blob: b4f71b991515470f6827ccc0375dc48bc6ed6ebf [file] [log] [blame]
Chris Lattner6367cfc2010-10-05 16:39:12 +00001//===- X86InstrArithmetic.td - Integer Arithmetic Instrs ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the integer arithmetic instructions in the X86
11// architecture.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// LEA - Load Effective Address
17
18let neverHasSideEffects = 1 in
19def LEA16r : I<0x8D, MRMSrcMem,
20 (outs GR16:$dst), (ins i32mem:$src),
21 "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize;
22let isReMaterializable = 1 in
23def LEA32r : I<0x8D, MRMSrcMem,
24 (outs GR32:$dst), (ins i32mem:$src),
25 "lea{l}\t{$src|$dst}, {$dst|$src}",
26 [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>;
27
28def LEA64_32r : I<0x8D, MRMSrcMem,
29 (outs GR32:$dst), (ins lea64_32mem:$src),
30 "lea{l}\t{$src|$dst}, {$dst|$src}",
31 [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
32
33let isReMaterializable = 1 in
34def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
35 "lea{q}\t{$src|$dst}, {$dst|$src}",
36 [(set GR64:$dst, lea64addr:$src)]>;
37
38
39
40//===----------------------------------------------------------------------===//
41// Fixed-Register Multiplication and Division Instructions.
42//
43
44// Extra precision multiplication
45
46// AL is really implied by AX, but the registers in Defs must match the
47// SDNode results (i8, i32).
48let Defs = [AL,EFLAGS,AX], Uses = [AL] in
49def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src",
50 // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
51 // This probably ought to be moved to a def : Pat<> if the
52 // syntax can be accepted.
53 [(set AL, (mul AL, GR8:$src)),
54 (implicit EFLAGS)]>; // AL,AH = AL*GR8
55
56let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
57def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src),
58 "mul{w}\t$src",
59 []>, OpSize; // AX,DX = AX*GR16
60
61let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
62def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src),
63 "mul{l}\t$src",
64 []>; // EAX,EDX = EAX*GR32
Chris Lattner5bbbcdb2010-10-05 20:23:31 +000065let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
66def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
67 "mul{q}\t$src", []>; // RAX,RDX = RAX*GR64
Chris Lattner6367cfc2010-10-05 16:39:12 +000068
69let Defs = [AL,EFLAGS,AX], Uses = [AL] in
70def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
71 "mul{b}\t$src",
72 // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
73 // This probably ought to be moved to a def : Pat<> if the
74 // syntax can be accepted.
75 [(set AL, (mul AL, (loadi8 addr:$src))),
76 (implicit EFLAGS)]>; // AL,AH = AL*[mem8]
77
78let mayLoad = 1, neverHasSideEffects = 1 in {
79let Defs = [AX,DX,EFLAGS], Uses = [AX] in
80def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
81 "mul{w}\t$src",
82 []>, OpSize; // AX,DX = AX*[mem16]
83
84let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
85def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
86 "mul{l}\t$src",
87 []>; // EAX,EDX = EAX*[mem32]
Chris Lattner5bbbcdb2010-10-05 20:23:31 +000088let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
89def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
90 "mul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
Chris Lattner6367cfc2010-10-05 16:39:12 +000091}
92
93let neverHasSideEffects = 1 in {
94let Defs = [AL,EFLAGS,AX], Uses = [AL] in
95def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>;
96 // AL,AH = AL*GR8
97let Defs = [AX,DX,EFLAGS], Uses = [AX] in
98def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>,
99 OpSize; // AX,DX = AX*GR16
100let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
101def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>;
102 // EAX,EDX = EAX*GR32
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000103let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
104def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>;
105 // RAX,RDX = RAX*GR64
106
Chris Lattner6367cfc2010-10-05 16:39:12 +0000107let mayLoad = 1 in {
108let Defs = [AL,EFLAGS,AX], Uses = [AL] in
109def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
110 "imul{b}\t$src", []>; // AL,AH = AL*[mem8]
111let Defs = [AX,DX,EFLAGS], Uses = [AX] in
112def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
113 "imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16]
114let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
115def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
116 "imul{l}\t$src", []>; // EAX,EDX = EAX*[mem32]
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000117let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
118def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
119 "imul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
Chris Lattner6367cfc2010-10-05 16:39:12 +0000120}
121} // neverHasSideEffects
122
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000123
124let Defs = [EFLAGS] in {
125let Constraints = "$src1 = $dst" in {
126
127let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y
128// Register-Register Signed Integer Multiply
129def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
130 "imul{w}\t{$src2, $dst|$dst, $src2}",
131 [(set GR16:$dst, EFLAGS,
132 (X86smul_flag GR16:$src1, GR16:$src2))]>, TB, OpSize;
133def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
134 "imul{l}\t{$src2, $dst|$dst, $src2}",
135 [(set GR32:$dst, EFLAGS,
136 (X86smul_flag GR32:$src1, GR32:$src2))]>, TB;
137def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
138 (ins GR64:$src1, GR64:$src2),
139 "imul{q}\t{$src2, $dst|$dst, $src2}",
140 [(set GR64:$dst, EFLAGS,
141 (X86smul_flag GR64:$src1, GR64:$src2))]>, TB;
142}
143
144// Register-Memory Signed Integer Multiply
145def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
146 (ins GR16:$src1, i16mem:$src2),
147 "imul{w}\t{$src2, $dst|$dst, $src2}",
148 [(set GR16:$dst, EFLAGS,
149 (X86smul_flag GR16:$src1, (load addr:$src2)))]>,
150 TB, OpSize;
151def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
152 (ins GR32:$src1, i32mem:$src2),
153 "imul{l}\t{$src2, $dst|$dst, $src2}",
154 [(set GR32:$dst, EFLAGS,
155 (X86smul_flag GR32:$src1, (load addr:$src2)))]>, TB;
156def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
157 (ins GR64:$src1, i64mem:$src2),
158 "imul{q}\t{$src2, $dst|$dst, $src2}",
159 [(set GR64:$dst, EFLAGS,
160 (X86smul_flag GR64:$src1, (load addr:$src2)))]>, TB;
161} // Constraints = "$src1 = $dst"
162
163} // Defs = [EFLAGS]
164
165// Suprisingly enough, these are not two address instructions!
