blob: 2e449b99316aaddf740e74f841d6ce1233b585ab [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000029
Brian Gaeked0fde302003-11-11 22:41:34 +000030using namespace llvm;
31
Owen Anderson43dbe052008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengffe2eb02008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000045}
46
Evan Chengaa3c1412006-05-30 21:45:53 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000049 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmand9ced092008-08-08 18:30:21 +0000241 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000242 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
243 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
244 { X86::IDIV16r, X86::IDIV16m, 1 },
245 { X86::IDIV32r, X86::IDIV32m, 1 },
246 { X86::IDIV64r, X86::IDIV64m, 1 },
247 { X86::IDIV8r, X86::IDIV8m, 1 },
248 { X86::IMUL16r, X86::IMUL16m, 1 },
249 { X86::IMUL32r, X86::IMUL32m, 1 },
250 { X86::IMUL64r, X86::IMUL64m, 1 },
251 { X86::IMUL8r, X86::IMUL8m, 1 },
252 { X86::JMP32r, X86::JMP32m, 1 },
253 { X86::JMP64r, X86::JMP64m, 1 },
254 { X86::MOV16ri, X86::MOV16mi, 0 },
255 { X86::MOV16rr, X86::MOV16mr, 0 },
256 { X86::MOV16to16_, X86::MOV16_mr, 0 },
257 { X86::MOV32ri, X86::MOV32mi, 0 },
258 { X86::MOV32rr, X86::MOV32mr, 0 },
259 { X86::MOV32to32_, X86::MOV32_mr, 0 },
260 { X86::MOV64ri32, X86::MOV64mi32, 0 },
261 { X86::MOV64rr, X86::MOV64mr, 0 },
262 { X86::MOV8ri, X86::MOV8mi, 0 },
263 { X86::MOV8rr, X86::MOV8mr, 0 },
264 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
265 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
266 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
269 { X86::MOVSDrr, X86::MOVSDmr, 0 },
270 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
272 { X86::MOVSSrr, X86::MOVSSmr, 0 },
273 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
274 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
275 { X86::MUL16r, X86::MUL16m, 1 },
276 { X86::MUL32r, X86::MUL32m, 1 },
277 { X86::MUL64r, X86::MUL64m, 1 },
278 { X86::MUL8r, X86::MUL8m, 1 },
279 { X86::SETAEr, X86::SETAEm, 0 },
280 { X86::SETAr, X86::SETAm, 0 },
281 { X86::SETBEr, X86::SETBEm, 0 },
282 { X86::SETBr, X86::SETBm, 0 },
283 { X86::SETEr, X86::SETEm, 0 },
284 { X86::SETGEr, X86::SETGEm, 0 },
285 { X86::SETGr, X86::SETGm, 0 },
286 { X86::SETLEr, X86::SETLEm, 0 },
287 { X86::SETLr, X86::SETLm, 0 },
288 { X86::SETNEr, X86::SETNEm, 0 },
289 { X86::SETNPr, X86::SETNPm, 0 },
290 { X86::SETNSr, X86::SETNSm, 0 },
291 { X86::SETPr, X86::SETPm, 0 },
292 { X86::SETSr, X86::SETSm, 0 },
293 { X86::TAILJMPr, X86::TAILJMPm, 1 },
294 { X86::TEST16ri, X86::TEST16mi, 1 },
295 { X86::TEST32ri, X86::TEST32mi, 1 },
296 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000297 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000298 };
299
300 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
301 unsigned RegOp = OpTbl0[i][0];
302 unsigned MemOp = OpTbl0[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000303 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
304 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000305 assert(false && "Duplicated entries?");
306 unsigned FoldedLoad = OpTbl0[i][2];
307 // Index 0, folded load or store.
308 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
309 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
310 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000311 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000312 AmbEntries.push_back(MemOp);
313 }
314
315 static const unsigned OpTbl1[][2] = {
316 { X86::CMP16rr, X86::CMP16rm },
317 { X86::CMP32rr, X86::CMP32rm },
318 { X86::CMP64rr, X86::CMP64rm },
319 { X86::CMP8rr, X86::CMP8rm },
320 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
321 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
322 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
323 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
324 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
325 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
326 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
327 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
328 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
329 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
330 { X86::FsMOVAPDrr, X86::MOVSDrm },
331 { X86::FsMOVAPSrr, X86::MOVSSrm },
332 { X86::IMUL16rri, X86::IMUL16rmi },
333 { X86::IMUL16rri8, X86::IMUL16rmi8 },
334 { X86::IMUL32rri, X86::IMUL32rmi },
335 { X86::IMUL32rri8, X86::IMUL32rmi8 },
336 { X86::IMUL64rri32, X86::IMUL64rmi32 },
337 { X86::IMUL64rri8, X86::IMUL64rmi8 },
338 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
339 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
340 { X86::Int_COMISDrr, X86::Int_COMISDrm },
341 { X86::Int_COMISSrr, X86::Int_COMISSrm },
342 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
343 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
344 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
345 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
346 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
347 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
348 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
349 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
350 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
351 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
352 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
353 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
354 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
355 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
356 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
357 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
358 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
359 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
360 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
361 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
362 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
363 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
364 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
365 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
366 { X86::MOV16rr, X86::MOV16rm },
367 { X86::MOV16to16_, X86::MOV16_rm },
368 { X86::MOV32rr, X86::MOV32rm },
369 { X86::MOV32to32_, X86::MOV32_rm },
370 { X86::MOV64rr, X86::MOV64rm },
371 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
372 { X86::MOV64toSDrr, X86::MOV64toSDrm },
373 { X86::MOV8rr, X86::MOV8rm },
374 { X86::MOVAPDrr, X86::MOVAPDrm },
375 { X86::MOVAPSrr, X86::MOVAPSrm },
376 { X86::MOVDDUPrr, X86::MOVDDUPrm },
377 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
378 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
379 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
380 { X86::MOVSDrr, X86::MOVSDrm },
381 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
382 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
383 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
384 { X86::MOVSSrr, X86::MOVSSrm },
385 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
386 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
387 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
388 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
389 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
390 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
391 { X86::MOVUPDrr, X86::MOVUPDrm },
392 { X86::MOVUPSrr, X86::MOVUPSrm },
393 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
394 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
395 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
396 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
397 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
398 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
399 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohmane3d92062008-08-07 02:54:50 +0000400 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000401 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
402 { X86::PSHUFDri, X86::PSHUFDmi },
403 { X86::PSHUFHWri, X86::PSHUFHWmi },
404 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000405 { X86::RCPPSr, X86::RCPPSm },
406 { X86::RCPPSr_Int, X86::RCPPSm_Int },
407 { X86::RSQRTPSr, X86::RSQRTPSm },
408 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
409 { X86::RSQRTSSr, X86::RSQRTSSm },
410 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
411 { X86::SQRTPDr, X86::SQRTPDm },
412 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
413 { X86::SQRTPSr, X86::SQRTPSm },
414 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
415 { X86::SQRTSDr, X86::SQRTSDm },
416 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
417 { X86::SQRTSSr, X86::SQRTSSm },
418 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
419 { X86::TEST16rr, X86::TEST16rm },
420 { X86::TEST32rr, X86::TEST32rm },
421 { X86::TEST64rr, X86::TEST64rm },
422 { X86::TEST8rr, X86::TEST8rm },
423 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
424 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000425 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000426 };
427
428 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
429 unsigned RegOp = OpTbl1[i][0];
430 unsigned MemOp = OpTbl1[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000431 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
432 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000433 assert(false && "Duplicated entries?");
434 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
435 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
436 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000437 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000438 AmbEntries.push_back(MemOp);
439 }
440
441 static const unsigned OpTbl2[][2] = {
442 { X86::ADC32rr, X86::ADC32rm },
443 { X86::ADC64rr, X86::ADC64rm },
444 { X86::ADD16rr, X86::ADD16rm },
445 { X86::ADD32rr, X86::ADD32rm },
446 { X86::ADD64rr, X86::ADD64rm },
447 { X86::ADD8rr, X86::ADD8rm },
448 { X86::ADDPDrr, X86::ADDPDrm },
449 { X86::ADDPSrr, X86::ADDPSrm },
450 { X86::ADDSDrr, X86::ADDSDrm },
451 { X86::ADDSSrr, X86::ADDSSrm },
452 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
453 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
454 { X86::AND16rr, X86::AND16rm },
455 { X86::AND32rr, X86::AND32rm },
456 { X86::AND64rr, X86::AND64rm },
457 { X86::AND8rr, X86::AND8rm },
458 { X86::ANDNPDrr, X86::ANDNPDrm },
459 { X86::ANDNPSrr, X86::ANDNPSrm },
460 { X86::ANDPDrr, X86::ANDPDrm },
461 { X86::ANDPSrr, X86::ANDPSrm },
462 { X86::CMOVA16rr, X86::CMOVA16rm },
463 { X86::CMOVA32rr, X86::CMOVA32rm },
464 { X86::CMOVA64rr, X86::CMOVA64rm },
465 { X86::CMOVAE16rr, X86::CMOVAE16rm },
466 { X86::CMOVAE32rr, X86::CMOVAE32rm },
467 { X86::CMOVAE64rr, X86::CMOVAE64rm },
468 { X86::CMOVB16rr, X86::CMOVB16rm },
469 { X86::CMOVB32rr, X86::CMOVB32rm },
470 { X86::CMOVB64rr, X86::CMOVB64rm },
471 { X86::CMOVBE16rr, X86::CMOVBE16rm },
472 { X86::CMOVBE32rr, X86::CMOVBE32rm },
473 { X86::CMOVBE64rr, X86::CMOVBE64rm },
474 { X86::CMOVE16rr, X86::CMOVE16rm },
475 { X86::CMOVE32rr, X86::CMOVE32rm },
476 { X86::CMOVE64rr, X86::CMOVE64rm },
477 { X86::CMOVG16rr, X86::CMOVG16rm },
478 { X86::CMOVG32rr, X86::CMOVG32rm },
479 { X86::CMOVG64rr, X86::CMOVG64rm },
480 { X86::CMOVGE16rr, X86::CMOVGE16rm },
481 { X86::CMOVGE32rr, X86::CMOVGE32rm },
482 { X86::CMOVGE64rr, X86::CMOVGE64rm },
483 { X86::CMOVL16rr, X86::CMOVL16rm },
484 { X86::CMOVL32rr, X86::CMOVL32rm },
485 { X86::CMOVL64rr, X86::CMOVL64rm },
486 { X86::CMOVLE16rr, X86::CMOVLE16rm },
487 { X86::CMOVLE32rr, X86::CMOVLE32rm },
488 { X86::CMOVLE64rr, X86::CMOVLE64rm },
489 { X86::CMOVNE16rr, X86::CMOVNE16rm },
490 { X86::CMOVNE32rr, X86::CMOVNE32rm },
491 { X86::CMOVNE64rr, X86::CMOVNE64rm },
492 { X86::CMOVNP16rr, X86::CMOVNP16rm },
493 { X86::CMOVNP32rr, X86::CMOVNP32rm },
494 { X86::CMOVNP64rr, X86::CMOVNP64rm },
495 { X86::CMOVNS16rr, X86::CMOVNS16rm },
496 { X86::CMOVNS32rr, X86::CMOVNS32rm },
497 { X86::CMOVNS64rr, X86::CMOVNS64rm },
498 { X86::CMOVP16rr, X86::CMOVP16rm },
499 { X86::CMOVP32rr, X86::CMOVP32rm },
500 { X86::CMOVP64rr, X86::CMOVP64rm },
501 { X86::CMOVS16rr, X86::CMOVS16rm },
502 { X86::CMOVS32rr, X86::CMOVS32rm },
503 { X86::CMOVS64rr, X86::CMOVS64rm },
504 { X86::CMPPDrri, X86::CMPPDrmi },
505 { X86::CMPPSrri, X86::CMPPSrmi },
506 { X86::CMPSDrr, X86::CMPSDrm },
507 { X86::CMPSSrr, X86::CMPSSrm },
508 { X86::DIVPDrr, X86::DIVPDrm },
509 { X86::DIVPSrr, X86::DIVPSrm },
510 { X86::DIVSDrr, X86::DIVSDrm },
511 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng082f1162008-05-02 17:01:01 +0000512 { X86::FsANDNPDrr, X86::FsANDNPDrm },
513 { X86::FsANDNPSrr, X86::FsANDNPSrm },
514 { X86::FsANDPDrr, X86::FsANDPDrm },
515 { X86::FsANDPSrr, X86::FsANDPSrm },
516 { X86::FsORPDrr, X86::FsORPDrm },
517 { X86::FsORPSrr, X86::FsORPSrm },
518 { X86::FsXORPDrr, X86::FsXORPDrm },
519 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson43dbe052008-01-07 01:35:02 +0000520 { X86::HADDPDrr, X86::HADDPDrm },
521 { X86::HADDPSrr, X86::HADDPSrm },
522 { X86::HSUBPDrr, X86::HSUBPDrm },
523 { X86::HSUBPSrr, X86::HSUBPSrm },
524 { X86::IMUL16rr, X86::IMUL16rm },
525 { X86::IMUL32rr, X86::IMUL32rm },
526 { X86::IMUL64rr, X86::IMUL64rm },
527 { X86::MAXPDrr, X86::MAXPDrm },
528 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
529 { X86::MAXPSrr, X86::MAXPSrm },
530 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
531 { X86::MAXSDrr, X86::MAXSDrm },
532 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
533 { X86::MAXSSrr, X86::MAXSSrm },
