blob: f737354b36a6c62a453a296eefe63bd461528fb9 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
21#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000022#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000024#include "llvm/Analysis/Dominators.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000025#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000026#include "llvm/Support/ValueHandle.h"
Duncan Sandse60d79f2010-11-21 13:53:09 +000027#include "llvm/Target/TargetData.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000028using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000029using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000030
Duncan Sands124708d2011-01-01 20:08:02 +000031#define RecursionLimit 3
Duncan Sandsa74a58c2010-11-10 18:23:01 +000032
Duncan Sandsa3c44a52010-12-22 09:40:51 +000033STATISTIC(NumExpand, "Number of expansions");
34STATISTIC(NumFactor , "Number of factorizations");
35STATISTIC(NumReassoc, "Number of reassociations");
36
Duncan Sands82fdab32010-12-21 14:00:22 +000037static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
38 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000039static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000040 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000041static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000042 const DominatorTree *, unsigned);
Duncan Sands82fdab32010-12-21 14:00:22 +000043static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
44 const DominatorTree *, unsigned);
45static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
46 const DominatorTree *, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000047
48/// ValueDominatesPHI - Does the given value dominate the specified phi node?
49static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
50 Instruction *I = dyn_cast<Instruction>(V);
51 if (!I)
52 // Arguments and constants dominate all instructions.
53 return true;
54
55 // If we have a DominatorTree then do a precise test.
56 if (DT)
57 return DT->dominates(I, P);
58
59 // Otherwise, if the instruction is in the entry block, and is not an invoke,
60 // then it obviously dominates all phi nodes.
61 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
62 !isa<InvokeInst>(I))
63 return true;
64
65 return false;
66}
Duncan Sandsa74a58c2010-11-10 18:23:01 +000067
Duncan Sands3421d902010-12-21 13:32:22 +000068/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
69/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
70/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
71/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
72/// Returns the simplified value, or null if no simplification was performed.
73static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +000074 unsigned OpcToExpand, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +000075 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +000076 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000077 // Recursion is always used, so bail out at once if we already hit the limit.
78 if (!MaxRecurse--)
79 return 0;
80
81 // Check whether the expression has the form "(A op' B) op C".
82 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
83 if (Op0->getOpcode() == OpcodeToExpand) {
84 // It does! Try turning it into "(A op C) op' (B op C)".
85 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
86 // Do "A op C" and "B op C" both simplify?
87 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
88 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
89 // They do! Return "L op' R" if it simplifies or is already available.
90 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +000091 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
92 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +000093 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000094 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +000095 }
Duncan Sands3421d902010-12-21 13:32:22 +000096 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +000097 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
98 MaxRecurse)) {
99 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000100 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000101 }
Duncan Sands3421d902010-12-21 13:32:22 +0000102 }
103 }
104
105 // Check whether the expression has the form "A op (B op' C)".
106 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
107 if (Op1->getOpcode() == OpcodeToExpand) {
108 // It does! Try turning it into "(A op B) op' (A op C)".
109 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
110 // Do "A op B" and "A op C" both simplify?
111 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
112 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
113 // They do! Return "L op' R" if it simplifies or is already available.
114 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000115 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
116 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000117 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000118 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000119 }
Duncan Sands3421d902010-12-21 13:32:22 +0000120 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000121 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
122 MaxRecurse)) {
123 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000124 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000125 }
Duncan Sands3421d902010-12-21 13:32:22 +0000126 }
127 }
128
129 return 0;
130}
131
132/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
133/// using the operation OpCodeToExtract. For example, when Opcode is Add and
134/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
135/// Returns the simplified value, or null if no simplification was performed.
136static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +0000137 unsigned OpcToExtract, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +0000138 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000139 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000140 // Recursion is always used, so bail out at once if we already hit the limit.
141 if (!MaxRecurse--)
142 return 0;
143
144 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
145 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
146
147 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
148 !Op1 || Op1->getOpcode() != OpcodeToExtract)
149 return 0;
150
151 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000152 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
153 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000154
155 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
156 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
157 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000158 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
159 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000160 // Form "A op' (B op DD)" if it simplifies completely.
161 // Does "B op DD" simplify?
162 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
163 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000164 // If V equals B then "A op' V" is just the LHS. If V equals DD then
165 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000166 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000167 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000168 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000169 }
Duncan Sands3421d902010-12-21 13:32:22 +0000170 // Otherwise return "A op' V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
172 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000173 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000174 }
Duncan Sands3421d902010-12-21 13:32:22 +0000175 }
176 }
177
178 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
179 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
180 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000181 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
182 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000183 // Form "(A op CC) op' B" if it simplifies completely..
184 // Does "A op CC" simplify?
185 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
186 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000187 // If V equals A then "V op' B" is just the LHS. If V equals CC then
188 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000189 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000190 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000191 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000192 }
Duncan Sands3421d902010-12-21 13:32:22 +0000193 // Otherwise return "V op' B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000194 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
195 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000196 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000197 }
Duncan Sands3421d902010-12-21 13:32:22 +0000198 }
199 }
200
201 return 0;
202}
203
204/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
205/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000206static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands566edb02010-12-21 08:49:00 +0000207 const TargetData *TD,
208 const DominatorTree *DT,
209 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000210 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000211 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
212
213 // Recursion is always used, so bail out at once if we already hit the limit.
214 if (!MaxRecurse--)
215 return 0;
216
217 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
218 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
219
220 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
221 if (Op0 && Op0->getOpcode() == Opcode) {
222 Value *A = Op0->getOperand(0);
223 Value *B = Op0->getOperand(1);
224 Value *C = RHS;
225
226 // Does "B op C" simplify?
227 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
228 // It does! Return "A op V" if it simplifies or is already available.
229 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000230 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000231 // Otherwise return "A op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000232 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
233 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000234 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000235 }
Duncan Sands566edb02010-12-21 08:49:00 +0000236 }
237 }
238
239 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
240 if (Op1 && Op1->getOpcode() == Opcode) {
241 Value *A = LHS;
242 Value *B = Op1->getOperand(0);
243 Value *C = Op1->getOperand(1);
244
245 // Does "A op B" simplify?
