blob: 89098c21e6004d4faf75ce115af516a449c69825 [file] [log] [blame]
Chris Lattner9355b472002-09-06 02:50:58 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><title>LLVM Programmer's Manual</title></head>
3
4<body bgcolor=white>
5
Chris Lattner9355b472002-09-06 02:50:58 +00006<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
7<tr><td>&nbsp; <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
8</tr></table>
9
10<ol>
11 <li><a href="#introduction">Introduction</a>
12 <li><a href="#general">General Information</a>
13 <ul>
14 <li><a href="#stl">The C++ Standard Template Library</a>
Chris Lattner986e0c92002-09-22 19:38:40 +000015<!--
16 <li>The <tt>-time-passes</tt> option
17 <li>How to use the LLVM Makefile system
18 <li>How to write a regression test
19-->
20 </ul>
21 <li><a href="#apis">Important and useful LLVM APIs</a>
22 <ul>
Chris Lattner1d43fd42002-09-09 05:53:21 +000023 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
24 <tt>dyn_cast&lt;&gt;</tt> templates</a>
Chris Lattner986e0c92002-09-22 19:38:40 +000025 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp;
26 <tt>-debug</tt> option</a>
Chris Lattner84b7f8d2003-08-01 22:20:59 +000027 <ul>
28 <li><a href="#DEBUG_TYPE">Fine grained debug info with
29 <tt>DEBUG_TYPE</tt> and the <tt>-debug-only</tt> option</a/>
30 </ul>
Chris Lattner986e0c92002-09-22 19:38:40 +000031 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp;
32 <tt>-stats</tt> option</a>
33<!--
34 <li>The <tt>InstVisitor</tt> template
35 <li>The general graph API
36-->
Chris Lattner9355b472002-09-06 02:50:58 +000037 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000038 <li><a href="#common">Helpful Hints for Common Operations</a>
39 <ul>
40 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
41 <ul>
42 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
43 in a <tt>Function</tt></a>
44 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
45 in a <tt>BasicBlock</tt></a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000046 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
47 in a <tt>Function</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000048 <li><a href="#iterate_convert">Turning an iterator into a class
49 pointer</a>
Chris Lattnerf1ebdc32002-09-06 22:09:21 +000050 <li><a href="#iterate_complex">Finding call sites: a more complex
51 example</a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000052 <li><a href="#iterate_chains">Iterating over def-use &amp; use-def
53 chains</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000054 </ul>
55 <li><a href="#simplechanges">Making simple changes</a>
56 <ul>
Joel Stanley753eb712002-09-11 22:32:24 +000057 <li><a href="#schanges_creating">Creating and inserting new
58 <tt>Instruction</tt>s</a>
59 <li><a href="#schanges_deleting">Deleting
60 <tt>Instruction</tt>s</a>
61 <li><a href="#schanges_replacing">Replacing an
62 <tt>Instruction</tt> with another <tt>Value</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000063 </ul>
64<!--
65 <li>Working with the Control Flow Graph
66 <ul>
67 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
68 <li>
69 <li>
70 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000071-->
72 </ul>
Joel Stanley9b96c442002-09-06 21:55:13 +000073 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000074 <ul>
75 <li><a href="#Value">The <tt>Value</tt> class</a>
76 <ul>
77 <li><a href="#User">The <tt>User</tt> class</a>
78 <ul>
79 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
80 <ul>
81 <li>
Chris Lattner9355b472002-09-06 02:50:58 +000082 </ul>
83 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
84 <ul>
85 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
86 <li><a href="#Function">The <tt>Function</tt> class</a>
87 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
88 </ul>
89 <li><a href="#Module">The <tt>Module</tt> class</a>
90 <li><a href="#Constant">The <tt>Constant</tt> class</a>
91 <ul>
92 <li>
93 <li>
94 </ul>
95 </ul>
96 <li><a href="#Type">The <tt>Type</tt> class</a>
97 <li><a href="#Argument">The <tt>Argument</tt> class</a>
98 </ul>
99 <li>The <tt>SymbolTable</tt> class
100 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
101 <ul>
102 <li>Creating, inserting, moving and deleting from LLVM lists
103 </ul>
104 <li>Important iterator invalidation semantics to be aware of
105 </ul>
106
Chris Lattner6b121f12002-09-10 15:20:46 +0000107 <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
108 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and
Chris Lattnerf1ebdc32002-09-06 22:09:21 +0000109 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p>
Chris Lattner9355b472002-09-06 02:50:58 +0000110</ol>
111
112
113<!-- *********************************************************************** -->
114<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
115<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
116<a name="introduction">Introduction
117</b></font></td></tr></table><ul>
118<!-- *********************************************************************** -->
119
Joel Stanley9b96c442002-09-06 21:55:13 +0000120This document is meant to highlight some of the important classes and interfaces
121available in the LLVM source-base. This manual is not intended to explain what
Chris Lattner9355b472002-09-06 02:50:58 +0000122LLVM is, how it works, and what LLVM code looks like. It assumes that you know
123the basics of LLVM and are interested in writing transformations or otherwise
124analyzing or manipulating the code.<p>
125
126This document should get you oriented so that you can find your way in the
127continuously growing source code that makes up the LLVM infrastructure. Note
128that this manual is not intended to serve as a replacement for reading the
129source code, so if you think there should be a method in one of these classes to
130do something, but it's not listed, check the source. Links to the <a
131href="/doxygen/">doxygen</a> sources are provided to make this as easy as
132possible.<p>
133
134The first section of this document describes general information that is useful
135to know when working in the LLVM infrastructure, and the second describes the
136Core LLVM classes. In the future this manual will be extended with information
137describing how to use extension libraries, such as dominator information, CFG
138traversal routines, and useful utilities like the <tt><a
139href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
140
141
142<!-- *********************************************************************** -->
143</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
144<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
145<a name="general">General Information
146</b></font></td></tr></table><ul>
147<!-- *********************************************************************** -->
148
149This section contains general information that is useful if you are working in
150the LLVM source-base, but that isn't specific to any particular API.<p>
151
152
153<!-- ======================================================================= -->
154</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
155<tr><td>&nbsp;</td><td width="100%">&nbsp;
156<font color="#EEEEFF" face="Georgia,Palatino"><b>
157<a name="stl">The C++ Standard Template Library</a>
158</b></font></td></tr></table><ul>
159
160LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
161more than you are used to, or have seen before. Because of this, you might want
162to do a little background reading in the techniques used and capabilities of the
163library. There are many good pages that discuss the STL, and several books on
164the subject that you can get, so it will not be discussed in this document.<p>
165
166Here are some useful links:<p>
167<ol>
Chris Lattnerab0577b2002-09-22 21:25:12 +0000168<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++
Chris Lattner9355b472002-09-06 02:50:58 +0000169Library reference</a> - an excellent reference for the STL and other parts of
Chris Lattnere9ddc7f2002-10-21 02:38:02 +0000170the standard C++ library.
171
172<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
173O'Reilly book in the making. It has a decent <a
174href="http://www.tempest-sw.com/cpp/ch13-libref.html">Standard Library
175Reference</a> that rivals Dinkumware's, and is actually free until the book is
176published.
Chris Lattner9355b472002-09-06 02:50:58 +0000177
178<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
179Questions</a>
180
181<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
182Contains a useful <a
183href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
184STL</a>.
185
186<li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
187Page</a>
188
189</ol><p>
190
191You are also encouraged to take a look at the <a
192href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
193to write maintainable code more than where to put your curly braces.<p>
194
195
Chris Lattner986e0c92002-09-22 19:38:40 +0000196<!-- *********************************************************************** -->
197</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
198<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
199<a name="apis">Important and useful LLVM APIs
200</b></font></td></tr></table><ul>
201<!-- *********************************************************************** -->
202
203Here we highlight some LLVM APIs that are generally useful and good to know
204about when writing transformations.<p>
205
Chris Lattner1d43fd42002-09-09 05:53:21 +0000206<!-- ======================================================================= -->
207</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
208<tr><td>&nbsp;</td><td width="100%">&nbsp;
209<font color="#EEEEFF" face="Georgia,Palatino"><b>
210<a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
211</b></font></td></tr></table><ul>
212
Chris Lattner979d9b72002-09-10 00:39:05 +0000213The LLVM source-base makes extensive use of a custom form of RTTI. These
214templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
215operator, but they don't have some drawbacks (primarily stemming from the fact
216that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that have a v-table).
217Because they are used so often, you must know what they do and how they work.