534 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
535 { X86::MINPDrr, X86::MINPDrm },
536 { X86::MINPDrr_Int, X86::MINPDrm_Int },
537 { X86::MINPSrr, X86::MINPSrm },
538 { X86::MINPSrr_Int, X86::MINPSrm_Int },
539 { X86::MINSDrr, X86::MINSDrm },
540 { X86::MINSDrr_Int, X86::MINSDrm_Int },
541 { X86::MINSSrr, X86::MINSSrm },
542 { X86::MINSSrr_Int, X86::MINSSrm_Int },
543 { X86::MULPDrr, X86::MULPDrm },
544 { X86::MULPSrr, X86::MULPSrm },
545 { X86::MULSDrr, X86::MULSDrm },
546 { X86::MULSSrr, X86::MULSSrm },
547 { X86::OR16rr, X86::OR16rm },
548 { X86::OR32rr, X86::OR32rm },
549 { X86::OR64rr, X86::OR64rm },
550 { X86::OR8rr, X86::OR8rm },
551 { X86::ORPDrr, X86::ORPDrm },
552 { X86::ORPSrr, X86::ORPSrm },
553 { X86::PACKSSDWrr, X86::PACKSSDWrm },
554 { X86::PACKSSWBrr, X86::PACKSSWBrm },
555 { X86::PACKUSWBrr, X86::PACKUSWBrm },
556 { X86::PADDBrr, X86::PADDBrm },
557 { X86::PADDDrr, X86::PADDDrm },
558 { X86::PADDQrr, X86::PADDQrm },
559 { X86::PADDSBrr, X86::PADDSBrm },
560 { X86::PADDSWrr, X86::PADDSWrm },
561 { X86::PADDWrr, X86::PADDWrm },
562 { X86::PANDNrr, X86::PANDNrm },
563 { X86::PANDrr, X86::PANDrm },
564 { X86::PAVGBrr, X86::PAVGBrm },
565 { X86::PAVGWrr, X86::PAVGWrm },
566 { X86::PCMPEQBrr, X86::PCMPEQBrm },
567 { X86::PCMPEQDrr, X86::PCMPEQDrm },
568 { X86::PCMPEQWrr, X86::PCMPEQWrm },
569 { X86::PCMPGTBrr, X86::PCMPGTBrm },
570 { X86::PCMPGTDrr, X86::PCMPGTDrm },
571 { X86::PCMPGTWrr, X86::PCMPGTWrm },
572 { X86::PINSRWrri, X86::PINSRWrmi },
573 { X86::PMADDWDrr, X86::PMADDWDrm },
574 { X86::PMAXSWrr, X86::PMAXSWrm },
575 { X86::PMAXUBrr, X86::PMAXUBrm },
576 { X86::PMINSWrr, X86::PMINSWrm },
577 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohman0b924dc2008-05-23 17:49:40 +0000578 { X86::PMULDQrr, X86::PMULDQrm },
579 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson43dbe052008-01-07 01:35:02 +0000580 { X86::PMULHUWrr, X86::PMULHUWrm },
581 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohman0b924dc2008-05-23 17:49:40 +0000582 { X86::PMULLDrr, X86::PMULLDrm },
583 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson43dbe052008-01-07 01:35:02 +0000584 { X86::PMULLWrr, X86::PMULLWrm },
585 { X86::PMULUDQrr, X86::PMULUDQrm },
586 { X86::PORrr, X86::PORrm },
587 { X86::PSADBWrr, X86::PSADBWrm },
588 { X86::PSLLDrr, X86::PSLLDrm },
589 { X86::PSLLQrr, X86::PSLLQrm },
590 { X86::PSLLWrr, X86::PSLLWrm },
591 { X86::PSRADrr, X86::PSRADrm },
592 { X86::PSRAWrr, X86::PSRAWrm },
593 { X86::PSRLDrr, X86::PSRLDrm },
594 { X86::PSRLQrr, X86::PSRLQrm },
595 { X86::PSRLWrr, X86::PSRLWrm },
596 { X86::PSUBBrr, X86::PSUBBrm },
597 { X86::PSUBDrr, X86::PSUBDrm },
598 { X86::PSUBSBrr, X86::PSUBSBrm },
599 { X86::PSUBSWrr, X86::PSUBSWrm },
600 { X86::PSUBWrr, X86::PSUBWrm },
601 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
602 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
603 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
604 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
605 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
606 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
607 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
608 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
609 { X86::PXORrr, X86::PXORrm },
610 { X86::SBB32rr, X86::SBB32rm },
611 { X86::SBB64rr, X86::SBB64rm },
612 { X86::SHUFPDrri, X86::SHUFPDrmi },
613 { X86::SHUFPSrri, X86::SHUFPSrmi },
614 { X86::SUB16rr, X86::SUB16rm },
615 { X86::SUB32rr, X86::SUB32rm },
616 { X86::SUB64rr, X86::SUB64rm },
617 { X86::SUB8rr, X86::SUB8rm },
618 { X86::SUBPDrr, X86::SUBPDrm },
619 { X86::SUBPSrr, X86::SUBPSrm },
620 { X86::SUBSDrr, X86::SUBSDrm },
621 { X86::SUBSSrr, X86::SUBSSrm },
622 // FIXME: TEST*rr -> swapped operand of TEST*mr.
623 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
624 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
625 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
626 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
627 { X86::XOR16rr, X86::XOR16rm },
628 { X86::XOR32rr, X86::XOR32rm },
629 { X86::XOR64rr, X86::XOR64rm },
630 { X86::XOR8rr, X86::XOR8rm },
631 { X86::XORPDrr, X86::XORPDrm },
632 { X86::XORPSrr, X86::XORPSrm }
633 };
634
635 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636 unsigned RegOp = OpTbl2[i][0];
637 unsigned MemOp = OpTbl2[i][1];
Dan Gohman6b345ee2008-07-07 17:46:23 +0000638 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
639 MemOp)).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000640 assert(false && "Duplicated entries?");
641 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
642 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman6b345ee2008-07-07 17:46:23 +0000643 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson43dbe052008-01-07 01:35:02 +0000644 AmbEntries.push_back(MemOp);
645 }
646
647 // Remove ambiguous entries.
648 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000649}
650
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000651bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
652 unsigned& sourceReg,
653 unsigned& destReg) const {
Chris Lattner07f7cc32008-03-11 19:28:17 +0000654 switch (MI.getOpcode()) {
655 default:
656 return false;
657 case X86::MOV8rr:
658 case X86::MOV16rr:
659 case X86::MOV32rr:
660 case X86::MOV64rr:
661 case X86::MOV16to16_:
662 case X86::MOV32to32_:
Chris Lattner07f7cc32008-03-11 19:28:17 +0000663 case X86::MOVSSrr:
664 case X86::MOVSDrr:
Chris Lattner1d386772008-03-11 19:30:09 +0000665
666 // FP Stack register class copies
667 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
668 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
669 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
670
Chris Lattner07f7cc32008-03-11 19:28:17 +0000671 case X86::FsMOVAPSrr:
672 case X86::FsMOVAPDrr:
673 case X86::MOVAPSrr:
674 case X86::MOVAPDrr:
675 case X86::MOVSS2PSrr:
676 case X86::MOVSD2PDrr:
677 case X86::MOVPS2SSrr:
678 case X86::MOVPD2SDrr:
679 case X86::MMX_MOVD64rr:
680 case X86::MMX_MOVQ64rr:
681 assert(MI.getNumOperands() >= 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +0000682 MI.getOperand(0).isReg() &&
683 MI.getOperand(1).isReg() &&
Chris Lattner07f7cc32008-03-11 19:28:17 +0000684 "invalid register-register move instruction");
685 sourceReg = MI.getOperand(1).getReg();
686 destReg = MI.getOperand(0).getReg();
687 return true;
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000688 }
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000689}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000690
Dan Gohmancbad42c2008-11-18 19:49:32 +0000691unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +0000692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8rm:
696 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000697 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000698 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000699 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000700 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000701 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000702 case X86::MOVSSrm:
703 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000704 case X86::MOVAPSrm:
705 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000706 case X86::MMX_MOVD64rm:
707 case X86::MMX_MOVQ64rm:
Dan Gohmand735b802008-10-03 15:45:36 +0000708 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
709 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000710 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000711 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000712 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000713 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000714 return MI->getOperand(0).getReg();
715 }
716 break;
717 }
718 return 0;
719}
720
Dan Gohmancbad42c2008-11-18 19:49:32 +0000721unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +0000722 int &FrameIndex) const {
723 switch (MI->getOpcode()) {
724 default: break;
725 case X86::MOV8mr:
726 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000727 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000728 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000729 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000730 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000731 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000732 case X86::MOVSSmr:
733 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000734 case X86::MOVAPSmr:
735 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000736 case X86::MMX_MOVD64mr:
737 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000738 case X86::MMX_MOVNTQmr:
Dan Gohmand735b802008-10-03 15:45:36 +0000739 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
740 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000741 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000742 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000743 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000744 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000745 return MI->getOperand(4).getReg();
746 }
747 break;
748 }
749 return 0;
750}
751
752
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000753/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
754/// X86::MOVPC32r.
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000755static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000756 bool isPICBase = false;
757 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
758 E = MRI.def_end(); I != E; ++I) {
759 MachineInstr *DefMI = I.getOperand().getParent();
760 if (DefMI->getOpcode() != X86::MOVPC32r)
761 return false;
762 assert(!isPICBase && "More than one PIC base?");
763 isPICBase = true;
764 }
765 return isPICBase;
766}
Evan Cheng9d15abe2008-03-31 07:54:19 +0000767
768/// isGVStub - Return true if the GV requires an extra load to get the
769/// real address.
770static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
771 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
772}
Evan Chenge771ebd2008-03-27 01:41:09 +0000773
Bill Wendling9f8fea32008-05-12 20:54:26 +0000774bool
775X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000776 switch (MI->getOpcode()) {
777 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +0000778 case X86::MOV8rm:
779 case X86::MOV16rm:
780 case X86::MOV16_rm:
781 case X86::MOV32rm:
782 case X86::MOV32_rm:
783 case X86::MOV64rm:
784 case X86::LD_Fp64m:
785 case X86::MOVSSrm:
786 case X86::MOVSDrm:
787 case X86::MOVAPSrm:
788 case X86::MOVAPDrm:
789 case X86::MMX_MOVD64rm:
790 case X86::MMX_MOVQ64rm: {
791 // Loads from constant pools are trivially rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +0000792 if (MI->getOperand(1).isReg() &&
793 MI->getOperand(2).isImm() &&
794 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
795 (MI->getOperand(4).isCPI() ||
796 (MI->getOperand(4).isGlobal() &&
Evan Cheng9d15abe2008-03-31 07:54:19 +0000797 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000798 unsigned BaseReg = MI->getOperand(1).getReg();
799 if (BaseReg == 0)
800 return true;
801 // Allow re-materialization of PIC load.
Dan Gohmand735b802008-10-03 15:45:36 +0000802 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengffe2eb02008-04-01 23:26:12 +0000803 return false;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000804 const MachineFunction &MF = *MI->getParent()->getParent();
805 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge771ebd2008-03-27 01:41:09 +0000806 bool isPICBase = false;
807 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
808 E = MRI.def_end(); I != E; ++I) {
809 MachineInstr *DefMI = I.getOperand().getParent();
810 if (DefMI->getOpcode() != X86::MOVPC32r)
811 return false;
812 assert(!isPICBase && "More than one PIC base?");
813 isPICBase = true;
814 }
815 return isPICBase;
816 }
817 return false;
Evan Chengd8850a52008-02-22 09:25:47 +0000818 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000819
820 case X86::LEA32r:
821 case X86::LEA64r: {
Dan Gohmand735b802008-10-03 15:45:36 +0000822 if (MI->getOperand(2).isImm() &&
823 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
824 !MI->getOperand(4).isReg()) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000825 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +0000826 if (!MI->getOperand(1).isReg())
Dan Gohman83ccd142008-09-26 21:30:20 +0000827 return true;
Evan Chenge771ebd2008-03-27 01:41:09 +0000828 unsigned BaseReg = MI->getOperand(1).getReg();
829 if (BaseReg == 0)
830 return true;
831 // Allow re-materialization of lea PICBase + x.
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000832 const MachineFunction &MF = *MI->getParent()->getParent();
833 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000834 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +0000835 }
836 return false;
837 }
Dan Gohmanc101e952007-06-14 20:50:44 +0000838 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000839
Dan Gohmand45eddd2007-06-26 00:48:07 +0000840 // All other instructions marked M_REMATERIALIZABLE are always trivially
841 // rematerializable.
842 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000843}
844
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000845/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
846/// would clobber the EFLAGS condition register. Note the result may be
847/// conservative. If it cannot definitely determine the safety after visiting
848/// two instructions it assumes it's not safe.
849static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
850 MachineBasicBlock::iterator I) {
Dan Gohman3afda6e2008-10-21 03:24:31 +0000851 // It's always safe to clobber EFLAGS at the end of a block.