246 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
247 // It does! Return "V op C" if it simplifies or is already available.
248 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000249 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000250 // Otherwise return "V op C" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000251 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
252 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000253 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000254 }
Duncan Sands566edb02010-12-21 08:49:00 +0000255 }
256 }
257
258 // The remaining transforms require commutativity as well as associativity.
259 if (!Instruction::isCommutative(Opcode))
260 return 0;
261
262 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
263 if (Op0 && Op0->getOpcode() == Opcode) {
264 Value *A = Op0->getOperand(0);
265 Value *B = Op0->getOperand(1);
266 Value *C = RHS;
267
268 // Does "C op A" simplify?
269 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
270 // It does! Return "V op B" if it simplifies or is already available.
271 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000272 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000273 // Otherwise return "V op B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000274 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
275 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000276 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000277 }
Duncan Sands566edb02010-12-21 08:49:00 +0000278 }
279 }
280
281 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
282 if (Op1 && Op1->getOpcode() == Opcode) {
283 Value *A = LHS;
284 Value *B = Op1->getOperand(0);
285 Value *C = Op1->getOperand(1);
286
287 // Does "C op A" simplify?
288 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
289 // It does! Return "B op V" if it simplifies or is already available.
290 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000291 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000292 // Otherwise return "B op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000293 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
294 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000295 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000296 }
Duncan Sands566edb02010-12-21 08:49:00 +0000297 }
298 }
299
300 return 0;
301}
302
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000303/// ThreadBinOpOverSelect - In the case of a binary operation with a select
304/// instruction as an operand, try to simplify the binop by seeing whether
305/// evaluating it on both branches of the select results in the same value.
306/// Returns the common value if so, otherwise returns null.
307static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000308 const TargetData *TD,
309 const DominatorTree *DT,
310 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000311 // Recursion is always used, so bail out at once if we already hit the limit.
312 if (!MaxRecurse--)
313 return 0;
314
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000315 SelectInst *SI;
316 if (isa<SelectInst>(LHS)) {
317 SI = cast<SelectInst>(LHS);
318 } else {
319 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
320 SI = cast<SelectInst>(RHS);
321 }
322
323 // Evaluate the BinOp on the true and false branches of the select.
324 Value *TV;
325 Value *FV;
326 if (SI == LHS) {
Duncan Sands18450092010-11-16 12:16:38 +0000327 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
328 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000329 } else {
Duncan Sands18450092010-11-16 12:16:38 +0000330 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
331 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000332 }
333
Duncan Sands7cf85e72011-01-01 16:12:09 +0000334 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000335 // If they both failed to simplify then return null.
336 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000337 return TV;
338
339 // If one branch simplified to undef, return the other one.
340 if (TV && isa<UndefValue>(TV))
341 return FV;
342 if (FV && isa<UndefValue>(FV))
343 return TV;
344
345 // If applying the operation did not change the true and false select values,
346 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000347 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000348 return SI;
349
350 // If one branch simplified and the other did not, and the simplified
351 // value is equal to the unsimplified one, return the simplified value.
352 // For example, select (cond, X, X & Z) & Z -> X & Z.
353 if ((FV && !TV) || (TV && !FV)) {
354 // Check that the simplified value has the form "X op Y" where "op" is the
355 // same as the original operation.
356 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
357 if (Simplified && Simplified->getOpcode() == Opcode) {
358 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
359 // We already know that "op" is the same as for the simplified value. See
360 // if the operands match too. If so, return the simplified value.
361 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
362 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
363 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000364 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
365 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000366 return Simplified;
367 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000368 Simplified->getOperand(1) == UnsimplifiedLHS &&
369 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000370 return Simplified;
371 }
372 }
373
374 return 0;
375}
376
377/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
378/// try to simplify the comparison by seeing whether both branches of the select
379/// result in the same value. Returns the common value if so, otherwise returns
380/// null.
381static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000382 Value *RHS, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000383 const DominatorTree *DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000384 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000385 // Recursion is always used, so bail out at once if we already hit the limit.
386 if (!MaxRecurse--)
387 return 0;
388
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000389 // Make sure the select is on the LHS.
390 if (!isa<SelectInst>(LHS)) {
391 std::swap(LHS, RHS);
392 Pred = CmpInst::getSwappedPredicate(Pred);
393 }
394 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
395 SelectInst *SI = cast<SelectInst>(LHS);
396
397 // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
398 // Does "cmp TV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000399 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000400 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000401 // It does! Does "cmp FV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000402 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000403 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000404 // It does! If they simplified to the same value, then use it as the
405 // result of the original comparison.
Duncan Sands124708d2011-01-01 20:08:02 +0000406 if (TCmp == FCmp)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000407 return TCmp;
408 return 0;
409}
410
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000411/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
412/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
413/// it on the incoming phi values yields the same result for every value. If so
414/// returns the common value, otherwise returns null.
415static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000416 const TargetData *TD, const DominatorTree *DT,
417 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000418 // Recursion is always used, so bail out at once if we already hit the limit.
419 if (!MaxRecurse--)
420 return 0;
421
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000422 PHINode *PI;
423 if (isa<PHINode>(LHS)) {
424 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000425 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
426 if (!ValueDominatesPHI(RHS, PI, DT))
427 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000428 } else {
429 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
430 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000431 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
432 if (!ValueDominatesPHI(LHS, PI, DT))
433 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000434 }
435
436 // Evaluate the BinOp on the incoming phi values.
437 Value *CommonValue = 0;
438 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000439 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000440 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000441 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000442 Value *V = PI == LHS ?
Duncan Sands18450092010-11-16 12:16:38 +0000443 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
444 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000445 // If the operation failed to simplify, or simplified to a different value
446 // to previously, then give up.
447 if (!V || (CommonValue && V != CommonValue))
448 return 0;
449 CommonValue = V;
450 }
451
452 return CommonValue;
453}
454
455/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
456/// try to simplify the comparison by seeing whether comparing with all of the
457/// incoming phi values yields the same result every time. If so returns the
458/// common result, otherwise returns null.
459static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000460 const TargetData *TD, const DominatorTree *DT,
461 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000462 // Recursion is always used, so bail out at once if we already hit the limit.
