blob: 3d38a0c6066617683e78b28cd55613f534d4b5ea [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000018#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "llvm/Support/Debug.h"
20#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000021#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000022#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include <limits>
24#include <cstring>
25#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026using namespace llvm;
27
28/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000030inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
35}
36
37/// A utility function for allocating memory and checking for allocation
38/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000039inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
43}
44
Chris Lattneree5417c2009-01-21 18:09:24 +000045void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000046 pVal = getClearedMemory(getNumWords());
47 pVal[0] = val;
48 if (isSigned && int64_t(val) < 0)
49 for (unsigned i = 1; i < getNumWords(); ++i)
50 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051}
52
Chris Lattnera1f63bb2008-10-11 22:07:19 +000053void APInt::initSlowCase(const APInt& that) {
54 pVal = getMemory(getNumWords());
55 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
56}
57
58
Chris Lattneree5417c2009-01-21 18:09:24 +000059APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000060 : BitWidth(numBits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000061 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 assert(bigVal && "Null pointer detected!");
63 if (isSingleWord())
64 VAL = bigVal[0];
65 else {
66 // Get memory, cleared to 0
67 pVal = getClearedMemory(getNumWords());
68 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000069 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070 // Copy the words from bigVal to pVal
71 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
72 }
73 // Make sure unused high bits are cleared
74 clearUnusedBits();
75}
76
Chris Lattneree5417c2009-01-21 18:09:24 +000077APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 uint8_t radix)
79 : BitWidth(numbits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000080 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081 fromString(numbits, StrStart, slen, radix);
82}
83
Chris Lattner84886852008-08-20 17:02:31 +000084APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085 // Don't do anything for X = X
86 if (this == &RHS)
87 return *this;
88
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +000090 // assume same bit-width single-word case is already handled
91 assert(!isSingleWord());
92 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 return *this;
94 }
95
Chris Lattner84886852008-08-20 17:02:31 +000096 if (isSingleWord()) {
97 // assume case where both are single words is already handled
98 assert(!RHS.isSingleWord());
99 VAL = 0;
100 pVal = getMemory(RHS.getNumWords());
101 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
102 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
104 else if (RHS.isSingleWord()) {
105 delete [] pVal;
106 VAL = RHS.VAL;
107 } else {
108 delete [] pVal;
109 pVal = getMemory(RHS.getNumWords());
110 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
111 }
112 BitWidth = RHS.BitWidth;
113 return clearUnusedBits();
114}
115
116APInt& APInt::operator=(uint64_t RHS) {
117 if (isSingleWord())
118 VAL = RHS;
119 else {
120 pVal[0] = RHS;
121 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
122 }
123 return clearUnusedBits();
124}
125
Ted Kremenek109de0d2008-01-19 04:23:33 +0000126/// Profile - This method 'profiles' an APInt for use with FoldingSet.
127void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000128 ID.AddInteger(BitWidth);
129
Ted Kremenek109de0d2008-01-19 04:23:33 +0000130 if (isSingleWord()) {
131 ID.AddInteger(VAL);
132 return;
133 }
134
Chris Lattneree5417c2009-01-21 18:09:24 +0000135 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000136 for (unsigned i = 0; i < NumWords; ++i)
137 ID.AddInteger(pVal[i]);
138}
139
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140/// add_1 - This function adds a single "digit" integer, y, to the multiple
141/// "digit" integer array, x[]. x[] is modified to reflect the addition and
142/// 1 is returned if there is a carry out, otherwise 0 is returned.
143/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000144static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
145 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146 dest[i] = y + x[i];
147 if (dest[i] < y)
148 y = 1; // Carry one to next digit.
149 else {
150 y = 0; // No need to carry so exit early
151 break;
152 }
153 }
154 return y;
155}
156
157/// @brief Prefix increment operator. Increments the APInt by one.
158APInt& APInt::operator++() {
159 if (isSingleWord())
160 ++VAL;
161 else
162 add_1(pVal, pVal, getNumWords(), 1);
163 return clearUnusedBits();
164}
165
166/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
167/// the multi-digit integer array, x[], propagating the borrowed 1 value until
168/// no further borrowing is neeeded or it runs out of "digits" in x. The result
169/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
170/// In other words, if y > x then this function returns 1, otherwise 0.
171/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000172static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
173 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000174 uint64_t X = x[i];
175 x[i] -= y;
176 if (y > X)
177 y = 1; // We have to "borrow 1" from next "digit"
178 else {
179 y = 0; // No need to borrow
180 break; // Remaining digits are unchanged so exit early
181 }
182 }
183 return bool(y);
184}
185
186/// @brief Prefix decrement operator. Decrements the APInt by one.
187APInt& APInt::operator--() {
188 if (isSingleWord())
189 --VAL;
190 else
191 sub_1(pVal, getNumWords(), 1);
192 return clearUnusedBits();
193}
194
195/// add - This function adds the integer array x to the integer array Y and
196/// places the result in dest.
197/// @returns the carry out from the addition
198/// @brief General addition of 64-bit integer arrays
199static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000200 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000202 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
204 dest[i] = x[i] + y[i] + carry;
205 carry = dest[i] < limit || (carry && dest[i] == limit);
206 }
207 return carry;
208}
209
210/// Adds the RHS APint to this APInt.
211/// @returns this, after addition of RHS.
212/// @brief Addition assignment operator.
213APInt& APInt::operator+=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 VAL += RHS.VAL;
217 else {
218 add(pVal, pVal, RHS.pVal, getNumWords());
219 }
220 return clearUnusedBits();
221}
222
223/// Subtracts the integer array y from the integer array x
224/// @returns returns the borrow out.
225/// @brief Generalized subtraction of 64-bit integer arrays.
226static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000227 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
231 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
232 dest[i] = x_tmp - y[i];
233 }
234 return borrow;
235}
236
237/// Subtracts the RHS APInt from this APInt
238/// @returns this, after subtraction
239/// @brief Subtraction assignment operator.
240APInt& APInt::operator-=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL -= RHS.VAL;
244 else
245 sub(pVal, pVal, RHS.pVal, getNumWords());
246 return clearUnusedBits();
247}
248
249/// Multiplies an integer array, x by a a uint64_t integer and places the result
250/// into dest.
251/// @returns the carry out of the multiplication.
252/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000253static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
255 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
256 uint64_t carry = 0;
257
258 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000259 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000260 // Split x into high and low words
261 uint64_t lx = x[i] & 0xffffffffULL;
262 uint64_t hx = x[i] >> 32;
263 // hasCarry - A flag to indicate if there is a carry to the next digit.
264 // hasCarry == 0, no carry
265 // hasCarry == 1, has carry
266 // hasCarry == 2, no carry and the calculation result == 0.
267 uint8_t hasCarry = 0;
268 dest[i] = carry + lx * ly;
269 // Determine if the add above introduces carry.
270 hasCarry = (dest[i] < carry) ? 1 : 0;
271 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
272 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
273 // (2^32 - 1) + 2^32 = 2^64.
274 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
275
276 carry += (lx * hy) & 0xffffffffULL;
277 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
278 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
279 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
280 }
281 return carry;
282}
283
284/// Multiplies integer array x by integer array y and stores the result into
285/// the integer array dest. Note that dest's size must be >= xlen + ylen.
286/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000287static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
288 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000290 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
292 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000293 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 lx = x[j] & 0xffffffffULL;
295 hx = x[j] >> 32;
296 // hasCarry - A flag to indicate if has carry.
297 // hasCarry == 0, no carry
298 // hasCarry == 1, has carry
299 // hasCarry == 2, no carry and the calculation result == 0.
300 uint8_t hasCarry = 0;
301 uint64_t resul = carry + lx * ly;
302 hasCarry = (resul < carry) ? 1 : 0;
303 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
304 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
305
306 carry += (lx * hy) & 0xffffffffULL;
307 resul = (carry << 32) | (resul & 0xffffffffULL);
308 dest[i+j] += resul;
309 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
310 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
311 ((lx * hy) >> 32) + hx * hy;
312 }
313 dest[i+xlen] = carry;
314 }
315}
316
317APInt& APInt::operator*=(const APInt& RHS) {
318 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
319 if (isSingleWord()) {
320 VAL *= RHS.VAL;
321 clearUnusedBits();
322 return *this;
323 }
324
325 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000326 unsigned lhsBits = getActiveBits();
327 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 if (!lhsWords)
329 // 0 * X ===> 0
330 return *this;
331
332 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000333 unsigned rhsBits = RHS.getActiveBits();
334 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 if (!rhsWords) {
336 // X * 0 ===> 0
337 clear();
338 return *this;
339 }
340
341 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000342 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343 uint64_t *dest = getMemory(destWords);
344
345 // Perform the long multiply
346 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
347
348 // Copy result back into *this
349 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000350 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
352
353 // delete dest array and return
354 delete[] dest;
355 return *this;
356}
357
358APInt& APInt::operator&=(const APInt& RHS) {
359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
360 if (isSingleWord()) {
361 VAL &= RHS.VAL;
362 return *this;
363 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000364 unsigned numWords = getNumWords();
365 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 pVal[i] &= RHS.pVal[i];
367 return *this;
368}
369
370APInt& APInt::operator|=(const APInt& RHS) {
371 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
372 if (isSingleWord()) {
373 VAL |= RHS.VAL;
374 return *this;
375 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000376 unsigned numWords = getNumWords();
377 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 pVal[i] |= RHS.pVal[i];
379 return *this;
380}
381
382APInt& APInt::operator^=(const APInt& RHS) {
383 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
384 if (isSingleWord()) {
385 VAL ^= RHS.VAL;
386 this->clearUnusedBits();
387 return *this;
388 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000389 unsigned numWords = getNumWords();
390 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391 pVal[i] ^= RHS.pVal[i];
392 return clearUnusedBits();
393}
394
Chris Lattner84886852008-08-20 17:02:31 +0000395APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000396 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000398 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 val[i] = pVal[i] & RHS.pVal[i];
400 return APInt(val, getBitWidth());
401}
402
Chris Lattner84886852008-08-20 17:02:31 +0000403APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000404 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000406 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407 val[i] = pVal[i] | RHS.pVal[i];
408 return APInt(val, getBitWidth());
409}
410
Chris Lattner84886852008-08-20 17:02:31 +0000411APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000412 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000414 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 val[i] = pVal[i] ^ RHS.pVal[i];
416
417 // 0^0==1 so clear the high bits in case they got set.
