blob: 1357cc54e6ed0019730dde81cd9ba8ee74e9de23 [file] [log] [blame]
Tony Linthicumb4b54152011-12-12 21:14:40 +00001//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the Hexagon hardware
11// loop instruction. The hardware loop can perform loop branches with a
12// zero-cycle overhead.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for hardware loops:
21// - Countable loops (w/ ind. var for a trip count)
22// - Assumes loops are normalized by IndVarSimplify
23// - Try inner-most loops first
24// - No nested hardware loops.
25// - No function calls in loops.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "hwloops"
Craig Topper79aa3412012-03-17 18:46:09 +000030#include "Hexagon.h"
31#include "HexagonTargetMachine.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000032#include "llvm/Constants.h"
33#include "llvm/PassSupport.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/CodeGen/MachineDominators.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineLoopInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/RegisterScavenging.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include <algorithm>
Tony Linthicumb4b54152011-12-12 21:14:40 +000048
49using namespace llvm;
50
51STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
52
53namespace {
54 class CountValue;
55 struct HexagonHardwareLoops : public MachineFunctionPass {
56 MachineLoopInfo *MLI;
57 MachineRegisterInfo *MRI;
58 const TargetInstrInfo *TII;
59
60 public:
61 static char ID; // Pass identification, replacement for typeid
62
63 HexagonHardwareLoops() : MachineFunctionPass(ID) {}
64
65 virtual bool runOnMachineFunction(MachineFunction &MF);
66
67 const char *getPassName() const { return "Hexagon Hardware Loops"; }
68
69 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70 AU.setPreservesCFG();
71 AU.addRequired<MachineDominatorTree>();
72 AU.addPreserved<MachineDominatorTree>();
73 AU.addRequired<MachineLoopInfo>();
74 AU.addPreserved<MachineLoopInfo>();
75 MachineFunctionPass::getAnalysisUsage(AU);
76 }
77
78 private:
79 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
80 /// induction variable.
81 /// Should be defined in MachineLoop. Based upon version in class Loop.
82 const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const;
83
84 /// getTripCount - Return a loop-invariant LLVM register indicating the
85 /// number of times the loop will be executed. If the trip-count cannot
86 /// be determined, this return null.
87 CountValue *getTripCount(MachineLoop *L) const;
88
89 /// isInductionOperation - Return true if the instruction matches the
90 /// pattern for an opertion that defines an induction variable.
91 bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
92
93 /// isInvalidOperation - Return true if the instruction is not valid within
94 /// a hardware loop.
95 bool isInvalidLoopOperation(const MachineInstr *MI) const;
96
97 /// containsInavlidInstruction - Return true if the loop contains an
98 /// instruction that inhibits using the hardware loop.
99 bool containsInvalidInstruction(MachineLoop *L) const;
100
101 /// converToHardwareLoop - Given a loop, check if we can convert it to a
102 /// hardware loop. If so, then perform the conversion and return true.
103 bool convertToHardwareLoop(MachineLoop *L);
104
105 };
106
107 char HexagonHardwareLoops::ID = 0;
108
109
110 // CountValue class - Abstraction for a trip count of a loop. A
111 // smaller vesrsion of the MachineOperand class without the concerns
112 // of changing the operand representation.
113 class CountValue {
114 public:
115 enum CountValueType {
116 CV_Register,
117 CV_Immediate
118 };
119 private:
120 CountValueType Kind;
121 union Values {
122 unsigned RegNum;
123 int64_t ImmVal;
124 Values(unsigned r) : RegNum(r) {}
125 Values(int64_t i) : ImmVal(i) {}
126 } Contents;
127 bool isNegative;
128
129 public:
130 CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
131 isNegative(neg) {}
132 explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
133 isNegative(i < 0) {}
134 CountValueType getType() const { return Kind; }
135 bool isReg() const { return Kind == CV_Register; }
136 bool isImm() const { return Kind == CV_Immediate; }
137 bool isNeg() const { return isNegative; }
138
139 unsigned getReg() const {
140 assert(isReg() && "Wrong CountValue accessor");
141 return Contents.RegNum;
142 }
143 void setReg(unsigned Val) {
144 Contents.RegNum = Val;
145 }
146 int64_t getImm() const {
147 assert(isImm() && "Wrong CountValue accessor");
148 if (isNegative) {
149 return -Contents.ImmVal;
150 }
151 return Contents.ImmVal;
152 }
153 void setImm(int64_t Val) {
154 Contents.ImmVal = Val;
155 }
156
157 void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
158 if (isReg()) { OS << PrintReg(getReg()); }
159 if (isImm()) { OS << getImm(); }
160 }
161 };
162
163 struct HexagonFixupHwLoops : public MachineFunctionPass {
164 public:
165 static char ID; // Pass identification, replacement for typeid.
