blob: 3628aa935ca4a106aa26b7b298342526a669f82c [file] [log] [blame]
Misha Brukman13fd15c2004-01-15 00:14:41 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Chris Lattner261efe92003-11-25 01:02:51 +00003<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
Misha Brukman13fd15c2004-01-15 00:14:41 +00006 <link rel="stylesheet" href="llvm.css" type="text/css">
Chris Lattner261efe92003-11-25 01:02:51 +00007</head>
Misha Brukman13fd15c2004-01-15 00:14:41 +00008<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
Chris Lattner9355b472002-09-06 02:50:58 +000014<ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +000015 <li><a href="#introduction">Introduction</a></li>
Chris Lattner9355b472002-09-06 02:50:58 +000016 <li><a href="#general">General Information</a>
Chris Lattner261efe92003-11-25 01:02:51 +000017 <ul>
18 <li><a href="#stl">The C++ Standard Template Library</a><!--
Chris Lattner986e0c92002-09-22 19:38:40 +000019 <li>The <tt>-time-passes</tt> option
20 <li>How to use the LLVM Makefile system
21 <li>How to write a regression test
Chris Lattner261efe92003-11-25 01:02:51 +000022--> </li>
Chris Lattner84b7f8d2003-08-01 22:20:59 +000023 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000024 </li>
25 <li><a href="#apis">Important and useful LLVM APIs</a>
26 <ul>
27 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
28and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
29 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt>
30option</a>
31 <ul>
32 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
33and the <tt>-debug-only</tt> option</a> </li>
34 </ul>
35 </li>
36 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
37option</a><!--
Chris Lattner986e0c92002-09-22 19:38:40 +000038 <li>The <tt>InstVisitor</tt> template
39 <li>The general graph API
Chris Lattner261efe92003-11-25 01:02:51 +000040--> </li>
41 </ul>
42 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000043 <li><a href="#common">Helpful Hints for Common Operations</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000044 <ul>
Chris Lattner261efe92003-11-25 01:02:51 +000045 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
46 <ul>
47 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
48in a <tt>Function</tt></a> </li>
49 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
50in a <tt>BasicBlock</tt></a> </li>
51 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
52in a <tt>Function</tt></a> </li>
53 <li><a href="#iterate_convert">Turning an iterator into a
54class pointer</a> </li>
55 <li><a href="#iterate_complex">Finding call sites: a more
56complex example</a> </li>
57 <li><a href="#calls_and_invokes">Treating calls and invokes
58the same way</a> </li>
59 <li><a href="#iterate_chains">Iterating over def-use &amp;
60use-def chains</a> </li>
61 </ul>
62 </li>
63 <li><a href="#simplechanges">Making simple changes</a>
64 <ul>
65 <li><a href="#schanges_creating">Creating and inserting new
66 <tt>Instruction</tt>s</a> </li>
67 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
68 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
69with another <tt>Value</tt></a> </li>
70 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000071<!--
72 <li>Working with the Control Flow Graph
73 <ul>
74 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
75 <li>
76 <li>
77 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000078--> </li>
79 </ul>
80 </li>
Joel Stanley9b96c442002-09-06 21:55:13 +000081 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000082 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +000083 <li><a href="#Value">The <tt>Value</tt> class</a>
84 <ul>
85 <li><a href="#User">The <tt>User</tt> class</a>
Chris Lattner9355b472002-09-06 02:50:58 +000086 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +000087 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
Chris Lattner261efe92003-11-25 01:02:51 +000088 <ul>
Reid Spencer096603a2004-05-26 08:41:35 +000089 <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt>
90 class</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +000091 </ul></li>
92 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
93 <ul>
Reid Spencer096603a2004-05-26 08:41:35 +000094 <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
95 <li><a href="#Function">The <tt>Function</tt> class</a></li>
96 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class
97 </a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +000098 </ul></li>
99 <li><a href="#Module">The <tt>Module</tt> class</a></li>
Reid Spencer096603a2004-05-26 08:41:35 +0000100 <li><a href="#Constant">The <tt>Constant</tt> class</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000101 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
Reid Spencer096603a2004-05-26 08:41:35 +0000102 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
103 </ul></li>
104 </ul></li>
105 <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
106 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
107 <ul>
108 <li>Creating, inserting, moving and deleting from LLVM lists </li>
109 </ul>
110 </li>
111 <li>Important iterator invalidation semantics to be aware of.</li>
Chris Lattner261efe92003-11-25 01:02:51 +0000112 </li>
Chris Lattner9355b472002-09-06 02:50:58 +0000113</ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000114
Chris Lattner69bf8a92004-05-23 21:06:58 +0000115<div class="doc_author">
116 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
117 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and
118 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000119</div>
120
Chris Lattner9355b472002-09-06 02:50:58 +0000121<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000122<div class="doc_section">
123 <a name="introduction">Introduction </a>
124</div>
Chris Lattner9355b472002-09-06 02:50:58 +0000125<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000126
127<div class="doc_text">
128
129<p>This document is meant to highlight some of the important classes and
Chris Lattner261efe92003-11-25 01:02:51 +0000130interfaces available in the LLVM source-base. This manual is not
131intended to explain what LLVM is, how it works, and what LLVM code looks
132like. It assumes that you know the basics of LLVM and are interested
133in writing transformations or otherwise analyzing or manipulating the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000134code.</p>
135
136<p>This document should get you oriented so that you can find your
Chris Lattner261efe92003-11-25 01:02:51 +0000137way in the continuously growing source code that makes up the LLVM
138infrastructure. Note that this manual is not intended to serve as a
139replacement for reading the source code, so if you think there should be
140a method in one of these classes to do something, but it's not listed,
141check the source. Links to the <a href="/doxygen/">doxygen</a> sources
142are provided to make this as easy as possible.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000143
144<p>The first section of this document describes general information that is
145useful to know when working in the LLVM infrastructure, and the second describes
146the Core LLVM classes. In the future this manual will be extended with
147information describing how to use extension libraries, such as dominator
148information, CFG traversal routines, and useful utilities like the <tt><a
149href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
150
151</div>
152
Chris Lattner9355b472002-09-06 02:50:58 +0000153<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000154<div class="doc_section">
155 <a name="general">General Information</a>
156</div>
157<!-- *********************************************************************** -->
158
159<div class="doc_text">
160
161<p>This section contains general information that is useful if you are working
162in the LLVM source-base, but that isn't specific to any particular API.</p>
163
164</div>
165
166<!-- ======================================================================= -->
167<div class="doc_subsection">
168 <a name="stl">The C++ Standard Template Library</a>
169</div>
170
171<div class="doc_text">
172
173<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
Chris Lattner261efe92003-11-25 01:02:51 +0000174perhaps much more than you are used to, or have seen before. Because of
175this, you might want to do a little background reading in the
176techniques used and capabilities of the library. There are many good
177pages that discuss the STL, and several books on the subject that you
Misha Brukman13fd15c2004-01-15 00:14:41 +0000178can get, so it will not be discussed in this document.</p>
179
180<p>Here are some useful links:</p>
181
182<ol>
183
184<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
185reference</a> - an excellent reference for the STL and other parts of the
186standard C++ library.</li>
187
188<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
189O'Reilly book in the making. It has a decent <a
190href="http://www.tempest-sw.com/cpp/ch13-libref.html">Standard Library
191Reference</a> that rivals Dinkumware's, and is actually free until the book is
192published.</li>
193
194<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
195Questions</a></li>
196
197<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
198Contains a useful <a
199href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
200STL</a>.</li>
201
202<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
203Page</a></li>
204
Reid Spencer096603a2004-05-26 08:41:35 +0000205<li><a href="http://www.linux.com.cn/Bruce_Eckel/TICPPv2/Contents.htm">
206Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
207the book).</a></li>
208
Misha Brukman13fd15c2004-01-15 00:14:41 +0000209</ol>
210
211<p>You are also encouraged to take a look at the <a
212href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
213to write maintainable code more than where to put your curly braces.</p>
214
215</div>
216
217<!-- ======================================================================= -->
218<div class="doc_subsection">
219 <a name="stl">Other useful references</a>
220</div>
221
222<div class="doc_text">
223
224<p>LLVM is currently using CVS as its source versioning system. You may find
225this reference handy:</p>
226
227<ol>
228<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
Chris Lattner261efe92003-11-25 01:02:51 +0000229Branch and Tag Primer</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000230</ol>
231
232</div>
233
Chris Lattner9355b472002-09-06 02:50:58 +0000234<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000235<div class="doc_section">
236 <a name="apis">Important and useful LLVM APIs</a>
237</div>
238<!-- *********************************************************************** -->
239
240<div class="doc_text">
241
242<p>Here we highlight some LLVM APIs that are generally useful and good to
243know about when writing transformations.</p>
244
245</div>
246
247<!-- ======================================================================= -->
248<div class="doc_subsection">
249 <a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
250</div>
251
252<div class="doc_text">
253
254<p>The LLVM source-base makes extensive use of a custom form of RTTI.