166let Defs = [EFLAGS] in {
167// Register-Integer Signed Integer Multiply
168def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16
169 (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
170 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
171 [(set GR16:$dst, EFLAGS,
172 (X86smul_flag GR16:$src1, imm:$src2))]>, OpSize;
173def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8
174 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
175 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
176 [(set GR16:$dst, EFLAGS,
177 (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>,
178 OpSize;
179def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32
180 (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
181 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
182 [(set GR32:$dst, EFLAGS,
183 (X86smul_flag GR32:$src1, imm:$src2))]>;
184def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8
185 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
186 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
187 [(set GR32:$dst, EFLAGS,
188 (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>;
189def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32
190 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
191 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
192 [(set GR64:$dst, EFLAGS,
193 (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>;
194def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8
195 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
196 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
197 [(set GR64:$dst, EFLAGS,
198 (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>;
199
200
201// Memory-Integer Signed Integer Multiply
202def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16
203 (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
204 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
205 [(set GR16:$dst, EFLAGS,
206 (X86smul_flag (load addr:$src1), imm:$src2))]>,
207 OpSize;
208def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8
209 (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
210 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
211 [(set GR16:$dst, EFLAGS,
212 (X86smul_flag (load addr:$src1),
213 i16immSExt8:$src2))]>, OpSize;
214def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32
215 (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
216 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
217 [(set GR32:$dst, EFLAGS,
218 (X86smul_flag (load addr:$src1), imm:$src2))]>;
219def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8
220 (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
221 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
222 [(set GR32:$dst, EFLAGS,
223 (X86smul_flag (load addr:$src1),
224 i32immSExt8:$src2))]>;
225def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32
226 (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
227 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
228 [(set GR64:$dst, EFLAGS,
229 (X86smul_flag (load addr:$src1),
230 i64immSExt32:$src2))]>;
231def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8
232 (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
233 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
234 [(set GR64:$dst, EFLAGS,
235 (X86smul_flag (load addr:$src1),
236 i64immSExt8:$src2))]>;
237} // Defs = [EFLAGS]
238
239
240
241
Chris Lattner6367cfc2010-10-05 16:39:12 +0000242// unsigned division/remainder
243let Defs = [AL,EFLAGS,AX], Uses = [AX] in
244def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
245 "div{b}\t$src", []>;
246let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
247def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
248 "div{w}\t$src", []>, OpSize;
249let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
250def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
251 "div{l}\t$src", []>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000252// RDX:RAX/r64 = RAX,RDX
253let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
254def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
255 "div{q}\t$src", []>;
256
Chris Lattner6367cfc2010-10-05 16:39:12 +0000257let mayLoad = 1 in {
258let Defs = [AL,EFLAGS,AX], Uses = [AX] in
259def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
260 "div{b}\t$src", []>;
261let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
262def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
263 "div{w}\t$src", []>, OpSize;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000264let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
Chris Lattner6367cfc2010-10-05 16:39:12 +0000265def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
266 "div{l}\t$src", []>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000267// RDX:RAX/[mem64] = RAX,RDX
268let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
269def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
270 "div{q}\t$src", []>;
Chris Lattner6367cfc2010-10-05 16:39:12 +0000271}
272
273// Signed division/remainder.
274let Defs = [AL,EFLAGS,AX], Uses = [AX] in
275def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
276 "idiv{b}\t$src", []>;
277let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
278def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
279 "idiv{w}\t$src", []>, OpSize;
280let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
281def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
282 "idiv{l}\t$src", []>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000283// RDX:RAX/r64 = RAX,RDX
284let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
285def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
286 "idiv{q}\t$src", []>;
287
Chris Lattner6367cfc2010-10-05 16:39:12 +0000288let mayLoad = 1, mayLoad = 1 in {
289let Defs = [AL,EFLAGS,AX], Uses = [AX] in
290def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
291 "idiv{b}\t$src", []>;
292let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
293def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
294 "idiv{w}\t$src", []>, OpSize;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000295let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
Chris Lattner6367cfc2010-10-05 16:39:12 +0000296def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
Chris Lattner6367cfc2010-10-05 16:39:12 +0000297 "idiv{l}\t$src", []>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000298let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
299def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
300 "idiv{q}\t$src", []>;
Chris Lattner6367cfc2010-10-05 16:39:12 +0000301}
302
303//===----------------------------------------------------------------------===//
304// Two address Instructions.
