Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| 2 | "http://www.w3.org/TR/html4/strict.dtd"> |
| 3 | |
| 4 | <html> |
| 5 | <head> |
| 6 | <title>Kaleidoscope: Adding JIT and Optimizer Support</title> |
| 7 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| 8 | <meta name="author" content="Chris Lattner"> |
| 9 | <meta name="author" content="Erick Tryzelaar"> |
| 10 | <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| 11 | </head> |
| 12 | |
| 13 | <body> |
| 14 | |
| 15 | <div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div> |
| 16 | |
| 17 | <ul> |
| 18 | <li><a href="index.html">Up to Tutorial Index</a></li> |
| 19 | <li>Chapter 4 |
| 20 | <ol> |
| 21 | <li><a href="#intro">Chapter 4 Introduction</a></li> |
| 22 | <li><a href="#trivialconstfold">Trivial Constant Folding</a></li> |
| 23 | <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li> |
| 24 | <li><a href="#jit">Adding a JIT Compiler</a></li> |
| 25 | <li><a href="#code">Full Code Listing</a></li> |
| 26 | </ol> |
| 27 | </li> |
| 28 | <li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control |
| 29 | Flow</li> |
| 30 | </ul> |
| 31 | |
| 32 | <div class="doc_author"> |
| 33 | <p> |
| 34 | Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> |
| 35 | and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> |
| 36 | </p> |
| 37 | </div> |
| 38 | |
| 39 | <!-- *********************************************************************** --> |
| 40 | <div class="doc_section"><a name="intro">Chapter 4 Introduction</a></div> |
| 41 | <!-- *********************************************************************** --> |
| 42 | |
| 43 | <div class="doc_text"> |
| 44 | |
| 45 | <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language |
| 46 | with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple |
| 47 | language and added support for generating LLVM IR. This chapter describes |
| 48 | two new techniques: adding optimizer support to your language, and adding JIT |
| 49 | compiler support. These additions will demonstrate how to get nice, efficient code |
| 50 | for the Kaleidoscope language.</p> |
| 51 | |
| 52 | </div> |
| 53 | |
| 54 | <!-- *********************************************************************** --> |
| 55 | <div class="doc_section"><a name="trivialconstfold">Trivial Constant |
| 56 | Folding</a></div> |
| 57 | <!-- *********************************************************************** --> |
| 58 | |
| 59 | <div class="doc_text"> |
| 60 | |
| 61 | <p><b>Note:</b> the ocaml bindings already use <tt>LLVMFoldingBuilder</tt>.<p> |
| 62 | |
| 63 | <p> |
| 64 | Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately, |
| 65 | it does not produce wonderful code. For example, when compiling simple code, |
| 66 | we don't get obvious optimizations:</p> |
| 67 | |
| 68 | <div class="doc_code"> |
| 69 | <pre> |
| 70 | ready> <b>def test(x) 1+2+x;</b> |
| 71 | Read function definition: |
| 72 | define double @test(double %x) { |
| 73 | entry: |
| 74 | %addtmp = add double 1.000000e+00, 2.000000e+00 |
| 75 | %addtmp1 = add double %addtmp, %x |
| 76 | ret double %addtmp1 |
| 77 | } |
| 78 | </pre> |
| 79 | </div> |
| 80 | |
| 81 | <p>This code is a very, very literal transcription of the AST built by parsing |
| 82 | the input. As such, this transcription lacks optimizations like constant folding |
| 83 | (we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other |
| 84 | more important optimizations. Constant folding, in particular, is a very common |
| 85 | and very important optimization: so much so that many language implementors |
| 86 | implement constant folding support in their AST representation.</p> |
| 87 | |
| 88 | <p>With LLVM, you don't need this support in the AST. Since all calls to build |
| 89 | LLVM IR go through the LLVM builder, it would be nice if the builder itself |
| 90 | checked to see if there was a constant folding opportunity when you call it. |
| 91 | If so, it could just do the constant fold and return the constant instead of |
| 92 | creating an instruction. This is exactly what the <tt>LLVMFoldingBuilder</tt> |
| 93 | class does. |
| 94 | |
| 95 | <p>All we did was switch from <tt>LLVMBuilder</tt> to |
| 96 | <tt>LLVMFoldingBuilder</tt>. Though we change no other code, we now have all of our |
| 97 | instructions implicitly constant folded without us having to do anything |
| 98 | about it. For example, the input above now compiles to:</p> |
| 99 | |
| 100 | <div class="doc_code"> |
| 101 | <pre> |
| 102 | ready> <b>def test(x) 1+2+x;</b> |
| 103 | Read function definition: |
| 104 | define double @test(double %x) { |
| 105 | entry: |
| 106 | %addtmp = add double 3.000000e+00, %x |
| 107 | ret double %addtmp |
| 108 | } |
| 109 | </pre> |
| 110 | </div> |
| 111 | |
| 112 | <p>Well, that was easy :). In practice, we recommend always using |
| 113 | <tt>LLVMFoldingBuilder</tt> when generating code like this. It has no |
| 114 | "syntactic overhead" for its use (you don't have to uglify your compiler with |
| 115 | constant checks everywhere) and it can dramatically reduce the amount of |
| 116 | LLVM IR that is generated in some cases (particular for languages with a macro |
| 117 | preprocessor or that use a lot of constants).</p> |
| 118 | |
| 119 | <p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact |
| 120 | that it does all of its analysis inline with the code as it is built. If you |
| 121 | take a slightly more complex example:</p> |
| 122 | |
| 123 | <div class="doc_code"> |
