blob: 016fe396e7d3c5bf4628e49ad99b02e18540bff7 [file] [log] [blame]
Sebastian Popad434992012-10-11 07:32:34 +00001//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an (incomplete) implementation of the approach
12// described in
13//
14// Practical Dependence Testing
15// Goff, Kennedy, Tseng
16// PLDI 1991
17//
18// There's a single entry point that analyzes the dependence between a pair
19// of memory references in a function, returning either NULL, for no dependence,
20// or a more-or-less detailed description of the dependence between them.
21//
22// Currently, the implementation cannot propagate constraints between
23// coupled RDIV subscripts and lacks a multi-subscript MIV test.
24// Both of these are conservative weaknesses;
25// that is, not a source of correctness problems.
26//
27// The implementation depends on the GEP instruction to
28// differentiate subscripts. Since Clang linearizes subscripts
29// for most arrays, we give up some precision (though the existing MIV tests
30// will help). We trust that the GEP instruction will eventually be extended.
31// In the meantime, we should explore Maslov's ideas about delinearization.
32//
33// We should pay some careful attention to the possibility of integer overflow
34// in the implementation of the various tests. This could happen with Add,
35// Subtract, or Multiply, with both APInt's and SCEV's.
36//
37// Some non-linear subscript pairs can be handled by the GCD test
38// (and perhaps other tests).
39// Should explore how often these things occur.
40//
41// Finally, it seems like certain test cases expose weaknesses in the SCEV
42// simplification, especially in the handling of sign and zero extensions.
43// It could be useful to spend time exploring these.
44//
45// Please note that this is work in progress and the interface is subject to
46// change.
47//
48//===----------------------------------------------------------------------===//
49// //
50// In memory of Ken Kennedy, 1945 - 2007 //
51// //
52//===----------------------------------------------------------------------===//
53
54#define DEBUG_TYPE "da"
55
56#include "llvm/Analysis/DependenceAnalysis.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/Instructions.h"
59#include "llvm/Operator.h"
60#include "llvm/Analysis/ValueTracking.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/InstIterator.h"
64
65using namespace llvm;
66
67//===----------------------------------------------------------------------===//
68// statistics
69
70STATISTIC(TotalArrayPairs, "Array pairs tested");
71STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
72STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
73STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
74STATISTIC(ZIVapplications, "ZIV applications");
75STATISTIC(ZIVindependence, "ZIV independence");
76STATISTIC(StrongSIVapplications, "Strong SIV applications");
77STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
78STATISTIC(StrongSIVindependence, "Strong SIV independence");
79STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
80STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
81STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
82STATISTIC(ExactSIVapplications, "Exact SIV applications");
83STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
84STATISTIC(ExactSIVindependence, "Exact SIV independence");
85STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
86STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
87STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
88STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
89STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
90STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
91STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
92STATISTIC(DeltaApplications, "Delta applications");
93STATISTIC(DeltaSuccesses, "Delta successes");
94STATISTIC(DeltaIndependence, "Delta independence");
95STATISTIC(DeltaPropagations, "Delta propagations");
96STATISTIC(GCDapplications, "GCD applications");
97STATISTIC(GCDsuccesses, "GCD successes");
98STATISTIC(GCDindependence, "GCD independence");
99STATISTIC(BanerjeeApplications, "Banerjee applications");
100STATISTIC(BanerjeeIndependence, "Banerjee independence");
101STATISTIC(BanerjeeSuccesses, "Banerjee successes");
102
103//===----------------------------------------------------------------------===//
104// basics
105
106INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
107 "Dependence Analysis", true, true)
108INITIALIZE_PASS_DEPENDENCY(LoopInfo)
109INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
110INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
111INITIALIZE_PASS_END(DependenceAnalysis, "da",
112 "Dependence Analysis", true, true)
113
114char DependenceAnalysis::ID = 0;
115
116
117FunctionPass *llvm::createDependenceAnalysisPass() {
118 return new DependenceAnalysis();
119}
120
121
122bool DependenceAnalysis::runOnFunction(Function &F) {
123 this->F = &F;
124 AA = &getAnalysis<AliasAnalysis>();
125 SE = &getAnalysis<ScalarEvolution>();
126 LI = &getAnalysis<LoopInfo>();
127 return false;
128}
129
130
131void DependenceAnalysis::releaseMemory() {
132}
133
134
135void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
136 AU.setPreservesAll();
137 AU.addRequiredTransitive<AliasAnalysis>();
138 AU.addRequiredTransitive<ScalarEvolution>();
139 AU.addRequiredTransitive<LoopInfo>();
140}
141
142
143// Used to test the dependence analyzer.
144// Looks through the function, noting the first store instruction
145// and the first load instruction
146// (which always follows the first load in our tests).
147// Calls depends() and prints out the result.
148// Ignores all other instructions.
149static
150void dumpExampleDependence(raw_ostream &OS, Function *F,
151 DependenceAnalysis *DA) {
152 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
153 SrcI != SrcE; ++SrcI) {
154 if (const StoreInst *Src = dyn_cast<StoreInst>(&*SrcI)) {
155 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
156 DstI != DstE; ++DstI) {
157 if (const LoadInst *Dst = dyn_cast<LoadInst>(&*DstI)) {
158 OS << "da analyze - ";
159 if (Dependence *D = DA->depends(Src, Dst, true)) {
160 D->dump(OS);
161 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
162 if (D->isSplitable(Level)) {
163 OS << "da analyze - split level = " << Level;
164 OS << ", iteration = " << *DA->getSplitIteration(D, Level);
165 OS << "!\n";
166 }
167 }
168 delete D;
169 }
170 else
171 OS << "none!\n";
172 return;
173 }
174 }
175 }
176 }
177}
178
179
180void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
181 dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
182}
183
184//===----------------------------------------------------------------------===//
185// Dependence methods
186
187// Returns true if this is an input dependence.
188bool Dependence::isInput() const {
189 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
190}
191
192
193// Returns true if this is an output dependence.
194bool Dependence::isOutput() const {
195 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
196}
197
198
199// Returns true if this is an flow (aka true) dependence.
200bool Dependence::isFlow() const {
201 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
202}
203
204
205// Returns true if this is an anti dependence.
206bool Dependence::isAnti() const {
207 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
208}
209
210
211// Returns true if a particular level is scalar; that is,
212// if no subscript in the source or destination mention the induction
213// variable associated with the loop at this level.
214// Leave this out of line, so it will serve as a virtual method anchor
215bool Dependence::isScalar(unsigned level) const {
216 return false;
217}
218
219
220//===----------------------------------------------------------------------===//
221// FullDependence methods
222
223FullDependence::FullDependence(const Instruction *Source,
224 const Instruction *Destination,
225 bool PossiblyLoopIndependent,
226 unsigned CommonLevels) :
227 Dependence(Source, Destination),
228 Levels(CommonLevels),
229 LoopIndependent(PossiblyLoopIndependent) {
230 Consistent = true;
231 DV = CommonLevels ? new DVEntry[CommonLevels] : NULL;
232}
233
234// The rest are simple getters that hide the implementation.
235
236// getDirection - Returns the direction associated with a particular level.
237unsigned FullDependence::getDirection(unsigned Level) const {
238 assert(0 < Level && Level <= Levels && "Level out of range");
239 return DV[Level - 1].Direction;
240}
241
242
243// Returns the distance (or NULL) associated with a particular level.
244const SCEV *FullDependence::getDistance(unsigned Level) const {
245 assert(0 < Level && Level <= Levels && "Level out of range");
246 return DV[Level - 1].Distance;
247}
248
249
250// Returns true if a particular level is scalar; that is,
251// if no subscript in the source or destination mention the induction
252// variable associated with the loop at this level.
253bool FullDependence::isScalar(unsigned Level) const {
254 assert(0 < Level && Level <= Levels && "Level out of range");
255 return DV[Level - 1].Scalar;
256}
257
258
259// Returns true if peeling the first iteration from this loop
260// will break this dependence.
261bool FullDependence::isPeelFirst(unsigned Level) const {
262 assert(0 < Level && Level <= Levels && "Level out of range");
263 return DV[Level - 1].PeelFirst;
264}
265
266
267// Returns true if peeling the last iteration from this loop
268// will break this dependence.
269bool FullDependence::isPeelLast(unsigned Level) const {
270 assert(0 < Level && Level <= Levels && "Level out of range");
271 return DV[Level - 1].PeelLast;
272}
273
274
275// Returns true if splitting this loop will break the dependence.
276bool FullDependence::isSplitable(unsigned Level) const {
277 assert(0 < Level && Level <= Levels && "Level out of range");
278 return DV[Level - 1].Splitable;
279}
280
281
282//===----------------------------------------------------------------------===//
283// DependenceAnalysis::Constraint methods
284
285// If constraint is a point <X, Y>, returns X.
286// Otherwise assert.
287const SCEV *DependenceAnalysis::Constraint::getX() const {
288 assert(Kind == Point && "Kind should be Point");
289 return A;
290}
291
292
293// If constraint is a point <X, Y>, returns Y.
294// Otherwise assert.
295const SCEV *DependenceAnalysis::Constraint::getY() const {
296 assert(Kind == Point && "Kind should be Point");
297 return B;
298}
299
300
301// If constraint is a line AX + BY = C, returns A.
302// Otherwise assert.
303const SCEV *DependenceAnalysis::Constraint::getA() const {
304 assert((Kind == Line || Kind == Distance) &&
305 "Kind should be Line (or Distance)");
306 return A;
307}
308
309
310// If constraint is a line AX + BY = C, returns B.
311// Otherwise assert.
312const SCEV *DependenceAnalysis::Constraint::getB() const {
313 assert((Kind == Line || Kind == Distance) &&
314 "Kind should be Line (or Distance)");
315 return B;
316}
317
318
319// If constraint is a line AX + BY = C, returns C.
320// Otherwise assert.
321const SCEV *DependenceAnalysis::Constraint::getC() const {
322 assert((Kind == Line || Kind == Distance) &&
323 "Kind should be Line (or Distance)");
324 return C;
325}
326
327
328// If constraint is a distance, returns D.
329// Otherwise assert.
330const SCEV *DependenceAnalysis::Constraint::getD() const {
331 assert(Kind == Distance && "Kind should be Distance");
332 return SE->getNegativeSCEV(C);
333}
334
335
336// Returns the loop associated with this constraint.
337const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
338 assert((Kind == Distance || Kind == Line || Kind == Point) &&
339 "Kind should be Distance, Line, or Point");
340 return AssociatedLoop;
341}
342
343
344void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
345 const SCEV *Y,
346 const Loop *CurLoop) {
347 Kind = Point;
348 A = X;
349 B = Y;
350 AssociatedLoop = CurLoop;
351}
352
353
354void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
355 const SCEV *BB,
356 const SCEV *CC,
357 const Loop *CurLoop) {
358 Kind = Line;
359 A = AA;
360 B = BB;
361 C = CC;
362 AssociatedLoop = CurLoop;
363}
364
365
366void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
367 const Loop *CurLoop) {
368 Kind = Distance;
369 A = SE->getConstant(D->getType(), 1);
370 B = SE->getNegativeSCEV(A);
371 C = SE->getNegativeSCEV(D);
372 AssociatedLoop = CurLoop;
373}
374
375
376void DependenceAnalysis::Constraint::setEmpty() {
377 Kind = Empty;
378}
379
380
381void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
382 SE = NewSE;
383 Kind = Any;
384}
385
386
387// For debugging purposes. Dumps the constraint out to OS.
388void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
389 if (isEmpty())
390 OS << " Empty\n";
391 else if (isAny())
392 OS << " Any\n";
393 else if (isPoint())
394 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
395 else if (isDistance())
396 OS << " Distance is " << *getD() <<
397 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
398 else if (isLine())
399 OS << " Line is " << *getA() << "*X + " <<
400 *getB() << "*Y = " << *getC() << "\n";
401 else
402 llvm_unreachable("unknown constraint type in Constraint::dump");
403}
404
405
406// Updates X with the intersection
407// of the Constraints X and Y. Returns true if X has changed.
408// Corresponds to Figure 4 from the paper
409//
410// Practical Dependence Testing
411// Goff, Kennedy, Tseng
412// PLDI 1991
413bool DependenceAnalysis::intersectConstraints(Constraint *X,
414 const Constraint *Y) {
415 ++DeltaApplications;
416 DEBUG(dbgs() << "\tintersect constraints\n");
417 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
418 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
419 assert(!Y->isPoint() && "Y must not be a Point");
420 if (X->isAny()) {
421 if (Y->isAny())
422 return false;
423 *X = *Y;
424 return true;
425 }
426 if (X->isEmpty())
427 return false;
428 if (Y->isEmpty()) {
429 X->setEmpty();
430 return true;
431 }
432
433 if (X->isDistance() && Y->isDistance()) {
434 DEBUG(dbgs() << "\t intersect 2 distances\n");
435 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
436 return false;
437 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
438 X->setEmpty();
439 ++DeltaSuccesses;
440 return true;
441 }
442 // Hmmm, interesting situation.
443 // I guess if either is constant, keep it and ignore the other.
444 if (isa<SCEVConstant>(Y->getD())) {
445 *X = *Y;
446 return true;
447 }
448 return false;
449 }
450
451 // At this point, the pseudo-code in Figure 4 of the paper
452 // checks if (X->isPoint() && Y->isPoint()).
453 // This case can't occur in our implementation,
454 // since a Point can only arise as the result of intersecting
455 // two Line constraints, and the right-hand value, Y, is never
456 // the result of an intersection.
457 assert(!(X->isPoint() && Y->isPoint()) &&
458 "We shouldn't ever see X->isPoint() && Y->isPoint()");
459
460 if (X->isLine() && Y->isLine()) {
461 DEBUG(dbgs() << "\t intersect 2 lines\n");
462 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
463 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
464 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
465 // slopes are equal, so lines are parallel
466 DEBUG(dbgs() << "\t\tsame slope\n");
467 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
468 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
469 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
470 return false;
471 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
472 X->setEmpty();
473 ++DeltaSuccesses;
474 return true;
475 }
476 return false;
477 }
478 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
479 // slopes differ, so lines intersect
480 DEBUG(dbgs() << "\t\tdifferent slopes\n");
481 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
482 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
483 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
484 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
485 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
486 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
487 const SCEVConstant *C1A2_C2A1 =
488 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
489 const SCEVConstant *C1B2_C2B1 =
490 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
491 const SCEVConstant *A1B2_A2B1 =
492 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
493 const SCEVConstant *A2B1_A1B2 =
494 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
495 if (!C1B2_C2B1 || !C1A2_C2A1 ||
496 !A1B2_A2B1 || !A2B1_A1B2)
497 return false;
498 APInt Xtop = C1B2_C2B1->getValue()->getValue();
499 APInt Xbot = A1B2_A2B1->getValue()->getValue();
500 APInt Ytop = C1A2_C2A1->getValue()->getValue();
501 APInt Ybot = A2B1_A1B2->getValue()->getValue();
502 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
503 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
504 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
505 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
506 APInt Xq = Xtop; // these need to be initialized, even
507 APInt Xr = Xtop; // though they're just going to be overwritten
508 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
509 APInt Yq = Ytop;
510 APInt Yr = Ytop;;
511 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
512 if (Xr != 0 || Yr != 0) {
513 X->setEmpty();
514 ++DeltaSuccesses;
515 return true;
516 }
517 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
518 if (Xq.slt(0) || Yq.slt(0)) {
519 X->setEmpty();
520 ++DeltaSuccesses;
521 return true;
522 }
523 if (const SCEVConstant *CUB =
524 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
525 APInt UpperBound = CUB->getValue()->getValue();
526 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
527 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
528 X->setEmpty();
529 ++DeltaSuccesses;
530 return true;
531 }
532 }
533 X->setPoint(SE->getConstant(Xq),
534 SE->getConstant(Yq),
535 X->getAssociatedLoop());
536 ++DeltaSuccesses;
537 return true;
538 }
539 return false;
540 }
541
542 // if (X->isLine() && Y->isPoint()) This case can't occur.