305//
Chris Lattner6367cfc2010-10-05 16:39:12 +0000306
307// unary instructions
308let CodeSize = 2 in {
309let Defs = [EFLAGS] in {
Chris Lattnerc7d46552010-10-05 16:52:25 +0000310let Constraints = "$src1 = $dst" in {
Chris Lattner6367cfc2010-10-05 16:39:12 +0000311def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
312 "neg{b}\t$dst",
313 [(set GR8:$dst, (ineg GR8:$src1)),
314 (implicit EFLAGS)]>;
315def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
316 "neg{w}\t$dst",
317 [(set GR16:$dst, (ineg GR16:$src1)),
318 (implicit EFLAGS)]>, OpSize;
319def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
320 "neg{l}\t$dst",
321 [(set GR32:$dst, (ineg GR32:$src1)),
322 (implicit EFLAGS)]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000323def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
324 [(set GR64:$dst, (ineg GR64:$src1)),
325 (implicit EFLAGS)]>;
Chris Lattnerc7d46552010-10-05 16:52:25 +0000326} // Constraints = "$src1 = $dst"
327
328def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
329 "neg{b}\t$dst",
330 [(store (ineg (loadi8 addr:$dst)), addr:$dst),
331 (implicit EFLAGS)]>;
332def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
333 "neg{w}\t$dst",
334 [(store (ineg (loadi16 addr:$dst)), addr:$dst),
335 (implicit EFLAGS)]>, OpSize;
336def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
337 "neg{l}\t$dst",
338 [(store (ineg (loadi32 addr:$dst)), addr:$dst),
339 (implicit EFLAGS)]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000340def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
341 [(store (ineg (loadi64 addr:$dst)), addr:$dst),
342 (implicit EFLAGS)]>;
Chris Lattner6367cfc2010-10-05 16:39:12 +0000343} // Defs = [EFLAGS]
344
Chris Lattnerc7d46552010-10-05 16:52:25 +0000345
Chris Lattner508fc472010-10-05 21:09:45 +0000346// Note: NOT does not set EFLAGS!
Chris Lattnerc7d46552010-10-05 16:52:25 +0000347
348let Constraints = "$src1 = $dst" in {
Chris Lattner6367cfc2010-10-05 16:39:12 +0000349// Match xor -1 to not. Favors these over a move imm + xor to save code size.
350let AddedComplexity = 15 in {
351def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
352 "not{b}\t$dst",
353 [(set GR8:$dst, (not GR8:$src1))]>;
354def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
355 "not{w}\t$dst",
356 [(set GR16:$dst, (not GR16:$src1))]>, OpSize;
357def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
358 "not{l}\t$dst",
359 [(set GR32:$dst, (not GR32:$src1))]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000360def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
361 [(set GR64:$dst, (not GR64:$src1))]>;
Chris Lattner6367cfc2010-10-05 16:39:12 +0000362}
Chris Lattnerc7d46552010-10-05 16:52:25 +0000363} // Constraints = "$src1 = $dst"
364
365def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
366 "not{b}\t$dst",
367 [(store (not (loadi8 addr:$dst)), addr:$dst)]>;
368def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
369 "not{w}\t$dst",
370 [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize;
371def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
372 "not{l}\t$dst",
373 [(store (not (loadi32 addr:$dst)), addr:$dst)]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000374def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
375 [(store (not (loadi64 addr:$dst)), addr:$dst)]>;
Chris Lattner6367cfc2010-10-05 16:39:12 +0000376} // CodeSize
377
378// TODO: inc/dec is slow for P4, but fast for Pentium-M.
379let Defs = [EFLAGS] in {
Chris Lattnerc7d46552010-10-05 16:52:25 +0000380let Constraints = "$src1 = $dst" in {
Chris Lattner6367cfc2010-10-05 16:39:12 +0000381let CodeSize = 2 in
382def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
383 "inc{b}\t$dst",
384 [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>;
385
386let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
387def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
388 "inc{w}\t$dst",
389 [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
390 OpSize, Requires<[In32BitMode]>;
391def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
392 "inc{l}\t$dst",
393 [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
394 Requires<[In32BitMode]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000395def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
396 [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))]>;
Chris Lattner10701922010-10-05 20:35:37 +0000397} // isConvertibleToThreeAddress = 1, CodeSize = 1
398
399
400// In 64-bit mode, single byte INC and DEC cannot be encoded.
401let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
402// Can transform into LEA.
403def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
404 "inc{w}\t$dst",
405 [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
406 OpSize, Requires<[In64BitMode]>;
407def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
408 "inc{l}\t$dst",
409 [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
410 Requires<[In64BitMode]>;
411def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
412 "dec{w}\t$dst",
413 [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
414 OpSize, Requires<[In64BitMode]>;
415def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
416 "dec{l}\t$dst",
417 [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
418 Requires<[In64BitMode]>;
419} // isConvertibleToThreeAddress = 1, CodeSize = 2
420
Chris Lattnerc7d46552010-10-05 16:52:25 +0000421} // Constraints = "$src1 = $dst"
422
423let CodeSize = 2 in {
Chris Lattner6367cfc2010-10-05 16:39:12 +0000424 def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
425 [(store (add (loadi8 addr:$dst), 1), addr:$dst),
426 (implicit EFLAGS)]>;
427 def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
428 [(store (add (loadi16 addr:$dst), 1), addr:$dst),
429 (implicit EFLAGS)]>,
430 OpSize, Requires<[In32BitMode]>;
431 def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
432 [(store (add (loadi32 addr:$dst), 1), addr:$dst),
433 (implicit EFLAGS)]>,
434 Requires<[In32BitMode]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000435 def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
436 [(store (add (loadi64 addr:$dst), 1), addr:$dst),
437 (implicit EFLAGS)]>;
Chris Lattner10701922010-10-05 20:35:37 +0000438
439// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
440// how to unfold them.
441// FIXME: What is this for??
