""
6844
6845This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6846floating point or vector of floating point type. Not all targets support
6847all types however.
6848
6849::
6850
6851 declare float @llvm.exp.f32(float %Val)
6852 declare double @llvm.exp.f64(double %Val)
6853 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6854 declare fp128 @llvm.exp.f128(fp128 %Val)
6855 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6856
6857Overview:
6858"""""""""
6859
6860The '``llvm.exp.*``' intrinsics perform the exp function.
6861
6862Arguments:
6863""""""""""
6864
6865The argument and return value are floating point numbers of the same
6866type.
6867
6868Semantics:
6869""""""""""
6870
6871This function returns the same values as the libm ``exp`` functions
6872would, and handles error conditions in the same way.
6873
6874'``llvm.exp2.*``' Intrinsic
6875^^^^^^^^^^^^^^^^^^^^^^^^^^^
6876
6877Syntax:
6878"""""""
6879
6880This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6881floating point or vector of floating point type. Not all targets support
6882all types however.
6883
6884::
6885
6886 declare float @llvm.exp2.f32(float %Val)
6887 declare double @llvm.exp2.f64(double %Val)
6888 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6889 declare fp128 @llvm.exp2.f128(fp128 %Val)
6890 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6891
6892Overview:
6893"""""""""
6894
6895The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6896
6897Arguments:
6898""""""""""
6899
6900The argument and return value are floating point numbers of the same
6901type.
6902
6903Semantics:
6904""""""""""
6905
6906This function returns the same values as the libm ``exp2`` functions
6907would, and handles error conditions in the same way.
6908
6909'``llvm.log.*``' Intrinsic
6910^^^^^^^^^^^^^^^^^^^^^^^^^^
6911
6912Syntax:
6913"""""""
6914
6915This is an overloaded intrinsic. You can use ``llvm.log`` on any
6916floating point or vector of floating point type. Not all targets support
6917all types however.
6918
6919::
6920
6921 declare float @llvm.log.f32(float %Val)
6922 declare double @llvm.log.f64(double %Val)
6923 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6924 declare fp128 @llvm.log.f128(fp128 %Val)
6925 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6926
6927Overview:
6928"""""""""
6929
6930The '``llvm.log.*``' intrinsics perform the log function.
6931
6932Arguments:
6933""""""""""
6934
6935The argument and return value are floating point numbers of the same
6936type.
6937
6938Semantics:
6939""""""""""
6940
6941This function returns the same values as the libm ``log`` functions
6942would, and handles error conditions in the same way.
6943
6944'``llvm.log10.*``' Intrinsic
6945^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6946
6947Syntax:
6948"""""""
6949
6950This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6951floating point or vector of floating point type. Not all targets support
6952all types however.
6953
6954::
6955
6956 declare float @llvm.log10.f32(float %Val)
6957 declare double @llvm.log10.f64(double %Val)
6958 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6959 declare fp128 @llvm.log10.f128(fp128 %Val)
6960 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6961
6962Overview:
6963"""""""""
6964
6965The '``llvm.log10.*``' intrinsics perform the log10 function.
6966
6967Arguments:
6968""""""""""
6969
6970The argument and return value are floating point numbers of the same
6971type.
6972
6973Semantics:
6974""""""""""
6975
6976This function returns the same values as the libm ``log10`` functions
6977would, and handles error conditions in the same way.
6978
6979'``llvm.log2.*``' Intrinsic
6980^^^^^^^^^^^^^^^^^^^^^^^^^^^
6981
6982Syntax:
6983"""""""
6984
6985This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6986floating point or vector of floating point type. Not all targets support
6987all types however.
6988
6989::
6990
6991 declare float @llvm.log2.f32(float %Val)
6992 declare double @llvm.log2.f64(double %Val)
6993 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
6994 declare fp128 @llvm.log2.f128(fp128 %Val)
6995 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
6996
6997Overview:
6998"""""""""
6999
7000The '``llvm.log2.*``' intrinsics perform the log2 function.
7001
7002Arguments:
7003""""""""""
7004
7005The argument and return value are floating point numbers of the same
7006type.
7007
7008Semantics:
7009""""""""""
7010
7011This function returns the same values as the libm ``log2`` functions
7012would, and handles error conditions in the same way.
7013
7014'``llvm.fma.*``' Intrinsic
7015^^^^^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7021floating point or vector of floating point type. Not all targets support
7022all types however.
7023
7024::
7025
7026 declare float @llvm.fma.f32(float %a, float %b, float %c)
7027 declare double @llvm.fma.f64(double %a, double %b, double %c)
7028 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7029 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7030 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7031
7032Overview:
7033"""""""""
7034
7035The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7036operation.