418 return APInt(val, getBitWidth()).clearUnusedBits();
419}
420
421bool APInt::operator !() const {
422 if (isSingleWord())
423 return !VAL;
424
Chris Lattneree5417c2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 if (pVal[i])
427 return false;
428 return true;
429}
430
431APInt APInt::operator*(const APInt& RHS) const {
432 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
433 if (isSingleWord())
434 return APInt(BitWidth, VAL * RHS.VAL);
435 APInt Result(*this);
436 Result *= RHS;
437 return Result.clearUnusedBits();
438}
439
440APInt APInt::operator+(const APInt& RHS) const {
441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442 if (isSingleWord())
443 return APInt(BitWidth, VAL + RHS.VAL);
444 APInt Result(BitWidth, 0);
445 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
446 return Result.clearUnusedBits();
447}
448
449APInt APInt::operator-(const APInt& RHS) const {
450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
451 if (isSingleWord())
452 return APInt(BitWidth, VAL - RHS.VAL);
453 APInt Result(BitWidth, 0);
454 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
455 return Result.clearUnusedBits();
456}
457
Chris Lattneree5417c2009-01-21 18:09:24 +0000458bool APInt::operator[](unsigned bitPosition) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 return (maskBit(bitPosition) &
460 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
461}
462
Chris Lattner84886852008-08-20 17:02:31 +0000463bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000465 unsigned n1 = getActiveBits();
466 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467
468 // If the number of bits isn't the same, they aren't equal
469 if (n1 != n2)
470 return false;
471
472 // If the number of bits fits in a word, we only need to compare the low word.
473 if (n1 <= APINT_BITS_PER_WORD)
474 return pVal[0] == RHS.pVal[0];
475
476 // Otherwise, compare everything
477 for (int i = whichWord(n1 - 1); i >= 0; --i)
478 if (pVal[i] != RHS.pVal[i])
479 return false;
480 return true;
481}
482
Chris Lattner84886852008-08-20 17:02:31 +0000483bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000484 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000485 if (n <= APINT_BITS_PER_WORD)
486 return pVal[0] == Val;
487 else
488 return false;
489}
490
491bool APInt::ult(const APInt& RHS) const {
492 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
493 if (isSingleWord())
494 return VAL < RHS.VAL;
495
496 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000497 unsigned n1 = getActiveBits();
498 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499
500 // If magnitude of LHS is less than RHS, return true.
501 if (n1 < n2)
502 return true;
503
504 // If magnitude of RHS is greather than LHS, return false.
505 if (n2 < n1)
506 return false;
507
508 // If they bot fit in a word, just compare the low order word
509 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
510 return pVal[0] < RHS.pVal[0];
511
512 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000513 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 for (int i = topWord; i >= 0; --i) {
515 if (pVal[i] > RHS.pVal[i])
516 return false;
517 if (pVal[i] < RHS.pVal[i])
518 return true;
519 }
520 return false;
521}
522
523bool APInt::slt(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
525 if (isSingleWord()) {
526 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
527 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
528 return lhsSext < rhsSext;
529 }
530
531 APInt lhs(*this);
532 APInt rhs(RHS);
533 bool lhsNeg = isNegative();
534 bool rhsNeg = rhs.isNegative();
535 if (lhsNeg) {
536 // Sign bit is set so perform two's complement to make it positive
537 lhs.flip();
538 lhs++;
539 }
540 if (rhsNeg) {
541 // Sign bit is set so perform two's complement to make it positive
542 rhs.flip();
543 rhs++;
544 }
545
546 // Now we have unsigned values to compare so do the comparison if necessary
547 // based on the negativeness of the values.
548 if (lhsNeg)
549 if (rhsNeg)
550 return lhs.ugt(rhs);
551 else
552 return true;
553 else if (rhsNeg)
554 return false;
555 else
556 return lhs.ult(rhs);
557}
558
Chris Lattneree5417c2009-01-21 18:09:24 +0000559APInt& APInt::set(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000560 if (isSingleWord())
561 VAL |= maskBit(bitPosition);
562 else
563 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
564 return *this;
565}
566
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567/// Set the given bit to 0 whose position is given as "bitPosition".
568/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000569APInt& APInt::clear(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570 if (isSingleWord())
571 VAL &= ~maskBit(bitPosition);
572 else
573 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
574 return *this;
575}
576
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000577/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578
579/// Toggle a given bit to its opposite value whose position is given
580/// as "bitPosition".
581/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000582APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
584 if ((*this)[bitPosition]) clear(bitPosition);
585 else set(bitPosition);
586 return *this;
587}
588
Chris Lattneree5417c2009-01-21 18:09:24 +0000589unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 assert(str != 0 && "Invalid value string");
591 assert(slen > 0 && "Invalid string length");
592
593 // Each computation below needs to know if its negative
Chris Lattneree5417c2009-01-21 18:09:24 +0000594 unsigned isNegative = str[0] == '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000595 if (isNegative) {
596 slen--;
597 str++;
598 }
599 // For radixes of power-of-two values, the bits required is accurately and
600 // easily computed
601 if (radix == 2)
602 return slen + isNegative;
603 if (radix == 8)
604 return slen * 3 + isNegative;
605 if (radix == 16)
606 return slen * 4 + isNegative;
607
608 // Otherwise it must be radix == 10, the hard case
609 assert(radix == 10 && "Invalid radix");
610
611 // This is grossly inefficient but accurate. We could probably do something
612 // with a computation of roughly slen*64/20 and then adjust by the value of
613 // the first few digits. But, I'm not sure how accurate that could be.
614
615 // Compute a sufficient number of bits that is always large enough but might
616 // be too large. This avoids the assertion in the constructor.
Chris Lattneree5417c2009-01-21 18:09:24 +0000617 unsigned sufficient = slen*64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618
619 // Convert to the actual binary value.
620 APInt tmp(sufficient, str, slen, radix);
621
622 // Compute how many bits are required.
623 return isNegative + tmp.logBase2() + 1;
624}
625
626uint64_t APInt::getHashValue() const {
627 // Put the bit width into the low order bits.
628 uint64_t hash = BitWidth;
629
630 // Add the sum of the words to the hash.
631 if (isSingleWord())
632 hash += VAL << 6; // clear separation of up to 64 bits
633 else
Chris Lattneree5417c2009-01-21 18:09:24 +0000634 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 hash += pVal[i] << 6; // clear sepration of up to 64 bits
636 return hash;
637}
638
639/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000640APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 return APIntOps::lshr(*this, BitWidth - numBits);
642}
643
644/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000645APInt APInt::getLoBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000646 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
647 BitWidth - numBits);
648}
649
650bool APInt::isPowerOf2() const {
651 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
652}
653
Chris Lattneree5417c2009-01-21 18:09:24 +0000654unsigned APInt::countLeadingZerosSlowCase() const {
655 unsigned Count = 0;
656 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000657 if (pVal[i-1] == 0)
658 Count += APINT_BITS_PER_WORD;
659 else {
660 Count += CountLeadingZeros_64(pVal[i-1]);
661 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000662 }
663 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000664 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000665 if (remainder)
666 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000667 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668}
669
Chris Lattneree5417c2009-01-21 18:09:24 +0000670static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
671 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000672 if (skip)
673 V <<= skip;
674 while (V && (V & (1ULL << 63))) {
675 Count++;
676 V <<= 1;
677 }
678 return Count;
679}
680
Chris Lattneree5417c2009-01-21 18:09:24 +0000681unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682 if (isSingleWord())
683 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
684
Chris Lattneree5417c2009-01-21 18:09:24 +0000685 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000686 unsigned shift;
687 if (!highWordBits) {
688 highWordBits = APINT_BITS_PER_WORD;
689 shift = 0;
690 } else {
691 shift = APINT_BITS_PER_WORD - highWordBits;
692 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000694 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695 if (Count == highWordBits) {
696 for (i--; i >= 0; --i) {
697 if (pVal[i] == -1ULL)
698 Count += APINT_BITS_PER_WORD;
699 else {
700 Count += countLeadingOnes_64(pVal[i], 0);
701 break;
702 }
703 }
704 }
705 return Count;
706}
707
Chris Lattneree5417c2009-01-21 18:09:24 +0000708unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000710 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
711 unsigned Count = 0;
712 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 for (; i < getNumWords() && pVal[i] == 0; ++i)
714 Count += APINT_BITS_PER_WORD;
715 if (i < getNumWords())
716 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000717 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718}
719
Chris Lattneree5417c2009-01-21 18:09:24 +0000720unsigned APInt::countTrailingOnesSlowCase() const {
721 unsigned Count = 0;
722 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000723 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000724 Count += APINT_BITS_PER_WORD;
725 if (i < getNumWords())
726 Count += CountTrailingOnes_64(pVal[i]);
727 return std::min(Count, BitWidth);
728}
729
Chris Lattneree5417c2009-01-21 18:09:24 +0000730unsigned APInt::countPopulationSlowCase() const {
731 unsigned Count = 0;
732 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000733 Count += CountPopulation_64(pVal[i]);
734 return Count;
735}
736
737APInt APInt::byteSwap() const {
738 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
739 if (BitWidth == 16)
740 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
741 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000742 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000744 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 Tmp1 = ByteSwap_32(Tmp1);
746 uint16_t Tmp2 = uint16_t(VAL);
747 Tmp2 = ByteSwap_16(Tmp2);
748 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
749 } else if (BitWidth == 64)
750 return APInt(BitWidth, ByteSwap_64(VAL));
751 else {
752 APInt Result(BitWidth, 0);
753 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000754 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 char Tmp = pByte[i];
756 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
757 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
758 }
759 return Result;
760 }
761}
762
763APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
764 const APInt& API2) {
765 APInt A = API1, B = API2;
766 while (!!B) {
767 APInt T = B;
768 B = APIntOps::urem(A, B);
769 A = T;
770 }
771 return A;
772}
773
Chris Lattneree5417c2009-01-21 18:09:24 +0000774APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 union {
776 double D;
777 uint64_t I;
778 } T;
779 T.D = Double;
780
781 // Get the sign bit from the highest order bit
782 bool isNeg = T.I >> 63;
783
784 // Get the 11-bit exponent and adjust for the 1023 bit bias
785 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
786
787 // If the exponent is negative, the value is < 0 so just return 0.