218All of these templates are defined in the <a
219href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a> file (note
220that you very rarely have to include this file directly).<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000221
Chris Lattner979d9b72002-09-10 00:39:05 +0000222<dl>
223
224<dt><tt>isa&lt;&gt;</tt>:
225
226<dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
227"<tt>instanceof</tt>" operator. It returns true or false depending on whether a
228reference or pointer points to an instance of the specified class. This can be
229very useful for constraint checking of various sorts (example below).<p>
230
231
232<dt><tt>cast&lt;&gt;</tt>:
233
234<dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
235converts a pointer or reference from a base class to a derived cast, causing an
236assertion failure if it is not really an instance of the right type. This
237should be used in cases where you have some information that makes you believe
238that something is of the right type. An example of the <tt>isa&lt;&gt;</tt> and
239<tt>cast&lt;&gt;</tt> template is:<p>
240
241<pre>
242static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
243 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
244 return true;
245
246 <i>// Otherwise, it must be an instruction...</i>
247 return !L->contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)->getParent());
248</pre><p>
249
250Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed by a
251<tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt> operator.<p>
252
253
254<dt><tt>dyn_cast&lt;&gt;</tt>:
255
256<dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
257checks to see if the operand is of the specified type, and if so, returns a
258pointer to it (this operator does not work with references). If the operand is
259not of the correct type, a null pointer is returned. Thus, this works very much
260like the <tt>dynamic_cast</tt> operator in C++, and should be used in the same
Chris Lattner6b121f12002-09-10 15:20:46 +0000261circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used in an
262<tt>if</tt> statement or some other flow control statement like this:<p>
263
264<pre>
265 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
266 ...
267 }
268</pre><p>
269
270This form of the <tt>if</tt> statement effectively combines together a call to
271<tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one statement,
272which is very convenient.<p>
273
274Another common example is:<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000275
276<pre>
277 <i>// Loop over all of the phi nodes in a basic block</i>
278 BasicBlock::iterator BBI = BB->begin();
Chris Lattner6a547102003-04-23 16:26:15 +0000279 for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)
Chris Lattner979d9b72002-09-10 00:39:05 +0000280 cerr &lt;&lt; *PN;
281</pre><p>
282
Chris Lattner6b121f12002-09-10 15:20:46 +0000283Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
284<tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused. In
285particular you should not use big chained <tt>if/then/else</tt> blocks to check
286for lots of different variants of classes. If you find yourself wanting to do
287this, it is much cleaner and more efficient to use the InstVisitor class to
288dispatch over the instruction type directly.<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000289
290
Chris Lattner6b121f12002-09-10 15:20:46 +0000291<dt><tt>cast_or_null&lt;&gt;</tt>:
292
293<dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
294<tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
Joel Stanley753eb712002-09-11 22:32:24 +0000295argument (which it then propagates). This can sometimes be useful, allowing you
Chris Lattner6b121f12002-09-10 15:20:46 +0000296to combine several null checks into one.<p>
297
298
299<dt><tt>dyn_cast_or_null&lt;&gt;</tt>:
300
301<dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
302<tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
Joel Stanley753eb712002-09-11 22:32:24 +0000303an argument (which it then propagates). This can sometimes be useful, allowing
Chris Lattner6b121f12002-09-10 15:20:46 +0000304you to combine several null checks into one.<p>
305
Chris Lattner979d9b72002-09-10 00:39:05 +0000306</dl>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000307
Chris Lattner6b121f12002-09-10 15:20:46 +0000308These five templates can be used with any classes, whether they have a v-table
309or not. To add support for these templates, you simply need to add
310<tt>classof</tt> static methods to the class you are interested casting to.
311Describing this is currently outside the scope of this document, but there are
Joel Stanley753eb712002-09-11 22:32:24 +0000312lots of examples in the LLVM source base.<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000313
314
Chris Lattner986e0c92002-09-22 19:38:40 +0000315<!-- ======================================================================= -->
316</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
317<tr><td>&nbsp;</td><td width="100%">&nbsp;
318<font color="#EEEEFF" face="Georgia,Palatino"><b>
319<a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
320</b></font></td></tr></table><ul>
321
322Often when working on your pass you will put a bunch of debugging printouts and
323other code into your pass. After you get it working, you want to remove
324it... but you may need it again in the future (to work out new bugs that you run
325across).<p>
326
327Naturally, because of this, you don't want to delete the debug printouts, but
328you don't want them to always be noisy. A standard compromise is to comment
329them out, allowing you to enable them if you need them in the future.<p>
330
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000331The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>" file
332provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to this
333problem. Basically, you can put arbitrary code into the argument of the
334<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
335tool) is run with the '<tt>-debug</tt>' command line argument:
Chris Lattner986e0c92002-09-22 19:38:40 +0000336
337<pre>
338 ...
339 DEBUG(std::cerr &lt;&lt; "I am here!\n");
340 ...
341</pre><p>
342
343Then you can run your pass like this:<p>
344
345<pre>
346 $ opt &lt; a.bc &gt; /dev/null -mypass
347 &lt;no output&gt;
348 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
349 I am here!
350 $
351</pre><p>
352
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000353Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you to
Chris Lattner986e0c92002-09-22 19:38:40 +0000354now have to create "yet another" command line option for the debug output for
Chris Lattnera4e7c4e2002-11-08 06:50:02 +0000355your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
356so they do not cause a performance impact at all (for the same reason, they
357should also not contain side-effects!).<p>
358
359One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
360enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
361"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
362program hasn't been started yet, you can always just run it with
363<tt>-debug</tt>.<p>
Chris Lattner986e0c92002-09-22 19:38:40 +0000364
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000365<!-- _______________________________________________________________________ -->
366</ul><h4><a name="DEBUG_TYPE"><hr size=0>Fine grained debug info with
367 <tt>DEBUG_TYPE()</tt> and the <tt>-debug-only</tt> option</a> </h4><ul>
368
369Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
370just turns on <b>too much</b> information (such as when working on the code
371generator). If you want to enable debug information with more fine-grained
372control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
373option as follows:<p>
374
375<pre>
376 ...
377 DEBUG(std::cerr &lt;&lt; "No debug type\n");
378 #undef DEBUG_TYPE
379 #define DEBUG_TYPE "foo"
380 DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");
381 #undef DEBUG_TYPE
382 #define DEBUG_TYPE "bar"
383 DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");
384 #undef DEBUG_TYPE
385 #define DEBUG_TYPE ""
386 DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");
387 ...
388</pre><p>
389
390Then you can run your pass like this:<p>
391
392<pre>
393 $ opt &lt; a.bc &gt; /dev/null -mypass
394 &lt;no output&gt;
395 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
396 No debug type
397 'foo' debug type
398 'bar' debug type
399 No debug type (2)
400 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
401 No debug type
402 'foo' debug type
403 No debug type (2)
404 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
405 No debug type
406 'bar' debug type
407 No debug type (2)
408 $
409</pre><p>
410
411Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of a
412file, to specify the debug type for the entire module (if you do this before you
413<tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
414<tt>#undef</tt>'s). Also, you should use names more meaningful that "foo" and
415"bar", because there is no system in place to ensure that names do not conflict:
416if two different modules use the same string, they will all be turned on when
417the name is specified. This allows all, say, instruction scheduling debug
418information to be enabled with <tt>-debug-type=InstrSched</tt>, even if the
419source lives in multiple files.<p>
420
Chris Lattner986e0c92002-09-22 19:38:40 +0000421
422<!-- ======================================================================= -->
423</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
424<tr><td>&nbsp;</td><td width="100%">&nbsp;
425<font color="#EEEEFF" face="Georgia,Palatino"><b>
426<a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
427option</a>
428</b></font></td></tr></table><ul>
429
430The "<tt><a
Chris Lattner8328f1d2002-10-01 22:39:41 +0000431href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
Chris Lattner986e0c92002-09-22 19:38:40 +0000432file provides a template named <tt>Statistic</tt> that is used as a unified way
433to keeping track of what the LLVM compiler is doing and how effective various
434optimizations are. It is useful to see what optimizations are contributing to
435making a particular program run faster.<p>
436
437Often you may run your pass on some big program, and you're interested to see
438how many times it makes a certain transformation. Although you can do this with
439hand inspection, or some ad-hoc method, this is a real pain and not very useful
440for big programs. Using the <tt>Statistic</tt> template makes it very easy to
441keep track of this information, and the calculated information is presented in a
442uniform manner with the rest of the passes being executed.<p>
443
444There are many examples of <tt>Statistic</tt> users, but this basics of using it
445are as follows:<p>
446
447<ol>
448<li>Define your statistic like this:<p>
449
450<pre>
Chris Lattner8328f1d2002-10-01 22:39:41 +0000451static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");
Chris Lattner986e0c92002-09-22 19:38:40 +0000452</pre><p>
453
454The <tt>Statistic</tt> template can emulate just about any data-type, but if you
455do not specify a template argument, it defaults to acting like an unsigned int
456counter (this is usually what you want).<p>
457
458<li>Whenever you make a transformation, bump the counter:<p>
459
460<pre>
461 ++NumXForms; // I did stuff
462</pre><p>
463
464</ol><p>
465
466That's all you have to do. To get '<tt>opt</tt>' to print out the statistics
467gathered, use the '<tt>-stats</tt>' option:<p>
468
469<pre>
470 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
471 ... statistic output ...