7037
7038Arguments:
7039""""""""""
7040
7041The argument and return value are floating point numbers of the same
7042type.
7043
7044Semantics:
7045""""""""""
7046
7047This function returns the same values as the libm ``fma`` functions
7048would.
7049
7050'``llvm.fabs.*``' Intrinsic
7051^^^^^^^^^^^^^^^^^^^^^^^^^^^
7052
7053Syntax:
7054"""""""
7055
7056This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7057floating point or vector of floating point type. Not all targets support
7058all types however.
7059
7060::
7061
7062 declare float @llvm.fabs.f32(float %Val)
7063 declare double @llvm.fabs.f64(double %Val)
7064 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7065 declare fp128 @llvm.fabs.f128(fp128 %Val)
7066 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7067
7068Overview:
7069"""""""""
7070
7071The '``llvm.fabs.*``' intrinsics return the absolute value of the
7072operand.
7073
7074Arguments:
7075""""""""""
7076
7077The argument and return value are floating point numbers of the same
7078type.
7079
7080Semantics:
7081""""""""""
7082
7083This function returns the same values as the libm ``fabs`` functions
7084would, and handles error conditions in the same way.
7085
7086'``llvm.floor.*``' Intrinsic
7087^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7088
7089Syntax:
7090"""""""
7091
7092This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7093floating point or vector of floating point type. Not all targets support
7094all types however.
7095
7096::
7097
7098 declare float @llvm.floor.f32(float %Val)
7099 declare double @llvm.floor.f64(double %Val)
7100 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7101 declare fp128 @llvm.floor.f128(fp128 %Val)
7102 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7103
7104Overview:
7105"""""""""
7106
7107The '``llvm.floor.*``' intrinsics return the floor of the operand.
7108
7109Arguments:
7110""""""""""
7111
7112The argument and return value are floating point numbers of the same
7113type.
7114
7115Semantics:
7116""""""""""
7117
7118This function returns the same values as the libm ``floor`` functions
7119would, and handles error conditions in the same way.
7120
7121'``llvm.ceil.*``' Intrinsic
7122^^^^^^^^^^^^^^^^^^^^^^^^^^^
7123
7124Syntax:
7125"""""""
7126
7127This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7128floating point or vector of floating point type. Not all targets support
7129all types however.
7130
7131::
7132
7133 declare float @llvm.ceil.f32(float %Val)
7134 declare double @llvm.ceil.f64(double %Val)
7135 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7136 declare fp128 @llvm.ceil.f128(fp128 %Val)
7137 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7138
7139Overview:
7140"""""""""
7141
7142The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7143
7144Arguments:
7145""""""""""
7146
7147The argument and return value are floating point numbers of the same
7148type.
7149
7150Semantics:
7151""""""""""
7152
7153This function returns the same values as the libm ``ceil`` functions
7154would, and handles error conditions in the same way.
7155
7156'``llvm.trunc.*``' Intrinsic
7157^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7158
7159Syntax:
7160"""""""
7161
7162This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7163floating point or vector of floating point type. Not all targets support
7164all types however.
7165
7166::
7167
7168 declare float @llvm.trunc.f32(float %Val)
7169 declare double @llvm.trunc.f64(double %Val)
7170 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7171 declare fp128 @llvm.trunc.f128(fp128 %Val)
7172 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7173
7174Overview:
7175"""""""""
7176
7177The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7178nearest integer not larger in magnitude than the operand.
7179
7180Arguments:
7181""""""""""
7182
7183The argument and return value are floating point numbers of the same
7184type.
7185
7186Semantics:
7187""""""""""
7188
7189This function returns the same values as the libm ``trunc`` functions
7190would, and handles error conditions in the same way.
7191
7192'``llvm.rint.*``' Intrinsic
7193^^^^^^^^^^^^^^^^^^^^^^^^^^^
7194
7195Syntax:
7196"""""""
7197
7198This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7199floating point or vector of floating point type. Not all targets support
7200all types however.
7201
7202::
7203
7204 declare float @llvm.rint.f32(float %Val)
7205 declare double @llvm.rint.f64(double %Val)
7206 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7207 declare fp128 @llvm.rint.f128(fp128 %Val)
7208 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7209
7210Overview:
7211"""""""""
7212
7213The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7214nearest integer. It may raise an inexact floating-point exception if the
7215operand isn't an integer.
7216
7217Arguments:
7218""""""""""
7219
7220The argument and return value are floating point numbers of the same
7221type.
7222
7223Semantics:
7224""""""""""
7225
7226This function returns the same values as the libm ``rint`` functions
7227would, and handles error conditions in the same way.