543 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
544
545 if (X->isPoint() && Y->isLine()) {
546 DEBUG(dbgs() << "\t intersect Point and Line\n");
547 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
548 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
549 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
550 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
551 return false;
552 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
553 X->setEmpty();
554 ++DeltaSuccesses;
555 return true;
556 }
557 return false;
558 }
559
560 llvm_unreachable("shouldn't reach the end of Constraint intersection");
561 return false;
562}
563
564
565//===----------------------------------------------------------------------===//
566// DependenceAnalysis methods
567
568// For debugging purposes. Dumps a dependence to OS.
569void Dependence::dump(raw_ostream &OS) const {
570 bool Splitable = false;
571 if (isConfused())
572 OS << "confused";
573 else {
574 if (isConsistent())
575 OS << "consistent ";
576 if (isFlow())
577 OS << "flow";
578 else if (isOutput())
579 OS << "output";
580 else if (isAnti())
581 OS << "anti";
582 else if (isInput())
583 OS << "input";
584 unsigned Levels = getLevels();
585 if (Levels) {
586 OS << " [";
587 for (unsigned II = 1; II <= Levels; ++II) {
588 if (isSplitable(II))
589 Splitable = true;
590 if (isPeelFirst(II))
591 OS << 'p';
592 const SCEV *Distance = getDistance(II);
593 if (Distance)
594 OS << *Distance;
595 else if (isScalar(II))
596 OS << "S";
597 else {
598 unsigned Direction = getDirection(II);
599 if (Direction == DVEntry::ALL)
600 OS << "*";
601 else {
602 if (Direction & DVEntry::LT)
603 OS << "<";
604 if (Direction & DVEntry::EQ)
605 OS << "=";
606 if (Direction & DVEntry::GT)
607 OS << ">";
608 }
609 }
610 if (isPeelLast(II))
611 OS << 'p';
612 if (II < Levels)
613 OS << " ";
614 }
615 if (isLoopIndependent())
616 OS << "|<";
617 OS << "]";
618 if (Splitable)
619 OS << " splitable";
620 }
621 }
622 OS << "!\n";
623}
624
625
626
627static
628AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
629 const Value *A,
630 const Value *B) {
631 const Value *AObj = GetUnderlyingObject(A);
632 const Value *BObj = GetUnderlyingObject(B);
633 return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
634 BObj, AA->getTypeStoreSize(BObj->getType()));
635}
636
637
638// Returns true if the load or store can be analyzed. Atomic and volatile
639// operations have properties which this analysis does not understand.
640static
641bool isLoadOrStore(const Instruction *I) {
642 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
643 return LI->isUnordered();
644 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
645 return SI->isUnordered();
646 return false;
647}
648
649
650static
651const Value *getPointerOperand(const Instruction *I) {
652 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
653 return LI->getPointerOperand();
654 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
655 return SI->getPointerOperand();
656 llvm_unreachable("Value is not load or store instruction");
657 return 0;
658}
659
660
661// Examines the loop nesting of the Src and Dst
662// instructions and establishes their shared loops. Sets the variables
663// CommonLevels, SrcLevels, and MaxLevels.
664// The source and destination instructions needn't be contained in the same
665// loop. The routine establishNestingLevels finds the level of most deeply
666// nested loop that contains them both, CommonLevels. An instruction that's
667// not contained in a loop is at level = 0. MaxLevels is equal to the level
668// of the source plus the level of the destination, minus CommonLevels.
669// This lets us allocate vectors MaxLevels in length, with room for every
670// distinct loop referenced in both the source and destination subscripts.
671// The variable SrcLevels is the nesting depth of the source instruction.
672// It's used to help calculate distinct loops referenced by the destination.
673// Here's the map from loops to levels:
674// 0 - unused
675// 1 - outermost common loop
676// ... - other common loops
677// CommonLevels - innermost common loop
678// ... - loops containing Src but not Dst
679// SrcLevels - innermost loop containing Src but not Dst
680// ... - loops containing Dst but not Src
681// MaxLevels - innermost loops containing Dst but not Src
682// Consider the follow code fragment:
683// for (a = ...) {
684// for (b = ...) {
685// for (c = ...) {
686// for (d = ...) {
687// A[] = ...;
688// }
689// }
690// for (e = ...) {
691// for (f = ...) {
692// for (g = ...) {
693// ... = A[];
694// }
695// }
696// }
697// }
698// }
699// If we're looking at the possibility of a dependence between the store
700// to A (the Src) and the load from A (the Dst), we'll note that they
701// have 2 loops in common, so CommonLevels will equal 2 and the direction
702// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
703// A map from loop names to loop numbers would look like
704// a - 1
705// b - 2 = CommonLevels
706// c - 3
707// d - 4 = SrcLevels
708// e - 5
709// f - 6
710// g - 7 = MaxLevels
711void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
712 const Instruction *Dst) {
713 const BasicBlock *SrcBlock = Src->getParent();
714 const BasicBlock *DstBlock = Dst->getParent();
715 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
716 unsigned DstLevel = LI->getLoopDepth(DstBlock);
717 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
718 const Loop *DstLoop = LI->getLoopFor(DstBlock);
719 SrcLevels = SrcLevel;
720 MaxLevels = SrcLevel + DstLevel;
721 while (SrcLevel > DstLevel) {
722 SrcLoop = SrcLoop->getParentLoop();
723 SrcLevel--;
724 }
725 while (DstLevel > SrcLevel) {
726 DstLoop = DstLoop->getParentLoop();
727 DstLevel--;
728 }
729 while (SrcLoop != DstLoop) {
730 SrcLoop = SrcLoop->getParentLoop();
731 DstLoop = DstLoop->getParentLoop();
732 SrcLevel--;
733 }
734 CommonLevels = SrcLevel;
735 MaxLevels -= CommonLevels;
736}
737
738
739// Given one of the loops containing the source, return
740// its level index in our numbering scheme.
741unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
742 return SrcLoop->getLoopDepth();
743}
744
745
746// Given one of the loops containing the destination,
747// return its level index in our numbering scheme.
748unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
749 unsigned D = DstLoop->getLoopDepth();
750 if (D > CommonLevels)
751 return D - CommonLevels + SrcLevels;
752 else
753 return D;
754}
755
756
757// Returns true if Expression is loop invariant in LoopNest.
758bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
759 const Loop *LoopNest) const {
760 if (!LoopNest)
761 return true;
762 return SE->isLoopInvariant(Expression, LoopNest) &&
763 isLoopInvariant(Expression, LoopNest->getParentLoop());
764}
765
766
767
768// Finds the set of loops from the LoopNest that
769// have a level <= CommonLevels and are referred to by the SCEV Expression.
770void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
771 const Loop *LoopNest,
772 SmallBitVector &Loops) const {
773 while (LoopNest) {
774 unsigned Level = LoopNest->getLoopDepth();
775 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
776 Loops.set(Level);
777 LoopNest = LoopNest->getParentLoop();
778 }
779}
780
781
782// removeMatchingExtensions - Examines a subscript pair.
783// If the source and destination are identically sign (or zero)
784// extended, it strips off the extension in an effect to simplify
785// the actual analysis.
786void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
787 const SCEV *Src = Pair->Src;
788 const SCEV *Dst = Pair->Dst;
789 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
790 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
791 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
792 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
793 if (SrcCast->getType() == DstCast->getType()) {
794 Pair->Src = SrcCast->getOperand();
795 Pair->Dst = DstCast->getOperand();
796 }
797 }
798}
799
800
801// Examine the scev and return true iff it's linear.
802// Collect any loops mentioned in the set of "Loops".
803bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
804 const Loop *LoopNest,
805 SmallBitVector &Loops) {
806 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
807 if (!AddRec)
808 return isLoopInvariant(Src, LoopNest);
809 const SCEV *Start = AddRec->getStart();
810 const SCEV *Step = AddRec->getStepRecurrence(*SE);
811 if (!isLoopInvariant(Step, LoopNest))
812 return false;
813 Loops.set(mapSrcLoop(AddRec->getLoop()));
814 return checkSrcSubscript(Start, LoopNest, Loops);
815}
816
817
818
819// Examine the scev and return true iff it's linear.
820// Collect any loops mentioned in the set of "Loops".
821bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
822 const Loop *LoopNest,
823 SmallBitVector &Loops) {
824 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
825 if (!AddRec)
826 return isLoopInvariant(Dst, LoopNest);
827 const SCEV *Start = AddRec->getStart();
828 const SCEV *Step = AddRec->getStepRecurrence(*SE);
829 if (!isLoopInvariant(Step, LoopNest))
830 return false;
831 Loops.set(mapDstLoop(AddRec->getLoop()));
832 return checkDstSubscript(Start, LoopNest, Loops);
833}
834
835
836// Examines the subscript pair (the Src and Dst SCEVs)
837// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
838// Collects the associated loops in a set.
839DependenceAnalysis::Subscript::ClassificationKind
840DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
841 const SCEV *Dst, const Loop *DstLoopNest,
842 SmallBitVector &Loops) {
843 SmallBitVector SrcLoops(MaxLevels + 1);
844 SmallBitVector DstLoops(MaxLevels + 1);
845 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
846 return Subscript::NonLinear;
847 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
848 return Subscript::NonLinear;
849 Loops = SrcLoops;
850 Loops |= DstLoops;
851 unsigned N = Loops.count();
852 if (N == 0)
853 return Subscript::ZIV;
854 if (N == 1)
855 return Subscript::SIV;
856 if (N == 2 && (SrcLoops.count() == 0 ||
857 DstLoops.count() == 0 ||
858 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
859 return Subscript::RDIV;
860 return Subscript::MIV;
861}
862
863
864// A wrapper around SCEV::isKnownPredicate.
865// Looks for cases where we're interested in comparing for equality.
866// If both X and Y have been identically sign or zero extended,
867// it strips off the (confusing) extensions before invoking
868// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
869// will be similarly updated.
870//
871// If SCEV::isKnownPredicate can't prove the predicate,
872// we try simple subtraction, which seems to help in some cases
873// involving symbolics.
874bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
875 const SCEV *X,
876 const SCEV *Y) const {
877 if (Pred == CmpInst::ICMP_EQ ||
878 Pred == CmpInst::ICMP_NE) {
879 if ((isa<SCEVSignExtendExpr>(X) &&
880 isa<SCEVSignExtendExpr>(Y)) ||
881 (isa<SCEVZeroExtendExpr>(X) &&
882 isa<SCEVZeroExtendExpr>(Y))) {
883 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
884 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
885 const SCEV *Xop = CX->getOperand();
886 const SCEV *Yop = CY->getOperand();
887 if (Xop->getType() == Yop->getType()) {
888 X = Xop;
889 Y = Yop;
890 }
891 }
892 }
893 if (SE->isKnownPredicate(Pred, X, Y))
894 return true;
895 // If SE->isKnownPredicate can't prove the condition,
896 // we try the brute-force approach of subtracting
897 // and testing the difference.
898 // By testing with SE->isKnownPredicate first, we avoid
899 // the possibility of overflow when the arguments are constants.
900 const SCEV *Delta = SE->getMinusSCEV(X, Y);
901 switch (Pred) {
902 case CmpInst::ICMP_EQ:
903 return Delta->isZero();
904 case CmpInst::ICMP_NE:
905 return SE->isKnownNonZero(Delta);
906 case CmpInst::ICMP_SGE:
907 return SE->isKnownNonNegative(Delta);
908 case CmpInst::ICMP_SLE:
909 return SE->isKnownNonPositive(Delta);
910 case CmpInst::ICMP_SGT:
911 return SE->isKnownPositive(Delta);
912 case CmpInst::ICMP_SLT:
913 return SE->isKnownNegative(Delta);
914 default:
915 llvm_unreachable("unexpected predicate in isKnownPredicate");
916 }
917}
918
919
920// All subscripts are all the same type.
921// Loop bound may be smaller (e.g., a char).
922// Should zero extend loop bound, since it's always >= 0.
923// This routine collects upper bound and extends if needed.
924// Return null if no bound available.
925const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
926 Type *T) const {
927 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
928 const SCEV *UB = SE->getBackedgeTakenCount(L);
929 return SE->getNoopOrZeroExtend(UB, T);
930 }
931 return NULL;
932}
933
934
935// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
936// If the cast fails, returns NULL.
937const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
938 Type *T
939 ) const {
940 if (const SCEV *UB = collectUpperBound(L, T))
941 return dyn_cast<SCEVConstant>(UB);
942 return NULL;
943}
944
945
946// testZIV -
947// When we have a pair of subscripts of the form [c1] and [c2],
948// where c1 and c2 are both loop invariant, we attack it using
949// the ZIV test. Basically, we test by comparing the two values,
950// but there are actually three possible results:
951// 1) the values are equal, so there's a dependence
952// 2) the values are different, so there's no dependence
953// 3) the values might be equal, so we have to assume a dependence.
954//
955// Return true if dependence disproved.
956bool DependenceAnalysis::testZIV(const SCEV *Src,
957 const SCEV *Dst,
958 FullDependence &Result) const {
959 DEBUG(dbgs() << " src = " << *Src << "\n");
960 DEBUG(dbgs() << " dst = " << *Dst << "\n");
961 ++ZIVapplications;
962 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
963 DEBUG(dbgs() << " provably dependent\n");
964 return false; // provably dependent
965 }
966 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
967 DEBUG(dbgs() << " provably independent\n");
968 ++ZIVindependence;
969 return true; // provably independent
970 }
971 DEBUG(dbgs() << " possibly dependent\n");
972 Result.Consistent = false;
973 return false; // possibly dependent
974}
975
976
977// strongSIVtest -
978// From the paper, Practical Dependence Testing, Section 4.2.1
979//
980// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
981// where i is an induction variable, c1 and c2 are loop invariant,
982// and a is a constant, we can solve it exactly using the Strong SIV test.
983//
984// Can prove independence. Failing that, can compute distance (and direction).