472</pre><p>
473
474When running <tt>gccas</tt> on a C file from the SPEC benchmark suite, it gives
475a report that looks like this:<p>
476
477<pre>
478 7646 bytecodewriter - Number of normal instructions
479 725 bytecodewriter - Number of oversized instructions
480 129996 bytecodewriter - Number of bytecode bytes written
481 2817 raise - Number of insts DCEd or constprop'd
482 3213 raise - Number of cast-of-self removed
483 5046 raise - Number of expression trees converted
484 75 raise - Number of other getelementptr's formed
485 138 raise - Number of load/store peepholes
486 42 deadtypeelim - Number of unused typenames removed from symtab
487 392 funcresolve - Number of varargs functions resolved
488 27 globaldce - Number of global variables removed
489 2 adce - Number of basic blocks removed
490 134 cee - Number of branches revectored
491 49 cee - Number of setcc instruction eliminated
492 532 gcse - Number of loads removed
493 2919 gcse - Number of instructions removed
494 86 indvars - Number of cannonical indvars added
495 87 indvars - Number of aux indvars removed
496 25 instcombine - Number of dead inst eliminate
497 434 instcombine - Number of insts combined
498 248 licm - Number of load insts hoisted
499 1298 licm - Number of insts hoisted to a loop pre-header
500 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
501 75 mem2reg - Number of alloca's promoted
502 1444 cfgsimplify - Number of blocks simplified
503</pre><p>
504
505Obviously, with so many optimizations, having a unified framework for this stuff
506is very nice. Making your pass fit well into the framework makes it more
507maintainable and useful.<p>
508
Chris Lattnerae7f7592002-09-06 18:31:18 +0000509
Chris Lattnerb99344f2002-09-06 16:40:10 +0000510<!-- *********************************************************************** -->
511</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
512<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
513<a name="common">Helpful Hints for Common Operations
Chris Lattner986e0c92002-09-22 19:38:40 +0000514</b></font></td></tr></table><ul> <!--
515*********************************************************************** -->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000516
Chris Lattnerae7f7592002-09-06 18:31:18 +0000517This section describes how to perform some very simple transformations of LLVM
518code. This is meant to give examples of common idioms used, showing the
519practical side of LLVM transformations.<p>
520
Joel Stanley9b96c442002-09-06 21:55:13 +0000521Because this is a "how-to" section, you should also read about the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000522that you will be working with. The <a href="#coreclasses">Core LLVM Class
Joel Stanley9b96c442002-09-06 21:55:13 +0000523Hierarchy Reference</a> contains details and descriptions of the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000524that you should know about.<p>
525
526<!-- NOTE: this section should be heavy on example code -->
527
528
529<!-- ======================================================================= -->
530</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
531<tr><td>&nbsp;</td><td width="100%">&nbsp;
532<font color="#EEEEFF" face="Georgia,Palatino"><b>
533<a name="inspection">Basic Inspection and Traversal Routines</a>
534</b></font></td></tr></table><ul>
535
Chris Lattnercaa5d132002-09-09 19:58:18 +0000536The LLVM compiler infrastructure have many different data structures that may be
537traversed. Following the example of the C++ standard template library, the
538techniques used to traverse these various data structures are all basically the
539same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
540method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
541function returns an iterator pointing to one past the last valid element of the
542sequence, and there is some <tt>XXXiterator</tt> data type that is common
543between the two operations.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000544
Chris Lattnercaa5d132002-09-09 19:58:18 +0000545Because the pattern for iteration is common across many different aspects of the
546program representation, the standard template library algorithms may be used on
547them, and it is easier to remember how to iterate. First we show a few common
548examples of the data structures that need to be traversed. Other data
549structures are traversed in very similar ways.<p>
550
Chris Lattnerae7f7592002-09-06 18:31:18 +0000551
552<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000553</ul><h4><a name="iterate_function"><hr size=0>Iterating over the <a
554href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
555href="#Function"><tt>Function</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000556
Joel Stanley9b96c442002-09-06 21:55:13 +0000557It's quite common to have a <tt>Function</tt> instance that you'd like
558to transform in some way; in particular, you'd like to manipulate its
559<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over
560all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>.
561The following is an example that prints the name of a
562<tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it
563contains:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000564
Joel Stanley9b96c442002-09-06 21:55:13 +0000565<pre>
566 // func is a pointer to a Function instance
567 for(Function::iterator i = func->begin(), e = func->end(); i != e; ++i) {
568
569 // print out the name of the basic block if it has one, and then the
570 // number of instructions that it contains
571
Joel Stanley72ef35e2002-09-06 23:05:12 +0000572 cerr &lt;&lt "Basic block (name=" &lt;&lt i-&gt;getName() &lt;&lt; ") has "
573 &lt;&lt i-&gt;size() &lt;&lt " instructions.\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000574 }
575</pre>
576
577Note that i can be used as if it were a pointer for the purposes of
578invoking member functions of the <tt>Instruction</tt> class. This is
579because the indirection operator is overloaded for the iterator
580classes. In the above code, the expression <tt>i->size()</tt> is
581exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000582
583<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000584</ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the <a
585href="#Instruction"><tt>Instruction</tt></a>s in a <a
586href="#BasicBlock"><tt>BasicBlock</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000587
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000588Just like when dealing with <tt>BasicBlock</tt>s in
589<tt>Function</tt>s, it's easy to iterate over the individual
590instructions that make up <tt>BasicBlock</tt>s. Here's a code snippet
591that prints out each instruction in a <tt>BasicBlock</tt>:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000592
Joel Stanley9b96c442002-09-06 21:55:13 +0000593<pre>
594 // blk is a pointer to a BasicBlock instance
Chris Lattnercaa5d132002-09-09 19:58:18 +0000595 for(BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
Chris Lattner2b763062002-09-06 22:51:10 +0000596 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
597 // is overloaded for Instruction&amp;
Chris Lattnercaa5d132002-09-09 19:58:18 +0000598 cerr &lt;&lt; *i &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000599</pre>
600
601However, this isn't really the best way to print out the contents of a
602<tt>BasicBlock</tt>! Since the ostream operators are overloaded for
603virtually anything you'll care about, you could have just invoked the
Chris Lattner2b763062002-09-06 22:51:10 +0000604print routine on the basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt;
605"\n";</tt>.<p>
606
607Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so it
608will print out the contents of the pointer, instead of
609the pointer value you might expect. This is a deprecated interface that will
610be removed in the future, so it's best not to depend on it. To print out the
611pointer value for now, you must cast to <tt>void*</tt>.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000612
Chris Lattnercaa5d132002-09-09 19:58:18 +0000613
Chris Lattnerae7f7592002-09-06 18:31:18 +0000614<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000615</ul><h4><a name="iterate_institer"><hr size=0>Iterating over the <a
616href="#Instruction"><tt>Instruction</tt></a>s in a <a
617href="#Function"><tt>Function</tt></a></h4><ul>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000618
Joel Stanleye7be6502002-09-09 15:50:33 +0000619If you're finding that you commonly iterate over a <tt>Function</tt>'s
620<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s
621<tt>Instruction</tt>s, <tt>InstIterator</tt> should be used instead.
Chris Lattnercaa5d132002-09-09 19:58:18 +0000622You'll need to include <a href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>, and then
Joel Stanleye7be6502002-09-09 15:50:33 +0000623instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
624small example that shows how to dump all instructions in a function to
625stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt> yields an
626<tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&amp</tt>!):
Chris Lattner1a3105b2002-09-09 05:49:39 +0000627
Joel Stanleye7be6502002-09-09 15:50:33 +0000628<pre>
Chris Lattnercaa5d132002-09-09 19:58:18 +0000629#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
Joel Stanleye7be6502002-09-09 15:50:33 +0000630...
631// Suppose F is a ptr to a function
632for(inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
633 cerr &lt;&lt **i &lt;&lt "\n";
634</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000635
Joel Stanleye7be6502002-09-09 15:50:33 +0000636Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
637worklist with its initial contents. For example, if you wanted to
638initialize a worklist to contain all instructions in a
639<tt>Function</tt> F, all you would need to do is something like:
Chris Lattner1a3105b2002-09-09 05:49:39 +0000640
Joel Stanleye7be6502002-09-09 15:50:33 +0000641<pre>
642std::set&lt;Instruction*&gt worklist;
643worklist.insert(inst_begin(F), inst_end(F));
644</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000645
Joel Stanleye7be6502002-09-09 15:50:33 +0000646The STL set <tt>worklist</tt> would now contain all instructions in
647the <tt>Function</tt> pointed to by F.
Chris Lattner1a3105b2002-09-09 05:49:39 +0000648
649<!-- _______________________________________________________________________ -->
Chris Lattnerae7f7592002-09-06 18:31:18 +0000650</ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class
Joel Stanleye7be6502002-09-09 15:50:33 +0000651pointer (and vice-versa) </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000652
Joel Stanley9b96c442002-09-06 21:55:13 +0000653Sometimes, it'll be useful to grab a reference (or pointer) to a class
654instance when all you've got at hand is an iterator. Well, extracting
655a reference or a pointer from an iterator is very straightforward.
656Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and
657<tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>:
658
659<pre>
Chris Lattner83b5ee02002-09-06 22:12:58 +0000660 Instruction&amp; inst = *i; // grab reference to instruction reference
661 Instruction* pinst = &amp;*i; // grab pointer to instruction reference
662 const Instruction&amp; inst = *j;
Joel Stanley9b96c442002-09-06 21:55:13 +0000663</pre>
664However, the iterators you'll be working with in the LLVM framework
665are special: they will automatically convert to a ptr-to-instance type
666whenever they need to. Instead of dereferencing the iterator and then
667taking the address of the result, you can simply assign the iterator
668to the proper pointer type and you get the dereference and address-of
669operation as a result of the assignment (behind the scenes, this is a
670result of overloading casting mechanisms). Thus the last line of the
671last example,
672
Chris Lattner83b5ee02002-09-06 22:12:58 +0000673<pre>Instruction* pinst = &amp;*i;</pre>
Joel Stanley9b96c442002-09-06 21:55:13 +0000674
675is semantically equivalent to
676
677<pre>Instruction* pinst = i;</pre>
678
Joel Stanleye7be6502002-09-09 15:50:33 +0000679It's also possible to turn a class pointer into the corresponding
680iterator. Usually, this conversion is quite inexpensive. The
681following code snippet illustrates use of the conversion constructors
682provided by LLVM iterators. By using these, you can explicitly grab
683the iterator of something without actually obtaining it via iteration
684over some structure:
Joel Stanley9b96c442002-09-06 21:55:13 +0000685
686<pre>
687void printNextInstruction(Instruction* inst) {
688 BasicBlock::iterator it(inst);
689 ++it; // after this line, it refers to the instruction after *inst.
Chris Lattnercaa5d132002-09-09 19:58:18 +0000690 if(it != inst-&gt;getParent()->end()) cerr &lt;&lt; *it &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000691}
692</pre>
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000693Of course, this example is strictly pedagogical, because it'd be much
694better to explicitly grab the next instruction directly from inst.
Joel Stanley9b96c442002-09-06 21:55:13 +0000695
Chris Lattnerae7f7592002-09-06 18:31:18 +0000696
Chris Lattner1a3105b2002-09-09 05:49:39 +0000697<!--_______________________________________________________________________-->
698</ul><h4><a name="iterate_complex"><hr size=0>Finding call sites: a slightly
699more complex example </h4><ul>
Joel Stanley9b96c442002-09-06 21:55:13 +0000700
701Say that you're writing a FunctionPass and would like to count all the
Joel Stanleye7be6502002-09-09 15:50:33 +0000702locations in the entire module (that is, across every
Misha Brukman79223ed2003-07-28 19:21:20 +0000703<tt>Function</tt>) where a certain function (i.e., some
704<tt>Function</tt>*) is already in scope. As you'll learn later, you may
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000705want to use an <tt>InstVisitor</tt> to accomplish this in a much more
706straightforward manner, but this example will allow us to explore how
707you'd do it if you didn't have <tt>InstVisitor</tt> around. In
Joel Stanleye7be6502002-09-09 15:50:33 +0000708pseudocode, this is what we want to do:
Joel Stanley9b96c442002-09-06 21:55:13 +0000709
710<pre>
711initialize callCounter to zero
712for each Function f in the Module
713 for each BasicBlock b in f
714 for each Instruction i in b
Joel Stanleye7be6502002-09-09 15:50:33 +0000715 if(i is a CallInst and calls the given function)
Joel Stanley9b96c442002-09-06 21:55:13 +0000716 increment callCounter
717</pre>
718
719And the actual code is (remember, since we're writing a
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000720<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply
Joel Stanley9b96c442002-09-06 21:55:13 +0000721has to override the <tt>runOnFunction</tt> method...):
722
723<pre>
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000724Function* targetFunc = ...;
725
Joel Stanleye7be6502002-09-09 15:50:33 +0000726class OurFunctionPass : public FunctionPass {
727 public:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000728 OurFunctionPass(): callCounter(0) { }
Joel Stanley9b96c442002-09-06 21:55:13 +0000729
Chris Lattnercaa5d132002-09-09 19:58:18 +0000730 virtual runOnFunction(Function&amp; F) {
Joel Stanleye7be6502002-09-09 15:50:33 +0000731 for(Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
732 for(BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
Chris Lattnera9030cb2002-09-16 22:08:07 +0000733 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
Joel Stanleye7be6502002-09-09 15:50:33 +0000734 // we know we've encountered a call instruction, so we
735 // need to determine if it's a call to the
736 // function pointed to by m_func or not.
737
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000738 if(callInst-&gt;getCalledFunction() == targetFunc)
Joel Stanleye7be6502002-09-09 15:50:33 +0000739 ++callCounter;
740 }
741 }
Joel Stanley9b96c442002-09-06 21:55:13 +0000742 }
Joel Stanleye7be6502002-09-09 15:50:33 +0000743
744 private:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000745 unsigned callCounter;
Joel Stanleye7be6502002-09-09 15:50:33 +0000746};
Joel Stanley9b96c442002-09-06 21:55:13 +0000747</pre>
748
Chris Lattner1a3105b2002-09-09 05:49:39 +0000749<!--_______________________________________________________________________-->
750</ul><h4><a name="iterate_chains"><hr size=0>Iterating over def-use &amp;
751use-def chains</h4><ul>
752
Joel Stanley01040b22002-09-11 20:50:04 +0000753Frequently, we might have an instance of the <a
754href="/doxygen/classValue.html">Value Class</a> and we want to
755determine which <tt>User</tt>s use the <tt>Value</tt>. The list of
756all <tt>User</tt>s of a particular <tt>Value</tt> is called a
757<i>def-use</i> chain. For example, let's say we have a
758<tt>Function*</tt> named <tt>F</tt> to a particular function
759<tt>foo</tt>. Finding all of the instructions that <i>use</i>
760<tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain of
761<tt>F</tt>:
762
763<pre>
764Function* F = ...;
765
766for(Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {
Chris Lattner24b70922002-09-17 22:43:00 +0000767 if(Instruction* Inst = dyn_cast&lt;Instruction&gt;(*i)) {
768 cerr &lt;&lt; "F is used in instruction:\n";
769 cerr &lt;&lt; *Inst &lt;&lt; "\n";
Joel Stanley01040b22002-09-11 20:50:04 +0000770 }
771}
772</pre>
773
774Alternately, it's common to have an instance of the <a
775href="/doxygen/classUser.html">User Class</a> and need to know what
776<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used
777by a <tt>User</tt> is known as a <i>use-def</i> chain. Instances of
778class <tt>Instruction</tt> are common <tt>User</tt>s, so we might want
779to iterate over all of the values that a particular instruction uses
780(that is, the operands of the particular <tt>Instruction</tt>):
781
782<pre>
783Instruction* pi = ...;
784
785for(User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Joel Stanley753eb712002-09-11 22:32:24 +0000786 Value* v = *i;
Joel Stanley01040b22002-09-11 20:50:04 +0000787 ...
788}
789</pre>
790
791
Chris Lattner1a3105b2002-09-09 05:49:39 +0000792<!--
793 def-use chains ("finding all users of"): Value::use_begin/use_end
794 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
795-->
796
Chris Lattnerae7f7592002-09-06 18:31:18 +0000797<!-- ======================================================================= -->
798</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
799<tr><td>&nbsp;</td><td width="100%">&nbsp;
800<font color="#EEEEFF" face="Georgia,Palatino"><b>
801<a name="simplechanges">Making simple changes</a>
802</b></font></td></tr></table><ul>
803
Joel Stanley753eb712002-09-11 22:32:24 +0000804There are some primitive transformation operations present in the LLVM
805infrastructure that are worth knowing about. When performing
806transformations, it's fairly common to manipulate the contents of
807basic blocks. This section describes some of the common methods for
808doing so and gives example code.
809
810<!--_______________________________________________________________________-->
811</ul><h4><a name="schanges_creating"><hr size=0>Creating and inserting
812 new <tt>Instruction</tt>s</h4><ul>
813
814<i>Instantiating Instructions</i>
815
816<p>Creation of <tt>Instruction</tt>s is straightforward: simply call the
817constructor for the kind of instruction to instantiate and provide the
818necessary parameters. For example, an <tt>AllocaInst</tt> only
819<i>requires</i> a (const-ptr-to) <tt>Type</tt>. Thus:
820
821<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
822
823will create an <tt>AllocaInst</tt> instance that represents the
824allocation of one integer in the current stack frame, at runtime.
