blob: 9c0bf1629a146c8e00ab86669d8f3a45c787062f [file] [log] [blame]
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +00001//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the spill code placement analysis.
11//
12// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13// basic blocks are weighted by the block frequency and added to become the node
14// bias.
15//
16// Transparent basic blocks have the variable live through, but don't care if it
17// is spilled or in a register. These blocks become connections in the Hopfield
18// network, again weighted by block frequency.
19//
20// The Hopfield network minimizes (possibly locally) its energy function:
21//
22// E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23//
24// The energy function represents the expected spill code execution frequency,
25// or the cost of spilling. This is a Lyapunov function which never increases
26// when a node is updated. It is guaranteed to converge to a local minimum.
27//
28//===----------------------------------------------------------------------===//
29
Jakob Stoklund Olesenfc7d7752011-01-19 23:14:59 +000030#define DEBUG_TYPE "spillplacement"
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +000031#include "SpillPlacement.h"
32#include "llvm/CodeGen/EdgeBundles.h"
33#include "llvm/CodeGen/LiveIntervalAnalysis.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/Format.h"
40
41using namespace llvm;
42
43char SpillPlacement::ID = 0;
44INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
45 "Spill Code Placement Analysis", true, true)
46INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
47INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
48INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
49 "Spill Code Placement Analysis", true, true)
50
51char &llvm::SpillPlacementID = SpillPlacement::ID;
52
53void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
54 AU.setPreservesAll();
55 AU.addRequiredTransitive<EdgeBundles>();
56 AU.addRequiredTransitive<MachineLoopInfo>();
57 MachineFunctionPass::getAnalysisUsage(AU);
58}
59
60/// Node - Each edge bundle corresponds to a Hopfield node.
61///
62/// The node contains precomputed frequency data that only depends on the CFG,
63/// but Bias and Links are computed each time placeSpills is called.
64///
65/// The node Value is positive when the variable should be in a register. The
66/// value can change when linked nodes change, but convergence is very fast
67/// because all weights are positive.
68///
69struct SpillPlacement::Node {
70 /// Frequency - Total block frequency feeding into[0] or out of[1] the bundle.
71 /// Ideally, these two numbers should be identical, but inaccuracies in the
72 /// block frequency estimates means that we need to normalize ingoing and
73 /// outgoing frequencies separately so they are commensurate.
74 float Frequency[2];
75
76 /// Bias - Normalized contributions from non-transparent blocks.
77 /// A bundle connected to a MustSpill block has a huge negative bias,
78 /// otherwise it is a number in the range [-2;2].
79 float Bias;
80
81 /// Value - Output value of this node computed from the Bias and links.
82 /// This is always in the range [-1;1]. A positive number means the variable
83 /// should go in a register through this bundle.
84 float Value;
85
86 typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
87
88 /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
89 /// bundles. The weights are all positive and add up to at most 2, weights
90 /// from ingoing and outgoing nodes separately add up to a most 1. The weight
91 /// sum can be less than 2 when the variable is not live into / out of some
92 /// connected basic blocks.
93 LinkVector Links;
94
95 /// preferReg - Return true when this node prefers to be in a register.
96 bool preferReg() const {
97 // Undecided nodes (Value==0) go on the stack.
98 return Value > 0;
99 }
100
101 /// mustSpill - Return True if this node is so biased that it must spill.
102 bool mustSpill() const {
103 // Actually, we must spill if Bias < sum(weights).
104 // It may be worth it to compute the weight sum here?
105 return Bias < -2.0f;
106 }
107
108 /// Node - Create a blank Node.
109 Node() {
110 Frequency[0] = Frequency[1] = 0;
111 }
112
113 /// clear - Reset per-query data, but preserve frequencies that only depend on
114 // the CFG.
115 void clear() {
116 Bias = Value = 0;
117 Links.clear();
118 }
119
120 /// addLink - Add a link to bundle b with weight w.
121 /// out=0 for an ingoing link, and 1 for an outgoing link.
122 void addLink(unsigned b, float w, bool out) {
123 // Normalize w relative to all connected blocks from that direction.
124 w /= Frequency[out];
125
126 // There can be multiple links to the same bundle, add them up.
127 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
128 if (I->second == b) {
129 I->first += w;
130 return;
131 }
132 // This must be the first link to b.
133 Links.push_back(std::make_pair(w, b));
134 }
135
136 /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
137 void addBias(float w, bool out) {
138 // Normalize w relative to all connected blocks from that direction.
139 w /= Frequency[out];
140 Bias += w;
141 }
142
143 /// update - Recompute Value from Bias and Links. Return true when node
144 /// preference changes.
145 bool update(const Node nodes[]) {
146 // Compute the weighted sum of inputs.
147 float Sum = Bias;
148 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
149 Sum += I->first * nodes[I->second].Value;
150
151 // The weighted sum is going to be in the range [-2;2]. Ideally, we should
152 // simply set Value = sign(Sum), but we will add a dead zone around 0 for
153 // two reasons:
154 // 1. It avoids arbitrary bias when all links are 0 as is possible during
155 // initial iterations.
156 // 2. It helps tame rounding errors when the links nominally sum to 0.
Jakob Stoklund Olesen9590c7f2011-02-03 17:04:12 +0000157 const float Thres = 1e-4f;
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000158 bool Before = preferReg();
159 if (Sum < -Thres)
160 Value = -1;
161 else if (Sum > Thres)
162 Value = 1;
163 else
164 Value = 0;
165 return Before != preferReg();
166 }
167};
168
169bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
170 MF = &mf;
171 bundles = &getAnalysis<EdgeBundles>();
172 loops = &getAnalysis<MachineLoopInfo>();
173
174 assert(!nodes && "Leaking node array");
175 nodes = new Node[bundles->getNumBundles()];
176
177 // Compute total ingoing and outgoing block frequencies for all bundles.