Chris Lattner261efe92003-11-25 01:02:51 +0000255These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
256operator, but they don't have some drawbacks (primarily stemming from
257the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
258have a v-table). Because they are used so often, you must know what they
259do and how they work. All of these templates are defined in the <a
260 href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000261file (note that you very rarely have to include this file directly).</p>
262
263<dl>
264 <dt><tt>isa&lt;&gt;</tt>: </dt>
265
266 <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
267 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
268 a reference or pointer points to an instance of the specified class. This can
269 be very useful for constraint checking of various sorts (example below).</dd>
270
271 <dt><tt>cast&lt;&gt;</tt>: </dt>
272
273 <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
274 converts a pointer or reference from a base class to a derived cast, causing
275 an assertion failure if it is not really an instance of the right type. This
276 should be used in cases where you have some information that makes you believe
277 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
278 and <tt>cast&lt;&gt;</tt> template is:
279
Chris Lattner69bf8a92004-05-23 21:06:58 +0000280 <pre>
281 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
282 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
283 return true;
284
285 <i>// Otherwise, it must be an instruction...</i>
286 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
287 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000288
289 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
290 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
291 operator.</p>
292
293 </dd>
294
295 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
296
297 <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
298 checks to see if the operand is of the specified type, and if so, returns a
299 pointer to it (this operator does not work with references). If the operand is
300 not of the correct type, a null pointer is returned. Thus, this works very
301 much like the <tt>dynamic_cast</tt> operator in C++, and should be used in the
302 same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used
303 in an <tt>if</tt> statement or some other flow control statement like this:
304
Chris Lattner69bf8a92004-05-23 21:06:58 +0000305 <pre>
306 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
307 ...
308 }
309 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000310
311 <p> This form of the <tt>if</tt> statement effectively combines together a
312 call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
313 statement, which is very convenient.</p>
314
315 <p> Another common example is:</p>
316
Chris Lattner69bf8a92004-05-23 21:06:58 +0000317 <pre>
318 <i>// Loop over all of the phi nodes in a basic block</i>
319 BasicBlock::iterator BBI = BB-&gt;begin();
320 for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)
321 std::cerr &lt;&lt; *PN;
322 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000323
324 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
325 <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.
326 In particular you should not use big chained <tt>if/then/else</tt> blocks to
327 check for lots of different variants of classes. If you find yourself
328 wanting to do this, it is much cleaner and more efficient to use the
329 InstVisitor class to dispatch over the instruction type directly.</p>
330
Chris Lattner261efe92003-11-25 01:02:51 +0000331 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000332
Chris Lattner261efe92003-11-25 01:02:51 +0000333 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000334
335 <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
336 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
337 an argument (which it then propagates). This can sometimes be useful,
338 allowing you to combine several null checks into one.</dd>
339
Chris Lattner261efe92003-11-25 01:02:51 +0000340 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000341
342 <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
343 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
344 as an argument (which it then propagates). This can sometimes be useful,
345 allowing you to combine several null checks into one.</dd>
346
Chris Lattner261efe92003-11-25 01:02:51 +0000347 </dl>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000348
349<p>These five templates can be used with any classes, whether they have a
350v-table or not. To add support for these templates, you simply need to add
351<tt>classof</tt> static methods to the class you are interested casting
352to. Describing this is currently outside the scope of this document, but there
353are lots of examples in the LLVM source base.</p>
354
355</div>
356
357<!-- ======================================================================= -->
358<div class="doc_subsection">
359 <a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
360</div>
361
362<div class="doc_text">
363
364<p>Often when working on your pass you will put a bunch of debugging printouts
365and other code into your pass. After you get it working, you want to remove
366it... but you may need it again in the future (to work out new bugs that you run
367across).</p>
368
369<p> Naturally, because of this, you don't want to delete the debug printouts,
370but you don't want them to always be noisy. A standard compromise is to comment
371them out, allowing you to enable them if you need them in the future.</p>
372
373<p>The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>"
374file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
375this problem. Basically, you can put arbitrary code into the argument of the
376<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
377tool) is run with the '<tt>-debug</tt>' command line argument:</p>
378
Chris Lattner261efe92003-11-25 01:02:51 +0000379 <pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000380
381<p>Then you can run your pass like this:</p>
382
Chris Lattner261efe92003-11-25 01:02:51 +0000383 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000384
385<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
386to not have to create "yet another" command line option for the debug output for
387your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
388so they do not cause a performance impact at all (for the same reason, they
389should also not contain side-effects!).</p>
390
391<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
392enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
393"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
394program hasn't been started yet, you can always just run it with
395<tt>-debug</tt>.</p>
396
397</div>
398
399<!-- _______________________________________________________________________ -->
400<div class="doc_subsubsection">
401 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE()</tt> and
402 the <tt>-debug-only</tt> option</a>
403</div>
404
405<div class="doc_text">
406
407<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
408just turns on <b>too much</b> information (such as when working on the code
409generator). If you want to enable debug information with more fine-grained
410control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
411option as follows:</p>
412
Chris Lattner261efe92003-11-25 01:02:51 +0000413 <pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000414
415<p>Then you can run your pass like this:</p>
416
Chris Lattner261efe92003-11-25 01:02:51 +0000417 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000418
419<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
420a file, to specify the debug type for the entire module (if you do this before
421you <tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
422<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
423"bar", because there is no system in place to ensure that names do not
424conflict. If two different modules use the same string, they will all be turned
425on when the name is specified. This allows, for example, all debug information
426for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
Chris Lattner261efe92003-11-25 01:02:51 +0000427even if the source lives in multiple files.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000428
429</div>
430
431<!-- ======================================================================= -->
432<div class="doc_subsection">
433 <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
434 option</a>
435</div>
436
437<div class="doc_text">
438
439<p>The "<tt><a
440href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" file
441provides a template named <tt>Statistic</tt> that is used as a unified way to
442keep track of what the LLVM compiler is doing and how effective various
443optimizations are. It is useful to see what optimizations are contributing to
444making a particular program run faster.</p>
445
446<p>Often you may run your pass on some big program, and you're interested to see
447how many times it makes a certain transformation. Although you can do this with
448hand inspection, or some ad-hoc method, this is a real pain and not very useful
449for big programs. Using the <tt>Statistic</tt> template makes it very easy to
450keep track of this information, and the calculated information is presented in a
451uniform manner with the rest of the passes being executed.</p>
452
453<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
454it are as follows:</p>
455
456<ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000457 <li>Define your statistic like this:
Chris Lattner261efe92003-11-25 01:02:51 +0000458 <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000459
460 <p>The <tt>Statistic</tt> template can emulate just about any data-type,
461 but if you do not specify a template argument, it defaults to acting like
462 an unsigned int counter (this is usually what you want).</p></li>
463
Chris Lattner261efe92003-11-25 01:02:51 +0000464 <li>Whenever you make a transformation, bump the counter:
Chris Lattner261efe92003-11-25 01:02:51 +0000465 <pre> ++NumXForms; // I did stuff<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +0000466 </li>
467 </ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000468
469 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
470 statistics gathered, use the '<tt>-stats</tt>' option:</p>
471
Chris Lattner261efe92003-11-25 01:02:51 +0000472 <pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000473
Chris Lattner261efe92003-11-25 01:02:51 +0000474 <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
475suite, it gives a report that looks like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000476
Chris Lattner261efe92003-11-25 01:02:51 +0000477 <pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000478
479<p>Obviously, with so many optimizations, having a unified framework for this
480stuff is very nice. Making your pass fit well into the framework makes it more
481maintainable and useful.</p>
482
483</div>
484
485<!-- *********************************************************************** -->