442def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
443 [(store (add (loadi16 addr:$dst), 1), addr:$dst),
444 (implicit EFLAGS)]>,
445 OpSize, Requires<[In64BitMode]>;
446def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
447 [(store (add (loadi32 addr:$dst), 1), addr:$dst),
448 (implicit EFLAGS)]>,
449 Requires<[In64BitMode]>;
450def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
451 [(store (add (loadi16 addr:$dst), -1), addr:$dst),
452 (implicit EFLAGS)]>,
453 OpSize, Requires<[In64BitMode]>;
454def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
455 [(store (add (loadi32 addr:$dst), -1), addr:$dst),
456 (implicit EFLAGS)]>,
457 Requires<[In64BitMode]>;
Chris Lattnerc7d46552010-10-05 16:52:25 +0000458} // CodeSize = 2
Chris Lattner6367cfc2010-10-05 16:39:12 +0000459
Chris Lattnerc7d46552010-10-05 16:52:25 +0000460let Constraints = "$src1 = $dst" in {
Chris Lattner6367cfc2010-10-05 16:39:12 +0000461let CodeSize = 2 in
462def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
463 "dec{b}\t$dst",
464 [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>;
465let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
466def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
467 "dec{w}\t$dst",
468 [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
469 OpSize, Requires<[In32BitMode]>;
470def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
471 "dec{l}\t$dst",
472 [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
473 Requires<[In32BitMode]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000474def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
475 [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))]>;
Chris Lattner6367cfc2010-10-05 16:39:12 +0000476} // CodeSize = 2
Chris Lattnerc7d46552010-10-05 16:52:25 +0000477} // Constraints = "$src1 = $dst"
Chris Lattner6367cfc2010-10-05 16:39:12 +0000478
Chris Lattnerc7d46552010-10-05 16:52:25 +0000479
480let CodeSize = 2 in {
Chris Lattner6367cfc2010-10-05 16:39:12 +0000481 def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
482 [(store (add (loadi8 addr:$dst), -1), addr:$dst),
483 (implicit EFLAGS)]>;
484 def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
485 [(store (add (loadi16 addr:$dst), -1), addr:$dst),
486 (implicit EFLAGS)]>,
487 OpSize, Requires<[In32BitMode]>;
488 def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
489 [(store (add (loadi32 addr:$dst), -1), addr:$dst),
490 (implicit EFLAGS)]>,
491 Requires<[In32BitMode]>;
Chris Lattner5bbbcdb2010-10-05 20:23:31 +0000492 def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
493 [(store (add (loadi64 addr:$dst), -1), addr:$dst),
494 (implicit EFLAGS)]>;
Chris Lattnerc7d46552010-10-05 16:52:25 +0000495} // CodeSize = 2
Chris Lattner6367cfc2010-10-05 16:39:12 +0000496} // Defs = [EFLAGS]
497
Chris Lattner44402c02010-10-06 05:20:57 +0000498
Chris Lattner417b5432010-10-06 00:45:24 +0000499/// X86TypeInfo - This is a bunch of information that describes relevant X86
500/// information about value types. For example, it can tell you what the
501/// register class and preferred load to use.
502class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
Chris Lattner2b8d30d2010-10-07 00:12:45 +0000503 PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
504 Operand immoperand, SDPatternOperator immoperator,
505 Operand imm8operand, SDPatternOperator imm8operator,
Chris Lattner08808f92010-10-06 05:28:38 +0000506 bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
Chris Lattner417b5432010-10-06 00:45:24 +0000507 /// VT - This is the value type itself.
508 ValueType VT = vt;
509
510 /// InstrSuffix - This is the suffix used on instructions with this type. For
511 /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
512 string InstrSuffix = instrsuffix;
513
514 /// RegClass - This is the register class associated with this type. For
515 /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
516 RegisterClass RegClass = regclass;
517
518 /// LoadNode - This is the load node associated with this type. For
519 /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
520 PatFrag LoadNode = loadnode;
521
522 /// MemOperand - This is the memory operand associated with this type. For
523 /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
524 X86MemOperand MemOperand = memoperand;
Chris Lattner44402c02010-10-06 05:20:57 +0000525
Chris Lattnerb2fc4092010-10-06 05:55:42 +0000526 /// ImmEncoding - This is the encoding of an immediate of this type. For
527 /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32
528 /// since the immediate fields of i64 instructions is a 32-bit sign extended
529 /// value.
530 ImmType ImmEncoding = immkind;
531
532 /// ImmOperand - This is the operand kind of an immediate of this type. For
533 /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 ->
534 /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
535 /// extended value.
536 Operand ImmOperand = immoperand;
537
Chris Lattner78266112010-10-07 00:01:39 +0000538 /// ImmOperator - This is the operator that should be used to match an
539 /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
540 SDPatternOperator ImmOperator = immoperator;
541
Chris Lattner2b8d30d2010-10-07 00:12:45 +0000542 /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
543 /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is
544 /// only used for instructions that have a sign-extended imm8 field form.
545 Operand Imm8Operand = imm8operand;
546
547 /// Imm8Operator - This is the operator that should be used to match an 8-bit
548 /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
549 SDPatternOperator Imm8Operator = imm8operator;
550
Chris Lattner08808f92010-10-06 05:28:38 +0000551 /// HasOddOpcode - This bit is true if the instruction should have an odd (as
552 /// opposed to even) opcode. Operations on i8 are usually even, operations on
553 /// other datatypes are odd.
554 bit HasOddOpcode = hasOddOpcode;
555
Chris Lattner44402c02010-10-06 05:20:57 +0000556 /// HasOpSizePrefix - This bit is set to true if the instruction should have
557 /// the 0x66 operand size prefix. This is set for i16 types.
558 bit HasOpSizePrefix = hasOpSizePrefix;
559
560 /// HasREX_WPrefix - This bit is set to true if the instruction should have
561 /// the 0x40 REX prefix. This is set for i64 types.