7228
7229'``llvm.nearbyint.*``' Intrinsic
7230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7231
7232Syntax:
7233"""""""
7234
7235This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7236floating point or vector of floating point type. Not all targets support
7237all types however.
7238
7239::
7240
7241 declare float @llvm.nearbyint.f32(float %Val)
7242 declare double @llvm.nearbyint.f64(double %Val)
7243 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7244 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7245 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7246
7247Overview:
7248"""""""""
7249
7250The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7251nearest integer.
7252
7253Arguments:
7254""""""""""
7255
7256The argument and return value are floating point numbers of the same
7257type.
7258
7259Semantics:
7260""""""""""
7261
7262This function returns the same values as the libm ``nearbyint``
7263functions would, and handles error conditions in the same way.
7264
7265Bit Manipulation Intrinsics
7266---------------------------
7267
7268LLVM provides intrinsics for a few important bit manipulation
7269operations. These allow efficient code generation for some algorithms.
7270
7271'``llvm.bswap.*``' Intrinsics
7272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7273
7274Syntax:
7275"""""""
7276
7277This is an overloaded intrinsic function. You can use bswap on any
7278integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7279
7280::
7281
7282 declare i16 @llvm.bswap.i16(i16 <id>)
7283 declare i32 @llvm.bswap.i32(i32 <id>)
7284 declare i64 @llvm.bswap.i64(i64 <id>)
7285
7286Overview:
7287"""""""""
7288
7289The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7290values with an even number of bytes (positive multiple of 16 bits).
7291These are useful for performing operations on data that is not in the
7292target's native byte order.
7293
7294Semantics:
7295""""""""""
7296
7297The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7298and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7299intrinsic returns an i32 value that has the four bytes of the input i32
7300swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7301returned i32 will have its bytes in 3, 2, 1, 0 order. The
7302``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7303concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7304respectively).
7305
7306'``llvm.ctpop.*``' Intrinsic
7307^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7308
7309Syntax:
7310"""""""
7311
7312This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7313bit width, or on any vector with integer elements. Not all targets
7314support all bit widths or vector types, however.
7315
7316::
7317
7318 declare i8 @llvm.ctpop.i8(i8 <src>)
7319 declare i16 @llvm.ctpop.i16(i16 <src>)
7320 declare i32 @llvm.ctpop.i32(i32 <src>)
7321 declare i64 @llvm.ctpop.i64(i64 <src>)
7322 declare i256 @llvm.ctpop.i256(i256 <src>)
7323 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7324
7325Overview:
7326"""""""""
7327
7328The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7329in a value.
7330
7331Arguments:
7332""""""""""
7333
7334The only argument is the value to be counted. The argument may be of any
7335integer type, or a vector with integer elements. The return type must
7336match the argument type.
7337
7338Semantics:
7339""""""""""
7340
7341The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7342each element of a vector.
7343
7344'``llvm.ctlz.*``' Intrinsic
7345^^^^^^^^^^^^^^^^^^^^^^^^^^^
7346
7347Syntax:
7348"""""""
7349
7350This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7351integer bit width, or any vector whose elements are integers. Not all
7352targets support all bit widths or vector types, however.
7353
7354::
7355
7356 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7357 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7358 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7359 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7360 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7361 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7362
7363Overview:
7364"""""""""
7365
7366The '``llvm.ctlz``' family of intrinsic functions counts the number of
7367leading zeros in a variable.
7368
7369Arguments:
7370""""""""""
7371
7372The first argument is the value to be counted. This argument may be of
7373any integer type, or a vectory with integer element type. The return
7374type must match the first argument type.
7375
7376The second argument must be a constant and is a flag to indicate whether
7377the intrinsic should ensure that a zero as the first argument produces a
7378defined result. Historically some architectures did not provide a
7379defined result for zero values as efficiently, and many algorithms are
7380now predicated on avoiding zero-value inputs.
7381
7382Semantics:
7383""""""""""
7384
7385The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7386zeros in a variable, or within each element of the vector. If
7387``src == 0`` then the result is the size in bits of the type of ``src``
7388if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7389``llvm.ctlz(i32 2) = 30``.
7390
7391'``llvm.cttz.*``' Intrinsic
7392^^^^^^^^^^^^^^^^^^^^^^^^^^^
7393
7394Syntax:
7395"""""""
7396
7397This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7398integer bit width, or any vector of integer elements. Not all targets
7399support all bit widths or vector types, however.
7400
7401::
7402
7403 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7404 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7405 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7406 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7407 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7408 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7409
7410Overview:
7411"""""""""
7412
7413The '``llvm.cttz``' family of intrinsic functions counts the number of
7414trailing zeros.