852 if (I == MBB.end())
853 return true;
854
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000855 // For compile time consideration, if we are not able to determine the
856 // safety after visiting 2 instructions, we will assume it's not safe.
857 for (unsigned i = 0; i < 2; ++i) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000858 bool SeenDef = false;
859 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
860 MachineOperand &MO = I->getOperand(j);
Dan Gohmand735b802008-10-03 15:45:36 +0000861 if (!MO.isReg())
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000862 continue;
863 if (MO.getReg() == X86::EFLAGS) {
864 if (MO.isUse())
865 return false;
866 SeenDef = true;
867 }
868 }
869
870 if (SeenDef)
871 // This instruction defines EFLAGS, no need to look any further.
872 return true;
873 ++I;
Dan Gohman3afda6e2008-10-21 03:24:31 +0000874
875 // If we make it to the end of the block, it's safe to clobber EFLAGS.
876 if (I == MBB.end())
877 return true;
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000878 }
879
880 // Conservative answer.
881 return false;
882}
883
Evan Chengca1267c2008-03-31 20:40:39 +0000884void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
885 MachineBasicBlock::iterator I,
886 unsigned DestReg,
887 const MachineInstr *Orig) const {
Dan Gohmand735b802008-10-03 15:45:36 +0000888 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng03eb3882008-04-16 23:44:44 +0000889 ? Orig->getOperand(0).getSubReg() : 0;
890 bool ChangeSubIdx = SubIdx != 0;
891 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
892 DestReg = RI.getSubReg(DestReg, SubIdx);
893 SubIdx = 0;
894 }
895
Evan Chengca1267c2008-03-31 20:40:39 +0000896 // MOV32r0 etc. are implemented with xor which clobbers condition code.
897 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000898 bool Emitted = false;
Evan Chengca1267c2008-03-31 20:40:39 +0000899 switch (Orig->getOpcode()) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000900 default: break;
Evan Chengca1267c2008-03-31 20:40:39 +0000901 case X86::MOV8r0:
Evan Chengca1267c2008-03-31 20:40:39 +0000902 case X86::MOV16r0:
Evan Chengca1267c2008-03-31 20:40:39 +0000903 case X86::MOV32r0:
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000904 case X86::MOV64r0: {
905 if (!isSafeToClobberEFLAGS(MBB, I)) {
906 unsigned Opc = 0;
907 switch (Orig->getOpcode()) {
908 default: break;
909 case X86::MOV8r0: Opc = X86::MOV8ri; break;
910 case X86::MOV16r0: Opc = X86::MOV16ri; break;
911 case X86::MOV32r0: Opc = X86::MOV32ri; break;
912 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
913 }
914 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
915 Emitted = true;
916 }
Evan Chengca1267c2008-03-31 20:40:39 +0000917 break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000918 }
919 }
920
921 if (!Emitted) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000922 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chengca1267c2008-03-31 20:40:39 +0000923 MI->getOperand(0).setReg(DestReg);
924 MBB.insert(I, MI);
Evan Chengca1267c2008-03-31 20:40:39 +0000925 }
Evan Cheng03eb3882008-04-16 23:44:44 +0000926
927 if (ChangeSubIdx) {
928 MachineInstr *NewMI = prior(I);
929 NewMI->getOperand(0).setSubReg(SubIdx);
930 }
Evan Chengca1267c2008-03-31 20:40:39 +0000931}
932
Chris Lattnera22edc82008-01-10 23:08:24 +0000933/// isInvariantLoad - Return true if the specified instruction (which is marked
934/// mayLoad) is loading from a location whose value is invariant across the
935/// function. For example, loading a value from the constant pool or from
936/// from the argument area of a function if it does not change. This should
937/// only return true of *all* loads the instruction does are invariant (if it
938/// does multiple loads).
Dan Gohmancbad42c2008-11-18 19:49:32 +0000939bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000940 // This code cares about loads from three cases: constant pool entries,
941 // invariant argument slots, and global stubs. In order to handle these cases
942 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner144ad582008-01-12 00:53:16 +0000943 // operand and base our analysis on it. This is safe because the address of
Chris Lattner828bb6c2008-01-12 00:35:08 +0000944 // none of these three cases is ever used as anything other than a load base
945 // and X86 doesn't have any instructions that load from multiple places.
946
947 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
948 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnera22edc82008-01-10 23:08:24 +0000949 // Loads from constant pools are trivially invariant.
Dan Gohmand735b802008-10-03 15:45:36 +0000950 if (MO.isCPI())
Chris Lattner3b5a2212008-01-05 05:28:30 +0000951 return true;
Evan Cheng9d15abe2008-03-31 07:54:19 +0000952
Dan Gohmand735b802008-10-03 15:45:36 +0000953 if (MO.isGlobal())
Evan Cheng9d15abe2008-03-31 07:54:19 +0000954 return isGVStub(MO.getGlobal(), TM);
Chris Lattner828bb6c2008-01-12 00:35:08 +0000955
956 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmand735b802008-10-03 15:45:36 +0000957 if (MO.isFI()) {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000958 const MachineFrameInfo &MFI =
959 *MI->getParent()->getParent()->getFrameInfo();
960 int Idx = MO.getIndex();
Chris Lattner87943902008-01-10 04:16:31 +0000961 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
962 }
Bill Wendling627c00b2007-12-17 23:07:56 +0000963 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000964
Chris Lattnera22edc82008-01-10 23:08:24 +0000965 // All other instances of these instructions are presumed to have other
966 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000967 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000968}
969
Evan Cheng3f411c72007-10-05 08:04:01 +0000970/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
971/// is not marked dead.
972static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000973 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
974 MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000975 if (MO.isReg() && MO.isDef() &&
Evan Cheng3f411c72007-10-05 08:04:01 +0000976 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
977 return true;
978 }
979 }
980 return false;
981}
982
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000983/// convertToThreeAddress - This method must be implemented by targets that
984/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
985/// may be able to convert a two-address instruction into a true
986/// three-address instruction on demand. This allows the X86 target (for
987/// example) to convert ADD and SHL instructions into LEA instructions if they
988/// would require register copies due to two-addressness.
989///
990/// This method returns a null pointer if the transformation cannot be
991/// performed, otherwise it returns the new instruction.
992///
Evan Cheng258ff672006-12-01 21:52:41 +0000993MachineInstr *
994X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
995 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000996 LiveVariables *LV) const {
Evan Cheng258ff672006-12-01 21:52:41 +0000997 MachineInstr *MI = MBBI;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000998 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000999 // All instructions input are two-addr instructions. Get the known operands.
1000 unsigned Dest = MI->getOperand(0).getReg();
1001 unsigned Src = MI->getOperand(1).getReg();
Evan Cheng9f1c8312008-07-03 09:09:37 +00001002 bool isDead = MI->getOperand(0).isDead();
1003 bool isKill = MI->getOperand(1).isKill();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001004
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001005 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +00001006 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001007 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +00001008 bool DisableLEA16 = true;
1009
Evan Cheng559dc462007-10-05 20:34:26 +00001010 unsigned MIOpc = MI->getOpcode();
1011 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +00001012 case X86::SHUFPSrri: {
1013 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001014 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1015
Evan Chengaa3c1412006-05-30 21:45:53 +00001016 unsigned B = MI->getOperand(1).getReg();
1017 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001018 if (B != C) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001019 unsigned A = MI->getOperand(0).getReg();
1020 unsigned M = MI->getOperand(3).getImm();
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001021 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001022 .addReg(B, false, false, isKill).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001023 break;
1024 }
Chris Lattner995f5502007-03-28 18:12:31 +00001025 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001026 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +00001027 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1028 // the flags produced by a shift yet, so this is safe.
Chris Lattner995f5502007-03-28 18:12:31 +00001029 unsigned ShAmt = MI->getOperand(2).getImm();
1030 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001031
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001032 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001033 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Chris Lattner995f5502007-03-28 18:12:31 +00001034 break;
1035 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001036 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001037 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001038 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1039 // the flags produced by a shift yet, so this is safe.
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001040 unsigned ShAmt = MI->getOperand(2).getImm();
1041 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001042
Chris Lattnerf2177b82007-03-28 00:58:40 +00001043 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1044 X86::LEA64_32r : X86::LEA32r;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001045 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001046 .addReg(0).addImm(1 << ShAmt)
1047 .addReg(Src, false, false, isKill).addImm(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001048 break;
1049 }
1050 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001051 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +00001052 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1053 // the flags produced by a shift yet, so this is safe.
Evan Cheng61d9c862007-09-06 00:14:41 +00001054 unsigned ShAmt = MI->getOperand(2).getImm();
1055 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001056
Christopher Lambb8133712007-08-10 21:18:25 +00001057 if (DisableLEA16) {
1058 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +00001059 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +00001060 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1061 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +00001062 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1063 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Cheng4499e492008-03-10 19:31:26 +00001064
Christopher Lamb1bc10082008-03-11 10:27:36 +00001065 // Build and insert into an implicit UNDEF value. This is OK because
1066 // well be shifting and then extracting the lower 16-bits.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001067 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1068 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001069 .addReg(leaInReg).addReg(Src, false, false, isKill)
1070 .addImm(X86::SUBREG_16BIT);
Christopher Lambc9298232008-03-16 03:12:01 +00001071
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001072 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001073 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lambb8133712007-08-10 21:18:25 +00001074
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001075 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001076 .addReg(Dest, true, false, false, isDead)
1077 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonf660c172008-07-02 23:41:07 +00001078 if (LV) {
Evan Cheng9f1c8312008-07-03 09:09:37 +00001079 // Update live variables
1080 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1081 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1082 if (isKill)
1083 LV->replaceKillInstruction(Src, MI, InsMI);
1084 if (isDead)
1085 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonf660c172008-07-02 23:41:07 +00001086 }
Evan Cheng9f1c8312008-07-03 09:09:37 +00001087 return ExtMI;
Christopher Lambb8133712007-08-10 21:18:25 +00001088 } else {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001089 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Cheng9f1c8312008-07-03 09:09:37 +00001090 .addReg(0).addImm(1 << ShAmt)
1091 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lambb8133712007-08-10 21:18:25 +00001092 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001093 break;
Evan Chengccba76b2006-05-30 20:26:50 +00001094 }
Evan Cheng559dc462007-10-05 20:34:26 +00001095 default: {
1096 // The following opcodes also sets the condition code register(s). Only
1097 // convert them to equivalent lea if the condition code register def's
1098 // are dead!
1099 if (hasLiveCondCodeDef(MI))
1100 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +00001101
Evan Chengb76143c2007-10-09 07:14:53 +00001102 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +00001103 switch (MIOpc) {
1104 default: return 0;
1105 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +00001106 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001107 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001108 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1109 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001110 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001111 .addReg(Dest, true, false, false, isDead),
1112 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001113 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001114 }
Evan Cheng559dc462007-10-05 20:34:26 +00001115 case X86::INC16r:
1116 case X86::INC64_16r:
1117 if (DisableLEA16) return 0;
1118 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001119 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001120 .addReg(Dest, true, false, false, isDead),
1121 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001122 break;
1123 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +00001124 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001125 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001126 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1127 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001128 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001129 .addReg(Dest, true, false, false, isDead),
1130 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001131 break;
1132 }
1133 case X86::DEC16r:
1134 case X86::DEC64_16r:
1135 if (DisableLEA16) return 0;
1136 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001137 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001138 .addReg(Dest, true, false, false, isDead),
1139 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001140 break;
1141 case X86::ADD64rr:
1142 case X86::ADD32rr: {
1143 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001144 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1145 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng9f1c8312008-07-03 09:09:37 +00001146 unsigned Src2 = MI->getOperand(2).getReg();
1147 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001148 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001149 .addReg(Dest, true, false, false, isDead),
1150 Src, isKill, Src2, isKill2);
1151 if (LV && isKill2)
1152 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001153 break;
1154 }
Evan Cheng9f1c8312008-07-03 09:09:37 +00001155 case X86::ADD16rr: {
Evan Cheng559dc462007-10-05 20:34:26 +00001156 if (DisableLEA16) return 0;
1157 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng9f1c8312008-07-03 09:09:37 +00001158 unsigned Src2 = MI->getOperand(2).getReg();
1159 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001160 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001161 .addReg(Dest, true, false, false, isDead),
1162 Src, isKill, Src2, isKill2);
1163 if (LV && isKill2)
1164 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001165 break;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001166 }
Evan Cheng559dc462007-10-05 20:34:26 +00001167 case X86::ADD64ri32:
1168 case X86::ADD64ri8:
1169 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmand735b802008-10-03 15:45:36 +00001170 if (MI->getOperand(2).isImm())
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001171 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001172 .addReg(Dest, true, false, false, isDead),
1173 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001174 break;
1175 case X86::ADD32ri:
1176 case X86::ADD32ri8:
1177 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmand735b802008-10-03 15:45:36 +00001178 if (MI->getOperand(2).isImm()) {
Evan Chengb76143c2007-10-09 07:14:53 +00001179 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001180 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001181 .addReg(Dest, true, false, false, isDead),
1182 Src, isKill, MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001183 }
Evan Cheng559dc462007-10-05 20:34:26 +00001184 break;
1185 case X86::ADD16ri:
1186 case X86::ADD16ri8:
1187 if (DisableLEA16) return 0;
1188 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmand735b802008-10-03 15:45:36 +00001189 if (MI->getOperand(2).isImm())
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001190 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001191 .addReg(Dest, true, false, false, isDead),
1192 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001193 break;
1194 case X86::SHL16ri:
1195 if (DisableLEA16) return 0;
1196 case X86::SHL32ri:
1197 case X86::SHL64ri: {
Dan Gohmand735b802008-10-03 15:45:36 +00001198 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng559dc462007-10-05 20:34:26 +00001199 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001200 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001201 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1202 X86AddressMode AM;
1203 AM.Scale = 1 << ShAmt;
1204 AM.IndexReg = Src;
1205 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001206 : (MIOpc == X86::SHL32ri
1207 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001208 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001209 .addReg(Dest, true, false, false, isDead), AM);
1210 if (isKill)
1211 NewMI->getOperand(3).setIsKill(true);
Evan Cheng559dc462007-10-05 20:34:26 +00001212 }
1213 break;
1214 }
1215 }
1216 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001217 }
1218
Evan Cheng15246732008-02-07 08:29:53 +00001219 if (!NewMI) return 0;
1220
Evan Cheng9f1c8312008-07-03 09:09:37 +00001221 if (LV) { // Update live variables
1222 if (isKill)
1223 LV->replaceKillInstruction(Src, MI, NewMI);
1224 if (isDead)
1225 LV->replaceKillInstruction(Dest, MI, NewMI);
1226 }
1227
Evan Cheng559dc462007-10-05 20:34:26 +00001228 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001229 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001230}
1231
Chris Lattner41e431b2005-01-19 07:11:01 +00001232/// commuteInstruction - We have a few instructions that must be hacked on to
1233/// commute them.