562 bit HasREX_WPrefix = hasREX_WPrefix;
Chris Lattner417b5432010-10-06 00:45:24 +0000563}
Chris Lattnere00047c2010-10-05 23:32:05 +0000564
Chris Lattner2b8d30d2010-10-07 00:12:45 +0000565def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
566
567
568def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
569 Imm8 , i8imm , imm, i8imm , invalid_node,
570 0, 0, 0>;
571def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
572 Imm16, i16imm, imm, i16i8imm, i16immSExt8,
573 1, 1, 0>;
574def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
575 Imm32, i32imm, imm, i32i8imm, i32immSExt8,
576 1, 0, 0>;
577def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
578 Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
579 1, 0, 1>;
Chris Lattner44402c02010-10-06 05:20:57 +0000580
581/// ITy - This instruction base class takes the type info for the instruction.
582/// Using this, it:
583/// 1. Concatenates together the instruction mnemonic with the appropriate
584/// suffix letter, a tab, and the arguments.
585/// 2. Infers whether the instruction should have a 0x66 prefix byte.
586/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
Chris Lattner08808f92010-10-06 05:28:38 +0000587/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
588/// or 1 (for i16,i32,i64 operations).
Chris Lattnerb2fc4092010-10-06 05:55:42 +0000589class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
Chris Lattner44402c02010-10-06 05:20:57 +0000590 string mnemonic, string args, list<dag> pattern>
Chris Lattner08808f92010-10-06 05:28:38 +0000591 : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
592 opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
593 f, outs, ins,
Chris Lattner44402c02010-10-06 05:20:57 +0000594 !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> {
595
596 // Infer instruction prefixes from type info.
597 let hasOpSizePrefix = typeinfo.HasOpSizePrefix;
598 let hasREX_WPrefix = typeinfo.HasREX_WPrefix;
599}
Chris Lattner417b5432010-10-06 00:45:24 +0000600
Chris Lattner9e940002010-10-07 20:14:23 +0000601// BinOpRR - Instructions like "add reg, reg, reg".
602class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner9649e9a2010-10-07 21:31:03 +0000603 dag outlist, list<dag> pattern, Format f = MRMDestReg>
604 : ITy<opcode, f, typeinfo, outlist,
Chris Lattner9e940002010-10-07 20:14:23 +0000605 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
Chris Lattner00e94ba2010-10-07 20:56:25 +0000606 mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
Chris Lattner9e940002010-10-07 20:14:23 +0000607
Chris Lattnera3208e12010-10-07 20:01:55 +0000608// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
609// just a regclass (no eflags) as a result.
610class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
611 SDNode opnode>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000612 : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
Chris Lattner9e940002010-10-07 20:14:23 +0000613 [(set typeinfo.RegClass:$dst,
614 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
Chris Lattnera3208e12010-10-07 20:01:55 +0000615
Chris Lattner00e94ba2010-10-07 20:56:25 +0000616// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
617// just a EFLAGS as a result.
618class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner9649e9a2010-10-07 21:31:03 +0000619 SDPatternOperator opnode, Format f = MRMDestReg>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000620 : BinOpRR<opcode, mnemonic, typeinfo, (outs),
621 [(set EFLAGS,
Chris Lattner9649e9a2010-10-07 21:31:03 +0000622 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
623 f>;
Chris Lattner00e94ba2010-10-07 20:56:25 +0000624
Chris Lattnera3208e12010-10-07 20:01:55 +0000625// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
626// both a regclass and EFLAGS as a result.
627class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
628 SDNode opnode>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000629 : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
Chris Lattner9e940002010-10-07 20:14:23 +0000630 [(set typeinfo.RegClass:$dst, EFLAGS,
631 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
Chris Lattnere00047c2010-10-05 23:32:05 +0000632
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000633// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
Chris Lattner3ab0b592010-10-06 05:35:22 +0000634class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
635 : ITy<opcode, MRMSrcReg, typeinfo,
636 (outs typeinfo.RegClass:$dst),
637 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
638 mnemonic, "{$src2, $dst|$dst, $src2}", []> {
639 // The disassembler should know about this, but not the asmparser.
640 let isCodeGenOnly = 1;
641}
Chris Lattnerff27af22010-10-06 00:30:49 +0000642
Chris Lattner9e940002010-10-07 20:14:23 +0000643// BinOpRM - Instructions like "add reg, reg, [mem]".
644class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner00e94ba2010-10-07 20:56:25 +0000645 dag outlist, list<dag> pattern>
646 : ITy<opcode, MRMSrcMem, typeinfo, outlist,
Chris Lattnera3208e12010-10-07 20:01:55 +0000647 (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
Chris Lattner00e94ba2010-10-07 20:56:25 +0000648 mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
Chris Lattner9e940002010-10-07 20:14:23 +0000649
650// BinOpRM_R - Instructions like "add reg, reg, [mem]".
651class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
652 SDNode opnode>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000653 : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
Chris Lattner9e940002010-10-07 20:14:23 +0000654 [(set typeinfo.RegClass:$dst,
Chris Lattnera3208e12010-10-07 20:01:55 +0000655 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
656
Chris Lattner00e94ba2010-10-07 20:56:25 +0000657// BinOpRM_F - Instructions like "cmp reg, [mem]".
658class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner9649e9a2010-10-07 21:31:03 +0000659 SDPatternOperator opnode>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000660 : BinOpRM<opcode, mnemonic, typeinfo, (outs),
661 [(set EFLAGS,
662 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
663
Chris Lattnera3208e12010-10-07 20:01:55 +0000664// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
665class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattnera2b8b162010-10-07 20:06:24 +0000666 SDNode opnode>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000667 : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
Chris Lattner9e940002010-10-07 20:14:23 +0000668 [(set typeinfo.RegClass:$dst, EFLAGS,
Chris Lattnerda4b3612010-10-06 04:58:43 +0000669 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
Chris Lattnerff27af22010-10-06 00:30:49 +0000670
Chris Lattner9e940002010-10-07 20:14:23 +0000671// BinOpRI - Instructions like "add reg, reg, imm".