788 if (exp < 0)
789 return APInt(width, 0u);
790
791 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
792 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
793
794 // If the exponent doesn't shift all bits out of the mantissa
795 if (exp < 52)
796 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
797 APInt(width, mantissa >> (52 - exp));
798
799 // If the client didn't provide enough bits for us to shift the mantissa into
800 // then the result is undefined, just return 0
801 if (width <= exp - 52)
802 return APInt(width, 0);
803
804 // Otherwise, we have to shift the mantissa bits up to the right location
805 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000806 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000807 return isNeg ? -Tmp : Tmp;
808}
809
810/// RoundToDouble - This function convert this APInt to a double.
811/// The layout for double is as following (IEEE Standard 754):
812/// --------------------------------------
813/// | Sign Exponent Fraction Bias |
814/// |-------------------------------------- |
815/// | 1[63] 11[62-52] 52[51-00] 1023 |
816/// --------------------------------------
817double APInt::roundToDouble(bool isSigned) const {
818
819 // Handle the simple case where the value is contained in one uint64_t.
820 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
821 if (isSigned) {
822 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
823 return double(sext);
824 } else
825 return double(VAL);
826 }
827
828 // Determine if the value is negative.
829 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
830
831 // Construct the absolute value if we're negative.
832 APInt Tmp(isNeg ? -(*this) : (*this));
833
834 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000835 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836
837 // The exponent (without bias normalization) is just the number of bits
838 // we are using. Note that the sign bit is gone since we constructed the
839 // absolute value.
840 uint64_t exp = n;
841
842 // Return infinity for exponent overflow
843 if (exp > 1023) {
844 if (!isSigned || !isNeg)
845 return std::numeric_limits<double>::infinity();
846 else
847 return -std::numeric_limits<double>::infinity();
848 }
849 exp += 1023; // Increment for 1023 bias
850
851 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
852 // extract the high 52 bits from the correct words in pVal.
853 uint64_t mantissa;
854 unsigned hiWord = whichWord(n-1);
855 if (hiWord == 0) {
856 mantissa = Tmp.pVal[0];
857 if (n > 52)
858 mantissa >>= n - 52; // shift down, we want the top 52 bits.
859 } else {
860 assert(hiWord > 0 && "huh?");
861 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
862 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
863 mantissa = hibits | lobits;
864 }
865
866 // The leading bit of mantissa is implicit, so get rid of it.
867 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
868 union {
869 double D;
870 uint64_t I;
871 } T;
872 T.I = sign | (exp << 52) | mantissa;
873 return T.D;
874}
875
876// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000877APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000878 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +0000879 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +0000880 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000881 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000882 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000883 if (wordsBefore != wordsAfter) {
884 if (wordsAfter == 1) {
885 uint64_t *tmp = pVal;
886 VAL = pVal[0];
887 delete [] tmp;
888 } else {
889 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +0000890 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000891 newVal[i] = pVal[i];
892 delete [] pVal;
893 pVal = newVal;
894 }
895 }
896 return clearUnusedBits();
897}
898
899// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000900APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000901 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000902 // If the sign bit isn't set, this is the same as zext.
903 if (!isNegative()) {
904 zext(width);
905 return *this;
906 }
907
908 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +0000909 unsigned wordsBefore = getNumWords();
910 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000911 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000912 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000913
914 // Mask the high order word appropriately
915 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000916 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000917 // The extension is contained to the wordsBefore-1th word.
918 uint64_t mask = ~0ULL;
919 if (newWordBits)
920 mask >>= APINT_BITS_PER_WORD - newWordBits;
921 mask <<= wordBits;
922 if (wordsBefore == 1)
923 VAL |= mask;
924 else
925 pVal[wordsBefore-1] |= mask;
926 return clearUnusedBits();
927 }
928
929 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
930 uint64_t *newVal = getMemory(wordsAfter);
931 if (wordsBefore == 1)
932 newVal[0] = VAL | mask;
933 else {
Chris Lattneree5417c2009-01-21 18:09:24 +0000934 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000935 newVal[i] = pVal[i];
936 newVal[wordsBefore-1] |= mask;
937 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000938 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 newVal[i] = -1ULL;
940 if (wordsBefore != 1)
941 delete [] pVal;
942 pVal = newVal;
943 return clearUnusedBits();
944}
945
946// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000947APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +0000949 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000950 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000951 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000952 if (wordsBefore != wordsAfter) {
953 uint64_t *newVal = getClearedMemory(wordsAfter);
954 if (wordsBefore == 1)
955 newVal[0] = VAL;
956 else
Chris Lattneree5417c2009-01-21 18:09:24 +0000957 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000958 newVal[i] = pVal[i];
959 if (wordsBefore != 1)
960 delete [] pVal;
961 pVal = newVal;
962 }
963 return *this;
964}
965
Chris Lattneree5417c2009-01-21 18:09:24 +0000966APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967 if (BitWidth < width)
968 return zext(width);
969 if (BitWidth > width)
970 return trunc(width);
971 return *this;
972}
973
Chris Lattneree5417c2009-01-21 18:09:24 +0000974APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000975 if (BitWidth < width)
976 return sext(width);
977 if (BitWidth > width)
978 return trunc(width);
979 return *this;
980}
981
982/// Arithmetic right-shift this APInt by shiftAmt.
983/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +0000984APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000985 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +0000986}
987
988/// Arithmetic right-shift this APInt by shiftAmt.
989/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +0000990APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 assert(shiftAmt <= BitWidth && "Invalid shift amount");
992 // Handle a degenerate case
993 if (shiftAmt == 0)
994 return *this;
995
996 // Handle single word shifts with built-in ashr
997 if (isSingleWord()) {
998 if (shiftAmt == BitWidth)
999 return APInt(BitWidth, 0); // undefined
1000 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001001 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001002 return APInt(BitWidth,
1003 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1004 }
1005 }
1006
1007 // If all the bits were shifted out, the result is, technically, undefined.
1008 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1009 // issues in the algorithm below.
1010 if (shiftAmt == BitWidth) {
1011 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001012 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 else
1014 return APInt(BitWidth, 0);
1015 }
1016
1017 // Create some space for the result.
1018 uint64_t * val = new uint64_t[getNumWords()];
1019
1020 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001021 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1022 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1023 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1024 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001025 if (bitsInWord == 0)
1026 bitsInWord = APINT_BITS_PER_WORD;
1027
1028 // If we are shifting whole words, just move whole words
1029 if (wordShift == 0) {
1030 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001031 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 val[i] = pVal[i+offset]; // move whole word
1033
1034 // Adjust the top significant word for sign bit fill, if negative
1035 if (isNegative())
1036 if (bitsInWord < APINT_BITS_PER_WORD)
1037 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1038 } else {
1039 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001040 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 // This combines the shifted corresponding word with the low bits from
1042 // the next word (shifted into this word's high bits).
1043 val[i] = (pVal[i+offset] >> wordShift) |
1044 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1045 }
1046
1047 // Shift the break word. In this case there are no bits from the next word
1048 // to include in this word.
1049 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1050
1051 // Deal with sign extenstion in the break word, and possibly the word before
1052 // it.
1053 if (isNegative()) {
1054 if (wordShift > bitsInWord) {
1055 if (breakWord > 0)
1056 val[breakWord-1] |=
1057 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1058 val[breakWord] |= ~0ULL;
1059 } else
1060 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1061 }
1062 }
1063
1064 // Remaining words are 0 or -1, just assign them.
1065 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001066 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 val[i] = fillValue;
1068 return APInt(val, BitWidth).clearUnusedBits();
1069}
1070
1071/// Logical right-shift this APInt by shiftAmt.
1072/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001073APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001074 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001075}
1076
1077/// Logical right-shift this APInt by shiftAmt.
1078/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001079APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080 if (isSingleWord()) {
1081 if (shiftAmt == BitWidth)
1082 return APInt(BitWidth, 0);
1083 else
1084 return APInt(BitWidth, this->VAL >> shiftAmt);
1085 }
1086
1087 // If all the bits were shifted out, the result is 0. This avoids issues
1088 // with shifting by the size of the integer type, which produces undefined
1089 // results. We define these "undefined results" to always be 0.
