blob: 0a92b40fb9426e87a2ee763d32f0599a4ea7d22e [file] [log] [blame]
Evan Chenga9c20912006-01-21 02:32:06 +00001//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by James M. Laskey and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple two pass scheduler. The first pass attempts to push
11// backward any lengthy instructions and critical paths. The second pass packs
12// instructions into semi-optimal time slots.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "sched"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetInstrInfo.h"
Evan Chenga9c20912006-01-21 02:32:06 +000021#include "llvm/Support/Debug.h"
Jeff Cohen2aa750a2006-01-24 04:43:17 +000022#include <algorithm>
Chris Lattnere76074a2006-03-10 07:35:21 +000023#include <iostream>
Evan Chenga9c20912006-01-21 02:32:06 +000024using namespace llvm;
25
26namespace {
Chris Lattnera34b6f82006-03-10 07:51:18 +000027class NodeInfo;
28typedef NodeInfo *NodeInfoPtr;
29typedef std::vector<NodeInfoPtr> NIVector;
30typedef std::vector<NodeInfoPtr>::iterator NIIterator;
31
32//===--------------------------------------------------------------------===//
33///
34/// Node group - This struct is used to manage flagged node groups.
35///
36class NodeGroup {
37public:
38 NodeGroup *Next;
39private:
40 NIVector Members; // Group member nodes
41 NodeInfo *Dominator; // Node with highest latency
42 unsigned Latency; // Total latency of the group
43 int Pending; // Number of visits pending before
44 // adding to order
45
46public:
47 // Ctor.
48 NodeGroup() : Next(NULL), Dominator(NULL), Pending(0) {}
49
50 // Accessors
51 inline void setDominator(NodeInfo *D) { Dominator = D; }
52 inline NodeInfo *getTop() { return Members.front(); }
53 inline NodeInfo *getBottom() { return Members.back(); }
54 inline NodeInfo *getDominator() { return Dominator; }
55 inline void setLatency(unsigned L) { Latency = L; }
56 inline unsigned getLatency() { return Latency; }
57 inline int getPending() const { return Pending; }
58 inline void setPending(int P) { Pending = P; }
59 inline int addPending(int I) { return Pending += I; }
60
61 // Pass thru
62 inline bool group_empty() { return Members.empty(); }
63 inline NIIterator group_begin() { return Members.begin(); }
64 inline NIIterator group_end() { return Members.end(); }
65 inline void group_push_back(const NodeInfoPtr &NI) {
66 Members.push_back(NI);
67 }
68 inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
69 return Members.insert(Pos, NI);
70 }
71 inline void group_insert(NIIterator Pos, NIIterator First,
72 NIIterator Last) {
73 Members.insert(Pos, First, Last);
74 }
75
76 static void Add(NodeInfo *D, NodeInfo *U);
77};
78
79//===--------------------------------------------------------------------===//
80///
81/// NodeInfo - This struct tracks information used to schedule the a node.
82///
83class NodeInfo {
84private:
85 int Pending; // Number of visits pending before
86 // adding to order
87public:
88 SDNode *Node; // DAG node
89 InstrStage *StageBegin; // First stage in itinerary
90 InstrStage *StageEnd; // Last+1 stage in itinerary
91 unsigned Latency; // Total cycles to complete instr
92 bool IsCall : 1; // Is function call
93 bool IsLoad : 1; // Is memory load
94 bool IsStore : 1; // Is memory store
95 unsigned Slot; // Node's time slot
96 NodeGroup *Group; // Grouping information
97#ifndef NDEBUG
98 unsigned Preorder; // Index before scheduling
99#endif
100
101 // Ctor.
102 NodeInfo(SDNode *N = NULL)
103 : Pending(0)
104 , Node(N)
105 , StageBegin(NULL)
106 , StageEnd(NULL)
107 , Latency(0)
108 , IsCall(false)
109 , Slot(0)
110 , Group(NULL)
111#ifndef NDEBUG
112 , Preorder(0)
113#endif
114 {}
115
116 // Accessors
117 inline bool isInGroup() const {
118 assert(!Group || !Group->group_empty() && "Group with no members");
119 return Group != NULL;
120 }
121 inline bool isGroupDominator() const {
122 return isInGroup() && Group->getDominator() == this;
123 }
124 inline int getPending() const {
125 return Group ? Group->getPending() : Pending;
126 }
127 inline void setPending(int P) {
128 if (Group) Group->setPending(P);
129 else Pending = P;
130 }
131 inline int addPending(int I) {
132 if (Group) return Group->addPending(I);
133 else return Pending += I;
134 }
135};
136
137//===--------------------------------------------------------------------===//
138///
139/// NodeGroupIterator - Iterates over all the nodes indicated by the node
140/// info. If the node is in a group then iterate over the members of the
141/// group, otherwise just the node info.