166
167 HexagonFixupHwLoops() : MachineFunctionPass(ID) {}
168
169 virtual bool runOnMachineFunction(MachineFunction &MF);
170
171 const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
172
173 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174 AU.setPreservesCFG();
175 MachineFunctionPass::getAnalysisUsage(AU);
176 }
177
178 private:
179 /// Maximum distance between the loop instr and the basic block.
180 /// Just an estimate.
181 static const unsigned MAX_LOOP_DISTANCE = 200;
182
183 /// fixupLoopInstrs - Check the offset between each loop instruction and
184 /// the loop basic block to determine if we can use the LOOP instruction
185 /// or if we need to set the LC/SA registers explicitly.
186 bool fixupLoopInstrs(MachineFunction &MF);
187
188 /// convertLoopInstr - Add the instruction to set the LC and SA registers
189 /// explicitly.
190 void convertLoopInstr(MachineFunction &MF,
191 MachineBasicBlock::iterator &MII,
192 RegScavenger &RS);
193
194 };
195
196 char HexagonFixupHwLoops::ID = 0;
197
198} // end anonymous namespace
199
200
201/// isHardwareLoop - Returns true if the instruction is a hardware loop
202/// instruction.
203static bool isHardwareLoop(const MachineInstr *MI) {
204 return MI->getOpcode() == Hexagon::LOOP0_r ||
205 MI->getOpcode() == Hexagon::LOOP0_i;
206}
207
208/// isCompareEquals - Returns true if the instruction is a compare equals
209/// instruction with an immediate operand.
210static bool isCompareEqualsImm(const MachineInstr *MI) {
211 return MI->getOpcode() == Hexagon::CMPEQri;
212}
213
214
215/// createHexagonHardwareLoops - Factory for creating
216/// the hardware loop phase.
217FunctionPass *llvm::createHexagonHardwareLoops() {
218 return new HexagonHardwareLoops();
219}
220
221
222bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
223 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
224
225 bool Changed = false;
226
227 // get the loop information
228 MLI = &getAnalysis<MachineLoopInfo>();
229 // get the register information
230 MRI = &MF.getRegInfo();
231 // the target specific instructio info.
232 TII = MF.getTarget().getInstrInfo();
233
234 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
235 I != E; ++I) {
236 MachineLoop *L = *I;
237 if (!L->getParentLoop()) {
238 Changed |= convertToHardwareLoop(L);
239 }
240 }
241
242 return Changed;
243}
244
245/// getCanonicalInductionVariable - Check to see if the loop has a canonical
246/// induction variable. We check for a simple recurrence pattern - an
247/// integer recurrence that decrements by one each time through the loop and
248/// ends at zero. If so, return the phi node that corresponds to it.
249///
250/// Based upon the similar code in LoopInfo except this code is specific to
251/// the machine.
252/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
253///
254const MachineInstr
255*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const {
256 MachineBasicBlock *TopMBB = L->getTopBlock();
257 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
258 assert(PI != TopMBB->pred_end() &&
259 "Loop must have more than one incoming edge!");
260 MachineBasicBlock *Backedge = *PI++;
261 if (PI == TopMBB->pred_end()) return 0; // dead loop
262 MachineBasicBlock *Incoming = *PI++;
263 if (PI != TopMBB->pred_end()) return 0; // multiple backedges?
264
265 // make sure there is one incoming and one backedge and determine which
266 // is which.