486<div class="doc_section">
487 <a name="common">Helpful Hints for Common Operations</a>
488</div>
489<!-- *********************************************************************** -->
490
491<div class="doc_text">
492
493<p>This section describes how to perform some very simple transformations of
494LLVM code. This is meant to give examples of common idioms used, showing the
495practical side of LLVM transformations. <p> Because this is a "how-to" section,
496you should also read about the main classes that you will be working with. The
497<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
498and descriptions of the main classes that you should know about.</p>
499
500</div>
501
502<!-- NOTE: this section should be heavy on example code -->
503<!-- ======================================================================= -->
504<div class="doc_subsection">
505 <a name="inspection">Basic Inspection and Traversal Routines</a>
506</div>
507
508<div class="doc_text">
509
510<p>The LLVM compiler infrastructure have many different data structures that may
511be traversed. Following the example of the C++ standard template library, the
512techniques used to traverse these various data structures are all basically the
513same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
514method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
515function returns an iterator pointing to one past the last valid element of the
516sequence, and there is some <tt>XXXiterator</tt> data type that is common
517between the two operations.</p>
518
519<p>Because the pattern for iteration is common across many different aspects of
520the program representation, the standard template library algorithms may be used
521on them, and it is easier to remember how to iterate. First we show a few common
522examples of the data structures that need to be traversed. Other data
523structures are traversed in very similar ways.</p>
524
525</div>
526
527<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000528<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000529 <a name="iterate_function">Iterating over the </a><a
530 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
531 href="#Function"><tt>Function</tt></a>
532</div>
533
534<div class="doc_text">
535
536<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
537transform in some way; in particular, you'd like to manipulate its
538<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
539the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
540an example that prints the name of a <tt>BasicBlock</tt> and the number of
541<tt>Instruction</tt>s it contains:</p>
542
Chris Lattner261efe92003-11-25 01:02:51 +0000543 <pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000544
545<p>Note that i can be used as if it were a pointer for the purposes of
Joel Stanley9b96c442002-09-06 21:55:13 +0000546invoking member functions of the <tt>Instruction</tt> class. This is
547because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +0000548classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Misha Brukman13fd15c2004-01-15 00:14:41 +0000549exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
550
551</div>
552
553<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000554<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000555 <a name="iterate_basicblock">Iterating over the </a><a
556 href="#Instruction"><tt>Instruction</tt></a>s in a <a
557 href="#BasicBlock"><tt>BasicBlock</tt></a>
558</div>
559
560<div class="doc_text">
561
562<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
563easy to iterate over the individual instructions that make up
564<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
565a <tt>BasicBlock</tt>:</p>
566
Chris Lattner261efe92003-11-25 01:02:51 +0000567 <pre> // blk is a pointer to a BasicBlock instance<br> for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)<br> // the next statement works since operator&lt;&lt;(ostream&amp;,...) <br> // is overloaded for Instruction&amp;<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000568
569<p>However, this isn't really the best way to print out the contents of a
570<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
571anything you'll care about, you could have just invoked the print routine on the
572basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
573
574<p>Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so
575it will print out the contents of the pointer, instead of the pointer value you
576might expect. This is a deprecated interface that will be removed in the
577future, so it's best not to depend on it. To print out the pointer value for
578now, you must cast to <tt>void*</tt>.</p>
579
580</div>
581
582<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000583<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000584 <a name="iterate_institer">Iterating over the </a><a
585 href="#Instruction"><tt>Instruction</tt></a>s in a <a
586 href="#Function"><tt>Function</tt></a>
587</div>
588
589<div class="doc_text">
590
591<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
592<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
593<tt>InstIterator</tt> should be used instead. You'll need to include <a
594href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
595and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000596small example that shows how to dump all instructions in a function to the standard error stream:<p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000597
Chris Lattner69bf8a92004-05-23 21:06:58 +0000598 <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Joel Stanleye7be6502002-09-09 15:50:33 +0000599Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
600worklist with its initial contents. For example, if you wanted to
Chris Lattner261efe92003-11-25 01:02:51 +0000601initialize a worklist to contain all instructions in a <tt>Function</tt>
602F, all you would need to do is something like:
603 <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000604
605<p>The STL set <tt>worklist</tt> would now contain all instructions in the
606<tt>Function</tt> pointed to by F.</p>
607
608</div>
609
610<!-- _______________________________________________________________________ -->
611<div class="doc_subsubsection">
612 <a name="iterate_convert">Turning an iterator into a class pointer (and
613 vice-versa)</a>
614</div>
615
616<div class="doc_text">
617
618<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
Joel Stanley9b96c442002-09-06 21:55:13 +0000619instance when all you've got at hand is an iterator. Well, extracting
Chris Lattner69bf8a92004-05-23 21:06:58 +0000620a reference or a pointer from an iterator is very straight-forward.
Chris Lattner261efe92003-11-25 01:02:51 +0000621Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000622is a <tt>BasicBlock::const_iterator</tt>:</p>
623
Chris Lattner261efe92003-11-25 01:02:51 +0000624 <pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000625
626<p>However, the iterators you'll be working with in the LLVM framework are
627special: they will automatically convert to a ptr-to-instance type whenever they
628need to. Instead of dereferencing the iterator and then taking the address of
629the result, you can simply assign the iterator to the proper pointer type and
630you get the dereference and address-of operation as a result of the assignment
631(behind the scenes, this is a result of overloading casting mechanisms). Thus
632the last line of the last example,</p>
633
Chris Lattner261efe92003-11-25 01:02:51 +0000634 <pre>Instruction* pinst = &amp;*i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000635
636<p>is semantically equivalent to</p>
637
Chris Lattner261efe92003-11-25 01:02:51 +0000638 <pre>Instruction* pinst = i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000639
Chris Lattner69bf8a92004-05-23 21:06:58 +0000640<p>It's also possible to turn a class pointer into the corresponding iterator,
641and this is a constant time operation (very efficient). The following code
642snippet illustrates use of the conversion constructors provided by LLVM
643iterators. By using these, you can explicitly grab the iterator of something
644without actually obtaining it via iteration over some structure:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000645
Chris Lattner261efe92003-11-25 01:02:51 +0000646 <pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000647
Misha Brukman13fd15c2004-01-15 00:14:41 +0000648</div>
649
650<!--_______________________________________________________________________-->
651<div class="doc_subsubsection">
652 <a name="iterate_complex">Finding call sites: a slightly more complex
653 example</a>
654</div>
655
656<div class="doc_text">
657
658<p>Say that you're writing a FunctionPass and would like to count all the
659locations in the entire module (that is, across every <tt>Function</tt>) where a
660certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
661learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000662much more straight-forward manner, but this example will allow us to explore how
Misha Brukman13fd15c2004-01-15 00:14:41 +0000663you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
664is what we want to do:</p>
665
Chris Lattner261efe92003-11-25 01:02:51 +0000666 <pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000667
668<p>And the actual code is (remember, since we're writing a
669<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
670override the <tt>runOnFunction</tt> method...):</p>
671
Chris Lattner261efe92003-11-25 01:02:51 +0000672 <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
673 href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
674 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000675
676</div>
677
Brian Gaekef1972c62003-11-07 19:25:45 +0000678<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000679<div class="doc_subsubsection">
680 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
681</div>
682
683<div class="doc_text">
684
685<p>You may have noticed that the previous example was a bit oversimplified in
686that it did not deal with call sites generated by 'invoke' instructions. In
687this, and in other situations, you may find that you want to treat
688<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
689most-specific common base class is <tt>Instruction</tt>, which includes lots of
690less closely-related things. For these cases, LLVM provides a handy wrapper
691class called <a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000692href="http://llvm.cs.uiuc.edu/doxygen/classCallSite.html"><tt>CallSite</tt></a>.
693It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
694methods that provide functionality common to <tt>CallInst</tt>s and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000695<tt>InvokeInst</tt>s.</p>
696
Chris Lattner69bf8a92004-05-23 21:06:58 +0000697<p>This class has "value semantics": it should be passed by value, not by
698reference and it should not be dynamically allocated or deallocated using
699<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
700assignable and constructable, with costs equivalents to that of a bare pointer.