1090 if (shiftAmt == BitWidth)
1091 return APInt(BitWidth, 0);
1092
1093 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001094 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001095 // undefined results in the code below. This is also an optimization.
1096 if (shiftAmt == 0)
1097 return *this;
1098
1099 // Create some space for the result.
1100 uint64_t * val = new uint64_t[getNumWords()];
1101
1102 // If we are shifting less than a word, compute the shift with a simple carry
1103 if (shiftAmt < APINT_BITS_PER_WORD) {
1104 uint64_t carry = 0;
1105 for (int i = getNumWords()-1; i >= 0; --i) {
1106 val[i] = (pVal[i] >> shiftAmt) | carry;
1107 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1108 }
1109 return APInt(val, BitWidth).clearUnusedBits();
1110 }
1111
1112 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001113 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1114 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001115
1116 // If we are shifting whole words, just move whole words
1117 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001118 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001120 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 val[i] = 0;
1122 return APInt(val,BitWidth).clearUnusedBits();
1123 }
1124
1125 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001126 unsigned breakWord = getNumWords() - offset -1;
1127 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001128 val[i] = (pVal[i+offset] >> wordShift) |
1129 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1130 // Shift the break word.
1131 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1132
1133 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001134 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135 val[i] = 0;
1136 return APInt(val, BitWidth).clearUnusedBits();
1137}
1138
1139/// Left-shift this APInt by shiftAmt.
1140/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001141APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001142 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001143 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001144}
1145
Chris Lattneree5417c2009-01-21 18:09:24 +00001146APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001147 // If all the bits were shifted out, the result is 0. This avoids issues
1148 // with shifting by the size of the integer type, which produces undefined
1149 // results. We define these "undefined results" to always be 0.
1150 if (shiftAmt == BitWidth)
1151 return APInt(BitWidth, 0);
1152
1153 // If none of the bits are shifted out, the result is *this. This avoids a
1154 // lshr by the words size in the loop below which can produce incorrect
1155 // results. It also avoids the expensive computation below for a common case.
1156 if (shiftAmt == 0)
1157 return *this;
1158
1159 // Create some space for the result.
1160 uint64_t * val = new uint64_t[getNumWords()];
1161
1162 // If we are shifting less than a word, do it the easy way
1163 if (shiftAmt < APINT_BITS_PER_WORD) {
1164 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001165 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001166 val[i] = pVal[i] << shiftAmt | carry;
1167 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1168 }
1169 return APInt(val, BitWidth).clearUnusedBits();
1170 }
1171
1172 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001173 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1174 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001175
1176 // If we are shifting whole words, just move whole words
1177 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001178 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001179 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001180 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001181 val[i] = pVal[i-offset];
1182 return APInt(val,BitWidth).clearUnusedBits();
1183 }
1184
1185 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001186 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001187 for (; i > offset; --i)
1188 val[i] = pVal[i-offset] << wordShift |
1189 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1190 val[offset] = pVal[0] << wordShift;
1191 for (i = 0; i < offset; ++i)
1192 val[i] = 0;
1193 return APInt(val, BitWidth).clearUnusedBits();
1194}
1195
Dan Gohman625ff8d2008-02-29 01:40:47 +00001196APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001197 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001198}
1199
Chris Lattneree5417c2009-01-21 18:09:24 +00001200APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001201 if (rotateAmt == 0)
1202 return *this;
1203 // Don't get too fancy, just use existing shift/or facilities
1204 APInt hi(*this);
1205 APInt lo(*this);
1206 hi.shl(rotateAmt);
1207 lo.lshr(BitWidth - rotateAmt);
1208 return hi | lo;
1209}
1210
Dan Gohman625ff8d2008-02-29 01:40:47 +00001211APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001212 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001213}
1214
Chris Lattneree5417c2009-01-21 18:09:24 +00001215APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001216 if (rotateAmt == 0)
1217 return *this;
1218 // Don't get too fancy, just use existing shift/or facilities
1219 APInt hi(*this);
1220 APInt lo(*this);
1221 lo.lshr(rotateAmt);
1222 hi.shl(BitWidth - rotateAmt);
1223 return hi | lo;
1224}
1225
1226// Square Root - this method computes and returns the square root of "this".
1227// Three mechanisms are used for computation. For small values (<= 5 bits),
1228// a table lookup is done. This gets some performance for common cases. For
1229// values using less than 52 bits, the value is converted to double and then
1230// the libc sqrt function is called. The result is rounded and then converted
1231// back to a uint64_t which is then used to construct the result. Finally,
1232// the Babylonian method for computing square roots is used.
1233APInt APInt::sqrt() const {
1234
1235 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001236 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237
1238 // Use a fast table for some small values. This also gets rid of some
1239 // rounding errors in libc sqrt for small values.
1240 if (magnitude <= 5) {
1241 static const uint8_t results[32] = {
1242 /* 0 */ 0,
1243 /* 1- 2 */ 1, 1,
1244 /* 3- 6 */ 2, 2, 2, 2,
1245 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1246 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1247 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1248 /* 31 */ 6
1249 };
1250 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1251 }
1252
1253 // If the magnitude of the value fits in less than 52 bits (the precision of
1254 // an IEEE double precision floating point value), then we can use the
1255 // libc sqrt function which will probably use a hardware sqrt computation.
1256 // This should be faster than the algorithm below.
1257 if (magnitude < 52) {
1258#ifdef _MSC_VER
1259 // Amazingly, VC++ doesn't have round().
1260 return APInt(BitWidth,
1261 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1262#else
1263 return APInt(BitWidth,
1264 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1265#endif
1266 }
1267
1268 // Okay, all the short cuts are exhausted. We must compute it. The following
1269 // is a classical Babylonian method for computing the square root. This code
1270 // was adapted to APINt from a wikipedia article on such computations.
1271 // See http://www.wikipedia.org/ and go to the page named
1272 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001273 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001274 APInt testy(BitWidth, 16);
1275 APInt x_old(BitWidth, 1);
1276 APInt x_new(BitWidth, 0);
1277 APInt two(BitWidth, 2);
1278
1279 // Select a good starting value using binary logarithms.
1280 for (;; i += 2, testy = testy.shl(2))
1281 if (i >= nbits || this->ule(testy)) {
1282 x_old = x_old.shl(i / 2);
1283 break;
1284 }
1285
1286 // Use the Babylonian method to arrive at the integer square root:
1287 for (;;) {
1288 x_new = (this->udiv(x_old) + x_old).udiv(two);
1289 if (x_old.ule(x_new))
1290 break;
1291 x_old = x_new;
1292 }
1293
1294 // Make sure we return the closest approximation
1295 // NOTE: The rounding calculation below is correct. It will produce an
1296 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1297 // determined to be a rounding issue with pari/gp as it begins to use a
1298 // floating point representation after 192 bits. There are no discrepancies
1299 // between this algorithm and pari/gp for bit widths < 192 bits.
1300 APInt square(x_old * x_old);
1301 APInt nextSquare((x_old + 1) * (x_old +1));
1302 if (this->ult(square))
1303 return x_old;
1304 else if (this->ule(nextSquare)) {
1305 APInt midpoint((nextSquare - square).udiv(two));
1306 APInt offset(*this - square);
1307 if (offset.ult(midpoint))
1308 return x_old;
1309 else
1310 return x_old + 1;
1311 } else
1312 assert(0 && "Error in APInt::sqrt computation");
1313 return x_old + 1;
1314}
1315
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001316/// Computes the multiplicative inverse of this APInt for a given modulo. The
1317/// iterative extended Euclidean algorithm is used to solve for this value,
1318/// however we simplify it to speed up calculating only the inverse, and take
1319/// advantage of div+rem calculations. We also use some tricks to avoid copying
1320/// (potentially large) APInts around.
1321APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1322 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1323
1324 // Using the properties listed at the following web page (accessed 06/21/08):
1325 // http://www.numbertheory.org/php/euclid.html
1326 // (especially the properties numbered 3, 4 and 9) it can be proved that
1327 // BitWidth bits suffice for all the computations in the algorithm implemented
1328 // below. More precisely, this number of bits suffice if the multiplicative
1329 // inverse exists, but may not suffice for the general extended Euclidean
1330 // algorithm.
1331
1332 APInt r[2] = { modulo, *this };
1333 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1334 APInt q(BitWidth, 0);
1335
1336 unsigned i;
1337 for (i = 0; r[i^1] != 0; i ^= 1) {
1338 // An overview of the math without the confusing bit-flipping:
1339 // q = r[i-2] / r[i-1]
1340 // r[i] = r[i-2] % r[i-1]
1341 // t[i] = t[i-2] - t[i-1] * q
1342 udivrem(r[i], r[i^1], q, r[i]);
1343 t[i] -= t[i^1] * q;
1344 }
1345
1346 // If this APInt and the modulo are not coprime, there is no multiplicative
1347 // inverse, so return 0. We check this by looking at the next-to-last
1348 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1349 // algorithm.
1350 if (r[i] != 1)
1351 return APInt(BitWidth, 0);
1352
1353 // The next-to-last t is the multiplicative inverse. However, we are
1354 // interested in a positive inverse. Calcuate a positive one from a negative
1355 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001356 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001357 return t[i].isNegative() ? t[i] + modulo : t[i];
1358}
1359
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001360/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1361/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1362/// variables here have the same names as in the algorithm. Comments explain
1363/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001364static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1365 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001366 assert(u && "Must provide dividend");
1367 assert(v && "Must provide divisor");
1368 assert(q && "Must provide quotient");
1369 assert(u != v && u != q && v != q && "Must us different memory");
1370 assert(n>1 && "n must be > 1");
1371
1372 // Knuth uses the value b as the base of the number system. In our case b
1373 // is 2^31 so we just set it to -1u.