| 124 | <pre> |
| 125 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> |
| 126 | ready> Read function definition: |
| 127 | define double @test(double %x) { |
| 128 | entry: |
| 129 | %addtmp = add double 3.000000e+00, %x |
| 130 | %addtmp1 = add double %x, 3.000000e+00 |
| 131 | %multmp = mul double %addtmp, %addtmp1 |
| 132 | ret double %multmp |
| 133 | } |
| 134 | </pre> |
| 135 | </div> |
| 136 | |
| 137 | <p>In this case, the LHS and RHS of the multiplication are the same value. We'd |
| 138 | really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead |
| 139 | of computing "<tt>x*3</tt>" twice.</p> |
| 140 | |
| 141 | <p>Unfortunately, no amount of local analysis will be able to detect and correct |
| 142 | this. This requires two transformations: reassociation of expressions (to |
| 143 | make the add's lexically identical) and Common Subexpression Elimination (CSE) |
| 144 | to delete the redundant add instruction. Fortunately, LLVM provides a broad |
| 145 | range of optimizations that you can use, in the form of "passes".</p> |
| 146 | |
| 147 | </div> |
| 148 | |
| 149 | <!-- *********************************************************************** --> |
| 150 | <div class="doc_section"><a name="optimizerpasses">LLVM Optimization |
| 151 | Passes</a></div> |
| 152 | <!-- *********************************************************************** --> |
| 153 | |
| 154 | <div class="doc_text"> |
| 155 | |
| 156 | <p>LLVM provides many optimization passes, which do many different sorts of |
| 157 | things and have different tradeoffs. Unlike other systems, LLVM doesn't hold |
| 158 | to the mistaken notion that one set of optimizations is right for all languages |
| 159 | and for all situations. LLVM allows a compiler implementor to make complete |
| 160 | decisions about what optimizations to use, in which order, and in what |
| 161 | situation.</p> |
| 162 | |
| 163 | <p>As a concrete example, LLVM supports both "whole module" passes, which look |
| 164 | across as large of body of code as they can (often a whole file, but if run |
| 165 | at link time, this can be a substantial portion of the whole program). It also |
| 166 | supports and includes "per-function" passes which just operate on a single |
| 167 | function at a time, without looking at other functions. For more information |
| 168 | on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How |
| 169 | to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM |
| 170 | Passes</a>.</p> |
| 171 | |
| 172 | <p>For Kaleidoscope, we are currently generating functions on the fly, one at |
| 173 | a time, as the user types them in. We aren't shooting for the ultimate |
| 174 | optimization experience in this setting, but we also want to catch the easy and |
| 175 | quick stuff where possible. As such, we will choose to run a few per-function |
| 176 | optimizations as the user types the function in. If we wanted to make a "static |
| 177 | Kaleidoscope compiler", we would use exactly the code we have now, except that |
| 178 | we would defer running the optimizer until the entire file has been parsed.</p> |
| 179 | |
| 180 | <p>In order to get per-function optimizations going, we need to set up a |
| 181 | <a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and |
| 182 | organize the LLVM optimizations that we want to run. Once we have that, we can |
| 183 | add a set of optimizations to run. The code looks like this:</p> |
| 184 | |
| 185 | <div class="doc_code"> |
| 186 | <pre> |
| 187 | (* Create the JIT. *) |
| 188 | let the_module_provider = ModuleProvider.create Codegen.the_module in |
| 189 | let the_execution_engine = ExecutionEngine.create the_module_provider in |
| 190 | let the_fpm = PassManager.create_function the_module_provider in |
| 191 | |
| 192 | (* Set up the optimizer pipeline. Start with registering info about how the |
| 193 | * target lays out data structures. *) |
| 194 | TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm; |
| 195 | |
| 196 | (* Do simple "peephole" optimizations and bit-twiddling optzn. *) |
| 197 | add_instruction_combining the_fpm; |
| 198 | |
| 199 | (* reassociate expressions. *) |
| 200 | add_reassociation the_fpm; |
| 201 | |
| 202 | (* Eliminate Common SubExpressions. *) |
| 203 | add_gvn the_fpm; |
| 204 | |
| 205 | (* Simplify the control flow graph (deleting unreachable blocks, etc). *) |
| 206 | add_cfg_simplification the_fpm; |
| 207 | |
| 208 | (* Run the main "interpreter loop" now. *) |
| 209 | Toplevel.main_loop the_fpm the_execution_engine stream; |
| 210 | </pre> |
| 211 | </div> |
| 212 | |
| 213 | <p>This code defines two values, an <tt>Llvm.llmoduleprovider</tt> and a |
| 214 | <tt>Llvm.PassManager.t</tt>. The former is basically a wrapper around our |
| 215 | <tt>Llvm.llmodule</tt> that the <tt>Llvm.PassManager.t</tt> requires. It |
| 216 | provides certain flexibility that we're not going to take advantage of here, |
| 217 | so I won't dive into any details about it.</p> |
| 218 | |
| 219 | <p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>". It |
| 220 | requires a pointer to the <tt>the_module</tt> (through the |
| 221 | <tt>the_module_provider</tt>) to construct itself. Once it is set up, we use a |
| 222 | series of "add" calls to add a bunch of LLVM passes. The first pass is |
| 223 | basically boilerplate, it adds a pass so that later optimizations know how the |
| 224 | data structures in the program are layed out. The |