701If you look at its definition, it has only a single pointer member.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000702
703</div>
704
Chris Lattner1a3105b2002-09-09 05:49:39 +0000705<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000706<div class="doc_subsubsection">
707 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
708</div>
709
710<div class="doc_text">
711
712<p>Frequently, we might have an instance of the <a
713href="/doxygen/classValue.html">Value Class</a> and we want to determine which
714<tt>User</tt>s use the <tt>Value</tt>. The list of all <tt>User</tt>s of a
715particular <tt>Value</tt> is called a <i>def-use</i> chain. For example, let's
716say we have a <tt>Function*</tt> named <tt>F</tt> to a particular function
717<tt>foo</tt>. Finding all of the instructions that <i>use</i> <tt>foo</tt> is as
718simple as iterating over the <i>def-use</i> chain of <tt>F</tt>:</p>
719
Chris Lattner261efe92003-11-25 01:02:51 +0000720 <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> cerr &lt;&lt; "F is used in instruction:\n";<br> cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000721
722<p>Alternately, it's common to have an instance of the <a
723href="/doxygen/classUser.html">User Class</a> and need to know what
724<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
725<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
726<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
727all of the values that a particular instruction uses (that is, the operands of
728the particular <tt>Instruction</tt>):</p>
729
Chris Lattner261efe92003-11-25 01:02:51 +0000730 <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000731
Chris Lattner1a3105b2002-09-09 05:49:39 +0000732<!--
733 def-use chains ("finding all users of"): Value::use_begin/use_end
734 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
Misha Brukman13fd15c2004-01-15 00:14:41 +0000735-->
736
737</div>
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="simplechanges">Making simple changes</a>
742</div>
743
744<div class="doc_text">
745
746<p>There are some primitive transformation operations present in the LLVM
Joel Stanley753eb712002-09-11 22:32:24 +0000747infrastructure that are worth knowing about. When performing
Chris Lattner261efe92003-11-25 01:02:51 +0000748transformations, it's fairly common to manipulate the contents of basic
749blocks. This section describes some of the common methods for doing so
Misha Brukman13fd15c2004-01-15 00:14:41 +0000750and gives example code.</p>
751
752</div>
753
Chris Lattner261efe92003-11-25 01:02:51 +0000754<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000755<div class="doc_subsubsection">
756 <a name="schanges_creating">Creating and inserting new
757 <tt>Instruction</tt>s</a>
758</div>
759
760<div class="doc_text">
761
762<p><i>Instantiating Instructions</i></p>
763
Chris Lattner69bf8a92004-05-23 21:06:58 +0000764<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000765constructor for the kind of instruction to instantiate and provide the necessary
766parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
767(const-ptr-to) <tt>Type</tt>. Thus:</p>
768
769<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
770
771<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
772one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
773subclass is likely to have varying default parameters which change the semantics
774of the instruction, so refer to the <a
775href="/doxygen/classInstruction.html">doxygen documentation for the subclass of
776Instruction</a> that you're interested in instantiating.</p>
777
778<p><i>Naming values</i></p>
779
780<p>It is very useful to name the values of instructions when you're able to, as
781this facilitates the debugging of your transformations. If you end up looking
782at generated LLVM machine code, you definitely want to have logical names
783associated with the results of instructions! By supplying a value for the
784<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
785associate a logical name with the result of the instruction's execution at
786runtime. For example, say that I'm writing a transformation that dynamically
787allocates space for an integer on the stack, and that integer is going to be
788used as some kind of index by some other code. To accomplish this, I place an
789<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
790<tt>Function</tt>, and I'm intending to use it within the same
791<tt>Function</tt>. I might do:</p>
792
793 <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
794
795<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
796execution value, which is a pointer to an integer on the runtime stack.</p>
797
798<p><i>Inserting instructions</i></p>
799
800<p>There are essentially two ways to insert an <tt>Instruction</tt>
801into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
802
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000803<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000804 <li>Insertion into an explicit instruction list
805
806 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
807 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
808 before <tt>*pi</tt>, we do the following: </p>
809
810 <pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre></li>
811
812 <li>Insertion into an implicit instruction list
813
814 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
815 are implicitly associated with an existing instruction list: the instruction
816 list of the enclosing basic block. Thus, we could have accomplished the same
817 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
818 </p>
819
820 <pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
821
822 <p>In fact, this sequence of steps occurs so frequently that the
823 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
824 constructors which take (as a default parameter) a pointer to an
825 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
826 precede. That is, <tt>Instruction</tt> constructors are capable of
827 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
828 provided instruction, immediately before that instruction. Using an
829 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
830 parameter, the above code becomes:</p>
831
832 <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
833
834 <p>which is much cleaner, especially if you're creating a lot of
835instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
836</ul>
837
838</div>
839
840<!--_______________________________________________________________________-->
841<div class="doc_subsubsection">
842 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
843</div>
844
845<div class="doc_text">
846
847<p>Deleting an instruction from an existing sequence of instructions that form a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000848<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
Misha Brukman13fd15c2004-01-15 00:14:41 +0000849you must have a pointer to the instruction that you wish to delete. Second, you
850need to obtain the pointer to that instruction's basic block. You use the
851pointer to the basic block to get its list of instructions and then use the
852erase function to remove your instruction. For example:</p>
853
Chris Lattner261efe92003-11-25 01:02:51 +0000854 <pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
855 href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000856
857</div>
858
859<!--_______________________________________________________________________-->
860<div class="doc_subsubsection">
861 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
862 <tt>Value</tt></a>
863</div>
864
865<div class="doc_text">
866
867<p><i>Replacing individual instructions</i></p>
868
869<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
Chris Lattner261efe92003-11-25 01:02:51 +0000870permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000871and <tt>ReplaceInstWithInst</tt>.</p>
872
Chris Lattner261efe92003-11-25 01:02:51 +0000873<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000874
Chris Lattner261efe92003-11-25 01:02:51 +0000875<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000876 <li><tt>ReplaceInstWithValue</tt>
877
878 <p>This function replaces all uses (within a basic block) of a given
879 instruction with a value, and then removes the original instruction. The
880 following example illustrates the replacement of the result of a particular
881 <tt>AllocaInst</tt> that allocates memory for a single integer with an null
882 pointer to an integer.</p>
883
884 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
885
886 <li><tt>ReplaceInstWithInst</tt>
887
888 <p>This function replaces a particular instruction with another
889 instruction. The following example illustrates the replacement of one
890 <tt>AllocaInst</tt> with another.</p>
891
892 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000893</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000894
895<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
896
897<p>You can use <tt>Value::replaceAllUsesWith</tt> and
898<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
899doxygen documentation for the <a href="/doxygen/classValue.html">Value Class</a>
900and <a href="/doxygen/classUser.html">User Class</a>, respectively, for more
901information.</p>
902
903<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
904include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
905ReplaceInstWithValue, ReplaceInstWithInst -->
906
907</div>
908
Chris Lattner9355b472002-09-06 02:50:58 +0000909<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000910<div class="doc_section">
911 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
912</div>
913<!-- *********************************************************************** -->
914
915<div class="doc_text">
916
917<p>The Core LLVM classes are the primary means of representing the program
Chris Lattner261efe92003-11-25 01:02:51 +0000918being inspected or transformed. The core LLVM classes are defined in
919header files in the <tt>include/llvm/</tt> directory, and implemented in
Misha Brukman13fd15c2004-01-15 00:14:41 +0000920the <tt>lib/VMCore</tt> directory.</p>
921
922</div>
923
924<!-- ======================================================================= -->
925<div class="doc_subsection">
926 <a name="Value">The <tt>Value</tt> class</a>
927</div>
928
929<div>
930
931<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
932<br>
933doxygen info: <a href="/doxygen/classValue.html">Value Class</a></p>
934
935<p>The <tt>Value</tt> class is the most important class in the LLVM Source
936base. It represents a typed value that may be used (among other things) as an
937operand to an instruction. There are many different types of <tt>Value</tt>s,
938such as <a href="#Constant"><tt>Constant</tt></a>s,<a
939href="#Argument"><tt>Argument</tt></a>s. Even <a
940href="#Instruction"><tt>Instruction</tt></a>s and <a
941href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
942
943<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
944for a program. For example, an incoming argument to a function (represented
945with an instance of the <a href="#Argument">Argument</a> class) is "used" by
946every instruction in the function that references the argument. To keep track
947of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
948href="#User"><tt>User</tt></a>s that is using it (the <a
949href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
950graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
951def-use information in the program, and is accessible through the <tt>use_</tt>*
952methods, shown below.</p>
953
954<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
955and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
956method. In addition, all LLVM values can be named. The "name" of the
957<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
958
Chris Lattner261efe92003-11-25 01:02:51 +0000959 <pre> %<b>foo</b> = add int 1, 2<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000960
961<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
962that the name of any value may be missing (an empty string), so names should
963<b>ONLY</b> be used for debugging (making the source code easier to read,
964debugging printouts), they should not be used to keep track of values or map
965between them. For this purpose, use a <tt>std::map</tt> of pointers to the
966<tt>Value</tt> itself instead.</p>
967
968<p>One important aspect of LLVM is that there is no distinction between an SSA
969variable and the operation that produces it. Because of this, any reference to
970the value produced by an instruction (or the value available as an incoming
Chris Lattnerd5fc4fc2004-03-18 14:58:55 +0000971argument, for example) is represented as a direct pointer to the instance of
972the class that
Misha Brukman13fd15c2004-01-15 00:14:41 +0000973represents this value. Although this may take some getting used to, it
974simplifies the representation and makes it easier to manipulate.</p>
975
976</div>
977
978<!-- _______________________________________________________________________ -->
979<div class="doc_subsubsection">
980 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
981</div>
982
983<div class="doc_text">
984
Chris Lattner261efe92003-11-25 01:02:51 +0000985<ul>
986 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
987use-list<br>
988 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
989the use-list<br>
990 <tt>unsigned use_size()</tt> - Returns the number of users of the
991value.<br>
Chris Lattner9355b472002-09-06 02:50:58 +0000992 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
Chris Lattner261efe92003-11-25 01:02:51 +0000993 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
994the use-list.<br>
995 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
996use-list.<br>
997 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
998element in the list.