985// In the presence of symbolic terms, we can sometimes make progress.
986//
987// If there's a dependence,
988//
989// c1 + a*i = c2 + a*i'
990//
991// The dependence distance is
992//
993// d = i' - i = (c1 - c2)/a
994//
995// A dependence only exists if d is an integer and abs(d) <= U, where U is the
996// loop's upper bound. If a dependence exists, the dependence direction is
997// defined as
998//
999// { < if d > 0
1000// direction = { = if d = 0
1001// { > if d < 0
1002//
1003// Return true if dependence disproved.
1004bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1005 const SCEV *SrcConst,
1006 const SCEV *DstConst,
1007 const Loop *CurLoop,
1008 unsigned Level,
1009 FullDependence &Result,
1010 Constraint &NewConstraint) const {
1011 DEBUG(dbgs() << "\tStrong SIV test\n");
1012 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1013 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1014 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1015 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1016 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1017 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1018 ++StrongSIVapplications;
1019 assert(0 < Level && Level <= CommonLevels && "level out of range");
1020 Level--;
1021
1022 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1023 DEBUG(dbgs() << "\t Delta = " << *Delta);
1024 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1025
1026 // check that |Delta| < iteration count
1027 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1028 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1029 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1030 const SCEV *AbsDelta =
1031 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1032 const SCEV *AbsCoeff =
1033 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1034 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1035 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1036 // Distance greater than trip count - no dependence
1037 ++StrongSIVindependence;
1038 ++StrongSIVsuccesses;
1039 return true;
1040 }
1041 }
1042
1043 // Can we compute distance?
1044 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1045 APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1046 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1047 APInt Distance = ConstDelta; // these need to be initialized
1048 APInt Remainder = ConstDelta;
1049 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1050 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1051 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1052 // Make sure Coeff divides Delta exactly
1053 if (Remainder != 0) {
1054 // Coeff doesn't divide Distance, no dependence
1055 ++StrongSIVindependence;
1056 ++StrongSIVsuccesses;
1057 return true;
1058 }
1059 Result.DV[Level].Distance = SE->getConstant(Distance);
1060 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1061 if (Distance.sgt(0))
1062 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1063 else if (Distance.slt(0))
1064 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1065 else
1066 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1067 ++StrongSIVsuccesses;
1068 }
1069 else if (Delta->isZero()) {
1070 // since 0/X == 0
1071 Result.DV[Level].Distance = Delta;
1072 NewConstraint.setDistance(Delta, CurLoop);
1073 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1074 ++StrongSIVsuccesses;
1075 }
1076 else {
1077 if (Coeff->isOne()) {
1078 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1079 Result.DV[Level].Distance = Delta; // since X/1 == X
1080 NewConstraint.setDistance(Delta, CurLoop);
1081 }
1082 else {
1083 Result.Consistent = false;
1084 NewConstraint.setLine(Coeff,
1085 SE->getNegativeSCEV(Coeff),
1086 SE->getNegativeSCEV(Delta), CurLoop);
1087 }
1088
1089 // maybe we can get a useful direction
1090 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1091 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1092 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1093 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1094 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1095 // The double negatives above are confusing.
1096 // It helps to read !SE->isKnownNonZero(Delta)
1097 // as "Delta might be Zero"
1098 unsigned NewDirection = Dependence::DVEntry::NONE;
1099 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1100 (DeltaMaybeNegative && CoeffMaybeNegative))
1101 NewDirection = Dependence::DVEntry::LT;
1102 if (DeltaMaybeZero)
1103 NewDirection |= Dependence::DVEntry::EQ;
1104 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1105 (DeltaMaybePositive && CoeffMaybeNegative))
1106 NewDirection |= Dependence::DVEntry::GT;
1107 if (NewDirection < Result.DV[Level].Direction)
1108 ++StrongSIVsuccesses;
1109 Result.DV[Level].Direction &= NewDirection;
1110 }
1111 return false;
1112}
1113
1114
1115// weakCrossingSIVtest -
1116// From the paper, Practical Dependence Testing, Section 4.2.2
1117//
1118// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1119// where i is an induction variable, c1 and c2 are loop invariant,
1120// and a is a constant, we can solve it exactly using the
1121// Weak-Crossing SIV test.
1122//
1123// Given c1 + a*i = c2 - a*i', we can look for the intersection of
1124// the two lines, where i = i', yielding
1125//
1126// c1 + a*i = c2 - a*i
1127// 2a*i = c2 - c1
1128// i = (c2 - c1)/2a
1129//
1130// If i < 0, there is no dependence.
1131// If i > upperbound, there is no dependence.
1132// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1133// If i = upperbound, there's a dependence with distance = 0.
1134// If i is integral, there's a dependence (all directions).
1135// If the non-integer part = 1/2, there's a dependence (<> directions).
1136// Otherwise, there's no dependence.
1137//
1138// Can prove independence. Failing that,
1139// can sometimes refine the directions.
1140// Can determine iteration for splitting.
1141//
1142// Return true if dependence disproved.
1143bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1144 const SCEV *SrcConst,
1145 const SCEV *DstConst,
1146 const Loop *CurLoop,
1147 unsigned Level,
1148 FullDependence &Result,
1149 Constraint &NewConstraint,
1150 const SCEV *&SplitIter) const {
1151 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1152 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1153 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1154 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1155 ++WeakCrossingSIVapplications;
1156 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1157 Level--;
1158 Result.Consistent = false;
1159 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1160 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1161 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1162 if (Delta->isZero()) {
Sebastian Popb4164282012-10-12 02:04:32 +00001163 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1164 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Popad434992012-10-11 07:32:34 +00001165 ++WeakCrossingSIVsuccesses;
1166 if (!Result.DV[Level].Direction) {
1167 ++WeakCrossingSIVindependence;
1168 return true;
1169 }
1170 Result.DV[Level].Distance = Delta; // = 0
1171 return false;
1172 }
1173 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1174 if (!ConstCoeff)
1175 return false;
1176
1177 Result.DV[Level].Splitable = true;
1178 if (SE->isKnownNegative(ConstCoeff)) {
1179 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1180 assert(ConstCoeff &&
1181 "dynamic cast of negative of ConstCoeff should yield constant");
1182 Delta = SE->getNegativeSCEV(Delta);
1183 }
1184 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1185
1186 // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1187 SplitIter =
1188 SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1189 Delta),
1190 SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1191 ConstCoeff));
1192 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1193
1194 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1195 if (!ConstDelta)
1196 return false;
1197
1198 // We're certain that ConstCoeff > 0; therefore,
1199 // if Delta < 0, then no dependence.
1200 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1201 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1202 if (SE->isKnownNegative(Delta)) {
1203 // No dependence, Delta < 0
1204 ++WeakCrossingSIVindependence;
1205 ++WeakCrossingSIVsuccesses;
1206 return true;
1207 }
1208
1209 // We're certain that Delta > 0 and ConstCoeff > 0.
1210 // Check Delta/(2*ConstCoeff) against upper loop bound
1211 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1212 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1213 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1214 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1215 ConstantTwo);
1216 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1217 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1218 // Delta too big, no dependence
1219 ++WeakCrossingSIVindependence;
1220 ++WeakCrossingSIVsuccesses;
1221 return true;
1222 }
1223 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1224 // i = i' = UB
Sebastian Popb4164282012-10-12 02:04:32 +00001225 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1226 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Popad434992012-10-11 07:32:34 +00001227 ++WeakCrossingSIVsuccesses;
1228 if (!Result.DV[Level].Direction) {
1229 ++WeakCrossingSIVindependence;
1230 return true;
1231 }
1232 Result.DV[Level].Splitable = false;
1233 Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1234 return false;
1235 }
1236 }
1237
1238 // check that Coeff divides Delta
1239 APInt APDelta = ConstDelta->getValue()->getValue();
1240 APInt APCoeff = ConstCoeff->getValue()->getValue();
1241 APInt Distance = APDelta; // these need to be initialzed
1242 APInt Remainder = APDelta;
1243 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1244 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1245 if (Remainder != 0) {
1246 // Coeff doesn't divide Delta, no dependence
1247 ++WeakCrossingSIVindependence;
1248 ++WeakCrossingSIVsuccesses;
1249 return true;
1250 }
1251 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1252
1253 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1254 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1255 Remainder = Distance.srem(Two);
1256 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1257 if (Remainder != 0) {
1258 // Equal direction isn't possible
Sebastian Popb4164282012-10-12 02:04:32 +00001259 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Popad434992012-10-11 07:32:34 +00001260 ++WeakCrossingSIVsuccesses;
1261 }
1262 return false;
1263}
1264
1265
1266// Kirch's algorithm, from
1267//
1268// Optimizing Supercompilers for Supercomputers
1269// Michael Wolfe
1270// MIT Press, 1989
1271//
1272// Program 2.1, page 29.
1273// Computes the GCD of AM and BM.
1274// Also finds a solution to the equation ax - by = gdc(a, b).
1275// Returns true iff the gcd divides Delta.
1276static
1277bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1278 APInt &G, APInt &X, APInt &Y) {
1279 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1280 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1281 APInt G0 = AM.abs();
1282 APInt G1 = BM.abs();
1283 APInt Q = G0; // these need to be initialized
1284 APInt R = G0;
1285 APInt::sdivrem(G0, G1, Q, R);
1286 while (R != 0) {
1287 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1288 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1289 G0 = G1; G1 = R;
1290 APInt::sdivrem(G0, G1, Q, R);
1291 }
1292 G = G1;
1293 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1294 X = AM.slt(0) ? -A1 : A1;
1295 Y = BM.slt(0) ? B1 : -B1;
1296
1297 // make sure gcd divides Delta
1298 R = Delta.srem(G);
1299 if (R != 0)
1300 return true; // gcd doesn't divide Delta, no dependence
1301 Q = Delta.sdiv(G);
1302 X *= Q;
1303 Y *= Q;
1304 return false;
1305}
1306
1307
1308static
1309APInt floorOfQuotient(APInt A, APInt B) {
1310 APInt Q = A; // these need to be initialized
1311 APInt R = A;
1312 APInt::sdivrem(A, B, Q, R);
1313 if (R == 0)
1314 return Q;
1315 if ((A.sgt(0) && B.sgt(0)) ||
1316 (A.slt(0) && B.slt(0)))
1317 return Q;
1318 else
1319 return Q - 1;
1320}
1321
1322
1323static
1324APInt ceilingOfQuotient(APInt A, APInt B) {
1325 APInt Q = A; // these need to be initialized
1326 APInt R = A;
1327 APInt::sdivrem(A, B, Q, R);
1328 if (R == 0)
1329 return Q;
1330 if ((A.sgt(0) && B.sgt(0)) ||
1331 (A.slt(0) && B.slt(0)))
1332 return Q + 1;
1333 else
1334 return Q;
1335}
1336
1337
1338static
1339APInt maxAPInt(APInt A, APInt B) {
1340 return A.sgt(B) ? A : B;
1341}
1342
1343
1344static
1345APInt minAPInt(APInt A, APInt B) {
1346 return A.slt(B) ? A : B;
1347}
1348
1349
1350// exactSIVtest -
1351// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1352// where i is an induction variable, c1 and c2 are loop invariant, and a1
1353// and a2 are constant, we can solve it exactly using an algorithm developed
1354// by Banerjee and Wolfe. See Section 2.5.3 in
1355//
1356// Optimizing Supercompilers for Supercomputers
1357// Michael Wolfe
1358// MIT Press, 1989
1359//
1360// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1361// so use them if possible. They're also a bit better with symbolics and,
1362// in the case of the strong SIV test, can compute Distances.
1363//
1364// Return true if dependence disproved.
1365bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1366 const SCEV *DstCoeff,
1367 const SCEV *SrcConst,
1368 const SCEV *DstConst,
1369 const Loop *CurLoop,
1370 unsigned Level,
1371 FullDependence &Result,
1372 Constraint &NewConstraint) const {
1373 DEBUG(dbgs() << "\tExact SIV test\n");
1374 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1375 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1376 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1377 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1378 ++ExactSIVapplications;
1379 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1380 Level--;
1381 Result.Consistent = false;
1382 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1383 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1384 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1385 Delta, CurLoop);
1386 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1387 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1388 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1389 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1390 return false;
1391
1392 // find gcd
1393 APInt G, X, Y;
1394 APInt AM = ConstSrcCoeff->getValue()->getValue();
1395 APInt BM = ConstDstCoeff->getValue()->getValue();
1396 unsigned Bits = AM.getBitWidth();
1397 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1398 // gcd doesn't divide Delta, no dependence
1399 ++ExactSIVindependence;
1400 ++ExactSIVsuccesses;
1401 return true;
1402 }
1403
1404 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1405
1406 // since SCEV construction normalizes, LM = 0
1407 APInt UM(Bits, 1, true);
1408 bool UMvalid = false;
1409 // UM is perhaps unavailable, let's check
1410 if (const SCEVConstant *CUB =
1411 collectConstantUpperBound(CurLoop, Delta->getType())) {
1412 UM = CUB->getValue()->getValue();
1413 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1414 UMvalid = true;
1415 }
1416
1417 APInt TU(APInt::getSignedMaxValue(Bits));
1418 APInt TL(APInt::getSignedMinValue(Bits));
1419
1420 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1421 APInt TMUL = BM.sdiv(G);
1422 if (TMUL.sgt(0)) {
1423 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1424 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1425 if (UMvalid) {
1426 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1427 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1428 }
1429 }
1430 else {
1431 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1432 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1433 if (UMvalid) {
1434 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1435 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1436 }
1437 }
1438
1439 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1440 TMUL = AM.sdiv(G);
1441 if (TMUL.sgt(0)) {
1442 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1443 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1444 if (UMvalid) {
1445 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1446 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1447 }
1448 }
1449 else {
1450 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1451 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1452 if (UMvalid) {
1453 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1454 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1455 }
1456 }
1457 if (TL.sgt(TU)) {
1458 ++ExactSIVindependence;
1459 ++ExactSIVsuccesses;
1460 return true;
1461 }
1462
1463 // explore directions
1464 unsigned NewDirection = Dependence::DVEntry::NONE;
1465
1466 // less than
1467 APInt SaveTU(TU); // save these
1468 APInt SaveTL(TL);
1469 DEBUG(dbgs() << "\t exploring LT direction\n");
1470 TMUL = AM - BM;
1471 if (TMUL.sgt(0)) {
1472 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1473 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1474 }
1475 else {
1476 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1477 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1478 }
1479 if (TL.sle(TU)) {
1480 NewDirection |= Dependence::DVEntry::LT;
1481 ++ExactSIVsuccesses;
1482 }
1483
1484 // equal
1485 TU = SaveTU; // restore
1486 TL = SaveTL;
1487 DEBUG(dbgs() << "\t exploring EQ direction\n");
1488 if (TMUL.sgt(0)) {
1489 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1490 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1491 }
1492 else {
1493 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1494 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1495 }
1496 TMUL = BM - AM;
1497 if (TMUL.sgt(0)) {
1498 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1499 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1500 }
1501 else {
1502 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1503 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1504 }
1505 if (TL.sle(TU)) {
1506 NewDirection |= Dependence::DVEntry::EQ;
1507 ++ExactSIVsuccesses;
1508 }
1509
1510 // greater than
1511 TU = SaveTU; // restore
1512 TL = SaveTL;
1513 DEBUG(dbgs() << "\t exploring GT direction\n");
1514 if (TMUL.sgt(0)) {
1515 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1516 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1517 }
1518 else {
1519 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1520 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1521 }
1522 if (TL.sle(TU)) {
1523 NewDirection |= Dependence::DVEntry::GT;
1524 ++ExactSIVsuccesses;
1525 }
1526
1527 // finished
1528 Result.DV[Level].Direction &= NewDirection;
1529 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1530 ++ExactSIVindependence;
1531 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1532}
1533
1534
1535
1536// Return true if the divisor evenly divides the dividend.