1234///
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001235MachineInstr *
1236X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner41e431b2005-01-19 07:11:01 +00001237 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001238 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1239 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001240 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001241 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1242 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1243 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001244 unsigned Opc;
1245 unsigned Size;
1246 switch (MI->getOpcode()) {
1247 default: assert(0 && "Unreachable!");
1248 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1249 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1250 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1251 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001252 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1253 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001254 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001255 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman74feef22008-10-17 01:23:35 +00001256 if (NewMI) {
1257 MachineFunction &MF = *MI->getParent()->getParent();
1258 MI = MF.CloneMachineInstr(MI);
1259 NewMI = false;
Evan Chenga4d16a12008-02-13 02:46:49 +00001260 }
Dan Gohman74feef22008-10-17 01:23:35 +00001261 MI->setDesc(get(Opc));
1262 MI->getOperand(3).setImm(Size-Amt);
1263 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001264 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001265 case X86::CMOVB16rr:
1266 case X86::CMOVB32rr:
1267 case X86::CMOVB64rr:
1268 case X86::CMOVAE16rr:
1269 case X86::CMOVAE32rr:
1270 case X86::CMOVAE64rr:
1271 case X86::CMOVE16rr:
1272 case X86::CMOVE32rr:
1273 case X86::CMOVE64rr:
1274 case X86::CMOVNE16rr:
1275 case X86::CMOVNE32rr:
1276 case X86::CMOVNE64rr:
1277 case X86::CMOVBE16rr:
1278 case X86::CMOVBE32rr:
1279 case X86::CMOVBE64rr:
1280 case X86::CMOVA16rr:
1281 case X86::CMOVA32rr:
1282 case X86::CMOVA64rr:
1283 case X86::CMOVL16rr:
1284 case X86::CMOVL32rr:
1285 case X86::CMOVL64rr:
1286 case X86::CMOVGE16rr:
1287 case X86::CMOVGE32rr:
1288 case X86::CMOVGE64rr:
1289 case X86::CMOVLE16rr:
1290 case X86::CMOVLE32rr:
1291 case X86::CMOVLE64rr:
1292 case X86::CMOVG16rr:
1293 case X86::CMOVG32rr:
1294 case X86::CMOVG64rr:
1295 case X86::CMOVS16rr:
1296 case X86::CMOVS32rr:
1297 case X86::CMOVS64rr:
1298 case X86::CMOVNS16rr:
1299 case X86::CMOVNS32rr:
1300 case X86::CMOVNS64rr:
1301 case X86::CMOVP16rr:
1302 case X86::CMOVP32rr:
1303 case X86::CMOVP64rr:
1304 case X86::CMOVNP16rr:
1305 case X86::CMOVNP32rr:
1306 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001307 unsigned Opc = 0;
1308 switch (MI->getOpcode()) {
1309 default: break;
1310 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1311 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1312 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1313 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1314 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1315 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1316 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1317 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1318 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1319 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1320 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1321 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1322 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1323 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1324 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1325 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1326 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1327 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1328 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1329 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1330 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1331 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1332 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1333 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1334 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1335 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1336 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1337 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1338 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1339 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1340 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1341 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1342 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1343 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1344 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1345 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1346 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1347 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1348 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1349 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1350 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1351 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1352 }
Dan Gohman74feef22008-10-17 01:23:35 +00001353 if (NewMI) {
1354 MachineFunction &MF = *MI->getParent()->getParent();
1355 MI = MF.CloneMachineInstr(MI);
1356 NewMI = false;
1357 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00001358 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001359 // Fallthrough intended.
1360 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001361 default:
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001362 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001363 }
1364}
1365
Chris Lattner7fbe9722006-10-20 17:42:20 +00001366static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1367 switch (BrOpc) {
1368 default: return X86::COND_INVALID;
1369 case X86::JE: return X86::COND_E;
1370 case X86::JNE: return X86::COND_NE;
1371 case X86::JL: return X86::COND_L;
1372 case X86::JLE: return X86::COND_LE;
1373 case X86::JG: return X86::COND_G;
1374 case X86::JGE: return X86::COND_GE;
1375 case X86::JB: return X86::COND_B;
1376 case X86::JBE: return X86::COND_BE;
1377 case X86::JA: return X86::COND_A;
1378 case X86::JAE: return X86::COND_AE;
1379 case X86::JS: return X86::COND_S;
1380 case X86::JNS: return X86::COND_NS;
1381 case X86::JP: return X86::COND_P;
1382 case X86::JNP: return X86::COND_NP;
1383 case X86::JO: return X86::COND_O;
1384 case X86::JNO: return X86::COND_NO;
1385 }
1386}
1387
1388unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1389 switch (CC) {
1390 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001391 case X86::COND_E: return X86::JE;
1392 case X86::COND_NE: return X86::JNE;
1393 case X86::COND_L: return X86::JL;
1394 case X86::COND_LE: return X86::JLE;
1395 case X86::COND_G: return X86::JG;
1396 case X86::COND_GE: return X86::JGE;
1397 case X86::COND_B: return X86::JB;
1398 case X86::COND_BE: return X86::JBE;
1399 case X86::COND_A: return X86::JA;
1400 case X86::COND_AE: return X86::JAE;
1401 case X86::COND_S: return X86::JS;
1402 case X86::COND_NS: return X86::JNS;
1403 case X86::COND_P: return X86::JP;
1404 case X86::COND_NP: return X86::JNP;
1405 case X86::COND_O: return X86::JO;
1406 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001407 }
1408}
1409
Chris Lattner9cd68752006-10-21 05:52:40 +00001410/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1411/// e.g. turning COND_E to COND_NE.
1412X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1413 switch (CC) {
1414 default: assert(0 && "Illegal condition code!");
1415 case X86::COND_E: return X86::COND_NE;
1416 case X86::COND_NE: return X86::COND_E;
1417 case X86::COND_L: return X86::COND_GE;
1418 case X86::COND_LE: return X86::COND_G;
1419 case X86::COND_G: return X86::COND_LE;
1420 case X86::COND_GE: return X86::COND_L;
1421 case X86::COND_B: return X86::COND_AE;
1422 case X86::COND_BE: return X86::COND_A;
1423 case X86::COND_A: return X86::COND_BE;
1424 case X86::COND_AE: return X86::COND_B;
1425 case X86::COND_S: return X86::COND_NS;
1426 case X86::COND_NS: return X86::COND_S;
1427 case X86::COND_P: return X86::COND_NP;
1428 case X86::COND_NP: return X86::COND_P;
1429 case X86::COND_O: return X86::COND_NO;
1430 case X86::COND_NO: return X86::COND_O;
1431 }
1432}
1433
Dale Johannesen318093b2007-06-14 22:03:45 +00001434bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001435 const TargetInstrDesc &TID = MI->getDesc();
1436 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001437
1438 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001439 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001440 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001441 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001442 return true;
1443 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001444}
Chris Lattner9cd68752006-10-21 05:52:40 +00001445
Evan Cheng85dce6c2007-07-26 17:32:14 +00001446// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1447static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1448 const X86InstrInfo &TII) {
1449 if (MI->getOpcode() == X86::FP_REG_KILL)
1450 return false;
1451 return TII.isUnpredicatedTerminator(MI);
1452}
1453
Chris Lattner7fbe9722006-10-20 17:42:20 +00001454bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1455 MachineBasicBlock *&TBB,
1456 MachineBasicBlock *&FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +00001457 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman279c22e2008-10-21 03:29:32 +00001458 // Start from the bottom of the block and work up, examining the
1459 // terminator instructions.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001460 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00001461 while (I != MBB.begin()) {
1462 --I;
1463 // Working from the bottom, when we see a non-terminator
1464 // instruction, we're done.
1465 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1466 break;
1467 // A terminator that isn't a branch can't easily be handled
1468 // by this analysis.
1469 if (!I->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001470 return true;
Dan Gohman279c22e2008-10-21 03:29:32 +00001471 // Handle unconditional branches.
1472 if (I->getOpcode() == X86::JMP) {
1473 // If the block has any instructions after a JMP, delete them.
1474 while (next(I) != MBB.end())
1475 next(I)->eraseFromParent();
1476 Cond.clear();
1477 FBB = 0;
1478 // Delete the JMP if it's equivalent to a fall-through.
1479 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1480 TBB = 0;
1481 I->eraseFromParent();
1482 I = MBB.end();
1483 continue;
1484 }
1485 // TBB is used to indicate the unconditinal destination.
1486 TBB = I->getOperand(0).getMBB();
1487 continue;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001488 }
Dan Gohman279c22e2008-10-21 03:29:32 +00001489 // Handle conditional branches.
1490 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Chris Lattner7fbe9722006-10-20 17:42:20 +00001491 if (BranchCode == X86::COND_INVALID)
1492 return true; // Can't handle indirect branch.
Dan Gohman279c22e2008-10-21 03:29:32 +00001493 // Working from the bottom, handle the first conditional branch.
1494 if (Cond.empty()) {
1495 FBB = TBB;
1496 TBB = I->getOperand(0).getMBB();
1497 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1498 continue;
1499 }
1500 // Handle subsequent conditional branches. Only handle the case
1501 // where all conditional branches branch to the same destination
1502 // and their condition opcodes fit one of the special
1503 // multi-branch idioms.
1504 assert(Cond.size() == 1);
1505 assert(TBB);
1506 // Only handle the case where all conditional branches branch to
1507 // the same destination.
1508 if (TBB != I->getOperand(0).getMBB())
1509 return true;
1510 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1511 // If the conditions are the same, we can leave them alone.
1512 if (OldBranchCode == BranchCode)
1513 continue;
1514 // If they differ, see if they fit one of the known patterns.
1515 // Theoretically we could handle more patterns here, but
1516 // we shouldn't expect to see them if instruction selection
1517 // has done a reasonable job.
1518 if ((OldBranchCode == X86::COND_NP &&
1519 BranchCode == X86::COND_E) ||
1520 (OldBranchCode == X86::COND_E &&
1521 BranchCode == X86::COND_NP))
1522 BranchCode = X86::COND_NP_OR_E;
1523 else if ((OldBranchCode == X86::COND_P &&
1524 BranchCode == X86::COND_NE) ||
1525 (OldBranchCode == X86::COND_NE &&
1526 BranchCode == X86::COND_P))
1527 BranchCode = X86::COND_NE_OR_P;
1528 else
1529 return true;
1530 // Update the MachineOperand.
1531 Cond[0].setImm(BranchCode);
Chris Lattner6ce64432006-10-30 22:27:23 +00001532 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001533
Dan Gohman279c22e2008-10-21 03:29:32 +00001534 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001535}
1536
Evan Cheng6ae36262007-05-18 00:18:17 +00001537unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001538 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00001539 unsigned Count = 0;
1540
1541 while (I != MBB.begin()) {
1542 --I;
1543 if (I->getOpcode() != X86::JMP &&
1544 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1545 break;
1546 // Remove the branch.