999 <p> These methods are the interface to access the def-use
1000information in LLVM. As with all other iterators in LLVM, the naming
1001conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001002 </li>
1003 <li><tt><a href="#Type">Type</a> *getType() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001004 <p>This method returns the Type of the Value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001005 </li>
1006 <li><tt>bool hasName() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001007 <tt>std::string getName() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001008 <tt>void setName(const std::string &amp;Name)</tt>
1009 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
1010be aware of the <a href="#nameWarning">precaution above</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001011 </li>
1012 <li><tt>void replaceAllUsesWith(Value *V)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001013
1014 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
1015 href="#User"><tt>User</tt>s</a> of the current value to refer to
1016 "<tt>V</tt>" instead. For example, if you detect that an instruction always
1017 produces a constant value (for example through constant folding), you can
1018 replace all uses of the instruction with the constant like this:</p>
1019
Chris Lattner261efe92003-11-25 01:02:51 +00001020 <pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001021</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001022
1023</div>
1024
1025<!-- ======================================================================= -->
1026<div class="doc_subsection">
1027 <a name="User">The <tt>User</tt> class</a>
1028</div>
1029
1030<div class="doc_text">
1031
1032<p>
1033<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001034doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001035Superclass: <a href="#Value"><tt>Value</tt></a></p>
1036
1037<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
1038refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1039that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1040referring to. The <tt>User</tt> class itself is a subclass of
1041<tt>Value</tt>.</p>
1042
1043<p>The operands of a <tt>User</tt> point directly to the LLVM <a
1044href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1045Single Assignment (SSA) form, there can only be one definition referred to,
1046allowing this direct connection. This connection provides the use-def
1047information in LLVM.</p>
1048
1049</div>
1050
1051<!-- _______________________________________________________________________ -->
1052<div class="doc_subsubsection">
1053 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
1054</div>
1055
1056<div class="doc_text">
1057
1058<p>The <tt>User</tt> class exposes the operand list in two ways: through
1059an index access interface and through an iterator based interface.</p>
1060
Chris Lattner261efe92003-11-25 01:02:51 +00001061<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001062 <li><tt>Value *getOperand(unsigned i)</tt><br>
1063 <tt>unsigned getNumOperands()</tt>
1064 <p> These two methods expose the operands of the <tt>User</tt> in a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001065convenient form for direct access.</p></li>
1066
Chris Lattner261efe92003-11-25 01:02:51 +00001067 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
1068list<br>
1069 <tt>User::op_const_iterator</tt> <tt>use_iterator op_begin()</tt> -
1070Get an iterator to the start of the operand list.<br>
1071 <tt>use_iterator op_end()</tt> - Get an iterator to the end of the
1072operand list.
1073 <p> Together, these methods make up the iterator based interface to
Misha Brukman13fd15c2004-01-15 00:14:41 +00001074the operands of a <tt>User</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001075</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001076
1077</div>
1078
1079<!-- ======================================================================= -->
1080<div class="doc_subsection">
1081 <a name="Instruction">The <tt>Instruction</tt> class</a>
1082</div>
1083
1084<div class="doc_text">
1085
1086<p><tt>#include "</tt><tt><a
1087href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
1088doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
1089Superclasses: <a href="#User"><tt>User</tt></a>, <a
1090href="#Value"><tt>Value</tt></a></p>
1091
1092<p>The <tt>Instruction</tt> class is the common base class for all LLVM
1093instructions. It provides only a few methods, but is a very commonly used
1094class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1095opcode (instruction type) and the parent <a
1096href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1097into. To represent a specific type of instruction, one of many subclasses of
1098<tt>Instruction</tt> are used.</p>
1099
1100<p> Because the <tt>Instruction</tt> class subclasses the <a
1101href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1102way as for other <a href="#User"><tt>User</tt></a>s (with the
1103<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1104<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
1105the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
1106file contains some meta-data about the various different types of instructions
1107in LLVM. It describes the enum values that are used as opcodes (for example
1108<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
1109concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
1110example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1111href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1112this file confuses doxygen, so these enum values don't show up correctly in the
1113<a href="/doxygen/classInstruction.html">doxygen output</a>.</p>
1114
1115</div>
1116
1117<!-- _______________________________________________________________________ -->
1118<div class="doc_subsubsection">
1119 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
1120 class</a>
1121</div>
1122
1123<div class="doc_text">
1124
Chris Lattner261efe92003-11-25 01:02:51 +00001125<ul>
1126 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001127 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
1128this <tt>Instruction</tt> is embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001129 <li><tt>bool mayWriteToMemory()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001130 <p>Returns true if the instruction writes to memory, i.e. it is a
1131 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001132 <li><tt>unsigned getOpcode()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001133 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001134 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001135 <p>Returns another instance of the specified instruction, identical
Chris Lattner261efe92003-11-25 01:02:51 +00001136in all ways to the original except that the instruction has no parent
1137(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
Misha Brukman13fd15c2004-01-15 00:14:41 +00001138and it has no name</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001139</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001140
1141</div>
1142
1143<!-- ======================================================================= -->
1144<div class="doc_subsection">
1145 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1146</div>
1147
1148<div class="doc_text">
1149
1150<p><tt>#include "<a href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001151doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001152Superclass: <a href="#Value"><tt>Value</tt></a></p>
1153
1154<p>This class represents a single entry multiple exit section of the code,
1155commonly known as a basic block by the compiler community. The
1156<tt>BasicBlock</tt> class maintains a list of <a
1157href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
1158Matching the language definition, the last element of this list of instructions
1159is always a terminator instruction (a subclass of the <a
1160href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
1161
1162<p>In addition to tracking the list of instructions that make up the block, the
1163<tt>BasicBlock</tt> class also keeps track of the <a
1164href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
1165
1166<p>Note that <tt>BasicBlock</tt>s themselves are <a
1167href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1168like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1169<tt>label</tt>.</p>
1170
1171</div>
1172
1173<!-- _______________________________________________________________________ -->
1174<div class="doc_subsubsection">
1175 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
1176 class</a>
1177</div>
1178
1179<div class="doc_text">
1180
Chris Lattner261efe92003-11-25 01:02:51 +00001181<ul>
1182 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
1183 href="#Function">Function</a> *Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001184 <p>The <tt>BasicBlock</tt> constructor is used to create new basic
Chris Lattner261efe92003-11-25 01:02:51 +00001185blocks for insertion into a function. The constructor optionally takes
1186a name for the new block, and a <a href="#Function"><tt>Function</tt></a>
1187to insert it into. If the <tt>Parent</tt> parameter is specified, the
1188new <tt>BasicBlock</tt> is automatically inserted at the end of the
1189specified <a href="#Function"><tt>Function</tt></a>, if not specified,
1190the BasicBlock must be manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001191 </li>
1192 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list
1193iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001194 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001195 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,<tt>size()</tt>,<tt>empty()</tt>,<tt>rbegin()</tt>,<tt>rend()
1196- </tt>STL style functions for accessing the instruction list.
1197 <p> These methods and typedefs are forwarding functions that have
1198the same semantics as the standard library methods of the same names.