463 if (!MaxRecurse--)
464 return 0;
465
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000466 // Make sure the phi is on the LHS.
467 if (!isa<PHINode>(LHS)) {
468 std::swap(LHS, RHS);
469 Pred = CmpInst::getSwappedPredicate(Pred);
470 }
471 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
472 PHINode *PI = cast<PHINode>(LHS);
473
Duncan Sands18450092010-11-16 12:16:38 +0000474 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
475 if (!ValueDominatesPHI(RHS, PI, DT))
476 return 0;
477
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000478 // Evaluate the BinOp on the incoming phi values.
479 Value *CommonValue = 0;
480 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000481 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000482 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000483 if (Incoming == PI) continue;
Duncan Sands18450092010-11-16 12:16:38 +0000484 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000485 // If the operation failed to simplify, or simplified to a different value
486 // to previously, then give up.
487 if (!V || (CommonValue && V != CommonValue))
488 return 0;
489 CommonValue = V;
490 }
491
492 return CommonValue;
493}
494
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000495/// SimplifyAddInst - Given operands for an Add, see if we can
496/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000497static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
498 const TargetData *TD, const DominatorTree *DT,
499 unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000500 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
501 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
502 Constant *Ops[] = { CLHS, CRHS };
503 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
504 Ops, 2, TD);
505 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000506
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000507 // Canonicalize the constant to the RHS.
508 std::swap(Op0, Op1);
509 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000510
Duncan Sandsfea3b212010-12-15 14:07:39 +0000511 // X + undef -> undef
512 if (isa<UndefValue>(Op1))
513 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000514
Duncan Sandsfea3b212010-12-15 14:07:39 +0000515 // X + 0 -> X
516 if (match(Op1, m_Zero()))
517 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000518
Duncan Sandsfea3b212010-12-15 14:07:39 +0000519 // X + (Y - X) -> Y
520 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000521 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000522 Value *Y = 0;
523 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
524 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000525 return Y;
526
527 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000528 if (match(Op0, m_Not(m_Specific(Op1))) ||
529 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000530 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000531
Duncan Sands82fdab32010-12-21 14:00:22 +0000532 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000533 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000534 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
535 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000536
Duncan Sands566edb02010-12-21 08:49:00 +0000537 // Try some generic simplifications for associative operations.
538 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
539 MaxRecurse))
540 return V;
541
Duncan Sands3421d902010-12-21 13:32:22 +0000542 // Mul distributes over Add. Try some generic simplifications based on this.
543 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
544 TD, DT, MaxRecurse))
545 return V;
546
Duncan Sands87689cf2010-11-19 09:20:39 +0000547 // Threading Add over selects and phi nodes is pointless, so don't bother.
548 // Threading over the select in "A + select(cond, B, C)" means evaluating
549 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
550 // only if B and C are equal. If B and C are equal then (since we assume
551 // that operands have already been simplified) "select(cond, B, C)" should
552 // have been simplified to the common value of B and C already. Analysing
553 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
554 // for threading over phi nodes.
555
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000556 return 0;
557}
558
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000559Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
560 const TargetData *TD, const DominatorTree *DT) {
561 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
562}
563
Duncan Sandsfea3b212010-12-15 14:07:39 +0000564/// SimplifySubInst - Given operands for a Sub, see if we can
565/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000566static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands3421d902010-12-21 13:32:22 +0000567 const TargetData *TD, const DominatorTree *DT,
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000568 unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000569 if (Constant *CLHS = dyn_cast<Constant>(Op0))
570 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
571 Constant *Ops[] = { CLHS, CRHS };
572 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
573 Ops, 2, TD);
574 }
575
576 // X - undef -> undef
577 // undef - X -> undef
578 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
579 return UndefValue::get(Op0->getType());
580
581 // X - 0 -> X
582 if (match(Op1, m_Zero()))
583 return Op0;
584
585 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000586 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000587 return Constant::getNullValue(Op0->getType());
588
589 // (X + Y) - Y -> X
590 // (Y + X) - Y -> X
Duncan Sands124708d2011-01-01 20:08:02 +0000591 Value *X = 0;
592 if (match(Op0, m_Add(m_Value(X), m_Specific(Op1))) ||
593 match(Op0, m_Add(m_Specific(Op1), m_Value(X))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000594 return X;
595
Duncan Sandsfe02c692011-01-18 09:24:58 +0000596 // (X*2) - X -> X
597 // (X<<1) - X -> X
598 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
599 match(Op0, m_Shl(m_Specific(Op1), m_One())))
600 return Op1;
601
Duncan Sandsc087e202011-01-14 15:26:10 +0000602 // i1 sub -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000603 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000604 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
605 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000606
Duncan Sandsc087e202011-01-14 15:26:10 +0000607 // X - (X - Y) -> Y. More generally Z - (X - Y) -> (Z - X) + Y if everything
608 // simplifies.
609 Value *Y = 0, *Z = Op0;
610 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
611 // See if "V === Z - X" simplifies.
612 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
613 // It does! Now see if "W === V + Y" simplifies.
614 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
615 MaxRecurse-1)) {
616 // It does, we successfully reassociated!
617 ++NumReassoc;
618 return W;
619 }
620
Duncan Sands3421d902010-12-21 13:32:22 +0000621 // Mul distributes over Sub. Try some generic simplifications based on this.
622 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
623 TD, DT, MaxRecurse))
624 return V;
625
Duncan Sandsfea3b212010-12-15 14:07:39 +0000626 // Threading Sub over selects and phi nodes is pointless, so don't bother.
627 // Threading over the select in "A - select(cond, B, C)" means evaluating
628 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
629 // only if B and C are equal. If B and C are equal then (since we assume
630 // that operands have already been simplified) "select(cond, B, C)" should
631 // have been simplified to the common value of B and C already. Analysing
632 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
633 // for threading over phi nodes.
634
635 return 0;
636}
637
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000638Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
639 const TargetData *TD, const DominatorTree *DT) {
640 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
641}
642
Duncan Sands82fdab32010-12-21 14:00:22 +0000643/// SimplifyMulInst - Given operands for a Mul, see if we can
644/// fold the result. If not, this returns null.