1547 I->eraseFromParent();
1548 I = MBB.end();
1549 ++Count;
1550 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001551
Dan Gohman279c22e2008-10-21 03:29:32 +00001552 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001553}
1554
Owen Andersonf6372aa2008-01-01 21:11:32 +00001555static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001556 const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +00001557 if (MO.isReg())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001558 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001559 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmand735b802008-10-03 15:45:36 +00001560 else if (MO.isImm())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001561 MIB = MIB.addImm(MO.getImm());
Dan Gohmand735b802008-10-03 15:45:36 +00001562 else if (MO.isFI())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001563 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmand735b802008-10-03 15:45:36 +00001564 else if (MO.isGlobal())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001565 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmand735b802008-10-03 15:45:36 +00001566 else if (MO.isCPI())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001567 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmand735b802008-10-03 15:45:36 +00001568 else if (MO.isJTI())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001569 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmand735b802008-10-03 15:45:36 +00001570 else if (MO.isSymbol())
Owen Andersonf6372aa2008-01-01 21:11:32 +00001571 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1572 else
1573 assert(0 && "Unknown operand for X86InstrAddOperand!");
1574
1575 return MIB;
1576}
1577
Evan Cheng6ae36262007-05-18 00:18:17 +00001578unsigned
1579X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1580 MachineBasicBlock *FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +00001581 const SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001582 // Shouldn't be a fall through.
1583 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001584 assert((Cond.size() == 1 || Cond.size() == 0) &&
1585 "X86 branch conditions have one component!");
1586
Dan Gohman279c22e2008-10-21 03:29:32 +00001587 if (Cond.empty()) {
1588 // Unconditional branch?
1589 assert(!FBB && "Unconditional branch with multiple successors!");
1590 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001591 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001592 }
Dan Gohman279c22e2008-10-21 03:29:32 +00001593
1594 // Conditional branch.
1595 unsigned Count = 0;
1596 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1597 switch (CC) {
1598 case X86::COND_NP_OR_E:
1599 // Synthesize NP_OR_E with two branches.
1600 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1601 ++Count;
1602 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1603 ++Count;
1604 break;
1605 case X86::COND_NE_OR_P:
1606 // Synthesize NE_OR_P with two branches.
1607 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1608 ++Count;
1609 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1610 ++Count;
1611 break;
1612 default: {
1613 unsigned Opc = GetCondBranchFromCond(CC);
1614 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1615 ++Count;
1616 }
1617 }
1618 if (FBB) {
1619 // Two-way Conditional branch. Insert the second branch.
1620 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1621 ++Count;
1622 }
1623 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001624}
1625
Owen Anderson940f83e2008-08-26 18:03:31 +00001626bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner5c927502008-03-09 08:46:19 +00001627 MachineBasicBlock::iterator MI,
1628 unsigned DestReg, unsigned SrcReg,
1629 const TargetRegisterClass *DestRC,
1630 const TargetRegisterClass *SrcRC) const {
Chris Lattner90b347d2008-03-09 07:58:04 +00001631 if (DestRC == SrcRC) {
1632 unsigned Opc;
1633 if (DestRC == &X86::GR64RegClass) {
1634 Opc = X86::MOV64rr;
1635 } else if (DestRC == &X86::GR32RegClass) {
1636 Opc = X86::MOV32rr;
1637 } else if (DestRC == &X86::GR16RegClass) {
1638 Opc = X86::MOV16rr;
1639 } else if (DestRC == &X86::GR8RegClass) {
1640 Opc = X86::MOV8rr;
1641 } else if (DestRC == &X86::GR32_RegClass) {
1642 Opc = X86::MOV32_rr;
1643 } else if (DestRC == &X86::GR16_RegClass) {
1644 Opc = X86::MOV16_rr;
1645 } else if (DestRC == &X86::RFP32RegClass) {
1646 Opc = X86::MOV_Fp3232;
1647 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1648 Opc = X86::MOV_Fp6464;
1649 } else if (DestRC == &X86::RFP80RegClass) {
1650 Opc = X86::MOV_Fp8080;
1651 } else if (DestRC == &X86::FR32RegClass) {
1652 Opc = X86::FsMOVAPSrr;
1653 } else if (DestRC == &X86::FR64RegClass) {
1654 Opc = X86::FsMOVAPDrr;
1655 } else if (DestRC == &X86::VR128RegClass) {
1656 Opc = X86::MOVAPSrr;
1657 } else if (DestRC == &X86::VR64RegClass) {
1658 Opc = X86::MMX_MOVQ64rr;
1659 } else {
Owen Anderson940f83e2008-08-26 18:03:31 +00001660 return false;
Owen Andersond10fd972007-12-31 06:32:00 +00001661 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001662 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001663 return true;
Owen Andersond10fd972007-12-31 06:32:00 +00001664 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001665
1666 // Moving EFLAGS to / from another register requires a push and a pop.
1667 if (SrcRC == &X86::CCRRegClass) {
Owen Andersona3177672008-08-26 18:50:40 +00001668 if (SrcReg != X86::EFLAGS)
1669 return false;
Chris Lattner90b347d2008-03-09 07:58:04 +00001670 if (DestRC == &X86::GR64RegClass) {
1671 BuildMI(MBB, MI, get(X86::PUSHFQ));
1672 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001673 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001674 } else if (DestRC == &X86::GR32RegClass) {
1675 BuildMI(MBB, MI, get(X86::PUSHFD));
1676 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001677 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001678 }
1679 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersona3177672008-08-26 18:50:40 +00001680 if (DestReg != X86::EFLAGS)
1681 return false;
Chris Lattner90b347d2008-03-09 07:58:04 +00001682 if (SrcRC == &X86::GR64RegClass) {
1683 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1684 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson940f83e2008-08-26 18:03:31 +00001685 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001686 } else if (SrcRC == &X86::GR32RegClass) {
1687 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1688 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson940f83e2008-08-26 18:03:31 +00001689 return true;
Chris Lattner90b347d2008-03-09 07:58:04 +00001690 }
Owen Andersond10fd972007-12-31 06:32:00 +00001691 }
Chris Lattner5c927502008-03-09 08:46:19 +00001692
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001693 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner5c927502008-03-09 08:46:19 +00001694 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner24e0a542008-03-21 06:38:26 +00001695 // Copying from ST(0)/ST(1).
Owen Anderson940f83e2008-08-26 18:03:31 +00001696 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1697 // Can only copy from ST(0)/ST(1) right now
1698 return false;
Chris Lattner24e0a542008-03-21 06:38:26 +00001699 bool isST0 = SrcReg == X86::ST0;
Chris Lattner5c927502008-03-09 08:46:19 +00001700 unsigned Opc;
1701 if (DestRC == &X86::RFP32RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001702 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner5c927502008-03-09 08:46:19 +00001703 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001704 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner5c927502008-03-09 08:46:19 +00001705 else {
Owen Andersona3177672008-08-26 18:50:40 +00001706 if (DestRC != &X86::RFP80RegClass)
1707 return false;
Chris Lattner24e0a542008-03-21 06:38:26 +00001708 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner5c927502008-03-09 08:46:19 +00001709 }
1710 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001711 return true;
Chris Lattner5c927502008-03-09 08:46:19 +00001712 }
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001713
1714 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1715 if (DestRC == &X86::RSTRegClass) {
1716 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson940f83e2008-08-26 18:03:31 +00001717 if (DestReg != X86::ST0)
1718 // Can only copy to TOS right now
1719 return false;
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001720 unsigned Opc;
1721 if (SrcRC == &X86::RFP32RegClass)
1722 Opc = X86::FpSET_ST0_32;
1723 else if (SrcRC == &X86::RFP64RegClass)
1724 Opc = X86::FpSET_ST0_64;
1725 else {
Owen Andersona3177672008-08-26 18:50:40 +00001726 if (SrcRC != &X86::RFP80RegClass)
1727 return false;
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001728 Opc = X86::FpSET_ST0_80;
1729 }
1730 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson940f83e2008-08-26 18:03:31 +00001731 return true;
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001732 }
Chris Lattner5c927502008-03-09 08:46:19 +00001733
Owen Anderson940f83e2008-08-26 18:03:31 +00001734 // Not yet supported!
1735 return false;
Owen Andersond10fd972007-12-31 06:32:00 +00001736}
1737
Owen Andersonf6372aa2008-01-01 21:11:32 +00001738static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001739 bool isStackAligned) {
Owen Andersonf6372aa2008-01-01 21:11:32 +00001740 unsigned Opc = 0;
1741 if (RC == &X86::GR64RegClass) {
1742 Opc = X86::MOV64mr;
1743 } else if (RC == &X86::GR32RegClass) {
1744 Opc = X86::MOV32mr;
1745 } else if (RC == &X86::GR16RegClass) {
1746 Opc = X86::MOV16mr;
1747 } else if (RC == &X86::GR8RegClass) {
1748 Opc = X86::MOV8mr;
1749 } else if (RC == &X86::GR32_RegClass) {
1750 Opc = X86::MOV32_mr;
1751 } else if (RC == &X86::GR16_RegClass) {
1752 Opc = X86::MOV16_mr;
1753 } else if (RC == &X86::RFP80RegClass) {
1754 Opc = X86::ST_FpP80m; // pops
1755 } else if (RC == &X86::RFP64RegClass) {
1756 Opc = X86::ST_Fp64m;
1757 } else if (RC == &X86::RFP32RegClass) {
1758 Opc = X86::ST_Fp32m;
1759 } else if (RC == &X86::FR32RegClass) {
1760 Opc = X86::MOVSSmr;
1761 } else if (RC == &X86::FR64RegClass) {
1762 Opc = X86::MOVSDmr;
1763 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001764 // If stack is realigned we can use aligned stores.
1765 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Andersonf6372aa2008-01-01 21:11:32 +00001766 } else if (RC == &X86::VR64RegClass) {
1767 Opc = X86::MMX_MOVQ64mr;
1768 } else {
1769 assert(0 && "Unknown regclass");
1770 abort();
1771 }
1772
1773 return Opc;
1774}
1775
1776void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1777 MachineBasicBlock::iterator MI,
1778 unsigned SrcReg, bool isKill, int FrameIdx,
1779 const TargetRegisterClass *RC) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001780 const MachineFunction &MF = *MBB.getParent();
Evan Cheng41c08402008-07-21 06:34:17 +00001781 bool isAligned = (RI.getStackAlignment() >= 16) ||
1782 RI.needsStackRealignment(MF);
1783 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Andersonf6372aa2008-01-01 21:11:32 +00001784 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1785 .addReg(SrcReg, false, false, isKill);
1786}
1787
1788void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1789 bool isKill,
1790 SmallVectorImpl<MachineOperand> &Addr,
1791 const TargetRegisterClass *RC,
1792 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng41c08402008-07-21 06:34:17 +00001793 bool isAligned = (RI.getStackAlignment() >= 16) ||
1794 RI.needsStackRealignment(MF);
1795 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001796 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Andersonf6372aa2008-01-01 21:11:32 +00001797 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1798 MIB = X86InstrAddOperand(MIB, Addr[i]);
1799 MIB.addReg(SrcReg, false, false, isKill);
1800 NewMIs.push_back(MIB);
1801}
1802
1803static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001804 bool isStackAligned) {
Owen Andersonf6372aa2008-01-01 21:11:32 +00001805 unsigned Opc = 0;
1806 if (RC == &X86::GR64RegClass) {
1807 Opc = X86::MOV64rm;
1808 } else if (RC == &X86::GR32RegClass) {
1809 Opc = X86::MOV32rm;
1810 } else if (RC == &X86::GR16RegClass) {
1811 Opc = X86::MOV16rm;
1812 } else if (RC == &X86::GR8RegClass) {
1813 Opc = X86::MOV8rm;
1814 } else if (RC == &X86::GR32_RegClass) {
1815 Opc = X86::MOV32_rm;
1816 } else if (RC == &X86::GR16_RegClass) {
1817 Opc = X86::MOV16_rm;
1818 } else if (RC == &X86::RFP80RegClass) {
1819 Opc = X86::LD_Fp80m;
1820 } else if (RC == &X86::RFP64RegClass) {
1821 Opc = X86::LD_Fp64m;
1822 } else if (RC == &X86::RFP32RegClass) {
1823 Opc = X86::LD_Fp32m;
1824 } else if (RC == &X86::FR32RegClass) {
1825 Opc = X86::MOVSSrm;
1826 } else if (RC == &X86::FR64RegClass) {
1827 Opc = X86::MOVSDrm;
1828 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001829 // If stack is realigned we can use aligned loads.
1830 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Andersonf6372aa2008-01-01 21:11:32 +00001831 } else if (RC == &X86::VR64RegClass) {
1832 Opc = X86::MMX_MOVQ64rm;
1833 } else {
1834 assert(0 && "Unknown regclass");
1835 abort();
1836 }
1837
1838 return Opc;
1839}
1840
1841void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00001842 MachineBasicBlock::iterator MI,
1843 unsigned DestReg, int FrameIdx,
1844 const TargetRegisterClass *RC) const{
1845 const MachineFunction &MF = *MBB.getParent();
Evan Cheng41c08402008-07-21 06:34:17 +00001846 bool isAligned = (RI.getStackAlignment() >= 16) ||
1847 RI.needsStackRealignment(MF);
1848 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Andersonf6372aa2008-01-01 21:11:32 +00001849 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1850}
1851
1852void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng9f1c8312008-07-03 09:09:37 +00001853 SmallVectorImpl<MachineOperand> &Addr,
1854 const TargetRegisterClass *RC,
Owen Andersonf6372aa2008-01-01 21:11:32 +00001855 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng41c08402008-07-21 06:34:17 +00001856 bool isAligned = (RI.getStackAlignment() >= 16) ||
1857 RI.needsStackRealignment(MF);
1858 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001859 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Andersonf6372aa2008-01-01 21:11:32 +00001860 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1861 MIB = X86InstrAddOperand(MIB, Addr[i]);
1862 NewMIs.push_back(MIB);
1863}
1864
Owen Andersond94b6a12008-01-04 23:57:37 +00001865bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikovc4e8bec2008-10-04 11:09:36 +00001866 MachineBasicBlock::iterator MI,
Owen Andersond94b6a12008-01-04 23:57:37 +00001867 const std::vector<CalleeSavedInfo> &CSI) const {
1868 if (CSI.empty())
1869 return false;
1870
Evan Chenga67f32a2008-09-26 19:14:21 +00001871 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovc4e8bec2008-10-04 11:09:36 +00001872 unsigned SlotSize = is64Bit ? 8 : 4;
1873
1874 MachineFunction &MF = *MBB.getParent();
1875 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1876 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1877
Owen Andersond94b6a12008-01-04 23:57:37 +00001878 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1879 for (unsigned i = CSI.size(); i != 0; --i) {
1880 unsigned Reg = CSI[i-1].getReg();
1881 // Add the callee-saved register as live-in. It's killed at the spill.