1537static
1538bool isRemainderZero(const SCEVConstant *Dividend,
1539 const SCEVConstant *Divisor) {
1540 APInt ConstDividend = Dividend->getValue()->getValue();
1541 APInt ConstDivisor = Divisor->getValue()->getValue();
1542 return ConstDividend.srem(ConstDivisor) == 0;
1543}
1544
1545
1546// weakZeroSrcSIVtest -
1547// From the paper, Practical Dependence Testing, Section 4.2.2
1548//
1549// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1550// where i is an induction variable, c1 and c2 are loop invariant,
1551// and a is a constant, we can solve it exactly using the
1552// Weak-Zero SIV test.
1553//
1554// Given
1555//
1556// c1 = c2 + a*i
1557//
1558// we get
1559//
1560// (c1 - c2)/a = i
1561//
1562// If i is not an integer, there's no dependence.
1563// If i < 0 or > UB, there's no dependence.
1564// If i = 0, the direction is <= and peeling the
1565// 1st iteration will break the dependence.
1566// If i = UB, the direction is >= and peeling the
1567// last iteration will break the dependence.
1568// Otherwise, the direction is *.
1569//
1570// Can prove independence. Failing that, we can sometimes refine
1571// the directions. Can sometimes show that first or last
1572// iteration carries all the dependences (so worth peeling).
1573//
1574// (see also weakZeroDstSIVtest)
1575//
1576// Return true if dependence disproved.
1577bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1578 const SCEV *SrcConst,
1579 const SCEV *DstConst,
1580 const Loop *CurLoop,
1581 unsigned Level,
1582 FullDependence &Result,
1583 Constraint &NewConstraint) const {
1584 // For the WeakSIV test, it's possible the loop isn't common to
1585 // the Src and Dst loops. If it isn't, then there's no need to
1586 // record a direction.
1587 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1588 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1589 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1590 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1591 ++WeakZeroSIVapplications;
1592 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1593 Level--;
1594 Result.Consistent = false;
1595 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1596 NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1597 DstCoeff, Delta, CurLoop);
1598 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1599 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1600 if (Level < CommonLevels) {
1601 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1602 Result.DV[Level].PeelFirst = true;
1603 ++WeakZeroSIVsuccesses;
1604 }
1605 return false; // dependences caused by first iteration
1606 }
1607 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1608 if (!ConstCoeff)
1609 return false;
1610 const SCEV *AbsCoeff =
1611 SE->isKnownNegative(ConstCoeff) ?
1612 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1613 const SCEV *NewDelta =
1614 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1615
1616 // check that Delta/SrcCoeff < iteration count
1617 // really check NewDelta < count*AbsCoeff
1618 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1619 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1620 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1621 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1622 ++WeakZeroSIVindependence;
1623 ++WeakZeroSIVsuccesses;
1624 return true;
1625 }
1626 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1627 // dependences caused by last iteration
1628 if (Level < CommonLevels) {
1629 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1630 Result.DV[Level].PeelLast = true;
1631 ++WeakZeroSIVsuccesses;
1632 }
1633 return false;
1634 }
1635 }
1636
1637 // check that Delta/SrcCoeff >= 0
1638 // really check that NewDelta >= 0
1639 if (SE->isKnownNegative(NewDelta)) {
1640 // No dependence, newDelta < 0
1641 ++WeakZeroSIVindependence;
1642 ++WeakZeroSIVsuccesses;
1643 return true;
1644 }
1645
1646 // if SrcCoeff doesn't divide Delta, then no dependence
1647 if (isa<SCEVConstant>(Delta) &&
1648 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1649 ++WeakZeroSIVindependence;
1650 ++WeakZeroSIVsuccesses;
1651 return true;
1652 }
1653 return false;
1654}
1655
1656
1657// weakZeroDstSIVtest -
1658// From the paper, Practical Dependence Testing, Section 4.2.2
1659//
1660// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1661// where i is an induction variable, c1 and c2 are loop invariant,
1662// and a is a constant, we can solve it exactly using the
1663// Weak-Zero SIV test.
1664//
1665// Given
1666//
1667// c1 + a*i = c2
1668//
1669// we get
1670//
1671// i = (c2 - c1)/a
1672//
1673// If i is not an integer, there's no dependence.
1674// If i < 0 or > UB, there's no dependence.
1675// If i = 0, the direction is <= and peeling the
1676// 1st iteration will break the dependence.
1677// If i = UB, the direction is >= and peeling the
1678// last iteration will break the dependence.
1679// Otherwise, the direction is *.
1680//
1681// Can prove independence. Failing that, we can sometimes refine
1682// the directions. Can sometimes show that first or last
1683// iteration carries all the dependences (so worth peeling).
1684//
1685// (see also weakZeroSrcSIVtest)
1686//
1687// Return true if dependence disproved.
1688bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1689 const SCEV *SrcConst,
1690 const SCEV *DstConst,
1691 const Loop *CurLoop,
1692 unsigned Level,
1693 FullDependence &Result,
1694 Constraint &NewConstraint) const {
1695 // For the WeakSIV test, it's possible the loop isn't common to the
1696 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1697 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1698 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1699 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1700 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1701 ++WeakZeroSIVapplications;
1702 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1703 Level--;
1704 Result.Consistent = false;
1705 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1706 NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1707 Delta, CurLoop);
1708 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1709 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1710 if (Level < CommonLevels) {
1711 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1712 Result.DV[Level].PeelFirst = true;
1713 ++WeakZeroSIVsuccesses;
1714 }
1715 return false; // dependences caused by first iteration
1716 }
1717 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1718 if (!ConstCoeff)
1719 return false;
1720 const SCEV *AbsCoeff =
1721 SE->isKnownNegative(ConstCoeff) ?
1722 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1723 const SCEV *NewDelta =
1724 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1725
1726 // check that Delta/SrcCoeff < iteration count
1727 // really check NewDelta < count*AbsCoeff
1728 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1729 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1730 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1731 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1732 ++WeakZeroSIVindependence;
1733 ++WeakZeroSIVsuccesses;
1734 return true;
1735 }
1736 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1737 // dependences caused by last iteration
1738 if (Level < CommonLevels) {
1739 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1740 Result.DV[Level].PeelLast = true;
1741 ++WeakZeroSIVsuccesses;
1742 }
1743 return false;
1744 }
1745 }
1746
1747 // check that Delta/SrcCoeff >= 0
1748 // really check that NewDelta >= 0
1749 if (SE->isKnownNegative(NewDelta)) {
1750 // No dependence, newDelta < 0
1751 ++WeakZeroSIVindependence;
1752 ++WeakZeroSIVsuccesses;
1753 return true;
1754 }
1755
1756 // if SrcCoeff doesn't divide Delta, then no dependence
1757 if (isa<SCEVConstant>(Delta) &&
1758 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1759 ++WeakZeroSIVindependence;
1760 ++WeakZeroSIVsuccesses;
1761 return true;
1762 }
1763 return false;
1764}
1765
1766
1767// exactRDIVtest - Tests the RDIV subscript pair for dependence.
1768// Things of the form [c1 + a*i] and [c2 + b*j],
1769// where i and j are induction variable, c1 and c2 are loop invariant,
1770// and a and b are constants.
1771// Returns true if any possible dependence is disproved.
1772// Marks the result as inconsistant.
1773// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1774bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1775 const SCEV *DstCoeff,
1776 const SCEV *SrcConst,
1777 const SCEV *DstConst,
1778 const Loop *SrcLoop,
1779 const Loop *DstLoop,
1780 FullDependence &Result) const {
1781 DEBUG(dbgs() << "\tExact RDIV test\n");
1782 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1783 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1784 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1785 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1786 ++ExactRDIVapplications;
1787 Result.Consistent = false;
1788 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1789 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1790 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1791 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1792 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1793 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1794 return false;
1795
1796 // find gcd
1797 APInt G, X, Y;
1798 APInt AM = ConstSrcCoeff->getValue()->getValue();
1799 APInt BM = ConstDstCoeff->getValue()->getValue();
1800 unsigned Bits = AM.getBitWidth();
1801 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1802 // gcd doesn't divide Delta, no dependence
1803 ++ExactRDIVindependence;
1804 return true;
1805 }
1806
1807 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1808
1809 // since SCEV construction seems to normalize, LM = 0
1810 APInt SrcUM(Bits, 1, true);
1811 bool SrcUMvalid = false;
1812 // SrcUM is perhaps unavailable, let's check
1813 if (const SCEVConstant *UpperBound =
1814 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1815 SrcUM = UpperBound->getValue()->getValue();
1816 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1817 SrcUMvalid = true;
1818 }
1819
1820 APInt DstUM(Bits, 1, true);
1821 bool DstUMvalid = false;
1822 // UM is perhaps unavailable, let's check
1823 if (const SCEVConstant *UpperBound =
1824 collectConstantUpperBound(DstLoop, Delta->getType())) {
1825 DstUM = UpperBound->getValue()->getValue();
1826 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1827 DstUMvalid = true;
1828 }
1829
1830 APInt TU(APInt::getSignedMaxValue(Bits));
1831 APInt TL(APInt::getSignedMinValue(Bits));
1832
1833 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1834 APInt TMUL = BM.sdiv(G);
1835 if (TMUL.sgt(0)) {
1836 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1837 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1838 if (SrcUMvalid) {
1839 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1840 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1841 }
1842 }
1843 else {
1844 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1845 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1846 if (SrcUMvalid) {
1847 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1848 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1849 }
1850 }
1851
1852 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1853 TMUL = AM.sdiv(G);
1854 if (TMUL.sgt(0)) {
1855 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1856 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1857 if (DstUMvalid) {
1858 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1859 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1860 }
1861 }
1862 else {
1863 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1864 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1865 if (DstUMvalid) {
1866 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1867 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1868 }
1869 }
1870 if (TL.sgt(TU))
1871 ++ExactRDIVindependence;
1872 return TL.sgt(TU);
1873}
1874
1875
1876// symbolicRDIVtest -
1877// In Section 4.5 of the Practical Dependence Testing paper,the authors
1878// introduce a special case of Banerjee's Inequalities (also called the
1879// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1880// particularly cases with symbolics. Since it's only able to disprove
1881// dependence (not compute distances or directions), we'll use it as a
1882// fall back for the other tests.
1883//
1884// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1885// where i and j are induction variables and c1 and c2 are loop invariants,
1886// we can use the symbolic tests to disprove some dependences, serving as a
1887// backup for the RDIV test. Note that i and j can be the same variable,
1888// letting this test serve as a backup for the various SIV tests.
1889//
1890// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1891// 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1892// loop bounds for the i and j loops, respectively. So, ...
1893//
1894// c1 + a1*i = c2 + a2*j
1895// a1*i - a2*j = c2 - c1
1896//
1897// To test for a dependence, we compute c2 - c1 and make sure it's in the
1898// range of the maximum and minimum possible values of a1*i - a2*j.
1899// Considering the signs of a1 and a2, we have 4 possible cases:
1900//
1901// 1) If a1 >= 0 and a2 >= 0, then
1902// a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1903// -a2*N2 <= c2 - c1 <= a1*N1
1904//
1905// 2) If a1 >= 0 and a2 <= 0, then
1906// a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1907// 0 <= c2 - c1 <= a1*N1 - a2*N2
1908//
1909// 3) If a1 <= 0 and a2 >= 0, then
1910// a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1911// a1*N1 - a2*N2 <= c2 - c1 <= 0
1912//
1913// 4) If a1 <= 0 and a2 <= 0, then
1914// a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1915// a1*N1 <= c2 - c1 <= -a2*N2
1916//
1917// return true if dependence disproved
1918bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1919 const SCEV *A2,
1920 const SCEV *C1,
1921 const SCEV *C2,
1922 const Loop *Loop1,
1923 const Loop *Loop2) const {
1924 ++SymbolicRDIVapplications;
1925 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1926 DEBUG(dbgs() << "\t A1 = " << *A1);
1927 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1928 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1929 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1930 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1931 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1932 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1933 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1934 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1935 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1936 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1937 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1938 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1939 if (SE->isKnownNonNegative(A1)) {
1940 if (SE->isKnownNonNegative(A2)) {
1941 // A1 >= 0 && A2 >= 0
1942 if (N1) {
1943 // make sure that c2 - c1 <= a1*N1
1944 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1945 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1946 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1947 ++SymbolicRDIVindependence;
1948 return true;
1949 }
1950 }
1951 if (N2) {
1952 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1953 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1954 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1955 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1956 ++SymbolicRDIVindependence;
1957 return true;
1958 }
1959 }
1960 }
1961 else if (SE->isKnownNonPositive(A2)) {
1962 // a1 >= 0 && a2 <= 0
1963 if (N1 && N2) {
1964 // make sure that c2 - c1 <= a1*N1 - a2*N2
1965 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1966 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1967 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1968 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1969 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1970 ++SymbolicRDIVindependence;
1971 return true;
1972 }
1973 }
1974 // make sure that 0 <= c2 - c1
1975 if (SE->isKnownNegative(C2_C1)) {
1976 ++SymbolicRDIVindependence;
1977 return true;
1978 }
1979 }
1980 }
1981 else if (SE->isKnownNonPositive(A1)) {
1982 if (SE->isKnownNonNegative(A2)) {
1983 // a1 <= 0 && a2 >= 0
1984 if (N1 && N2) {
1985 // make sure that a1*N1 - a2*N2 <= c2 - c1
1986 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1987 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1988 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1989 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1990 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
1991 ++SymbolicRDIVindependence;
1992 return true;
1993 }
1994 }
1995 // make sure that c2 - c1 <= 0
1996 if (SE->isKnownPositive(C2_C1)) {
1997 ++SymbolicRDIVindependence;
1998 return true;
1999 }
2000 }
2001 else if (SE->isKnownNonPositive(A2)) {
2002 // a1 <= 0 && a2 <= 0
2003 if (N1) {
2004 // make sure that a1*N1 <= c2 - c1
2005 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2006 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2007 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2008 ++SymbolicRDIVindependence;
2009 return true;
2010 }
2011 }
2012 if (N2) {
2013 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2014 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2015 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2016 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2017 ++SymbolicRDIVindependence;
2018 return true;
2019 }
2020 }
2021 }
2022 }
2023 return false;
2024}
2025
2026
2027// testSIV -
2028// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2029// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2030// a2 are constant, we attack it with an SIV test. While they can all be
2031// solved with the Exact SIV test, it's worthwhile to use simpler tests when
2032// they apply; they're cheaper and sometimes more precise.
