Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1 | //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass identifies loops where we can generate the Hexagon hardware |
| 11 | // loop instruction. The hardware loop can perform loop branches with a |
| 12 | // zero-cycle overhead. |
| 13 | // |
| 14 | // The pattern that defines the induction variable can changed depending on |
| 15 | // prior optimizations. For example, the IndVarSimplify phase run by 'opt' |
| 16 | // normalizes induction variables, and the Loop Strength Reduction pass |
| 17 | // run by 'llc' may also make changes to the induction variable. |
| 18 | // The pattern detected by this phase is due to running Strength Reduction. |
| 19 | // |
| 20 | // Criteria for hardware loops: |
| 21 | // - Countable loops (w/ ind. var for a trip count) |
| 22 | // - Assumes loops are normalized by IndVarSimplify |
| 23 | // - Try inner-most loops first |
| 24 | // - No nested hardware loops. |
| 25 | // - No function calls in loops. |
| 26 | // |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | #define DEBUG_TYPE "hwloops" |
Craig Topper | 79aa341 | 2012-03-17 18:46:09 +0000 | [diff] [blame] | 30 | #include "Hexagon.h" |
| 31 | #include "HexagonTargetMachine.h" |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 32 | #include "llvm/Constants.h" |
| 33 | #include "llvm/PassSupport.h" |
| 34 | #include "llvm/ADT/DenseMap.h" |
| 35 | #include "llvm/ADT/Statistic.h" |
| 36 | #include "llvm/CodeGen/Passes.h" |
| 37 | #include "llvm/CodeGen/MachineDominators.h" |
| 38 | #include "llvm/CodeGen/MachineFunction.h" |
| 39 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 40 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 41 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 42 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 43 | #include "llvm/CodeGen/RegisterScavenging.h" |
| 44 | #include "llvm/Support/Debug.h" |
| 45 | #include "llvm/Support/raw_ostream.h" |
| 46 | #include "llvm/Target/TargetInstrInfo.h" |
| 47 | #include <algorithm> |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 48 | |
| 49 | using namespace llvm; |
| 50 | |
| 51 | STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); |
| 52 | |
| 53 | namespace { |
| 54 | class CountValue; |
| 55 | struct HexagonHardwareLoops : public MachineFunctionPass { |
| 56 | MachineLoopInfo *MLI; |
| 57 | MachineRegisterInfo *MRI; |
| 58 | const TargetInstrInfo *TII; |
| 59 | |
| 60 | public: |
| 61 | static char ID; // Pass identification, replacement for typeid |
| 62 | |
| 63 | HexagonHardwareLoops() : MachineFunctionPass(ID) {} |
| 64 | |
| 65 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 66 | |
| 67 | const char *getPassName() const { return "Hexagon Hardware Loops"; } |
| 68 | |
| 69 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 70 | AU.setPreservesCFG(); |
| 71 | AU.addRequired<MachineDominatorTree>(); |
| 72 | AU.addPreserved<MachineDominatorTree>(); |
| 73 | AU.addRequired<MachineLoopInfo>(); |
| 74 | AU.addPreserved<MachineLoopInfo>(); |
| 75 | MachineFunctionPass::getAnalysisUsage(AU); |
| 76 | } |
| 77 | |
| 78 | private: |
| 79 | /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| 80 | /// induction variable. |
| 81 | /// Should be defined in MachineLoop. Based upon version in class Loop. |
| 82 | const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const; |
| 83 | |
| 84 | /// getTripCount - Return a loop-invariant LLVM register indicating the |
| 85 | /// number of times the loop will be executed. If the trip-count cannot |
| 86 | /// be determined, this return null. |
| 87 | CountValue *getTripCount(MachineLoop *L) const; |
| 88 | |
| 89 | /// isInductionOperation - Return true if the instruction matches the |
| 90 | /// pattern for an opertion that defines an induction variable. |
| 91 | bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const; |