| 225 | "<tt>the_execution_engine</tt>" variable is related to the JIT, which we will |
| 226 | get to in the next section.</p> |
| 227 | |
| 228 | <p>In this case, we choose to add 4 optimization passes. The passes we chose |
| 229 | here are a pretty standard set of "cleanup" optimizations that are useful for |
| 230 | a wide variety of code. I won't delve into what they do but, believe me, |
| 231 | they are a good starting place :).</p> |
| 232 | |
| 233 | <p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it. |
| 234 | We do this by running it after our newly created function is constructed (in |
| 235 | <tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p> |
| 236 | |
| 237 | <div class="doc_code"> |
| 238 | <pre> |
| 239 | let codegen_func the_fpm = function |
Erick Tryzelaar | 35295ff | 2008-03-31 08:44:50 +0000 | [diff] [blame] | 240 | ... |
Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 241 | try |
| 242 | let ret_val = codegen_expr body in |
| 243 | |
| 244 | (* Finish off the function. *) |
| 245 | let _ = build_ret ret_val builder in |
| 246 | |
| 247 | (* Validate the generated code, checking for consistency. *) |
| 248 | Llvm_analysis.assert_valid_function the_function; |
| 249 | |
| 250 | (* Optimize the function. *) |
| 251 | let _ = PassManager.run_function the_function the_fpm in |
| 252 | |
| 253 | the_function |
| 254 | </pre> |
| 255 | </div> |
| 256 | |
| 257 | <p>As you can see, this is pretty straightforward. The <tt>the_fpm</tt> |
| 258 | optimizes and updates the LLVM Function* in place, improving (hopefully) its |
| 259 | body. With this in place, we can try our test above again:</p> |
| 260 | |
| 261 | <div class="doc_code"> |
| 262 | <pre> |
| 263 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> |
| 264 | ready> Read function definition: |
| 265 | define double @test(double %x) { |
| 266 | entry: |
| 267 | %addtmp = add double %x, 3.000000e+00 |
| 268 | %multmp = mul double %addtmp, %addtmp |
| 269 | ret double %multmp |
| 270 | } |
| 271 | </pre> |
| 272 | </div> |
| 273 | |
| 274 | <p>As expected, we now get our nicely optimized code, saving a floating point |
| 275 | add instruction from every execution of this function.</p> |
| 276 | |
| 277 | <p>LLVM provides a wide variety of optimizations that can be used in certain |
| 278 | circumstances. Some <a href="../Passes.html">documentation about the various |
| 279 | passes</a> is available, but it isn't very complete. Another good source of |
| 280 | ideas can come from looking at the passes that <tt>llvm-gcc</tt> or |
| 281 | <tt>llvm-ld</tt> run to get started. The "<tt>opt</tt>" tool allows you to |
| 282 | experiment with passes from the command line, so you can see if they do |
| 283 | anything.</p> |
| 284 | |
| 285 | <p>Now that we have reasonable code coming out of our front-end, lets talk about |
| 286 | executing it!</p> |
| 287 | |
| 288 | </div> |
| 289 | |
| 290 | <!-- *********************************************************************** --> |
| 291 | <div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div> |
| 292 | <!-- *********************************************************************** --> |
| 293 | |
| 294 | <div class="doc_text"> |
| 295 | |
| 296 | <p>Code that is available in LLVM IR can have a wide variety of tools |
| 297 | applied to it. For example, you can run optimizations on it (as we did above), |
| 298 | you can dump it out in textual or binary forms, you can compile the code to an |
| 299 | assembly file (.s) for some target, or you can JIT compile it. The nice thing |
| 300 | about the LLVM IR representation is that it is the "common currency" between |
| 301 | many different parts of the compiler. |
| 302 | </p> |
| 303 | |
| 304 | <p>In this section, we'll add JIT compiler support to our interpreter. The |
| 305 | basic idea that we want for Kaleidoscope is to have the user enter function |
| 306 | bodies as they do now, but immediately evaluate the top-level expressions they |
| 307 | type in. For example, if they type in "1 + 2;", we should evaluate and print |
| 308 | out 3. If they define a function, they should be able to call it from the |
| 309 | command line.</p> |
| 310 | |
| 311 | <p>In order to do this, we first declare and initialize the JIT. This is done |
| 312 | by adding a global variable and a call in <tt>main</tt>:</p> |
| 313 | |
| 314 | <div class="doc_code"> |
| 315 | <pre> |
| 316 | ... |
| 317 | let main () = |
| 318 | ... |
Erick Tryzelaar | 35295ff | 2008-03-31 08:44:50 +0000 | [diff] [blame] | 319 | <b>(* Create the JIT. *) |
Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 320 | let the_module_provider = ModuleProvider.create Codegen.the_module in |
Erick Tryzelaar | 35295ff | 2008-03-31 08:44:50 +0000 | [diff] [blame] | 321 | let the_execution_engine = ExecutionEngine.create the_module_provider in</b> |
Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 322 | ... |
| 323 | </pre> |
| 324 | </div> |
| 325 | |
| 326 | <p>This creates an abstract "Execution Engine" which can be either a JIT |
| 327 | compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler |
| 328 | for you if one is available for your platform, otherwise it will fall back to |
| 329 | the interpreter.</p> |
| 330 | |
| 331 | <p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT |
| 332 | is ready to be used. There are a variety of APIs that are useful, but the |
| 333 | simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>" |