7415
7416Arguments:
7417""""""""""
7418
7419The first argument is the value to be counted. This argument may be of
7420any integer type, or a vectory with integer element type. The return
7421type must match the first argument type.
7422
7423The second argument must be a constant and is a flag to indicate whether
7424the intrinsic should ensure that a zero as the first argument produces a
7425defined result. Historically some architectures did not provide a
7426defined result for zero values as efficiently, and many algorithms are
7427now predicated on avoiding zero-value inputs.
7428
7429Semantics:
7430""""""""""
7431
7432The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7433zeros in a variable, or within each element of a vector. If ``src == 0``
7434then the result is the size in bits of the type of ``src`` if
7435``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7436``llvm.cttz(2) = 1``.
7437
7438Arithmetic with Overflow Intrinsics
7439-----------------------------------
7440
7441LLVM provides intrinsics for some arithmetic with overflow operations.
7442
7443'``llvm.sadd.with.overflow.*``' Intrinsics
7444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7445
7446Syntax:
7447"""""""
7448
7449This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7450on any integer bit width.
7451
7452::
7453
7454 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7455 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7456 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7457
7458Overview:
7459"""""""""
7460
7461The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7462a signed addition of the two arguments, and indicate whether an overflow
7463occurred during the signed summation.
7464
7465Arguments:
7466""""""""""
7467
7468The arguments (%a and %b) and the first element of the result structure
7469may be of integer types of any bit width, but they must have the same
7470bit width. The second element of the result structure must be of type
7471``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7472addition.
7473
7474Semantics:
7475""""""""""
7476
7477The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007478a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007479first element of which is the signed summation, and the second element
7480of which is a bit specifying if the signed summation resulted in an
7481overflow.
7482
7483Examples:
7484"""""""""
7485
7486.. code-block:: llvm
7487
7488 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7489 %sum = extractvalue {i32, i1} %res, 0
7490 %obit = extractvalue {i32, i1} %res, 1
7491 br i1 %obit, label %overflow, label %normal
7492
7493'``llvm.uadd.with.overflow.*``' Intrinsics
7494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7495
7496Syntax:
7497"""""""
7498
7499This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7500on any integer bit width.
7501
7502::
7503
7504 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7505 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7506 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7507
7508Overview:
7509"""""""""
7510
7511The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7512an unsigned addition of the two arguments, and indicate whether a carry
7513occurred during the unsigned summation.
7514
7515Arguments:
7516""""""""""
7517
7518The arguments (%a and %b) and the first element of the result structure
7519may be of integer types of any bit width, but they must have the same
7520bit width. The second element of the result structure must be of type
7521``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7522addition.
7523
7524Semantics:
7525""""""""""
7526
7527The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007528an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007529first element of which is the sum, and the second element of which is a
7530bit specifying if the unsigned summation resulted in a carry.
7531
7532Examples:
7533"""""""""
7534
7535.. code-block:: llvm
7536
7537 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7538 %sum = extractvalue {i32, i1} %res, 0
7539 %obit = extractvalue {i32, i1} %res, 1
7540 br i1 %obit, label %carry, label %normal
7541
7542'``llvm.ssub.with.overflow.*``' Intrinsics
7543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7544
7545Syntax:
7546"""""""
7547
7548This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7549on any integer bit width.
7550
7551::
7552
7553 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7554 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7555 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7556
7557Overview:
7558"""""""""
7559
7560The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7561a signed subtraction of the two arguments, and indicate whether an
7562overflow occurred during the signed subtraction.
7563
7564Arguments:
7565""""""""""
7566
7567The arguments (%a and %b) and the first element of the result structure
7568may be of integer types of any bit width, but they must have the same
7569bit width. The second element of the result structure must be of type
7570``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7571subtraction.
7572
7573Semantics:
7574""""""""""
7575
7576The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007577a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007578first element of which is the subtraction, and the second element of
7579which is a bit specifying if the signed subtraction resulted in an
7580overflow.
7581
7582Examples:
7583"""""""""
7584
7585.. code-block:: llvm
7586
7587 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7588 %sum = extractvalue {i32, i1} %res, 0
7589 %obit = extractvalue {i32, i1} %res, 1
7590 br i1 %obit, label %overflow, label %normal
7591
7592'``llvm.usub.with.overflow.*``' Intrinsics
7593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7594
7595Syntax:
7596"""""""
7597
7598This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7599on any integer bit width.
7600
7601::
7602
7603 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7604 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7605 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7606
7607Overview:
7608"""""""""
7609
7610The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7611an unsigned subtraction of the two arguments, and indicate whether an
7612overflow occurred during the unsigned subtraction.