1374 uint64_t b = uint64_t(1) << 32;
1375
Chris Lattner89b36582008-08-17 07:19:36 +00001376#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001377 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1378 DEBUG(cerr << "KnuthDiv: original:");
1379 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1380 DEBUG(cerr << " by");
1381 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1382 DEBUG(cerr << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001383#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001384 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1385 // u and v by d. Note that we have taken Knuth's advice here to use a power
1386 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1387 // 2 allows us to shift instead of multiply and it is easy to determine the
1388 // shift amount from the leading zeros. We are basically normalizing the u
1389 // and v so that its high bits are shifted to the top of v's range without
1390 // overflow. Note that this can require an extra word in u so that u must
1391 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001392 unsigned shift = CountLeadingZeros_32(v[n-1]);
1393 unsigned v_carry = 0;
1394 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001395 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001396 for (unsigned i = 0; i < m+n; ++i) {
1397 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001398 u[i] = (u[i] << shift) | u_carry;
1399 u_carry = u_tmp;
1400 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001401 for (unsigned i = 0; i < n; ++i) {
1402 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 v[i] = (v[i] << shift) | v_carry;
1404 v_carry = v_tmp;
1405 }
1406 }
1407 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001408#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001409 DEBUG(cerr << "KnuthDiv: normal:");
1410 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1411 DEBUG(cerr << " by");
1412 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1413 DEBUG(cerr << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001414#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001415
1416 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1417 int j = m;
1418 do {
1419 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1420 // D3. [Calculate q'.].
1421 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1422 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1423 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1424 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1425 // on v[n-2] determines at high speed most of the cases in which the trial
1426 // value qp is one too large, and it eliminates all cases where qp is two
1427 // too large.
1428 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1429 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1430 uint64_t qp = dividend / v[n-1];
1431 uint64_t rp = dividend % v[n-1];
1432 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1433 qp--;
1434 rp += v[n-1];
1435 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1436 qp--;
1437 }
1438 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1439
1440 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1441 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1442 // consists of a simple multiplication by a one-place number, combined with
1443 // a subtraction.
1444 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001445 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001446 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1447 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1448 bool borrow = subtrahend > u_tmp;
1449 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1450 << ", subtrahend == " << subtrahend
1451 << ", borrow = " << borrow << '\n');
1452
1453 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001454 unsigned k = j + i;
1455 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1456 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001457 while (borrow && k <= m+n) { // deal with borrow to the left
1458 borrow = u[k] == 0;
1459 u[k]--;
1460 k++;
1461 }
1462 isNeg |= borrow;
1463 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1464 u[j+i+1] << '\n');
1465 }
1466 DEBUG(cerr << "KnuthDiv: after subtraction:");
1467 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1468 DEBUG(cerr << '\n');
1469 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1470 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1471 // true value plus b**(n+1), namely as the b's complement of
1472 // the true value, and a "borrow" to the left should be remembered.
1473 //
1474 if (isNeg) {
1475 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001476 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 u[i] = ~u[i] + carry; // b's complement
1478 carry = carry && u[i] == 0;
1479 }
1480 }
1481 DEBUG(cerr << "KnuthDiv: after complement:");
1482 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1483 DEBUG(cerr << '\n');
1484
1485 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1486 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001487 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488 if (isNeg) {
1489 // D6. [Add back]. The probability that this step is necessary is very
1490 // small, on the order of only 2/b. Make sure that test data accounts for
1491 // this possibility. Decrease q[j] by 1
1492 q[j]--;
1493 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1494 // A carry will occur to the left of u[j+n], and it should be ignored
1495 // since it cancels with the borrow that occurred in D4.
1496 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001497 for (unsigned i = 0; i < n; i++) {
1498 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001499 u[j+i] += v[i] + carry;
1500 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1501 }
1502 u[j+n] += carry;
1503 }
1504 DEBUG(cerr << "KnuthDiv: after correction:");
1505 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1506 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1507
1508 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1509 } while (--j >= 0);
1510
1511 DEBUG(cerr << "KnuthDiv: quotient:");
1512 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1513 DEBUG(cerr << '\n');
1514
1515 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1516 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1517 // compute the remainder (urem uses this).
1518 if (r) {
1519 // The value d is expressed by the "shift" value above since we avoided
1520 // multiplication by d by using a shift left. So, all we have to do is
1521 // shift right here. In order to mak
1522 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001523 unsigned carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001524 DEBUG(cerr << "KnuthDiv: remainder:");
1525 for (int i = n-1; i >= 0; i--) {
1526 r[i] = (u[i] >> shift) | carry;
1527 carry = u[i] << (32 - shift);
1528 DEBUG(cerr << " " << r[i]);
1529 }
1530 } else {
1531 for (int i = n-1; i >= 0; i--) {
1532 r[i] = u[i];
1533 DEBUG(cerr << " " << r[i]);
1534 }
1535 }
1536 DEBUG(cerr << '\n');
1537 }
Chris Lattner89b36582008-08-17 07:19:36 +00001538#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001539 DEBUG(cerr << std::setbase(10) << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001540#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001541}
1542
Chris Lattneree5417c2009-01-21 18:09:24 +00001543void APInt::divide(const APInt LHS, unsigned lhsWords,
1544 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001545 APInt *Quotient, APInt *Remainder)
1546{
1547 assert(lhsWords >= rhsWords && "Fractional result");
1548
1549 // First, compose the values into an array of 32-bit words instead of
1550 // 64-bit words. This is a necessity of both the "short division" algorithm
1551 // and the the Knuth "classical algorithm" which requires there to be native
1552 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1553 // can't use 64-bit operands here because we don't have native results of
1554 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1555 // work on large-endian machines.
Chris Lattneree5417c2009-01-21 18:09:24 +00001556 uint64_t mask = ~0ull >> (sizeof(unsigned)*8);
1557 unsigned n = rhsWords * 2;
1558 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001559
1560 // Allocate space for the temporary values we need either on the stack, if
1561 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001562 unsigned SPACE[128];
1563 unsigned *U = 0;
1564 unsigned *V = 0;
1565 unsigned *Q = 0;
1566 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1568 U = &SPACE[0];
1569 V = &SPACE[m+n+1];
1570 Q = &SPACE[(m+n+1) + n];
1571 if (Remainder)
1572 R = &SPACE[(m+n+1) + n + (m+n)];
1573 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001574 U = new unsigned[m + n + 1];
1575 V = new unsigned[n];
1576 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001577 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001578 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001579 }
1580
1581 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001582 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583 for (unsigned i = 0; i < lhsWords; ++i) {
1584 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001585 U[i * 2] = (unsigned)(tmp & mask);
1586 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001587 }
1588 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1589
1590 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001591 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 for (unsigned i = 0; i < rhsWords; ++i) {
1593 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001594 V[i * 2] = (unsigned)(tmp & mask);
1595 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596 }
1597
1598 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001599 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001600 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001601 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602
1603 // Now, adjust m and n for the Knuth division. n is the number of words in
1604 // the divisor. m is the number of words by which the dividend exceeds the
1605 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1606 // contain any zero words or the Knuth algorithm fails.
1607 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1608 n--;
1609 m++;
1610 }
1611 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1612 m--;
1613
1614 // If we're left with only a single word for the divisor, Knuth doesn't work
1615 // so we implement the short division algorithm here. This is much simpler
1616 // and faster because we are certain that we can divide a 64-bit quantity
1617 // by a 32-bit quantity at hardware speed and short division is simply a
1618 // series of such operations. This is just like doing short division but we
1619 // are using base 2^32 instead of base 10.
1620 assert(n != 0 && "Divide by zero?");
1621 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001622 unsigned divisor = V[0];
1623 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001624 for (int i = m+n-1; i >= 0; i--) {
1625 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1626 if (partial_dividend == 0) {
1627 Q[i] = 0;
1628 remainder = 0;
1629 } else if (partial_dividend < divisor) {
1630 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001631 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001632 } else if (partial_dividend == divisor) {
1633 Q[i] = 1;
1634 remainder = 0;
1635 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001636 Q[i] = (unsigned)(partial_dividend / divisor);
1637 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001638 }
1639 }
1640 if (R)
1641 R[0] = remainder;
1642 } else {
1643 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1644 // case n > 1.
1645 KnuthDiv(U, V, Q, R, m, n);
1646 }
1647
1648 // If the caller wants the quotient
1649 if (Quotient) {
1650 // Set up the Quotient value's memory.
1651 if (Quotient->BitWidth != LHS.BitWidth) {
1652 if (Quotient->isSingleWord())
1653 Quotient->VAL = 0;
1654 else
1655 delete [] Quotient->pVal;
1656 Quotient->BitWidth = LHS.BitWidth;
1657 if (!Quotient->isSingleWord())
1658 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1659 } else
1660 Quotient->clear();
1661
1662 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1663 // order words.
1664 if (lhsWords == 1) {
1665 uint64_t tmp =
1666 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1667 if (Quotient->isSingleWord())
1668 Quotient->VAL = tmp;
1669 else
1670 Quotient->pVal[0] = tmp;
1671 } else {
1672 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1673 for (unsigned i = 0; i < lhsWords; ++i)
1674 Quotient->pVal[i] =
1675 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1676 }
1677 }
1678
1679 // If the caller wants the remainder
1680 if (Remainder) {
1681 // Set up the Remainder value's memory.