645static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
646 const DominatorTree *DT, unsigned MaxRecurse) {
647 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
648 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
649 Constant *Ops[] = { CLHS, CRHS };
650 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
651 Ops, 2, TD);
652 }
653
654 // Canonicalize the constant to the RHS.
655 std::swap(Op0, Op1);
656 }
657
658 // X * undef -> 0
659 if (isa<UndefValue>(Op1))
660 return Constant::getNullValue(Op0->getType());
661
662 // X * 0 -> 0
663 if (match(Op1, m_Zero()))
664 return Op1;
665
666 // X * 1 -> X
667 if (match(Op1, m_One()))
668 return Op0;
669
670 /// i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000671 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000672 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
673 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000674
675 // Try some generic simplifications for associative operations.
676 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
677 MaxRecurse))
678 return V;
679
680 // Mul distributes over Add. Try some generic simplifications based on this.
681 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
682 TD, DT, MaxRecurse))
683 return V;
684
685 // If the operation is with the result of a select instruction, check whether
686 // operating on either branch of the select always yields the same value.
687 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
688 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
689 MaxRecurse))
690 return V;
691
692 // If the operation is with the result of a phi instruction, check whether
693 // operating on all incoming values of the phi always yields the same value.
694 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
695 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
696 MaxRecurse))
697 return V;
698
699 return 0;
700}
701
702Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
703 const DominatorTree *DT) {
704 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
705}
706
Duncan Sandscf80bc12011-01-14 14:44:12 +0000707/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +0000708/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +0000709static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
710 const TargetData *TD, const DominatorTree *DT,
711 unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +0000712 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
713 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
714 Constant *Ops[] = { C0, C1 };
Duncan Sandscf80bc12011-01-14 14:44:12 +0000715 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
Duncan Sandsc43cee32011-01-14 00:37:45 +0000716 }
717 }
718
Duncan Sandscf80bc12011-01-14 14:44:12 +0000719 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +0000720 if (match(Op0, m_Zero()))
721 return Op0;
722
Duncan Sandscf80bc12011-01-14 14:44:12 +0000723 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +0000724 if (match(Op1, m_Zero()))
725 return Op0;
726
Duncan Sandscf80bc12011-01-14 14:44:12 +0000727 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsc43cee32011-01-14 00:37:45 +0000728 if (isa<UndefValue>(Op1))
729 return Op1;
730
731 // Shifting by the bitwidth or more is undefined.
732 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
733 if (CI->getValue().getLimitedValue() >=
734 Op0->getType()->getScalarSizeInBits())
735 return UndefValue::get(Op0->getType());
736
Duncan Sandscf80bc12011-01-14 14:44:12 +0000737 // If the operation is with the result of a select instruction, check whether
738 // operating on either branch of the select always yields the same value.
739 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
740 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
741 return V;
742
743 // If the operation is with the result of a phi instruction, check whether
744 // operating on all incoming values of the phi always yields the same value.
745 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
746 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
747 return V;
748
749 return 0;
750}
751
752/// SimplifyShlInst - Given operands for an Shl, see if we can
753/// fold the result. If not, this returns null.
754static Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
755 const DominatorTree *DT, unsigned MaxRecurse) {
756 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
757 return V;
758
759 // undef << X -> 0
760 if (isa<UndefValue>(Op0))
761 return Constant::getNullValue(Op0->getType());
762
Duncan Sandsc43cee32011-01-14 00:37:45 +0000763 return 0;
764}
765
766Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
767 const DominatorTree *DT) {
768 return ::SimplifyShlInst(Op0, Op1, TD, DT, RecursionLimit);
769}
770
771/// SimplifyLShrInst - Given operands for an LShr, see if we can
772/// fold the result. If not, this returns null.
773static Value *SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
774 const DominatorTree *DT, unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000775 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
776 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000777
778 // undef >>l X -> 0
779 if (isa<UndefValue>(Op0))
780 return Constant::getNullValue(Op0->getType());
781
Duncan Sandsc43cee32011-01-14 00:37:45 +0000782 return 0;
783}
784
785Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
786 const DominatorTree *DT) {
787 return ::SimplifyLShrInst(Op0, Op1, TD, DT, RecursionLimit);
788}
789
790/// SimplifyAShrInst - Given operands for an AShr, see if we can
791/// fold the result. If not, this returns null.
792static Value *SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
793 const DominatorTree *DT, unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000794 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
795 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000796
797 // all ones >>a X -> all ones
798 if (match(Op0, m_AllOnes()))
799 return Op0;
800
801 // undef >>a X -> all ones
802 if (isa<UndefValue>(Op0))
803 return Constant::getAllOnesValue(Op0->getType());
804
Duncan Sandsc43cee32011-01-14 00:37:45 +0000805 return 0;
806}
807
808Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
809 const DominatorTree *DT) {
810 return ::SimplifyAShrInst(Op0, Op1, TD, DT, RecursionLimit);
811}
812
Chris Lattnerd06094f2009-11-10 00:55:12 +0000813/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000814/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000815static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000816 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000817 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
818 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
819 Constant *Ops[] = { CLHS, CRHS };
820 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
821 Ops, 2, TD);
822 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000823
Chris Lattnerd06094f2009-11-10 00:55:12 +0000824 // Canonicalize the constant to the RHS.
825 std::swap(Op0, Op1);
826 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000827
Chris Lattnerd06094f2009-11-10 00:55:12 +0000828 // X & undef -> 0
829 if (isa<UndefValue>(Op1))
830 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000831
Chris Lattnerd06094f2009-11-10 00:55:12 +0000832 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +0000833 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +0000834 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000835
Duncan Sands2b749872010-11-17 18:52:15 +0000836 // X & 0 = 0
837 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000838 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000839
Duncan Sands2b749872010-11-17 18:52:15 +0000840 // X & -1 = X
841 if (match(Op1, m_AllOnes()))
842 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000843
Chris Lattnerd06094f2009-11-10 00:55:12 +0000844 // A & ~A = ~A & A = 0
Chandler Carruthe89ada92010-11-29 01:41:13 +0000845 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +0000846 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
847 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000848 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000849
Chris Lattnerd06094f2009-11-10 00:55:12 +0000850 // (A | ?) & A = A
851 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000852 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000853 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000854
Chris Lattnerd06094f2009-11-10 00:55:12 +0000855 // A & (A | ?) = A
856 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000857 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000858 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000859
Duncan Sands566edb02010-12-21 08:49:00 +0000860 // Try some generic simplifications for associative operations.