672class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner00e94ba2010-10-07 20:56:25 +0000673 Format f, dag outlist, list<dag> pattern>
674 : ITy<opcode, f, typeinfo, outlist,
Chris Lattner9e940002010-10-07 20:14:23 +0000675 (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
Chris Lattner00e94ba2010-10-07 20:56:25 +0000676 mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
Chris Lattner9e940002010-10-07 20:14:23 +0000677 let ImmT = typeinfo.ImmEncoding;
678}
679
Chris Lattnera3208e12010-10-07 20:01:55 +0000680// BinOpRI_R - Instructions like "add reg, reg, imm".
681class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
682 SDNode opnode, Format f>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000683 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
Chris Lattner9e940002010-10-07 20:14:23 +0000684 [(set typeinfo.RegClass:$dst,
685 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
Chris Lattnera3208e12010-10-07 20:01:55 +0000686
Chris Lattner00e94ba2010-10-07 20:56:25 +0000687// BinOpRI_F - Instructions like "cmp reg, imm".
688class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner9649e9a2010-10-07 21:31:03 +0000689 SDPatternOperator opnode, Format f>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000690 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
691 [(set EFLAGS,
692 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
693
Chris Lattnera3208e12010-10-07 20:01:55 +0000694// BinOpRI_RF - Instructions like "add reg, reg, imm".
695class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
696 SDNode opnode, Format f>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000697 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
698 [(set typeinfo.RegClass:$dst, EFLAGS,
Chris Lattner9e940002010-10-07 20:14:23 +0000699 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
700
701// BinOpRI8 - Instructions like "add reg, reg, imm8".
702class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner00e94ba2010-10-07 20:56:25 +0000703 Format f, dag outlist, list<dag> pattern>
704 : ITy<opcode, f, typeinfo, outlist,
Chris Lattner9e940002010-10-07 20:14:23 +0000705 (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
Chris Lattner00e94ba2010-10-07 20:56:25 +0000706 mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
Chris Lattner9e940002010-10-07 20:14:23 +0000707 let ImmT = Imm8; // Always 8-bit immediate.
Chris Lattnerb2fc4092010-10-06 05:55:42 +0000708}
Chris Lattnerff27af22010-10-06 00:30:49 +0000709
Chris Lattnera3208e12010-10-07 20:01:55 +0000710// BinOpRI8_R - Instructions like "add reg, reg, imm8".
711class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
712 SDNode opnode, Format f>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000713 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
Chris Lattner9e940002010-10-07 20:14:23 +0000714 [(set typeinfo.RegClass:$dst,
715 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
Chris Lattner00e94ba2010-10-07 20:56:25 +0000716
717// BinOpRI8_F - Instructions like "cmp reg, imm8".
718class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
719 SDNode opnode, Format f>
720 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
721 [(set EFLAGS,
722 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
Chris Lattner3ab0b592010-10-06 05:35:22 +0000723
Chris Lattnera3208e12010-10-07 20:01:55 +0000724// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
725class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
726 SDNode opnode, Format f>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000727 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
Chris Lattner9e940002010-10-07 20:14:23 +0000728 [(set typeinfo.RegClass:$dst, EFLAGS,
729 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
Chris Lattner2b8d30d2010-10-07 00:12:45 +0000730
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000731// BinOpMR - Instructions like "add [mem], reg".
732class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Chris Lattner00e94ba2010-10-07 20:56:25 +0000733 list<dag> pattern>
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000734 : ITy<opcode, MRMDestMem, typeinfo,
735 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
Chris Lattner00e94ba2010-10-07 20:56:25 +0000736 mnemonic, "{$src, $dst|$dst, $src}", pattern>;
737
738// BinOpMR_RMW - Instructions like "add [mem], reg".
739class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
740 SDNode opnode>
741 : BinOpMR<opcode, mnemonic, typeinfo,
742 [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
743 (implicit EFLAGS)]>;
744
745// BinOpMR_F - Instructions like "cmp [mem], reg".
746class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
747 SDNode opnode>
748 : BinOpMR<opcode, mnemonic, typeinfo,
749 [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000750
751// BinOpMI - Instructions like "add [mem], imm".
Chris Lattnera2b8b162010-10-07 20:06:24 +0000752class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
Chris Lattner9649e9a2010-10-07 21:31:03 +0000753 Format f, list<dag> pattern, bits<8> opcode = 0x80>
754 : ITy<opcode, f, typeinfo,
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000755 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
Chris Lattner00e94ba2010-10-07 20:56:25 +0000756 mnemonic, "{$src, $dst|$dst, $src}", pattern> {
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000757 let ImmT = typeinfo.ImmEncoding;
758}
759
Chris Lattner00e94ba2010-10-07 20:56:25 +0000760// BinOpMI_RMW - Instructions like "add [mem], imm".
761class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
762 SDNode opnode, Format f>
763 : BinOpMI<mnemonic, typeinfo, f,
764 [(store (opnode (typeinfo.VT (load addr:$dst)),
765 typeinfo.ImmOperator:$src), addr:$dst),
766 (implicit EFLAGS)]>;
767
768// BinOpMI_F - Instructions like "cmp [mem], imm".
769class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
Chris Lattner9649e9a2010-10-07 21:31:03 +0000770 SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
Chris Lattner00e94ba2010-10-07 20:56:25 +0000771 : BinOpMI<mnemonic, typeinfo, f,
772 [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
Chris Lattner9649e9a2010-10-07 21:31:03 +0000773 typeinfo.ImmOperator:$src))],
774 opcode>;
Chris Lattner00e94ba2010-10-07 20:56:25 +0000775
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000776// BinOpMI8 - Instructions like "add [mem], imm8".