1882 MBB.addLiveIn(Reg);
Dan Gohman25a1b472008-11-26 06:39:12 +00001883 BuildMI(MBB, MI, get(Opc))
1884 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Andersond94b6a12008-01-04 23:57:37 +00001885 }
1886 return true;
1887}
1888
1889bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikovc4e8bec2008-10-04 11:09:36 +00001890 MachineBasicBlock::iterator MI,
Owen Andersond94b6a12008-01-04 23:57:37 +00001891 const std::vector<CalleeSavedInfo> &CSI) const {
1892 if (CSI.empty())
1893 return false;
1894
1895 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1896
1897 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1898 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1899 unsigned Reg = CSI[i].getReg();
1900 BuildMI(MBB, MI, get(Opc), Reg);
1901 }
1902 return true;
1903}
1904
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001905static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001906 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00001907 MachineInstr *MI, const TargetInstrInfo &TII) {
1908 // Create the base instruction with the memory operand as the first part.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001909 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00001910 MachineInstrBuilder MIB(NewMI);
1911 unsigned NumAddrOps = MOs.size();
1912 for (unsigned i = 0; i != NumAddrOps; ++i)
1913 MIB = X86InstrAddOperand(MIB, MOs[i]);
1914 if (NumAddrOps < 4) // FrameIndex only
1915 MIB.addImm(1).addReg(0).addImm(0);
1916
1917 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001918 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001919 for (unsigned i = 0; i != NumOps; ++i) {
1920 MachineOperand &MO = MI->getOperand(i+2);
1921 MIB = X86InstrAddOperand(MIB, MO);
1922 }
1923 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1924 MachineOperand &MO = MI->getOperand(i);
1925 MIB = X86InstrAddOperand(MIB, MO);
1926 }
1927 return MIB;
1928}
1929
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001930static MachineInstr *FuseInst(MachineFunction &MF,
1931 unsigned Opcode, unsigned OpNo,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001932 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00001933 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001934 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00001935 MachineInstrBuilder MIB(NewMI);
1936
1937 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1938 MachineOperand &MO = MI->getOperand(i);
1939 if (i == OpNo) {
Dan Gohmand735b802008-10-03 15:45:36 +00001940 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson43dbe052008-01-07 01:35:02 +00001941 unsigned NumAddrOps = MOs.size();
1942 for (unsigned i = 0; i != NumAddrOps; ++i)
1943 MIB = X86InstrAddOperand(MIB, MOs[i]);
1944 if (NumAddrOps < 4) // FrameIndex only
1945 MIB.addImm(1).addReg(0).addImm(0);
1946 } else {
1947 MIB = X86InstrAddOperand(MIB, MO);
1948 }
1949 }
1950 return MIB;
1951}
1952
1953static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001954 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00001955 MachineInstr *MI) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001956 MachineFunction &MF = *MI->getParent()->getParent();
1957 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson43dbe052008-01-07 01:35:02 +00001958
1959 unsigned NumAddrOps = MOs.size();
1960 for (unsigned i = 0; i != NumAddrOps; ++i)
1961 MIB = X86InstrAddOperand(MIB, MOs[i]);
1962 if (NumAddrOps < 4) // FrameIndex only
1963 MIB.addImm(1).addReg(0).addImm(0);
1964 return MIB.addImm(0);
1965}
1966
1967MachineInstr*
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001968X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1969 MachineInstr *MI, unsigned i,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00001970 const SmallVector<MachineOperand,4> &MOs) const{
Owen Anderson43dbe052008-01-07 01:35:02 +00001971 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1972 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001973 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001974 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001975 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001976
1977 MachineInstr *NewMI = NULL;
1978 // Folding a memory location into the two-address part of a two-address
1979 // instruction is different than folding it other places. It requires
1980 // replacing the *two* registers with the memory location.
1981 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +00001982 MI->getOperand(0).isReg() &&
1983 MI->getOperand(1).isReg() &&
Owen Anderson43dbe052008-01-07 01:35:02 +00001984 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1985 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1986 isTwoAddrFold = true;
1987 } else if (i == 0) { // If operand 0
1988 if (MI->getOpcode() == X86::MOV16r0)
1989 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1990 else if (MI->getOpcode() == X86::MOV32r0)
1991 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1992 else if (MI->getOpcode() == X86::MOV64r0)
1993 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1994 else if (MI->getOpcode() == X86::MOV8r0)
1995 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Cheng9f1c8312008-07-03 09:09:37 +00001996 if (NewMI)
Owen Anderson43dbe052008-01-07 01:35:02 +00001997 return NewMI;
Owen Anderson43dbe052008-01-07 01:35:02 +00001998
1999 OpcodeTablePtr = &RegOp2MemOpTable0;
2000 } else if (i == 1) {
2001 OpcodeTablePtr = &RegOp2MemOpTable1;
2002 } else if (i == 2) {
2003 OpcodeTablePtr = &RegOp2MemOpTable2;
2004 }
2005
2006 // If table selected...
2007 if (OpcodeTablePtr) {
2008 // Find the Opcode to fuse
2009 DenseMap<unsigned*, unsigned>::iterator I =
2010 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2011 if (I != OpcodeTablePtr->end()) {
2012 if (isTwoAddrFold)
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002013 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00002014 else
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002015 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00002016 return NewMI;
2017 }
2018 }
2019
2020 // No fusion
2021 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00002022 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00002023 return NULL;
2024}
2025
2026
Evan Cheng5fd79d02008-02-08 21:20:40 +00002027MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2028 MachineInstr *MI,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002029 const SmallVectorImpl<unsigned> &Ops,
Owen Anderson43dbe052008-01-07 01:35:02 +00002030 int FrameIndex) const {
2031 // Check switch flag
2032 if (NoFusing) return NULL;
2033
Evan Cheng5fd79d02008-02-08 21:20:40 +00002034 const MachineFrameInfo *MFI = MF.getFrameInfo();
2035 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2036 // FIXME: Move alignment requirement into tables?
2037 if (Alignment < 16) {
2038 switch (MI->getOpcode()) {
2039 default: break;
2040 // Not always safe to fold movsd into these instructions since their load
2041 // folding variants expects the address to be 16 byte aligned.
2042 case X86::FsANDNPDrr:
2043 case X86::FsANDNPSrr:
2044 case X86::FsANDPDrr:
2045 case X86::FsANDPSrr:
2046 case X86::FsORPDrr:
2047 case X86::FsORPSrr:
2048 case X86::FsXORPDrr:
2049 case X86::FsXORPSrr:
2050 return NULL;
2051 }
2052 }
2053
Owen Anderson43dbe052008-01-07 01:35:02 +00002054 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2055 unsigned NewOpc = 0;
2056 switch (MI->getOpcode()) {
2057 default: return NULL;
2058 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2059 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2060 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2061 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2062 }
2063 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002064 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002065 MI->getOperand(1).ChangeToImmediate(0);
2066 } else if (Ops.size() != 1)
2067 return NULL;
2068
2069 SmallVector<MachineOperand,4> MOs;
2070 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002071 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson43dbe052008-01-07 01:35:02 +00002072}
2073
Evan Cheng5fd79d02008-02-08 21:20:40 +00002074MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2075 MachineInstr *MI,
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002076 const SmallVectorImpl<unsigned> &Ops,
Chris Lattner269f0592008-01-09 00:37:18 +00002077 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00002078 // Check switch flag
2079 if (NoFusing) return NULL;
2080
Dan Gohmancddc11e2008-07-12 00:10:52 +00002081 // Determine the alignment of the load.
Evan Cheng5fd79d02008-02-08 21:20:40 +00002082 unsigned Alignment = 0;
Dan Gohmancddc11e2008-07-12 00:10:52 +00002083 if (LoadMI->hasOneMemOperand())
2084 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng5fd79d02008-02-08 21:20:40 +00002085
2086 // FIXME: Move alignment requirement into tables?
2087 if (Alignment < 16) {
2088 switch (MI->getOpcode()) {
2089 default: break;
2090 // Not always safe to fold movsd into these instructions since their load
2091 // folding variants expects the address to be 16 byte aligned.
2092 case X86::FsANDNPDrr:
2093 case X86::FsANDNPSrr:
2094 case X86::FsANDPDrr:
2095 case X86::FsANDPSrr:
2096 case X86::FsORPDrr:
2097 case X86::FsORPSrr:
2098 case X86::FsXORPDrr:
2099 case X86::FsXORPSrr:
2100 return NULL;
2101 }
2102 }
2103
Owen Anderson43dbe052008-01-07 01:35:02 +00002104 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2105 unsigned NewOpc = 0;
2106 switch (MI->getOpcode()) {
2107 default: return NULL;
2108 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2109 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2110 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2111 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2112 }
2113 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002114 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002115 MI->getOperand(1).ChangeToImmediate(0);
2116 } else if (Ops.size() != 1)
2117 return NULL;
2118
2119 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00002120 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002121 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2122 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002123 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson43dbe052008-01-07 01:35:02 +00002124}
2125
2126
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002127bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2128 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00002129 // Check switch flag
2130 if (NoFusing) return 0;
2131
2132 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2133 switch (MI->getOpcode()) {
2134 default: return false;
2135 case X86::TEST8rr:
2136 case X86::TEST16rr:
2137 case X86::TEST32rr:
2138 case X86::TEST64rr:
2139 return true;
2140 }
2141 }
2142
2143 if (Ops.size() != 1)
2144 return false;
2145
2146 unsigned OpNum = Ops[0];
2147 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00002148 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002149 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00002150 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00002151
2152 // Folding a memory location into the two-address part of a two-address
2153 // instruction is different than folding it other places. It requires
2154 // replacing the *two* registers with the memory location.
2155 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2156 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2157 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2158 } else if (OpNum == 0) { // If operand 0
2159 switch (Opc) {
2160 case X86::MOV16r0:
2161 case X86::MOV32r0:
2162 case X86::MOV64r0:
2163 case X86::MOV8r0:
2164 return true;
2165 default: break;
2166 }
2167 OpcodeTablePtr = &RegOp2MemOpTable0;
2168 } else if (OpNum == 1) {
2169 OpcodeTablePtr = &RegOp2MemOpTable1;
2170 } else if (OpNum == 2) {
2171 OpcodeTablePtr = &RegOp2MemOpTable2;
2172 }
2173
2174 if (OpcodeTablePtr) {
2175 // Find the Opcode to fuse
2176 DenseMap<unsigned*, unsigned>::iterator I =
2177 OpcodeTablePtr->find((unsigned*)Opc);
2178 if (I != OpcodeTablePtr->end())
2179 return true;
2180 }
2181 return false;
2182}
2183
2184bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2185 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2186 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2187 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2188 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2189 if (I == MemOp2RegOpTable.end())
2190 return false;
2191 unsigned Opc = I->second.first;
2192 unsigned Index = I->second.second & 0xf;
2193 bool FoldedLoad = I->second.second & (1 << 4);
2194 bool FoldedStore = I->second.second & (1 << 5);
2195 if (UnfoldLoad && !FoldedLoad)
2196 return false;
2197 UnfoldLoad &= FoldedLoad;
2198 if (UnfoldStore && !FoldedStore)
2199 return false;
2200 UnfoldStore &= FoldedStore;
2201
Chris Lattner749c6f62008-01-07 07:27:27 +00002202 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002203 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002204 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002205 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2206 SmallVector<MachineOperand,4> AddrOps;
2207 SmallVector<MachineOperand,2> BeforeOps;
2208 SmallVector<MachineOperand,2> AfterOps;
2209 SmallVector<MachineOperand,4> ImpOps;
2210 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2211 MachineOperand &Op = MI->getOperand(i);
2212 if (i >= Index && i < Index+4)
2213 AddrOps.push_back(Op);
Dan Gohmand735b802008-10-03 15:45:36 +00002214 else if (Op.isReg() && Op.isImplicit())
Owen Anderson43dbe052008-01-07 01:35:02 +00002215 ImpOps.push_back(Op);
2216 else if (i < Index)
2217 BeforeOps.push_back(Op);
2218 else if (i > Index)
2219 AfterOps.push_back(Op);
2220 }
2221
2222 // Emit the load instruction.