2033//
2034// Return true if dependence disproved.
2035bool DependenceAnalysis::testSIV(const SCEV *Src,
2036 const SCEV *Dst,
2037 unsigned &Level,
2038 FullDependence &Result,
2039 Constraint &NewConstraint,
2040 const SCEV *&SplitIter) const {
2041 DEBUG(dbgs() << " src = " << *Src << "\n");
2042 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2043 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2044 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2045 if (SrcAddRec && DstAddRec) {
2046 const SCEV *SrcConst = SrcAddRec->getStart();
2047 const SCEV *DstConst = DstAddRec->getStart();
2048 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2049 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2050 const Loop *CurLoop = SrcAddRec->getLoop();
2051 assert(CurLoop == DstAddRec->getLoop() &&
2052 "both loops in SIV should be same");
2053 Level = mapSrcLoop(CurLoop);
2054 bool disproven;
2055 if (SrcCoeff == DstCoeff)
2056 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2057 Level, Result, NewConstraint);
2058 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2059 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2060 Level, Result, NewConstraint, SplitIter);
2061 else
2062 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2063 Level, Result, NewConstraint);
2064 return disproven ||
2065 gcdMIVtest(Src, Dst, Result) ||
2066 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2067 }
2068 if (SrcAddRec) {
2069 const SCEV *SrcConst = SrcAddRec->getStart();
2070 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2071 const SCEV *DstConst = Dst;
2072 const Loop *CurLoop = SrcAddRec->getLoop();
2073 Level = mapSrcLoop(CurLoop);
2074 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2075 Level, Result, NewConstraint) ||
2076 gcdMIVtest(Src, Dst, Result);
2077 }
2078 if (DstAddRec) {
2079 const SCEV *DstConst = DstAddRec->getStart();
2080 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2081 const SCEV *SrcConst = Src;
2082 const Loop *CurLoop = DstAddRec->getLoop();
2083 Level = mapDstLoop(CurLoop);
2084 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2085 CurLoop, Level, Result, NewConstraint) ||
2086 gcdMIVtest(Src, Dst, Result);
2087 }
2088 llvm_unreachable("SIV test expected at least one AddRec");
2089 return false;
2090}
2091
2092
2093// testRDIV -
2094// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2095// where i and j are induction variables, c1 and c2 are loop invariant,
2096// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2097// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2098// It doesn't make sense to talk about distance or direction in this case,
2099// so there's no point in making special versions of the Strong SIV test or
2100// the Weak-crossing SIV test.
2101//
2102// With minor algebra, this test can also be used for things like
2103// [c1 + a1*i + a2*j][c2].
2104//
2105// Return true if dependence disproved.
2106bool DependenceAnalysis::testRDIV(const SCEV *Src,
2107 const SCEV *Dst,
2108 FullDependence &Result) const {
2109 // we have 3 possible situations here:
2110 // 1) [a*i + b] and [c*j + d]
2111 // 2) [a*i + c*j + b] and [d]
2112 // 3) [b] and [a*i + c*j + d]
2113 // We need to find what we've got and get organized
2114
2115 const SCEV *SrcConst, *DstConst;
2116 const SCEV *SrcCoeff, *DstCoeff;
2117 const Loop *SrcLoop, *DstLoop;
2118
2119 DEBUG(dbgs() << " src = " << *Src << "\n");
2120 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2121 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2122 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2123 if (SrcAddRec && DstAddRec) {
2124 SrcConst = SrcAddRec->getStart();
2125 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2126 SrcLoop = SrcAddRec->getLoop();
2127 DstConst = DstAddRec->getStart();
2128 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2129 DstLoop = DstAddRec->getLoop();
2130 }
2131 else if (SrcAddRec) {
2132 if (const SCEVAddRecExpr *tmpAddRec =
2133 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2134 SrcConst = tmpAddRec->getStart();
2135 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2136 SrcLoop = tmpAddRec->getLoop();
2137 DstConst = Dst;
2138 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2139 DstLoop = SrcAddRec->getLoop();
2140 }
2141 else
2142 llvm_unreachable("RDIV reached by surprising SCEVs");
2143 }
2144 else if (DstAddRec) {
2145 if (const SCEVAddRecExpr *tmpAddRec =
2146 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2147 DstConst = tmpAddRec->getStart();
2148 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2149 DstLoop = tmpAddRec->getLoop();
2150 SrcConst = Src;
2151 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2152 SrcLoop = DstAddRec->getLoop();
2153 }
2154 else
2155 llvm_unreachable("RDIV reached by surprising SCEVs");
2156 }
2157 else
2158 llvm_unreachable("RDIV expected at least one AddRec");
2159 return exactRDIVtest(SrcCoeff, DstCoeff,
2160 SrcConst, DstConst,
2161 SrcLoop, DstLoop,
2162 Result) ||
2163 gcdMIVtest(Src, Dst, Result) ||
2164 symbolicRDIVtest(SrcCoeff, DstCoeff,
2165 SrcConst, DstConst,
2166 SrcLoop, DstLoop);
2167}
2168
2169
2170// Tests the single-subscript MIV pair (Src and Dst) for dependence.
2171// Return true if dependence disproved.
2172// Can sometimes refine direction vectors.
2173bool DependenceAnalysis::testMIV(const SCEV *Src,
2174 const SCEV *Dst,
2175 const SmallBitVector &Loops,
2176 FullDependence &Result) const {
2177 DEBUG(dbgs() << " src = " << *Src << "\n");
2178 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2179 Result.Consistent = false;
2180 return gcdMIVtest(Src, Dst, Result) ||
2181 banerjeeMIVtest(Src, Dst, Loops, Result);
2182}
2183
2184
2185// Given a product, e.g., 10*X*Y, returns the first constant operand,
2186// in this case 10. If there is no constant part, returns NULL.
2187static
2188const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2189 for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2190 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2191 return Constant;
2192 }
2193 return NULL;
2194}
2195
2196
2197//===----------------------------------------------------------------------===//
2198// gcdMIVtest -
2199// Tests an MIV subscript pair for dependence.
2200// Returns true if any possible dependence is disproved.
2201// Marks the result as inconsistant.
2202// Can sometimes disprove the equal direction for 1 or more loops,
2203// as discussed in Michael Wolfe's book,
2204// High Performance Compilers for Parallel Computing, page 235.
2205//
2206// We spend some effort (code!) to handle cases like
2207// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2208// but M and N are just loop-invariant variables.
2209// This should help us handle linearized subscripts;
2210// also makes this test a useful backup to the various SIV tests.
2211//
2212// It occurs to me that the presence of loop-invariant variables
2213// changes the nature of the test from "greatest common divisor"
2214// to "a common divisor!"
2215bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2216 const SCEV *Dst,
2217 FullDependence &Result) const {
2218 DEBUG(dbgs() << "starting gcd\n");
2219 ++GCDapplications;
2220 unsigned BitWidth = Src->getType()->getIntegerBitWidth();
2221 APInt RunningGCD = APInt::getNullValue(BitWidth);
2222
2223 // Examine Src coefficients.
2224 // Compute running GCD and record source constant.
2225 // Because we're looking for the constant at the end of the chain,
2226 // we can't quit the loop just because the GCD == 1.
2227 const SCEV *Coefficients = Src;
2228 while (const SCEVAddRecExpr *AddRec =
2229 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2230 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2231 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2232 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2233 // If the coefficient is the product of a constant and other stuff,
2234 // we can use the constant in the GCD computation.
2235 Constant = getConstantPart(Product);
2236 if (!Constant)
2237 return false;
2238 APInt ConstCoeff = Constant->getValue()->getValue();
2239 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2240 Coefficients = AddRec->getStart();
2241 }
2242 const SCEV *SrcConst = Coefficients;
2243
2244 // Examine Dst coefficients.
2245 // Compute running GCD and record destination constant.
2246 // Because we're looking for the constant at the end of the chain,
2247 // we can't quit the loop just because the GCD == 1.
2248 Coefficients = Dst;
2249 while (const SCEVAddRecExpr *AddRec =
2250 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2251 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2252 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2253 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2254 // If the coefficient is the product of a constant and other stuff,
2255 // we can use the constant in the GCD computation.
2256 Constant = getConstantPart(Product);
2257 if (!Constant)
2258 return false;
2259 APInt ConstCoeff = Constant->getValue()->getValue();
2260 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2261 Coefficients = AddRec->getStart();
2262 }
2263 const SCEV *DstConst = Coefficients;
2264
2265 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2266 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2267 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2268 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2269 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2270 // If Delta is a sum of products, we may be able to make further progress.
2271 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2272 const SCEV *Operand = Sum->getOperand(Op);
2273 if (isa<SCEVConstant>(Operand)) {
2274 assert(!Constant && "Surprised to find multiple constants");
2275 Constant = cast<SCEVConstant>(Operand);
2276 }
2277 else if (isa<SCEVMulExpr>(Operand)) {
2278 // Search for constant operand to participate in GCD;
2279 // If none found; return false.
2280 const SCEVConstant *ConstOp =
2281 getConstantPart(cast<SCEVMulExpr>(Operand));
2282 APInt ConstOpValue = ConstOp->getValue()->getValue();
2283 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2284 ConstOpValue.abs());
2285 }
2286 else
2287 return false;
2288 }
2289 }
2290 if (!Constant)
2291 return false;
2292 APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2293 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2294 if (ConstDelta == 0)
2295 return false;
2296 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2297 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2298 APInt Remainder = ConstDelta.srem(RunningGCD);
2299 if (Remainder != 0) {
2300 ++GCDindependence;
2301 return true;
2302 }
2303
2304 // Try to disprove equal directions.
2305 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2306 // the code above can't disprove the dependence because the GCD = 1.
2307 // So we consider what happen if i = i' and what happens if j = j'.
2308 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2309 // which is infeasible, so we can disallow the = direction for the i level.
2310 // Setting j = j' doesn't help matters, so we end up with a direction vector
2311 // of [<>, *]
2312 //
2313 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2314 // we need to remember that the constant part is 5 and the RunningGCD should
2315 // be initialized to ExtraGCD = 30.
2316 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2317
2318 bool Improved = false;
2319 Coefficients = Src;
2320 while (const SCEVAddRecExpr *AddRec =
2321 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2322 Coefficients = AddRec->getStart();
2323 const Loop *CurLoop = AddRec->getLoop();
2324 RunningGCD = ExtraGCD;
2325 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2326 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2327 const SCEV *Inner = Src;
2328 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2329 AddRec = cast<SCEVAddRecExpr>(Inner);
2330 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2331 if (CurLoop == AddRec->getLoop())
2332 ; // SrcCoeff == Coeff
2333 else {
2334 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2335 // If the coefficient is the product of a constant and other stuff,
2336 // we can use the constant in the GCD computation.
2337 Constant = getConstantPart(Product);
2338 else
2339 Constant = cast<SCEVConstant>(Coeff);
2340 APInt ConstCoeff = Constant->getValue()->getValue();
2341 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2342 }
2343 Inner = AddRec->getStart();
2344 }
2345 Inner = Dst;
2346 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2347 AddRec = cast<SCEVAddRecExpr>(Inner);
2348 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2349 if (CurLoop == AddRec->getLoop())
2350 DstCoeff = Coeff;
2351 else {
2352 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2353 // If the coefficient is the product of a constant and other stuff,
2354 // we can use the constant in the GCD computation.
2355 Constant = getConstantPart(Product);
2356 else
2357 Constant = cast<SCEVConstant>(Coeff);
2358 APInt ConstCoeff = Constant->getValue()->getValue();
2359 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2360 }
2361 Inner = AddRec->getStart();
2362 }
2363 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2364 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2365 // If the coefficient is the product of a constant and other stuff,
2366 // we can use the constant in the GCD computation.
2367 Constant = getConstantPart(Product);
2368 else if (isa<SCEVConstant>(Delta))
2369 Constant = cast<SCEVConstant>(Delta);
2370 else {
2371 // The difference of the two coefficients might not be a product
2372 // or constant, in which case we give up on this direction.
2373 continue;
2374 }
2375 APInt ConstCoeff = Constant->getValue()->getValue();
2376 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2377 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2378 if (RunningGCD != 0) {
2379 Remainder = ConstDelta.srem(RunningGCD);
2380 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2381 if (Remainder != 0) {
2382 unsigned Level = mapSrcLoop(CurLoop);
Sebastian Popb4164282012-10-12 02:04:32 +00002383 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Popad434992012-10-11 07:32:34 +00002384 Improved = true;
2385 }
2386 }
2387 }
2388 if (Improved)
2389 ++GCDsuccesses;
2390 DEBUG(dbgs() << "all done\n");
2391 return false;
2392}
2393
2394
2395//===----------------------------------------------------------------------===//
2396// banerjeeMIVtest -
2397// Use Banerjee's Inequalities to test an MIV subscript pair.
2398// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2399// Generally follows the discussion in Section 2.5.2 of
2400//
2401// Optimizing Supercompilers for Supercomputers
2402// Michael Wolfe
2403//
2404// The inequalities given on page 25 are simplified in that loops are
2405// normalized so that the lower bound is always 0 and the stride is always 1.
2406// For example, Wolfe gives
2407//
2408// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2409//
2410// where A_k is the coefficient of the kth index in the source subscript,
2411// B_k is the coefficient of the kth index in the destination subscript,
2412// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2413// index, and N_k is the stride of the kth index. Since all loops are normalized
2414// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2415// equation to
2416//
2417// LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2418// = (A^-_k - B_k)^- (U_k - 1) - B_k
2419//
2420// Similar simplifications are possible for the other equations.
2421//
2422// When we can't determine the number of iterations for a loop,
2423// we use NULL as an indicator for the worst case, infinity.
2424// When computing the upper bound, NULL denotes +inf;
2425// for the lower bound, NULL denotes -inf.
2426//
2427// Return true if dependence disproved.
2428bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2429 const SCEV *Dst,
2430 const SmallBitVector &Loops,
2431 FullDependence &Result) const {
2432 DEBUG(dbgs() << "starting Banerjee\n");
2433 ++BanerjeeApplications;
2434 DEBUG(dbgs() << " Src = " << *Src << '\n');
2435 const SCEV *A0;
2436 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2437 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2438 const SCEV *B0;
2439 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2440 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2441 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2442 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2443
2444 // Compute bounds for all the * directions.