825Each <tt>Instruction</tt> subclass is likely to have varying default
826parameters which change the semantics of the instruction, so refer to
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000827the <a href="/doxygen/classInstruction.html">doxygen documentation for
Joel Stanley753eb712002-09-11 22:32:24 +0000828the subclass of Instruction</a> that you're interested in
829instantiating.</p>
830
831<p><i>Naming values</i></p>
832
833<p>
834It is very useful to name the values of instructions when you're able
835to, as this facilitates the debugging of your transformations. If you
836end up looking at generated LLVM machine code, you definitely want to
837have logical names associated with the results of instructions! By
838supplying a value for the <tt>Name</tt> (default) parameter of the
839<tt>Instruction</tt> constructor, you associate a logical name with
840the result of the instruction's execution at runtime. For example,
841say that I'm writing a transformation that dynamically allocates space
842for an integer on the stack, and that integer is going to be used as
843some kind of index by some other code. To accomplish this, I place an
844<tt>AllocaInst</tt> at the first point in the first
845<tt>BasicBlock</tt> of some <tt>Function</tt>, and I'm intending to
846use it within the same <tt>Function</tt>. I might do:
847
848<pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
849
850where <tt>indexLoc</tt> is now the logical name of the instruction's
851execution value, which is a pointer to an integer on the runtime
852stack.
853</p>
854
855<p><i>Inserting instructions</i></p>
856
857<p>
858There are essentially two ways to insert an <tt>Instruction</tt> into
859an existing sequence of instructions that form a <tt>BasicBlock</tt>:
860<ul>
861<li>Insertion into an explicit instruction list
862
863<p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within
864that <tt>BasicBlock</tt>, and a newly-created instruction
865we wish to insert before <tt>*pi</tt>, we do the following:
866
867<pre>
868BasicBlock* pb = ...;
869Instruction* pi = ...;
870Instruction* newInst = new Instruction(...);
871pb->getInstList().insert(pi, newInst); // inserts newInst before pi in pb
872</pre>
873</p>
874
875<li>Insertion into an implicit instruction list
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000876<p><tt>Instruction</tt> instances that are already in
Joel Stanley753eb712002-09-11 22:32:24 +0000877<tt>BasicBlock</tt>s are implicitly associated with an existing
878instruction list: the instruction list of the enclosing basic block.
879Thus, we could have accomplished the same thing as the above code
880without being given a <tt>BasicBlock</tt> by doing:
881<pre>
882Instruction* pi = ...;
883Instruction* newInst = new Instruction(...);
884pi->getParent()->getInstList().insert(pi, newInst);
885</pre>
886In fact, this sequence of steps occurs so frequently that the
887<tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes
888provide constructors which take (as a default parameter) a pointer to
889an <tt>Instruction</tt> which the newly-created <tt>Instruction</tt>
890should precede. That is, <tt>Instruction</tt> constructors are
891capable of inserting the newly-created instance into the
892<tt>BasicBlock</tt> of a provided instruction, immediately before that
893instruction. Using an <tt>Instruction</tt> constructor with a
894<tt>insertBefore</tt> (default) parameter, the above code becomes:
895<pre>
896Instruction* pi = ...;
897Instruction* newInst = new Instruction(..., pi);
898</pre>
899which is much cleaner, especially if you're creating a lot of
900instructions and adding them to <tt>BasicBlock</tt>s.
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000901 </p>
Joel Stanley753eb712002-09-11 22:32:24 +0000902</p>
Chris Lattner9ebf5162002-09-12 19:08:16 +0000903</ul>
Joel Stanley753eb712002-09-11 22:32:24 +0000904
905<!--_______________________________________________________________________-->
906</ul><h4><a name="schanges_deleting"><hr size=0>Deleting
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000907<tt>Instruction</tt>s</h4><ul>
908
909Deleting an instruction from an existing sequence of instructions that form a <a
910href="#BasicBlock"><tt>BasicBlock</tt></a> is very straightforward. First, you
911must have a pointer to the instruction that you wish to delete. Second, you
912need to obtain the pointer to that instruction's basic block. You use the
913pointer to the basic block to get its list of instructions and then use the
914erase function to remove your instruction.<p>
915
916For example:<p>
917
918<pre>
919 <a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner7dbf6832002-09-18 05:14:25 +0000920 <a href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();
921 BB-&gt;getInstList().erase(I);
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000922</pre><p>
923
Joel Stanley753eb712002-09-11 22:32:24 +0000924<!--_______________________________________________________________________-->
925</ul><h4><a name="schanges_replacing"><hr size=0>Replacing an
926 <tt>Instruction</tt> with another <tt>Value</tt></h4><ul>
927
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000928<p><i>Replacing individual instructions</i></p>
929<p>
930Including "<a
Misha Brukman79223ed2003-07-28 19:21:20 +0000931href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>" permits use of two very useful replace functions:
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000932<tt>ReplaceInstWithValue</tt> and <tt>ReplaceInstWithInst</tt>.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000933
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000934<ul>
935
Chris Lattner7dbf6832002-09-18 05:14:25 +0000936<li><tt>ReplaceInstWithValue</tt>
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000937
938<p>This function replaces all uses (within a basic block) of a given
939instruction with a value, and then removes the original instruction.
940The following example illustrates the replacement of the result of a
941particular <tt>AllocaInst</tt> that allocates memory for a single
942integer with an null pointer to an integer.</p>
943
944<pre>
945AllocaInst* instToReplace = ...;
Joel Stanley4b287932002-09-29 17:31:54 +0000946BasicBlock::iterator ii(instToReplace);
947ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000948 Constant::getNullValue(PointerType::get(Type::IntTy)));
949</pre>
950
Chris Lattner7dbf6832002-09-18 05:14:25 +0000951<li><tt>ReplaceInstWithInst</tt>
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000952
953<p>This function replaces a particular instruction with another
954instruction. The following example illustrates the replacement of one
955<tt>AllocaInst</tt> with another.<p>
956
957<pre>
958AllocaInst* instToReplace = ...;
Joel Stanley4b287932002-09-29 17:31:54 +0000959BasicBlock::iterator ii(instToReplace);
960ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Misha Brukmane7a7ab42003-05-07 21:47:39 +0000961 new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000962</pre>
963
964</ul>
965<p><i>Replacing multiple uses of <tt>User</tt>s and
966 <tt>Value</tt>s</i></p>
967
968You can use <tt>Value::replaceAllUsesWith</tt> and
969<tt>User::replaceUsesOfWith</tt> to change more than one use at a
970time. See the doxygen documentation for the <a
971href="/doxygen/classValue.html">Value Class</a> and <a
972href="/doxygen/classUser.html">User Class</a>, respectively, for more
973information.
974
975<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
976include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
977ReplaceInstWithValue, ReplaceInstWithInst
Chris Lattnerae7f7592002-09-06 18:31:18 +0000978-->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000979
Chris Lattner9355b472002-09-06 02:50:58 +0000980<!-- *********************************************************************** -->
981</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
982<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Joel Stanley9b96c442002-09-06 21:55:13 +0000983<a name="coreclasses">The Core LLVM Class Hierarchy Reference
Chris Lattner9355b472002-09-06 02:50:58 +0000984</b></font></td></tr></table><ul>
985<!-- *********************************************************************** -->
986
987The Core LLVM classes are the primary means of representing the program being
988inspected or transformed. The core LLVM classes are defined in header files in
989the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
990directory.<p>
991
992
993<!-- ======================================================================= -->
994</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
995<tr><td>&nbsp;</td><td width="100%">&nbsp;
996<font color="#EEEEFF" face="Georgia,Palatino"><b>
997<a name="Value">The <tt>Value</tt> class</a>
998</b></font></td></tr></table><ul>
999
1000<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
1001doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
1002
1003
1004The <tt>Value</tt> class is the most important class in LLVM Source base. It
1005represents a typed value that may be used (among other things) as an operand to
1006an instruction. There are many different types of <tt>Value</tt>s, such as <a
1007href="#Constant"><tt>Constant</tt></a>s, <a
1008href="#Argument"><tt>Argument</tt></a>s, and even <a
1009href="#Instruction"><tt>Instruction</tt></a>s and <a
1010href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
1011
1012A particular <tt>Value</tt> may be used many times in the LLVM representation
1013for a program. For example, an incoming argument to a function (represented
1014with an instance of the <a href="#Argument">Argument</a> class) is "used" by
1015every instruction in the function that references the argument. To keep track
1016of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
1017href="#User"><tt>User</tt></a>s that is using it (the <a
1018href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
1019graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
Joel Stanley9b96c442002-09-06 21:55:13 +00001020def-use information in the program, and is accessible through the <tt>use_</tt>*
Chris Lattner9355b472002-09-06 02:50:58 +00001021methods, shown below.<p>
1022
1023Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
1024this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
1025method. <a name="#nameWarning">In addition, all LLVM values can be named. The
1026"name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
1027
1028<pre>
1029 %<b>foo</b> = add int 1, 2
1030</pre>
1031
1032The name of this instruction is "foo". <b>NOTE</b> that the name of any value
1033may be missing (an empty string), so names should <b>ONLY</b> be used for
1034debugging (making the source code easier to read, debugging printouts), they
1035should not be used to keep track of values or map between them. For this
1036purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
1037instead.<p>
1038
1039One important aspect of LLVM is that there is no distinction between an SSA
1040variable and the operation that produces it. Because of this, any reference to
1041the value produced by an instruction (or the value available as an incoming
1042argument, for example) is represented as a direct pointer to the class that
1043represents this value. Although this may take some getting used to, it
1044simplifies the representation and makes it easier to manipulate.<p>
1045
1046
1047<!-- _______________________________________________________________________ -->
1048</ul><h4><a name="m_Value"><hr size=0>Important Public Members of
1049the <tt>Value</tt> class</h4><ul>
1050
1051<li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
1052 <tt>Value::use_const_iterator</tt>
1053 - Typedef for const_iterator over the use-list<br>
1054 <tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
1055 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
1056 <tt>use_iterator use_begin()</tt>
1057 - Get an iterator to the start of the use-list.<br>
1058 <tt>use_iterator use_end()</tt>
1059 - Get an iterator to the end of the use-list.<br>
1060 <tt><a href="#User">User</a> *use_back()</tt>
1061 - Returns the last element in the list.<p>
1062
1063These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
1064
1065<li><tt><a href="#Type">Type</a> *getType() const</tt><p>
1066This method returns the Type of the Value.