142///
143class NodeGroupIterator {
144private:
145 NodeInfo *NI; // Node info
146 NIIterator NGI; // Node group iterator
147 NIIterator NGE; // Node group iterator end
148
149public:
150 // Ctor.
151 NodeGroupIterator(NodeInfo *N) : NI(N) {
152 // If the node is in a group then set up the group iterator. Otherwise
153 // the group iterators will trip first time out.
154 if (N->isInGroup()) {
155 // get Group
156 NodeGroup *Group = NI->Group;
157 NGI = Group->group_begin();
158 NGE = Group->group_end();
159 // Prevent this node from being used (will be in members list
160 NI = NULL;
161 }
162 }
163
164 /// next - Return the next node info, otherwise NULL.
165 ///
166 NodeInfo *next() {
167 // If members list
168 if (NGI != NGE) return *NGI++;
169 // Use node as the result (may be NULL)
170 NodeInfo *Result = NI;
171 // Only use once
172 NI = NULL;
173 // Return node or NULL
174 return Result;
175 }
176};
177//===--------------------------------------------------------------------===//
178
179
180//===--------------------------------------------------------------------===//
181///
182/// NodeGroupOpIterator - Iterates over all the operands of a node. If the
183/// node is a member of a group, this iterates over all the operands of all
184/// the members of the group.
185///
186class NodeGroupOpIterator {
187private:
188 NodeInfo *NI; // Node containing operands
189 NodeGroupIterator GI; // Node group iterator
190 SDNode::op_iterator OI; // Operand iterator
191 SDNode::op_iterator OE; // Operand iterator end
192
193 /// CheckNode - Test if node has more operands. If not get the next node
194 /// skipping over nodes that have no operands.
195 void CheckNode() {
196 // Only if operands are exhausted first
197 while (OI == OE) {
198 // Get next node info
199 NodeInfo *NI = GI.next();
200 // Exit if nodes are exhausted
201 if (!NI) return;
202 // Get node itself
203 SDNode *Node = NI->Node;
204 // Set up the operand iterators
205 OI = Node->op_begin();
206 OE = Node->op_end();
207 }
208 }
209
210public:
211 // Ctor.
212 NodeGroupOpIterator(NodeInfo *N)
213 : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
214
215 /// isEnd - Returns true when not more operands are available.
216 ///
217 inline bool isEnd() { CheckNode(); return OI == OE; }
218
219 /// next - Returns the next available operand.
220 ///
221 inline SDOperand next() {
222 assert(OI != OE &&
223 "Not checking for end of NodeGroupOpIterator correctly");
224 return *OI++;
225 }
226};
227
228
Evan Chenga9c20912006-01-21 02:32:06 +0000229//===----------------------------------------------------------------------===//
230///
231/// BitsIterator - Provides iteration through individual bits in a bit vector.
232///
233template<class T>
234class BitsIterator {
235private:
236 T Bits; // Bits left to iterate through
237
238public:
239 /// Ctor.
240 BitsIterator(T Initial) : Bits(Initial) {}
241
242 /// Next - Returns the next bit set or zero if exhausted.
243 inline T Next() {
244 // Get the rightmost bit set
245 T Result = Bits & -Bits;
246 // Remove from rest
247 Bits &= ~Result;
248 // Return single bit or zero
249 return Result;
250 }
251};
252
253//===----------------------------------------------------------------------===//
254
255
256//===----------------------------------------------------------------------===//
257///
258/// ResourceTally - Manages the use of resources over time intervals. Each
259/// item (slot) in the tally vector represents the resources used at a given
260/// moment. A bit set to 1 indicates that a resource is in use, otherwise
261/// available. An assumption is made that the tally is large enough to schedule
262/// all current instructions (asserts otherwise.)
263///
264template<class T>
265class ResourceTally {
266private:
267 std::vector<T> Tally; // Resources used per slot
268 typedef typename std::vector<T>::iterator Iter;
269 // Tally iterator
270
271 /// SlotsAvailable - Returns true if all units are available.
272 ///
273 bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
274 unsigned &Resource) {
275 assert(N && "Must check availability with N != 0");
276 // Determine end of interval
277 Iter End = Begin + N;
278 assert(End <= Tally.end() && "Tally is not large enough for schedule");
279
280 // Iterate thru each resource
281 BitsIterator<T> Resources(ResourceSet & ~*Begin);
282 while (unsigned Res = Resources.Next()) {
283 // Check if resource is available for next N slots
284 Iter Interval = End;
285 do {
286 Interval--;
287 if (*Interval & Res) break;
288 } while (Interval != Begin);
289
290 // If available for N
291 if (Interval == Begin) {
292 // Success
293 Resource = Res;
294 return true;
295 }
296 }
297
298 // No luck
299 Resource = 0;
300 return false;
301 }
302
303 /// RetrySlot - Finds a good candidate slot to retry search.