7613
7614Arguments:
7615""""""""""
7616
7617The arguments (%a and %b) and the first element of the result structure
7618may be of integer types of any bit width, but they must have the same
7619bit width. The second element of the result structure must be of type
7620``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7621subtraction.
7622
7623Semantics:
7624""""""""""
7625
7626The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007627an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007628the first element of which is the subtraction, and the second element of
7629which is a bit specifying if the unsigned subtraction resulted in an
7630overflow.
7631
7632Examples:
7633"""""""""
7634
7635.. code-block:: llvm
7636
7637 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7638 %sum = extractvalue {i32, i1} %res, 0
7639 %obit = extractvalue {i32, i1} %res, 1
7640 br i1 %obit, label %overflow, label %normal
7641
7642'``llvm.smul.with.overflow.*``' Intrinsics
7643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7644
7645Syntax:
7646"""""""
7647
7648This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7649on any integer bit width.
7650
7651::
7652
7653 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7654 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7655 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7656
7657Overview:
7658"""""""""
7659
7660The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7661a signed multiplication of the two arguments, and indicate whether an
7662overflow occurred during the signed multiplication.
7663
7664Arguments:
7665""""""""""
7666
7667The arguments (%a and %b) and the first element of the result structure
7668may be of integer types of any bit width, but they must have the same
7669bit width. The second element of the result structure must be of type
7670``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7671multiplication.
7672
7673Semantics:
7674""""""""""
7675
7676The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007677a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007678the first element of which is the multiplication, and the second element
7679of which is a bit specifying if the signed multiplication resulted in an
7680overflow.
7681
7682Examples:
7683"""""""""
7684
7685.. code-block:: llvm
7686
7687 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7688 %sum = extractvalue {i32, i1} %res, 0
7689 %obit = extractvalue {i32, i1} %res, 1
7690 br i1 %obit, label %overflow, label %normal
7691
7692'``llvm.umul.with.overflow.*``' Intrinsics
7693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7694
7695Syntax:
7696"""""""
7697
7698This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7699on any integer bit width.
7700
7701::
7702
7703 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7704 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7705 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7706
7707Overview:
7708"""""""""
7709
7710The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7711a unsigned multiplication of the two arguments, and indicate whether an
7712overflow occurred during the unsigned multiplication.
7713
7714Arguments:
7715""""""""""
7716
7717The arguments (%a and %b) and the first element of the result structure
7718may be of integer types of any bit width, but they must have the same
7719bit width. The second element of the result structure must be of type
7720``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7721multiplication.
7722
7723Semantics:
7724""""""""""
7725
7726The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007727an unsigned multiplication of the two arguments. They return a structure ---
7728the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007729element of which is a bit specifying if the unsigned multiplication
7730resulted in an overflow.
7731
7732Examples:
7733"""""""""
7734
7735.. code-block:: llvm
7736
7737 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7738 %sum = extractvalue {i32, i1} %res, 0
7739 %obit = extractvalue {i32, i1} %res, 1
7740 br i1 %obit, label %overflow, label %normal
7741
7742Specialised Arithmetic Intrinsics
7743---------------------------------
7744
7745'``llvm.fmuladd.*``' Intrinsic
7746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7747
7748Syntax:
7749"""""""
7750
7751::
7752
7753 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7754 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7755
7756Overview:
7757"""""""""
7758
7759The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007760expressions that can be fused if the code generator determines that (a) the
7761target instruction set has support for a fused operation, and (b) that the
7762fused operation is more efficient than the equivalent, separate pair of mul
7763and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007764
7765Arguments:
7766""""""""""
7767
7768The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7769multiplicands, a and b, and an addend c.
7770
7771Semantics:
7772""""""""""
7773
7774The expression:
7775
7776::
7777
7778 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7779
7780is equivalent to the expression a \* b + c, except that rounding will
7781not be performed between the multiplication and addition steps if the
7782code generator fuses the operations. Fusion is not guaranteed, even if
7783the target platform supports it. If a fused multiply-add is required the
7784corresponding llvm.fma.\* intrinsic function should be used instead.
7785
7786Examples:
7787"""""""""
7788
7789.. code-block:: llvm
7790
7791 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7792
7793Half Precision Floating Point Intrinsics
7794----------------------------------------
7795
7796For most target platforms, half precision floating point is a
7797storage-only format. This means that it is a dense encoding (in memory)
7798but does not support computation in the format.
7799
7800This means that code must first load the half-precision floating point
7801value as an i16, then convert it to float with
7802:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7803then be performed on the float value (including extending to double
7804etc). To store the value back to memory, it is first converted to float
7805if needed, then converted to i16 with
7806:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7807i16 value.