| 334 | function. This method JIT compiles the specified LLVM Function and returns a |
| 335 | function pointer to the generated machine code. In our case, this means that we |
| 336 | can change the code that parses a top-level expression to look like this:</p> |
| 337 | |
| 338 | <div class="doc_code"> |
| 339 | <pre> |
| 340 | (* Evaluate a top-level expression into an anonymous function. *) |
| 341 | let e = Parser.parse_toplevel stream in |
| 342 | print_endline "parsed a top-level expr"; |
| 343 | let the_function = Codegen.codegen_func the_fpm e in |
| 344 | dump_value the_function; |
| 345 | |
| 346 | (* JIT the function, returning a function pointer. *) |
| 347 | let result = ExecutionEngine.run_function the_function [||] |
| 348 | the_execution_engine in |
| 349 | |
| 350 | print_string "Evaluated to "; |
| 351 | print_float (GenericValue.as_float double_type result); |
| 352 | print_newline (); |
| 353 | </pre> |
| 354 | </div> |
| 355 | |
| 356 | <p>Recall that we compile top-level expressions into a self-contained LLVM |
| 357 | function that takes no arguments and returns the computed double. Because the |
| 358 | LLVM JIT compiler matches the native platform ABI, this means that you can just |
| 359 | cast the result pointer to a function pointer of that type and call it directly. |
| 360 | This means, there is no difference between JIT compiled code and native machine |
| 361 | code that is statically linked into your application.</p> |
| 362 | |
| 363 | <p>With just these two changes, lets see how Kaleidoscope works now!</p> |
| 364 | |
| 365 | <div class="doc_code"> |
| 366 | <pre> |
| 367 | ready> <b>4+5;</b> |
| 368 | define double @""() { |
| 369 | entry: |
| 370 | ret double 9.000000e+00 |
| 371 | } |
| 372 | |
| 373 | <em>Evaluated to 9.000000</em> |
| 374 | </pre> |
| 375 | </div> |
| 376 | |
| 377 | <p>Well this looks like it is basically working. The dump of the function |
| 378 | shows the "no argument function that always returns double" that we synthesize |
| 379 | for each top level expression that is typed in. This demonstrates very basic |
| 380 | functionality, but can we do more?</p> |
| 381 | |
| 382 | <div class="doc_code"> |
| 383 | <pre> |
| 384 | ready> <b>def testfunc(x y) x + y*2; </b> |
| 385 | Read function definition: |
| 386 | define double @testfunc(double %x, double %y) { |
| 387 | entry: |
| 388 | %multmp = mul double %y, 2.000000e+00 |
| 389 | %addtmp = add double %multmp, %x |
| 390 | ret double %addtmp |
| 391 | } |
| 392 | |
| 393 | ready> <b>testfunc(4, 10);</b> |
| 394 | define double @""() { |
| 395 | entry: |
| 396 | %calltmp = call double @testfunc( double 4.000000e+00, double 1.000000e+01 ) |
| 397 | ret double %calltmp |
| 398 | } |
| 399 | |
| 400 | <em>Evaluated to 24.000000</em> |
| 401 | </pre> |
| 402 | </div> |
| 403 | |
| 404 | <p>This illustrates that we can now call user code, but there is something a bit |
| 405 | subtle going on here. Note that we only invoke the JIT on the anonymous |
| 406 | functions that <em>call testfunc</em>, but we never invoked it on <em>testfunc |
| 407 | </em>itself.</p> |
| 408 | |
| 409 | <p>What actually happened here is that the anonymous function was JIT'd when |
| 410 | requested. When the Kaleidoscope app calls through the function pointer that is |
| 411 | returned, the anonymous function starts executing. It ends up making the call |
| 412 | to the "testfunc" function, and ends up in a stub that invokes the JIT, lazily, |
| 413 | on testfunc. Once the JIT finishes lazily compiling testfunc, |
| 414 | it returns and the code re-executes the call.</p> |
| 415 | |
| 416 | <p>In summary, the JIT will lazily JIT code, on the fly, as it is needed. The |
| 417 | JIT provides a number of other more advanced interfaces for things like freeing |
| 418 | allocated machine code, rejit'ing functions to update them, etc. However, even |
| 419 | with this simple code, we get some surprisingly powerful capabilities - check |
| 420 | this out (I removed the dump of the anonymous functions, you should get the idea |
| 421 | by now :) :</p> |
| 422 | |
| 423 | <div class="doc_code"> |
| 424 | <pre> |
| 425 | ready> <b>extern sin(x);</b> |
| 426 | Read extern: |
| 427 | declare double @sin(double) |
| 428 | |
| 429 | ready> <b>extern cos(x);</b> |
| 430 | Read extern: |
| 431 | declare double @cos(double) |
| 432 | |
| 433 | ready> <b>sin(1.0);</b> |
| 434 | <em>Evaluated to 0.841471</em> |
| 435 | |
| 436 | ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b> |
| 437 | Read function definition: |
| 438 | define double @foo(double %x) { |
| 439 | entry: |
| 440 | %calltmp = call double @sin( double %x ) |
| 441 | %multmp = mul double %calltmp, %calltmp |
| 442 | %calltmp2 = call double @cos( double %x ) |
| 443 | %multmp4 = mul double %calltmp2, %calltmp2 |
| 444 | %addtmp = add double %multmp, %multmp4 |
| 445 | ret double %addtmp |
| 446 | } |
| 447 | |
| 448 | ready> <b>foo(4.0);</b> |
| 449 | <em>Evaluated to 1.000000</em> |
| 450 | </pre> |
| 451 | </div> |
| 452 | |
| 453 | <p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly |
| 454 | simple: in this example, the JIT started execution of a function and got to a |
| 455 | function call. It realized that the function was not yet JIT compiled and |
| 456 | invoked the standard set of routines to resolve the function. In this case, |
| 457 | there is no body defined for the function, so the JIT ended up calling |
| 458 | "<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself. Since |