304 Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
305 assert(N && "Must check availability with N != 0");
306 // Determine end of interval
307 Iter End = Begin + N;
308 assert(End <= Tally.end() && "Tally is not large enough for schedule");
309
310 while (Begin != End--) {
311 // Clear units in use
312 ResourceSet &= ~*End;
313 // If no units left then we should go no further
314 if (!ResourceSet) return End + 1;
315 }
316 // Made it all the way through
317 return Begin;
318 }
319
320 /// FindAndReserveStages - Return true if the stages can be completed. If
321 /// so mark as busy.
322 bool FindAndReserveStages(Iter Begin,
323 InstrStage *Stage, InstrStage *StageEnd) {
324 // If at last stage then we're done
325 if (Stage == StageEnd) return true;
326 // Get number of cycles for current stage
327 unsigned N = Stage->Cycles;
328 // Check to see if N slots are available, if not fail
329 unsigned Resource;
330 if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
331 // Check to see if remaining stages are available, if not fail
332 if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
333 // Reserve resource
334 Reserve(Begin, N, Resource);
335 // Success
336 return true;
337 }
338
339 /// Reserve - Mark busy (set) the specified N slots.
340 void Reserve(Iter Begin, unsigned N, unsigned Resource) {
341 // Determine end of interval
342 Iter End = Begin + N;
343 assert(End <= Tally.end() && "Tally is not large enough for schedule");
344
345 // Set resource bit in each slot
346 for (; Begin < End; Begin++)
347 *Begin |= Resource;
348 }
349
350 /// FindSlots - Starting from Begin, locate consecutive slots where all stages
351 /// can be completed. Returns the address of first slot.
352 Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
353 // Track position
354 Iter Cursor = Begin;
355
356 // Try all possible slots forward
357 while (true) {
358 // Try at cursor, if successful return position.
359 if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
360 // Locate a better position
361 Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
362 }
363 }
364
365public:
366 /// Initialize - Resize and zero the tally to the specified number of time
367 /// slots.
368 inline void Initialize(unsigned N) {
369 Tally.assign(N, 0); // Initialize tally to all zeros.
370 }
371
372 // FindAndReserve - Locate an ideal slot for the specified stages and mark
373 // as busy.
374 unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
375 InstrStage *StageEnd) {
376 // Where to begin
377 Iter Begin = Tally.begin() + Slot;
378 // Find a free slot
379 Iter Where = FindSlots(Begin, StageBegin, StageEnd);
380 // Distance is slot number
381 unsigned Final = Where - Tally.begin();
382 return Final;
383 }
384
385};
386
387//===----------------------------------------------------------------------===//
388///
389/// ScheduleDAGSimple - Simple two pass scheduler.
390///
391class ScheduleDAGSimple : public ScheduleDAG {
392private:
Chris Lattner20a49212006-03-10 07:49:12 +0000393 bool NoSched; // Just do a BFS schedule, nothing fancy
394 bool NoItins; // Don't use itineraries?
Evan Chenga9c20912006-01-21 02:32:06 +0000395 ResourceTally<unsigned> Tally; // Resource usage tally
396 unsigned NSlots; // Total latency
397 static const unsigned NotFound = ~0U; // Search marker
Chris Lattner2f5806c2006-03-10 07:42:02 +0000398
399 unsigned NodeCount; // Number of nodes in DAG
400 std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
401 bool HasGroups; // True if there are any groups
402 NodeInfo *Info; // Info for nodes being scheduled
403 NIVector Ordering; // Emit ordering of nodes
404 NodeGroup *HeadNG, *TailNG; // Keep track of allocated NodeGroups
Evan Chenga9c20912006-01-21 02:32:06 +0000405
406public:
407
408 // Ctor.
Chris Lattner20a49212006-03-10 07:49:12 +0000409 ScheduleDAGSimple(bool noSched, bool noItins, SelectionDAG &dag,
Evan Cheng4ef10862006-01-23 07:01:07 +0000410 MachineBasicBlock *bb, const TargetMachine &tm)
Chris Lattner20a49212006-03-10 07:49:12 +0000411 : ScheduleDAG(dag, bb, tm), NoSched(noSched), NoItins(noItins), NSlots(0),
Chris Lattner2f5806c2006-03-10 07:42:02 +0000412 NodeCount(0), HasGroups(false), Info(NULL), HeadNG(NULL), TailNG(NULL) {
Evan Chenga9c20912006-01-21 02:32:06 +0000413 assert(&TII && "Target doesn't provide instr info?");
414 assert(&MRI && "Target doesn't provide register info?");
415 }
416
Chris Lattner2f5806c2006-03-10 07:42:02 +0000417 virtual ~ScheduleDAGSimple() {
418 if (Info)
419 delete[] Info;
420
421 NodeGroup *NG = HeadNG;
422 while (NG) {
423 NodeGroup *NextSU = NG->Next;
424 delete NG;
425 NG = NextSU;
426 }
427 }
Evan Chenga9c20912006-01-21 02:32:06 +0000428
Evan Cheng41484292006-01-23 08:25:34 +0000429 void Schedule();
430
Chris Lattner2f5806c2006-03-10 07:42:02 +0000431 /// getNI - Returns the node info for the specified node.
