Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 1 | //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements routines for folding instructions into simpler forms |
Duncan Sands | 4cd2ad1 | 2010-11-23 10:50:08 +0000 | [diff] [blame] | 11 | // that do not require creating new instructions. This does constant folding |
| 12 | // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either |
| 13 | // returning a constant ("and i32 %x, 0" -> "0") or an already existing value |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 14 | // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been |
| 15 | // simplified: This is usually true and assuming it simplifies the logic (if |
| 16 | // they have not been simplified then results are correct but maybe suboptimal). |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 20 | #define DEBUG_TYPE "instsimplify" |
| 21 | #include "llvm/ADT/Statistic.h" |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 22 | #include "llvm/Analysis/InstructionSimplify.h" |
| 23 | #include "llvm/Analysis/ConstantFolding.h" |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 24 | #include "llvm/Analysis/Dominators.h" |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 25 | #include "llvm/Support/PatternMatch.h" |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 26 | #include "llvm/Support/ValueHandle.h" |
Duncan Sands | e60d79f | 2010-11-21 13:53:09 +0000 | [diff] [blame] | 27 | #include "llvm/Target/TargetData.h" |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 28 | using namespace llvm; |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 29 | using namespace llvm::PatternMatch; |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 30 | |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 31 | #define RecursionLimit 3 |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 32 | |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 33 | STATISTIC(NumExpand, "Number of expansions"); |
| 34 | STATISTIC(NumFactor , "Number of factorizations"); |
| 35 | STATISTIC(NumReassoc, "Number of reassociations"); |
| 36 | |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 37 | static Value *SimplifyAndInst(Value *, Value *, const TargetData *, |
| 38 | const DominatorTree *, unsigned); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 39 | static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 40 | const DominatorTree *, unsigned); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 41 | static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 42 | const DominatorTree *, unsigned); |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 43 | static Value *SimplifyOrInst(Value *, Value *, const TargetData *, |
| 44 | const DominatorTree *, unsigned); |
| 45 | static Value *SimplifyXorInst(Value *, Value *, const TargetData *, |
| 46 | const DominatorTree *, unsigned); |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 47 | |
| 48 | /// ValueDominatesPHI - Does the given value dominate the specified phi node? |
| 49 | static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { |
| 50 | Instruction *I = dyn_cast<Instruction>(V); |
| 51 | if (!I) |
| 52 | // Arguments and constants dominate all instructions. |
| 53 | return true; |
| 54 | |
| 55 | // If we have a DominatorTree then do a precise test. |
| 56 | if (DT) |
| 57 | return DT->dominates(I, P); |
| 58 | |
| 59 | // Otherwise, if the instruction is in the entry block, and is not an invoke, |
| 60 | // then it obviously dominates all phi nodes. |
| 61 | if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && |
| 62 | !isa<InvokeInst>(I)) |
| 63 | return true; |
| 64 | |
| 65 | return false; |
| 66 | } |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 67 | |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 68 | /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning |
| 69 | /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is |
| 70 | /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. |
| 71 | /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". |
| 72 | /// Returns the simplified value, or null if no simplification was performed. |
| 73 | static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
Benjamin Kramer | e21083a | 2010-12-28 13:52:52 +0000 | [diff] [blame] | 74 | unsigned OpcToExpand, const TargetData *TD, |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 75 | const DominatorTree *DT, unsigned MaxRecurse) { |
Benjamin Kramer | e21083a | 2010-12-28 13:52:52 +0000 | [diff] [blame] | 76 | Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 77 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 78 | if (!MaxRecurse--) |
| 79 | return 0; |
| 80 | |
| 81 | // Check whether the expression has the form "(A op' B) op C". |
| 82 | if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) |
| 83 | if (Op0->getOpcode() == OpcodeToExpand) { |
| 84 | // It does! Try turning it into "(A op C) op' (B op C)". |
| 85 | Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; |
| 86 | // Do "A op C" and "B op C" both simplify? |
| 87 | if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) |
| 88 | if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { |
| 89 | // They do! Return "L op' R" if it simplifies or is already available. |
| 90 | // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 91 | if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) |
| 92 | && L == B && R == A)) { |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 93 | ++NumExpand; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 94 | return LHS; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 95 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 96 | // Otherwise return "L op' R" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 97 | if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT, |
| 98 | MaxRecurse)) { |
| 99 | ++NumExpand; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 100 | return V; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 101 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 102 | } |
| 103 | } |
| 104 | |
| 105 | // Check whether the expression has the form "A op (B op' C)". |
| 106 | if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) |
| 107 | if (Op1->getOpcode() == OpcodeToExpand) { |
| 108 | // It does! Try turning it into "(A op B) op' (A op C)". |
| 109 | Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); |
| 110 | // Do "A op B" and "A op C" both simplify? |
| 111 | if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) |
| 112 | if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) { |
| 113 | // They do! Return "L op' R" if it simplifies or is already available. |
| 114 | // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 115 | if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) |
| 116 | && L == C && R == B)) { |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 117 | ++NumExpand; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 118 | return RHS; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 119 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 120 | // Otherwise return "L op' R" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 121 | if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT, |
| 122 | MaxRecurse)) { |
| 123 | ++NumExpand; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 124 | return V; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 125 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 126 | } |
| 127 | } |
| 128 | |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term |
| 133 | /// using the operation OpCodeToExtract. For example, when Opcode is Add and |
| 134 | /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". |
| 135 | /// Returns the simplified value, or null if no simplification was performed. |
| 136 | static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
Benjamin Kramer | e21083a | 2010-12-28 13:52:52 +0000 | [diff] [blame] | 137 | unsigned OpcToExtract, const TargetData *TD, |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 138 | const DominatorTree *DT, unsigned MaxRecurse) { |
Benjamin Kramer | e21083a | 2010-12-28 13:52:52 +0000 | [diff] [blame] | 139 | Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 140 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 141 | if (!MaxRecurse--) |
| 142 | return 0; |
| 143 | |
| 144 | BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| 145 | BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| 146 | |
| 147 | if (!Op0 || Op0->getOpcode() != OpcodeToExtract || |
| 148 | !Op1 || Op1->getOpcode() != OpcodeToExtract) |
| 149 | return 0; |
| 150 | |
| 151 | // The expression has the form "(A op' B) op (C op' D)". |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 152 | Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); |
| 153 | Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 154 | |
| 155 | // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". |
| 156 | // Does the instruction have the form "(A op' B) op (A op' D)" or, in the |
| 157 | // commutative case, "(A op' B) op (C op' A)"? |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 158 | if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { |
| 159 | Value *DD = A == C ? D : C; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 160 | // Form "A op' (B op DD)" if it simplifies completely. |
| 161 | // Does "B op DD" simplify? |
| 162 | if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) { |
| 163 | // It does! Return "A op' V" if it simplifies or is already available. |
Duncan Sands | 1cd05bb | 2010-12-22 17:15:25 +0000 | [diff] [blame] | 164 | // If V equals B then "A op' V" is just the LHS. If V equals DD then |
| 165 | // "A op' V" is just the RHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 166 | if (V == B || V == DD) { |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 167 | ++NumFactor; |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 168 | return V == B ? LHS : RHS; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 169 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 170 | // Otherwise return "A op' V" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 171 | if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) { |
| 172 | ++NumFactor; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 173 | return W; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 174 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 175 | } |
| 176 | } |
| 177 | |
| 178 | // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". |
| 179 | // Does the instruction have the form "(A op' B) op (C op' B)" or, in the |
| 180 | // commutative case, "(A op' B) op (B op' D)"? |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 181 | if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { |
| 182 | Value *CC = B == D ? C : D; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 183 | // Form "(A op CC) op' B" if it simplifies completely.. |
| 184 | // Does "A op CC" simplify? |
| 185 | if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) { |