| 459 | "<tt>sin</tt>" is defined within the JIT's address space, it simply patches up |
| 460 | calls in the module to call the libm version of <tt>sin</tt> directly.</p> |
| 461 | |
| 462 | <p>The LLVM JIT provides a number of interfaces (look in the |
| 463 | <tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions |
| 464 | get resolved. It allows you to establish explicit mappings between IR objects |
| 465 | and addresses (useful for LLVM global variables that you want to map to static |
| 466 | tables, for example), allows you to dynamically decide on the fly based on the |
| 467 | function name, and even allows you to have the JIT abort itself if any lazy |
| 468 | compilation is attempted.</p> |
| 469 | |
| 470 | <p>One interesting application of this is that we can now extend the language |
| 471 | by writing arbitrary C code to implement operations. For example, if we add: |
| 472 | </p> |
| 473 | |
| 474 | <div class="doc_code"> |
| 475 | <pre> |
| 476 | /* putchard - putchar that takes a double and returns 0. */ |
| 477 | extern "C" |
| 478 | double putchard(double X) { |
| 479 | putchar((char)X); |
| 480 | return 0; |
| 481 | } |
| 482 | </pre> |
| 483 | </div> |
| 484 | |
| 485 | <p>Now we can produce simple output to the console by using things like: |
| 486 | "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on |
| 487 | the console (120 is the ASCII code for 'x'). Similar code could be used to |
| 488 | implement file I/O, console input, and many other capabilities in |
| 489 | Kaleidoscope.</p> |
| 490 | |
| 491 | <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At |
| 492 | this point, we can compile a non-Turing-complete programming language, optimize |
| 493 | and JIT compile it in a user-driven way. Next up we'll look into <a |
| 494 | href="OCamlLangImpl5.html">extending the language with control flow |
| 495 | constructs</a>, tackling some interesting LLVM IR issues along the way.</p> |
| 496 | |
| 497 | </div> |
| 498 | |
| 499 | <!-- *********************************************************************** --> |
| 500 | <div class="doc_section"><a name="code">Full Code Listing</a></div> |
| 501 | <!-- *********************************************************************** --> |
| 502 | |
| 503 | <div class="doc_text"> |
| 504 | |
| 505 | <p> |
| 506 | Here is the complete code listing for our running example, enhanced with the |
| 507 | LLVM JIT and optimizer. To build this example, use: |
| 508 | </p> |
| 509 | |
Erick Tryzelaar | 35295ff | 2008-03-31 08:44:50 +0000 | [diff] [blame] | 510 | <div class="doc_code"> |
| 511 | <pre> |
| 512 | # Compile |
| 513 | ocamlbuild toy.byte |
| 514 | # Run |
| 515 | ./toy.byte |
| 516 | </pre> |
| 517 | </div> |
| 518 | |
| 519 | <p>Here is the code:</p> |
| 520 | |
Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 521 | <dl> |
| 522 | <dt>_tags:</dt> |
| 523 | <dd class="doc_code"> |
| 524 | <pre> |
| 525 | <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) |
| 526 | <*.{byte,native}>: g++, use_llvm, use_llvm_analysis |
| 527 | <*.{byte,native}>: use_llvm_executionengine, use_llvm_target |
| 528 | <*.{byte,native}>: use_llvm_scalar_opts, use_bindings |
| 529 | </pre> |
| 530 | </dd> |
| 531 | |
| 532 | <dt>myocamlbuild.ml:</dt> |
| 533 | <dd class="doc_code"> |
| 534 | <pre> |
| 535 | open Ocamlbuild_plugin;; |
| 536 | |
| 537 | ocaml_lib ~extern:true "llvm";; |
| 538 | ocaml_lib ~extern:true "llvm_analysis";; |
| 539 | ocaml_lib ~extern:true "llvm_executionengine";; |
| 540 | ocaml_lib ~extern:true "llvm_target";; |
| 541 | ocaml_lib ~extern:true "llvm_scalar_opts";; |
| 542 | |
| 543 | flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; |
| 544 | dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; |
| 545 | </pre> |
| 546 | </dd> |
| 547 | |
| 548 | <dt>token.ml:</dt> |
| 549 | <dd class="doc_code"> |
| 550 | <pre> |
| 551 | (*===----------------------------------------------------------------------=== |
| 552 | * Lexer Tokens |
| 553 | *===----------------------------------------------------------------------===*) |
| 554 | |
| 555 | (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of |
| 556 | * these others for known things. *) |
| 557 | type token = |
| 558 | (* commands *) |
| 559 | | Def | Extern |
| 560 | |
| 561 | (* primary *) |
| 562 | | Ident of string | Number of float |
| 563 | |
| 564 | (* unknown *) |
| 565 | | Kwd of char |
| 566 | </pre> |
| 567 | </dd> |
| 568 | |
| 569 | <dt>lexer.ml:</dt> |
| 570 | <dd class="doc_code"> |
| 571 | <pre> |
| 572 | (*===----------------------------------------------------------------------=== |
| 573 | * Lexer |
| 574 | *===----------------------------------------------------------------------===*) |
| 575 | |
| 576 | let rec lex = parser |
| 577 | (* Skip any whitespace. *) |
| 578 | | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream |
| 579 | |
| 580 | (* identifier: [a-zA-Z][a-zA-Z0-9] *) |
| 581 | | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> |
| 582 | let buffer = Buffer.create 1 in |
| 583 | Buffer.add_char buffer c; |
| 584 | lex_ident buffer stream |
| 585 | |
| 586 | (* number: [0-9.]+ *) |
| 587 | | [< ' ('0' .. '9' as c); stream >] -> |
| 588 | let buffer = Buffer.create 1 in |
| 589 | Buffer.add_char buffer c; |
| 590 | lex_number buffer stream |
| 591 | |
| 592 | (* Comment until end of line. *) |
| 593 | | [< ' ('#'); stream >] -> |
| 594 | lex_comment stream |
| 595 | |
| 596 | (* Otherwise, just return the character as its ascii value. *) |