2223 if (UnfoldLoad) {
2224 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2225 if (UnfoldStore) {
2226 // Address operands cannot be marked isKill.
2227 for (unsigned i = 1; i != 5; ++i) {
2228 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002229 if (MO.isReg())
Owen Anderson43dbe052008-01-07 01:35:02 +00002230 MO.setIsKill(false);
2231 }
2232 }
2233 }
2234
2235 // Emit the data processing instruction.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002236 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002237 MachineInstrBuilder MIB(DataMI);
2238
2239 if (FoldedStore)
2240 MIB.addReg(Reg, true);
2241 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2242 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2243 if (FoldedLoad)
2244 MIB.addReg(Reg);
2245 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2246 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2247 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2248 MachineOperand &MO = ImpOps[i];
2249 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2250 }
2251 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2252 unsigned NewOpc = 0;
2253 switch (DataMI->getOpcode()) {
2254 default: break;
2255 case X86::CMP64ri32:
2256 case X86::CMP32ri:
2257 case X86::CMP16ri:
2258 case X86::CMP8ri: {
2259 MachineOperand &MO0 = DataMI->getOperand(0);
2260 MachineOperand &MO1 = DataMI->getOperand(1);
2261 if (MO1.getImm() == 0) {
2262 switch (DataMI->getOpcode()) {
2263 default: break;
2264 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2265 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2266 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2267 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2268 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002269 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002270 MO1.ChangeToRegister(MO0.getReg(), false);
2271 }
2272 }
2273 }
2274 NewMIs.push_back(DataMI);
2275
2276 // Emit the store instruction.
2277 if (UnfoldStore) {
2278 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002279 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002280 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2281 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2282 }
2283
2284 return true;
2285}
2286
2287bool
2288X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2289 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmane8be6c62008-07-17 19:10:17 +00002290 if (!N->isMachineOpcode())
Owen Anderson43dbe052008-01-07 01:35:02 +00002291 return false;
2292
2293 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmane8be6c62008-07-17 19:10:17 +00002294 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00002295 if (I == MemOp2RegOpTable.end())
2296 return false;
2297 unsigned Opc = I->second.first;
2298 unsigned Index = I->second.second & 0xf;
2299 bool FoldedLoad = I->second.second & (1 << 4);
2300 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00002301 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002302 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002303 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002304 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman475871a2008-07-27 21:46:04 +00002305 std::vector<SDValue> AddrOps;
2306 std::vector<SDValue> BeforeOps;
2307 std::vector<SDValue> AfterOps;
Owen Anderson43dbe052008-01-07 01:35:02 +00002308 unsigned NumOps = N->getNumOperands();
2309 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman475871a2008-07-27 21:46:04 +00002310 SDValue Op = N->getOperand(i);
Owen Anderson43dbe052008-01-07 01:35:02 +00002311 if (i >= Index && i < Index+4)
2312 AddrOps.push_back(Op);
2313 else if (i < Index)
2314 BeforeOps.push_back(Op);
2315 else if (i > Index)
2316 AfterOps.push_back(Op);
2317 }
Dan Gohman475871a2008-07-27 21:46:04 +00002318 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson43dbe052008-01-07 01:35:02 +00002319 AddrOps.push_back(Chain);
2320
2321 // Emit the load instruction.
2322 SDNode *Load = 0;
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002323 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson43dbe052008-01-07 01:35:02 +00002324 if (FoldedLoad) {
Duncan Sands83ec4b62008-06-06 12:08:01 +00002325 MVT VT = *RC->vt_begin();
Evan Cheng41c08402008-07-21 06:34:17 +00002326 bool isAligned = (RI.getStackAlignment() >= 16) ||
2327 RI.needsStackRealignment(MF);
2328 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002329 VT, MVT::Other,
2330 &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00002331 NewNodes.push_back(Load);
2332 }
2333
2334 // Emit the data processing instruction.
Duncan Sands83ec4b62008-06-06 12:08:01 +00002335 std::vector<MVT> VTs;
Owen Anderson43dbe052008-01-07 01:35:02 +00002336 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002337 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002338 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002339 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002340 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2341 VTs.push_back(*DstRC->vt_begin());
2342 }
2343 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands83ec4b62008-06-06 12:08:01 +00002344 MVT VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002345 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002346 VTs.push_back(VT);
2347 }
2348 if (Load)
Dan Gohman475871a2008-07-27 21:46:04 +00002349 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00002350 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2351 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2352 NewNodes.push_back(NewNode);
2353
2354 // Emit the store instruction.
2355 if (FoldedStore) {
2356 AddrOps.pop_back();
Dan Gohman475871a2008-07-27 21:46:04 +00002357 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00002358 AddrOps.push_back(Chain);
Evan Cheng41c08402008-07-21 06:34:17 +00002359 bool isAligned = (RI.getStackAlignment() >= 16) ||
2360 RI.needsStackRealignment(MF);
2361 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2362 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00002363 NewNodes.push_back(Store);
2364 }
2365
2366 return true;
2367}
2368
2369unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2370 bool UnfoldLoad, bool UnfoldStore) const {
2371 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2372 MemOp2RegOpTable.find((unsigned*)Opc);
2373 if (I == MemOp2RegOpTable.end())
2374 return 0;
2375 bool FoldedLoad = I->second.second & (1 << 4);
2376 bool FoldedStore = I->second.second & (1 << 5);
2377 if (UnfoldLoad && !FoldedLoad)
2378 return 0;
2379 if (UnfoldStore && !FoldedStore)
2380 return 0;
2381 return I->second.first;
2382}
2383
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002384bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002385 if (MBB.empty()) return false;
2386
2387 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002388 case X86::TCRETURNri:
2389 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002390 case X86::RET: // Return.
2391 case X86::RETI:
2392 case X86::TAILJMPd:
2393 case X86::TAILJMPr:
2394 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002395 case X86::JMP: // Uncond branch.
2396 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002397 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002398 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002399 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002400 return true;
2401 default: return false;
2402 }
2403}
2404
Chris Lattner7fbe9722006-10-20 17:42:20 +00002405bool X86InstrInfo::
Owen Anderson44eb65c2008-08-14 22:49:33 +00002406ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002407 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Cheng97af60b2008-08-29 23:21:31 +00002408 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman279c22e2008-10-21 03:29:32 +00002409 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2410 return true;
Evan Cheng97af60b2008-08-29 23:21:31 +00002411 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner9cd68752006-10-21 05:52:40 +00002412 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002413}
2414
Evan Cheng23066282008-10-27 07:14:50 +00002415bool X86InstrInfo::
2416IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2417 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2418 // allow any loads of these registers before FpGet_ST0_80.
2419 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2420 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2421}
2422
Evan Cheng25ab6902006-09-08 06:48:29 +00002423const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2424 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2425 if (Subtarget->is64Bit())
2426 return &X86::GR64RegClass;
2427 else
2428 return &X86::GR32RegClass;
2429}
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002430
2431unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2432 switch (Desc->TSFlags & X86II::ImmMask) {
2433 case X86II::Imm8: return 1;
2434 case X86II::Imm16: return 2;
2435 case X86II::Imm32: return 4;
2436 case X86II::Imm64: return 8;
2437 default: assert(0 && "Immediate size not set!");
2438 return 0;
2439 }
2440}
2441
2442/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2443/// e.g. r8, xmm8, etc.
2444bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +00002445 if (!MO.isReg()) return false;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002446 switch (MO.getReg()) {
2447 default: break;
2448 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2449 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2450 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2451 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2452 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2453 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2454 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2455 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2456 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2457 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2458 return true;
2459 }
2460 return false;
2461}
2462
2463
2464/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2465/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2466/// size, and 3) use of X86-64 extended registers.
2467unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2468 unsigned REX = 0;
2469 const TargetInstrDesc &Desc = MI.getDesc();
2470
2471 // Pseudo instructions do not need REX prefix byte.
2472 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2473 return 0;
2474 if (Desc.TSFlags & X86II::REX_W)
2475 REX |= 1 << 3;
2476
2477 unsigned NumOps = Desc.getNumOperands();
2478 if (NumOps) {
2479 bool isTwoAddr = NumOps > 1 &&
2480 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2481
2482 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2483 unsigned i = isTwoAddr ? 1 : 0;
2484 for (unsigned e = NumOps; i != e; ++i) {
2485 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002486 if (MO.isReg()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002487 unsigned Reg = MO.getReg();
2488 if (isX86_64NonExtLowByteReg(Reg))
2489 REX |= 0x40;
2490 }
2491 }
2492
2493 switch (Desc.TSFlags & X86II::FormMask) {
2494 case X86II::MRMInitReg:
2495 if (isX86_64ExtendedReg(MI.getOperand(0)))
2496 REX |= (1 << 0) | (1 << 2);
2497 break;
2498 case X86II::MRMSrcReg: {
2499 if (isX86_64ExtendedReg(MI.getOperand(0)))
2500 REX |= 1 << 2;
2501 i = isTwoAddr ? 2 : 1;
2502 for (unsigned e = NumOps; i != e; ++i) {
2503 const MachineOperand& MO = MI.getOperand(i);
2504 if (isX86_64ExtendedReg(MO))
2505 REX |= 1 << 0;
2506 }
2507 break;
2508 }
2509 case X86II::MRMSrcMem: {
2510 if (isX86_64ExtendedReg(MI.getOperand(0)))
2511 REX |= 1 << 2;
2512 unsigned Bit = 0;
2513 i = isTwoAddr ? 2 : 1;
2514 for (; i != NumOps; ++i) {
2515 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002516 if (MO.isReg()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002517 if (isX86_64ExtendedReg(MO))
2518 REX |= 1 << Bit;
2519 Bit++;
2520 }
2521 }
2522 break;
2523 }
2524 case X86II::MRM0m: case X86II::MRM1m:
2525 case X86II::MRM2m: case X86II::MRM3m:
2526 case X86II::MRM4m: case X86II::MRM5m:
2527 case X86II::MRM6m: case X86II::MRM7m:
2528 case X86II::MRMDestMem: {
2529 unsigned e = isTwoAddr ? 5 : 4;
2530 i = isTwoAddr ? 1 : 0;
2531 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2532 REX |= 1 << 2;
2533 unsigned Bit = 0;
2534 for (; i != e; ++i) {
2535 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002536 if (MO.isReg()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002537 if (isX86_64ExtendedReg(MO))
2538 REX |= 1 << Bit;
2539 Bit++;
2540 }
2541 }
2542 break;
2543 }
2544 default: {
2545 if (isX86_64ExtendedReg(MI.getOperand(0)))
2546 REX |= 1 << 0;
2547 i = isTwoAddr ? 2 : 1;
2548 for (unsigned e = NumOps; i != e; ++i) {
2549 const MachineOperand& MO = MI.getOperand(i);
2550 if (isX86_64ExtendedReg(MO))
2551 REX |= 1 << 2;
2552 }
2553 break;
2554 }
2555 }
2556 }
2557 return REX;
2558}
2559
2560/// sizePCRelativeBlockAddress - This method returns the size of a PC
2561/// relative block address instruction
2562///
2563static unsigned sizePCRelativeBlockAddress() {
2564 return 4;
2565}
2566
2567/// sizeGlobalAddress - Give the size of the emission of this global address
2568///
2569static unsigned sizeGlobalAddress(bool dword) {
2570 return dword ? 8 : 4;
2571}
2572
2573/// sizeConstPoolAddress - Give the size of the emission of this constant
2574/// pool address
2575///
2576static unsigned sizeConstPoolAddress(bool dword) {
2577 return dword ? 8 : 4;
2578}
2579
2580/// sizeExternalSymbolAddress - Give the size of the emission of this external
2581/// symbol
2582///
2583static unsigned sizeExternalSymbolAddress(bool dword) {
2584 return dword ? 8 : 4;
2585}
2586
2587/// sizeJumpTableAddress - Give the size of the emission of this jump
2588/// table address
2589///
2590static unsigned sizeJumpTableAddress(bool dword) {
2591 return dword ? 8 : 4;
2592}
2593
2594static unsigned sizeConstant(unsigned Size) {
2595 return Size;
2596}
2597
2598static unsigned sizeRegModRMByte(){
2599 return 1;
2600}
2601
2602static unsigned sizeSIBByte(){
2603 return 1;
2604}
2605
2606static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2607 unsigned FinalSize = 0;
2608 // If this is a simple integer displacement that doesn't require a relocation.
2609 if (!RelocOp) {
2610 FinalSize += sizeConstant(4);
2611 return FinalSize;
2612 }
2613
2614 // Otherwise, this is something that requires a relocation.
Dan Gohmand735b802008-10-03 15:45:36 +00002615 if (RelocOp->isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002616 FinalSize += sizeGlobalAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002617 } else if (RelocOp->isCPI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002618 FinalSize += sizeConstPoolAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002619 } else if (RelocOp->isJTI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002620 FinalSize += sizeJumpTableAddress(false);
2621 } else {
2622 assert(0 && "Unknown value to relocate!");
2623 }
2624 return FinalSize;
2625}
2626
2627static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2628 bool IsPIC, bool Is64BitMode) {
2629 const MachineOperand &Op3 = MI.getOperand(Op+3);
2630 int DispVal = 0;
2631 const MachineOperand *DispForReloc = 0;
2632 unsigned FinalSize = 0;
2633
2634 // Figure out what sort of displacement we have to handle here.