Chris Lattnera2b8b162010-10-07 20:06:24 +0000777class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
Chris Lattner00e94ba2010-10-07 20:56:25 +0000778 Format f, list<dag> pattern>
Chris Lattnera2b8b162010-10-07 20:06:24 +0000779 : ITy<0x82, f, typeinfo,
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000780 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
Chris Lattner00e94ba2010-10-07 20:56:25 +0000781 mnemonic, "{$src, $dst|$dst, $src}", pattern> {
Chris Lattner1bb9ada2010-10-07 00:35:28 +0000782 let ImmT = Imm8; // Always 8-bit immediate.
783}
784
Chris Lattner00e94ba2010-10-07 20:56:25 +0000785// BinOpMI8_RMW - Instructions like "add [mem], imm8".
786class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
787 SDNode opnode, Format f>
788 : BinOpMI8<mnemonic, typeinfo, f,
789 [(store (opnode (load addr:$dst),
790 typeinfo.Imm8Operator:$src), addr:$dst),
791 (implicit EFLAGS)]>;
792
793// BinOpMI8_F - Instructions like "cmp [mem], imm8".
794class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
795 SDNode opnode, Format f>
796 : BinOpMI8<mnemonic, typeinfo, f,
797 [(set EFLAGS, (opnode (load addr:$dst),
798 typeinfo.Imm8Operator:$src))]>;
799
Chris Lattner511c6862010-10-07 00:43:39 +0000800// BinOpAI - Instructions like "add %eax, %eax, imm".
801class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
802 Register areg>
803 : ITy<opcode, RawFrm, typeinfo,
804 (outs), (ins typeinfo.ImmOperand:$src),
805 mnemonic, !strconcat("{$src, %", areg.AsmName, "|%",
806 areg.AsmName, ", $src}"), []> {
807 let ImmT = typeinfo.ImmEncoding;
808 let Uses = [areg];
809 let Defs = [areg];
810}
Chris Lattner3ab0b592010-10-06 05:35:22 +0000811
Chris Lattnera3208e12010-10-07 20:01:55 +0000812/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
813/// defined with "(set GPR:$dst, EFLAGS, (...".
814///
815/// It would be nice to get rid of the second and third argument here, but
816/// tblgen can't handle dependent type references aggressively enough: PR8330
817multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
818 string mnemonic, Format RegMRM, Format MemMRM,
819 SDNode opnodeflag, SDNode opnode,
820 bit CommutableRR, bit ConvertibleToThreeAddress> {
Chris Lattner4b181c82010-10-07 01:10:20 +0000821 let Defs = [EFLAGS] in {
822 let Constraints = "$src1 = $dst" in {
Chris Lattnerb0468102010-10-07 01:37:01 +0000823 let isCommutable = CommutableRR,
824 isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
Chris Lattnera3208e12010-10-07 20:01:55 +0000825 def #NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
826 def #NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
827 def #NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
828 def #NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
Chris Lattner4b181c82010-10-07 01:10:20 +0000829 } // isCommutable
830
831 def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
832 def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
833 def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
834 def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
835
Chris Lattnera3208e12010-10-07 20:01:55 +0000836 def #NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
837 def #NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
838 def #NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
839 def #NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
Chris Lattner4b181c82010-10-07 01:10:20 +0000840
Chris Lattnerb0468102010-10-07 01:37:01 +0000841 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
Chris Lattnera3208e12010-10-07 20:01:55 +0000842 def #NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
843 def #NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
844 def #NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
845 def #NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
Chris Lattner4b181c82010-10-07 01:10:20 +0000846
Chris Lattnera3208e12010-10-07 20:01:55 +0000847 def #NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
848 def #NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
849 def #NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
Chris Lattnerb0468102010-10-07 01:37:01 +0000850 }
Chris Lattner4b181c82010-10-07 01:10:20 +0000851 } // Constraints = "$src1 = $dst"
852
Chris Lattner00e94ba2010-10-07 20:56:25 +0000853 def #NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
854 def #NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
855 def #NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
856 def #NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
Chris Lattner4b181c82010-10-07 01:10:20 +0000857
Chris Lattner00e94ba2010-10-07 20:56:25 +0000858 def #NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
859 def #NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
860 def #NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
861 def #NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
Chris Lattner4b181c82010-10-07 01:10:20 +0000862
Chris Lattner00e94ba2010-10-07 20:56:25 +0000863 def #NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
864 def #NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
865 def #NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
Chris Lattner4b181c82010-10-07 01:10:20 +0000866
867 def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>;
868 def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>;
869 def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>;
870 def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>;
871 }
872}
873
Chris Lattnera3208e12010-10-07 20:01:55 +0000874/// ArithBinOp_R - This is an arithmetic binary operator where the pattern is
875/// defined with "(set GPR:$dst, (...". It would be really nice to find a way
876/// to factor this with the other ArithBinOp_*.