2445 DEBUG(dbgs() << "\tBounds[*]\n");
2446 for (unsigned K = 1; K <= MaxLevels; ++K) {
2447 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2448 Bound[K].Direction = Dependence::DVEntry::ALL;
2449 Bound[K].DirSet = Dependence::DVEntry::NONE;
2450 findBoundsALL(A, B, Bound, K);
2451#ifndef NDEBUG
2452 DEBUG(dbgs() << "\t " << K << '\t');
2453 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2454 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2455 else
2456 DEBUG(dbgs() << "-inf\t");
2457 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2458 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2459 else
2460 DEBUG(dbgs() << "+inf\n");
2461#endif
2462 }
2463
2464 // Test the *, *, *, ... case.
2465 bool Disproved = false;
2466 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2467 // Explore the direction vector hierarchy.
2468 unsigned DepthExpanded = 0;
2469 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2470 Loops, DepthExpanded, Delta);
2471 if (NewDeps > 0) {
2472 bool Improved = false;
2473 for (unsigned K = 1; K <= CommonLevels; ++K) {
2474 if (Loops[K]) {
2475 unsigned Old = Result.DV[K - 1].Direction;
2476 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2477 Improved |= Old != Result.DV[K - 1].Direction;
2478 if (!Result.DV[K - 1].Direction) {
2479 Improved = false;
2480 Disproved = true;
2481 break;
2482 }
2483 }
2484 }
2485 if (Improved)
2486 ++BanerjeeSuccesses;
2487 }
2488 else {
2489 ++BanerjeeIndependence;
2490 Disproved = true;
2491 }
2492 }
2493 else {
2494 ++BanerjeeIndependence;
2495 Disproved = true;
2496 }
2497 delete [] Bound;
2498 delete [] A;
2499 delete [] B;
2500 return Disproved;
2501}
2502
2503
2504// Hierarchically expands the direction vector
2505// search space, combining the directions of discovered dependences
2506// in the DirSet field of Bound. Returns the number of distinct
2507// dependences discovered. If the dependence is disproved,
2508// it will return 0.
2509unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2510 CoefficientInfo *A,
2511 CoefficientInfo *B,
2512 BoundInfo *Bound,
2513 const SmallBitVector &Loops,
2514 unsigned &DepthExpanded,
2515 const SCEV *Delta) const {
2516 if (Level > CommonLevels) {
2517 // record result
2518 DEBUG(dbgs() << "\t[");
2519 for (unsigned K = 1; K <= CommonLevels; ++K) {
2520 if (Loops[K]) {
2521 Bound[K].DirSet |= Bound[K].Direction;
2522#ifndef NDEBUG
2523 switch (Bound[K].Direction) {
2524 case Dependence::DVEntry::LT:
2525 DEBUG(dbgs() << " <");
2526 break;
2527 case Dependence::DVEntry::EQ:
2528 DEBUG(dbgs() << " =");
2529 break;
2530 case Dependence::DVEntry::GT:
2531 DEBUG(dbgs() << " >");
2532 break;
2533 case Dependence::DVEntry::ALL:
2534 DEBUG(dbgs() << " *");
2535 break;
2536 default:
2537 llvm_unreachable("unexpected Bound[K].Direction");
2538 }
2539#endif
2540 }
2541 }
2542 DEBUG(dbgs() << " ]\n");
2543 return 1;
2544 }
2545 if (Loops[Level]) {
2546 if (Level > DepthExpanded) {
2547 DepthExpanded = Level;
2548 // compute bounds for <, =, > at current level
2549 findBoundsLT(A, B, Bound, Level);
2550 findBoundsGT(A, B, Bound, Level);
2551 findBoundsEQ(A, B, Bound, Level);
2552#ifndef NDEBUG
2553 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2554 DEBUG(dbgs() << "\t <\t");
2555 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2556 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2557 else
2558 DEBUG(dbgs() << "-inf\t");
2559 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2560 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2561 else
2562 DEBUG(dbgs() << "+inf\n");
2563 DEBUG(dbgs() << "\t =\t");
2564 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2565 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2566 else
2567 DEBUG(dbgs() << "-inf\t");
2568 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2569 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2570 else
2571 DEBUG(dbgs() << "+inf\n");
2572 DEBUG(dbgs() << "\t >\t");
2573 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2574 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2575 else
2576 DEBUG(dbgs() << "-inf\t");
2577 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2578 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2579 else
2580 DEBUG(dbgs() << "+inf\n");
2581#endif
2582 }
2583
2584 unsigned NewDeps = 0;
2585
2586 // test bounds for <, *, *, ...
2587 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2588 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2589 Loops, DepthExpanded, Delta);
2590
2591 // Test bounds for =, *, *, ...
2592 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2593 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2594 Loops, DepthExpanded, Delta);
2595
2596 // test bounds for >, *, *, ...
2597 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2598 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2599 Loops, DepthExpanded, Delta);
2600
2601 Bound[Level].Direction = Dependence::DVEntry::ALL;
2602 return NewDeps;
2603 }
2604 else
2605 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2606}
2607
2608
2609// Returns true iff the current bounds are plausible.
2610bool DependenceAnalysis::testBounds(unsigned char DirKind,
2611 unsigned Level,
2612 BoundInfo *Bound,
2613 const SCEV *Delta) const {
2614 Bound[Level].Direction = DirKind;
2615 if (const SCEV *LowerBound = getLowerBound(Bound))
2616 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2617 return false;
2618 if (const SCEV *UpperBound = getUpperBound(Bound))
2619 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2620 return false;
2621 return true;
2622}
2623
2624
2625// Computes the upper and lower bounds for level K
2626// using the * direction. Records them in Bound.
2627// Wolfe gives the equations
2628//
2629// LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2630// UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2631//
2632// Since we normalize loops, we can simplify these equations to
2633//
2634// LB^*_k = (A^-_k - B^+_k)U_k
2635// UB^*_k = (A^+_k - B^-_k)U_k
2636//
2637// We must be careful to handle the case where the upper bound is unknown.
2638// Note that the lower bound is always <= 0
2639// and the upper bound is always >= 0.
2640void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2641 CoefficientInfo *B,
2642 BoundInfo *Bound,
2643 unsigned K) const {
2644 Bound[K].Lower[Dependence::DVEntry::ALL] = NULL; // Default value = -infinity.
2645 Bound[K].Upper[Dependence::DVEntry::ALL] = NULL; // Default value = +infinity.
2646 if (Bound[K].Iterations) {
2647 Bound[K].Lower[Dependence::DVEntry::ALL] =
2648 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2649 Bound[K].Iterations);
2650 Bound[K].Upper[Dependence::DVEntry::ALL] =
2651 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2652 Bound[K].Iterations);
2653 }
2654 else {
2655 // If the difference is 0, we won't need to know the number of iterations.
2656 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2657 Bound[K].Lower[Dependence::DVEntry::ALL] =
2658 SE->getConstant(A[K].Coeff->getType(), 0);
2659 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2660 Bound[K].Upper[Dependence::DVEntry::ALL] =
2661 SE->getConstant(A[K].Coeff->getType(), 0);
2662 }
2663}
2664
2665
2666// Computes the upper and lower bounds for level K
2667// using the = direction. Records them in Bound.
2668// Wolfe gives the equations
2669//
2670// LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2671// UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2672//
2673// Since we normalize loops, we can simplify these equations to
2674//
2675// LB^=_k = (A_k - B_k)^- U_k
2676// UB^=_k = (A_k - B_k)^+ U_k
2677//
2678// We must be careful to handle the case where the upper bound is unknown.
2679// Note that the lower bound is always <= 0
2680// and the upper bound is always >= 0.
2681void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2682 CoefficientInfo *B,
2683 BoundInfo *Bound,
2684 unsigned K) const {
2685 Bound[K].Lower[Dependence::DVEntry::EQ] = NULL; // Default value = -infinity.
2686 Bound[K].Upper[Dependence::DVEntry::EQ] = NULL; // Default value = +infinity.
2687 if (Bound[K].Iterations) {
2688 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2689 const SCEV *NegativePart = getNegativePart(Delta);
2690 Bound[K].Lower[Dependence::DVEntry::EQ] =
2691 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2692 const SCEV *PositivePart = getPositivePart(Delta);
2693 Bound[K].Upper[Dependence::DVEntry::EQ] =
2694 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2695 }
2696 else {
2697 // If the positive/negative part of the difference is 0,
2698 // we won't need to know the number of iterations.
2699 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2700 const SCEV *NegativePart = getNegativePart(Delta);
2701 if (NegativePart->isZero())
2702 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2703 const SCEV *PositivePart = getPositivePart(Delta);
2704 if (PositivePart->isZero())
2705 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2706 }
2707}
2708
2709
2710// Computes the upper and lower bounds for level K
2711// using the < direction. Records them in Bound.
2712// Wolfe gives the equations
2713//
2714// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2715// UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2716//
2717// Since we normalize loops, we can simplify these equations to
2718//
2719// LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2720// UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2721//
2722// We must be careful to handle the case where the upper bound is unknown.
2723void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2724 CoefficientInfo *B,
2725 BoundInfo *Bound,
2726 unsigned K) const {
2727 Bound[K].Lower[Dependence::DVEntry::LT] = NULL; // Default value = -infinity.
2728 Bound[K].Upper[Dependence::DVEntry::LT] = NULL; // Default value = +infinity.
2729 if (Bound[K].Iterations) {
2730 const SCEV *Iter_1 =
2731 SE->getMinusSCEV(Bound[K].Iterations,
2732 SE->getConstant(Bound[K].Iterations->getType(), 1));
2733 const SCEV *NegPart =
2734 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2735 Bound[K].Lower[Dependence::DVEntry::LT] =
2736 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2737 const SCEV *PosPart =
2738 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2739 Bound[K].Upper[Dependence::DVEntry::LT] =
2740 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2741 }
2742 else {
2743 // If the positive/negative part of the difference is 0,
2744 // we won't need to know the number of iterations.
2745 const SCEV *NegPart =
2746 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2747 if (NegPart->isZero())
2748 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2749 const SCEV *PosPart =
2750 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2751 if (PosPart->isZero())
2752 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2753 }
2754}
2755
2756
2757// Computes the upper and lower bounds for level K
2758// using the > direction. Records them in Bound.
2759// Wolfe gives the equations
2760//
2761// LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2762// UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2763//
2764// Since we normalize loops, we can simplify these equations to
2765//
2766// LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2767// UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2768//
2769// We must be careful to handle the case where the upper bound is unknown.
2770void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2771 CoefficientInfo *B,
2772 BoundInfo *Bound,
2773 unsigned K) const {
2774 Bound[K].Lower[Dependence::DVEntry::GT] = NULL; // Default value = -infinity.
2775 Bound[K].Upper[Dependence::DVEntry::GT] = NULL; // Default value = +infinity.
2776 if (Bound[K].Iterations) {
2777 const SCEV *Iter_1 =
2778 SE->getMinusSCEV(Bound[K].Iterations,
2779 SE->getConstant(Bound[K].Iterations->getType(), 1));
2780 const SCEV *NegPart =
2781 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2782 Bound[K].Lower[Dependence::DVEntry::GT] =
2783 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2784 const SCEV *PosPart =
2785 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2786 Bound[K].Upper[Dependence::DVEntry::GT] =
2787 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2788 }
2789 else {
2790 // If the positive/negative part of the difference is 0,
2791 // we won't need to know the number of iterations.
2792 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2793 if (NegPart->isZero())
2794 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2795 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2796 if (PosPart->isZero())
2797 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2798 }
2799}
2800
2801
2802// X^+ = max(X, 0)
2803const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2804 return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2805}
2806
2807
2808// X^- = min(X, 0)
2809const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2810 return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2811}
2812
2813
2814// Walks through the subscript,
2815// collecting each coefficient, the associated loop bounds,
2816// and recording its positive and negative parts for later use.
2817DependenceAnalysis::CoefficientInfo *
2818DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2819 bool SrcFlag,
2820 const SCEV *&Constant) const {
2821 const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
2822 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2823 for (unsigned K = 1; K <= MaxLevels; ++K) {
2824 CI[K].Coeff = Zero;
2825 CI[K].PosPart = Zero;
2826 CI[K].NegPart = Zero;
2827 CI[K].Iterations = NULL;
2828 }
2829 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2830 const Loop *L = AddRec->getLoop();
2831 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2832 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2833 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2834 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2835 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2836 Subscript = AddRec->getStart();
2837 }
2838 Constant = Subscript;
2839#ifndef NDEBUG
2840 DEBUG(dbgs() << "\tCoefficient Info\n");
2841 for (unsigned K = 1; K <= MaxLevels; ++K) {
2842 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2843 DEBUG(dbgs() << "\tPos Part = ");
2844 DEBUG(dbgs() << *CI[K].PosPart);
2845 DEBUG(dbgs() << "\tNeg Part = ");
2846 DEBUG(dbgs() << *CI[K].NegPart);
2847 DEBUG(dbgs() << "\tUpper Bound = ");
2848 if (CI[K].Iterations)
2849 DEBUG(dbgs() << *CI[K].Iterations);
2850 else
2851 DEBUG(dbgs() << "+inf");
2852 DEBUG(dbgs() << '\n');
2853 }
2854 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2855#endif
2856 return CI;
2857}
2858
2859
2860// Looks through all the bounds info and
2861// computes the lower bound given the current direction settings
2862// at each level. If the lower bound for any level is -inf,
2863// the result is -inf.
2864const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2865 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2866 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2867 if (Bound[K].Lower[Bound[K].Direction])
2868 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2869 else
2870 Sum = NULL;
2871 }
2872 return Sum;
2873}
2874
2875
2876// Looks through all the bounds info and
2877// computes the upper bound given the current direction settings
2878// at each level. If the upper bound at any level is +inf,
2879// the result is +inf.
2880const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2881 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2882 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2883 if (Bound[K].Upper[Bound[K].Direction])
2884 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2885 else
2886 Sum = NULL;
2887 }
2888 return Sum;
2889}
2890
2891
2892//===----------------------------------------------------------------------===//
2893// Constraint manipulation for Delta test.
2894
2895// Given a linear SCEV,
2896// return the coefficient (the step)
2897// corresponding to the specified loop.
2898// If there isn't one, return 0.
2899// For example, given a*i + b*j + c*k, zeroing the coefficient
2900// corresponding to the j loop would yield b.
2901const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2902 const Loop *TargetLoop) const {
2903 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2904 if (!AddRec)
2905 return SE->getConstant(Expr->getType(), 0);
2906 if (AddRec->getLoop() == TargetLoop)
2907 return AddRec->getStepRecurrence(*SE);
2908 return findCoefficient(AddRec->getStart(), TargetLoop);
2909}
2910
2911
2912// Given a linear SCEV,
2913// return the SCEV given by zeroing out the coefficient
2914// corresponding to the specified loop.
2915// For example, given a*i + b*j + c*k, zeroing the coefficient
2916// corresponding to the j loop would yield a*i + c*k.
2917const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2918 const Loop *TargetLoop) const {
2919 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2920 if (!AddRec)
2921 return Expr; // ignore
2922 if (AddRec->getLoop() == TargetLoop)
2923 return AddRec->getStart();
2924 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2925 AddRec->getStepRecurrence(*SE),
2926 AddRec->getLoop(),
2927 AddRec->getNoWrapFlags());
2928}
2929
2930
2931// Given a linear SCEV Expr,
2932// return the SCEV given by adding some Value to the
2933// coefficient corresponding to the specified TargetLoop.