| 186 | // It does! Return "V op' B" if it simplifies or is already available. |
Duncan Sands | 1cd05bb | 2010-12-22 17:15:25 +0000 | [diff] [blame] | 187 | // If V equals A then "V op' B" is just the LHS. If V equals CC then |
| 188 | // "V op' B" is just the RHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 189 | if (V == A || V == CC) { |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 190 | ++NumFactor; |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 191 | return V == A ? LHS : RHS; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 192 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 193 | // Otherwise return "V op' B" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 194 | if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) { |
| 195 | ++NumFactor; |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 196 | return W; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 197 | } |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 198 | } |
| 199 | } |
| 200 | |
| 201 | return 0; |
| 202 | } |
| 203 | |
| 204 | /// SimplifyAssociativeBinOp - Generic simplifications for associative binary |
| 205 | /// operations. Returns the simpler value, or null if none was found. |
Benjamin Kramer | e21083a | 2010-12-28 13:52:52 +0000 | [diff] [blame] | 206 | static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 207 | const TargetData *TD, |
| 208 | const DominatorTree *DT, |
| 209 | unsigned MaxRecurse) { |
Benjamin Kramer | e21083a | 2010-12-28 13:52:52 +0000 | [diff] [blame] | 210 | Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 211 | assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); |
| 212 | |
| 213 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 214 | if (!MaxRecurse--) |
| 215 | return 0; |
| 216 | |
| 217 | BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| 218 | BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| 219 | |
| 220 | // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. |
| 221 | if (Op0 && Op0->getOpcode() == Opcode) { |
| 222 | Value *A = Op0->getOperand(0); |
| 223 | Value *B = Op0->getOperand(1); |
| 224 | Value *C = RHS; |
| 225 | |
| 226 | // Does "B op C" simplify? |
| 227 | if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { |
| 228 | // It does! Return "A op V" if it simplifies or is already available. |
| 229 | // If V equals B then "A op V" is just the LHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 230 | if (V == B) return LHS; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 231 | // Otherwise return "A op V" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 232 | if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) { |
| 233 | ++NumReassoc; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 234 | return W; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 235 | } |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 236 | } |
| 237 | } |
| 238 | |
| 239 | // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. |
| 240 | if (Op1 && Op1->getOpcode() == Opcode) { |
| 241 | Value *A = LHS; |
| 242 | Value *B = Op1->getOperand(0); |
| 243 | Value *C = Op1->getOperand(1); |
| 244 | |
| 245 | // Does "A op B" simplify? |
| 246 | if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) { |
| 247 | // It does! Return "V op C" if it simplifies or is already available. |
| 248 | // If V equals B then "V op C" is just the RHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 249 | if (V == B) return RHS; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 250 | // Otherwise return "V op C" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 251 | if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) { |
| 252 | ++NumReassoc; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 253 | return W; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 254 | } |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 255 | } |
| 256 | } |
| 257 | |
| 258 | // The remaining transforms require commutativity as well as associativity. |
| 259 | if (!Instruction::isCommutative(Opcode)) |
| 260 | return 0; |
| 261 | |
| 262 | // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. |
| 263 | if (Op0 && Op0->getOpcode() == Opcode) { |
| 264 | Value *A = Op0->getOperand(0); |
| 265 | Value *B = Op0->getOperand(1); |
| 266 | Value *C = RHS; |
| 267 | |
| 268 | // Does "C op A" simplify? |
| 269 | if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { |
| 270 | // It does! Return "V op B" if it simplifies or is already available. |
| 271 | // If V equals A then "V op B" is just the LHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 272 | if (V == A) return LHS; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 273 | // Otherwise return "V op B" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 274 | if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) { |
| 275 | ++NumReassoc; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 276 | return W; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 277 | } |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 278 | } |
| 279 | } |
| 280 | |
| 281 | // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. |
| 282 | if (Op1 && Op1->getOpcode() == Opcode) { |
| 283 | Value *A = LHS; |
| 284 | Value *B = Op1->getOperand(0); |
| 285 | Value *C = Op1->getOperand(1); |
| 286 | |
| 287 | // Does "C op A" simplify? |
| 288 | if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { |
| 289 | // It does! Return "B op V" if it simplifies or is already available. |
| 290 | // If V equals C then "B op V" is just the RHS. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 291 | if (V == C) return RHS; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 292 | // Otherwise return "B op V" if it simplifies. |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 293 | if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) { |
| 294 | ++NumReassoc; |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 295 | return W; |
Duncan Sands | a3c44a5 | 2010-12-22 09:40:51 +0000 | [diff] [blame] | 296 | } |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 297 | } |
| 298 | } |
| 299 | |
| 300 | return 0; |
| 301 | } |
| 302 | |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 303 | /// ThreadBinOpOverSelect - In the case of a binary operation with a select |
| 304 | /// instruction as an operand, try to simplify the binop by seeing whether |
| 305 | /// evaluating it on both branches of the select results in the same value. |
| 306 | /// Returns the common value if so, otherwise returns null. |
| 307 | static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 308 | const TargetData *TD, |
| 309 | const DominatorTree *DT, |
| 310 | unsigned MaxRecurse) { |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 311 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 312 | if (!MaxRecurse--) |
| 313 | return 0; |
| 314 | |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 315 | SelectInst *SI; |
| 316 | if (isa<SelectInst>(LHS)) { |
| 317 | SI = cast<SelectInst>(LHS); |
| 318 | } else { |
| 319 | assert(isa<SelectInst>(RHS) && "No select instruction operand!"); |
| 320 | SI = cast<SelectInst>(RHS); |
| 321 | } |
| 322 | |
| 323 | // Evaluate the BinOp on the true and false branches of the select. |
| 324 | Value *TV; |
| 325 | Value *FV; |
| 326 | if (SI == LHS) { |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 327 | TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse); |
| 328 | FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse); |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 329 | } else { |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 330 | TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse); |
| 331 | FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse); |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 332 | } |
| 333 | |
Duncan Sands | 7cf85e7 | 2011-01-01 16:12:09 +0000 | [diff] [blame] | 334 | // If they simplified to the same value, then return the common value. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 335 | // If they both failed to simplify then return null. |
| 336 | if (TV == FV) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 337 | return TV; |
| 338 | |
| 339 | // If one branch simplified to undef, return the other one. |
| 340 | if (TV && isa<UndefValue>(TV)) |
| 341 | return FV; |
| 342 | if (FV && isa<UndefValue>(FV)) |
| 343 | return TV; |
| 344 | |
| 345 | // If applying the operation did not change the true and false select values, |
| 346 | // then the result of the binop is the select itself. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 347 | if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 348 | return SI; |
| 349 | |
| 350 | // If one branch simplified and the other did not, and the simplified |
| 351 | // value is equal to the unsimplified one, return the simplified value. |
| 352 | // For example, select (cond, X, X & Z) & Z -> X & Z. |
| 353 | if ((FV && !TV) || (TV && !FV)) { |
| 354 | // Check that the simplified value has the form "X op Y" where "op" is the |
| 355 | // same as the original operation. |
| 356 | Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); |
| 357 | if (Simplified && Simplified->getOpcode() == Opcode) { |
| 358 | // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". |
| 359 | // We already know that "op" is the same as for the simplified value. See |
| 360 | // if the operands match too. If so, return the simplified value. |
| 361 | Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); |
| 362 | Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; |
| 363 | Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 364 | if (Simplified->getOperand(0) == UnsimplifiedLHS && |
| 365 | Simplified->getOperand(1) == UnsimplifiedRHS) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 366 | return Simplified; |
| 367 | if (Simplified->isCommutative() && |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 368 | Simplified->getOperand(1) == UnsimplifiedLHS && |
| 369 | Simplified->getOperand(0) == UnsimplifiedRHS) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 370 | return Simplified; |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, |
| 378 | /// try to simplify the comparison by seeing whether both branches of the select |
| 379 | /// result in the same value. Returns the common value if so, otherwise returns |
| 380 | /// null. |
| 381 | static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 382 | Value *RHS, const TargetData *TD, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 383 | const DominatorTree *DT, |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 384 | unsigned MaxRecurse) { |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 385 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 386 | if (!MaxRecurse--) |
| 387 | return 0; |
| 388 | |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 389 | // Make sure the select is on the LHS. |
| 390 | if (!isa<SelectInst>(LHS)) { |