1199These methods expose the underlying instruction list of a basic block in
1200a way that is easy to manipulate. To get the full complement of
1201container operations (including operations to update the list), you must
Misha Brukman13fd15c2004-01-15 00:14:41 +00001202use the <tt>getInstList()</tt> method.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001203 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
1204 <p> This method is used to get access to the underlying container
1205that actually holds the Instructions. This method must be used when
1206there isn't a forwarding function in the <tt>BasicBlock</tt> class for
1207the operation that you would like to perform. Because there are no
1208forwarding functions for "updating" operations, you need to use this if
Misha Brukman13fd15c2004-01-15 00:14:41 +00001209you want to update the contents of a <tt>BasicBlock</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001210 <li><tt><a href="#Function">Function</a> *getParent()</tt>
1211 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001212the block is embedded into, or a null pointer if it is homeless.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001213 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
1214 <p> Returns a pointer to the terminator instruction that appears at
1215the end of the <tt>BasicBlock</tt>. If there is no terminator
1216instruction, or if the last instruction in the block is not a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001217terminator, then a null pointer is returned.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001218</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001219
1220</div>
1221
1222<!-- ======================================================================= -->
1223<div class="doc_subsection">
1224 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1225</div>
1226
1227<div class="doc_text">
1228
1229<p><tt>#include "<a
1230href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
1231doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
1232Superclasses: <a href="#User"><tt>User</tt></a>, <a
1233href="#Value"><tt>Value</tt></a></p>
1234
1235<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1236href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1237visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1238Because they are visible at global scope, they are also subject to linking with
1239other globals defined in different translation units. To control the linking
1240process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1241<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
1242defined by the <tt>LinkageTypes</tt> enumerator.</p>
1243
1244<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1245<tt>static</tt> in C), it is not visible to code outside the current translation
1246unit, and does not participate in linking. If it has external linkage, it is
1247visible to external code, and does participate in linking. In addition to
1248linkage information, <tt>GlobalValue</tt>s keep track of which <a
1249href="#Module"><tt>Module</tt></a> they are currently part of.</p>
1250
1251<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
1252by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
1253global is always a pointer to its contents. It is important to remember this
1254when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
1255be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
1256subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
1257int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
1258the address of the first element of this array and the value of the
1259<tt>GlobalVariable</tt> are the same, they have different types. The
1260<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
1261is <tt>int.</tt> Because of this, accessing a global value requires you to
1262dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
1263can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
1264Language Reference Manual</a>.</p>
1265
1266</div>
1267
1268<!-- _______________________________________________________________________ -->
1269<div class="doc_subsubsection">
1270 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
1271 class</a>
1272</div>
1273
1274<div class="doc_text">
1275
Chris Lattner261efe92003-11-25 01:02:51 +00001276<ul>
1277 <li><tt>bool hasInternalLinkage() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001278 <tt>bool hasExternalLinkage() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001279 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
1280 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
1281 <p> </p>
1282 </li>
1283 <li><tt><a href="#Module">Module</a> *getParent()</tt>
1284 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001285GlobalValue is currently embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001286</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001287
1288</div>
1289
1290<!-- ======================================================================= -->
1291<div class="doc_subsection">
1292 <a name="Function">The <tt>Function</tt> class</a>
1293</div>
1294
1295<div class="doc_text">
1296
1297<p><tt>#include "<a
1298href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
1299info: <a href="/doxygen/classFunction.html">Function Class</a><br> Superclasses:
1300<a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1301href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1302
1303<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
1304actually one of the more complex classes in the LLVM heirarchy because it must
1305keep track of a large amount of data. The <tt>Function</tt> class keeps track
1306of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1307href="#Argument"><tt>Argument</tt></a>s, and a <a
1308href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
1309
1310<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
1311commonly used part of <tt>Function</tt> objects. The list imposes an implicit
1312ordering of the blocks in the function, which indicate how the code will be
1313layed out by the backend. Additionally, the first <a
1314href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1315<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
1316block. There are no implicit exit nodes, and in fact there may be multiple exit
1317nodes from a single <tt>Function</tt>. If the <a
1318href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1319the <tt>Function</tt> is actually a function declaration: the actual body of the
1320function hasn't been linked in yet.</p>
1321
1322<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1323<tt>Function</tt> class also keeps track of the list of formal <a
1324href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1325container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1326nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1327the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
1328
1329<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
1330LLVM feature that is only used when you have to look up a value by name. Aside
1331from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
1332internally to make sure that there are not conflicts between the names of <a
1333href="#Instruction"><tt>Instruction</tt></a>s, <a
1334href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1335href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
1336
1337</div>
1338
1339<!-- _______________________________________________________________________ -->
1340<div class="doc_subsubsection">
1341 <a name="m_Function">Important Public Members of the <tt>Function</tt>
1342 class</a>
1343</div>
1344
1345<div class="doc_text">
1346
Chris Lattner261efe92003-11-25 01:02:51 +00001347<ul>
1348 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001349 *Ty, bool isInternal, const std::string &amp;N = "", Module* Parent = 0)</tt>
1350
1351 <p>Constructor used when you need to create new <tt>Function</tt>s to add
1352 the the program. The constructor must specify the type of the function to
1353 create and whether or not it should start out with internal or external
1354 linkage. The&nbsp;<a href="#FunctionType"><tt>FunctionType</tt></a> argument
1355 specifies the formal arguments and return value for the function. The same
1356 <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
1357 create multiple functions. The <tt>Parent</tt> argument specifies the Module
1358 in which the function is defined. If this argument is provided, the function
1359 will automatically be inserted into that module's list of
1360 functions.</p></li>
1361
Chris Lattner261efe92003-11-25 01:02:51 +00001362 <li><tt>bool isExternal()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001363
1364 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
1365 function is "external", it does not have a body, and thus must be resolved
1366 by linking with a function defined in a different translation unit.</p></li>
1367
Chris Lattner261efe92003-11-25 01:02:51 +00001368 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001369 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001370
1371 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1372 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
1373
1374 <p>These are forwarding methods that make it easy to access the contents of
1375 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1376 list.</p></li>
1377
Chris Lattner261efe92003-11-25 01:02:51 +00001378 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001379
1380 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
1381 is necessary to use when you need to update the list or perform a complex
1382 action that doesn't have a forwarding method.</p></li>
1383
Chris Lattner261efe92003-11-25 01:02:51 +00001384 <li><tt>Function::aiterator</tt> - Typedef for the argument list
1385iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001386 <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001387
1388 <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
1389 <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt>
1390
1391 <p>These are forwarding methods that make it easy to access the contents of
1392 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
1393 list.</p></li>
1394
Chris Lattner261efe92003-11-25 01:02:51 +00001395 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001396
1397 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1398 necessary to use when you need to update the list or perform a complex
1399 action that doesn't have a forwarding method.</p></li>
1400
Chris Lattner261efe92003-11-25 01:02:51 +00001401 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001402
1403 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1404 function. Because the entry block for the function is always the first
1405 block, this returns the first block of the <tt>Function</tt>.</p></li>
1406
Chris Lattner261efe92003-11-25 01:02:51 +00001407 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1408 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001409
1410 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
1411 <tt>Function</tt> and returns the return type of the function, or the <a
1412 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
1413 function.</p></li>
1414
Chris Lattner261efe92003-11-25 01:02:51 +00001415 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001416
Chris Lattner261efe92003-11-25 01:02:51 +00001417 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001418 for this <tt>Function</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001419</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001420
1421</div>
1422
1423<!-- ======================================================================= -->
1424<div class="doc_subsection">
1425 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1426</div>
1427
1428<div class="doc_text">
1429
1430<p><tt>#include "<a
1431href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
1432<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001433doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable
Misha Brukman13fd15c2004-01-15 00:14:41 +00001434Class</a><br> Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1435href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1436
1437<p>Global variables are represented with the (suprise suprise)
1438<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
1439subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
1440always referenced by their address (global values must live in memory, so their
1441"name" refers to their address). See <a
1442href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global variables
1443may have an initial value (which must be a <a
1444href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, they
1445may be marked as "constant" themselves (indicating that their contents never
1446change at runtime).</p>
1447
1448</div>
1449
1450<!-- _______________________________________________________________________ -->
1451<div class="doc_subsubsection">
1452 <a name="m_GlobalVariable">Important Public Members of the
1453 <tt>GlobalVariable</tt> class</a>
1454</div>
1455
1456<div class="doc_text">
1457
Chris Lattner261efe92003-11-25 01:02:51 +00001458<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001459 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
1460 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
1461 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
1462
1463 <p>Create a new global variable of the specified type. If
1464 <tt>isConstant</tt> is true then the global variable will be marked as
1465 unchanging for the program. The Linkage parameter specifies the type of
1466 linkage (internal, external, weak, linkonce, appending) for the variable. If
1467 the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
1468 the resultant global variable will have internal linkage. AppendingLinkage
1469 concatenates together all instances (in different translation units) of the
1470 variable into a single variable but is only applicable to arrays. &nbsp;See
1471 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
1472 further details on linkage types. Optionally an initializer, a name, and the
1473 module to put the variable into may be specified for the global variable as
1474 well.</p></li>
1475