2934// For example, given a*i + b*j + c*k, adding 1 to the coefficient
2935// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2936const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2937 const Loop *TargetLoop,
2938 const SCEV *Value) const {
2939 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2940 if (!AddRec) // create a new addRec
2941 return SE->getAddRecExpr(Expr,
2942 Value,
2943 TargetLoop,
2944 SCEV::FlagAnyWrap); // Worst case, with no info.
2945 if (AddRec->getLoop() == TargetLoop) {
2946 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2947 if (Sum->isZero())
2948 return AddRec->getStart();
2949 return SE->getAddRecExpr(AddRec->getStart(),
2950 Sum,
2951 AddRec->getLoop(),
2952 AddRec->getNoWrapFlags());
2953 }
2954 return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
2955 TargetLoop, Value),
2956 AddRec->getStepRecurrence(*SE),
2957 AddRec->getLoop(),
2958 AddRec->getNoWrapFlags());
2959}
2960
2961
2962// Review the constraints, looking for opportunities
2963// to simplify a subscript pair (Src and Dst).
2964// Return true if some simplification occurs.
2965// If the simplification isn't exact (that is, if it is conservative
2966// in terms of dependence), set consistent to false.
2967// Corresponds to Figure 5 from the paper
2968//
2969// Practical Dependence Testing
2970// Goff, Kennedy, Tseng
2971// PLDI 1991
2972bool DependenceAnalysis::propagate(const SCEV *&Src,
2973 const SCEV *&Dst,
2974 SmallBitVector &Loops,
2975 SmallVector<Constraint, 4> &Constraints,
2976 bool &Consistent) {
2977 bool Result = false;
2978 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2979 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
2980 DEBUG(Constraints[LI].dump(dbgs()));
2981 if (Constraints[LI].isDistance())
2982 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2983 else if (Constraints[LI].isLine())
2984 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2985 else if (Constraints[LI].isPoint())
2986 Result |= propagatePoint(Src, Dst, Constraints[LI]);
2987 }
2988 return Result;
2989}
2990
2991
2992// Attempt to propagate a distance
2993// constraint into a subscript pair (Src and Dst).
2994// Return true if some simplification occurs.
2995// If the simplification isn't exact (that is, if it is conservative
2996// in terms of dependence), set consistent to false.
2997bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
2998 const SCEV *&Dst,
2999 Constraint &CurConstraint,
3000 bool &Consistent) {
3001 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3002 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3003 const SCEV *A_K = findCoefficient(Src, CurLoop);
3004 if (A_K->isZero())
3005 return false;
3006 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3007 Src = SE->getMinusSCEV(Src, DA_K);
3008 Src = zeroCoefficient(Src, CurLoop);
3009 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3010 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3011 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3012 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3013 if (!findCoefficient(Dst, CurLoop)->isZero())
3014 Consistent = false;
3015 return true;
3016}
3017
3018
3019// Attempt to propagate a line
3020// constraint into a subscript pair (Src and Dst).
3021// Return true if some simplification occurs.
3022// If the simplification isn't exact (that is, if it is conservative
3023// in terms of dependence), set consistent to false.
3024bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3025 const SCEV *&Dst,
3026 Constraint &CurConstraint,
3027 bool &Consistent) {
3028 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3029 const SCEV *A = CurConstraint.getA();
3030 const SCEV *B = CurConstraint.getB();
3031 const SCEV *C = CurConstraint.getC();
3032 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3033 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3034 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3035 if (A->isZero()) {
3036 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3037 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3038 if (!Bconst || !Cconst) return false;
3039 APInt Beta = Bconst->getValue()->getValue();
3040 APInt Charlie = Cconst->getValue()->getValue();
3041 APInt CdivB = Charlie.sdiv(Beta);
3042 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3043 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3044 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3045 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3046 Dst = zeroCoefficient(Dst, CurLoop);
3047 if (!findCoefficient(Src, CurLoop)->isZero())
3048 Consistent = false;
3049 }
3050 else if (B->isZero()) {
3051 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3052 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3053 if (!Aconst || !Cconst) return false;
3054 APInt Alpha = Aconst->getValue()->getValue();
3055 APInt Charlie = Cconst->getValue()->getValue();
3056 APInt CdivA = Charlie.sdiv(Alpha);
3057 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3058 const SCEV *A_K = findCoefficient(Src, CurLoop);
3059 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3060 Src = zeroCoefficient(Src, CurLoop);
3061 if (!findCoefficient(Dst, CurLoop)->isZero())
3062 Consistent = false;
3063 }
3064 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3065 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3066 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3067 if (!Aconst || !Cconst) return false;
3068 APInt Alpha = Aconst->getValue()->getValue();
3069 APInt Charlie = Cconst->getValue()->getValue();
3070 APInt CdivA = Charlie.sdiv(Alpha);
3071 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3072 const SCEV *A_K = findCoefficient(Src, CurLoop);
3073 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3074 Src = zeroCoefficient(Src, CurLoop);
3075 Dst = addToCoefficient(Dst, CurLoop, A_K);
3076 if (!findCoefficient(Dst, CurLoop)->isZero())
3077 Consistent = false;
3078 }
3079 else {
3080 // paper is incorrect here, or perhaps just misleading
3081 const SCEV *A_K = findCoefficient(Src, CurLoop);
3082 Src = SE->getMulExpr(Src, A);
3083 Dst = SE->getMulExpr(Dst, A);
3084 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3085 Src = zeroCoefficient(Src, CurLoop);
3086 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3087 if (!findCoefficient(Dst, CurLoop)->isZero())
3088 Consistent = false;
3089 }
3090 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3091 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3092 return true;
3093}
3094
3095
3096// Attempt to propagate a point
3097// constraint into a subscript pair (Src and Dst).
3098// Return true if some simplification occurs.
3099bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3100 const SCEV *&Dst,
3101 Constraint &CurConstraint) {
3102 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3103 const SCEV *A_K = findCoefficient(Src, CurLoop);
3104 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3105 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3106 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3107 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3108 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3109 Src = zeroCoefficient(Src, CurLoop);
3110 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3111 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3112 Dst = zeroCoefficient(Dst, CurLoop);
3113 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3114 return true;
3115}
3116
3117
3118// Update direction vector entry based on the current constraint.
3119void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3120 const Constraint &CurConstraint
3121 ) const {
3122 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3123 DEBUG(CurConstraint.dump(dbgs()));
3124 if (CurConstraint.isAny())
3125 ; // use defaults
3126 else if (CurConstraint.isDistance()) {
3127 // this one is consistent, the others aren't
3128 Level.Scalar = false;
3129 Level.Distance = CurConstraint.getD();
3130 unsigned NewDirection = Dependence::DVEntry::NONE;
3131 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3132 NewDirection = Dependence::DVEntry::EQ;
3133 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3134 NewDirection |= Dependence::DVEntry::LT;
3135 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3136 NewDirection |= Dependence::DVEntry::GT;
3137 Level.Direction &= NewDirection;
3138 }
3139 else if (CurConstraint.isLine()) {
3140 Level.Scalar = false;
3141 Level.Distance = NULL;
3142 // direction should be accurate
3143 }
3144 else if (CurConstraint.isPoint()) {
3145 Level.Scalar = false;
3146 Level.Distance = NULL;
3147 unsigned NewDirection = Dependence::DVEntry::NONE;
3148 if (!isKnownPredicate(CmpInst::ICMP_NE,
3149 CurConstraint.getY(),
3150 CurConstraint.getX()))
3151 // if X may be = Y
3152 NewDirection |= Dependence::DVEntry::EQ;
3153 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3154 CurConstraint.getY(),
3155 CurConstraint.getX()))
3156 // if Y may be > X
3157 NewDirection |= Dependence::DVEntry::LT;
3158 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3159 CurConstraint.getY(),
3160 CurConstraint.getX()))
3161 // if Y may be < X
3162 NewDirection |= Dependence::DVEntry::GT;
3163 Level.Direction &= NewDirection;
3164 }
3165 else
3166 llvm_unreachable("constraint has unexpected kind");
3167}
3168
3169
3170//===----------------------------------------------------------------------===//
3171
3172#ifndef NDEBUG
3173// For debugging purposes, dump a small bit vector to dbgs().
3174static void dumpSmallBitVector(SmallBitVector &BV) {
3175 dbgs() << "{";
3176 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3177 dbgs() << VI;
3178 if (BV.find_next(VI) >= 0)
3179 dbgs() << ' ';
3180 }
3181 dbgs() << "}\n";
3182}
3183#endif
3184
3185
3186// depends -
3187// Returns NULL if there is no dependence.
3188// Otherwise, return a Dependence with as many details as possible.
3189// Corresponds to Section 3.1 in the paper
3190//
3191// Practical Dependence Testing
3192// Goff, Kennedy, Tseng
3193// PLDI 1991
3194//
3195// Care is required to keep the code below up to date w.r.t. this routine.
3196Dependence *DependenceAnalysis::depends(const Instruction *Src,
3197 const Instruction *Dst,
3198 bool PossiblyLoopIndependent) {
3199 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3200 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3201 // if both instructions don't reference memory, there's no dependence
3202 return NULL;
3203
3204 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst))
3205 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3206 return new Dependence(Src, Dst);
3207
3208 const Value *SrcPtr = getPointerOperand(Src);
3209 const Value *DstPtr = getPointerOperand(Dst);
3210
3211 switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
3212 case AliasAnalysis::MayAlias:
3213 case AliasAnalysis::PartialAlias:
3214 // cannot analyse objects if we don't understand their aliasing.
3215 return new Dependence(Src, Dst);
3216 case AliasAnalysis::NoAlias:
3217 // If the objects noalias, they are distinct, accesses are independent.
3218 return NULL;
3219 case AliasAnalysis::MustAlias:
3220 break; // The underlying objects alias; test accesses for dependence.
3221 }
3222
3223 const GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3224 const GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3225 if (!SrcGEP || !DstGEP)
3226 return new Dependence(Src, Dst); // missing GEP, assume dependence
3227
3228 if (SrcGEP->getPointerOperandType() != DstGEP->getPointerOperandType())
3229 return new Dependence(Src, Dst); // different types, assume dependence
3230
3231 // establish loop nesting levels
3232 establishNestingLevels(Src, Dst);
3233 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3234 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3235
3236 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3237 ++TotalArrayPairs;
3238
3239 // classify subscript pairs
3240 unsigned Pairs = SrcGEP->idx_end() - SrcGEP->idx_begin();
3241 SmallVector<Subscript, 4> Pair(Pairs);
3242 for (unsigned SI = 0; SI < Pairs; ++SI) {
3243 Pair[SI].Loops.resize(MaxLevels + 1);
3244 Pair[SI].GroupLoops.resize(MaxLevels + 1);
3245 Pair[SI].Group.resize(Pairs);
3246 }
3247 Pairs = 0;
3248 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3249 SrcEnd = SrcGEP->idx_end(),
3250 DstIdx = DstGEP->idx_begin(),
3251 DstEnd = DstGEP->idx_end();
3252 SrcIdx != SrcEnd && DstIdx != DstEnd;
3253 ++SrcIdx, ++DstIdx, ++Pairs) {
3254 Pair[Pairs].Src = SE->getSCEV(*SrcIdx);
3255 Pair[Pairs].Dst = SE->getSCEV(*DstIdx);
3256 removeMatchingExtensions(&Pair[Pairs]);
3257 Pair[Pairs].Classification =
3258 classifyPair(Pair[Pairs].Src, LI->getLoopFor(Src->getParent()),
3259 Pair[Pairs].Dst, LI->getLoopFor(Dst->getParent()),
3260 Pair[Pairs].Loops);
3261 Pair[Pairs].GroupLoops = Pair[Pairs].Loops;
3262 Pair[Pairs].Group.set(Pairs);
3263 DEBUG(dbgs() << " subscript " << Pairs << "\n");
3264 DEBUG(dbgs() << "\tsrc = " << *Pair[Pairs].Src << "\n");
3265 DEBUG(dbgs() << "\tdst = " << *Pair[Pairs].Dst << "\n");
3266 DEBUG(dbgs() << "\tclass = " << Pair[Pairs].Classification << "\n");
3267 DEBUG(dbgs() << "\tloops = ");
3268 DEBUG(dumpSmallBitVector(Pair[Pairs].Loops));
3269 }
3270
3271 SmallBitVector Separable(Pairs);
3272 SmallBitVector Coupled(Pairs);
3273
3274 // Partition subscripts into separable and minimally-coupled groups
3275 // Algorithm in paper is algorithmically better;
3276 // this may be faster in practice. Check someday.
3277 //
3278 // Here's an example of how it works. Consider this code:
3279 //
3280 // for (i = ...) {
3281 // for (j = ...) {
3282 // for (k = ...) {
3283 // for (l = ...) {
3284 // for (m = ...) {
3285 // A[i][j][k][m] = ...;
3286 // ... = A[0][j][l][i + j];
3287 // }
3288 // }
3289 // }
3290 // }
3291 // }
3292 //
3293 // There are 4 subscripts here:
3294 // 0 [i] and [0]
3295 // 1 [j] and [j]
3296 // 2 [k] and [l]
3297 // 3 [m] and [i + j]
3298 //
3299 // We've already classified each subscript pair as ZIV, SIV, etc.,
3300 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3301 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3302 // and set Pair[P].Group = {P}.
3303 //
3304 // Src Dst Classification Loops GroupLoops Group
3305 // 0 [i] [0] SIV {1} {1} {0}
3306 // 1 [j] [j] SIV {2} {2} {1}
3307 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3308 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3309 //
3310 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3311 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3312 //
3313 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3314 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3315 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3316 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3317 // to either Separable or Coupled).
3318 //
3319 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3320 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3321 // so Pair[3].Group = {0, 1, 3} and Done = false.
3322 //
3323 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3324 // Since Done remains true, we add 2 to the set of Separable pairs.
3325 //
3326 // Finally, we consider 3. There's nothing to compare it with,
3327 // so Done remains true and we add it to the Coupled set.
3328 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3329 //
3330 // In the end, we've got 1 separable subscript and 1 coupled group.