432 ///
433 NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
434
Evan Chenga9c20912006-01-21 02:32:06 +0000435private:
Evan Chenga9c20912006-01-21 02:32:06 +0000436 static bool isDefiner(NodeInfo *A, NodeInfo *B);
Evan Chenga9c20912006-01-21 02:32:06 +0000437 void IncludeNode(NodeInfo *NI);
438 void VisitAll();
Evan Chenga9c20912006-01-21 02:32:06 +0000439 void GatherSchedulingInfo();
440 void FakeGroupDominators();
Evan Chenga9c20912006-01-21 02:32:06 +0000441 bool isStrongDependency(NodeInfo *A, NodeInfo *B);
442 bool isWeakDependency(NodeInfo *A, NodeInfo *B);
443 void ScheduleBackward();
444 void ScheduleForward();
Chris Lattnere76074a2006-03-10 07:35:21 +0000445
446 void AddToGroup(NodeInfo *D, NodeInfo *U);
447 /// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
448 ///
449 void PrepareNodeInfo();
450
451 /// IdentifyGroups - Put flagged nodes into groups.
452 ///
453 void IdentifyGroups();
454
455 /// print - Print ordering to specified output stream.
456 ///
457 void print(std::ostream &O) const;
458
459 void dump(const char *tag) const;
460
461 virtual void dump() const;
462
463 /// EmitAll - Emit all nodes in schedule sorted order.
464 ///
465 void EmitAll();
466
467 /// printNI - Print node info.
468 ///
469 void printNI(std::ostream &O, NodeInfo *NI) const;
470
471 /// printChanges - Hilight changes in order caused by scheduling.
472 ///
473 void printChanges(unsigned Index) const;
Evan Chenga9c20912006-01-21 02:32:06 +0000474};
475
Evan Chenga9c20912006-01-21 02:32:06 +0000476//===----------------------------------------------------------------------===//
477/// Special case itineraries.
478///
479enum {
480 CallLatency = 40, // To push calls back in time
481
482 RSInteger = 0xC0000000, // Two integer units
483 RSFloat = 0x30000000, // Two float units
484 RSLoadStore = 0x0C000000, // Two load store units
485 RSBranch = 0x02000000 // One branch unit
486};
487static InstrStage CallStage = { CallLatency, RSBranch };
488static InstrStage LoadStage = { 5, RSLoadStore };
489static InstrStage StoreStage = { 2, RSLoadStore };
490static InstrStage IntStage = { 2, RSInteger };
491static InstrStage FloatStage = { 3, RSFloat };
492//===----------------------------------------------------------------------===//
493
Evan Chenga9c20912006-01-21 02:32:06 +0000494} // namespace
495
496//===----------------------------------------------------------------------===//
497
Chris Lattnere76074a2006-03-10 07:35:21 +0000498/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
499///
500void ScheduleDAGSimple::PrepareNodeInfo() {
501 // Allocate node information
502 Info = new NodeInfo[NodeCount];
503
504 unsigned i = 0;
505 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
506 E = DAG.allnodes_end(); I != E; ++I, ++i) {
507 // Fast reference to node schedule info
508 NodeInfo* NI = &Info[i];
509 // Set up map
510 Map[I] = NI;
511 // Set node
512 NI->Node = I;
513 // Set pending visit count
514 NI->setPending(I->use_size());
515 }
516}
517
518/// IdentifyGroups - Put flagged nodes into groups.
519///
520void ScheduleDAGSimple::IdentifyGroups() {
521 for (unsigned i = 0, N = NodeCount; i < N; i++) {
522 NodeInfo* NI = &Info[i];
523 SDNode *Node = NI->Node;
524
525 // For each operand (in reverse to only look at flags)
526 for (unsigned N = Node->getNumOperands(); 0 < N--;) {
527 // Get operand
528 SDOperand Op = Node->getOperand(N);
529 // No more flags to walk
530 if (Op.getValueType() != MVT::Flag) break;
531 // Add to node group
532 AddToGroup(getNI(Op.Val), NI);
533 // Let everyone else know
534 HasGroups = true;
535 }
536 }
537}
538
539/// CountInternalUses - Returns the number of edges between the two nodes.
540///
541static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) {
542 unsigned N = 0;
543 for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
544 SDOperand Op = U->Node->getOperand(M);
545 if (Op.Val == D->Node) N++;
546 }
547
548 return N;
549}
550
551//===----------------------------------------------------------------------===//
552/// Add - Adds a definer and user pair to a node group.