| 391 | std::swap(LHS, RHS); |
| 392 | Pred = CmpInst::getSwappedPredicate(Pred); |
| 393 | } |
| 394 | assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); |
| 395 | SelectInst *SI = cast<SelectInst>(LHS); |
| 396 | |
| 397 | // Now that we have "cmp select(cond, TV, FV), RHS", analyse it. |
| 398 | // Does "cmp TV, RHS" simplify? |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 399 | if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT, |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 400 | MaxRecurse)) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 401 | // It does! Does "cmp FV, RHS" simplify? |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 402 | if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT, |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 403 | MaxRecurse)) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 404 | // It does! If they simplified to the same value, then use it as the |
| 405 | // result of the original comparison. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 406 | if (TCmp == FCmp) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 407 | return TCmp; |
| 408 | return 0; |
| 409 | } |
| 410 | |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 411 | /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that |
| 412 | /// is a PHI instruction, try to simplify the binop by seeing whether evaluating |
| 413 | /// it on the incoming phi values yields the same result for every value. If so |
| 414 | /// returns the common value, otherwise returns null. |
| 415 | static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 416 | const TargetData *TD, const DominatorTree *DT, |
| 417 | unsigned MaxRecurse) { |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 418 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 419 | if (!MaxRecurse--) |
| 420 | return 0; |
| 421 | |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 422 | PHINode *PI; |
| 423 | if (isa<PHINode>(LHS)) { |
| 424 | PI = cast<PHINode>(LHS); |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 425 | // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| 426 | if (!ValueDominatesPHI(RHS, PI, DT)) |
| 427 | return 0; |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 428 | } else { |
| 429 | assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); |
| 430 | PI = cast<PHINode>(RHS); |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 431 | // Bail out if LHS and the phi may be mutually interdependent due to a loop. |
| 432 | if (!ValueDominatesPHI(LHS, PI, DT)) |
| 433 | return 0; |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 434 | } |
| 435 | |
| 436 | // Evaluate the BinOp on the incoming phi values. |
| 437 | Value *CommonValue = 0; |
| 438 | for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { |
Duncan Sands | 5520089 | 2010-11-15 17:52:45 +0000 | [diff] [blame] | 439 | Value *Incoming = PI->getIncomingValue(i); |
Duncan Sands | ff10341 | 2010-11-17 04:30:22 +0000 | [diff] [blame] | 440 | // If the incoming value is the phi node itself, it can safely be skipped. |
Duncan Sands | 5520089 | 2010-11-15 17:52:45 +0000 | [diff] [blame] | 441 | if (Incoming == PI) continue; |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 442 | Value *V = PI == LHS ? |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 443 | SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) : |
| 444 | SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 445 | // If the operation failed to simplify, or simplified to a different value |
| 446 | // to previously, then give up. |
| 447 | if (!V || (CommonValue && V != CommonValue)) |
| 448 | return 0; |
| 449 | CommonValue = V; |
| 450 | } |
| 451 | |
| 452 | return CommonValue; |
| 453 | } |
| 454 | |
| 455 | /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try |
| 456 | /// try to simplify the comparison by seeing whether comparing with all of the |
| 457 | /// incoming phi values yields the same result every time. If so returns the |
| 458 | /// common result, otherwise returns null. |
| 459 | static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 460 | const TargetData *TD, const DominatorTree *DT, |
| 461 | unsigned MaxRecurse) { |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 462 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 463 | if (!MaxRecurse--) |
| 464 | return 0; |
| 465 | |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 466 | // Make sure the phi is on the LHS. |
| 467 | if (!isa<PHINode>(LHS)) { |
| 468 | std::swap(LHS, RHS); |
| 469 | Pred = CmpInst::getSwappedPredicate(Pred); |
| 470 | } |
| 471 | assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); |
| 472 | PHINode *PI = cast<PHINode>(LHS); |
| 473 | |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 474 | // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| 475 | if (!ValueDominatesPHI(RHS, PI, DT)) |
| 476 | return 0; |
| 477 | |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 478 | // Evaluate the BinOp on the incoming phi values. |
| 479 | Value *CommonValue = 0; |
| 480 | for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { |
Duncan Sands | 5520089 | 2010-11-15 17:52:45 +0000 | [diff] [blame] | 481 | Value *Incoming = PI->getIncomingValue(i); |
Duncan Sands | ff10341 | 2010-11-17 04:30:22 +0000 | [diff] [blame] | 482 | // If the incoming value is the phi node itself, it can safely be skipped. |
Duncan Sands | 5520089 | 2010-11-15 17:52:45 +0000 | [diff] [blame] | 483 | if (Incoming == PI) continue; |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 484 | Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 485 | // If the operation failed to simplify, or simplified to a different value |
| 486 | // to previously, then give up. |
| 487 | if (!V || (CommonValue && V != CommonValue)) |
| 488 | return 0; |
| 489 | CommonValue = V; |
| 490 | } |
| 491 | |
| 492 | return CommonValue; |
| 493 | } |
| 494 | |
Chris Lattner | 8aee8ef | 2009-11-27 17:42:22 +0000 | [diff] [blame] | 495 | /// SimplifyAddInst - Given operands for an Add, see if we can |
| 496 | /// fold the result. If not, this returns null. |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 497 | static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
| 498 | const TargetData *TD, const DominatorTree *DT, |
| 499 | unsigned MaxRecurse) { |
Chris Lattner | 8aee8ef | 2009-11-27 17:42:22 +0000 | [diff] [blame] | 500 | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| 501 | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| 502 | Constant *Ops[] = { CLHS, CRHS }; |
| 503 | return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), |
| 504 | Ops, 2, TD); |
| 505 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 506 | |
Chris Lattner | 8aee8ef | 2009-11-27 17:42:22 +0000 | [diff] [blame] | 507 | // Canonicalize the constant to the RHS. |
| 508 | std::swap(Op0, Op1); |
| 509 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 510 | |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 511 | // X + undef -> undef |
| 512 | if (isa<UndefValue>(Op1)) |
| 513 | return Op1; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 514 | |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 515 | // X + 0 -> X |
| 516 | if (match(Op1, m_Zero())) |
| 517 | return Op0; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 518 | |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 519 | // X + (Y - X) -> Y |
| 520 | // (Y - X) + X -> Y |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 521 | // Eg: X + -X -> 0 |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 522 | Value *Y = 0; |
| 523 | if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || |
| 524 | match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 525 | return Y; |
| 526 | |
| 527 | // X + ~X -> -1 since ~X = -X-1 |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 528 | if (match(Op0, m_Not(m_Specific(Op1))) || |
| 529 | match(Op1, m_Not(m_Specific(Op0)))) |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 530 | return Constant::getAllOnesValue(Op0->getType()); |
Duncan Sands | 87689cf | 2010-11-19 09:20:39 +0000 | [diff] [blame] | 531 | |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 532 | /// i1 add -> xor. |
Duncan Sands | 75d289e | 2010-12-21 14:48:48 +0000 | [diff] [blame] | 533 | if (MaxRecurse && Op0->getType()->isIntegerTy(1)) |
Duncan Sands | 07f30fb | 2010-12-21 15:03:43 +0000 | [diff] [blame] | 534 | if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1)) |
| 535 | return V; |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 536 | |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 537 | // Try some generic simplifications for associative operations. |
| 538 | if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT, |
| 539 | MaxRecurse)) |
| 540 | return V; |
| 541 | |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 542 | // Mul distributes over Add. Try some generic simplifications based on this. |
| 543 | if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, |
| 544 | TD, DT, MaxRecurse)) |
| 545 | return V; |
| 546 | |
Duncan Sands | 87689cf | 2010-11-19 09:20:39 +0000 | [diff] [blame] | 547 | // Threading Add over selects and phi nodes is pointless, so don't bother. |
| 548 | // Threading over the select in "A + select(cond, B, C)" means evaluating |
| 549 | // "A+B" and "A+C" and seeing if they are equal; but they are equal if and |
| 550 | // only if B and C are equal. If B and C are equal then (since we assume |
| 551 | // that operands have already been simplified) "select(cond, B, C)" should |
| 552 | // have been simplified to the common value of B and C already. Analysing |
| 553 | // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly |
| 554 | // for threading over phi nodes. |
| 555 | |
Chris Lattner | 8aee8ef | 2009-11-27 17:42:22 +0000 | [diff] [blame] | 556 | return 0; |
| 557 | } |
| 558 | |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 559 | Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
| 560 | const TargetData *TD, const DominatorTree *DT) { |
| 561 | return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); |
| 562 | } |
| 563 | |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 564 | /// SimplifySubInst - Given operands for a Sub, see if we can |
| 565 | /// fold the result. If not, this returns null. |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 566 | static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 567 | const TargetData *TD, const DominatorTree *DT, |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 568 | unsigned MaxRecurse) { |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 569 | if (Constant *CLHS = dyn_cast<Constant>(Op0)) |
| 570 | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| 571 | Constant *Ops[] = { CLHS, CRHS }; |
| 572 | return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), |
| 573 | Ops, 2, TD); |
| 574 | } |
| 575 | |
| 576 | // X - undef -> undef |
| 577 | // undef - X -> undef |
| 578 | if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) |