861 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
862 MaxRecurse))
863 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +0000864
Duncan Sands3421d902010-12-21 13:32:22 +0000865 // And distributes over Or. Try some generic simplifications based on this.
866 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
867 TD, DT, MaxRecurse))
868 return V;
869
870 // And distributes over Xor. Try some generic simplifications based on this.
871 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
872 TD, DT, MaxRecurse))
873 return V;
874
875 // Or distributes over And. Try some generic simplifications based on this.
876 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
877 TD, DT, MaxRecurse))
878 return V;
879
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000880 // If the operation is with the result of a select instruction, check whether
881 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000882 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000883 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000884 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000885 return V;
886
887 // If the operation is with the result of a phi instruction, check whether
888 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000889 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000890 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000891 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000892 return V;
893
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000894 return 0;
895}
896
Duncan Sands18450092010-11-16 12:16:38 +0000897Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
898 const DominatorTree *DT) {
899 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000900}
901
Chris Lattnerd06094f2009-11-10 00:55:12 +0000902/// SimplifyOrInst - Given operands for an Or, see if we can
903/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000904static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000905 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000906 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
907 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
908 Constant *Ops[] = { CLHS, CRHS };
909 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
910 Ops, 2, TD);
911 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000912
Chris Lattnerd06094f2009-11-10 00:55:12 +0000913 // Canonicalize the constant to the RHS.
914 std::swap(Op0, Op1);
915 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000916
Chris Lattnerd06094f2009-11-10 00:55:12 +0000917 // X | undef -> -1
918 if (isa<UndefValue>(Op1))
919 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000920
Chris Lattnerd06094f2009-11-10 00:55:12 +0000921 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +0000922 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +0000923 return Op0;
924
Duncan Sands2b749872010-11-17 18:52:15 +0000925 // X | 0 = X
926 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000927 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000928
Duncan Sands2b749872010-11-17 18:52:15 +0000929 // X | -1 = -1
930 if (match(Op1, m_AllOnes()))
931 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000932
Chris Lattnerd06094f2009-11-10 00:55:12 +0000933 // A | ~A = ~A | A = -1
Chandler Carruthe89ada92010-11-29 01:41:13 +0000934 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +0000935 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
936 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000937 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000938
Chris Lattnerd06094f2009-11-10 00:55:12 +0000939 // (A & ?) | A = A
940 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000941 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000942 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000943
Chris Lattnerd06094f2009-11-10 00:55:12 +0000944 // A | (A & ?) = A
945 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000946 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000947 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000948
Duncan Sands566edb02010-12-21 08:49:00 +0000949 // Try some generic simplifications for associative operations.
950 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
951 MaxRecurse))
952 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +0000953
Duncan Sands3421d902010-12-21 13:32:22 +0000954 // Or distributes over And. Try some generic simplifications based on this.
955 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
956 TD, DT, MaxRecurse))
957 return V;
958
959 // And distributes over Or. Try some generic simplifications based on this.
960 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
961 TD, DT, MaxRecurse))
962 return V;
963
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000964 // If the operation is with the result of a select instruction, check whether
965 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000966 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000967 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000968 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000969 return V;
970
971 // If the operation is with the result of a phi instruction, check whether
972 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000973 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000974 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000975 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000976 return V;
977
Chris Lattnerd06094f2009-11-10 00:55:12 +0000978 return 0;
979}
980
Duncan Sands18450092010-11-16 12:16:38 +0000981Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
982 const DominatorTree *DT) {
983 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000984}
Chris Lattnerd06094f2009-11-10 00:55:12 +0000985
Duncan Sands2b749872010-11-17 18:52:15 +0000986/// SimplifyXorInst - Given operands for a Xor, see if we can
987/// fold the result. If not, this returns null.
988static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
989 const DominatorTree *DT, unsigned MaxRecurse) {
990 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
991 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
992 Constant *Ops[] = { CLHS, CRHS };
993 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
994 Ops, 2, TD);
995 }
996
997 // Canonicalize the constant to the RHS.
998 std::swap(Op0, Op1);
999 }
1000
1001 // A ^ undef -> undef
1002 if (isa<UndefValue>(Op1))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001003 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001004
1005 // A ^ 0 = A
1006 if (match(Op1, m_Zero()))
1007 return Op0;
1008
1009 // A ^ A = 0
Duncan Sands124708d2011-01-01 20:08:02 +00001010 if (Op0 == Op1)
Duncan Sands2b749872010-11-17 18:52:15 +00001011 return Constant::getNullValue(Op0->getType());
1012
1013 // A ^ ~A = ~A ^ A = -1
Duncan Sands566edb02010-12-21 08:49:00 +00001014 Value *A = 0;
Duncan Sands124708d2011-01-01 20:08:02 +00001015 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1016 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Duncan Sands2b749872010-11-17 18:52:15 +00001017 return Constant::getAllOnesValue(Op0->getType());
1018
Duncan Sands566edb02010-12-21 08:49:00 +00001019 // Try some generic simplifications for associative operations.
1020 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1021 MaxRecurse))
1022 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001023
Duncan Sands3421d902010-12-21 13:32:22 +00001024 // And distributes over Xor. Try some generic simplifications based on this.
1025 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1026 TD, DT, MaxRecurse))
1027 return V;
1028
Duncan Sands87689cf2010-11-19 09:20:39 +00001029 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1030 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1031 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1032 // only if B and C are equal. If B and C are equal then (since we assume
1033 // that operands have already been simplified) "select(cond, B, C)" should
1034 // have been simplified to the common value of B and C already. Analysing
1035 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1036 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001037
1038 return 0;
1039}
1040
1041Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1042 const DominatorTree *DT) {
1043 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1044}
1045
Chris Lattner210c5d42009-11-09 23:55:12 +00001046static const Type *GetCompareTy(Value *Op) {
1047 return CmpInst::makeCmpResultType(Op->getType());
1048}
1049
Chris Lattner9dbb4292009-11-09 23:28:39 +00001050/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1051/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001052static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001053 const TargetData *TD, const DominatorTree *DT,
1054 unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001055 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001056 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001057
Chris Lattnerd06094f2009-11-10 00:55:12 +00001058 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001059 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1060 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001061
1062 // If we have a constant, make sure it is on the RHS.