1067
1068<li><tt>bool hasName() const</tt><br>
1069 <tt>std::string getName() const</tt><br>
1070 <tt>void setName(const std::string &amp;Name)</tt><p>
1071
1072This family of methods is used to access and assign a name to a <tt>Value</tt>,
1073be aware of the <a href="#nameWarning">precaution above</a>.<p>
1074
1075
1076<li><tt>void replaceAllUsesWith(Value *V)</tt><p>
1077
1078This method traverses the use list of a <tt>Value</tt> changing all <a
Misha Brukmanc4f5bb02002-09-18 02:21:57 +00001079href="#User"><tt>User</tt>s</a> of the current value to refer to "<tt>V</tt>"
Chris Lattner9355b472002-09-06 02:50:58 +00001080instead. For example, if you detect that an instruction always produces a
1081constant value (for example through constant folding), you can replace all uses
1082of the instruction with the constant like this:<p>
1083
1084<pre>
1085 Inst-&gt;replaceAllUsesWith(ConstVal);
1086</pre><p>
1087
1088
1089
1090<!-- ======================================================================= -->
1091</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1092<tr><td>&nbsp;</td><td width="100%">&nbsp;
1093<font color="#EEEEFF" face="Georgia,Palatino"><b>
1094<a name="User">The <tt>User</tt> class</a>
1095</b></font></td></tr></table><ul>
1096
1097<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
1098doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
1099Superclass: <a href="#Value"><tt>Value</tt></a><p>
1100
1101
1102The <tt>User</tt> class is the common base class of all LLVM nodes that may
1103refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1104that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1105referring to. The <tt>User</tt> class itself is a subclass of
1106<tt>Value</tt>.<p>
1107
1108The operands of a <tt>User</tt> point directly to the LLVM <a
1109href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1110Single Assignment (SSA) form, there can only be one definition referred to,
1111allowing this direct connection. This connection provides the use-def
1112information in LLVM.<p>
1113
1114<!-- _______________________________________________________________________ -->
1115</ul><h4><a name="m_User"><hr size=0>Important Public Members of
1116the <tt>User</tt> class</h4><ul>
1117
1118The <tt>User</tt> class exposes the operand list in two ways: through an index
1119access interface and through an iterator based interface.<p>
1120
1121<li><tt>Value *getOperand(unsigned i)</tt><br>
1122 <tt>unsigned getNumOperands()</tt><p>
1123
1124These two methods expose the operands of the <tt>User</tt> in a convenient form
1125for direct access.<p>
1126
1127<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
1128 <tt>User::op_const_iterator</tt>
1129 <tt>use_iterator op_begin()</tt>
1130 - Get an iterator to the start of the operand list.<br>
1131 <tt>use_iterator op_end()</tt>
1132 - Get an iterator to the end of the operand list.<p>
1133
1134Together, these methods make up the iterator based interface to the operands of
1135a <tt>User</tt>.<p>
1136
1137
1138
1139<!-- ======================================================================= -->
1140</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1141<tr><td>&nbsp;</td><td width="100%">&nbsp;
1142<font color="#EEEEFF" face="Georgia,Palatino"><b>
1143<a name="Instruction">The <tt>Instruction</tt> class</a>
1144</b></font></td></tr></table><ul>
1145
1146<tt>#include "<a
1147href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
1148doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
1149Superclasses: <a href="#User"><tt>User</tt></a>, <a
1150href="#Value"><tt>Value</tt></a><p>
1151
1152The <tt>Instruction</tt> class is the common base class for all LLVM
1153instructions. It provides only a few methods, but is a very commonly used
1154class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1155opcode (instruction type) and the parent <a
1156href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1157into. To represent a specific type of instruction, one of many subclasses of
1158<tt>Instruction</tt> are used.<p>
1159
1160Because the <tt>Instruction</tt> class subclasses the <a
1161href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1162way as for other <a href="#User"><tt>User</tt></a>s (with the
1163<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1164<tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
1165
Chris Lattner17635252002-09-12 17:18:46 +00001166An important file for the <tt>Instruction</tt> class is the
1167<tt>llvm/Instruction.def</tt> file. This file contains some meta-data about the
1168various different types of instructions in LLVM. It describes the enum values
1169that are used as opcodes (for example <tt>Instruction::Add</tt> and
1170<tt>Instruction::SetLE</tt>), as well as the concrete sub-classes of
1171<tt>Instruction</tt> that implement the instruction (for example <tt><a
1172href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1173href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1174this file confused doxygen, so these enum values don't show up correctly in the
1175<a href="/doxygen/classInstruction.html">doxygen output</a>.<p>
1176
Chris Lattner9355b472002-09-06 02:50:58 +00001177
1178<!-- _______________________________________________________________________ -->
1179</ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
1180the <tt>Instruction</tt> class</h4><ul>
1181
1182<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
1183
1184Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
1185<tt>Instruction</tt> is embedded into.<p>
1186
Chris Lattnerc3dc2122003-02-26 16:38:15 +00001187<li><tt>bool mayWriteToMemory()</tt><p>
Chris Lattner9355b472002-09-06 02:50:58 +00001188
Chris Lattnerc3dc2122003-02-26 16:38:15 +00001189Returns true if the instruction writes to memory, i.e. it is a <tt>call</tt>,
Chris Lattner9355b472002-09-06 02:50:58 +00001190<tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
1191
1192<li><tt>unsigned getOpcode()</tt><p>
1193
1194Returns the opcode for the <tt>Instruction</tt>.<p>
1195
Chris Lattner17635252002-09-12 17:18:46 +00001196<li><tt><a href="#Instruction">Instruction</a> *clone() const</tt><p>
1197
1198Returns another instance of the specified instruction, identical in all ways to
1199the original except that the instruction has no parent (ie it's not embedded
1200into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>), and it has no name.<p>
1201
1202
1203
Chris Lattner9355b472002-09-06 02:50:58 +00001204<!--
1205
1206\subsection{Subclasses of Instruction :}
1207\begin{itemize}
1208<li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong binary operators in LLVM.
1209 \begin{itemize}
1210 <li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.
1211 \end{itemize}
1212<li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
1213 \begin{itemize}
1214 <li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
1215 <li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
1216 <li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
1217 \end{itemize}
1218
1219<li>PHINode : This represents the PHI instructions in the SSA form.
1220 \begin{itemize}
1221 <li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
1222 <li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
1223 <li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V
1224 <li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
1225 <li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:
1226 Add an incoming value to the end of the PHI list
1227 <li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:
1228 Returns the first index of the specified basic block in the value list for this PHI. Returns -1 if no instance.
1229 \end{itemize}
1230<li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
1231<li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
1232 \begin{itemize}
1233 <li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.
1234 \end{itemize}
1235<li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
1236 \begin{itemize}
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001237 <li><tt>Value * getPointerOperand()</tt>: Returns the Pointer Operand which is typically the 0th operand.