| 92 | |
| 93 | /// isInvalidOperation - Return true if the instruction is not valid within |
| 94 | /// a hardware loop. |
| 95 | bool isInvalidLoopOperation(const MachineInstr *MI) const; |
| 96 | |
| 97 | /// containsInavlidInstruction - Return true if the loop contains an |
| 98 | /// instruction that inhibits using the hardware loop. |
| 99 | bool containsInvalidInstruction(MachineLoop *L) const; |
| 100 | |
| 101 | /// converToHardwareLoop - Given a loop, check if we can convert it to a |
| 102 | /// hardware loop. If so, then perform the conversion and return true. |
| 103 | bool convertToHardwareLoop(MachineLoop *L); |
| 104 | |
| 105 | }; |
| 106 | |
| 107 | char HexagonHardwareLoops::ID = 0; |
| 108 | |
| 109 | |
| 110 | // CountValue class - Abstraction for a trip count of a loop. A |
| 111 | // smaller vesrsion of the MachineOperand class without the concerns |
| 112 | // of changing the operand representation. |
| 113 | class CountValue { |
| 114 | public: |
| 115 | enum CountValueType { |
| 116 | CV_Register, |
| 117 | CV_Immediate |
| 118 | }; |
| 119 | private: |
| 120 | CountValueType Kind; |
| 121 | union Values { |
| 122 | unsigned RegNum; |
| 123 | int64_t ImmVal; |
| 124 | Values(unsigned r) : RegNum(r) {} |
| 125 | Values(int64_t i) : ImmVal(i) {} |
| 126 | } Contents; |
| 127 | bool isNegative; |
| 128 | |
| 129 | public: |
| 130 | CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r), |
| 131 | isNegative(neg) {} |
| 132 | explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i), |
| 133 | isNegative(i < 0) {} |
| 134 | CountValueType getType() const { return Kind; } |
| 135 | bool isReg() const { return Kind == CV_Register; } |
| 136 | bool isImm() const { return Kind == CV_Immediate; } |
| 137 | bool isNeg() const { return isNegative; } |
| 138 | |
| 139 | unsigned getReg() const { |
| 140 | assert(isReg() && "Wrong CountValue accessor"); |
| 141 | return Contents.RegNum; |
| 142 | } |
| 143 | void setReg(unsigned Val) { |
| 144 | Contents.RegNum = Val; |
| 145 | } |
| 146 | int64_t getImm() const { |
| 147 | assert(isImm() && "Wrong CountValue accessor"); |
| 148 | if (isNegative) { |
| 149 | return -Contents.ImmVal; |
| 150 | } |
| 151 | return Contents.ImmVal; |
| 152 | } |
| 153 | void setImm(int64_t Val) { |
| 154 | Contents.ImmVal = Val; |
| 155 | } |
| 156 | |
| 157 | void print(raw_ostream &OS, const TargetMachine *TM = 0) const { |
| 158 | if (isReg()) { OS << PrintReg(getReg()); } |
| 159 | if (isImm()) { OS << getImm(); } |
| 160 | } |
| 161 | }; |
| 162 | |
| 163 | struct HexagonFixupHwLoops : public MachineFunctionPass { |
| 164 | public: |
| 165 | static char ID; // Pass identification, replacement for typeid. |
| 166 | |
| 167 | HexagonFixupHwLoops() : MachineFunctionPass(ID) {} |
| 168 | |
| 169 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 170 | |
| 171 | const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; } |
| 172 | |
| 173 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 174 | AU.setPreservesCFG(); |
| 175 | MachineFunctionPass::getAnalysisUsage(AU); |
| 176 | } |
| 177 | |
| 178 | private: |
| 179 | /// Maximum distance between the loop instr and the basic block. |
| 180 | /// Just an estimate. |
| 181 | static const unsigned MAX_LOOP_DISTANCE = 200; |
| 182 | |
| 183 | /// fixupLoopInstrs - Check the offset between each loop instruction and |
| 184 | /// the loop basic block to determine if we can use the LOOP instruction |
| 185 | /// or if we need to set the LC/SA registers explicitly. |
| 186 | bool fixupLoopInstrs(MachineFunction &MF); |
| 187 | |
| 188 | /// convertLoopInstr - Add the instruction to set the LC and SA registers |
| 189 | /// explicitly. |
| 190 | void convertLoopInstr(MachineFunction &MF, |
| 191 | MachineBasicBlock::iterator &MII, |
| 192 | RegScavenger &RS); |
| 193 | |
| 194 | }; |
| 195 | |