| 597 | | [< 'c; stream >] -> |
| 598 | [< 'Token.Kwd c; lex stream >] |
| 599 | |
| 600 | (* end of stream. *) |
| 601 | | [< >] -> [< >] |
| 602 | |
| 603 | and lex_number buffer = parser |
| 604 | | [< ' ('0' .. '9' | '.' as c); stream >] -> |
| 605 | Buffer.add_char buffer c; |
| 606 | lex_number buffer stream |
| 607 | | [< stream=lex >] -> |
| 608 | [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] |
| 609 | |
| 610 | and lex_ident buffer = parser |
| 611 | | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> |
| 612 | Buffer.add_char buffer c; |
| 613 | lex_ident buffer stream |
| 614 | | [< stream=lex >] -> |
| 615 | match Buffer.contents buffer with |
| 616 | | "def" -> [< 'Token.Def; stream >] |
| 617 | | "extern" -> [< 'Token.Extern; stream >] |
| 618 | | id -> [< 'Token.Ident id; stream >] |
| 619 | |
| 620 | and lex_comment = parser |
| 621 | | [< ' ('\n'); stream=lex >] -> stream |
| 622 | | [< 'c; e=lex_comment >] -> e |
| 623 | | [< >] -> [< >] |
| 624 | </pre> |
| 625 | </dd> |
| 626 | |
| 627 | <dt>ast.ml:</dt> |
| 628 | <dd class="doc_code"> |
| 629 | <pre> |
| 630 | (*===----------------------------------------------------------------------=== |
| 631 | * Abstract Syntax Tree (aka Parse Tree) |
| 632 | *===----------------------------------------------------------------------===*) |
| 633 | |
| 634 | (* expr - Base type for all expression nodes. *) |
| 635 | type expr = |
| 636 | (* variant for numeric literals like "1.0". *) |
| 637 | | Number of float |
| 638 | |
| 639 | (* variant for referencing a variable, like "a". *) |
| 640 | | Variable of string |
| 641 | |
| 642 | (* variant for a binary operator. *) |
| 643 | | Binary of char * expr * expr |
| 644 | |
| 645 | (* variant for function calls. *) |
| 646 | | Call of string * expr array |
| 647 | |
| 648 | (* proto - This type represents the "prototype" for a function, which captures |
| 649 | * its name, and its argument names (thus implicitly the number of arguments the |
| 650 | * function takes). *) |
| 651 | type proto = Prototype of string * string array |
| 652 | |
| 653 | (* func - This type represents a function definition itself. *) |
| 654 | type func = Function of proto * expr |
| 655 | </pre> |
| 656 | </dd> |
| 657 | |
| 658 | <dt>parser.ml:</dt> |
| 659 | <dd class="doc_code"> |
| 660 | <pre> |
| 661 | (*===---------------------------------------------------------------------=== |
| 662 | * Parser |
| 663 | *===---------------------------------------------------------------------===*) |
| 664 | |
| 665 | (* binop_precedence - This holds the precedence for each binary operator that is |
| 666 | * defined *) |
| 667 | let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 |
| 668 | |
| 669 | (* precedence - Get the precedence of the pending binary operator token. *) |
| 670 | let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 |
| 671 | |
| 672 | (* primary |
| 673 | * ::= identifier |
| 674 | * ::= numberexpr |
| 675 | * ::= parenexpr *) |
| 676 | let rec parse_primary = parser |
| 677 | (* numberexpr ::= number *) |
| 678 | | [< 'Token.Number n >] -> Ast.Number n |
| 679 | |
| 680 | (* parenexpr ::= '(' expression ')' *) |
| 681 | | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e |
| 682 | |
| 683 | (* identifierexpr |
| 684 | * ::= identifier |
| 685 | * ::= identifier '(' argumentexpr ')' *) |
| 686 | | [< 'Token.Ident id; stream >] -> |
| 687 | let rec parse_args accumulator = parser |
| 688 | | [< e=parse_expr; stream >] -> |
| 689 | begin parser |
| 690 | | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e |
| 691 | | [< >] -> e :: accumulator |
| 692 | end stream |
| 693 | | [< >] -> accumulator |
| 694 | in |
| 695 | let rec parse_ident id = parser |
| 696 | (* Call. *) |
| 697 | | [< 'Token.Kwd '('; |
| 698 | args=parse_args []; |
| 699 | 'Token.Kwd ')' ?? "expected ')'">] -> |
| 700 | Ast.Call (id, Array.of_list (List.rev args)) |
| 701 | |
| 702 | (* Simple variable ref. *) |
| 703 | | [< >] -> Ast.Variable id |
| 704 | in |
| 705 | parse_ident id stream |
| 706 | |
| 707 | | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") |
| 708 | |
| 709 | (* binoprhs |
| 710 | * ::= ('+' primary)* *) |
| 711 | and parse_bin_rhs expr_prec lhs stream = |
| 712 | match Stream.peek stream with |
| 713 | (* If this is a binop, find its precedence. *) |
| 714 | | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> |
| 715 | let token_prec = precedence c in |
| 716 | |
| 717 | (* If this is a binop that binds at least as tightly as the current binop, |
| 718 | * consume it, otherwise we are done. *) |
| 719 | if token_prec < expr_prec then lhs else begin |
| 720 | (* Eat the binop. *) |
| 721 | Stream.junk stream; |
| 722 | |
| 723 | (* Parse the primary expression after the binary operator. *) |
| 724 | let rhs = parse_primary stream in |
| 725 | |
| 726 | (* Okay, we know this is a binop. *) |
| 727 | let rhs = |
| 728 | match Stream.peek stream with |
| 729 | | Some (Token.Kwd c2) -> |
| 730 | (* If BinOp binds less tightly with rhs than the operator after |
| 731 | * rhs, let the pending operator take rhs as its lhs. *) |
| 732 | let next_prec = precedence c2 in |
| 733 | if token_prec < next_prec |
| 734 | then parse_bin_rhs (token_prec + 1) rhs stream |
| 735 | else rhs |
| 736 | | _ -> rhs |
| 737 | in |
| 738 | |
| 739 | (* Merge lhs/rhs. *) |
| 740 | let lhs = Ast.Binary (c, lhs, rhs) in |
| 741 | parse_bin_rhs expr_prec lhs stream |
| 742 | end |
| 743 | | _ -> lhs |