Dan Gohmand735b802008-10-03 15:45:36 +00002635 if (Op3.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002636 DispForReloc = &Op3;
Dan Gohmand735b802008-10-03 15:45:36 +00002637 } else if (Op3.isCPI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002638 if (Is64BitMode || IsPIC) {
2639 DispForReloc = &Op3;
2640 } else {
2641 DispVal = 1;
2642 }
Dan Gohmand735b802008-10-03 15:45:36 +00002643 } else if (Op3.isJTI()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002644 if (Is64BitMode || IsPIC) {
2645 DispForReloc = &Op3;
2646 } else {
2647 DispVal = 1;
2648 }
2649 } else {
2650 DispVal = 1;
2651 }
2652
2653 const MachineOperand &Base = MI.getOperand(Op);
2654 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2655
2656 unsigned BaseReg = Base.getReg();
2657
2658 // Is a SIB byte needed?
2659 if (IndexReg.getReg() == 0 &&
2660 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2661 if (BaseReg == 0) { // Just a displacement?
2662 // Emit special case [disp32] encoding
2663 ++FinalSize;
2664 FinalSize += getDisplacementFieldSize(DispForReloc);
2665 } else {
2666 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2667 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2668 // Emit simple indirect register encoding... [EAX] f.e.
2669 ++FinalSize;
2670 // Be pessimistic and assume it's a disp32, not a disp8
2671 } else {
2672 // Emit the most general non-SIB encoding: [REG+disp32]
2673 ++FinalSize;
2674 FinalSize += getDisplacementFieldSize(DispForReloc);
2675 }
2676 }
2677
2678 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2679 assert(IndexReg.getReg() != X86::ESP &&
2680 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2681
2682 bool ForceDisp32 = false;
2683 if (BaseReg == 0 || DispForReloc) {
2684 // Emit the normal disp32 encoding.
2685 ++FinalSize;
2686 ForceDisp32 = true;
2687 } else {
2688 ++FinalSize;
2689 }
2690
2691 FinalSize += sizeSIBByte();
2692
2693 // Do we need to output a displacement?
2694 if (DispVal != 0 || ForceDisp32) {
2695 FinalSize += getDisplacementFieldSize(DispForReloc);
2696 }
2697 }
2698 return FinalSize;
2699}
2700
2701
2702static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2703 const TargetInstrDesc *Desc,
2704 bool IsPIC, bool Is64BitMode) {
2705
2706 unsigned Opcode = Desc->Opcode;
2707 unsigned FinalSize = 0;
2708
2709 // Emit the lock opcode prefix as needed.
2710 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2711
Anton Korobeynikovd21a6302008-10-12 10:30:11 +00002712 // Emit segment overrid opcode prefix as needed.
2713 switch (Desc->TSFlags & X86II::SegOvrMask) {
2714 case X86II::FS:
2715 case X86II::GS:
2716 ++FinalSize;
2717 break;
2718 default: assert(0 && "Invalid segment!");
2719 case 0: break; // No segment override!
2720 }
2721
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002722 // Emit the repeat opcode prefix as needed.
2723 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2724
2725 // Emit the operand size opcode prefix as needed.
2726 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2727
2728 // Emit the address size opcode prefix as needed.
2729 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2730
2731 bool Need0FPrefix = false;
2732 switch (Desc->TSFlags & X86II::Op0Mask) {
2733 case X86II::TB: // Two-byte opcode prefix
2734 case X86II::T8: // 0F 38
2735 case X86II::TA: // 0F 3A
2736 Need0FPrefix = true;
2737 break;
2738 case X86II::REP: break; // already handled.
2739 case X86II::XS: // F3 0F
2740 ++FinalSize;
2741 Need0FPrefix = true;
2742 break;
2743 case X86II::XD: // F2 0F
2744 ++FinalSize;
2745 Need0FPrefix = true;
2746 break;
2747 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2748 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2749 ++FinalSize;
2750 break; // Two-byte opcode prefix
2751 default: assert(0 && "Invalid prefix!");
2752 case 0: break; // No prefix!
2753 }
2754
2755 if (Is64BitMode) {
2756 // REX prefix
2757 unsigned REX = X86InstrInfo::determineREX(MI);
2758 if (REX)
2759 ++FinalSize;
2760 }
2761
2762 // 0x0F escape code must be emitted just before the opcode.
2763 if (Need0FPrefix)
2764 ++FinalSize;
2765
2766 switch (Desc->TSFlags & X86II::Op0Mask) {
2767 case X86II::T8: // 0F 38
2768 ++FinalSize;
2769 break;
2770 case X86II::TA: // 0F 3A
2771 ++FinalSize;
2772 break;
2773 }
2774
2775 // If this is a two-address instruction, skip one of the register operands.
2776 unsigned NumOps = Desc->getNumOperands();
2777 unsigned CurOp = 0;
2778 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2779 CurOp++;
2780
2781 switch (Desc->TSFlags & X86II::FormMask) {
2782 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2783 case X86II::Pseudo:
2784 // Remember the current PC offset, this is the PIC relocation
2785 // base address.
2786 switch (Opcode) {
2787 default:
2788 break;
2789 case TargetInstrInfo::INLINEASM: {
2790 const MachineFunction *MF = MI.getParent()->getParent();
2791 const char *AsmStr = MI.getOperand(0).getSymbolName();
2792 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2793 FinalSize += AI->getInlineAsmLength(AsmStr);
2794 break;
2795 }
Dan Gohman44066042008-07-01 00:05:16 +00002796 case TargetInstrInfo::DBG_LABEL:
2797 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002798 break;
2799 case TargetInstrInfo::IMPLICIT_DEF:
2800 case TargetInstrInfo::DECLARE:
2801 case X86::DWARF_LOC:
2802 case X86::FP_REG_KILL:
2803 break;
2804 case X86::MOVPC32r: {
2805 // This emits the "call" portion of this pseudo instruction.
2806 ++FinalSize;
2807 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2808 break;
2809 }
Nicolas Geoffrayb74f3702008-10-25 15:22:06 +00002810 case X86::TLS_tp:
2811 case X86::TLS_gs_ri:
2812 FinalSize += 2;
2813 FinalSize += sizeGlobalAddress(false);
2814 break;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002815 }
2816 CurOp = NumOps;
2817 break;
2818 case X86II::RawFrm:
2819 ++FinalSize;
2820
2821 if (CurOp != NumOps) {
2822 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmand735b802008-10-03 15:45:36 +00002823 if (MO.isMBB()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002824 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmand735b802008-10-03 15:45:36 +00002825 } else if (MO.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002826 FinalSize += sizeGlobalAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002827 } else if (MO.isSymbol()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002828 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmand735b802008-10-03 15:45:36 +00002829 } else if (MO.isImm()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002830 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2831 } else {
2832 assert(0 && "Unknown RawFrm operand!");
2833 }
2834 }
2835 break;
2836
2837 case X86II::AddRegFrm:
2838 ++FinalSize;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002839 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002840
2841 if (CurOp != NumOps) {
2842 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2843 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmand735b802008-10-03 15:45:36 +00002844 if (MO1.isImm())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002845 FinalSize += sizeConstant(Size);
2846 else {
2847 bool dword = false;
2848 if (Opcode == X86::MOV64ri)
2849 dword = true;
Dan Gohmand735b802008-10-03 15:45:36 +00002850 if (MO1.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002851 FinalSize += sizeGlobalAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002852 } else if (MO1.isSymbol())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002853 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002854 else if (MO1.isCPI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002855 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002856 else if (MO1.isJTI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002857 FinalSize += sizeJumpTableAddress(dword);
2858 }
2859 }
2860 break;
2861
2862 case X86II::MRMDestReg: {
2863 ++FinalSize;
2864 FinalSize += sizeRegModRMByte();
2865 CurOp += 2;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002866 if (CurOp != NumOps) {
2867 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002868 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002869 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002870 break;
2871 }
2872 case X86II::MRMDestMem: {
2873 ++FinalSize;
2874 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2875 CurOp += 5;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002876 if (CurOp != NumOps) {
2877 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002878 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002879 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002880 break;
2881 }
2882
2883 case X86II::MRMSrcReg:
2884 ++FinalSize;
2885 FinalSize += sizeRegModRMByte();
2886 CurOp += 2;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002887 if (CurOp != NumOps) {
2888 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002889 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002890 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002891 break;
2892
2893 case X86II::MRMSrcMem: {
2894
2895 ++FinalSize;
2896 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2897 CurOp += 5;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002898 if (CurOp != NumOps) {
2899 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002900 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002901 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002902 break;
2903 }
2904
2905 case X86II::MRM0r: case X86II::MRM1r:
2906 case X86II::MRM2r: case X86II::MRM3r:
2907 case X86II::MRM4r: case X86II::MRM5r:
2908 case X86II::MRM6r: case X86II::MRM7r:
2909 ++FinalSize;
Nicolas Geoffray546e36a2008-04-20 23:36:47 +00002910 ++CurOp;
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002911 FinalSize += sizeRegModRMByte();
2912
2913 if (CurOp != NumOps) {
2914 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2915 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmand735b802008-10-03 15:45:36 +00002916 if (MO1.isImm())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002917 FinalSize += sizeConstant(Size);
2918 else {
2919 bool dword = false;
2920 if (Opcode == X86::MOV64ri32)
2921 dword = true;
Dan Gohmand735b802008-10-03 15:45:36 +00002922 if (MO1.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002923 FinalSize += sizeGlobalAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002924 } else if (MO1.isSymbol())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002925 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002926 else if (MO1.isCPI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002927 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002928 else if (MO1.isJTI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002929 FinalSize += sizeJumpTableAddress(dword);
2930 }
2931 }
2932 break;
2933
2934 case X86II::MRM0m: case X86II::MRM1m:
2935 case X86II::MRM2m: case X86II::MRM3m:
2936 case X86II::MRM4m: case X86II::MRM5m:
2937 case X86II::MRM6m: case X86II::MRM7m: {
2938
2939 ++FinalSize;
2940 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2941 CurOp += 4;
2942
2943 if (CurOp != NumOps) {
2944 const MachineOperand &MO = MI.getOperand(CurOp++);
2945 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmand735b802008-10-03 15:45:36 +00002946 if (MO.isImm())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002947 FinalSize += sizeConstant(Size);
2948 else {
2949 bool dword = false;
2950 if (Opcode == X86::MOV64mi32)
2951 dword = true;
Dan Gohmand735b802008-10-03 15:45:36 +00002952 if (MO.isGlobal()) {
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002953 FinalSize += sizeGlobalAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002954 } else if (MO.isSymbol())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002955 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002956 else if (MO.isCPI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002957 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmand735b802008-10-03 15:45:36 +00002958 else if (MO.isJTI())
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002959 FinalSize += sizeJumpTableAddress(dword);
2960 }
2961 }
2962 break;
2963 }
2964
2965 case X86II::MRMInitReg:
2966 ++FinalSize;
2967 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2968 FinalSize += sizeRegModRMByte();
2969 ++CurOp;
2970 break;
2971 }
2972
2973 if (!Desc->isVariadic() && CurOp != NumOps) {
2974 cerr << "Cannot determine size: ";
2975 MI.dump();
2976 cerr << '\n';
2977 abort();
2978 }
2979
2980
2981 return FinalSize;
2982}
2983
2984
2985unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2986 const TargetInstrDesc &Desc = MI->getDesc();
2987 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +00002988 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffray52e724a2008-04-16 20:10:13 +00002989 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2990 if (Desc.getOpcode() == X86::MOVPC32r) {
2991 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2992 }
2993 return Size;
2994}
Dan Gohman8b746962008-09-23 18:22:58 +00002995
Dan Gohman57c3dac2008-09-30 00:58:23 +00002996/// getGlobalBaseReg - Return a virtual register initialized with the
2997/// the global base register value. Output instructions required to
2998/// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +00002999///
Dan Gohman57c3dac2008-09-30 00:58:23 +00003000unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3001 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3002 "X86-64 PIC uses RIP relative addressing");
3003
3004 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3005 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3006 if (GlobalBaseReg != 0)
3007 return GlobalBaseReg;
3008
Dan Gohman8b746962008-09-23 18:22:58 +00003009 // Insert the set of GlobalBaseReg into the first MBB of the function
3010 MachineBasicBlock &FirstMBB = MF->front();
3011 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3012 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3013 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3014
3015 const TargetInstrInfo *TII = TM.getInstrInfo();
3016 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3017 // only used in JIT code emission as displacement to pc.
3018 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3019
3020 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3021 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3022 if (TM.getRelocationModel() == Reloc::PIC_ &&
3023 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman57c3dac2008-09-30 00:58:23 +00003024 GlobalBaseReg =
Dan Gohman8b746962008-09-23 18:22:58 +00003025 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3026 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3027 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman57c3dac2008-09-30 00:58:23 +00003028 } else {
3029 GlobalBaseReg = PC;
Dan Gohman8b746962008-09-23 18:22:58 +00003030 }
3031
Dan Gohman57c3dac2008-09-30 00:58:23 +00003032 X86FI->setGlobalBaseReg(GlobalBaseReg);
3033 return GlobalBaseReg;
Dan Gohman8b746962008-09-23 18:22:58 +00003034}