| 196 | char HexagonFixupHwLoops::ID = 0; |
| 197 | |
| 198 | } // end anonymous namespace |
| 199 | |
| 200 | |
| 201 | /// isHardwareLoop - Returns true if the instruction is a hardware loop |
| 202 | /// instruction. |
| 203 | static bool isHardwareLoop(const MachineInstr *MI) { |
| 204 | return MI->getOpcode() == Hexagon::LOOP0_r || |
| 205 | MI->getOpcode() == Hexagon::LOOP0_i; |
| 206 | } |
| 207 | |
| 208 | /// isCompareEquals - Returns true if the instruction is a compare equals |
| 209 | /// instruction with an immediate operand. |
| 210 | static bool isCompareEqualsImm(const MachineInstr *MI) { |
| 211 | return MI->getOpcode() == Hexagon::CMPEQri; |
| 212 | } |
| 213 | |
| 214 | |
| 215 | /// createHexagonHardwareLoops - Factory for creating |
| 216 | /// the hardware loop phase. |
| 217 | FunctionPass *llvm::createHexagonHardwareLoops() { |
| 218 | return new HexagonHardwareLoops(); |
| 219 | } |
| 220 | |
| 221 | |
| 222 | bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { |
| 223 | DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); |
| 224 | |
| 225 | bool Changed = false; |
| 226 | |
| 227 | // get the loop information |
| 228 | MLI = &getAnalysis<MachineLoopInfo>(); |
| 229 | // get the register information |
| 230 | MRI = &MF.getRegInfo(); |
| 231 | // the target specific instructio info. |
| 232 | TII = MF.getTarget().getInstrInfo(); |
| 233 | |
| 234 | for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); |
| 235 | I != E; ++I) { |
| 236 | MachineLoop *L = *I; |
| 237 | if (!L->getParentLoop()) { |
| 238 | Changed |= convertToHardwareLoop(L); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | return Changed; |
| 243 | } |
| 244 | |
| 245 | /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| 246 | /// induction variable. We check for a simple recurrence pattern - an |
| 247 | /// integer recurrence that decrements by one each time through the loop and |
| 248 | /// ends at zero. If so, return the phi node that corresponds to it. |
| 249 | /// |
| 250 | /// Based upon the similar code in LoopInfo except this code is specific to |
| 251 | /// the machine. |
| 252 | /// This method assumes that the IndVarSimplify pass has been run by 'opt'. |
| 253 | /// |
| 254 | const MachineInstr |
| 255 | *HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const { |
| 256 | MachineBasicBlock *TopMBB = L->getTopBlock(); |
| 257 | MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); |
| 258 | assert(PI != TopMBB->pred_end() && |
| 259 | "Loop must have more than one incoming edge!"); |
| 260 | MachineBasicBlock *Backedge = *PI++; |
| 261 | if (PI == TopMBB->pred_end()) return 0; // dead loop |
| 262 | MachineBasicBlock *Incoming = *PI++; |
| 263 | if (PI != TopMBB->pred_end()) return 0; // multiple backedges? |
| 264 | |
| 265 | // make sure there is one incoming and one backedge and determine which |
| 266 | // is which. |
| 267 | if (L->contains(Incoming)) { |
| 268 | if (L->contains(Backedge)) |
| 269 | return 0; |
| 270 | std::swap(Incoming, Backedge); |
| 271 | } else if (!L->contains(Backedge)) |
| 272 | return 0; |
| 273 | |
| 274 | // Loop over all of the PHI nodes, looking for a canonical induction variable: |
| 275 | // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2". |
| 276 | // - The recurrence comes from the backedge. |
| 277 | // - the definition is an induction operatio.n |
| 278 | for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end(); |
| 279 | I != E && I->isPHI(); ++I) { |
| 280 | const MachineInstr *MPhi = &*I; |
| 281 | unsigned DefReg = MPhi->getOperand(0).getReg(); |
| 282 | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { |
| 283 | // Check each operand for the value from the backedge. |
| 284 | MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB(); |
| 285 | if (L->contains(MBB)) { // operands comes from the backedge |