| 579 | return UndefValue::get(Op0->getType()); |
| 580 | |
| 581 | // X - 0 -> X |
| 582 | if (match(Op1, m_Zero())) |
| 583 | return Op0; |
| 584 | |
| 585 | // X - X -> 0 |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 586 | if (Op0 == Op1) |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 587 | return Constant::getNullValue(Op0->getType()); |
| 588 | |
| 589 | // (X + Y) - Y -> X |
| 590 | // (Y + X) - Y -> X |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 591 | Value *X = 0; |
| 592 | if (match(Op0, m_Add(m_Value(X), m_Specific(Op1))) || |
| 593 | match(Op0, m_Add(m_Specific(Op1), m_Value(X)))) |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 594 | return X; |
| 595 | |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 596 | /// i1 sub -> xor. |
Duncan Sands | 75d289e | 2010-12-21 14:48:48 +0000 | [diff] [blame] | 597 | if (MaxRecurse && Op0->getType()->isIntegerTy(1)) |
Duncan Sands | 07f30fb | 2010-12-21 15:03:43 +0000 | [diff] [blame] | 598 | if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1)) |
| 599 | return V; |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 600 | |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 601 | // Mul distributes over Sub. Try some generic simplifications based on this. |
| 602 | if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, |
| 603 | TD, DT, MaxRecurse)) |
| 604 | return V; |
| 605 | |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 606 | // Threading Sub over selects and phi nodes is pointless, so don't bother. |
| 607 | // Threading over the select in "A - select(cond, B, C)" means evaluating |
| 608 | // "A-B" and "A-C" and seeing if they are equal; but they are equal if and |
| 609 | // only if B and C are equal. If B and C are equal then (since we assume |
| 610 | // that operands have already been simplified) "select(cond, B, C)" should |
| 611 | // have been simplified to the common value of B and C already. Analysing |
| 612 | // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly |
| 613 | // for threading over phi nodes. |
| 614 | |
| 615 | return 0; |
| 616 | } |
| 617 | |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 618 | Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
| 619 | const TargetData *TD, const DominatorTree *DT) { |
| 620 | return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); |
| 621 | } |
| 622 | |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 623 | /// SimplifyMulInst - Given operands for a Mul, see if we can |
| 624 | /// fold the result. If not, this returns null. |
| 625 | static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 626 | const DominatorTree *DT, unsigned MaxRecurse) { |
| 627 | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| 628 | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| 629 | Constant *Ops[] = { CLHS, CRHS }; |
| 630 | return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), |
| 631 | Ops, 2, TD); |
| 632 | } |
| 633 | |
| 634 | // Canonicalize the constant to the RHS. |
| 635 | std::swap(Op0, Op1); |
| 636 | } |
| 637 | |
| 638 | // X * undef -> 0 |
| 639 | if (isa<UndefValue>(Op1)) |
| 640 | return Constant::getNullValue(Op0->getType()); |
| 641 | |
| 642 | // X * 0 -> 0 |
| 643 | if (match(Op1, m_Zero())) |
| 644 | return Op1; |
| 645 | |
| 646 | // X * 1 -> X |
| 647 | if (match(Op1, m_One())) |
| 648 | return Op0; |
| 649 | |
| 650 | /// i1 mul -> and. |
Duncan Sands | 75d289e | 2010-12-21 14:48:48 +0000 | [diff] [blame] | 651 | if (MaxRecurse && Op0->getType()->isIntegerTy(1)) |
Duncan Sands | 07f30fb | 2010-12-21 15:03:43 +0000 | [diff] [blame] | 652 | if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1)) |
| 653 | return V; |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 654 | |
| 655 | // Try some generic simplifications for associative operations. |
| 656 | if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT, |
| 657 | MaxRecurse)) |
| 658 | return V; |
| 659 | |
| 660 | // Mul distributes over Add. Try some generic simplifications based on this. |
| 661 | if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, |
| 662 | TD, DT, MaxRecurse)) |
| 663 | return V; |
| 664 | |
| 665 | // If the operation is with the result of a select instruction, check whether |
| 666 | // operating on either branch of the select always yields the same value. |
| 667 | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| 668 | if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT, |
| 669 | MaxRecurse)) |
| 670 | return V; |
| 671 | |
| 672 | // If the operation is with the result of a phi instruction, check whether |
| 673 | // operating on all incoming values of the phi always yields the same value. |
| 674 | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| 675 | if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT, |
| 676 | MaxRecurse)) |
| 677 | return V; |
| 678 | |
| 679 | return 0; |
| 680 | } |
| 681 | |
| 682 | Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 683 | const DominatorTree *DT) { |
| 684 | return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit); |
| 685 | } |
| 686 | |
Duncan Sands | c43cee3 | 2011-01-14 00:37:45 +0000 | [diff] [blame^] | 687 | /// SimplifyShlInst - Given operands for an Shl, see if we can |
| 688 | /// fold the result. If not, this returns null. |
| 689 | static Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 690 | const DominatorTree *DT, unsigned MaxRecurse) { |
| 691 | if (Constant *C0 = dyn_cast<Constant>(Op0)) { |
| 692 | if (Constant *C1 = dyn_cast<Constant>(Op1)) { |
| 693 | Constant *Ops[] = { C0, C1 }; |
| 694 | return ConstantFoldInstOperands(Instruction::Shl, C0->getType(), Ops, 2, |
| 695 | TD); |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | // 0 << X -> 0 |
| 700 | if (match(Op0, m_Zero())) |
| 701 | return Op0; |
| 702 | |
| 703 | // X << 0 -> X |
| 704 | if (match(Op1, m_Zero())) |
| 705 | return Op0; |
| 706 | |
| 707 | // undef << X -> 0 |
| 708 | if (isa<UndefValue>(Op0)) |
| 709 | return Constant::getNullValue(Op0->getType()); |
| 710 | |
| 711 | // X << undef -> undef because it may shift by the bitwidth. |
| 712 | if (isa<UndefValue>(Op1)) |
| 713 | return Op1; |
| 714 | |
| 715 | // Shifting by the bitwidth or more is undefined. |
| 716 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) |
| 717 | if (CI->getValue().getLimitedValue() >= |
| 718 | Op0->getType()->getScalarSizeInBits()) |
| 719 | return UndefValue::get(Op0->getType()); |
| 720 | |
| 721 | return 0; |
| 722 | } |
| 723 | |
| 724 | Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 725 | const DominatorTree *DT) { |
| 726 | return ::SimplifyShlInst(Op0, Op1, TD, DT, RecursionLimit); |
| 727 | } |
| 728 | |
| 729 | /// SimplifyLShrInst - Given operands for an LShr, see if we can |
| 730 | /// fold the result. If not, this returns null. |
| 731 | static Value *SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 732 | const DominatorTree *DT, unsigned MaxRecurse) { |
| 733 | if (Constant *C0 = dyn_cast<Constant>(Op0)) { |
| 734 | if (Constant *C1 = dyn_cast<Constant>(Op1)) { |
| 735 | Constant *Ops[] = { C0, C1 }; |
| 736 | return ConstantFoldInstOperands(Instruction::LShr, C0->getType(), Ops, 2, |
| 737 | TD); |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | // 0 >> X -> 0 |
| 742 | if (match(Op0, m_Zero())) |
| 743 | return Op0; |
| 744 | |
| 745 | // undef >>l X -> 0 |
| 746 | if (isa<UndefValue>(Op0)) |
| 747 | return Constant::getNullValue(Op0->getType()); |
| 748 | |
| 749 | // X >> 0 -> X |
| 750 | if (match(Op1, m_Zero())) |
| 751 | return Op0; |
| 752 | |
| 753 | // X >> undef -> undef because it may shift by the bitwidth. |
| 754 | if (isa<UndefValue>(Op1)) |
| 755 | return Op1; |
| 756 | |
| 757 | // Shifting by the bitwidth or more is undefined. |
| 758 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) |
| 759 | if (CI->getValue().getLimitedValue() >= |
| 760 | Op0->getType()->getScalarSizeInBits()) |
| 761 | return UndefValue::get(Op0->getType()); |
| 762 | |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 767 | const DominatorTree *DT) { |
| 768 | return ::SimplifyLShrInst(Op0, Op1, TD, DT, RecursionLimit); |
| 769 | } |
| 770 | |
| 771 | /// SimplifyAShrInst - Given operands for an AShr, see if we can |
| 772 | /// fold the result. If not, this returns null. |
| 773 | static Value *SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 774 | const DominatorTree *DT, unsigned MaxRecurse) { |
| 775 | if (Constant *C0 = dyn_cast<Constant>(Op0)) { |
| 776 | if (Constant *C1 = dyn_cast<Constant>(Op1)) { |
| 777 | Constant *Ops[] = { C0, C1 }; |
| 778 | return ConstantFoldInstOperands(Instruction::AShr, C0->getType(), Ops, 2, |
| 779 | TD); |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | // 0 >> X -> 0 |
| 784 | if (match(Op0, m_Zero())) |
| 785 | return Op0; |
| 786 | |
| 787 | // all ones >>a X -> all ones |
| 788 | if (match(Op0, m_AllOnes())) |
| 789 | return Op0; |
| 790 | |
| 791 | // undef >>a X -> all ones |
| 792 | if (isa<UndefValue>(Op0)) |
| 793 | return Constant::getAllOnesValue(Op0->getType()); |
| 794 | |
| 795 | // X >> 0 -> X |
| 796 | if (match(Op1, m_Zero())) |
| 797 | return Op0; |
| 798 | |
| 799 | // X >> undef -> undef because it may shift by the bitwidth. |
| 800 | if (isa<UndefValue>(Op1)) |
| 801 | return Op1; |
| 802 | |
| 803 | // Shifting by the bitwidth or more is undefined. |
| 804 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) |
| 805 | if (CI->getValue().getLimitedValue() >= |
| 806 | Op0->getType()->getScalarSizeInBits()) |
| 807 | return UndefValue::get(Op0->getType()); |
| 808 | |
| 809 | return 0; |
| 810 | } |
| 811 | |
| 812 | Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 813 | const DominatorTree *DT) { |
| 814 | return ::SimplifyAShrInst(Op0, Op1, TD, DT, RecursionLimit); |
| 815 | } |
| 816 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 817 | /// SimplifyAndInst - Given operands for an And, see if we can |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 818 | /// fold the result. If not, this returns null. |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 819 | static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 820 | const DominatorTree *DT, unsigned MaxRecurse) { |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 821 | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| 822 | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| 823 | Constant *Ops[] = { CLHS, CRHS }; |
| 824 | return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), |
| 825 | Ops, 2, TD); |
| 826 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 827 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 828 | // Canonicalize the constant to the RHS. |
| 829 | std::swap(Op0, Op1); |
| 830 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 831 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 832 | // X & undef -> 0 |
| 833 | if (isa<UndefValue>(Op1)) |