877///
878multiclass ArithBinOp_R<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
879 string mnemonic, Format RegMRM, Format MemMRM,
880 SDNode opnode,
881 bit CommutableRR, bit ConvertibleToThreeAddress> {
882 let Defs = [EFLAGS] in {
883 let Constraints = "$src1 = $dst" in {
884 let isCommutable = CommutableRR,
885 isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
886 def #NAME#8rr : BinOpRR_R<BaseOpc, mnemonic, Xi8 , opnode>;
887 def #NAME#16rr : BinOpRR_R<BaseOpc, mnemonic, Xi16, opnode>;
888 def #NAME#32rr : BinOpRR_R<BaseOpc, mnemonic, Xi32, opnode>;
889 def #NAME#64rr : BinOpRR_R<BaseOpc, mnemonic, Xi64, opnode>;
890 } // isCommutable
Chris Lattner6367cfc2010-10-05 16:39:12 +0000891
Chris Lattnera3208e12010-10-07 20:01:55 +0000892 def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
893 def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
894 def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
895 def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
896
897 def #NAME#8rm : BinOpRM_R<BaseOpc2, mnemonic, Xi8 , opnode>;
898 def #NAME#16rm : BinOpRM_R<BaseOpc2, mnemonic, Xi16, opnode>;
899 def #NAME#32rm : BinOpRM_R<BaseOpc2, mnemonic, Xi32, opnode>;
900 def #NAME#64rm : BinOpRM_R<BaseOpc2, mnemonic, Xi64, opnode>;
901
902 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
903 def #NAME#8ri : BinOpRI_R<0x80, mnemonic, Xi8 , opnode, RegMRM>;
904 def #NAME#16ri : BinOpRI_R<0x80, mnemonic, Xi16, opnode, RegMRM>;
905 def #NAME#32ri : BinOpRI_R<0x80, mnemonic, Xi32, opnode, RegMRM>;
906 def #NAME#64ri32: BinOpRI_R<0x80, mnemonic, Xi64, opnode, RegMRM>;
907
908 def #NAME#16ri8 : BinOpRI8_R<0x82, mnemonic, Xi16, opnode, RegMRM>;
909 def #NAME#32ri8 : BinOpRI8_R<0x82, mnemonic, Xi32, opnode, RegMRM>;
910 def #NAME#64ri8 : BinOpRI8_R<0x82, mnemonic, Xi64, opnode, RegMRM>;
911 }
912 } // Constraints = "$src1 = $dst"
913
Chris Lattner00e94ba2010-10-07 20:56:25 +0000914 def #NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
915 def #NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
916 def #NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
917 def #NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
Chris Lattnera3208e12010-10-07 20:01:55 +0000918
Chris Lattner00e94ba2010-10-07 20:56:25 +0000919 def #NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
920 def #NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
921 def #NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
922 def #NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
Chris Lattnera3208e12010-10-07 20:01:55 +0000923
Chris Lattner00e94ba2010-10-07 20:56:25 +0000924 def #NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
925 def #NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
926 def #NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
927
928 def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>;
929 def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>;
930 def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>;
931 def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>;
932 }
933}
934
935/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
936/// defined with "(set EFLAGS, (...". It would be really nice to find a way
937/// to factor this with the other ArithBinOp_*.
938///
939multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
940 string mnemonic, Format RegMRM, Format MemMRM,
941 SDNode opnode,
942 bit CommutableRR, bit ConvertibleToThreeAddress> {
943 let Defs = [EFLAGS] in {
944 let isCommutable = CommutableRR,
945 isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
946 def #NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
947 def #NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
948 def #NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
949 def #NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
950 } // isCommutable
951
952 def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
953 def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
954 def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
955 def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
956
957 def #NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
958 def #NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
959 def #NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
960 def #NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
961
962 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
963 def #NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
964 def #NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
965 def #NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
966 def #NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
967
968 def #NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
969 def #NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
970 def #NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
971 }
972
973 def #NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
974 def #NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
975 def #NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
976 def #NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
977
978 def #NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
979 def #NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
980 def #NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
981 def #NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
982
983 def #NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
984 def #NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
985 def #NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
Chris Lattnera3208e12010-10-07 20:01:55 +0000986
987 def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>;
988 def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>;
989 def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>;
990 def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>;
991 }
992}
993
994
995defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
996 X86and_flag, and, 1, 0>;
997defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
998 X86or_flag, or, 1, 0>;
999defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
1000 X86xor_flag, xor, 1, 0>;
1001defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
1002 X86add_flag, add, 1, 1>;
1003defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
1004 X86sub_flag, sub, 0, 0>;
Chris Lattner6367cfc2010-10-05 16:39:12 +00001005
1006// Arithmetic.
Chris Lattner6367cfc2010-10-05 16:39:12 +00001007let Uses = [EFLAGS] in {
Chris Lattnera3208e12010-10-07 20:01:55 +00001008 // FIXME: Delete ArithBinOp_R if these switch off adde/sube.
1009 defm ADC : ArithBinOp_R<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, adde, 1, 0>;
1010 defm SBB : ArithBinOp_R<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, sube, 0, 0>;
Chris Lattner6367cfc2010-10-05 16:39:12 +00001011}
1012
Chris Lattner6367cfc2010-10-05 16:39:12 +00001013
Chris Lattner748a2fe2010-10-05 20:49:15 +00001014
Chris Lattner00e94ba2010-10-07 20:56:25 +00001015defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
Chris Lattner9649e9a2010-10-07 21:31:03 +00001016
1017
1018//===----------------------------------------------------------------------===//
1019// Semantically, test instructions are similar like AND, except they don't
1020// generate a result. From an encoding perspective, they are very different:
1021// they don't have all the usual imm8 and REV forms, and are encoded into a
1022// different space.
1023def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
1024 (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
1025
1026let Defs = [EFLAGS] in {
1027 let isCommutable = 1 in {
1028 def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
1029 def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
1030 def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
1031 def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
1032 } // isCommutable
1033
1034 def TEST8rm : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
1035 def TEST16rm : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
1036 def TEST32rm : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
1037 def TEST64rm : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
1038
1039 def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
1040 def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
1041 def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
1042 def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
1043
1044 def TEST8mi : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
1045 def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
1046 def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
1047 def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
1048
1049 def TEST8i8 : BinOpAI<0xA8, "test", Xi8 , AL>;
1050 def TEST16i16 : BinOpAI<0xA8, "test", Xi16, AX>;
1051 def TEST32i32 : BinOpAI<0xA8, "test", Xi32, EAX>;
1052 def TEST64i32 : BinOpAI<0xA8, "test", Xi64, RAX>;
1053}
1054