| 286 | // Check if the definition is an induction operation. |
| 287 | const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg()); |
| 288 | if (isInductionOperation(DI, DefReg)) { |
| 289 | return MPhi; |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | /// getTripCount - Return a loop-invariant LLVM value indicating the |
| 298 | /// number of times the loop will be executed. The trip count can |
| 299 | /// be either a register or a constant value. If the trip-count |
| 300 | /// cannot be determined, this returns null. |
| 301 | /// |
| 302 | /// We find the trip count from the phi instruction that defines the |
| 303 | /// induction variable. We follow the links to the CMP instruction |
| 304 | /// to get the trip count. |
| 305 | /// |
| 306 | /// Based upon getTripCount in LoopInfo. |
| 307 | /// |
| 308 | CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const { |
| 309 | // Check that the loop has a induction variable. |
| 310 | const MachineInstr *IV_Inst = getCanonicalInductionVariable(L); |
| 311 | if (IV_Inst == 0) return 0; |
| 312 | |
| 313 | // Canonical loops will end with a 'cmpeq_ri IV, Imm', |
| 314 | // if Imm is 0, get the count from the PHI opnd |
| 315 | // if Imm is -M, than M is the count |
| 316 | // Otherwise, Imm is the count |
| 317 | const MachineOperand *IV_Opnd; |
| 318 | const MachineOperand *InitialValue; |
| 319 | if (!L->contains(IV_Inst->getOperand(2).getMBB())) { |
| 320 | InitialValue = &IV_Inst->getOperand(1); |
| 321 | IV_Opnd = &IV_Inst->getOperand(3); |
| 322 | } else { |
| 323 | InitialValue = &IV_Inst->getOperand(3); |
| 324 | IV_Opnd = &IV_Inst->getOperand(1); |
| 325 | } |
| 326 | |
| 327 | // Look for the cmp instruction to determine if we |
| 328 | // can get a useful trip count. The trip count can |
| 329 | // be either a register or an immediate. The location |
| 330 | // of the value depends upon the type (reg or imm). |
| 331 | while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) { |
| 332 | const MachineInstr *MI = IV_Opnd->getParent(); |
| 333 | if (L->contains(MI) && isCompareEqualsImm(MI)) { |
| 334 | const MachineOperand &MO = MI->getOperand(2); |
| 335 | assert(MO.isImm() && "IV Cmp Operand should be 0"); |
| 336 | int64_t ImmVal = MO.getImm(); |
| 337 | |
| 338 | const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg()); |
| 339 | assert(L->contains(IV_DefInstr->getParent()) && |
| 340 | "IV definition should occurs in loop"); |
| 341 | int64_t iv_value = IV_DefInstr->getOperand(2).getImm(); |
| 342 | |
| 343 | if (ImmVal == 0) { |
| 344 | // Make sure the induction variable changes by one on each iteration. |
| 345 | if (iv_value != 1 && iv_value != -1) { |
| 346 | return 0; |
| 347 | } |
| 348 | return new CountValue(InitialValue->getReg(), iv_value > 0); |
| 349 | } else { |
| 350 | assert(InitialValue->isReg() && "Expecting register for init value"); |
| 351 | const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg()); |
| 352 | if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) { |
| 353 | int64_t count = ImmVal - DefInstr->getOperand(1).getImm(); |
| 354 | if ((count % iv_value) != 0) { |
| 355 | return 0; |
| 356 | } |
| 357 | return new CountValue(count/iv_value); |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | } |
| 362 | return 0; |
| 363 | } |
| 364 | |
| 365 | /// isInductionOperation - return true if the operation is matches the |
| 366 | /// pattern that defines an induction variable: |
| 367 | /// add iv, c |
| 368 | /// |
| 369 | bool |
| 370 | HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI, |
| 371 | unsigned IVReg) const { |
| 372 | return (MI->getOpcode() == |
| 373 | Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg); |
| 374 | } |
| 375 | |
| 376 | /// isInvalidOperation - Return true if the operation is invalid within |
| 377 | /// hardware loop. |
| 378 | bool |