Chris Lattner9355b472002-09-06 02:50:58 +00001238 \end{itemize}
1239<li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
1240 \begin{itemize}
1241 <li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
1242 <li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
1243 <li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
1244 \end{itemize}
1245
1246\end{itemize}
1247
1248-->
1249
1250
1251<!-- ======================================================================= -->
1252</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1253<tr><td>&nbsp;</td><td width="100%">&nbsp;
1254<font color="#EEEEFF" face="Georgia,Palatino"><b>
1255<a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1256</b></font></td></tr></table><ul>
1257
1258<tt>#include "<a
1259href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
1260doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
1261Superclass: <a href="#Value"><tt>Value</tt></a><p>
1262
1263
1264This class represents a single entry multiple exit section of the code, commonly
1265known as a basic block by the compiler community. The <tt>BasicBlock</tt> class
1266maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
1267the body of the block. Matching the language definition, the last element of
1268this list of instructions is always a terminator instruction (a subclass of the
1269<a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
1270
1271In addition to tracking the list of instructions that make up the block, the
1272<tt>BasicBlock</tt> class also keeps track of the <a
1273href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
1274
1275Note that <tt>BasicBlock</tt>s themselves are <a
1276href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1277like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1278<tt>label</tt>.<p>
1279
1280
1281<!-- _______________________________________________________________________ -->
1282</ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
1283the <tt>BasicBlock</tt> class</h4><ul>
1284
1285<li><tt>BasicBlock(const std::string &amp;Name = "", <a
1286href="#Function">Function</a> *Parent = 0)</tt><p>
1287
1288The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1289insertion into a function. The constructor simply takes a name for the new
1290block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
1291into. If the <tt>Parent</tt> parameter is specified, the new
1292<tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
1293href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1294manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
1295
1296<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1297 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1298 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1299 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1300
1301These methods and typedefs are forwarding functions that have the same semantics
1302as the standard library methods of the same names. These methods expose the
1303underlying instruction list of a basic block in a way that is easy to
1304manipulate. To get the full complement of container operations (including
1305operations to update the list), you must use the <tt>getInstList()</tt>
1306method.<p>
1307
1308<li><tt>BasicBlock::InstListType &amp;getInstList()</tt><p>
1309
1310This method is used to get access to the underlying container that actually
1311holds the Instructions. This method must be used when there isn't a forwarding
1312function in the <tt>BasicBlock</tt> class for the operation that you would like
1313to perform. Because there are no forwarding functions for "updating"
1314operations, you need to use this if you want to update the contents of a
1315<tt>BasicBlock</tt>.<p>
1316
1317<li><tt><A href="#Function">Function</a> *getParent()</tt><p>
1318
1319Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1320embedded into, or a null pointer if it is homeless.<p>
1321
1322<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
1323
1324Returns a pointer to the terminator instruction that appears at the end of the
1325<tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1326instruction in the block is not a terminator, then a null pointer is
1327returned.<p>
1328
1329
1330<!-- ======================================================================= -->
1331</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1332<tr><td>&nbsp;</td><td width="100%">&nbsp;
1333<font color="#EEEEFF" face="Georgia,Palatino"><b>
1334<a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1335</b></font></td></tr></table><ul>
1336
1337<tt>#include "<a
1338href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
1339doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
1340Superclasses: <a href="#User"><tt>User</tt></a>, <a
1341href="#Value"><tt>Value</tt></a><p>
1342
1343Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1344href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1345visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1346Because they are visible at global scope, they are also subject to linking with
1347other globals defined in different translation units. To control the linking
1348process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1349<tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
1350
1351If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1352<tt>static</tt> in C), it is not visible to code outside the current translation
1353unit, and does not participate in linking. If it has external linkage, it is
1354visible to external code, and does participate in linking. In addition to
1355linkage information, <tt>GlobalValue</tt>s keep track of which <a
1356href="#Module"><tt>Module</tt></a> they are currently part of.<p>
1357
1358Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
1359their address. As such, the <a href="#Type"><tt>Type</tt></a> of a global is
1360always a pointer to its contents. This is explained in the LLVM Language
1361Reference Manual.<p>
1362
1363
1364<!-- _______________________________________________________________________ -->
1365</ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
1366the <tt>GlobalValue</tt> class</h4><ul>
1367
1368<li><tt>bool hasInternalLinkage() const</tt><br>
1369 <tt>bool hasExternalLinkage() const</tt><br>
1370 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
1371
1372These methods manipulate the linkage characteristics of the
1373<tt>GlobalValue</tt>.<p>
1374
1375<li><tt><a href="#Module">Module</a> *getParent()</tt><p>
1376
1377This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
1378currently embedded into.<p>
1379
1380
1381
1382<!-- ======================================================================= -->
1383</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1384<tr><td>&nbsp;</td><td width="100%">&nbsp;
1385<font color="#EEEEFF" face="Georgia,Palatino"><b>
1386<a name="Function">The <tt>Function</tt> class</a>
1387</b></font></td></tr></table><ul>
1388
1389<tt>#include "<a
1390href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
1391doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
1392Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1393href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1394
1395The <tt>Function</tt> class represents a single procedure in LLVM. It is
1396actually one of the more complex classes in the LLVM heirarchy because it must
1397keep track of a large amount of data. The <tt>Function</tt> class keeps track
1398of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1399href="#Argument"><tt>Argument</tt></a>s, and a <a
1400href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
1401
1402The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
1403used part of <tt>Function</tt> objects. The list imposes an implicit ordering
1404of the blocks in the function, which indicate how the code will be layed out by
1405the backend. Additionally, the first <a
1406href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1407<tt>Function</tt>. It is not legal in LLVM explicitly branch to this initial
1408block. There are no implicit exit nodes, and in fact there may be multiple exit
1409nodes from a single <tt>Function</tt>. If the <a
1410href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1411the <tt>Function</tt> is actually a function declaration: the actual body of the
1412function hasn't been linked in yet.<p>
1413
1414In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1415<tt>Function</tt> class also keeps track of the list of formal <a
1416href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1417container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1418nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1419the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
1420
1421The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
1422feature that is only used when you have to look up a value by name. Aside from
1423that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
1424make sure that there are not conflicts between the names of <a
1425href="#Instruction"><tt>Instruction</tt></a>s, <a
1426href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1427href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
1428
1429
1430<!-- _______________________________________________________________________ -->
1431</ul><h4><a name="m_Function"><hr size=0>Important Public Members of
1432the <tt>Function</tt> class</h4><ul>
1433
1434<li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &amp;N = "")</tt><p>
1435
1436Constructor used when you need to create new <tt>Function</tt>s to add the the
1437program. The constructor must specify the type of the function to create and
1438whether or not it should start out with internal or external linkage.<p>
1439
1440<li><tt>bool isExternal()</tt><p>
1441
1442Return whether or not the <tt>Function</tt> has a body defined. If the function
1443is "external", it does not have a body, and thus must be resolved by linking
1444with a function defined in a different translation unit.<p>
1445
1446
1447<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
1448 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
1449 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1450 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1451
1452These are forwarding methods that make it easy to access the contents of a
1453<tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1454list.<p>
1455
1456<li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt><p>
1457
1458Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This is
1459neccesary to use when you need to update the list or perform a complex action
1460that doesn't have a forwarding method.<p>
1461
1462
1463<li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
1464 <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
1465 <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
1466 <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
1467
1468These are forwarding methods that make it easy to access the contents of a
1469<tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
1470
1471<li><tt>Function::ArgumentListType &amp;getArgumentList()</tt><p>
1472
1473Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1474neccesary to use when you need to update the list or perform a complex action
1475that doesn't have a forwarding method.<p>
1476
1477
1478
1479<li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p>
1480
1481Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1482function. Because the entry block for the function is always the first block,
1483this returns the first block of the <tt>Function</tt>.<p>
1484
1485<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1486 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
1487
1488This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
1489and returns the return type of the function, or the <a
1490href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
1491
Chris Lattner9355b472002-09-06 02:50:58 +00001492<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1493
1494Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
Chris Lattner6e6026b2002-11-20 18:36:02 +00001495<tt>Function</tt>.<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001496
1497
1498
1499<!-- ======================================================================= -->
1500</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1501<tr><td>&nbsp;</td><td width="100%">&nbsp;
1502<font color="#EEEEFF" face="Georgia,Palatino"><b>
1503<a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1504</b></font></td></tr></table><ul>
1505
1506<tt>#include "<a
1507href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
1508doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
1509Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1510href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1511
Chris Lattner0377de42002-09-06 14:50:55 +00001512Global variables are represented with the (suprise suprise)
1513<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are
1514also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
1515are always referenced by their address (global values must live in memory, so
1516their "name" refers to their address). Global variables may have an initial
1517value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
1518have an initializer, they may be marked as "constant" themselves (indicating
1519that their contents never change at runtime).<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001520
1521
1522<!-- _______________________________________________________________________ -->
Chris Lattner0377de42002-09-06 14:50:55 +00001523</ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
1524<tt>GlobalVariable</tt> class</h4><ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001525