553///
554void ScheduleDAGSimple::AddToGroup(NodeInfo *D, NodeInfo *U) {
555 // Get current groups
556 NodeGroup *DGroup = D->Group;
557 NodeGroup *UGroup = U->Group;
558 // If both are members of groups
559 if (DGroup && UGroup) {
560 // There may have been another edge connecting
561 if (DGroup == UGroup) return;
562 // Add the pending users count
563 DGroup->addPending(UGroup->getPending());
564 // For each member of the users group
565 NodeGroupIterator UNGI(U);
566 while (NodeInfo *UNI = UNGI.next() ) {
567 // Change the group
568 UNI->Group = DGroup;
569 // For each member of the definers group
570 NodeGroupIterator DNGI(D);
571 while (NodeInfo *DNI = DNGI.next() ) {
572 // Remove internal edges
573 DGroup->addPending(-CountInternalUses(DNI, UNI));
574 }
575 }
576 // Merge the two lists
577 DGroup->group_insert(DGroup->group_end(),
578 UGroup->group_begin(), UGroup->group_end());
579 } else if (DGroup) {
580 // Make user member of definers group
581 U->Group = DGroup;
582 // Add users uses to definers group pending
583 DGroup->addPending(U->Node->use_size());
584 // For each member of the definers group
585 NodeGroupIterator DNGI(D);
586 while (NodeInfo *DNI = DNGI.next() ) {
587 // Remove internal edges
588 DGroup->addPending(-CountInternalUses(DNI, U));
589 }
590 DGroup->group_push_back(U);
591 } else if (UGroup) {
592 // Make definer member of users group
593 D->Group = UGroup;
594 // Add definers uses to users group pending
595 UGroup->addPending(D->Node->use_size());
596 // For each member of the users group
597 NodeGroupIterator UNGI(U);
598 while (NodeInfo *UNI = UNGI.next() ) {
599 // Remove internal edges
600 UGroup->addPending(-CountInternalUses(D, UNI));
601 }
602 UGroup->group_insert(UGroup->group_begin(), D);
603 } else {
604 D->Group = U->Group = DGroup = new NodeGroup();
605 DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
606 CountInternalUses(D, U));
607 DGroup->group_push_back(D);
608 DGroup->group_push_back(U);
609
610 if (HeadNG == NULL)
611 HeadNG = DGroup;
612 if (TailNG != NULL)
613 TailNG->Next = DGroup;
614 TailNG = DGroup;
615 }
616}
617
618
619/// print - Print ordering to specified output stream.
620///
621void ScheduleDAGSimple::print(std::ostream &O) const {
622#ifndef NDEBUG
623 O << "Ordering\n";
624 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
625 NodeInfo *NI = Ordering[i];
626 printNI(O, NI);
627 O << "\n";
628 if (NI->isGroupDominator()) {
629 NodeGroup *Group = NI->Group;
630 for (NIIterator NII = Group->group_begin(), E = Group->group_end();
631 NII != E; NII++) {
632 O << " ";
633 printNI(O, *NII);
634 O << "\n";
635 }
636 }
637 }
638#endif
639}
640
641void ScheduleDAGSimple::dump(const char *tag) const {
642 std::cerr << tag; dump();
643}
644
645void ScheduleDAGSimple::dump() const {
646 print(std::cerr);
647}
648
649
650/// EmitAll - Emit all nodes in schedule sorted order.
651///
652void ScheduleDAGSimple::EmitAll() {
653 std::map<SDNode*, unsigned> VRBaseMap;
654
655 // For each node in the ordering
656 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
657 // Get the scheduling info
658 NodeInfo *NI = Ordering[i];
659 if (NI->isInGroup()) {
660 NodeGroupIterator NGI(Ordering[i]);
661 while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, VRBaseMap);
662 } else {
663 EmitNode(NI->Node, VRBaseMap);
664 }
665 }
666}
667
668/// isFlagDefiner - Returns true if the node defines a flag result.
669static bool isFlagDefiner(SDNode *A) {
670 unsigned N = A->getNumValues();
671 return N && A->getValueType(N - 1) == MVT::Flag;
672}
673
674/// isFlagUser - Returns true if the node uses a flag result.
675///
676static bool isFlagUser(SDNode *A) {
677 unsigned N = A->getNumOperands();
678 return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
679}
680
681/// printNI - Print node info.
682///
683void ScheduleDAGSimple::printNI(std::ostream &O, NodeInfo *NI) const {
684#ifndef NDEBUG
685 SDNode *Node = NI->Node;
686 O << " "
687 << std::hex << Node << std::dec
688 << ", Lat=" << NI->Latency
689 << ", Slot=" << NI->Slot
690 << ", ARITY=(" << Node->getNumOperands() << ","
691 << Node->getNumValues() << ")"
692 << " " << Node->getOperationName(&DAG);
693 if (isFlagDefiner(Node)) O << "<#";
694 if (isFlagUser(Node)) O << ">#";
695#endif
696}
697
698/// printChanges - Hilight changes in order caused by scheduling.