| 379 | HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const { |
| 380 | |
| 381 | // call is not allowed because the callee may use a hardware loop |
| 382 | if (MI->getDesc().isCall()) { |
| 383 | return true; |
| 384 | } |
| 385 | // do not allow nested hardware loops |
| 386 | if (isHardwareLoop(MI)) { |
| 387 | return true; |
| 388 | } |
| 389 | // check if the instruction defines a hardware loop register |
| 390 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 391 | const MachineOperand &MO = MI->getOperand(i); |
| 392 | if (MO.isReg() && MO.isDef() && |
| 393 | (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 || |
| 394 | MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) { |
| 395 | return true; |
| 396 | } |
| 397 | } |
| 398 | return false; |
| 399 | } |
| 400 | |
| 401 | /// containsInvalidInstruction - Return true if the loop contains |
| 402 | /// an instruction that inhibits the use of the hardware loop function. |
| 403 | /// |
| 404 | bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { |
| 405 | const std::vector<MachineBasicBlock*> Blocks = L->getBlocks(); |
| 406 | for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| 407 | MachineBasicBlock *MBB = Blocks[i]; |
| 408 | for (MachineBasicBlock::iterator |
| 409 | MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { |
| 410 | const MachineInstr *MI = &*MII; |
| 411 | if (isInvalidLoopOperation(MI)) { |
| 412 | return true; |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | return false; |
| 417 | } |
| 418 | |
| 419 | /// converToHardwareLoop - check if the loop is a candidate for |
| 420 | /// converting to a hardware loop. If so, then perform the |
| 421 | /// transformation. |
| 422 | /// |
| 423 | /// This function works on innermost loops first. A loop can |
| 424 | /// be converted if it is a counting loop; either a register |
| 425 | /// value or an immediate. |
| 426 | /// |
| 427 | /// The code makes several assumptions about the representation |
| 428 | /// of the loop in llvm. |
| 429 | bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { |
| 430 | bool Changed = false; |
| 431 | // Process nested loops first. |
| 432 | for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { |
| 433 | Changed |= convertToHardwareLoop(*I); |
| 434 | } |
| 435 | // If a nested loop has been converted, then we can't convert this loop. |
| 436 | if (Changed) { |
| 437 | return Changed; |
| 438 | } |
| 439 | // Are we able to determine the trip count for the loop? |
| 440 | CountValue *TripCount = getTripCount(L); |
| 441 | if (TripCount == 0) { |
| 442 | return false; |
| 443 | } |
| 444 | // Does the loop contain any invalid instructions? |
| 445 | if (containsInvalidInstruction(L)) { |
| 446 | return false; |
| 447 | } |
| 448 | MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| 449 | // No preheader means there's not place for the loop instr. |
| 450 | if (Preheader == 0) { |
| 451 | return false; |
| 452 | } |
| 453 | MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); |
| 454 | |
| 455 | MachineBasicBlock *LastMBB = L->getExitingBlock(); |
| 456 | // Don't generate hw loop if the loop has more than one exit. |
| 457 | if (LastMBB == 0) { |
| 458 | return false; |
| 459 | } |
| 460 | MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); |
| 461 | |
| 462 | // Determine the loop start. |
| 463 | MachineBasicBlock *LoopStart = L->getTopBlock(); |
| 464 | if (L->getLoopLatch() != LastMBB) { |
| 465 | // When the exit and latch are not the same, use the latch block as the |
| 466 | // start. |
| 467 | // The loop start address is used only after the 1st iteration, and the loop |
| 468 | // latch may contains instrs. that need to be executed after the 1st iter. |
| 469 | LoopStart = L->getLoopLatch(); |
| 470 | // Make sure the latch is a successor of the exit, otherwise it won't work. |
| 471 | if (!LastMBB->isSuccessor(LoopStart)) { |