1526<li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
1527isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
1528&amp;Name = "")</tt><p>
1529
Chris Lattner0377de42002-09-06 14:50:55 +00001530Create a new global variable of the specified type. If <tt>isConstant</tt> is
1531true then the global variable will be marked as unchanging for the program, and
1532if <tt>isInternal</tt> is true the resultant global variable will have internal
1533linkage. Optionally an initializer and name may be specified for the global variable as well.<p>
1534
1535
Chris Lattner9355b472002-09-06 02:50:58 +00001536<li><tt>bool isConstant() const</tt><p>
1537
1538Returns true if this is a global variable is known not to be modified at
1539runtime.<p>
1540
Chris Lattner0377de42002-09-06 14:50:55 +00001541
Chris Lattner9355b472002-09-06 02:50:58 +00001542<li><tt>bool hasInitializer()</tt><p>
1543
1544Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
1545
Chris Lattner0377de42002-09-06 14:50:55 +00001546
Chris Lattner9355b472002-09-06 02:50:58 +00001547<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
1548
Chris Lattner0377de42002-09-06 14:50:55 +00001549Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal to call
1550this method if there is no initializer.<p>
1551
1552
1553<!-- ======================================================================= -->
1554</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1555<tr><td>&nbsp;</td><td width="100%">&nbsp;
1556<font color="#EEEEFF" face="Georgia,Palatino"><b>
1557<a name="Module">The <tt>Module</tt> class</a>
1558</b></font></td></tr></table><ul>
1559
1560<tt>#include "<a
1561href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
1562doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
1563
1564The <tt>Module</tt> class represents the top level structure present in LLVM
1565programs. An LLVM module is effectively either a translation unit of the
1566original program or a combination of several translation units merged by the
1567linker. The <tt>Module</tt> class keeps track of a list of <a
1568href="#Function"><tt>Function</tt></a>s, a list of <a
1569href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1570href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1571helpful member functions that try to make common operations easy.<p>
1572
1573
1574<!-- _______________________________________________________________________ -->
1575</ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
1576<tt>Module</tt> class</h4><ul>
1577
1578<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
1579 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
1580 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1581 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1582
1583These are forwarding methods that make it easy to access the contents of a
1584<tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1585list.<p>
1586
1587<li><tt>Module::FunctionListType &amp;getFunctionList()</tt><p>
1588
1589Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
1590neccesary to use when you need to update the list or perform a complex action
1591that doesn't have a forwarding method.<p>
1592
1593<!-- Global Variable -->
1594<hr size=0>
1595
1596<li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
1597 <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
1598 <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
1599 <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
1600
1601These are forwarding methods that make it easy to access the contents of a
1602<tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
1603list.<p>
1604
1605<li><tt>Module::GlobalListType &amp;getGlobalList()</tt><p>
1606
1607Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
1608This is neccesary to use when you need to update the list or perform a complex
1609action that doesn't have a forwarding method.<p>
1610
1611
1612<!-- Symbol table stuff -->
1613<hr size=0>
1614
Chris Lattner0377de42002-09-06 14:50:55 +00001615<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1616
Chris Lattner6e6026b2002-11-20 18:36:02 +00001617Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for
1618this <tt>Module</tt>.<p>
Chris Lattner0377de42002-09-06 14:50:55 +00001619
1620
1621<!-- Convenience methods -->
1622<hr size=0>
1623
1624<li><tt><a href="#Function">Function</a> *getFunction(const std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
1625
1626Look up the specified function in the <tt>Module</tt> <a
1627href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1628<tt>null</tt>.<p>
1629
1630
1631<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
1632 &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
1633
1634Look up the specified function in the <tt>Module</tt> <a
1635href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1636external declaration for the function and return it.<p>
1637
1638
1639<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
1640
1641If there is at least one entry in the <a
1642href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1643href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1644string.<p>
1645
1646
1647<li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
1648*Ty)</tt><p>
1649
1650Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
1651<tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
1652is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
1653modified.<p>
1654
Chris Lattner9355b472002-09-06 02:50:58 +00001655
1656<!-- ======================================================================= -->
1657</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1658<tr><td>&nbsp;</td><td width="100%">&nbsp;
1659<font color="#EEEEFF" face="Georgia,Palatino"><b>
1660<a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1661</b></font></td></tr></table><ul>
1662
1663Constant represents a base class for different types of constants. It is
1664subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1665ConstantArray etc for representing the various types of Constants.<p>
1666
1667
1668<!-- _______________________________________________________________________ -->
1669</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1670
1671<li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
1672
1673
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001674<hr>
1675Important Subclasses of Constant<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001676
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001677<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001678<li>ConstantSInt : This subclass of Constant represents a signed integer constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001679<ul>
1680 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of this constant.
1681</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001682<li>ConstantUInt : This class represents an unsigned integer.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001683<ul>
1684 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of this constant.
1685</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001686<li>ConstantFP : This class represents a floating point constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001687<ul>
1688 <li><tt>double getValue() const</tt>: Returns the underlying value of this constant.
1689</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001690<li>ConstantBool : This represents a boolean constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001691<ul>
1692 <li><tt>bool getValue() const</tt>: Returns the underlying value of this constant.
1693</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001694<li>ConstantArray : This represents a constant array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001695<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001696 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001697</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001698<li>ConstantStruct : This represents a constant struct.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001699<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001700 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001701</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001702<li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001703<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001704<li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001705</ul>
1706</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001707
1708
1709<!-- ======================================================================= -->
1710</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1711<tr><td>&nbsp;</td><td width="100%">&nbsp;
1712<font color="#EEEEFF" face="Georgia,Palatino"><b>
1713<a name="Type">The <tt>Type</tt> class and Derived Types</a>
1714</b></font></td></tr></table><ul>
1715
1716Type as noted earlier is also a subclass of a Value class. Any primitive
1717type (like int, short etc) in LLVM is an instance of Type Class. All
1718other types are instances of subclasses of type like FunctionType,
1719ArrayType etc. DerivedType is the interface for all such dervied types
1720including FunctionType, ArrayType, PointerType, StructType. Types can have
1721names. They can be recursive (StructType). There exists exactly one instance
1722of any type structure at a time. This allows using pointer equality of Type *s for comparing types.
1723
1724<!-- _______________________________________________________________________ -->
1725</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1726
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001727<li><tt>PrimitiveID getPrimitiveID() const</tt>: Returns the base type of the type.
1728<li><tt> bool isSigned() const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
1729<li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.
1730<li><tt> bool isInteger() const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.
1731<li><tt>bool isIntegral() const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
Chris Lattner9355b472002-09-06 02:50:58 +00001732
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001733<li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two floating point types.
1734<li><tt>bool isRecursive() const</tt>: Returns rue if the type graph contains a cycle.
Chris Lattner9355b472002-09-06 02:50:58 +00001735<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001736<li><tt>bool isPrimitiveType() const</tt>: Returns true if it is a primitive type.
1737<li><tt>bool isDerivedType() const</tt>: Returns true if it is a derived type.
Chris Lattner9355b472002-09-06 02:50:58 +00001738<li><tt>const Type * getContainedType (unsigned i) const</tt>:
1739This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001740<li><tt>unsigned getNumContainedTypes() const</tt>: Return the number of types in the derived type.
Chris Lattner9355b472002-09-06 02:50:58 +00001741
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001742<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001743
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001744<hr>
1745Derived Types<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001746
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001747<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001748<li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001749<ul>
1750 <li><tt>const Type * getElementType() const</tt>: Returns the type of each of the elements in the sequential type.
1751</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001752<li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001753<ul>
1754 <li><tt>unsigned getNumElements() const</tt>: Returns the number of elements in the array.
1755</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001756<li>PointerType : Subclass of SequentialType for pointer types.
1757<li>StructType : subclass of DerivedTypes for struct types
1758<li>FunctionType : subclass of DerivedTypes for function types.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001759
1760<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001761
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001762 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg function
1763 <li><tt> const Type * getReturnType() const</tt>: Returns the return type of the function.
1764 <li><tt> const ParamTypes &amp;getParamTypes() const</tt>: Returns a vector of parameter types.
Chris Lattner9355b472002-09-06 02:50:58 +00001765 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001766 <li><tt> const unsigned getNumParams() const</tt>: Returns the number of formal parameters.
1767</ul>
1768</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001769
1770
1771
1772
1773<!-- ======================================================================= -->
1774</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1775<tr><td>&nbsp;</td><td width="100%">&nbsp;
1776<font color="#EEEEFF" face="Georgia,Palatino"><b>
1777<a name="Argument">The <tt>Argument</tt> class</a>
1778</b></font></td></tr></table><ul>
1779
1780This subclass of Value defines the interface for incoming formal arguments to a
1781function. A Function maitanis a list of its formal arguments. An argument has a
1782pointer to the parent Function.
1783
1784
1785
1786
1787<!-- *********************************************************************** -->
1788</ul>
1789<!-- *********************************************************************** -->
1790
1791<hr><font size-1>
1792<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
1793<a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
1794<!-- Created: Tue Aug 6 15:00:33 CDT 2002 -->
1795<!-- hhmts start -->
Chris Lattner84b7f8d2003-08-01 22:20:59 +00001796Last modified: Fri Aug 1 16:40:37 CDT 2003
Chris Lattner9355b472002-09-06 02:50:58 +00001797<!-- hhmts end -->
1798</font></body></html>