1682 if (Remainder->BitWidth != RHS.BitWidth) {
1683 if (Remainder->isSingleWord())
1684 Remainder->VAL = 0;
1685 else
1686 delete [] Remainder->pVal;
1687 Remainder->BitWidth = RHS.BitWidth;
1688 if (!Remainder->isSingleWord())
1689 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1690 } else
1691 Remainder->clear();
1692
1693 // The remainder is in R. Reconstitute the remainder into Remainder's low
1694 // order words.
1695 if (rhsWords == 1) {
1696 uint64_t tmp =
1697 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1698 if (Remainder->isSingleWord())
1699 Remainder->VAL = tmp;
1700 else
1701 Remainder->pVal[0] = tmp;
1702 } else {
1703 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1704 for (unsigned i = 0; i < rhsWords; ++i)
1705 Remainder->pVal[i] =
1706 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1707 }
1708 }
1709
1710 // Clean up the memory we allocated.
1711 if (U != &SPACE[0]) {
1712 delete [] U;
1713 delete [] V;
1714 delete [] Q;
1715 delete [] R;
1716 }
1717}
1718
1719APInt APInt::udiv(const APInt& RHS) const {
1720 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1721
1722 // First, deal with the easy case
1723 if (isSingleWord()) {
1724 assert(RHS.VAL != 0 && "Divide by zero?");
1725 return APInt(BitWidth, VAL / RHS.VAL);
1726 }
1727
1728 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001729 unsigned rhsBits = RHS.getActiveBits();
1730 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001731 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001732 unsigned lhsBits = this->getActiveBits();
1733 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001734
1735 // Deal with some degenerate cases
1736 if (!lhsWords)
1737 // 0 / X ===> 0
1738 return APInt(BitWidth, 0);
1739 else if (lhsWords < rhsWords || this->ult(RHS)) {
1740 // X / Y ===> 0, iff X < Y
1741 return APInt(BitWidth, 0);
1742 } else if (*this == RHS) {
1743 // X / X ===> 1
1744 return APInt(BitWidth, 1);
1745 } else if (lhsWords == 1 && rhsWords == 1) {
1746 // All high words are zero, just use native divide
1747 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1748 }
1749
1750 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1751 APInt Quotient(1,0); // to hold result.
1752 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1753 return Quotient;
1754}
1755
1756APInt APInt::urem(const APInt& RHS) const {
1757 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1758 if (isSingleWord()) {
1759 assert(RHS.VAL != 0 && "Remainder by zero?");
1760 return APInt(BitWidth, VAL % RHS.VAL);
1761 }
1762
1763 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001764 unsigned lhsBits = getActiveBits();
1765 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766
1767 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001768 unsigned rhsBits = RHS.getActiveBits();
1769 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770 assert(rhsWords && "Performing remainder operation by zero ???");
1771
1772 // Check the degenerate cases
1773 if (lhsWords == 0) {
1774 // 0 % Y ===> 0
1775 return APInt(BitWidth, 0);
1776 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1777 // X % Y ===> X, iff X < Y
1778 return *this;
1779 } else if (*this == RHS) {
1780 // X % X == 0;
1781 return APInt(BitWidth, 0);
1782 } else if (lhsWords == 1) {
1783 // All high words are zero, just use native remainder
1784 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1785 }
1786
1787 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1788 APInt Remainder(1,0);
1789 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1790 return Remainder;
1791}
1792
1793void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1794 APInt &Quotient, APInt &Remainder) {
1795 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001796 unsigned lhsBits = LHS.getActiveBits();
1797 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1798 unsigned rhsBits = RHS.getActiveBits();
1799 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001800
1801 // Check the degenerate cases
1802 if (lhsWords == 0) {
1803 Quotient = 0; // 0 / Y ===> 0
1804 Remainder = 0; // 0 % Y ===> 0
1805 return;
1806 }
1807
1808 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1809 Quotient = 0; // X / Y ===> 0, iff X < Y
1810 Remainder = LHS; // X % Y ===> X, iff X < Y
1811 return;
1812 }
1813
1814 if (LHS == RHS) {
1815 Quotient = 1; // X / X ===> 1
1816 Remainder = 0; // X % X ===> 0;
1817 return;
1818 }
1819
1820 if (lhsWords == 1 && rhsWords == 1) {
1821 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001822 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1823 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1824 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1825 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001826 return;
1827 }
1828
1829 // Okay, lets do it the long way
1830 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1831}
1832
Chris Lattneree5417c2009-01-21 18:09:24 +00001833void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001834 uint8_t radix) {
1835 // Check our assumptions here
1836 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1837 "Radix should be 2, 8, 10, or 16!");
1838 assert(str && "String is null?");
1839 bool isNeg = str[0] == '-';
1840 if (isNeg)
1841 str++, slen--;
1842 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1843 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1844 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1845 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1846
1847 // Allocate memory
1848 if (!isSingleWord())
1849 pVal = getClearedMemory(getNumWords());
1850
1851 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00001852 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001853
1854 // Set up an APInt for the digit to add outside the loop so we don't
1855 // constantly construct/destruct it.
1856 APInt apdigit(getBitWidth(), 0);
1857 APInt apradix(getBitWidth(), radix);
1858
1859 // Enter digit traversal loop
1860 for (unsigned i = 0; i < slen; i++) {
1861 // Get a digit
Chris Lattneree5417c2009-01-21 18:09:24 +00001862 unsigned digit = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001863 char cdigit = str[i];
1864 if (radix == 16) {
1865 if (!isxdigit(cdigit))
1866 assert(0 && "Invalid hex digit in string");
1867 if (isdigit(cdigit))
1868 digit = cdigit - '0';
1869 else if (cdigit >= 'a')
1870 digit = cdigit - 'a' + 10;
1871 else if (cdigit >= 'A')
1872 digit = cdigit - 'A' + 10;
1873 else
1874 assert(0 && "huh? we shouldn't get here");
1875 } else if (isdigit(cdigit)) {
1876 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00001877 assert((radix == 10 ||
1878 (radix == 8 && digit != 8 && digit != 9) ||
1879 (radix == 2 && (digit == 0 || digit == 1))) &&
1880 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 } else {
1882 assert(0 && "Invalid character in digit string");
1883 }
1884
1885 // Shift or multiply the value by the radix
1886 if (shift)
1887 *this <<= shift;
1888 else
1889 *this *= apradix;
1890
1891 // Add in the digit we just interpreted
1892 if (apdigit.isSingleWord())
1893 apdigit.VAL = digit;
1894 else
1895 apdigit.pVal[0] = digit;
1896 *this += apdigit;
1897 }
1898 // If its negative, put it in two's complement form
1899 if (isNeg) {
1900 (*this)--;
1901 this->flip();
1902 }
1903}
1904
Chris Lattner89b36582008-08-17 07:19:36 +00001905void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
1906 bool Signed) const {
1907 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001908 "Radix should be 2, 8, 10, or 16!");
Chris Lattner89b36582008-08-17 07:19:36 +00001909
1910 // First, check for a zero value and just short circuit the logic below.
1911 if (*this == 0) {
1912 Str.push_back('0');
1913 return;
1914 }
1915
1916 static const char Digits[] = "0123456789ABCDEF";
1917
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001918 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00001919 char Buffer[65];
1920 char *BufPtr = Buffer+65;
1921
1922 uint64_t N;
1923 if (Signed) {
1924 int64_t I = getSExtValue();
1925 if (I < 0) {
1926 Str.push_back('-');
1927 I = -I;
1928 }
1929 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00001931 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001932 }
Chris Lattner89b36582008-08-17 07:19:36 +00001933
1934 while (N) {
1935 *--BufPtr = Digits[N % Radix];
1936 N /= Radix;
1937 }
1938 Str.append(BufPtr, Buffer+65);
1939 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001940 }
1941
Chris Lattner89b36582008-08-17 07:19:36 +00001942 APInt Tmp(*this);
1943
1944 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001945 // They want to print the signed version and it is a negative value
1946 // Flip the bits and add one to turn it into the equivalent positive
1947 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00001948 Tmp.flip();
1949 Tmp++;
1950 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001951 }
Chris Lattner89b36582008-08-17 07:19:36 +00001952
1953 // We insert the digits backward, then reverse them to get the right order.
1954 unsigned StartDig = Str.size();
1955
1956 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
1957 // because the number of bits per digit (1, 3 and 4 respectively) divides
1958 // equaly. We just shift until the value is zero.
1959 if (Radix != 10) {
1960 // Just shift tmp right for each digit width until it becomes zero
1961 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
1962 unsigned MaskAmt = Radix - 1;
1963
1964 while (Tmp != 0) {
1965 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
1966 Str.push_back(Digits[Digit]);
1967 Tmp = Tmp.lshr(ShiftAmt);
1968 }
1969 } else {
1970 APInt divisor(4, 10);
1971 while (Tmp != 0) {
1972 APInt APdigit(1, 0);
1973 APInt tmp2(Tmp.getBitWidth(), 0);
1974 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1975 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00001976 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00001977 assert(Digit < Radix && "divide failed");
1978 Str.push_back(Digits[Digit]);
1979 Tmp = tmp2;
1980 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001981 }
Chris Lattner89b36582008-08-17 07:19:36 +00001982
1983 // Reverse the digits before returning.
1984 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985}
1986
Chris Lattner89b36582008-08-17 07:19:36 +00001987/// toString - This returns the APInt as a std::string. Note that this is an
1988/// inefficient method. It is better to pass in a SmallVector/SmallString
1989/// to the methods above.