| 472 | return false; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | // Convert the loop to a hardware loop |
| 477 | DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); |
| 478 | |
| 479 | if (TripCount->isReg()) { |
| 480 | // Create a copy of the loop count register. |
| 481 | MachineFunction *MF = LastMBB->getParent(); |
| 482 | const TargetRegisterClass *RC = |
| 483 | MF->getRegInfo().getRegClass(TripCount->getReg()); |
| 484 | unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC); |
| 485 | BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), |
| 486 | TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg()); |
| 487 | if (TripCount->isNeg()) { |
| 488 | unsigned CountReg1 = CountReg; |
| 489 | CountReg = MF->getRegInfo().createVirtualRegister(RC); |
| 490 | BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), |
| 491 | TII->get(Hexagon::NEG), CountReg).addReg(CountReg1); |
| 492 | } |
| 493 | |
Benjamin Kramer | d9b0b02 | 2012-06-02 10:20:22 +0000 | [diff] [blame] | 494 | // Add the Loop instruction to the beginning of the loop. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 495 | BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), |
| 496 | TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg); |
| 497 | } else { |
| 498 | assert(TripCount->isImm() && "Expecting immedate vaule for trip count"); |
| 499 | // Add the Loop immediate instruction to the beginning of the loop. |
| 500 | int64_t CountImm = TripCount->getImm(); |
| 501 | BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), |
| 502 | TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm); |
| 503 | } |
| 504 | |
| 505 | // Make sure the loop start always has a reference in the CFG. We need to |
| 506 | // create a BlockAddress operand to get this mechanism to work both the |
| 507 | // MachineBasicBlock and BasicBlock objects need the flag set. |
| 508 | LoopStart->setHasAddressTaken(); |
| 509 | // This line is needed to set the hasAddressTaken flag on the BasicBlock |
| 510 | // object |
| 511 | BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); |
| 512 | |
| 513 | // Replace the loop branch with an endloop instruction. |
| 514 | DebugLoc dl = LastI->getDebugLoc(); |
| 515 | BuildMI(*LastMBB, LastI, dl, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); |
| 516 | |
| 517 | // The loop ends with either: |
| 518 | // - a conditional branch followed by an unconditional branch, or |
| 519 | // - a conditional branch to the loop start. |
Sirish Pande | ab7955b | 2012-02-15 18:52:27 +0000 | [diff] [blame] | 520 | if (LastI->getOpcode() == Hexagon::JMP_c || |
| 521 | LastI->getOpcode() == Hexagon::JMP_cNot) { |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 522 | // delete one and change/add an uncond. branch to out of the loop |
| 523 | MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); |
| 524 | LastI = LastMBB->erase(LastI); |
| 525 | if (!L->contains(BranchTarget)) { |
| 526 | if (LastI != LastMBB->end()) { |
| 527 | TII->RemoveBranch(*LastMBB); |
| 528 | } |
| 529 | SmallVector<MachineOperand, 0> Cond; |
| 530 | TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, dl); |
| 531 | } |
| 532 | } else { |
| 533 | // Conditional branch to loop start; just delete it. |
| 534 | LastMBB->erase(LastI); |
| 535 | } |
| 536 | delete TripCount; |
| 537 | |
| 538 | ++NumHWLoops; |
| 539 | return true; |
| 540 | } |
| 541 | |
| 542 | /// createHexagonFixupHwLoops - Factory for creating the hardware loop |
| 543 | /// phase. |
| 544 | FunctionPass *llvm::createHexagonFixupHwLoops() { |
| 545 | return new HexagonFixupHwLoops(); |
| 546 | } |
| 547 | |
| 548 | bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) { |
| 549 | DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n"); |
| 550 | |
| 551 | bool Changed = fixupLoopInstrs(MF); |
| 552 | return Changed; |
| 553 | } |
| 554 | |