Chris Lattner261efe92003-11-25 01:02:51 +00001476 <li><tt>bool isConstant() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001477
1478 <p>Returns true if this is a global variable that is known not to
1479 be modified at runtime.</p></li>
1480
Chris Lattner261efe92003-11-25 01:02:51 +00001481 <li><tt>bool hasInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001482
1483 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
1484
Chris Lattner261efe92003-11-25 01:02:51 +00001485 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001486
1487 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
1488 to call this method if there is no initializer.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001489</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001490
1491</div>
1492
1493<!-- ======================================================================= -->
1494<div class="doc_subsection">
1495 <a name="Module">The <tt>Module</tt> class</a>
1496</div>
1497
1498<div class="doc_text">
1499
1500<p><tt>#include "<a
1501href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
1502<a href="/doxygen/classModule.html">Module Class</a></p>
1503
1504<p>The <tt>Module</tt> class represents the top level structure present in LLVM
1505programs. An LLVM module is effectively either a translation unit of the
1506original program or a combination of several translation units merged by the
1507linker. The <tt>Module</tt> class keeps track of a list of <a
1508href="#Function"><tt>Function</tt></a>s, a list of <a
1509href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1510href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1511helpful member functions that try to make common operations easy.</p>
1512
1513</div>
1514
1515<!-- _______________________________________________________________________ -->
1516<div class="doc_subsubsection">
1517 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
1518</div>
1519
1520<div class="doc_text">
1521
Chris Lattner261efe92003-11-25 01:02:51 +00001522<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001523 <li><tt>Module::Module(std::string name = "")</tt></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001524</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001525
1526<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
1527provide a name for it (probably based on the name of the translation unit).</p>
1528
Chris Lattner261efe92003-11-25 01:02:51 +00001529<ul>
1530 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
Chris Lattner0377de42002-09-06 14:50:55 +00001531 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001532
1533 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1534 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt>
1535
1536 <p>These are forwarding methods that make it easy to access the contents of
1537 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1538 list.</p></li>
1539
Chris Lattner261efe92003-11-25 01:02:51 +00001540 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001541
1542 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
1543 necessary to use when you need to update the list or perform a complex
1544 action that doesn't have a forwarding method.</p>
1545
1546 <p><!-- Global Variable --></p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001547</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001548
1549<hr>
1550
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001551<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001552 <li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
1553
1554 <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
1555
1556 <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
1557 <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt>
1558
1559 <p> These are forwarding methods that make it easy to access the contents of
1560 a <tt>Module</tt> object's <a
1561 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
1562
1563 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
1564
1565 <p>Returns the list of <a
1566 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
1567 use when you need to update the list or perform a complex action that
1568 doesn't have a forwarding method.</p>
1569
1570 <p><!-- Symbol table stuff --> </p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001571</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001572
1573<hr>
1574
1575<ul>
1576 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
1577
1578 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
1579 for this <tt>Module</tt>.</p>
1580
1581 <p><!-- Convenience methods --></p></li>
1582</ul>
1583
1584<hr>
1585
1586<ul>
1587 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
1588 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
1589
1590 <p>Look up the specified function in the <tt>Module</tt> <a
1591 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1592 <tt>null</tt>.</p></li>
1593
1594 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
1595 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
1596
1597 <p>Look up the specified function in the <tt>Module</tt> <a
1598 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1599 external declaration for the function and return it.</p></li>
1600
1601 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
1602
1603 <p>If there is at least one entry in the <a
1604 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1605 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1606 string.</p></li>
1607
1608 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
1609 href="#Type">Type</a> *Ty)</tt>
1610
1611 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
1612 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
1613 name, true is returned and the <a
1614 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
1615</ul>
1616
1617</div>
1618
1619<!-- ======================================================================= -->
1620<div class="doc_subsection">
1621 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1622</div>
1623
1624<div class="doc_text">
1625
1626<p>Constant represents a base class for different types of constants. It
1627is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1628ConstantArray etc for representing the various types of Constants.</p>
1629
1630</div>
1631
1632<!-- _______________________________________________________________________ -->
1633<div class="doc_subsubsection">
1634 <a name="m_Value">Important Public Methods</a>
1635</div>
1636
1637<div class="doc_text">
1638
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001639<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001640 <li><tt>bool isConstantExpr()</tt>: Returns true if it is a
1641ConstantExpr
1642 <hr> Important Subclasses of Constant
1643 <p> </p>
1644 <ul>
1645 <li>ConstantSInt : This subclass of Constant represents a signed
1646integer constant.
1647 <ul>
1648 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
1649this constant. </li>
1650 </ul>
1651 </li>
1652 <li>ConstantUInt : This class represents an unsigned integer.
1653 <ul>
1654 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value
1655of this constant. </li>
1656 </ul>
1657 </li>
1658 <li>ConstantFP : This class represents a floating point constant.
1659 <ul>
1660 <li><tt>double getValue() const</tt>: Returns the underlying value of
1661this constant. </li>
1662 </ul>
1663 </li>
1664 <li>ConstantBool : This represents a boolean constant.
1665 <ul>
1666 <li><tt>bool getValue() const</tt>: Returns the underlying value of
1667this constant. </li>
1668 </ul>
1669 </li>
1670 <li>ConstantArray : This represents a constant array.
1671 <ul>
1672 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
1673Returns a Vecotr of component constants that makeup this array. </li>
1674 </ul>
1675 </li>
1676 <li>ConstantStruct : This represents a constant struct.
1677 <ul>
1678 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
1679Returns a Vecotr of component constants that makeup this array. </li>
1680 </ul>
1681 </li>
1682 <li>ConstantPointerRef : This represents a constant pointer value
1683that is initialized to point to a global value, which lies at a
1684constant fixed address.
1685 <ul>
1686 <li><tt>GlobalValue *getValue()</tt>: Returns the global
1687value to which this pointer is pointing to. </li>
1688 </ul>
1689 </li>
1690 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001691 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001692</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001693
1694</div>
1695
1696<!-- ======================================================================= -->
1697<div class="doc_subsection">
1698 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
1699</div>
1700
1701<div class="doc_text">
1702
1703<p>Type as noted earlier is also a subclass of a Value class. Any primitive
1704type (like int, short etc) in LLVM is an instance of Type Class. All other
1705types are instances of subclasses of type like FunctionType, ArrayType
1706etc. DerivedType is the interface for all such dervied types including
1707FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
1708be recursive (StructType). There exists exactly one instance of any type
1709structure at a time. This allows using pointer equality of Type *s for comparing
1710types.</p>
1711
1712</div>
1713
1714<!-- _______________________________________________________________________ -->
1715<div class="doc_subsubsection">
1716 <a name="m_Value">Important Public Methods</a>
1717</div>
1718
1719<div class="doc_text">
1720
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001721<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001722
Misha Brukman13fd15c2004-01-15 00:14:41 +00001723 <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
1724 is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
1725 not true for Float and Double. </li>
1726
1727 <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
1728 unsigned. This is not quite the complement of isSigned... nonnumeric types
1729 return false as they do with isSigned. This returns true for UByteTy,
1730 UShortTy, UIntTy, and ULongTy. </li>
1731
1732 <li><tt>bool isInteger() const</tt>: Equilivent to isSigned() || isUnsigned(),
1733 but with only a single virtual function invocation.</li>
1734
1735 <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
1736 type, which is either Bool type or one of the Integer types.</li>
1737
1738 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
1739 floating point types.</li>
1740
Misha Brukman13fd15c2004-01-15 00:14:41 +00001741 <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
1742 this type can be converted to 'Ty' without any reinterpretation of bits. For
Chris Lattner69bf8a92004-05-23 21:06:58 +00001743 example, uint to int or one pointer type to another.</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001744
Chris Lattner69bf8a92004-05-23 21:06:58 +00001745<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001746 <p>Derived Types</p>
1747
Chris Lattner261efe92003-11-25 01:02:51 +00001748 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001749 <li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattner261efe92003-11-25 01:02:51 +00001750 <ul>
1751 <li><tt>const Type * getElementType() const</tt>: Returns the type of
1752each of the elements in the sequential type. </li>
1753 </ul>
1754 </li>
1755 <li>ArrayType : This is a subclass of SequentialType and defines
1756interface for array types.
1757 <ul>
1758 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
1759elements in the array. </li>
1760 </ul>
1761 </li>
1762 <li>PointerType : Subclass of SequentialType for pointer types. </li>
1763 <li>StructType : subclass of DerivedTypes for struct types </li>
1764 <li>FunctionType : subclass of DerivedTypes for function types.
1765 <ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001766 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
1767 function</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001768 <li><tt> const Type * getReturnType() const</tt>: Returns the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001769 return type of the function.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001770 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
Misha Brukman13fd15c2004-01-15 00:14:41 +00001771 the type of the ith parameter.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001772 <li><tt> const unsigned getNumParams() const</tt>: Returns the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001773 number of formal parameters.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001774 </ul>
1775 </li>
1776 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001777 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001778</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001779
1780</div>
1781
1782<!-- ======================================================================= -->
1783<div class="doc_subsection">
1784 <a name="Argument">The <tt>Argument</tt> class</a>
1785</div>
1786
1787<div class="doc_text">
1788
1789<p>This subclass of Value defines the interface for incoming formal
Chris Lattner261efe92003-11-25 01:02:51 +00001790arguments to a function. A Function maitanis a list of its formal
Misha Brukman13fd15c2004-01-15 00:14:41 +00001791arguments. An argument has a pointer to the parent Function.</p>
1792
1793</div>
1794
Reid Spencer096603a2004-05-26 08:41:35 +00001795<!-- ======================================================================= -->
1796<div class="doc_subsection">
1797 <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
1798</div>
1799<div class="doc_text">
1800<p>This class provides a symbol table that the
1801<a href="#Function"><tt>Function</tt></a> and <a href="#Module">
1802<tt>Module</tt></a> classes use for naming definitions. The symbol table can
1803provide a name for any <a href="#Value"><tt>Value</tt></a> or
1804<a href="#Type"><tt>Type</tt></a>. <tt>SymbolTable</tt> is an abstract data
1805type. It hides the data it contains and provides access to it through a
1806controlled interface.</p>
1807
1808<p>To use the <tt>SymbolTable</tt> well, you need to understand the
1809structure of the information it holds. The class contains two
1810<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of
1811<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>.