699///
700void ScheduleDAGSimple::printChanges(unsigned Index) const {
701#ifndef NDEBUG
702 // Get the ordered node count
703 unsigned N = Ordering.size();
704 // Determine if any changes
705 unsigned i = 0;
706 for (; i < N; i++) {
707 NodeInfo *NI = Ordering[i];
708 if (NI->Preorder != i) break;
709 }
710
711 if (i < N) {
712 std::cerr << Index << ". New Ordering\n";
713
714 for (i = 0; i < N; i++) {
715 NodeInfo *NI = Ordering[i];
716 std::cerr << " " << NI->Preorder << ". ";
717 printNI(std::cerr, NI);
718 std::cerr << "\n";
719 if (NI->isGroupDominator()) {
720 NodeGroup *Group = NI->Group;
721 for (NIIterator NII = Group->group_begin(), E = Group->group_end();
722 NII != E; NII++) {
723 std::cerr << " ";
724 printNI(std::cerr, *NII);
725 std::cerr << "\n";
726 }
727 }
728 }
729 } else {
730 std::cerr << Index << ". No Changes\n";
731 }
732#endif
733}
Evan Chenga9c20912006-01-21 02:32:06 +0000734
735//===----------------------------------------------------------------------===//
Evan Chenga9c20912006-01-21 02:32:06 +0000736/// isDefiner - Return true if node A is a definer for B.
737///
738bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
739 // While there are A nodes
740 NodeGroupIterator NII(A);
741 while (NodeInfo *NI = NII.next()) {
742 // Extract node
743 SDNode *Node = NI->Node;
744 // While there operands in nodes of B
745 NodeGroupOpIterator NGOI(B);
746 while (!NGOI.isEnd()) {
747 SDOperand Op = NGOI.next();
748 // If node from A defines a node in B
749 if (Node == Op.Val) return true;
750 }
751 }
752 return false;
753}
754
Evan Chenga9c20912006-01-21 02:32:06 +0000755/// IncludeNode - Add node to NodeInfo vector.
756///
757void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
758 // Get node
759 SDNode *Node = NI->Node;
760 // Ignore entry node
761 if (Node->getOpcode() == ISD::EntryToken) return;
762 // Check current count for node
763 int Count = NI->getPending();
764 // If the node is already in list
765 if (Count < 0) return;
766 // Decrement count to indicate a visit
767 Count--;
768 // If count has gone to zero then add node to list
769 if (!Count) {
770 // Add node
771 if (NI->isInGroup()) {
772 Ordering.push_back(NI->Group->getDominator());
773 } else {
774 Ordering.push_back(NI);
775 }
776 // indicate node has been added
777 Count--;
778 }
779 // Mark as visited with new count
780 NI->setPending(Count);
781}
782
Evan Chenga9c20912006-01-21 02:32:06 +0000783/// GatherSchedulingInfo - Get latency and resource information about each node.
784///
785void ScheduleDAGSimple::GatherSchedulingInfo() {
786 // Get instruction itineraries for the target
Chris Lattnere70f6712006-03-09 07:13:00 +0000787 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
Evan Chenga9c20912006-01-21 02:32:06 +0000788
789 // For each node
790 for (unsigned i = 0, N = NodeCount; i < N; i++) {
791 // Get node info
792 NodeInfo* NI = &Info[i];
793 SDNode *Node = NI->Node;
794
795 // If there are itineraries and it is a machine instruction
Chris Lattner20a49212006-03-10 07:49:12 +0000796 if (InstrItins.isEmpty() || NoItins) {
Evan Chenga9c20912006-01-21 02:32:06 +0000797 // If machine opcode
798 if (Node->isTargetOpcode()) {
799 // Get return type to guess which processing unit
800 MVT::ValueType VT = Node->getValueType(0);
801 // Get machine opcode
802 MachineOpCode TOpc = Node->getTargetOpcode();
803 NI->IsCall = TII->isCall(TOpc);
804 NI->IsLoad = TII->isLoad(TOpc);
805 NI->IsStore = TII->isStore(TOpc);
806
807 if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage;
808 else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage;
809 else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
810 else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
811 if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
812 }
813 } else if (Node->isTargetOpcode()) {
814 // get machine opcode
815 MachineOpCode TOpc = Node->getTargetOpcode();
816 // Check to see if it is a call
817 NI->IsCall = TII->isCall(TOpc);
818 // Get itinerary stages for instruction
819 unsigned II = TII->getSchedClass(TOpc);
820 NI->StageBegin = InstrItins.begin(II);
821 NI->StageEnd = InstrItins.end(II);
822 }
823
824 // One slot for the instruction itself
825 NI->Latency = 1;
826
827 // Add long latency for a call to push it back in time
828 if (NI->IsCall) NI->Latency += CallLatency;
829
830 // Sum up all the latencies
831 for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
832 Stage != E; Stage++) {
833 NI->Latency += Stage->Cycles;
834 }
835
836 // Sum up all the latencies for max tally size
837 NSlots += NI->Latency;
838 }
839
840 // Unify metrics if in a group
841 if (HasGroups) {
842 for (unsigned i = 0, N = NodeCount; i < N; i++) {
843 NodeInfo* NI = &Info[i];
844
845 if (NI->isInGroup()) {
846 NodeGroup *Group = NI->Group;
847
848 if (!Group->getDominator()) {
849 NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
850 NodeInfo *Dominator = *NGI;
851 unsigned Latency = 0;
852
853 for (NGI++; NGI != NGE; NGI++) {
854 NodeInfo* NGNI = *NGI;
855 Latency += NGNI->Latency;
856 if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
857 }
858
859 Dominator->Latency = Latency;
860 Group->setDominator(Dominator);
861 }
862 }
863 }
864 }
865}
866
Evan Cheng4ef10862006-01-23 07:01:07 +0000867/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
868/// Note that the ordering in the Nodes vector is reversed.