1990std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
1991 SmallString<40> S;
1992 toString(S, Radix, Signed);
1993 return S.c_str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001994}
Chris Lattner73cde982007-08-16 15:56:55 +00001995
Chris Lattner89b36582008-08-17 07:19:36 +00001996
1997void APInt::dump() const {
1998 SmallString<40> S, U;
1999 this->toStringUnsigned(U);
2000 this->toStringSigned(S);
2001 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2002}
2003
Chris Lattner1fefaac2008-08-23 22:23:09 +00002004void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002005 SmallString<40> S;
2006 this->toString(S, 10, isSigned);
2007 OS << S.c_str();
2008}
2009
Chris Lattner73cde982007-08-16 15:56:55 +00002010// This implements a variety of operations on a representation of
2011// arbitrary precision, two's-complement, bignum integer values.
2012
2013/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2014 and unrestricting assumption. */
Chris Lattner12e44312008-08-17 04:58:58 +00002015#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002016COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002017
2018/* Some handy functions local to this file. */
2019namespace {
2020
Chris Lattnerdb80e212007-08-20 22:49:32 +00002021 /* Returns the integer part with the least significant BITS set.
2022 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002023 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002024 lowBitMask(unsigned int bits)
2025 {
2026 assert (bits != 0 && bits <= integerPartWidth);
2027
2028 return ~(integerPart) 0 >> (integerPartWidth - bits);
2029 }
2030
Neil Booth58ffb232007-10-06 00:43:45 +00002031 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002032 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002033 lowHalf(integerPart part)
2034 {
2035 return part & lowBitMask(integerPartWidth / 2);
2036 }
2037
Neil Booth58ffb232007-10-06 00:43:45 +00002038 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002039 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002040 highHalf(integerPart part)
2041 {
2042 return part >> (integerPartWidth / 2);
2043 }
2044
Neil Booth58ffb232007-10-06 00:43:45 +00002045 /* Returns the bit number of the most significant set bit of a part.
2046 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002047 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002048 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002049 {
2050 unsigned int n, msb;
2051
2052 if (value == 0)
2053 return -1U;
2054
2055 n = integerPartWidth / 2;
2056
2057 msb = 0;
2058 do {
2059 if (value >> n) {
2060 value >>= n;
2061 msb += n;
2062 }
2063
2064 n >>= 1;
2065 } while (n);
2066
2067 return msb;
2068 }
2069
Neil Booth58ffb232007-10-06 00:43:45 +00002070 /* Returns the bit number of the least significant set bit of a
2071 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002072 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002073 partLSB(integerPart value)
2074 {
2075 unsigned int n, lsb;
2076
2077 if (value == 0)
2078 return -1U;
2079
2080 lsb = integerPartWidth - 1;
2081 n = integerPartWidth / 2;
2082
2083 do {
2084 if (value << n) {
2085 value <<= n;
2086 lsb -= n;
2087 }
2088
2089 n >>= 1;
2090 } while (n);
2091
2092 return lsb;
2093 }
2094}
2095
2096/* Sets the least significant part of a bignum to the input value, and
2097 zeroes out higher parts. */
2098void
2099APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2100{
2101 unsigned int i;
2102
Neil Bootha0f524a2007-10-08 13:47:12 +00002103 assert (parts > 0);
2104
Chris Lattner73cde982007-08-16 15:56:55 +00002105 dst[0] = part;
2106 for(i = 1; i < parts; i++)
2107 dst[i] = 0;
2108}
2109
2110/* Assign one bignum to another. */
2111void
2112APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2113{
2114 unsigned int i;
2115
2116 for(i = 0; i < parts; i++)
2117 dst[i] = src[i];
2118}
2119
2120/* Returns true if a bignum is zero, false otherwise. */
2121bool
2122APInt::tcIsZero(const integerPart *src, unsigned int parts)
2123{
2124 unsigned int i;
2125
2126 for(i = 0; i < parts; i++)
2127 if (src[i])
2128 return false;
2129
2130 return true;
2131}
2132
2133/* Extract the given bit of a bignum; returns 0 or 1. */
2134int
2135APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2136{
2137 return(parts[bit / integerPartWidth]
2138 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2139}
2140
2141/* Set the given bit of a bignum. */
2142void
2143APInt::tcSetBit(integerPart *parts, unsigned int bit)
2144{
2145 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2146}
2147
Neil Booth58ffb232007-10-06 00:43:45 +00002148/* Returns the bit number of the least significant set bit of a
2149 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002150unsigned int
2151APInt::tcLSB(const integerPart *parts, unsigned int n)
2152{
2153 unsigned int i, lsb;
2154
2155 for(i = 0; i < n; i++) {
2156 if (parts[i] != 0) {
2157 lsb = partLSB(parts[i]);
2158
2159 return lsb + i * integerPartWidth;
2160 }
2161 }
2162
2163 return -1U;
2164}
2165
Neil Booth58ffb232007-10-06 00:43:45 +00002166/* Returns the bit number of the most significant set bit of a number.
2167 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002168unsigned int
2169APInt::tcMSB(const integerPart *parts, unsigned int n)
2170{
2171 unsigned int msb;
2172
2173 do {
2174 --n;
2175
2176 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002177 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002178
2179 return msb + n * integerPartWidth;
2180 }
2181 } while (n);
2182
2183 return -1U;
2184}
2185
Neil Bootha0f524a2007-10-08 13:47:12 +00002186/* Copy the bit vector of width srcBITS from SRC, starting at bit
2187 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2188 the least significant bit of DST. All high bits above srcBITS in
2189 DST are zero-filled. */
2190void
2191APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2192 unsigned int srcBits, unsigned int srcLSB)
2193{
2194 unsigned int firstSrcPart, dstParts, shift, n;
2195
2196 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2197 assert (dstParts <= dstCount);
2198
2199 firstSrcPart = srcLSB / integerPartWidth;
2200 tcAssign (dst, src + firstSrcPart, dstParts);
2201
2202 shift = srcLSB % integerPartWidth;
2203 tcShiftRight (dst, dstParts, shift);
2204
2205 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2206 in DST. If this is less that srcBits, append the rest, else
2207 clear the high bits. */
2208 n = dstParts * integerPartWidth - shift;
2209 if (n < srcBits) {
2210 integerPart mask = lowBitMask (srcBits - n);
2211 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2212 << n % integerPartWidth);
2213 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002214 if (srcBits % integerPartWidth)
2215 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002216 }
2217
2218 /* Clear high parts. */
2219 while (dstParts < dstCount)
2220 dst[dstParts++] = 0;
2221}
2222
Chris Lattner73cde982007-08-16 15:56:55 +00002223/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2224integerPart
2225APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2226 integerPart c, unsigned int parts)
2227{
2228 unsigned int i;
2229
2230 assert(c <= 1);
2231
2232 for(i = 0; i < parts; i++) {
2233 integerPart l;
2234
2235 l = dst[i];
2236 if (c) {
2237 dst[i] += rhs[i] + 1;
2238 c = (dst[i] <= l);
2239 } else {
2240 dst[i] += rhs[i];
2241 c = (dst[i] < l);
2242 }
2243 }
2244
2245 return c;
2246}
2247
2248/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2249integerPart
2250APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2251 integerPart c, unsigned int parts)
2252{
2253 unsigned int i;
2254
2255 assert(c <= 1);
2256
2257 for(i = 0; i < parts; i++) {
2258 integerPart l;
2259
2260 l = dst[i];
2261 if (c) {
2262 dst[i] -= rhs[i] + 1;
2263 c = (dst[i] >= l);
2264 } else {
2265 dst[i] -= rhs[i];
2266 c = (dst[i] > l);
2267 }
2268 }
2269
2270 return c;
2271}
2272
2273/* Negate a bignum in-place. */
2274void
2275APInt::tcNegate(integerPart *dst, unsigned int parts)
2276{
2277 tcComplement(dst, parts);
2278 tcIncrement(dst, parts);
2279}
2280
Neil Booth58ffb232007-10-06 00:43:45 +00002281/* DST += SRC * MULTIPLIER + CARRY if add is true
2282 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002283
2284 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2285 they must start at the same point, i.e. DST == SRC.