267 if (L->contains(Incoming)) {
268 if (L->contains(Backedge))
269 return 0;
270 std::swap(Incoming, Backedge);
271 } else if (!L->contains(Backedge))
272 return 0;
273
274 // Loop over all of the PHI nodes, looking for a canonical induction variable:
275 // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
276 // - The recurrence comes from the backedge.
277 // - the definition is an induction operatio.n
278 for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
279 I != E && I->isPHI(); ++I) {
280 const MachineInstr *MPhi = &*I;
281 unsigned DefReg = MPhi->getOperand(0).getReg();
282 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
283 // Check each operand for the value from the backedge.
284 MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
285 if (L->contains(MBB)) { // operands comes from the backedge
286 // Check if the definition is an induction operation.
287 const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
288 if (isInductionOperation(DI, DefReg)) {
289 return MPhi;
290 }
291 }
292 }
293 }
294 return 0;
295}
296
297/// getTripCount - Return a loop-invariant LLVM value indicating the
298/// number of times the loop will be executed. The trip count can
299/// be either a register or a constant value. If the trip-count
300/// cannot be determined, this returns null.
301///
302/// We find the trip count from the phi instruction that defines the
303/// induction variable. We follow the links to the CMP instruction
304/// to get the trip count.
305///
306/// Based upon getTripCount in LoopInfo.
307///
308CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const {
309 // Check that the loop has a induction variable.
310 const MachineInstr *IV_Inst = getCanonicalInductionVariable(L);
311 if (IV_Inst == 0) return 0;
312
313 // Canonical loops will end with a 'cmpeq_ri IV, Imm',
314 // if Imm is 0, get the count from the PHI opnd
315 // if Imm is -M, than M is the count
316 // Otherwise, Imm is the count
317 const MachineOperand *IV_Opnd;
318 const MachineOperand *InitialValue;
319 if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
320 InitialValue = &IV_Inst->getOperand(1);
321 IV_Opnd = &IV_Inst->getOperand(3);
322 } else {
323 InitialValue = &IV_Inst->getOperand(3);
324 IV_Opnd = &IV_Inst->getOperand(1);
325 }
326
327 // Look for the cmp instruction to determine if we
328 // can get a useful trip count. The trip count can
329 // be either a register or an immediate. The location
330 // of the value depends upon the type (reg or imm).
331 while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) {
332 const MachineInstr *MI = IV_Opnd->getParent();
333 if (L->contains(MI) && isCompareEqualsImm(MI)) {
334 const MachineOperand &MO = MI->getOperand(2);
335 assert(MO.isImm() && "IV Cmp Operand should be 0");
336 int64_t ImmVal = MO.getImm();
337
338 const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
339 assert(L->contains(IV_DefInstr->getParent()) &&
340 "IV definition should occurs in loop");
341 int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
342
343 if (ImmVal == 0) {
344 // Make sure the induction variable changes by one on each iteration.
345 if (iv_value != 1 && iv_value != -1) {
346 return 0;
347 }
348 return new CountValue(InitialValue->getReg(), iv_value > 0);
349 } else {
350 assert(InitialValue->isReg() && "Expecting register for init value");
351 const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
352 if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) {
353 int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
354 if ((count % iv_value) != 0) {
355 return 0;
356 }
357 return new CountValue(count/iv_value);
358 }
359 }
360 }
361 }
362 return 0;
363}
364
365/// isInductionOperation - return true if the operation is matches the
366/// pattern that defines an induction variable:
367/// add iv, c
368///
369bool
370HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI,
371 unsigned IVReg) const {
372 return (MI->getOpcode() ==
373 Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg);
374}
375
376/// isInvalidOperation - Return true if the operation is invalid within
377/// hardware loop.
378bool
379HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
380
381 // call is not allowed because the callee may use a hardware loop
382 if (MI->getDesc().isCall()) {
383 return true;
384 }
385 // do not allow nested hardware loops
386 if (isHardwareLoop(MI)) {
387 return true;
388 }
389 // check if the instruction defines a hardware loop register
390 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
391 const MachineOperand &MO = MI->getOperand(i);
392 if (MO.isReg() && MO.isDef() &&
393 (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 ||
394 MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) {
395 return true;
396 }
397 }
398 return false;
399}
400
401/// containsInvalidInstruction - Return true if the loop contains
402/// an instruction that inhibits the use of the hardware loop function.