1063 std::swap(LHS, RHS);
1064 Pred = CmpInst::getSwappedPredicate(Pred);
1065 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001066
Duncan Sands6dc91252011-01-13 08:56:29 +00001067 const Type *ITy = GetCompareTy(LHS); // The return type.
1068 const Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001069
Chris Lattner210c5d42009-11-09 23:55:12 +00001070 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001071 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1072 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001073 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001074 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001075
Duncan Sands6dc91252011-01-13 08:56:29 +00001076 // Special case logic when the operands have i1 type.
1077 if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1078 cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1079 switch (Pred) {
1080 default: break;
1081 case ICmpInst::ICMP_EQ:
1082 // X == 1 -> X
1083 if (match(RHS, m_One()))
1084 return LHS;
1085 break;
1086 case ICmpInst::ICMP_NE:
1087 // X != 0 -> X
1088 if (match(RHS, m_Zero()))
1089 return LHS;
1090 break;
1091 case ICmpInst::ICMP_UGT:
1092 // X >u 0 -> X
1093 if (match(RHS, m_Zero()))
1094 return LHS;
1095 break;
1096 case ICmpInst::ICMP_UGE:
1097 // X >=u 1 -> X
1098 if (match(RHS, m_One()))
1099 return LHS;
1100 break;
1101 case ICmpInst::ICMP_SLT:
1102 // X <s 0 -> X
1103 if (match(RHS, m_Zero()))
1104 return LHS;
1105 break;
1106 case ICmpInst::ICMP_SLE:
1107 // X <=s -1 -> X
1108 if (match(RHS, m_One()))
1109 return LHS;
1110 break;
1111 }
1112 }
1113
1114 // See if we are doing a comparison with a constant.
1115 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1116 switch (Pred) {
1117 default: break;
1118 case ICmpInst::ICMP_UGT:
1119 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
1120 return ConstantInt::getFalse(CI->getContext());
1121 break;
1122 case ICmpInst::ICMP_UGE:
1123 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
1124 return ConstantInt::getTrue(CI->getContext());
1125 break;
1126 case ICmpInst::ICMP_ULT:
1127 if (CI->isMinValue(false)) // A <u MIN -> FALSE
1128 return ConstantInt::getFalse(CI->getContext());
1129 break;
1130 case ICmpInst::ICMP_ULE:
1131 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
1132 return ConstantInt::getTrue(CI->getContext());
1133 break;
1134 case ICmpInst::ICMP_SGT:
1135 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
1136 return ConstantInt::getFalse(CI->getContext());
1137 break;
1138 case ICmpInst::ICMP_SGE:
1139 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
1140 return ConstantInt::getTrue(CI->getContext());
1141 break;
1142 case ICmpInst::ICMP_SLT:
1143 if (CI->isMinValue(true)) // A <s MIN -> FALSE
1144 return ConstantInt::getFalse(CI->getContext());
1145 break;
1146 case ICmpInst::ICMP_SLE:
1147 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
1148 return ConstantInt::getTrue(CI->getContext());
1149 break;
1150 }
1151 }
1152
Duncan Sands53ad8612011-01-13 10:43:08 +00001153 // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1154 // different addresses, and what's more the address of a stack variable is
1155 // never null or equal to the address of a global. Note that generalizing
1156 // to the case where LHS is a global variable address or null is pointless,
1157 // since if both LHS and RHS are constants then we already constant folded
1158 // the compare, and if only one of them is then we moved it to RHS already.
1159 if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1160 isa<ConstantPointerNull>(RHS)))
1161 // We already know that LHS != LHS.
Chris Lattner210c5d42009-11-09 23:55:12 +00001162 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001163
Duncan Sands1ac7c992010-11-07 16:12:23 +00001164 // If the comparison is with the result of a select instruction, check whether
1165 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001166 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1167 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001168 return V;
1169
1170 // If the comparison is with the result of a phi instruction, check whether
1171 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001172 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1173 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001174 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00001175
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001176 return 0;
1177}
1178
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001179Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001180 const TargetData *TD, const DominatorTree *DT) {
1181 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001182}
1183
Chris Lattner9dbb4292009-11-09 23:28:39 +00001184/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
1185/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001186static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001187 const TargetData *TD, const DominatorTree *DT,
1188 unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001189 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1190 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
1191
Chris Lattnerd06094f2009-11-10 00:55:12 +00001192 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001193 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1194 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Duncan Sands12a86f52010-11-14 11:23:23 +00001195
Chris Lattnerd06094f2009-11-10 00:55:12 +00001196 // If we have a constant, make sure it is on the RHS.
1197 std::swap(LHS, RHS);
1198 Pred = CmpInst::getSwappedPredicate(Pred);
1199 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001200
Chris Lattner210c5d42009-11-09 23:55:12 +00001201 // Fold trivial predicates.
1202 if (Pred == FCmpInst::FCMP_FALSE)
1203 return ConstantInt::get(GetCompareTy(LHS), 0);
1204 if (Pred == FCmpInst::FCMP_TRUE)
1205 return ConstantInt::get(GetCompareTy(LHS), 1);
1206
Chris Lattner210c5d42009-11-09 23:55:12 +00001207 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
1208 return UndefValue::get(GetCompareTy(LHS));
1209
1210 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00001211 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001212 if (CmpInst::isTrueWhenEqual(Pred))
1213 return ConstantInt::get(GetCompareTy(LHS), 1);
1214 if (CmpInst::isFalseWhenEqual(Pred))
1215 return ConstantInt::get(GetCompareTy(LHS), 0);
1216 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001217
Chris Lattner210c5d42009-11-09 23:55:12 +00001218 // Handle fcmp with constant RHS
1219 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1220 // If the constant is a nan, see if we can fold the comparison based on it.