| 834 | return Constant::getNullValue(Op0->getType()); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 835 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 836 | // X & X = X |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 837 | if (Op0 == Op1) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 838 | return Op0; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 839 | |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 840 | // X & 0 = 0 |
| 841 | if (match(Op1, m_Zero())) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 842 | return Op1; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 843 | |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 844 | // X & -1 = X |
| 845 | if (match(Op1, m_AllOnes())) |
| 846 | return Op0; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 847 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 848 | // A & ~A = ~A & A = 0 |
Chandler Carruth | e89ada9 | 2010-11-29 01:41:13 +0000 | [diff] [blame] | 849 | Value *A = 0, *B = 0; |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 850 | if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || |
| 851 | (match(Op1, m_Not(m_Value(A))) && A == Op0)) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 852 | return Constant::getNullValue(Op0->getType()); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 853 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 854 | // (A | ?) & A = A |
| 855 | if (match(Op0, m_Or(m_Value(A), m_Value(B))) && |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 856 | (A == Op1 || B == Op1)) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 857 | return Op1; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 858 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 859 | // A & (A | ?) = A |
| 860 | if (match(Op1, m_Or(m_Value(A), m_Value(B))) && |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 861 | (A == Op0 || B == Op0)) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 862 | return Op0; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 863 | |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 864 | // Try some generic simplifications for associative operations. |
| 865 | if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT, |
| 866 | MaxRecurse)) |
| 867 | return V; |
Benjamin Kramer | 6844c8e | 2010-09-10 22:39:55 +0000 | [diff] [blame] | 868 | |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 869 | // And distributes over Or. Try some generic simplifications based on this. |
| 870 | if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, |
| 871 | TD, DT, MaxRecurse)) |
| 872 | return V; |
| 873 | |
| 874 | // And distributes over Xor. Try some generic simplifications based on this. |
| 875 | if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, |
| 876 | TD, DT, MaxRecurse)) |
| 877 | return V; |
| 878 | |
| 879 | // Or distributes over And. Try some generic simplifications based on this. |
| 880 | if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, |
| 881 | TD, DT, MaxRecurse)) |
| 882 | return V; |
| 883 | |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 884 | // If the operation is with the result of a select instruction, check whether |
| 885 | // operating on either branch of the select always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 886 | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 887 | if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT, |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 888 | MaxRecurse)) |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 889 | return V; |
| 890 | |
| 891 | // If the operation is with the result of a phi instruction, check whether |
| 892 | // operating on all incoming values of the phi always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 893 | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 894 | if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT, |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 895 | MaxRecurse)) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 896 | return V; |
| 897 | |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 898 | return 0; |
| 899 | } |
| 900 | |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 901 | Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 902 | const DominatorTree *DT) { |
| 903 | return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 904 | } |
| 905 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 906 | /// SimplifyOrInst - Given operands for an Or, see if we can |
| 907 | /// fold the result. If not, this returns null. |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 908 | static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 909 | const DominatorTree *DT, unsigned MaxRecurse) { |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 910 | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| 911 | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| 912 | Constant *Ops[] = { CLHS, CRHS }; |
| 913 | return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), |
| 914 | Ops, 2, TD); |
| 915 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 916 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 917 | // Canonicalize the constant to the RHS. |
| 918 | std::swap(Op0, Op1); |
| 919 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 920 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 921 | // X | undef -> -1 |
| 922 | if (isa<UndefValue>(Op1)) |
| 923 | return Constant::getAllOnesValue(Op0->getType()); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 924 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 925 | // X | X = X |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 926 | if (Op0 == Op1) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 927 | return Op0; |
| 928 | |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 929 | // X | 0 = X |
| 930 | if (match(Op1, m_Zero())) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 931 | return Op0; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 932 | |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 933 | // X | -1 = -1 |
| 934 | if (match(Op1, m_AllOnes())) |
| 935 | return Op1; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 936 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 937 | // A | ~A = ~A | A = -1 |
Chandler Carruth | e89ada9 | 2010-11-29 01:41:13 +0000 | [diff] [blame] | 938 | Value *A = 0, *B = 0; |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 939 | if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || |
| 940 | (match(Op1, m_Not(m_Value(A))) && A == Op0)) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 941 | return Constant::getAllOnesValue(Op0->getType()); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 942 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 943 | // (A & ?) | A = A |
| 944 | if (match(Op0, m_And(m_Value(A), m_Value(B))) && |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 945 | (A == Op1 || B == Op1)) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 946 | return Op1; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 947 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 948 | // A | (A & ?) = A |
| 949 | if (match(Op1, m_And(m_Value(A), m_Value(B))) && |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 950 | (A == Op0 || B == Op0)) |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 951 | return Op0; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 952 | |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 953 | // Try some generic simplifications for associative operations. |
| 954 | if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT, |
| 955 | MaxRecurse)) |
| 956 | return V; |
Benjamin Kramer | 6844c8e | 2010-09-10 22:39:55 +0000 | [diff] [blame] | 957 | |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 958 | // Or distributes over And. Try some generic simplifications based on this. |
| 959 | if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, |
| 960 | TD, DT, MaxRecurse)) |
| 961 | return V; |
| 962 | |
| 963 | // And distributes over Or. Try some generic simplifications based on this. |
| 964 | if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, |
| 965 | TD, DT, MaxRecurse)) |
| 966 | return V; |
| 967 | |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 968 | // If the operation is with the result of a select instruction, check whether |
| 969 | // operating on either branch of the select always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 970 | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 971 | if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT, |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 972 | MaxRecurse)) |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 973 | return V; |
| 974 | |
| 975 | // If the operation is with the result of a phi instruction, check whether |
| 976 | // operating on all incoming values of the phi always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 977 | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 978 | if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT, |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 979 | MaxRecurse)) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 980 | return V; |
| 981 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 982 | return 0; |
| 983 | } |
| 984 | |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 985 | Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 986 | const DominatorTree *DT) { |
| 987 | return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 988 | } |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 989 | |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 990 | /// SimplifyXorInst - Given operands for a Xor, see if we can |
| 991 | /// fold the result. If not, this returns null. |
| 992 | static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 993 | const DominatorTree *DT, unsigned MaxRecurse) { |
| 994 | if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| 995 | if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| 996 | Constant *Ops[] = { CLHS, CRHS }; |
| 997 | return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), |
| 998 | Ops, 2, TD); |
| 999 | } |
| 1000 | |
| 1001 | // Canonicalize the constant to the RHS. |
| 1002 | std::swap(Op0, Op1); |
| 1003 | } |
| 1004 | |
| 1005 | // A ^ undef -> undef |
| 1006 | if (isa<UndefValue>(Op1)) |
Duncan Sands | f8b1a5e | 2010-12-15 11:02:22 +0000 | [diff] [blame] | 1007 | return Op1; |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 1008 | |
| 1009 | // A ^ 0 = A |
| 1010 | if (match(Op1, m_Zero())) |
| 1011 | return Op0; |
| 1012 | |
| 1013 | // A ^ A = 0 |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 1014 | if (Op0 == Op1) |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 1015 | return Constant::getNullValue(Op0->getType()); |
| 1016 | |
| 1017 | // A ^ ~A = ~A ^ A = -1 |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 1018 | Value *A = 0; |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 1019 | if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || |
| 1020 | (match(Op1, m_Not(m_Value(A))) && A == Op0)) |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 1021 | return Constant::getAllOnesValue(Op0->getType()); |
| 1022 | |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 1023 | // Try some generic simplifications for associative operations. |
| 1024 | if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT, |
| 1025 | MaxRecurse)) |
| 1026 | return V; |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 1027 | |
Duncan Sands | 3421d90 | 2010-12-21 13:32:22 +0000 | [diff] [blame] | 1028 | // And distributes over Xor. Try some generic simplifications based on this. |
| 1029 | if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, |
| 1030 | TD, DT, MaxRecurse)) |
| 1031 | return V; |
| 1032 | |
Duncan Sands | 87689cf | 2010-11-19 09:20:39 +0000 | [diff] [blame] | 1033 | // Threading Xor over selects and phi nodes is pointless, so don't bother. |
| 1034 | // Threading over the select in "A ^ select(cond, B, C)" means evaluating |
| 1035 | // "A^B" and "A^C" and seeing if they are equal; but they are equal if and |
| 1036 | // only if B and C are equal. If B and C are equal then (since we assume |
| 1037 | // that operands have already been simplified) "select(cond, B, C)" should |
| 1038 | // have been simplified to the common value of B and C already. Analysing |
| 1039 | // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly |
| 1040 | // for threading over phi nodes. |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 1041 | |
| 1042 | return 0; |
| 1043 | } |
| 1044 | |
| 1045 | Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, |
| 1046 | const DominatorTree *DT) { |
| 1047 | return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit); |
| 1048 | } |
| 1049 | |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1050 | static const Type *GetCompareTy(Value *Op) { |
| 1051 | return CmpInst::makeCmpResultType(Op->getType()); |
| 1052 | } |
| 1053 | |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1054 | /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can |
| 1055 | /// fold the result. If not, this returns null. |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1056 | static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1057 | const TargetData *TD, const DominatorTree *DT, |
| 1058 | unsigned MaxRecurse) { |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 1059 | CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1060 | assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1061 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1062 | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
Chris Lattner | 8f73dea | 2009-11-09 23:06:58 +0000 | [diff] [blame] | 1063 | if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| 1064 | return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1065 | |
| 1066 | // If we have a constant, make sure it is on the RHS. |
| 1067 | std::swap(LHS, RHS); |
| 1068 | Pred = CmpInst::getSwappedPredicate(Pred); |
| 1069 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1070 | |
Duncan Sands | 6dc9125 | 2011-01-13 08:56:29 +0000 | [diff] [blame] | 1071 | const Type *ITy = GetCompareTy(LHS); // The return type. |
| 1072 | const Type *OpTy = LHS->getType(); // The operand type. |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1073 | |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1074 | // icmp X, X -> true/false |
Chris Lattner | c8e14b3 | 2010-03-03 19:46:03 +0000 | [diff] [blame] | 1075 | // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false |
| 1076 | // because X could be 0. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 1077 | if (LHS == RHS || isa<UndefValue>(RHS)) |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1078 | return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1079 | |
Duncan Sands | 6dc9125 | 2011-01-13 08:56:29 +0000 | [diff] [blame] | 1080 | // Special case logic when the operands have i1 type. |
| 1081 | if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() && |
| 1082 | cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) { |
| 1083 | switch (Pred) { |
| 1084 | default: break; |
| 1085 | case ICmpInst::ICMP_EQ: |
| 1086 | // X == 1 -> X |
| 1087 | if (match(RHS, m_One())) |
| 1088 | return LHS; |
| 1089 | break; |
| 1090 | case ICmpInst::ICMP_NE: |
| 1091 | // X != 0 -> X |
| 1092 | if (match(RHS, m_Zero())) |
| 1093 | return LHS; |
| 1094 | break; |
| 1095 | case ICmpInst::ICMP_UGT: |
| 1096 | // X >u 0 -> X |
| 1097 | if (match(RHS, m_Zero())) |
| 1098 | return LHS; |
| 1099 | break; |
| 1100 | case ICmpInst::ICMP_UGE: |
| 1101 | // X >=u 1 -> X |
| 1102 | if (match(RHS, m_One())) |
| 1103 | return LHS; |
| 1104 | break; |
| 1105 | case ICmpInst::ICMP_SLT: |
| 1106 | // X <s 0 -> X |
| 1107 | if (match(RHS, m_Zero())) |
| 1108 | return LHS; |
| 1109 | break; |
| 1110 | case ICmpInst::ICMP_SLE: |
| 1111 | // X <=s -1 -> X |
| 1112 | if (match(RHS, m_One())) |
| 1113 | return LHS; |
| 1114 | break; |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | // See if we are doing a comparison with a constant. |
| 1119 | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| 1120 | switch (Pred) { |
| 1121 | default: break; |
| 1122 | case ICmpInst::ICMP_UGT: |
| 1123 | if (CI->isMaxValue(false)) // A >u MAX -> FALSE |
| 1124 | return ConstantInt::getFalse(CI->getContext()); |
| 1125 | break; |
| 1126 | case ICmpInst::ICMP_UGE: |
| 1127 | if (CI->isMinValue(false)) // A >=u MIN -> TRUE |
| 1128 | return ConstantInt::getTrue(CI->getContext()); |
| 1129 | break; |
| 1130 | case ICmpInst::ICMP_ULT: |
| 1131 | if (CI->isMinValue(false)) // A <u MIN -> FALSE |
| 1132 | return ConstantInt::getFalse(CI->getContext()); |
| 1133 | break; |
| 1134 | case ICmpInst::ICMP_ULE: |
| 1135 | if (CI->isMaxValue(false)) // A <=u MAX -> TRUE |
| 1136 | return ConstantInt::getTrue(CI->getContext()); |
| 1137 | break; |
| 1138 | case ICmpInst::ICMP_SGT: |
| 1139 | if (CI->isMaxValue(true)) // A >s MAX -> FALSE |
| 1140 | return ConstantInt::getFalse(CI->getContext()); |
| 1141 | break; |
| 1142 | case ICmpInst::ICMP_SGE: |
| 1143 | if (CI->isMinValue(true)) // A >=s MIN -> TRUE |
| 1144 | return ConstantInt::getTrue(CI->getContext()); |
| 1145 | break; |
| 1146 | case ICmpInst::ICMP_SLT: |
| 1147 | if (CI->isMinValue(true)) // A <s MIN -> FALSE |
| 1148 | return ConstantInt::getFalse(CI->getContext()); |
| 1149 | break; |
| 1150 | case ICmpInst::ICMP_SLE: |
| 1151 | if (CI->isMaxValue(true)) // A <=s MAX -> TRUE |
| 1152 | return ConstantInt::getTrue(CI->getContext()); |
| 1153 | break; |
| 1154 | } |
| 1155 | } |
| 1156 | |
Duncan Sands | 53ad861 | 2011-01-13 10:43:08 +0000 | [diff] [blame] | 1157 | // icmp <alloca*>, <global/alloca*/null> - Different stack variables have |
| 1158 | // different addresses, and what's more the address of a stack variable is |
| 1159 | // never null or equal to the address of a global. Note that generalizing |
| 1160 | // to the case where LHS is a global variable address or null is pointless, |
| 1161 | // since if both LHS and RHS are constants then we already constant folded |
| 1162 | // the compare, and if only one of them is then we moved it to RHS already. |
| 1163 | if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || |
| 1164 | isa<ConstantPointerNull>(RHS))) |
| 1165 | // We already know that LHS != LHS. |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1166 | return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1167 | |
Duncan Sands | 1ac7c99 | 2010-11-07 16:12:23 +0000 | [diff] [blame] | 1168 | // If the comparison is with the result of a select instruction, check whether |
| 1169 | // comparing with either branch of the select always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 1170 | if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
| 1171 | if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1172 | return V; |
| 1173 | |
| 1174 | // If the comparison is with the result of a phi instruction, check whether |
| 1175 | // doing the compare with each incoming phi value yields a common result. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 1176 | if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| 1177 | if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
Duncan Sands | 3bbb0cc | 2010-11-09 17:25:51 +0000 | [diff] [blame] | 1178 | return V; |
Duncan Sands | 1ac7c99 | 2010-11-07 16:12:23 +0000 | [diff] [blame] | 1179 | |
Chris Lattner | 9f3c25a | 2009-11-09 22:57:59 +0000 | [diff] [blame] | 1180 | return 0; |
| 1181 | } |
| 1182 | |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1183 | Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1184 | const TargetData *TD, const DominatorTree *DT) { |
| 1185 | return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1186 | } |
| 1187 | |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1188 | /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can |
| 1189 | /// fold the result. If not, this returns null. |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1190 | static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1191 | const TargetData *TD, const DominatorTree *DT, |
| 1192 | unsigned MaxRecurse) { |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1193 | CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
| 1194 | assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); |
| 1195 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1196 | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1197 | if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| 1198 | return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1199 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1200 | // If we have a constant, make sure it is on the RHS. |
| 1201 | std::swap(LHS, RHS); |
| 1202 | Pred = CmpInst::getSwappedPredicate(Pred); |
| 1203 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1204 | |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1205 | // Fold trivial predicates. |
| 1206 | if (Pred == FCmpInst::FCMP_FALSE) |
| 1207 | return ConstantInt::get(GetCompareTy(LHS), 0); |
| 1208 | if (Pred == FCmpInst::FCMP_TRUE) |
| 1209 | return ConstantInt::get(GetCompareTy(LHS), 1); |
| 1210 | |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1211 | if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef |
| 1212 | return UndefValue::get(GetCompareTy(LHS)); |
| 1213 | |
| 1214 | // fcmp x,x -> true/false. Not all compares are foldable. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 1215 | if (LHS == RHS) { |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1216 | if (CmpInst::isTrueWhenEqual(Pred)) |
| 1217 | return ConstantInt::get(GetCompareTy(LHS), 1); |
| 1218 | if (CmpInst::isFalseWhenEqual(Pred)) |
| 1219 | return ConstantInt::get(GetCompareTy(LHS), 0); |
| 1220 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1221 | |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1222 | // Handle fcmp with constant RHS |
| 1223 | if (Constant *RHSC = dyn_cast<Constant>(RHS)) { |
| 1224 | // If the constant is a nan, see if we can fold the comparison based on it. |