869void ScheduleDAGSimple::VisitAll() {
870 // Add first element to list
871 NodeInfo *NI = getNI(DAG.getRoot().Val);
872 if (NI->isInGroup()) {
873 Ordering.push_back(NI->Group->getDominator());
874 } else {
875 Ordering.push_back(NI);
876 }
877
878 // Iterate through all nodes that have been added
879 for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
880 // Visit all operands
881 NodeGroupOpIterator NGI(Ordering[i]);
882 while (!NGI.isEnd()) {
883 // Get next operand
884 SDOperand Op = NGI.next();
885 // Get node
886 SDNode *Node = Op.Val;
887 // Ignore passive nodes
888 if (isPassiveNode(Node)) continue;
889 // Check out node
890 IncludeNode(getNI(Node));
891 }
892 }
893
894 // Add entry node last (IncludeNode filters entry nodes)
895 if (DAG.getEntryNode().Val != DAG.getRoot().Val)
896 Ordering.push_back(getNI(DAG.getEntryNode().Val));
897
898 // Reverse the order
899 std::reverse(Ordering.begin(), Ordering.end());
900}
901
Evan Chenga9c20912006-01-21 02:32:06 +0000902/// FakeGroupDominators - Set dominators for non-scheduling.
903///
904void ScheduleDAGSimple::FakeGroupDominators() {
905 for (unsigned i = 0, N = NodeCount; i < N; i++) {
906 NodeInfo* NI = &Info[i];
907
908 if (NI->isInGroup()) {
909 NodeGroup *Group = NI->Group;
910
911 if (!Group->getDominator()) {
912 Group->setDominator(NI);
913 }
914 }
915 }
916}
917
Evan Chenga9c20912006-01-21 02:32:06 +0000918/// isStrongDependency - Return true if node A has results used by node B.
919/// I.E., B must wait for latency of A.
920bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
921 // If A defines for B then it's a strong dependency or
922 // if a load follows a store (may be dependent but why take a chance.)
923 return isDefiner(A, B) || (A->IsStore && B->IsLoad);
924}
925
926/// isWeakDependency Return true if node A produces a result that will
927/// conflict with operands of B. It is assumed that we have called
928/// isStrongDependency prior.
929bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
930 // TODO check for conflicting real registers and aliases
931#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
932 return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
933#else
934 return A->Node->getOpcode() == ISD::EntryToken;
935#endif
936}
937
938/// ScheduleBackward - Schedule instructions so that any long latency
939/// instructions and the critical path get pushed back in time. Time is run in
940/// reverse to allow code reuse of the Tally and eliminate the overhead of
941/// biasing every slot indices against NSlots.
942void ScheduleDAGSimple::ScheduleBackward() {
943 // Size and clear the resource tally
944 Tally.Initialize(NSlots);
945 // Get number of nodes to schedule
946 unsigned N = Ordering.size();
947
948 // For each node being scheduled
949 for (unsigned i = N; 0 < i--;) {
950 NodeInfo *NI = Ordering[i];
951 // Track insertion
952 unsigned Slot = NotFound;
953
954 // Compare against those previously scheduled nodes
955 unsigned j = i + 1;
956 for (; j < N; j++) {
957 // Get following instruction
958 NodeInfo *Other = Ordering[j];
959
960 // Check dependency against previously inserted nodes
961 if (isStrongDependency(NI, Other)) {
962 Slot = Other->Slot + Other->Latency;
963 break;
964 } else if (isWeakDependency(NI, Other)) {
965 Slot = Other->Slot;
966 break;
967 }
968 }
969
970 // If independent of others (or first entry)
971 if (Slot == NotFound) Slot = 0;
972
973#if 0 // FIXME - measure later
974 // Find a slot where the needed resources are available
975 if (NI->StageBegin != NI->StageEnd)
976 Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
977#endif
978
979 // Set node slot
980 NI->Slot = Slot;
981
982 // Insert sort based on slot
983 j = i + 1;
984 for (; j < N; j++) {
985 // Get following instruction
986 NodeInfo *Other = Ordering[j];
987 // Should we look further (remember slots are in reverse time)
988 if (Slot >= Other->Slot) break;
989 // Shuffle other into ordering
990 Ordering[j - 1] = Other;
991 }
992 // Insert node in proper slot
993 if (j != i + 1) Ordering[j - 1] = NI;
994 }
995}
996
997/// ScheduleForward - Schedule instructions to maximize packing.