1221 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1222 if (CFP->getValueAPF().isNaN()) {
1223 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
1224 return ConstantInt::getFalse(CFP->getContext());
1225 assert(FCmpInst::isUnordered(Pred) &&
1226 "Comparison must be either ordered or unordered!");
1227 // True if unordered.
1228 return ConstantInt::getTrue(CFP->getContext());
1229 }
Dan Gohman6b617a72010-02-22 04:06:03 +00001230 // Check whether the constant is an infinity.
1231 if (CFP->getValueAPF().isInfinity()) {
1232 if (CFP->getValueAPF().isNegative()) {
1233 switch (Pred) {
1234 case FCmpInst::FCMP_OLT:
1235 // No value is ordered and less than negative infinity.
1236 return ConstantInt::getFalse(CFP->getContext());
1237 case FCmpInst::FCMP_UGE:
1238 // All values are unordered with or at least negative infinity.
1239 return ConstantInt::getTrue(CFP->getContext());
1240 default:
1241 break;
1242 }
1243 } else {
1244 switch (Pred) {
1245 case FCmpInst::FCMP_OGT:
1246 // No value is ordered and greater than infinity.
1247 return ConstantInt::getFalse(CFP->getContext());
1248 case FCmpInst::FCMP_ULE:
1249 // All values are unordered with and at most infinity.
1250 return ConstantInt::getTrue(CFP->getContext());
1251 default:
1252 break;
1253 }
1254 }
1255 }
Chris Lattner210c5d42009-11-09 23:55:12 +00001256 }
1257 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001258
Duncan Sands92826de2010-11-07 16:46:25 +00001259 // If the comparison is with the result of a select instruction, check whether
1260 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001261 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1262 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001263 return V;
1264
1265 // If the comparison is with the result of a phi instruction, check whether
1266 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001267 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1268 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001269 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00001270
Chris Lattner9dbb4292009-11-09 23:28:39 +00001271 return 0;
1272}
1273
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001274Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001275 const TargetData *TD, const DominatorTree *DT) {
1276 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001277}
1278
Chris Lattner04754262010-04-20 05:32:14 +00001279/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1280/// the result. If not, this returns null.
Duncan Sands124708d2011-01-01 20:08:02 +00001281Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
1282 const TargetData *TD, const DominatorTree *) {
Chris Lattner04754262010-04-20 05:32:14 +00001283 // select true, X, Y -> X
1284 // select false, X, Y -> Y
1285 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1286 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001287
Chris Lattner04754262010-04-20 05:32:14 +00001288 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00001289 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00001290 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001291
Chris Lattner04754262010-04-20 05:32:14 +00001292 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
1293 return FalseVal;
1294 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
1295 return TrueVal;
1296 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
1297 if (isa<Constant>(TrueVal))
1298 return TrueVal;
1299 return FalseVal;
1300 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001301
Chris Lattner04754262010-04-20 05:32:14 +00001302 return 0;
1303}
1304
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001305/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1306/// fold the result. If not, this returns null.
1307Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
Duncan Sands18450092010-11-16 12:16:38 +00001308 const TargetData *TD, const DominatorTree *) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001309 // The type of the GEP pointer operand.
1310 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1311
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001312 // getelementptr P -> P.
1313 if (NumOps == 1)
1314 return Ops[0];
1315
Duncan Sands85bbff62010-11-22 13:42:49 +00001316 if (isa<UndefValue>(Ops[0])) {
1317 // Compute the (pointer) type returned by the GEP instruction.
1318 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1319 NumOps-1);
1320 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1321 return UndefValue::get(GEPTy);
1322 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001323
Duncan Sandse60d79f2010-11-21 13:53:09 +00001324 if (NumOps == 2) {
1325 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001326 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1327 if (C->isZero())
1328 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00001329 // getelementptr P, N -> P if P points to a type of zero size.
1330 if (TD) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001331 const Type *Ty = PtrTy->getElementType();
Duncan Sandsa63395a2010-11-22 16:32:50 +00001332 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00001333 return Ops[0];
1334 }
1335 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001336
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001337 // Check to see if this is constant foldable.
1338 for (unsigned i = 0; i != NumOps; ++i)
1339 if (!isa<Constant>(Ops[i]))
1340 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001341
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001342 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1343 (Constant *const*)Ops+1, NumOps-1);
1344}
1345
Duncan Sandsff103412010-11-17 04:30:22 +00001346/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
1347static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1348 // If all of the PHI's incoming values are the same then replace the PHI node
1349 // with the common value.
1350 Value *CommonValue = 0;
1351 bool HasUndefInput = false;
1352 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1353 Value *Incoming = PN->getIncomingValue(i);
1354 // If the incoming value is the phi node itself, it can safely be skipped.
1355 if (Incoming == PN) continue;
1356 if (isa<UndefValue>(Incoming)) {
1357 // Remember that we saw an undef value, but otherwise ignore them.
1358 HasUndefInput = true;
1359 continue;
1360 }
1361 if (CommonValue && Incoming != CommonValue)
1362 return 0; // Not the same, bail out.
1363 CommonValue = Incoming;
1364 }
1365
1366 // If CommonValue is null then all of the incoming values were either undef or
1367 // equal to the phi node itself.
1368 if (!CommonValue)
1369 return UndefValue::get(PN->getType());
1370
1371 // If we have a PHI node like phi(X, undef, X), where X is defined by some
1372 // instruction, we cannot return X as the result of the PHI node unless it
1373 // dominates the PHI block.
1374 if (HasUndefInput)
1375 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1376
1377 return CommonValue;
1378}
1379
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001380
Chris Lattnerd06094f2009-11-10 00:55:12 +00001381//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00001382
Chris Lattnerd06094f2009-11-10 00:55:12 +00001383/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1384/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001385static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001386 const TargetData *TD, const DominatorTree *DT,
1387 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001388 switch (Opcode) {
Duncan Sandsee9a2e32010-12-20 14:47:04 +00001389 case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
1390 /* isNUW */ false, TD, DT,
1391 MaxRecurse);
1392 case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
1393 /* isNUW */ false, TD, DT,
1394 MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001395 case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001396 case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse);
1397 case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse);
1398 case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001399 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
1400 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
1401 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001402 default:
1403 if (Constant *CLHS = dyn_cast<Constant>(LHS))
1404 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1405 Constant *COps[] = {CLHS, CRHS};
1406 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1407 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001408
Duncan Sands566edb02010-12-21 08:49:00 +00001409 // If the operation is associative, try some generic simplifications.