7808
7809.. _int_convert_to_fp16:
7810
7811'``llvm.convert.to.fp16``' Intrinsic
7812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7813
7814Syntax:
7815"""""""
7816
7817::
7818
7819 declare i16 @llvm.convert.to.fp16(f32 %a)
7820
7821Overview:
7822"""""""""
7823
7824The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7825from single precision floating point format to half precision floating
7826point format.
7827
7828Arguments:
7829""""""""""
7830
7831The intrinsic function contains single argument - the value to be
7832converted.
7833
7834Semantics:
7835""""""""""
7836
7837The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7838from single precision floating point format to half precision floating
7839point format. The return value is an ``i16`` which contains the
7840converted number.
7841
7842Examples:
7843"""""""""
7844
7845.. code-block:: llvm
7846
7847 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7848 store i16 %res, i16* @x, align 2
7849
7850.. _int_convert_from_fp16:
7851
7852'``llvm.convert.from.fp16``' Intrinsic
7853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7854
7855Syntax:
7856"""""""
7857
7858::
7859
7860 declare f32 @llvm.convert.from.fp16(i16 %a)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.convert.from.fp16``' intrinsic function performs a
7866conversion from half precision floating point format to single precision
7867floating point format.
7868
7869Arguments:
7870""""""""""
7871
7872The intrinsic function contains single argument - the value to be
7873converted.
7874
7875Semantics:
7876""""""""""
7877
7878The '``llvm.convert.from.fp16``' intrinsic function performs a
7879conversion from half single precision floating point format to single
7880precision floating point format. The input half-float value is
7881represented by an ``i16`` value.
7882
7883Examples:
7884"""""""""
7885
7886.. code-block:: llvm
7887
7888 %a = load i16* @x, align 2
7889 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7890
7891Debugger Intrinsics
7892-------------------
7893
7894The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7895prefix), are described in the `LLVM Source Level
7896Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7897document.
7898
7899Exception Handling Intrinsics
7900-----------------------------
7901
7902The LLVM exception handling intrinsics (which all start with
7903``llvm.eh.`` prefix), are described in the `LLVM Exception
7904Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7905
7906.. _int_trampoline:
7907
7908Trampoline Intrinsics
7909---------------------
7910
7911These intrinsics make it possible to excise one parameter, marked with
7912the :ref:`nest <nest>` attribute, from a function. The result is a
7913callable function pointer lacking the nest parameter - the caller does
7914not need to provide a value for it. Instead, the value to use is stored
7915in advance in a "trampoline", a block of memory usually allocated on the
7916stack, which also contains code to splice the nest value into the
7917argument list. This is used to implement the GCC nested function address
7918extension.
7919
7920For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7921then the resulting function pointer has signature ``i32 (i32, i32)*``.
7922It can be created as follows:
7923
7924.. code-block:: llvm
7925
7926 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7927 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7928 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7929 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7930 %fp = bitcast i8* %p to i32 (i32, i32)*
7931
7932The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7933``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7934
7935.. _int_it:
7936
7937'``llvm.init.trampoline``' Intrinsic
7938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7939
7940Syntax:
7941"""""""
7942
7943::
7944
7945 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7946
7947Overview:
7948"""""""""
7949
7950This fills the memory pointed to by ``tramp`` with executable code,
7951turning it into a trampoline.
7952
7953Arguments:
7954""""""""""
7955
7956The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7957pointers. The ``tramp`` argument must point to a sufficiently large and
7958sufficiently aligned block of memory; this memory is written to by the
7959intrinsic. Note that the size and the alignment are target-specific -
7960LLVM currently provides no portable way of determining them, so a
7961front-end that generates this intrinsic needs to have some
7962target-specific knowledge. The ``func`` argument must hold a function
7963bitcast to an ``i8*``.
7964
7965Semantics:
7966""""""""""
7967
7968The block of memory pointed to by ``tramp`` is filled with target
7969dependent code, turning it into a function. Then ``tramp`` needs to be
7970passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7971be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7972function's signature is the same as that of ``func`` with any arguments
7973marked with the ``nest`` attribute removed. At most one such ``nest``
7974argument is allowed, and it must be of pointer type. Calling the new
7975function is equivalent to calling ``func`` with the same argument list,
7976but with ``nval`` used for the missing ``nest`` argument. If, after
7977calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7978modified, then the effect of any later call to the returned function
7979pointer is undefined.
7980
7981.. _int_at:
7982
7983'``llvm.adjust.trampoline``' Intrinsic
7984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7985
7986Syntax:
7987"""""""
7988
7989::
7990
7991 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7992
7993Overview:
7994"""""""""
7995
7996This performs any required machine-specific adjustment to the address of
7997a trampoline (passed as ``tramp``).