| 1225 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { |
| 1226 | if (CFP->getValueAPF().isNaN()) { |
| 1227 | if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" |
| 1228 | return ConstantInt::getFalse(CFP->getContext()); |
| 1229 | assert(FCmpInst::isUnordered(Pred) && |
| 1230 | "Comparison must be either ordered or unordered!"); |
| 1231 | // True if unordered. |
| 1232 | return ConstantInt::getTrue(CFP->getContext()); |
| 1233 | } |
Dan Gohman | 6b617a7 | 2010-02-22 04:06:03 +0000 | [diff] [blame] | 1234 | // Check whether the constant is an infinity. |
| 1235 | if (CFP->getValueAPF().isInfinity()) { |
| 1236 | if (CFP->getValueAPF().isNegative()) { |
| 1237 | switch (Pred) { |
| 1238 | case FCmpInst::FCMP_OLT: |
| 1239 | // No value is ordered and less than negative infinity. |
| 1240 | return ConstantInt::getFalse(CFP->getContext()); |
| 1241 | case FCmpInst::FCMP_UGE: |
| 1242 | // All values are unordered with or at least negative infinity. |
| 1243 | return ConstantInt::getTrue(CFP->getContext()); |
| 1244 | default: |
| 1245 | break; |
| 1246 | } |
| 1247 | } else { |
| 1248 | switch (Pred) { |
| 1249 | case FCmpInst::FCMP_OGT: |
| 1250 | // No value is ordered and greater than infinity. |
| 1251 | return ConstantInt::getFalse(CFP->getContext()); |
| 1252 | case FCmpInst::FCMP_ULE: |
| 1253 | // All values are unordered with and at most infinity. |
| 1254 | return ConstantInt::getTrue(CFP->getContext()); |
| 1255 | default: |
| 1256 | break; |
| 1257 | } |
| 1258 | } |
| 1259 | } |
Chris Lattner | 210c5d4 | 2009-11-09 23:55:12 +0000 | [diff] [blame] | 1260 | } |
| 1261 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1262 | |
Duncan Sands | 92826de | 2010-11-07 16:46:25 +0000 | [diff] [blame] | 1263 | // If the comparison is with the result of a select instruction, check whether |
| 1264 | // comparing with either branch of the select always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 1265 | if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
| 1266 | if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1267 | return V; |
| 1268 | |
| 1269 | // If the comparison is with the result of a phi instruction, check whether |
| 1270 | // doing the compare with each incoming phi value yields a common result. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 1271 | if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| 1272 | if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
Duncan Sands | 3bbb0cc | 2010-11-09 17:25:51 +0000 | [diff] [blame] | 1273 | return V; |
Duncan Sands | 92826de | 2010-11-07 16:46:25 +0000 | [diff] [blame] | 1274 | |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1275 | return 0; |
| 1276 | } |
| 1277 | |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1278 | Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1279 | const TargetData *TD, const DominatorTree *DT) { |
| 1280 | return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1281 | } |
| 1282 | |
Chris Lattner | 0475426 | 2010-04-20 05:32:14 +0000 | [diff] [blame] | 1283 | /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold |
| 1284 | /// the result. If not, this returns null. |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 1285 | Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, |
| 1286 | const TargetData *TD, const DominatorTree *) { |
Chris Lattner | 0475426 | 2010-04-20 05:32:14 +0000 | [diff] [blame] | 1287 | // select true, X, Y -> X |
| 1288 | // select false, X, Y -> Y |
| 1289 | if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) |
| 1290 | return CB->getZExtValue() ? TrueVal : FalseVal; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1291 | |
Chris Lattner | 0475426 | 2010-04-20 05:32:14 +0000 | [diff] [blame] | 1292 | // select C, X, X -> X |
Duncan Sands | 124708d | 2011-01-01 20:08:02 +0000 | [diff] [blame] | 1293 | if (TrueVal == FalseVal) |
Chris Lattner | 0475426 | 2010-04-20 05:32:14 +0000 | [diff] [blame] | 1294 | return TrueVal; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1295 | |
Chris Lattner | 0475426 | 2010-04-20 05:32:14 +0000 | [diff] [blame] | 1296 | if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X |
| 1297 | return FalseVal; |
| 1298 | if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X |
| 1299 | return TrueVal; |
| 1300 | if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y |
| 1301 | if (isa<Constant>(TrueVal)) |
| 1302 | return TrueVal; |
| 1303 | return FalseVal; |
| 1304 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1305 | |
Chris Lattner | 0475426 | 2010-04-20 05:32:14 +0000 | [diff] [blame] | 1306 | return 0; |
| 1307 | } |
| 1308 | |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1309 | /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can |
| 1310 | /// fold the result. If not, this returns null. |
| 1311 | Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1312 | const TargetData *TD, const DominatorTree *) { |
Duncan Sands | 85bbff6 | 2010-11-22 13:42:49 +0000 | [diff] [blame] | 1313 | // The type of the GEP pointer operand. |
| 1314 | const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()); |
| 1315 | |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1316 | // getelementptr P -> P. |
| 1317 | if (NumOps == 1) |
| 1318 | return Ops[0]; |
| 1319 | |
Duncan Sands | 85bbff6 | 2010-11-22 13:42:49 +0000 | [diff] [blame] | 1320 | if (isa<UndefValue>(Ops[0])) { |
| 1321 | // Compute the (pointer) type returned by the GEP instruction. |
| 1322 | const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1], |
| 1323 | NumOps-1); |
| 1324 | const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); |
| 1325 | return UndefValue::get(GEPTy); |
| 1326 | } |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1327 | |
Duncan Sands | e60d79f | 2010-11-21 13:53:09 +0000 | [diff] [blame] | 1328 | if (NumOps == 2) { |
| 1329 | // getelementptr P, 0 -> P. |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1330 | if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) |
| 1331 | if (C->isZero()) |
| 1332 | return Ops[0]; |
Duncan Sands | e60d79f | 2010-11-21 13:53:09 +0000 | [diff] [blame] | 1333 | // getelementptr P, N -> P if P points to a type of zero size. |
| 1334 | if (TD) { |
Duncan Sands | 85bbff6 | 2010-11-22 13:42:49 +0000 | [diff] [blame] | 1335 | const Type *Ty = PtrTy->getElementType(); |
Duncan Sands | a63395a | 2010-11-22 16:32:50 +0000 | [diff] [blame] | 1336 | if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0) |
Duncan Sands | e60d79f | 2010-11-21 13:53:09 +0000 | [diff] [blame] | 1337 | return Ops[0]; |
| 1338 | } |
| 1339 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1340 | |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1341 | // Check to see if this is constant foldable. |
| 1342 | for (unsigned i = 0; i != NumOps; ++i) |
| 1343 | if (!isa<Constant>(Ops[i])) |
| 1344 | return 0; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1345 | |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1346 | return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), |
| 1347 | (Constant *const*)Ops+1, NumOps-1); |
| 1348 | } |
| 1349 | |
Duncan Sands | ff10341 | 2010-11-17 04:30:22 +0000 | [diff] [blame] | 1350 | /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. |
| 1351 | static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) { |
| 1352 | // If all of the PHI's incoming values are the same then replace the PHI node |
| 1353 | // with the common value. |
| 1354 | Value *CommonValue = 0; |
| 1355 | bool HasUndefInput = false; |
| 1356 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 1357 | Value *Incoming = PN->getIncomingValue(i); |
| 1358 | // If the incoming value is the phi node itself, it can safely be skipped. |
| 1359 | if (Incoming == PN) continue; |
| 1360 | if (isa<UndefValue>(Incoming)) { |
| 1361 | // Remember that we saw an undef value, but otherwise ignore them. |
| 1362 | HasUndefInput = true; |
| 1363 | continue; |
| 1364 | } |
| 1365 | if (CommonValue && Incoming != CommonValue) |
| 1366 | return 0; // Not the same, bail out. |
| 1367 | CommonValue = Incoming; |
| 1368 | } |
| 1369 | |
| 1370 | // If CommonValue is null then all of the incoming values were either undef or |
| 1371 | // equal to the phi node itself. |
| 1372 | if (!CommonValue) |
| 1373 | return UndefValue::get(PN->getType()); |
| 1374 | |
| 1375 | // If we have a PHI node like phi(X, undef, X), where X is defined by some |
| 1376 | // instruction, we cannot return X as the result of the PHI node unless it |
| 1377 | // dominates the PHI block. |
| 1378 | if (HasUndefInput) |
| 1379 | return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0; |
| 1380 | |
| 1381 | return CommonValue; |
| 1382 | } |
| 1383 | |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1384 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1385 | //=== Helper functions for higher up the class hierarchy. |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1386 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1387 | /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can |
| 1388 | /// fold the result. If not, this returns null. |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1389 | static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1390 | const TargetData *TD, const DominatorTree *DT, |
| 1391 | unsigned MaxRecurse) { |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1392 | switch (Opcode) { |
Duncan Sands | ee9a2e3 | 2010-12-20 14:47:04 +0000 | [diff] [blame] | 1393 | case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false, |
| 1394 | /* isNUW */ false, TD, DT, |
| 1395 | MaxRecurse); |
| 1396 | case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false, |
| 1397 | /* isNUW */ false, TD, DT, |
| 1398 | MaxRecurse); |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 1399 | case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse); |
Duncan Sands | c43cee3 | 2011-01-14 00:37:45 +0000 | [diff] [blame^] | 1400 | case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse); |
| 1401 | case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse); |
| 1402 | case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse); |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 1403 | case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse); |
| 1404 | case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse); |
| 1405 | case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse); |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1406 | default: |
| 1407 | if (Constant *CLHS = dyn_cast<Constant>(LHS)) |
| 1408 | if (Constant *CRHS = dyn_cast<Constant>(RHS)) { |
| 1409 | Constant *COps[] = {CLHS, CRHS}; |
| 1410 | return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); |
| 1411 | } |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 1412 | |
Duncan Sands | 566edb0 | 2010-12-21 08:49:00 +0000 | [diff] [blame] | 1413 | // If the operation is associative, try some generic simplifications. |
| 1414 | if (Instruction::isAssociative(Opcode)) |