403///
404bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
405 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
406 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
407 MachineBasicBlock *MBB = Blocks[i];
408 for (MachineBasicBlock::iterator
409 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
410 const MachineInstr *MI = &*MII;
411 if (isInvalidLoopOperation(MI)) {
412 return true;
413 }
414 }
415 }
416 return false;
417}
418
419/// converToHardwareLoop - check if the loop is a candidate for
420/// converting to a hardware loop. If so, then perform the
421/// transformation.
422///
423/// This function works on innermost loops first. A loop can
424/// be converted if it is a counting loop; either a register
425/// value or an immediate.
426///
427/// The code makes several assumptions about the representation
428/// of the loop in llvm.
429bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
430 bool Changed = false;
431 // Process nested loops first.
432 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
433 Changed |= convertToHardwareLoop(*I);
434 }
435 // If a nested loop has been converted, then we can't convert this loop.
436 if (Changed) {
437 return Changed;
438 }
439 // Are we able to determine the trip count for the loop?
440 CountValue *TripCount = getTripCount(L);
441 if (TripCount == 0) {
442 return false;
443 }
444 // Does the loop contain any invalid instructions?
445 if (containsInvalidInstruction(L)) {
446 return false;
447 }
448 MachineBasicBlock *Preheader = L->getLoopPreheader();
449 // No preheader means there's not place for the loop instr.
450 if (Preheader == 0) {
451 return false;
452 }
453 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
454
455 MachineBasicBlock *LastMBB = L->getExitingBlock();
456 // Don't generate hw loop if the loop has more than one exit.
457 if (LastMBB == 0) {
458 return false;
459 }
460 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
461
462 // Determine the loop start.
463 MachineBasicBlock *LoopStart = L->getTopBlock();
464 if (L->getLoopLatch() != LastMBB) {
465 // When the exit and latch are not the same, use the latch block as the
466 // start.
467 // The loop start address is used only after the 1st iteration, and the loop
468 // latch may contains instrs. that need to be executed after the 1st iter.
469 LoopStart = L->getLoopLatch();
470 // Make sure the latch is a successor of the exit, otherwise it won't work.
471 if (!LastMBB->isSuccessor(LoopStart)) {
472 return false;
473 }
474 }
475
476 // Convert the loop to a hardware loop
477 DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
478
479 if (TripCount->isReg()) {
480 // Create a copy of the loop count register.
481 MachineFunction *MF = LastMBB->getParent();
482 const TargetRegisterClass *RC =
483 MF->getRegInfo().getRegClass(TripCount->getReg());
484 unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC);
485 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
486 TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
487 if (TripCount->isNeg()) {
488 unsigned CountReg1 = CountReg;
489 CountReg = MF->getRegInfo().createVirtualRegister(RC);
490 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
491 TII->get(Hexagon::NEG), CountReg).addReg(CountReg1);
492 }
493
Benjamin Kramerd9b0b022012-06-02 10:20:22 +0000494 // Add the Loop instruction to the beginning of the loop.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000495 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
496 TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg);
497 } else {
498 assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
499 // Add the Loop immediate instruction to the beginning of the loop.
500 int64_t CountImm = TripCount->getImm();
501 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
502 TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm);
503 }
504
505 // Make sure the loop start always has a reference in the CFG. We need to
506 // create a BlockAddress operand to get this mechanism to work both the
507 // MachineBasicBlock and BasicBlock objects need the flag set.
508 LoopStart->setHasAddressTaken();
509 // This line is needed to set the hasAddressTaken flag on the BasicBlock
510 // object
511 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
512
513 // Replace the loop branch with an endloop instruction.
514 DebugLoc dl = LastI->getDebugLoc();
515 BuildMI(*LastMBB, LastI, dl, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
516
517 // The loop ends with either:
518 // - a conditional branch followed by an unconditional branch, or
519 // - a conditional branch to the loop start.