7998
7999Arguments:
8000""""""""""
8001
8002``tramp`` must point to a block of memory which already has trampoline
8003code filled in by a previous call to
8004:ref:`llvm.init.trampoline <int_it>`.
8005
8006Semantics:
8007""""""""""
8008
8009On some architectures the address of the code to be executed needs to be
8010different to the address where the trampoline is actually stored. This
8011intrinsic returns the executable address corresponding to ``tramp``
8012after performing the required machine specific adjustments. The pointer
8013returned can then be :ref:`bitcast and executed <int_trampoline>`.
8014
8015Memory Use Markers
8016------------------
8017
8018This class of intrinsics exists to information about the lifetime of
8019memory objects and ranges where variables are immutable.
8020
8021'``llvm.lifetime.start``' Intrinsic
8022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8023
8024Syntax:
8025"""""""
8026
8027::
8028
8029 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8030
8031Overview:
8032"""""""""
8033
8034The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8035object's lifetime.
8036
8037Arguments:
8038""""""""""
8039
8040The first argument is a constant integer representing the size of the
8041object, or -1 if it is variable sized. The second argument is a pointer
8042to the object.
8043
8044Semantics:
8045""""""""""
8046
8047This intrinsic indicates that before this point in the code, the value
8048of the memory pointed to by ``ptr`` is dead. This means that it is known
8049to never be used and has an undefined value. A load from the pointer
8050that precedes this intrinsic can be replaced with ``'undef'``.
8051
8052'``llvm.lifetime.end``' Intrinsic
8053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8054
8055Syntax:
8056"""""""
8057
8058::
8059
8060 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8061
8062Overview:
8063"""""""""
8064
8065The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8066object's lifetime.
8067
8068Arguments:
8069""""""""""
8070
8071The first argument is a constant integer representing the size of the
8072object, or -1 if it is variable sized. The second argument is a pointer
8073to the object.
8074
8075Semantics:
8076""""""""""
8077
8078This intrinsic indicates that after this point in the code, the value of
8079the memory pointed to by ``ptr`` is dead. This means that it is known to
8080never be used and has an undefined value. Any stores into the memory
8081object following this intrinsic may be removed as dead.
8082
8083'``llvm.invariant.start``' Intrinsic
8084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8085
8086Syntax:
8087"""""""
8088
8089::
8090
8091 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8092
8093Overview:
8094"""""""""
8095
8096The '``llvm.invariant.start``' intrinsic specifies that the contents of
8097a memory object will not change.
8098
8099Arguments:
8100""""""""""
8101
8102The first argument is a constant integer representing the size of the
8103object, or -1 if it is variable sized. The second argument is a pointer
8104to the object.
8105
8106Semantics:
8107""""""""""
8108
8109This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8110the return value, the referenced memory location is constant and
8111unchanging.
8112
8113'``llvm.invariant.end``' Intrinsic
8114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8115
8116Syntax:
8117"""""""
8118
8119::
8120
8121 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8122
8123Overview:
8124"""""""""
8125
8126The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8127memory object are mutable.
8128
8129Arguments:
8130""""""""""
8131
8132The first argument is the matching ``llvm.invariant.start`` intrinsic.
8133The second argument is a constant integer representing the size of the
8134object, or -1 if it is variable sized and the third argument is a
8135pointer to the object.
8136
8137Semantics:
8138""""""""""
8139
8140This intrinsic indicates that the memory is mutable again.
8141
8142General Intrinsics
8143------------------
8144
8145This class of intrinsics is designed to be generic and has no specific
8146purpose.
8147
8148'``llvm.var.annotation``' Intrinsic
8149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8150
8151Syntax:
8152"""""""
8153
8154::
8155
8156 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8157
8158Overview:
8159"""""""""
8160
8161The '``llvm.var.annotation``' intrinsic.
8162
8163Arguments:
8164""""""""""
8165
8166The first argument is a pointer to a value, the second is a pointer to a
8167global string, the third is a pointer to a global string which is the
8168source file name, and the last argument is the line number.
8169
8170Semantics:
8171""""""""""
8172
8173This intrinsic allows annotation of local variables with arbitrary
8174strings. This can be useful for special purpose optimizations that want
8175to look for these annotations. These have no other defined use; they are
8176ignored by code generation and optimization.
8177
8178'``llvm.annotation.*``' Intrinsic
8179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8180
8181Syntax:
8182"""""""
8183
8184This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8185any integer bit width.
8186
8187::
8188
8189 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8190 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8191 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8192 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8193 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8194
8195Overview:
8196"""""""""
8197
8198The '``llvm.annotation``' intrinsic.