| 1415 | if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT, |
| 1416 | MaxRecurse)) |
| 1417 | return V; |
| 1418 | |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 1419 | // If the operation is with the result of a select instruction, check whether |
| 1420 | // operating on either branch of the select always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 1421 | if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1422 | if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT, |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 1423 | MaxRecurse)) |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1424 | return V; |
| 1425 | |
| 1426 | // If the operation is with the result of a phi instruction, check whether |
| 1427 | // operating on all incoming values of the phi always yields the same value. |
Duncan Sands | 0312a93 | 2010-12-21 09:09:15 +0000 | [diff] [blame] | 1428 | if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| 1429 | if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse)) |
Duncan Sands | b2cbdc3 | 2010-11-10 13:00:08 +0000 | [diff] [blame] | 1430 | return V; |
| 1431 | |
Chris Lattner | d06094f | 2009-11-10 00:55:12 +0000 | [diff] [blame] | 1432 | return 0; |
| 1433 | } |
| 1434 | } |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1435 | |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1436 | Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1437 | const TargetData *TD, const DominatorTree *DT) { |
| 1438 | return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit); |
Chris Lattner | 9dbb429 | 2009-11-09 23:28:39 +0000 | [diff] [blame] | 1439 | } |
| 1440 | |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1441 | /// SimplifyCmpInst - Given operands for a CmpInst, see if we can |
| 1442 | /// fold the result. |
| 1443 | static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1444 | const TargetData *TD, const DominatorTree *DT, |
| 1445 | unsigned MaxRecurse) { |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1446 | if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1447 | return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); |
| 1448 | return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1449 | } |
| 1450 | |
| 1451 | Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
Duncan Sands | 1845009 | 2010-11-16 12:16:38 +0000 | [diff] [blame] | 1452 | const TargetData *TD, const DominatorTree *DT) { |
| 1453 | return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); |
Duncan Sands | a74a58c | 2010-11-10 18:23:01 +0000 | [diff] [blame] | 1454 | } |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1455 | |
| 1456 | /// SimplifyInstruction - See if we can compute a simplified version of this |
| 1457 | /// instruction. If not, this returns null. |
Duncan Sands | eff0581 | 2010-11-14 18:36:10 +0000 | [diff] [blame] | 1458 | Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD, |
| 1459 | const DominatorTree *DT) { |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1460 | Value *Result; |
| 1461 | |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1462 | switch (I->getOpcode()) { |
| 1463 | default: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1464 | Result = ConstantFoldInstruction(I, TD); |
| 1465 | break; |
Chris Lattner | 8aee8ef | 2009-11-27 17:42:22 +0000 | [diff] [blame] | 1466 | case Instruction::Add: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1467 | Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), |
| 1468 | cast<BinaryOperator>(I)->hasNoSignedWrap(), |
| 1469 | cast<BinaryOperator>(I)->hasNoUnsignedWrap(), |
| 1470 | TD, DT); |
| 1471 | break; |
Duncan Sands | fea3b21 | 2010-12-15 14:07:39 +0000 | [diff] [blame] | 1472 | case Instruction::Sub: |
| 1473 | Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), |
| 1474 | cast<BinaryOperator>(I)->hasNoSignedWrap(), |
| 1475 | cast<BinaryOperator>(I)->hasNoUnsignedWrap(), |
| 1476 | TD, DT); |
| 1477 | break; |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 1478 | case Instruction::Mul: |
| 1479 | Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| 1480 | break; |
Duncan Sands | c43cee3 | 2011-01-14 00:37:45 +0000 | [diff] [blame^] | 1481 | case Instruction::Shl: |
| 1482 | Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| 1483 | break; |
| 1484 | case Instruction::LShr: |
| 1485 | Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| 1486 | break; |
| 1487 | case Instruction::AShr: |
| 1488 | Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| 1489 | break; |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1490 | case Instruction::And: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1491 | Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| 1492 | break; |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1493 | case Instruction::Or: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1494 | Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| 1495 | break; |
Duncan Sands | 2b74987 | 2010-11-17 18:52:15 +0000 | [diff] [blame] | 1496 | case Instruction::Xor: |
| 1497 | Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| 1498 | break; |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1499 | case Instruction::ICmp: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1500 | Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), |
| 1501 | I->getOperand(0), I->getOperand(1), TD, DT); |
| 1502 | break; |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1503 | case Instruction::FCmp: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1504 | Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), |
| 1505 | I->getOperand(0), I->getOperand(1), TD, DT); |
| 1506 | break; |
Chris Lattner | 0475426 | 2010-04-20 05:32:14 +0000 | [diff] [blame] | 1507 | case Instruction::Select: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1508 | Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), |
| 1509 | I->getOperand(2), TD, DT); |
| 1510 | break; |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1511 | case Instruction::GetElementPtr: { |
| 1512 | SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1513 | Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT); |
| 1514 | break; |
Chris Lattner | c514c1f | 2009-11-27 00:29:05 +0000 | [diff] [blame] | 1515 | } |
Duncan Sands | cd6636c | 2010-11-14 13:30:18 +0000 | [diff] [blame] | 1516 | case Instruction::PHI: |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1517 | Result = SimplifyPHINode(cast<PHINode>(I), DT); |
| 1518 | break; |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1519 | } |
Duncan Sands | d261dc6 | 2010-11-17 08:35:29 +0000 | [diff] [blame] | 1520 | |
| 1521 | /// If called on unreachable code, the above logic may report that the |
| 1522 | /// instruction simplified to itself. Make life easier for users by |
Duncan Sands | f8b1a5e | 2010-12-15 11:02:22 +0000 | [diff] [blame] | 1523 | /// detecting that case here, returning a safe value instead. |
| 1524 | return Result == I ? UndefValue::get(I->getType()) : Result; |
Chris Lattner | e345378 | 2009-11-10 01:08:51 +0000 | [diff] [blame] | 1525 | } |
| 1526 | |
Chris Lattner | 40d8c28 | 2009-11-10 22:26:15 +0000 | [diff] [blame] | 1527 | /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then |
| 1528 | /// delete the From instruction. In addition to a basic RAUW, this does a |
| 1529 | /// recursive simplification of the newly formed instructions. This catches |
| 1530 | /// things where one simplification exposes other opportunities. This only |
| 1531 | /// simplifies and deletes scalar operations, it does not change the CFG. |
| 1532 | /// |
| 1533 | void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, |
Duncan Sands | eff0581 | 2010-11-14 18:36:10 +0000 | [diff] [blame] | 1534 | const TargetData *TD, |
| 1535 | const DominatorTree *DT) { |
Chris Lattner | 40d8c28 | 2009-11-10 22:26:15 +0000 | [diff] [blame] | 1536 | assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1537 | |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1538 | // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that |
| 1539 | // we can know if it gets deleted out from under us or replaced in a |
| 1540 | // recursive simplification. |
Chris Lattner | 40d8c28 | 2009-11-10 22:26:15 +0000 | [diff] [blame] | 1541 | WeakVH FromHandle(From); |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1542 | WeakVH ToHandle(To); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1543 | |
Chris Lattner | 40d8c28 | 2009-11-10 22:26:15 +0000 | [diff] [blame] | 1544 | while (!From->use_empty()) { |
| 1545 | // Update the instruction to use the new value. |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1546 | Use &TheUse = From->use_begin().getUse(); |
| 1547 | Instruction *User = cast<Instruction>(TheUse.getUser()); |
| 1548 | TheUse = To; |
| 1549 | |
| 1550 | // Check to see if the instruction can be folded due to the operand |
| 1551 | // replacement. For example changing (or X, Y) into (or X, -1) can replace |
| 1552 | // the 'or' with -1. |
| 1553 | Value *SimplifiedVal; |
| 1554 | { |
| 1555 | // Sanity check to make sure 'User' doesn't dangle across |
| 1556 | // SimplifyInstruction. |
| 1557 | AssertingVH<> UserHandle(User); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1558 | |
Duncan Sands | eff0581 | 2010-11-14 18:36:10 +0000 | [diff] [blame] | 1559 | SimplifiedVal = SimplifyInstruction(User, TD, DT); |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1560 | if (SimplifiedVal == 0) continue; |
Chris Lattner | 40d8c28 | 2009-11-10 22:26:15 +0000 | [diff] [blame] | 1561 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1562 | |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1563 | // Recursively simplify this user to the new value. |
Duncan Sands | eff0581 | 2010-11-14 18:36:10 +0000 | [diff] [blame] | 1564 | ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT); |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1565 | From = dyn_cast_or_null<Instruction>((Value*)FromHandle); |
| 1566 | To = ToHandle; |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1567 | |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1568 | assert(ToHandle && "To value deleted by recursive simplification?"); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1569 | |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1570 | // If the recursive simplification ended up revisiting and deleting |
| 1571 | // 'From' then we're done. |
| 1572 | if (From == 0) |
| 1573 | return; |
Chris Lattner | 40d8c28 | 2009-11-10 22:26:15 +0000 | [diff] [blame] | 1574 | } |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1575 | |
Chris Lattner | d2bfe54 | 2010-07-15 06:36:08 +0000 | [diff] [blame] | 1576 | // If 'From' has value handles referring to it, do a real RAUW to update them. |
| 1577 | From->replaceAllUsesWith(To); |
Duncan Sands | 12a86f5 | 2010-11-14 11:23:23 +0000 | [diff] [blame] | 1578 | |
Chris Lattner | 40d8c28 | 2009-11-10 22:26:15 +0000 | [diff] [blame] | 1579 | From->eraseFromParent(); |
| 1580 | } |