| 555 | /// fixupLoopInsts - For Hexagon, if the loop label is to far from the |
| 556 | /// loop instruction then we need to set the LC0 and SA0 registers |
| 557 | /// explicitly instead of using LOOP(start,count). This function |
| 558 | /// checks the distance, and generates register assignments if needed. |
| 559 | /// |
| 560 | /// This function makes two passes over the basic blocks. The first |
| 561 | /// pass computes the offset of the basic block from the start. |
| 562 | /// The second pass checks all the loop instructions. |
| 563 | bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) { |
| 564 | |
| 565 | // Offset of the current instruction from the start. |
| 566 | unsigned InstOffset = 0; |
| 567 | // Map for each basic block to it's first instruction. |
| 568 | DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset; |
| 569 | |
| 570 | // First pass - compute the offset of each basic block. |
| 571 | for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end(); |
| 572 | MBB != MBBe; ++MBB) { |
| 573 | BlockToInstOffset[MBB] = InstOffset; |
| 574 | InstOffset += (MBB->size() * 4); |
| 575 | } |
| 576 | |
| 577 | // Second pass - check each loop instruction to see if it needs to |
| 578 | // be converted. |
| 579 | InstOffset = 0; |
| 580 | bool Changed = false; |
| 581 | RegScavenger RS; |
| 582 | |
| 583 | // Loop over all the basic blocks. |
| 584 | for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end(); |
| 585 | MBB != MBBe; ++MBB) { |
| 586 | InstOffset = BlockToInstOffset[MBB]; |
| 587 | RS.enterBasicBlock(MBB); |
| 588 | |
| 589 | // Loop over all the instructions. |
| 590 | MachineBasicBlock::iterator MIE = MBB->end(); |
| 591 | MachineBasicBlock::iterator MII = MBB->begin(); |
| 592 | while (MII != MIE) { |
| 593 | if (isHardwareLoop(MII)) { |
| 594 | RS.forward(MII); |
| 595 | assert(MII->getOperand(0).isMBB() && |
| 596 | "Expect a basic block as loop operand"); |
| 597 | int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()]; |
| 598 | diff = (diff > 0 ? diff : -diff); |
| 599 | if ((unsigned)diff > MAX_LOOP_DISTANCE) { |
| 600 | // Convert to explicity setting LC0 and SA0. |
| 601 | convertLoopInstr(MF, MII, RS); |
| 602 | MII = MBB->erase(MII); |
| 603 | Changed = true; |
| 604 | } else { |
| 605 | ++MII; |
| 606 | } |
| 607 | } else { |
| 608 | ++MII; |
| 609 | } |
| 610 | InstOffset += 4; |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | return Changed; |
| 615 | |
| 616 | } |
| 617 | |
| 618 | /// convertLoopInstr - convert a loop instruction to a sequence of instructions |
| 619 | /// that set the lc and sa register explicitly. |
| 620 | void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF, |
| 621 | MachineBasicBlock::iterator &MII, |
| 622 | RegScavenger &RS) { |
| 623 | const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); |
| 624 | MachineBasicBlock *MBB = MII->getParent(); |
| 625 | DebugLoc DL = MII->getDebugLoc(); |
Craig Topper | 420761a | 2012-04-20 07:30:17 +0000 | [diff] [blame] | 626 | unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 627 | |
| 628 | // First, set the LC0 with the trip count. |
| 629 | if (MII->getOperand(1).isReg()) { |
| 630 | // Trip count is a register |
| 631 | BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0) |
| 632 | .addReg(MII->getOperand(1).getReg()); |
| 633 | } else { |
| 634 | // Trip count is an immediate. |
| 635 | BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch) |
| 636 | .addImm(MII->getOperand(1).getImm()); |
| 637 | BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0) |
| 638 | .addReg(Scratch); |
| 639 | } |
| 640 | // Then, set the SA0 with the loop start address. |
| 641 | BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch) |
| 642 | .addMBB(MII->getOperand(0).getMBB()); |
| 643 | BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch); |
| 644 | } |