8199
8200Arguments:
8201""""""""""
8202
8203The first argument is an integer value (result of some expression), the
8204second is a pointer to a global string, the third is a pointer to a
8205global string which is the source file name, and the last argument is
8206the line number. It returns the value of the first argument.
8207
8208Semantics:
8209""""""""""
8210
8211This intrinsic allows annotations to be put on arbitrary expressions
8212with arbitrary strings. This can be useful for special purpose
8213optimizations that want to look for these annotations. These have no
8214other defined use; they are ignored by code generation and optimization.
8215
8216'``llvm.trap``' Intrinsic
8217^^^^^^^^^^^^^^^^^^^^^^^^^
8218
8219Syntax:
8220"""""""
8221
8222::
8223
8224 declare void @llvm.trap() noreturn nounwind
8225
8226Overview:
8227"""""""""
8228
8229The '``llvm.trap``' intrinsic.
8230
8231Arguments:
8232""""""""""
8233
8234None.
8235
8236Semantics:
8237""""""""""
8238
8239This intrinsic is lowered to the target dependent trap instruction. If
8240the target does not have a trap instruction, this intrinsic will be
8241lowered to a call of the ``abort()`` function.
8242
8243'``llvm.debugtrap``' Intrinsic
8244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249::
8250
8251 declare void @llvm.debugtrap() nounwind
8252
8253Overview:
8254"""""""""
8255
8256The '``llvm.debugtrap``' intrinsic.
8257
8258Arguments:
8259""""""""""
8260
8261None.
8262
8263Semantics:
8264""""""""""
8265
8266This intrinsic is lowered to code which is intended to cause an
8267execution trap with the intention of requesting the attention of a
8268debugger.
8269
8270'``llvm.stackprotector``' Intrinsic
8271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8272
8273Syntax:
8274"""""""
8275
8276::
8277
8278 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8279
8280Overview:
8281"""""""""
8282
8283The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8284onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8285is placed on the stack before local variables.
8286
8287Arguments:
8288""""""""""
8289
8290The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8291The first argument is the value loaded from the stack guard
8292``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8293enough space to hold the value of the guard.
8294
8295Semantics:
8296""""""""""
8297
8298This intrinsic causes the prologue/epilogue inserter to force the
8299position of the ``AllocaInst`` stack slot to be before local variables
8300on the stack. This is to ensure that if a local variable on the stack is
8301overwritten, it will destroy the value of the guard. When the function
8302exits, the guard on the stack is checked against the original guard. If
8303they are different, then the program aborts by calling the
8304``__stack_chk_fail()`` function.
8305
8306'``llvm.objectsize``' Intrinsic
8307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8308
8309Syntax:
8310"""""""
8311
8312::
8313
8314 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8315 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8316
8317Overview:
8318"""""""""
8319
8320The ``llvm.objectsize`` intrinsic is designed to provide information to
8321the optimizers to determine at compile time whether a) an operation
8322(like memcpy) will overflow a buffer that corresponds to an object, or
8323b) that a runtime check for overflow isn't necessary. An object in this
8324context means an allocation of a specific class, structure, array, or
8325other object.
8326
8327Arguments:
8328""""""""""
8329
8330The ``llvm.objectsize`` intrinsic takes two arguments. The first
8331argument is a pointer to or into the ``object``. The second argument is
8332a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8333or -1 (if false) when the object size is unknown. The second argument
8334only accepts constants.
8335
8336Semantics:
8337""""""""""
8338
8339The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8340the size of the object concerned. If the size cannot be determined at
8341compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8342on the ``min`` argument).
8343
8344'``llvm.expect``' Intrinsic
8345^^^^^^^^^^^^^^^^^^^^^^^^^^^
8346
8347Syntax:
8348"""""""
8349
8350::
8351
8352 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8353 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8354
8355Overview:
8356"""""""""
8357
8358The ``llvm.expect`` intrinsic provides information about expected (the
8359most probable) value of ``val``, which can be used by optimizers.
8360
8361Arguments:
8362""""""""""
8363
8364The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8365a value. The second argument is an expected value, this needs to be a
8366constant value, variables are not allowed.
8367
8368Semantics:
8369""""""""""
8370
8371This intrinsic is lowered to the ``val``.
8372
8373'``llvm.donothing``' Intrinsic
8374^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8375
8376Syntax:
8377"""""""
8378
8379::
8380
8381 declare void @llvm.donothing() nounwind readnone
8382
8383Overview:
8384"""""""""
8385
8386The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8387only intrinsic that can be called with an invoke instruction.
8388
8389Arguments:
8390""""""""""
8391
8392None.
8393
8394Semantics:
8395""""""""""
8396
8397This intrinsic does nothing, and it's removed by optimizers and ignored
8398by codegen.