998///
999void ScheduleDAGSimple::ScheduleForward() {
1000 // Size and clear the resource tally
1001 Tally.Initialize(NSlots);
1002 // Get number of nodes to schedule
1003 unsigned N = Ordering.size();
1004
1005 // For each node being scheduled
1006 for (unsigned i = 0; i < N; i++) {
1007 NodeInfo *NI = Ordering[i];
1008 // Track insertion
1009 unsigned Slot = NotFound;
1010
1011 // Compare against those previously scheduled nodes
1012 unsigned j = i;
1013 for (; 0 < j--;) {
1014 // Get following instruction
1015 NodeInfo *Other = Ordering[j];
1016
1017 // Check dependency against previously inserted nodes
1018 if (isStrongDependency(Other, NI)) {
1019 Slot = Other->Slot + Other->Latency;
1020 break;
1021 } else if (Other->IsCall || isWeakDependency(Other, NI)) {
1022 Slot = Other->Slot;
1023 break;
1024 }
1025 }
1026
1027 // If independent of others (or first entry)
1028 if (Slot == NotFound) Slot = 0;
1029
1030 // Find a slot where the needed resources are available
1031 if (NI->StageBegin != NI->StageEnd)
1032 Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
1033
1034 // Set node slot
1035 NI->Slot = Slot;
1036
1037 // Insert sort based on slot
1038 j = i;
1039 for (; 0 < j--;) {
1040 // Get prior instruction
1041 NodeInfo *Other = Ordering[j];
1042 // Should we look further
1043 if (Slot >= Other->Slot) break;
1044 // Shuffle other into ordering
1045 Ordering[j + 1] = Other;
1046 }
1047 // Insert node in proper slot
1048 if (j != i) Ordering[j + 1] = NI;
1049 }
1050}
1051
Evan Chenga9c20912006-01-21 02:32:06 +00001052/// Schedule - Order nodes according to selected style.
1053///
1054void ScheduleDAGSimple::Schedule() {
Chris Lattner2f5806c2006-03-10 07:42:02 +00001055 // Number the nodes
1056 NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
1057
Chris Lattnerbe24e592006-03-10 06:34:51 +00001058 // Set up minimum info for scheduling
1059 PrepareNodeInfo();
1060 // Construct node groups for flagged nodes
1061 IdentifyGroups();
1062
Evan Chenga9c20912006-01-21 02:32:06 +00001063 // Test to see if scheduling should occur
Chris Lattner20a49212006-03-10 07:49:12 +00001064 bool ShouldSchedule = NodeCount > 3 && !NoSched;
Evan Chenga9c20912006-01-21 02:32:06 +00001065 // Don't waste time if is only entry and return
1066 if (ShouldSchedule) {
1067 // Get latency and resource requirements
1068 GatherSchedulingInfo();
1069 } else if (HasGroups) {
1070 // Make sure all the groups have dominators
1071 FakeGroupDominators();
1072 }
1073
1074 // Breadth first walk of DAG
1075 VisitAll();
1076
1077#ifndef NDEBUG
1078 static unsigned Count = 0;
1079 Count++;
1080 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
1081 NodeInfo *NI = Ordering[i];
1082 NI->Preorder = i;
1083 }
1084#endif
1085
1086 // Don't waste time if is only entry and return
1087 if (ShouldSchedule) {
1088 // Push back long instructions and critical path
1089 ScheduleBackward();
1090
1091 // Pack instructions to maximize resource utilization
1092 ScheduleForward();
1093 }
1094
1095 DEBUG(printChanges(Count));
1096
1097 // Emit in scheduled order
1098 EmitAll();
1099}
1100
Evan Chenga9c20912006-01-21 02:32:06 +00001101
1102/// createSimpleDAGScheduler - This creates a simple two pass instruction
1103/// scheduler.
Chris Lattner20a49212006-03-10 07:49:12 +00001104llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(bool NoItins,
Evan Cheng4ef10862006-01-23 07:01:07 +00001105 SelectionDAG &DAG,
Evan Chenga9c20912006-01-21 02:32:06 +00001106 MachineBasicBlock *BB) {
Chris Lattner20a49212006-03-10 07:49:12 +00001107 return new ScheduleDAGSimple(false, NoItins, DAG, BB, DAG.getTarget());
1108}
1109
1110llvm::ScheduleDAG* llvm::createBFS_DAGScheduler(SelectionDAG &DAG,
1111 MachineBasicBlock *BB) {
1112 return new ScheduleDAGSimple(true, false, DAG, BB, DAG.getTarget());
Evan Chenga9c20912006-01-21 02:32:06 +00001113}