178 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
179 float Freq = getBlockFrequency(I);
180 unsigned Num = I->getNumber();
181 nodes[bundles->getBundle(Num, 1)].Frequency[0] += Freq;
182 nodes[bundles->getBundle(Num, 0)].Frequency[1] += Freq;
183 }
184
185 // We never change the function.
186 return false;
187}
188
189void SpillPlacement::releaseMemory() {
190 delete[] nodes;
191 nodes = 0;
192}
193
194/// activate - mark node n as active if it wasn't already.
195void SpillPlacement::activate(unsigned n) {
196 if (ActiveNodes->test(n))
197 return;
198 ActiveNodes->set(n);
199 nodes[n].clear();
200}
201
202
203/// prepareNodes - Compute node biases and weights from a set of constraints.
204/// Set a bit in NodeMask for each active node.
205void SpillPlacement::
206prepareNodes(const SmallVectorImpl<BlockConstraint> &LiveBlocks) {
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000207 for (SmallVectorImpl<BlockConstraint>::const_iterator I = LiveBlocks.begin(),
208 E = LiveBlocks.end(); I != E; ++I) {
209 MachineBasicBlock *MBB = MF->getBlockNumbered(I->Number);
210 float Freq = getBlockFrequency(MBB);
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000211
212 // Is this a transparent block? Link ingoing and outgoing bundles.
213 if (I->Entry == DontCare && I->Exit == DontCare) {
214 unsigned ib = bundles->getBundle(I->Number, 0);
215 unsigned ob = bundles->getBundle(I->Number, 1);
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000216
217 // Ignore self-loops.
218 if (ib == ob)
219 continue;
220 activate(ib);
221 activate(ob);
222 nodes[ib].addLink(ob, Freq, 1);
223 nodes[ob].addLink(ib, Freq, 0);
224 continue;
225 }
226
227 // This block is not transparent, but it can still add bias.
228 const float Bias[] = {
229 0, // DontCare,
230 1, // PrefReg,
231 -1, // PrefSpill
232 -HUGE_VALF // MustSpill
233 };
234
235 // Live-in to block?
236 if (I->Entry != DontCare) {
237 unsigned ib = bundles->getBundle(I->Number, 0);
238 activate(ib);
239 nodes[ib].addBias(Freq * Bias[I->Entry], 1);
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000240 }
241
242 // Live-out from block?
243 if (I->Exit != DontCare) {
244 unsigned ob = bundles->getBundle(I->Number, 1);
245 activate(ob);
246 nodes[ob].addBias(Freq * Bias[I->Exit], 0);
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000247 }
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000248 }
249}
250
251/// iterate - Repeatedly update the Hopfield nodes until stability or the
252/// maximum number of iterations is reached.
253/// @param Linked - Numbers of linked nodes that need updating.
254void SpillPlacement::iterate(const SmallVectorImpl<unsigned> &Linked) {
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000255 if (Linked.empty())
256 return;
257
258 // Run up to 10 iterations. The edge bundle numbering is closely related to
259 // basic block numbering, so there is a strong tendency towards chains of
260 // linked nodes with sequential numbers. By scanning the linked nodes
261 // backwards and forwards, we make it very likely that a single node can
262 // affect the entire network in a single iteration. That means very fast
263 // convergence, usually in a single iteration.
264 for (unsigned iteration = 0; iteration != 10; ++iteration) {
265 // Scan backwards, skipping the last node which was just updated.
266 bool Changed = false;
267 for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
268 llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
269 unsigned n = *I;
270 bool C = nodes[n].update(nodes);
271 Changed |= C;
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000272 }
273 if (!Changed)
274 return;
275
276 // Scan forwards, skipping the first node which was just updated.
277 Changed = false;
278 for (SmallVectorImpl<unsigned>::const_iterator I =
279 llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
280 unsigned n = *I;
281 bool C = nodes[n].update(nodes);
282 Changed |= C;
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000283 }
284 if (!Changed)
285 return;
286 }
287}
288
289bool
290SpillPlacement::placeSpills(const SmallVectorImpl<BlockConstraint> &LiveBlocks,
291 BitVector &RegBundles) {
292 // Reuse RegBundles as our ActiveNodes vector.
293 ActiveNodes = &RegBundles;
294 ActiveNodes->clear();
295 ActiveNodes->resize(bundles->getNumBundles());
296
297 // Compute active nodes, links and biases.
298 prepareNodes(LiveBlocks);
299
300 // Update all active nodes, and find the ones that are actually linked to
301 // something so their value may change when iterating.
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000302 SmallVector<unsigned, 8> Linked;
303 for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n)) {
304 nodes[n].update(nodes);
305 // A node that must spill, or a node without any links is not going to
306 // change its value ever again, so exclude it from iterations.
307 if (!nodes[n].Links.empty() && !nodes[n].mustSpill())
308 Linked.push_back(n);
Jakob Stoklund Olesen8bfe5082011-01-06 01:21:53 +0000309 }
310
311 // Iterate the network to convergence.
312 iterate(Linked);
313
314 // Write preferences back to RegBundles.
315 bool Perfect = true;
316 for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n))
317 if (!nodes[n].preferReg()) {
318 RegBundles.reset(n);
319 Perfect = false;
320 }
321 return Perfect;
322}
323
324/// getBlockFrequency - Return our best estimate of the block frequency which is
325/// the expected number of block executions per function invocation.
326float SpillPlacement::getBlockFrequency(const MachineBasicBlock *MBB) {
327 // Use the unnormalized spill weight for real block frequencies.
328 return LiveIntervals::getSpillWeight(true, false, loops->getLoopDepth(MBB));
329}
330