Sirish Pandeab7955b2012-02-15 18:52:27 +0000520 if (LastI->getOpcode() == Hexagon::JMP_c ||
521 LastI->getOpcode() == Hexagon::JMP_cNot) {
Tony Linthicumb4b54152011-12-12 21:14:40 +0000522 // delete one and change/add an uncond. branch to out of the loop
523 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
524 LastI = LastMBB->erase(LastI);
525 if (!L->contains(BranchTarget)) {
526 if (LastI != LastMBB->end()) {
527 TII->RemoveBranch(*LastMBB);
528 }
529 SmallVector<MachineOperand, 0> Cond;
530 TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, dl);
531 }
532 } else {
533 // Conditional branch to loop start; just delete it.
534 LastMBB->erase(LastI);
535 }
536 delete TripCount;
537
538 ++NumHWLoops;
539 return true;
540}
541
542/// createHexagonFixupHwLoops - Factory for creating the hardware loop
543/// phase.
544FunctionPass *llvm::createHexagonFixupHwLoops() {
545 return new HexagonFixupHwLoops();
546}
547
548bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
549 DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n");
550
551 bool Changed = fixupLoopInstrs(MF);
552 return Changed;
553}
554
555/// fixupLoopInsts - For Hexagon, if the loop label is to far from the
556/// loop instruction then we need to set the LC0 and SA0 registers
557/// explicitly instead of using LOOP(start,count). This function
558/// checks the distance, and generates register assignments if needed.
559///
560/// This function makes two passes over the basic blocks. The first
561/// pass computes the offset of the basic block from the start.
562/// The second pass checks all the loop instructions.
563bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
564
565 // Offset of the current instruction from the start.
566 unsigned InstOffset = 0;
567 // Map for each basic block to it's first instruction.
568 DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
569
570 // First pass - compute the offset of each basic block.
571 for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
572 MBB != MBBe; ++MBB) {
573 BlockToInstOffset[MBB] = InstOffset;
574 InstOffset += (MBB->size() * 4);
575 }
576
577 // Second pass - check each loop instruction to see if it needs to
578 // be converted.
579 InstOffset = 0;
580 bool Changed = false;
581 RegScavenger RS;
582
583 // Loop over all the basic blocks.
584 for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
585 MBB != MBBe; ++MBB) {
586 InstOffset = BlockToInstOffset[MBB];
587 RS.enterBasicBlock(MBB);
588
589 // Loop over all the instructions.
590 MachineBasicBlock::iterator MIE = MBB->end();
591 MachineBasicBlock::iterator MII = MBB->begin();
592 while (MII != MIE) {
593 if (isHardwareLoop(MII)) {
594 RS.forward(MII);
595 assert(MII->getOperand(0).isMBB() &&
596 "Expect a basic block as loop operand");
597 int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
598 diff = (diff > 0 ? diff : -diff);
599 if ((unsigned)diff > MAX_LOOP_DISTANCE) {
600 // Convert to explicity setting LC0 and SA0.
601 convertLoopInstr(MF, MII, RS);
602 MII = MBB->erase(MII);
603 Changed = true;
604 } else {
605 ++MII;
606 }
607 } else {
608 ++MII;
609 }
610 InstOffset += 4;
611 }
612 }
613
614 return Changed;
615
616}
617
618/// convertLoopInstr - convert a loop instruction to a sequence of instructions
619/// that set the lc and sa register explicitly.
620void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
621 MachineBasicBlock::iterator &MII,
622 RegScavenger &RS) {
623 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
624 MachineBasicBlock *MBB = MII->getParent();
625 DebugLoc DL = MII->getDebugLoc();
Craig Topper420761a2012-04-20 07:30:17 +0000626 unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000627
628 // First, set the LC0 with the trip count.
629 if (MII->getOperand(1).isReg()) {
630 // Trip count is a register
631 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
632 .addReg(MII->getOperand(1).getReg());
633 } else {
634 // Trip count is an immediate.
635 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
636 .addImm(MII->getOperand(1).getImm());
637 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
638 .addReg(Scratch);
639 }
640 // Then, set the SA0 with the loop start address.
641 BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
642 .addMBB(MII->getOperand(0).getMBB());
643 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch);
644}