1410 if (Instruction::isAssociative(Opcode))
1411 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1412 MaxRecurse))
1413 return V;
1414
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001415 // If the operation is with the result of a select instruction, check whether
1416 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001417 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands18450092010-11-16 12:16:38 +00001418 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001419 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001420 return V;
1421
1422 // If the operation is with the result of a phi instruction, check whether
1423 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001424 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1425 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001426 return V;
1427
Chris Lattnerd06094f2009-11-10 00:55:12 +00001428 return 0;
1429 }
1430}
Chris Lattner9dbb4292009-11-09 23:28:39 +00001431
Duncan Sands12a86f52010-11-14 11:23:23 +00001432Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001433 const TargetData *TD, const DominatorTree *DT) {
1434 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00001435}
1436
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001437/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1438/// fold the result.
1439static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001440 const TargetData *TD, const DominatorTree *DT,
1441 unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001442 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands18450092010-11-16 12:16:38 +00001443 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1444 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001445}
1446
1447Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001448 const TargetData *TD, const DominatorTree *DT) {
1449 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001450}
Chris Lattnere3453782009-11-10 01:08:51 +00001451
1452/// SimplifyInstruction - See if we can compute a simplified version of this
1453/// instruction. If not, this returns null.
Duncan Sandseff05812010-11-14 18:36:10 +00001454Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1455 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00001456 Value *Result;
1457
Chris Lattnere3453782009-11-10 01:08:51 +00001458 switch (I->getOpcode()) {
1459 default:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001460 Result = ConstantFoldInstruction(I, TD);
1461 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00001462 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001463 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1464 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1465 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1466 TD, DT);
1467 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00001468 case Instruction::Sub:
1469 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1470 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1471 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1472 TD, DT);
1473 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00001474 case Instruction::Mul:
1475 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1476 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001477 case Instruction::Shl:
1478 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT);
1479 break;
1480 case Instruction::LShr:
1481 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1482 break;
1483 case Instruction::AShr:
1484 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1485 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001486 case Instruction::And:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001487 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1488 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001489 case Instruction::Or:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001490 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1491 break;
Duncan Sands2b749872010-11-17 18:52:15 +00001492 case Instruction::Xor:
1493 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1494 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001495 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001496 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1497 I->getOperand(0), I->getOperand(1), TD, DT);
1498 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001499 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001500 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1501 I->getOperand(0), I->getOperand(1), TD, DT);
1502 break;
Chris Lattner04754262010-04-20 05:32:14 +00001503 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001504 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
1505 I->getOperand(2), TD, DT);
1506 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001507 case Instruction::GetElementPtr: {
1508 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sandsd261dc62010-11-17 08:35:29 +00001509 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
1510 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001511 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00001512 case Instruction::PHI:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001513 Result = SimplifyPHINode(cast<PHINode>(I), DT);
1514 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001515 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00001516
1517 /// If called on unreachable code, the above logic may report that the
1518 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001519 /// detecting that case here, returning a safe value instead.
1520 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00001521}
1522
Chris Lattner40d8c282009-11-10 22:26:15 +00001523/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
1524/// delete the From instruction. In addition to a basic RAUW, this does a
1525/// recursive simplification of the newly formed instructions. This catches
1526/// things where one simplification exposes other opportunities. This only
1527/// simplifies and deletes scalar operations, it does not change the CFG.
1528///
1529void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
Duncan Sandseff05812010-11-14 18:36:10 +00001530 const TargetData *TD,
1531 const DominatorTree *DT) {
Chris Lattner40d8c282009-11-10 22:26:15 +00001532 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001533
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001534 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
1535 // we can know if it gets deleted out from under us or replaced in a
1536 // recursive simplification.
Chris Lattner40d8c282009-11-10 22:26:15 +00001537 WeakVH FromHandle(From);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001538 WeakVH ToHandle(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001539
Chris Lattner40d8c282009-11-10 22:26:15 +00001540 while (!From->use_empty()) {
1541 // Update the instruction to use the new value.
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001542 Use &TheUse = From->use_begin().getUse();
1543 Instruction *User = cast<Instruction>(TheUse.getUser());
1544 TheUse = To;
1545
1546 // Check to see if the instruction can be folded due to the operand
1547 // replacement. For example changing (or X, Y) into (or X, -1) can replace
1548 // the 'or' with -1.
1549 Value *SimplifiedVal;
1550 {
1551 // Sanity check to make sure 'User' doesn't dangle across
1552 // SimplifyInstruction.
1553 AssertingVH<> UserHandle(User);
Duncan Sands12a86f52010-11-14 11:23:23 +00001554
Duncan Sandseff05812010-11-14 18:36:10 +00001555 SimplifiedVal = SimplifyInstruction(User, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001556 if (SimplifiedVal == 0) continue;
Chris Lattner40d8c282009-11-10 22:26:15 +00001557 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001558
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001559 // Recursively simplify this user to the new value.
Duncan Sandseff05812010-11-14 18:36:10 +00001560 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001561 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
1562 To = ToHandle;
Duncan Sands12a86f52010-11-14 11:23:23 +00001563
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001564 assert(ToHandle && "To value deleted by recursive simplification?");
Duncan Sands12a86f52010-11-14 11:23:23 +00001565
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001566 // If the recursive simplification ended up revisiting and deleting
1567 // 'From' then we're done.
1568 if (From == 0)
1569 return;
Chris Lattner40d8c282009-11-10 22:26:15 +00001570 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001571
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001572 // If 'From' has value handles referring to it, do a real RAUW to update them.
1573 From->replaceAllUsesWith(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001574
Chris Lattner40d8c282009-11-10 22:26:15 +00001575 From->eraseFromParent();
1576}