2286
2287 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2288 returned. Otherwise DST is filled with the least significant
2289 DSTPARTS parts of the result, and if all of the omitted higher
2290 parts were zero return zero, otherwise overflow occurred and
2291 return one. */
2292int
2293APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2294 integerPart multiplier, integerPart carry,
2295 unsigned int srcParts, unsigned int dstParts,
2296 bool add)
2297{
2298 unsigned int i, n;
2299
2300 /* Otherwise our writes of DST kill our later reads of SRC. */
2301 assert(dst <= src || dst >= src + srcParts);
2302 assert(dstParts <= srcParts + 1);
2303
2304 /* N loops; minimum of dstParts and srcParts. */
2305 n = dstParts < srcParts ? dstParts: srcParts;
2306
2307 for(i = 0; i < n; i++) {
2308 integerPart low, mid, high, srcPart;
2309
2310 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2311
2312 This cannot overflow, because
2313
2314 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2315
2316 which is less than n^2. */
2317
2318 srcPart = src[i];
2319
2320 if (multiplier == 0 || srcPart == 0) {
2321 low = carry;
2322 high = 0;
2323 } else {
2324 low = lowHalf(srcPart) * lowHalf(multiplier);
2325 high = highHalf(srcPart) * highHalf(multiplier);
2326
2327 mid = lowHalf(srcPart) * highHalf(multiplier);
2328 high += highHalf(mid);
2329 mid <<= integerPartWidth / 2;
2330 if (low + mid < low)
2331 high++;
2332 low += mid;
2333
2334 mid = highHalf(srcPart) * lowHalf(multiplier);
2335 high += highHalf(mid);
2336 mid <<= integerPartWidth / 2;
2337 if (low + mid < low)
2338 high++;
2339 low += mid;
2340
2341 /* Now add carry. */
2342 if (low + carry < low)
2343 high++;
2344 low += carry;
2345 }
2346
2347 if (add) {
2348 /* And now DST[i], and store the new low part there. */
2349 if (low + dst[i] < low)
2350 high++;
2351 dst[i] += low;
2352 } else
2353 dst[i] = low;
2354
2355 carry = high;
2356 }
2357
2358 if (i < dstParts) {
2359 /* Full multiplication, there is no overflow. */
2360 assert(i + 1 == dstParts);
2361 dst[i] = carry;
2362 return 0;
2363 } else {
2364 /* We overflowed if there is carry. */
2365 if (carry)
2366 return 1;
2367
2368 /* We would overflow if any significant unwritten parts would be
2369 non-zero. This is true if any remaining src parts are non-zero
2370 and the multiplier is non-zero. */
2371 if (multiplier)
2372 for(; i < srcParts; i++)
2373 if (src[i])
2374 return 1;
2375
2376 /* We fitted in the narrow destination. */
2377 return 0;
2378 }
2379}
2380
2381/* DST = LHS * RHS, where DST has the same width as the operands and
2382 is filled with the least significant parts of the result. Returns
2383 one if overflow occurred, otherwise zero. DST must be disjoint
2384 from both operands. */
2385int
2386APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2387 const integerPart *rhs, unsigned int parts)
2388{
2389 unsigned int i;
2390 int overflow;
2391
2392 assert(dst != lhs && dst != rhs);
2393
2394 overflow = 0;
2395 tcSet(dst, 0, parts);
2396
2397 for(i = 0; i < parts; i++)
2398 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2399 parts - i, true);
2400
2401 return overflow;
2402}
2403
Neil Booth004e9f42007-10-06 00:24:48 +00002404/* DST = LHS * RHS, where DST has width the sum of the widths of the
2405 operands. No overflow occurs. DST must be disjoint from both
2406 operands. Returns the number of parts required to hold the
2407 result. */
2408unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002409APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002410 const integerPart *rhs, unsigned int lhsParts,
2411 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002412{
Neil Booth004e9f42007-10-06 00:24:48 +00002413 /* Put the narrower number on the LHS for less loops below. */
2414 if (lhsParts > rhsParts) {
2415 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2416 } else {
2417 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002418
Neil Booth004e9f42007-10-06 00:24:48 +00002419 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002420
Neil Booth004e9f42007-10-06 00:24:48 +00002421 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002422
Neil Booth004e9f42007-10-06 00:24:48 +00002423 for(n = 0; n < lhsParts; n++)
2424 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002425
Neil Booth004e9f42007-10-06 00:24:48 +00002426 n = lhsParts + rhsParts;
2427
2428 return n - (dst[n - 1] == 0);
2429 }
Chris Lattner73cde982007-08-16 15:56:55 +00002430}
2431
2432/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2433 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2434 set REMAINDER to the remainder, return zero. i.e.
2435
2436 OLD_LHS = RHS * LHS + REMAINDER
2437
2438 SCRATCH is a bignum of the same size as the operands and result for
2439 use by the routine; its contents need not be initialized and are
2440 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2441*/
2442int
2443APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2444 integerPart *remainder, integerPart *srhs,
2445 unsigned int parts)
2446{
2447 unsigned int n, shiftCount;
2448 integerPart mask;
2449
2450 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2451
Chris Lattnerdb80e212007-08-20 22:49:32 +00002452 shiftCount = tcMSB(rhs, parts) + 1;
2453 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002454 return true;
2455
Chris Lattnerdb80e212007-08-20 22:49:32 +00002456 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002457 n = shiftCount / integerPartWidth;
2458 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2459
2460 tcAssign(srhs, rhs, parts);
2461 tcShiftLeft(srhs, parts, shiftCount);
2462 tcAssign(remainder, lhs, parts);
2463 tcSet(lhs, 0, parts);
2464
2465 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2466 the total. */
2467 for(;;) {
2468 int compare;
2469
2470 compare = tcCompare(remainder, srhs, parts);
2471 if (compare >= 0) {
2472 tcSubtract(remainder, srhs, 0, parts);
2473 lhs[n] |= mask;
2474 }
2475
2476 if (shiftCount == 0)
2477 break;
2478 shiftCount--;
2479 tcShiftRight(srhs, parts, 1);
2480 if ((mask >>= 1) == 0)
2481 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2482 }
2483
2484 return false;
2485}
2486
2487/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2488 There are no restrictions on COUNT. */
2489void
2490APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2491{
Neil Bootha0f524a2007-10-08 13:47:12 +00002492 if (count) {
2493 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002494
Neil Bootha0f524a2007-10-08 13:47:12 +00002495 /* Jump is the inter-part jump; shift is is intra-part shift. */
2496 jump = count / integerPartWidth;
2497 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002498
Neil Bootha0f524a2007-10-08 13:47:12 +00002499 while (parts > jump) {
2500 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002501
Neil Bootha0f524a2007-10-08 13:47:12 +00002502 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002503
Neil Bootha0f524a2007-10-08 13:47:12 +00002504 /* dst[i] comes from the two parts src[i - jump] and, if we have
2505 an intra-part shift, src[i - jump - 1]. */
2506 part = dst[parts - jump];
2507 if (shift) {
2508 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002509 if (parts >= jump + 1)
2510 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2511 }
2512
Neil Bootha0f524a2007-10-08 13:47:12 +00002513 dst[parts] = part;
2514 }
Chris Lattner73cde982007-08-16 15:56:55 +00002515
Neil Bootha0f524a2007-10-08 13:47:12 +00002516 while (parts > 0)
2517 dst[--parts] = 0;
2518 }
Chris Lattner73cde982007-08-16 15:56:55 +00002519}
2520
2521/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2522 zero. There are no restrictions on COUNT. */
2523void
2524APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2525{
Neil Bootha0f524a2007-10-08 13:47:12 +00002526 if (count) {
2527 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002528
Neil Bootha0f524a2007-10-08 13:47:12 +00002529 /* Jump is the inter-part jump; shift is is intra-part shift. */
2530 jump = count / integerPartWidth;
2531 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002532
Neil Bootha0f524a2007-10-08 13:47:12 +00002533 /* Perform the shift. This leaves the most significant COUNT bits
2534 of the result at zero. */
2535 for(i = 0; i < parts; i++) {
2536 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002537
Neil Bootha0f524a2007-10-08 13:47:12 +00002538 if (i + jump >= parts) {
2539 part = 0;
2540 } else {
2541 part = dst[i + jump];
2542 if (shift) {
2543 part >>= shift;
2544 if (i + jump + 1 < parts)
2545 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2546 }
Chris Lattner73cde982007-08-16 15:56:55 +00002547 }
Chris Lattner73cde982007-08-16 15:56:55 +00002548
Neil Bootha0f524a2007-10-08 13:47:12 +00002549 dst[i] = part;
2550 }
Chris Lattner73cde982007-08-16 15:56:55 +00002551 }
2552}
2553
2554/* Bitwise and of two bignums. */
2555void
2556APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2557{
2558 unsigned int i;
2559
2560 for(i = 0; i < parts; i++)
2561 dst[i] &= rhs[i];
2562}
2563
2564/* Bitwise inclusive or of two bignums. */
2565void
2566APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2567{
2568 unsigned int i;
2569
2570 for(i = 0; i < parts; i++)
2571 dst[i] |= rhs[i];
2572}
2573
2574/* Bitwise exclusive or of two bignums. */
2575void
2576APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2577{
2578 unsigned int i;
2579
2580 for(i = 0; i < parts; i++)
2581 dst[i] ^= rhs[i];
2582}
2583
2584/* Complement a bignum in-place. */
2585void
2586APInt::tcComplement(integerPart *dst, unsigned int parts)
2587{
2588 unsigned int i;
2589
2590 for(i = 0; i < parts; i++)
2591 dst[i] = ~dst[i];
2592}
2593
2594/* Comparison (unsigned) of two bignums. */
2595int
2596APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2597 unsigned int parts)
2598{
2599 while (parts) {
2600 parts--;
2601 if (lhs[parts] == rhs[parts])
2602 continue;
2603
2604 if (lhs[parts] > rhs[parts])
2605 return 1;
2606 else
2607 return -1;
2608 }
2609
2610 return 0;
2611}
2612
2613/* Increment a bignum in-place, return the carry flag. */
2614integerPart
2615APInt::tcIncrement(integerPart *dst, unsigned int parts)
2616{
2617 unsigned int i;
2618
2619 for(i = 0; i < parts; i++)
2620 if (++dst[i] != 0)
2621 break;
2622
2623 return i == parts;
2624}
2625
2626/* Set the least significant BITS bits of a bignum, clear the
2627 rest. */
2628void
2629APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2630 unsigned int bits)
2631{
2632 unsigned int i;
2633
2634 i = 0;
2635 while (bits > integerPartWidth) {
2636 dst[i++] = ~(integerPart) 0;
2637 bits -= integerPartWidth;
2638 }
2639
2640 if (bits)
2641 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2642
2643 while (i < parts)
2644 dst[i++] = 0;
2645}