| 744 | |
| 745 | (* expression |
| 746 | * ::= primary binoprhs *) |
| 747 | and parse_expr = parser |
| 748 | | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream |
| 749 | |
| 750 | (* prototype |
| 751 | * ::= id '(' id* ')' *) |
| 752 | let parse_prototype = |
| 753 | let rec parse_args accumulator = parser |
| 754 | | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e |
| 755 | | [< >] -> accumulator |
| 756 | in |
| 757 | |
| 758 | parser |
| 759 | | [< 'Token.Ident id; |
| 760 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 761 | args=parse_args []; |
| 762 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 763 | (* success. *) |
| 764 | Ast.Prototype (id, Array.of_list (List.rev args)) |
| 765 | |
| 766 | | [< >] -> |
| 767 | raise (Stream.Error "expected function name in prototype") |
| 768 | |
| 769 | (* definition ::= 'def' prototype expression *) |
| 770 | let parse_definition = parser |
| 771 | | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> |
| 772 | Ast.Function (p, e) |
| 773 | |
| 774 | (* toplevelexpr ::= expression *) |
| 775 | let parse_toplevel = parser |
| 776 | | [< e=parse_expr >] -> |
| 777 | (* Make an anonymous proto. *) |
| 778 | Ast.Function (Ast.Prototype ("", [||]), e) |
| 779 | |
| 780 | (* external ::= 'extern' prototype *) |
| 781 | let parse_extern = parser |
| 782 | | [< 'Token.Extern; e=parse_prototype >] -> e |
| 783 | </pre> |
| 784 | </dd> |
| 785 | |
| 786 | <dt>codegen.ml:</dt> |
| 787 | <dd class="doc_code"> |
| 788 | <pre> |
| 789 | (*===----------------------------------------------------------------------=== |
| 790 | * Code Generation |
| 791 | *===----------------------------------------------------------------------===*) |
| 792 | |
| 793 | open Llvm |
| 794 | |
| 795 | exception Error of string |
| 796 | |
| 797 | let the_module = create_module "my cool jit" |
| 798 | let builder = builder () |
| 799 | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 |
| 800 | |
| 801 | let rec codegen_expr = function |
| 802 | | Ast.Number n -> const_float double_type n |
| 803 | | Ast.Variable name -> |
| 804 | (try Hashtbl.find named_values name with |
| 805 | | Not_found -> raise (Error "unknown variable name")) |
| 806 | | Ast.Binary (op, lhs, rhs) -> |
| 807 | let lhs_val = codegen_expr lhs in |
| 808 | let rhs_val = codegen_expr rhs in |
| 809 | begin |
| 810 | match op with |
| 811 | | '+' -> build_add lhs_val rhs_val "addtmp" builder |
| 812 | | '-' -> build_sub lhs_val rhs_val "subtmp" builder |
| 813 | | '*' -> build_mul lhs_val rhs_val "multmp" builder |
| 814 | | '<' -> |
| 815 | (* Convert bool 0/1 to double 0.0 or 1.0 *) |
| 816 | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in |
| 817 | build_uitofp i double_type "booltmp" builder |
| 818 | | _ -> raise (Error "invalid binary operator") |
| 819 | end |
| 820 | | Ast.Call (callee, args) -> |
| 821 | (* Look up the name in the module table. *) |
| 822 | let callee = |
| 823 | match lookup_function callee the_module with |
| 824 | | Some callee -> callee |
| 825 | | None -> raise (Error "unknown function referenced") |
| 826 | in |
| 827 | let params = params callee in |
| 828 | |
| 829 | (* If argument mismatch error. *) |
| 830 | if Array.length params == Array.length args then () else |
| 831 | raise (Error "incorrect # arguments passed"); |
| 832 | let args = Array.map codegen_expr args in |
| 833 | build_call callee args "calltmp" builder |
| 834 | |
| 835 | let codegen_proto = function |
| 836 | | Ast.Prototype (name, args) -> |
| 837 | (* Make the function type: double(double,double) etc. *) |
| 838 | let doubles = Array.make (Array.length args) double_type in |
| 839 | let ft = function_type double_type doubles in |
| 840 | let f = |
| 841 | match lookup_function name the_module with |
| 842 | | None -> declare_function name ft the_module |
| 843 | |
| 844 | (* If 'f' conflicted, there was already something named 'name'. If it |
| 845 | * has a body, don't allow redefinition or reextern. *) |
| 846 | | Some f -> |
| 847 | (* If 'f' already has a body, reject this. *) |
| 848 | if block_begin f <> At_end f then |
| 849 | raise (Error "redefinition of function"); |
| 850 | |
| 851 | (* If 'f' took a different number of arguments, reject. *) |
| 852 | if element_type (type_of f) <> ft then |
| 853 | raise (Error "redefinition of function with different # args"); |
| 854 | f |
| 855 | in |
| 856 | |
| 857 | (* Set names for all arguments. *) |
| 858 | Array.iteri (fun i a -> |
| 859 | let n = args.(i) in |
| 860 | set_value_name n a; |
| 861 | Hashtbl.add named_values n a; |
| 862 | ) (params f); |
| 863 | f |
| 864 | |
| 865 | let codegen_func the_fpm = function |
| 866 | | Ast.Function (proto, body) -> |
| 867 | Hashtbl.clear named_values; |
| 868 | let the_function = codegen_proto proto in |
| 869 | |
| 870 | (* Create a new basic block to start insertion into. *) |
| 871 | let bb = append_block "entry" the_function in |
| 872 | position_at_end bb builder; |
| 873 | |
| 874 | try |
| 875 | let ret_val = codegen_expr body in |
| 876 | |
| 877 | (* Finish off the function. *) |
| 878 | let _ = build_ret ret_val builder in |
| 879 | |
| 880 | (* Validate the generated code, checking for consistency. *) |
| 881 | Llvm_analysis.assert_valid_function the_function; |
| 882 | |
| 883 | (* Optimize the function. *) |
| 884 | let _ = PassManager.run_function the_function the_fpm in |
| 885 | |
| 886 | the_function |
| 887 | with e -> |
| 888 | delete_function the_function; |