3331 for (unsigned SI = 0; SI < Pairs; ++SI) {
3332 if (Pair[SI].Classification == Subscript::NonLinear) {
3333 // ignore these, but collect loops for later
3334 ++NonlinearSubscriptPairs;
3335 collectCommonLoops(Pair[SI].Src,
3336 LI->getLoopFor(Src->getParent()),
3337 Pair[SI].Loops);
3338 collectCommonLoops(Pair[SI].Dst,
3339 LI->getLoopFor(Dst->getParent()),
3340 Pair[SI].Loops);
3341 Result.Consistent = false;
3342 }
3343 else if (Pair[SI].Classification == Subscript::ZIV) {
3344 // always separable
3345 Separable.set(SI);
3346 }
3347 else {
3348 // SIV, RDIV, or MIV, so check for coupled group
3349 bool Done = true;
3350 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3351 SmallBitVector Intersection = Pair[SI].GroupLoops;
3352 Intersection &= Pair[SJ].GroupLoops;
3353 if (Intersection.any()) {
3354 // accumulate set of all the loops in group
3355 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3356 // accumulate set of all subscripts in group
3357 Pair[SJ].Group |= Pair[SI].Group;
3358 Done = false;
3359 }
3360 }
3361 if (Done) {
3362 if (Pair[SI].Group.count() == 1) {
3363 Separable.set(SI);
3364 ++SeparableSubscriptPairs;
3365 }
3366 else {
3367 Coupled.set(SI);
3368 ++CoupledSubscriptPairs;
3369 }
3370 }
3371 }
3372 }
3373
3374 DEBUG(dbgs() << " Separable = ");
3375 DEBUG(dumpSmallBitVector(Separable));
3376 DEBUG(dbgs() << " Coupled = ");
3377 DEBUG(dumpSmallBitVector(Coupled));
3378
3379 Constraint NewConstraint;
3380 NewConstraint.setAny(SE);
3381
3382 // test separable subscripts
3383 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3384 DEBUG(dbgs() << "testing subscript " << SI);
3385 switch (Pair[SI].Classification) {
3386 case Subscript::ZIV:
3387 DEBUG(dbgs() << ", ZIV\n");
3388 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3389 return NULL;
3390 break;
3391 case Subscript::SIV: {
3392 DEBUG(dbgs() << ", SIV\n");
3393 unsigned Level;
3394 const SCEV *SplitIter = NULL;
3395 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3396 Result, NewConstraint, SplitIter))
3397 return NULL;
3398 break;
3399 }
3400 case Subscript::RDIV:
3401 DEBUG(dbgs() << ", RDIV\n");
3402 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3403 return NULL;
3404 break;
3405 case Subscript::MIV:
3406 DEBUG(dbgs() << ", MIV\n");
3407 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3408 return NULL;
3409 break;
3410 default:
3411 llvm_unreachable("subscript has unexpected classification");
3412 }
3413 }
3414
3415 if (Coupled.count()) {
3416 // test coupled subscript groups
3417 DEBUG(dbgs() << "starting on coupled subscripts\n");
3418 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3419 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3420 for (unsigned II = 0; II <= MaxLevels; ++II)
3421 Constraints[II].setAny(SE);
3422 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3423 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3424 SmallBitVector Group(Pair[SI].Group);
3425 SmallBitVector Sivs(Pairs);
3426 SmallBitVector Mivs(Pairs);
3427 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3428 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3429 DEBUG(dbgs() << SJ << " ");
3430 if (Pair[SJ].Classification == Subscript::SIV)
3431 Sivs.set(SJ);
3432 else
3433 Mivs.set(SJ);
3434 }
3435 DEBUG(dbgs() << "}\n");
3436 while (Sivs.any()) {
3437 bool Changed = false;
3438 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3439 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3440 // SJ is an SIV subscript that's part of the current coupled group
3441 unsigned Level;
3442 const SCEV *SplitIter = NULL;
3443 DEBUG(dbgs() << "SIV\n");
3444 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3445 Result, NewConstraint, SplitIter))
3446 return NULL;
3447 ConstrainedLevels.set(Level);
3448 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3449 if (Constraints[Level].isEmpty()) {
3450 ++DeltaIndependence;
3451 return NULL;
3452 }
3453 Changed = true;
3454 }
3455 Sivs.reset(SJ);
3456 }
3457 if (Changed) {
3458 // propagate, possibly creating new SIVs and ZIVs
3459 DEBUG(dbgs() << " propagating\n");
3460 DEBUG(dbgs() << "\tMivs = ");
3461 DEBUG(dumpSmallBitVector(Mivs));
3462 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3463 // SJ is an MIV subscript that's part of the current coupled group
3464 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3465 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3466 Constraints, Result.Consistent)) {
3467 DEBUG(dbgs() << "\t Changed\n");
3468 ++DeltaPropagations;
3469 Pair[SJ].Classification =
3470 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3471 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3472 Pair[SJ].Loops);
3473 switch (Pair[SJ].Classification) {
3474 case Subscript::ZIV:
3475 DEBUG(dbgs() << "ZIV\n");
3476 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3477 return NULL;
3478 Mivs.reset(SJ);
3479 break;
3480 case Subscript::SIV:
3481 Sivs.set(SJ);
3482 Mivs.reset(SJ);
3483 break;
3484 case Subscript::RDIV:
3485 case Subscript::MIV:
3486 break;
3487 default:
3488 llvm_unreachable("bad subscript classification");
3489 }
3490 }
3491 }
3492 }
3493 }
3494
3495 // test & propagate remaining RDIVs
3496 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3497 if (Pair[SJ].Classification == Subscript::RDIV) {
3498 DEBUG(dbgs() << "RDIV test\n");
3499 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3500 return NULL;
3501 // I don't yet understand how to propagate RDIV results
3502 Mivs.reset(SJ);
3503 }
3504 }
3505
3506 // test remaining MIVs
3507 // This code is temporary.
3508 // Better to somehow test all remaining subscripts simultaneously.
3509 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3510 if (Pair[SJ].Classification == Subscript::MIV) {
3511 DEBUG(dbgs() << "MIV test\n");
3512 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3513 return NULL;
3514 }
3515 else
3516 llvm_unreachable("expected only MIV subscripts at this point");
3517 }
3518
3519 // update Result.DV from constraint vector
3520 DEBUG(dbgs() << " updating\n");
3521 for (int SJ = ConstrainedLevels.find_first();
3522 SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
3523 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3524 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3525 return NULL;
3526 }
3527 }
3528 }
3529
3530 // make sure Scalar flags are set correctly
3531 SmallBitVector CompleteLoops(MaxLevels + 1);
3532 for (unsigned SI = 0; SI < Pairs; ++SI)
3533 CompleteLoops |= Pair[SI].Loops;
3534 for (unsigned II = 1; II <= CommonLevels; ++II)
3535 if (CompleteLoops[II])
3536 Result.DV[II - 1].Scalar = false;
3537
3538 // make sure loopIndepent flag is set correctly
3539 if (PossiblyLoopIndependent) {
3540 for (unsigned II = 1; II <= CommonLevels; ++II) {
3541 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3542 Result.LoopIndependent = false;
3543 break;
3544 }
3545 }
3546 }
3547
3548 FullDependence *Final = new FullDependence(Result);
3549 Result.DV = NULL;
3550 return Final;
3551}
3552
3553
3554
3555//===----------------------------------------------------------------------===//
3556// getSplitIteration -
3557// Rather than spend rarely-used space recording the splitting iteration
3558// during the Weak-Crossing SIV test, we re-compute it on demand.
3559// The re-computation is basically a repeat of the entire dependence test,
3560// though simplified since we know that the dependence exists.
3561// It's tedious, since we must go through all propagations, etc.
3562//
3563// Care is required to keep this code up to date w.r.t. the code above.
3564//
3565// Generally, the dependence analyzer will be used to build
3566// a dependence graph for a function (basically a map from instructions
3567// to dependences). Looking for cycles in the graph shows us loops
3568// that cannot be trivially vectorized/parallelized.
3569//
3570// We can try to improve the situation by examining all the dependences
3571// that make up the cycle, looking for ones we can break.
3572// Sometimes, peeling the first or last iteration of a loop will break
3573// dependences, and we've got flags for those possibilities.
3574// Sometimes, splitting a loop at some other iteration will do the trick,
3575// and we've got a flag for that case. Rather than waste the space to
3576// record the exact iteration (since we rarely know), we provide
3577// a method that calculates the iteration. It's a drag that it must work
3578// from scratch, but wonderful in that it's possible.
3579//
3580// Here's an example:
3581//
3582// for (i = 0; i < 10; i++)
3583// A[i] = ...
3584// ... = A[11 - i]
3585//
3586// There's a loop-carried flow dependence from the store to the load,
3587// found by the weak-crossing SIV test. The dependence will have a flag,
3588// indicating that the dependence can be broken by splitting the loop.
3589// Calling getSplitIteration will return 5.
3590// Splitting the loop breaks the dependence, like so:
3591//
3592// for (i = 0; i <= 5; i++)
3593// A[i] = ...
3594// ... = A[11 - i]
3595// for (i = 6; i < 10; i++)
3596// A[i] = ...
3597// ... = A[11 - i]
3598//
3599// breaks the dependence and allows us to vectorize/parallelize
3600// both loops.
3601const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
3602 unsigned SplitLevel) {
3603 assert(Dep && "expected a pointer to a Dependence");
3604 assert(Dep->isSplitable(SplitLevel) &&
3605 "Dep should be splitable at SplitLevel");
3606 const Instruction *Src = Dep->getSrc();
3607 const Instruction *Dst = Dep->getDst();
3608 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3609 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3610 assert(isLoadOrStore(Src));
3611 assert(isLoadOrStore(Dst));
3612 const Value *SrcPtr = getPointerOperand(Src);
3613 const Value *DstPtr = getPointerOperand(Dst);
3614 assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
3615 AliasAnalysis::MustAlias);
3616 const GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3617 const GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3618 assert(SrcGEP);
3619 assert(DstGEP);
3620 assert(SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType());
3621
3622 // establish loop nesting levels
3623 establishNestingLevels(Src, Dst);
3624
3625 FullDependence Result(Src, Dst, false, CommonLevels);
3626
3627 // classify subscript pairs
3628 unsigned Pairs = SrcGEP->idx_end() - SrcGEP->idx_begin();
3629 SmallVector<Subscript, 4> Pair(Pairs);
3630 for (unsigned SI = 0; SI < Pairs; ++SI) {
3631 Pair[SI].Loops.resize(MaxLevels + 1);
3632 Pair[SI].GroupLoops.resize(MaxLevels + 1);
3633 Pair[SI].Group.resize(Pairs);
3634 }
3635 Pairs = 0;
3636 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3637 SrcEnd = SrcGEP->idx_end(),
3638 DstIdx = DstGEP->idx_begin(),
3639 DstEnd = DstGEP->idx_end();
3640 SrcIdx != SrcEnd && DstIdx != DstEnd;
3641 ++SrcIdx, ++DstIdx, ++Pairs) {
3642 Pair[Pairs].Src = SE->getSCEV(*SrcIdx);
3643 Pair[Pairs].Dst = SE->getSCEV(*DstIdx);
3644 Pair[Pairs].Classification =
3645 classifyPair(Pair[Pairs].Src, LI->getLoopFor(Src->getParent()),
3646 Pair[Pairs].Dst, LI->getLoopFor(Dst->getParent()),
3647 Pair[Pairs].Loops);
3648 Pair[Pairs].GroupLoops = Pair[Pairs].Loops;
3649 Pair[Pairs].Group.set(Pairs);
3650 }
3651
3652 SmallBitVector Separable(Pairs);
3653 SmallBitVector Coupled(Pairs);
3654
3655 // partition subscripts into separable and minimally-coupled groups
3656 for (unsigned SI = 0; SI < Pairs; ++SI) {
3657 if (Pair[SI].Classification == Subscript::NonLinear) {
3658 // ignore these, but collect loops for later
3659 collectCommonLoops(Pair[SI].Src,
3660 LI->getLoopFor(Src->getParent()),
3661 Pair[SI].Loops);
3662 collectCommonLoops(Pair[SI].Dst,
3663 LI->getLoopFor(Dst->getParent()),
3664 Pair[SI].Loops);
3665 Result.Consistent = false;
3666 }
3667 else if (Pair[SI].Classification == Subscript::ZIV)
3668 Separable.set(SI);
3669 else {
3670 // SIV, RDIV, or MIV, so check for coupled group
3671 bool Done = true;
3672 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3673 SmallBitVector Intersection = Pair[SI].GroupLoops;
3674 Intersection &= Pair[SJ].GroupLoops;
3675 if (Intersection.any()) {
3676 // accumulate set of all the loops in group
3677 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3678 // accumulate set of all subscripts in group
3679 Pair[SJ].Group |= Pair[SI].Group;
3680 Done = false;
3681 }
3682 }
3683 if (Done) {
3684 if (Pair[SI].Group.count() == 1)
3685 Separable.set(SI);
3686 else
3687 Coupled.set(SI);
3688 }
3689 }
3690 }
3691
3692 Constraint NewConstraint;
3693 NewConstraint.setAny(SE);
3694
3695 // test separable subscripts
3696 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3697 switch (Pair[SI].Classification) {
3698 case Subscript::SIV: {
3699 unsigned Level;
3700 const SCEV *SplitIter = NULL;
3701 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3702 Result, NewConstraint, SplitIter);
3703 if (Level == SplitLevel) {
3704 assert(SplitIter != NULL);
3705 return SplitIter;
3706 }
3707 break;
3708 }
3709 case Subscript::ZIV:
3710 case Subscript::RDIV:
3711 case Subscript::MIV:
3712 break;
3713 default:
3714 llvm_unreachable("subscript has unexpected classification");
3715 }
3716 }
3717
3718 if (Coupled.count()) {
3719 // test coupled subscript groups
3720 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3721 for (unsigned II = 0; II <= MaxLevels; ++II)
3722 Constraints[II].setAny(SE);
3723 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3724 SmallBitVector Group(Pair[SI].Group);
3725 SmallBitVector Sivs(Pairs);
3726 SmallBitVector Mivs(Pairs);
3727 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3728 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3729 if (Pair[SJ].Classification == Subscript::SIV)
3730 Sivs.set(SJ);
3731 else
3732 Mivs.set(SJ);
3733 }
3734 while (Sivs.any()) {
3735 bool Changed = false;
3736 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3737 // SJ is an SIV subscript that's part of the current coupled group
3738 unsigned Level;
3739 const SCEV *SplitIter = NULL;
3740 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3741 Result, NewConstraint, SplitIter);
3742 if (Level == SplitLevel && SplitIter)
3743 return SplitIter;
3744 ConstrainedLevels.set(Level);
3745 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3746 Changed = true;
3747 Sivs.reset(SJ);
3748 }
3749 if (Changed) {
3750 // propagate, possibly creating new SIVs and ZIVs
3751 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3752 // SJ is an MIV subscript that's part of the current coupled group
3753 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3754 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3755 Pair[SJ].Classification =
3756 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3757 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3758 Pair[SJ].Loops);
3759 switch (Pair[SJ].Classification) {
3760 case Subscript::ZIV:
3761 Mivs.reset(SJ);
3762 break;
3763 case Subscript::SIV:
3764 Sivs.set(SJ);
3765 Mivs.reset(SJ);
3766 break;
3767 case Subscript::RDIV:
3768 case Subscript::MIV:
3769 break;
3770 default:
3771 llvm_unreachable("bad subscript classification");
3772 }
3773 }
3774 }
3775 }
3776 }
3777 }
3778 }
3779 llvm_unreachable("somehow reached end of routine");
3780 return NULL;
3781}