1812The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
1813are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
1814however, are stored in a single dimension and accessed only by name.</p>
1815
1816<p>The interface of this class provides three basic types of operations:
1817<ol>
1818 <li><em>Accessors</em>. Accessors provide read-only access to information
1819 such as finding a value for a name with the
1820 <a href="#SymbolTable_lookup">lookup</a> method.</li>
1821 <li><em>Mutators</em>. Mutators allow the user to add information to the
1822 <tt>SymbolTable</tt> with methods like
1823 <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
1824 <li><em>Iterators</em>. Iterators allow the user to traverse the content
1825 of the symbol table in well defined ways, such as the method
1826 <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
1827</ol>
1828
1829<h3>Accessors</h3>
1830<dl>
1831 <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
1832 </dt>
1833 <dd>The <tt>lookup</tt> method searches the type plane given by the
1834 <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
1835 If a suitable <tt>Value</tt> is not found, null is returned.</dd>
1836
1837 <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
1838 <dd>The <tt>lookupType</tt> method searches through the types for a
1839 <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
1840 is not found, null is returned.</dd>
1841
1842 <dt><tt>bool hasTypes() const</tt>:</dt>
1843 <dd>This function returns true if an entry has been made into the type
1844 map.</dd>
1845
1846 <dt><tt>bool isEmpty() const</tt>:</dt>
1847 <dd>This function returns true if both the value and types maps are
1848 empty</dd>
1849
1850 <dt><tt>std::string get_name(const Value*) const</tt>:</dt>
1851 <dd>This function returns the name of the Value provided or the empty
1852 string if the Value is not in the symbol table.</dd>
1853
1854 <dt><tt>std::string get_name(const Type*) const</tt>:</dt>
1855 <dd>This function returns the name of the Type provided or the empty
1856 string if the Type is not in the symbol table.</dd>
1857</dl>
1858
1859<h3>Mutators</h3>
1860<dl>
1861 <dt><tt>void insert(Value *Val)</tt>:</dt>
1862 <dd>This method adds the provided value to the symbol table. The Value must
1863 have both a name and a type which are extracted and used to place the value
1864 in the correct type plane under the value's name.</dd>
1865
1866 <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
1867 <dd> Inserts a constant or type into the symbol table with the specified
1868 name. There can be a many to one mapping between names and constants
1869 or types.</dd>
1870
1871 <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
1872 <dd> Inserts a type into the symbol table with the specified name. There
1873 can be a many-to-one mapping between names and types. This method
1874 allows a type with an existing entry in the symbol table to get
1875 a new name.</dd>
1876
1877 <dt><tt>void remove(Value* Val)</tt>:</dt>
1878 <dd> This method removes a named value from the symbol table. The
1879 type and name of the Value are extracted from \p N and used to
1880 lookup the Value in the correct type plane. If the Value is
1881 not in the symbol table, this method silently ignores the
1882 request.</dd>
1883
1884 <dt><tt>void remove(Type* Typ)</tt>:</dt>
1885 <dd> This method removes a named type from the symbol table. The
1886 name of the type is extracted from \P T and used to look up
1887 the Type in the type map. If the Type is not in the symbol
1888 table, this method silently ignores the request.</dd>
1889
1890 <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
1891 <dd> Remove a constant or type with the specified name from the
1892 symbol table.</dd>
1893
1894 <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
1895 <dd> Remove a type with the specified name from the symbol table.
1896 Returns the removed Type.</dd>
1897
1898 <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
1899 <dd> Removes a specific value from the symbol table.
1900 Returns the removed value.</dd>
1901
1902 <dt><tt>bool strip()</tt>:</dt>
1903 <dd> This method will strip the symbol table of its names leaving
1904 the type and values. </dd>
1905
1906 <dt><tt>void clear()</tt>:</dt>
1907 <dd>Empty the symbol table completely.</dd>
1908</dl>
1909
1910<h3>Iteration</h3>
1911<p>The following functions describe three types of iterators you can obtain
1912the beginning or end of the sequence for both const and non-const. It is
1913important to keep track of the different kinds of iterators. There are
1914three idioms worth pointing out:</p>
1915<table class="doc_table">
1916 <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
1917 <tr>
1918 <td>Planes Of name/Value maps</td><td>PI</td>
1919 <td><tt><pre>
1920for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
1921PE = ST.plane_end(); PI != PE; ++PI ) {
1922 PI-&gt;first // This is the Type* of the plane
1923 PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
1924 </pre></tt></td>
1925 </tr>
1926 <tr>
1927 <td>All name/Type Pairs</td><td>TI</td>
1928 <td><tt><pre>
1929for (SymbolTable::type_const_iterator TI = ST.type_begin(),
1930 TE = ST.type_end(); TI != TE; ++TI )
1931 TI-&gt;first // This is the name of the type
1932 TI-&gt;second // This is the Type* value associated with the name
1933 </pre></tt></td>
1934 </tr>
1935 <tr>
1936 <td>name/Value pairs in a plane</td><td>VI</td>
1937 <td><tt><pre>
1938for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
1939 VE = ST.value_end(SomeType); VI != VE; ++VI )
1940 VI-&gt;first // This is the name of the Value
1941 VI-&gt;second // This is the Value* value associated with the name
1942 </pre></tt></td>
1943 </tr>
1944</table>
1945<p>Using the recommended iterator names and idioms will help you avoid
1946making mistakes. Of particular note, make sure that whenever you use
1947value_begin(SomeType) that you always compare the resulting iterator
1948with value_end(SomeType) not value_end(SomeOtherType) or else you
1949will loop infinitely.</p>
1950
1951<dl>
1952
1953 <dt><tt>plane_iterator plane_begin()</tt>:</dt>
1954 <dd>Get an iterator that starts at the beginning of the type planes.
1955 The iterator will iterate over the Type/ValueMap pairs in the
1956 type planes. </dd>
1957
1958 <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
1959 <dd>Get a const_iterator that starts at the beginning of the type
1960 planes. The iterator will iterate over the Type/ValueMap pairs
1961 in the type planes. </dd>
1962
1963 <dt><tt>plane_iterator plane_end()</tt>:</dt>
1964 <dd>Get an iterator at the end of the type planes. This serves as
1965 the marker for end of iteration over the type planes.</dd>
1966
1967 <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
1968 <dd>Get a const_iterator at the end of the type planes. This serves as
1969 the marker for end of iteration over the type planes.</dd>
1970
1971 <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
1972 <dd>Get an iterator that starts at the beginning of a type plane.
1973 The iterator will iterate over the name/value pairs in the type plane.
1974 Note: The type plane must already exist before using this.</dd>
1975
1976 <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
1977 <dd>Get a const_iterator that starts at the beginning of a type plane.
1978 The iterator will iterate over the name/value pairs in the type plane.
1979 Note: The type plane must already exist before using this.</dd>
1980
1981 <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
1982 <dd>Get an iterator to the end of a type plane. This serves as the marker
1983 for end of iteration of the type plane.
1984 Note: The type plane must already exist before using this.</dd>
1985
1986 <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
1987 <dd>Get a const_iterator to the end of a type plane. This serves as the
1988 marker for end of iteration of the type plane.
1989 Note: the type plane must already exist before using this.</dd>
1990
1991 <dt><tt>type_iterator type_begin()</tt>:</dt>
1992 <dd>Get an iterator to the start of the name/Type map.</dd>
1993
1994 <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
1995 <dd> Get a const_iterator to the start of the name/Type map.</dd>
1996
1997 <dt><tt>type_iterator type_end()</tt>:</dt>
1998 <dd>Get an iterator to the end of the name/Type map. This serves as the
1999 marker for end of iteration of the types.</dd>
2000
2001 <dt><tt>type_const_iterator type_end() const</tt>:</dt>
2002 <dd>Get a const-iterator to the end of the name/Type map. This serves
2003 as the marker for end of iteration of the types.</dd>
2004
2005 <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
2006 <dd>This method returns a plane_const_iterator for iteration over
2007 the type planes starting at a specific plane, given by \p Ty.</dd>
2008
2009 <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
2010 <dd>This method returns a plane_iterator for iteration over the
2011 type planes starting at a specific plane, given by \p Ty.</dd>
2012
2013 <dt><tt>const ValueMap* findPlane( const Type* Typ ) cons</tt>:</dt>
2014 <dd>This method returns a ValueMap* for a specific type plane. This
2015 interface is deprecated and may go away in the future.</dd>
2016</dl>
2017</div>
2018
Chris Lattner9355b472002-09-06 02:50:58 +00002019<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +00002020<hr>
2021<address>
2022 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2023 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2024 <a href="http://validator.w3.org/check/referer"><img
2025 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
2026
2027 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
2028 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2029 <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
2030 Last modified: $Date$
2031</address>
2032
Chris Lattner261efe92003-11-25 01:02:51 +00002033</body>
2034</html>
Reid Spencer096603a2004-05-26 08:41:35 +00002035<!-- vim: sw=2 noai
2036-->