| 889 | raise e |
| 890 | </pre> |
| 891 | </dd> |
| 892 | |
| 893 | <dt>toplevel.ml:</dt> |
| 894 | <dd class="doc_code"> |
| 895 | <pre> |
| 896 | (*===----------------------------------------------------------------------=== |
| 897 | * Top-Level parsing and JIT Driver |
| 898 | *===----------------------------------------------------------------------===*) |
| 899 | |
| 900 | open Llvm |
| 901 | open Llvm_executionengine |
| 902 | |
| 903 | (* top ::= definition | external | expression | ';' *) |
| 904 | let rec main_loop the_fpm the_execution_engine stream = |
| 905 | match Stream.peek stream with |
| 906 | | None -> () |
| 907 | |
| 908 | (* ignore top-level semicolons. *) |
| 909 | | Some (Token.Kwd ';') -> |
| 910 | Stream.junk stream; |
| 911 | main_loop the_fpm the_execution_engine stream |
| 912 | |
| 913 | | Some token -> |
| 914 | begin |
| 915 | try match token with |
| 916 | | Token.Def -> |
| 917 | let e = Parser.parse_definition stream in |
| 918 | print_endline "parsed a function definition."; |
| 919 | dump_value (Codegen.codegen_func the_fpm e); |
| 920 | | Token.Extern -> |
| 921 | let e = Parser.parse_extern stream in |
| 922 | print_endline "parsed an extern."; |
| 923 | dump_value (Codegen.codegen_proto e); |
| 924 | | _ -> |
| 925 | (* Evaluate a top-level expression into an anonymous function. *) |
| 926 | let e = Parser.parse_toplevel stream in |
| 927 | print_endline "parsed a top-level expr"; |
| 928 | let the_function = Codegen.codegen_func the_fpm e in |
| 929 | dump_value the_function; |
| 930 | |
| 931 | (* JIT the function, returning a function pointer. *) |
| 932 | let result = ExecutionEngine.run_function the_function [||] |
| 933 | the_execution_engine in |
| 934 | |
| 935 | print_string "Evaluated to "; |
| 936 | print_float (GenericValue.as_float double_type result); |
| 937 | print_newline (); |
| 938 | with Stream.Error s | Codegen.Error s -> |
| 939 | (* Skip token for error recovery. *) |
| 940 | Stream.junk stream; |
| 941 | print_endline s; |
| 942 | end; |
| 943 | print_string "ready> "; flush stdout; |
| 944 | main_loop the_fpm the_execution_engine stream |
| 945 | </pre> |
| 946 | </dd> |
| 947 | |
| 948 | <dt>toy.ml:</dt> |
| 949 | <dd class="doc_code"> |
| 950 | <pre> |
| 951 | (*===----------------------------------------------------------------------=== |
| 952 | * Main driver code. |
| 953 | *===----------------------------------------------------------------------===*) |
| 954 | |
| 955 | open Llvm |
| 956 | open Llvm_executionengine |
| 957 | open Llvm_target |
| 958 | open Llvm_scalar_opts |
| 959 | |
| 960 | let main () = |
| 961 | (* Install standard binary operators. |
| 962 | * 1 is the lowest precedence. *) |
| 963 | Hashtbl.add Parser.binop_precedence '<' 10; |
| 964 | Hashtbl.add Parser.binop_precedence '+' 20; |
| 965 | Hashtbl.add Parser.binop_precedence '-' 20; |
| 966 | Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) |
| 967 | |
| 968 | (* Prime the first token. *) |
| 969 | print_string "ready> "; flush stdout; |
| 970 | let stream = Lexer.lex (Stream.of_channel stdin) in |
| 971 | |
| 972 | (* Create the JIT. *) |
| 973 | let the_module_provider = ModuleProvider.create Codegen.the_module in |
| 974 | let the_execution_engine = ExecutionEngine.create the_module_provider in |
| 975 | let the_fpm = PassManager.create_function the_module_provider in |
| 976 | |
| 977 | (* Set up the optimizer pipeline. Start with registering info about how the |
| 978 | * target lays out data structures. *) |
| 979 | TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm; |
| 980 | |
| 981 | (* Do simple "peephole" optimizations and bit-twiddling optzn. *) |
| 982 | add_instruction_combining the_fpm; |
| 983 | |
| 984 | (* reassociate expressions. *) |
| 985 | add_reassociation the_fpm; |
| 986 | |
| 987 | (* Eliminate Common SubExpressions. *) |
| 988 | add_gvn the_fpm; |
| 989 | |
| 990 | (* Simplify the control flow graph (deleting unreachable blocks, etc). *) |
| 991 | add_cfg_simplification the_fpm; |
| 992 | |
| 993 | (* Run the main "interpreter loop" now. *) |
| 994 | Toplevel.main_loop the_fpm the_execution_engine stream; |
| 995 | |
| 996 | (* Print out all the generated code. *) |
| 997 | dump_module Codegen.the_module |
| 998 | ;; |
| 999 | |
| 1000 | main () |
| 1001 | </pre> |
| 1002 | </dd> |
| 1003 | |
| 1004 | <dt>bindings.c</dt> |
| 1005 | <dd class="doc_code"> |
| 1006 | <pre> |
| 1007 | #include <stdio.h> |
| 1008 | |
| 1009 | /* putchard - putchar that takes a double and returns 0. */ |
| 1010 | extern double putchard(double X) { |
| 1011 | putchar((char)X); |
| 1012 | return 0; |
| 1013 | } |
| 1014 | </pre> |
| 1015 | </dd> |
| 1016 | </dl> |
| 1017 | |
| 1018 | <a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a> |
| 1019 | </div> |
| 1020 | |
| 1021 | <!-- *********************************************************************** --> |
| 1022 | <hr> |
| 1023 | <address> |
| 1024 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| 1025 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| 1026 | <a href="http://validator.w3.org/check/referer"><img |
| 1027 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| 1028 | |
| 1029 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| 1030 | <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br> |
| 1031 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| 1032 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ |
| 1033 | </address> |
| 1034 | </body> |
| 1035 | </html> |